I. CHEST/ABDOMEN MODULE

For the Chest / Abdomen category, given a radiograph or a diagram, the student will correctly label key radiographic anatomic landmarks.

On a simulated patient, the student will demonstrate their working knowledge of standard terminology for patient positioning and projection.

A. ANATOMIC TRAINING

- 1. Chest
 - a. PA upright
 - b. Lateral upright (left)
 - c. AP Lordotic
 - d. AP supine
 - e. Lateral decubitus
 - f. Posterior oblique
 - g. Anterior oblique
- 2. Ribs
 - a. AP
 - b. Oblique
- 3. Abdomen
 - a. AP erect
 - b. AP supine

Except for bone densitometry, if multiple clinical modules are taken together or as a sequence, the digital image receptor training only has to be provided and assessed once.

B. DIGITAL IMAGE RECEPTORS

1. Didactic Fundamentals: The student will be familiar with basic digital terms & concepts, basic differences in digital image acquisition methods, the effects of "windowing" on image contrast and density.

- a. Digital Basics:
- b. Digital Image Acquisition Technologies: 2 basic types Computed Radiography (CR) & Digital Radiography (DR)
- c. Display Qualities
- d. Practical Considerations Differences between CR & Film
- e. Practical Considerations Differences between CR & DR
- 2. Clinical Essentials Lab CR & Digital Image Receptor (IR)
 - a. Introductory concepts to digital IRs
 - b. CR Essentials
 - c. Auto-recognition systems and histograms
 - d. Optimal Technique Considerations
 - e. CR Plate Fogging CR plates especially sensitive tofogging
 - f. Common errors resulting in a poor-quality image
- 3. Digital Image Receptor Psychomotor Skills
 - a. Processing the CR Plate
 - b. Erasure control
 - c. Electronic image management
 - d. Basic artifact analysis
 - e. Edge enhancement algorithms

II. EXTREMITY MODULE

For the Extremity category, given a radiograph or a diagram, the student will correctly label key radiographic anatomic landmarks.

On a simulated patient, the student will demonstrate their working knowledge of standard terminology for patient positioning and projection.

A. ANATOMIC TRAINING

- 1. Toes
 - a. AP
 - b. Oblique
 - c. Lateral
- 2. Foot
 - a. AP axial
 - b. Medial oblique
 - c. Lateral oblique
 - d. Mediolateral
 - e. AP weightbearing
 - f. Lateral weightbearing

3701-72-03 APPENDIX

GXMO CLINICAL TRAINING MODULES

- 3. Ankle
 - a. AP
 - b. AP 15° internal oblique (mortise)
 - c. Lateral
 - d. Oblique 45° internal
 - e. Oblique 45° external
- 4. Calcaneus (Os Calcis)
 - a. Calcaneal axial
- 5. Tibia, Fibula
 - a. AP
 - b. Lateral
- 6. Knee
 - a. AP
 - b. Lateral
 - c. AP weight bearing
 - d. Lateral oblique 45°
 - e. Medial oblique 45°
 - f. PA
 - g. PA axial intercondylar fossa (tunnel)
- 7. Patella
 - a. Lateral
 - b. Supine flexion 45° (Merchant)
 - c. PA
 - d. Prone flexion 90° (Settegast)
 - e. Prone flexion 55° (Hughston)
- 8. Femur (Distal)
 - a. AP
 - b. Mediolateral
 - c. Cross-table lateral
- 9. Pelvis
 - a. AP

3701-72-03 APPENDIX

GXMO CLINICAL TRAINING MODULES

- 10. Hip
 - a. AP
 - b. Lateral
 - c. Cross-table lateral
- 11. Fingers
 - a. PA finger
 - b. Mediolateral lateral
 - c. Oblique
 - d. AP thumb
 - e. Oblique thumb
 - f. Lateral thumb
- 12. Hand
 - a. PA
 - b. Lateral
 - c. Oblique
- 13. Wrist
 - a. PA
 - b. Oblique 45°
 - c. Lateral
 - d. PA for scaphoid
- 14. Forearm
 - a. AP
 - b. Lateral
- 15. Elbow
 - a. AP
 - b. Lateral
 - c. External oblique
 - d. Internal oblique
 - e. AP partial flexion
- 16. Humerus
 - a. AP
 - b. Lateral

17. Shoulder

- a. AP internal and external rotation
- b. Inferosuperior axial
- c. Posterior oblique (Grashey)
- d. AP neutral
- e. Transthoracic lateral
- f. Scapular Y

18. Scapula

- a. AP
- b. Lateral

19. Clavicle

- a. AP
- b. AP axial 15-30° cephalad
- c. PA axial 15-30° caudad

20. Acromioclavicular joints

a. AP bilateral with and without weights

Except for bone densitometry, if multiple clinical modules are taken together or as a sequence, the digital image receptor trainingonly has to be provided and assessed once.

(B) DIGITAL IMAGE RECEPTORS

- 1. Didactic Fundamentals: The student will be familiar with basic digital terms & concepts, basic differences in digital image acquisition methods, the effects of "windowing" on image contrast and density.
 - a. Digital Basics:
 - b. Digital Image Acquisition Technologies: 2 basic types Computed Radiography (CR) & Digital Radiography (DR)
 - c. Display Qualities
 - d. Practical Considerations Differences between CR & Film
 - e. Practical Considerations Differences between CR & DR

2. Clinical Essentials Lab – CR & Digital Image Receptor (IR)

- a. Introductory concepts to digital IRs
- b. CR Essentials
- c. Auto-recognition systems and histograms
- d. Optimal Technique Considerations
- e. CR Plate Fogging CR plates especially sensitive tofogging

- f. Common errors resulting in a poor-quality image
- 3. Digital Image Receptor Psychomotor Skills
 - a. Processing the CR Plate
 - b. Erasure control
 - c. Electronic image management
 - d. Basic Artifact analysis
 - e. Edge enhancement algorithms

III. SKULL – SINUSES MODULE

For the Skull / Sinuses category, given a radiograph or a diagram, the student will correctly label key radiographic anatomic landmarks.

On a simulated patient, the student will demonstrate their working knowledge of standard terminology for patient positioning and projection.

A. ANATOMIC TRAINING

- 1. Skull
 - a. AP axial (Towne)
 - b. Lateral
 - c. PA (Caldwell)
 - d. PA
 - e. Facial Bones
 - i. Lateral
 - ii. Parietoacanthial (37° Waters)
 - iii. PA (Caldwell)
 - iv. Parietoacanthial (55° Waters)
 - v. Lateral nasal bones
 - vi. Lateral orbits
 - f. Paranasal Sinuses
 - i. Lateral
 - ii. PA (Caldwell)
 - iii. Parietoacanthial (Waters)
 - iv. Submentovertical (full basal)
 - v. Open mouth parietoacanthial (Waters)

Except for bone densitometry, if multiple clinical modules are taken together or as a sequence, the digital image receptor trainingonly has to be provided and assessed once.

B. DIGITAL IMAGE RECEPTORS

- 1. Didactic Fundamentals: The student will be familiar with basic digital terms & concepts, basic differences in digital image acquisition methods, the effects of "windowing" on image contrast and density.
 - a. Digital Basics:
 - b. Digital Image Acquisition Technologies: 2 basic types Computed Radiography (CR) & Digital Radiography (DR)
 - c. Display Qualities
 - d. Practical Considerations Differences between CR & Film
 - e. Practical Considerations Differences between CR & DR
- 2. Clinical Essentials Lab CR & Digital Image Receptor (IR)
 - a. Introductory concepts to digital IRs
 - b. CR Essentials
 - c. Auto-recognition systems and histograms
 - d. Optimal Technique Considerations
 - e. CR Plate Fogging CR plates especially sensitive tofogging
 - f. Common errors resulting in a poor quality image
- 3. Digital Image Receptor Psychomotor Skills
 - a. Processing the CR Plate
 - b. Erasure control
 - c. Electronic image management
 - d. Basic artifact analysis
 - e. Edge enhancement algorithms

IV. SPINE MODULE

For the Spine, given a radiograph or a diagram, the student will correctly label key radiographic anatomic landmarks.

On a simulated patient, the student will demonstrate their working knowledge of standard terminology for patient positioning and projection.

A. ANATOMIC TRAINING

- 1. Cervical spine
 - a. AP axial cephalad
 - b. PA axial caudad
 - c. AP open mouth
 - d. Lateral

- e. 45° oblique
- f. Lateral swimmers
- g. Lateral flexion and extension
- h. Cross-table lateral

2. Thoracic Spine

- a. AP
- b. Lateral

3. Lumbar Spine

- a. AP
- b. Lateral
- c. L5-S1 lateral spot
- d. Oblique 45°
- e. AP L5-S1 spot, 30-35° cephalad

4. Sacrum and Coccyx

- a. AP sacrum, 15-25° cephalad
- b. AP coccyx, 10-20° caudad
- c. Lateral sacrum
- d. Lateral coccyx

5. Sacroiliac Joints

- a. AP
- b. 25-30° posterior oblique
- c. 25-30° anterior oblique

6. Scoliosis Series

a. AP/PA scoliosis series

Except for bone densitometry, if multiple clinical modules are taken together or as a sequence, the digital image receptor trainingonly has to be provided and assessed once.

B. DIGITAL IMAGE RECEPTORS

- 1. Didactic Fundamentals: The student will be familiar with basic digital terms & concepts, basic differences in digital image acquisition methods, the effects of "windowing" on image contrast and density.
 - a. Digital Basics:
 - b. Digital Image Acquisition Technologies: 2 basic types Computed Radiography (CR) & Digital Radiography (DR)
 - c. Display Qualities

- d. Practical Considerations Differences between CR & Film
- e. Practical Considerations Differences between CR & DR
- 2. Clinical Essentials Lab CR & Digital Image Receptor (IR)
 - a. Introductory concepts to digital IRs
 - b. CR Essentials
 - c. Auto-recognition systems and histograms
 - d. Optimal Technique Considerations
 - e. CR Plate Fogging CR plates especially sensitive tofogging
 - f. Common errors resulting in a poor quality image
- 3. Digital Image Receptor Psychomotor Skills
 - a. Processing the CR Plate
 - b. Erasure control
 - c. Electronic image management
 - d. Basic artifact analysis
 - e. Edge enhancement algorithms

V. PODIATRIC MODULE

For the Podiatric (weight-bearing) category, given a radiograph or a diagram, the student will correctly label key radiographic anatomic landmarks.

On a simulated patient, the student will demonstrate their working knowledge of standard terminology for patient positioning and projection.

A. ANATOMIC TRAINING

- 1. Toes "collimated" studies
 - a. AP w.b.
 - b. Lateral oblique
 - c. Medial oblique
 - d. Elevated lateral digit w.b.
 - e. Hallux lateral w.b.

2. Foot

- a. AP (DP) angle & base w.b.
- b. Medial oblique
- c. Lateral oblique
- d. Weight-bearing oblique projections (medial & lateral) w.b.
- e. Lateral (angle & base) w.b.

f. Forefoot (FF)/sesamoid axial (using standard w.b.orthoposer)

3. Ankle

- a. AP w.b
- b. Mortise w.b.
- c. Medial oblique w.b.
- d. Lateral oblique w.b.
- e. Lateral w.b.

4. Calcaneus (Os Calcis)

- a. Calcaneal axial w.b.
- b. Harris-Beath (ski-jump) w.b.
- 5. Basic Wheelchair views non-weightbearing
 - a. Foot projections lateral, medial, AP
 - b. Ankle projections AP, mortise, internal & external oblique

Except for bone densitometry, if multiple clinical modules are taken together or as a sequence, the digital image receptor trainingonly has to be provided and assessed once.

B. DIGITAL IMAGE RECEPTORS

- 1. Didactic Fundamentals: The student will be familiar with basic digital terms & concepts, basic differences in digital image acquisition methods, the effects of "windowing" on image contrast and density.
 - a. Digital Basics:
 - b. Digital Image Acquisition Technologies: 2 basic types Computed Radiography (CR) & Digital Radiography (DR)
 - c. Display Qualities
 - d. Practical Considerations Differences between CR & Film
 - e. Practical Considerations Differences between CR & DR

2. Clinical Essentials Lab – CR & Digital Image Receptor (IR)

- a. Introductory concepts to digital IRs
- b. CR Essentials
- c. Auto-recognition systems and histograms
- d. Optimal Technique Considerations
- e. CR Plate Fogging CR plates especially sensitive to fogging
- f. Common errors resulting in a poor-quality image

- 3. Digital Image Receptor Psychomotor Skills
 - a. Processing the CR Plate
 - b. Erasure control
 - c. Electronic image management
 - d. Basic artifact analysis
 - e. Edge enhancement algorithms

VI. BONE DENSITOMETRY MODULE

For the Bone Densitometry category, the student will correctly label keyradiographic anatomic landmarks.

On a simulated patient, the student will demonstrate their working knowledge of standard terminology for patient positioning and projection.

- A. DXA scanning of P/A lumbar spine, lateral spine, hip, forearm, and total body
 - 1. Anatomy
 - a. ROI
 - b. Bony landmarks
 - c. Adjacent structures
 - 2. Scan acquisition
 - a. Patient instructions
 - b. Patient positioning
 - c. Selection of appropriate scan parameters
 - 3. Scan analysis and print out
 - a. ROI placement
 - b. BMC, area and BMD
 - c. T-score, Z-score
 - 4. Common problems
 - a. Poor bone edge detection
 - b. Nonremovable artifacts
 - c. Variant anatomy
 - d. Fractures and other pathology
 - 5. Follow- up scans
 - a. Unit of Comparison
 - i. BMD

- ii. T-score
- b. Reproduce baseline study

B. BONE DENSITOMETRY EQUIPMENT

1. Basic Concepts

The student will become familiar with the fundamental aspects of osteoporosis and the non-invasive assessment methods of bone.

- a. Osteoporosis
 - i. WHO definition
 - ii. Types of Osteoporosis: Primary vs. Secondary
 - iii. Type I osteoporosis (post menopausal) vs. Type II osteoporosis (senile)
 - iv. Risk factors
- b. Introduction to various methods commonly used
 - i. Quantitative Ultrasound (QUS)
 - ii. Dual Energy X-ray Absorptiometry (DXA)
- c. Measuring BMD
 - i. Basic Statistical concepts
 - a. Mean
 - b. Standard deviation
 - c. Coefficient of variation
 - ii. Interpreting patient results
 - a. BMD
 - b. Z-score
 - c. T-score

2. Equipment Operation & Quality Assurance

The student will become familiar with the basic components of a dual-x-ray absorptiometry device (DXA) and with the quality assurance concept.

- a. Computer console and switches
- b. Data base maintenance
- c. Quality assurance
 - i. Use of phantoms and/or calibration
 - ii. Troubleshooting
 - iii. Identify possible shift or drift
- d. QA pass or fail
- e. Quality of BMD
 - i. Define precision
 - ii. Define accuracy
- f. Factors that affect both accuracy and precision
 - i. Scanner
 - ii. Operator

3701-72-03 APPENDIX

GXMO CLINICAL TRAINING MODULES

- iii. Patient
- g. Least significant change (LSC)
 - i. Definition of LSC
 - ii. Measurement of LSC
- h. Radiation dose
 - i. Dose of various procedures
 - ii. Minimizing patient exposure
 - a. Patient instruction
 - b. Performing correct exam