Constituent	<u>Unit</u>	<u>AS</u>	<u>CS</u>	<u>HHS</u>
Arsenic (Trivalent, dissolved)	μg/L	$340 \times 1.0 = 340$	148 x 1.0*=148 340 x 1.0*=148	NA
Boron (total)	mg/L	40.1	7.6	NA
Cadmium (dissolved)	μg/L	$\exp[A + B\ln(H)] \times \{1.138672 - [(\ln H) (0.041838)]\} *$	$\exp[A + B\ln(H)] \times $ {1.101672-[(lnH) (0.041838)]}*	NA
		where $A = -3.6867$ and $B = 1.128$	where $A = -2.715$ and $B = 0.7852$	
Chromium (Hexavalent, total)	μg/L	16	11	NA
Chromium (Trivalent, dissolved)	μg/L	$\exp[A + B\ln(H)] \times 0.316*$	$\exp[A + B\ln(H)] \times 0.860^*$	NA
		where $A = 3.7256$ and $B = 0.819$	where $A = 0.6848$ and $B = 0.819$	
Copper (dissolved)	μg/L	$\exp\left[A + B\ln(H)\right] \times 0.960^*$	$\exp[A + B\ln(H)] \times 0.960^*$	NA
		where $A = -1.700$ and $B = 0.9422$	where $A = -1.702$ and $B = 0.8545$	

Cyanide**	μg/L	22	5.2	NA
Fluoride (total)	μg/L	$\exp[A + B1n(H)]$ where $A = 6.7319$ and $B = 0.5394$	exp $[A+B1n(H)]$, but mustshall not exceed 4.0 mg/L where $A = 6.0445$ and $B = 0.5394$	NA
Lead (dissolved)	μg/L	$\exp[A + B1n(H)] \times $ {1.46203-[(1nH) (0.145712)]}*	$\exp[A + B\ln(H)] \times $ {1.46203-[(\ln H) (0.145712)]}*	NA
		where $A = -1.055$ and $B = 1.273$	where $A = -4.003$ and $B = 1.273$	
Manganese (dissolved)	μg/L	$\exp[A + B\ln(H)] \times $ 0.9812*	$\exp[A + B\ln(H)] \times 0.9812*$	NA
		where $A = 4.9187$ and $B = 0.7467$	where $A = 4.0635$ and $B = 0.7467$	
Nickel (dissolved)	μg/L	$\exp\left[A + B\ln(H)\right] \times $ 0.998*	$\exp\left[A + B\ln(H)\right] \times 0.997*$	NA
		where $A = 2.255$ and $B = 0.846$	where $A = 0.0584$ and $B = 0.846$	
Selenium (dissolved)	μg/L	NA	5.0	NA
TRC	μg/L	19	11	NA
Zinc (dissolved)	μg/L	$\exp\left[A + B\ln(H)\right] \times 0.978*$	$\exp[A + B\ln(H)] \times 0.986*$	NA
		where $A = 0.884$ and $B = 0.8473$	where $A = 0.884$ and $B = 0.8473$	

Benzene	$\mu g \! / \! L$	3900	800	310
Chlorobenzene	mg/L	NA	NA	3.2
2.4-Dimethylphenol	mg/L	NA	NA	8.7
2,4-Dinitrophenol	mg/L	NA	NA	2.8
Endrin	μg/L	0.086	0.036	NA
Ethylbenzene	μg/L	150	14	NA
Hexachloroethane	$\mu g/L$	NA	NA	6.7
Methylene chloride	mg/L	NA	NA	2.6
Parathion	$\mu g/L$	0.065	0.013	NA
Pentachlorophenol	μg/L	$\exp B([pH]+A)$	$\exp B([pH]+A)$	NA
		where $A = -4.869$ and $B = 1.005$	where $A = -5.134$ and $B = 1.005$	
Toluene	$\mu g/L$	2000	610	51.0
Trichloroethylene	μg/L	NA	NA	370
Xylene(s)	μg/L	1200	490	NA

where:

NA = Not Applied

exp[x] = base of natural logarithms raised to the x-power

ln(H) = natural logarithm of <u>hardness in mg/L as CaCO₃Hardness</u>

* = conversion factor multiplier for dissolved metals

** standard to be evaluated using either of the following USEPA approved methods, incorporated by reference at 35 Ill. Adm. Code 301.106302.510: Method OIA-1677, DW: Available Cyanide by Flow Injection, Ligand Exchange, and Amperometry, January 2004, Document Number EPA-821-R-04-001; or Cyanide Amenable to Chlorination, Standard Methods 4500-CN-G (40 CFR 136.3).