Constituent	AS (µg/L)	CS (µg/L)
Arsenic (trivalent, dissolved)	360 x 1.0* = 360	190 × 1.0* = 190
Boron (total)	40,100	7,600

Cadmium (dissolved)	$e^{A+B\ln(H)} \times $ $\left\{ 1.138672 - \left[(\ln(H))(0.041838) \right] \right\} *$	$e^{A+B\ln(H)} \times \{1.101672 - \{(\ln(H))(0.041838)\}\} *$
	where $A = -2.918$ and $B = 1.128$	where $A = -3.490$ and $B = 0.7852$
Chromium (hexavalent, total)	16	11
Chromium (trivalent, dissolved)	$e^{A+B\ln(H)} \times 0.316*$	$e^{A+B\ln(H)} \times 0.860*$
	where $A = 3.688$ and $B = 0.8190$	where $A = 1.561$ and $B = 0.8190$
Copper (dissolved)	$e^{A+B\ln(H)} \times 0.960*$	$e^{A+B\ln(H)} \times 0.960*$
	where $A = -1.464$ and $B = 0.9422$	where $A = -1.465$ and $B = 0.8545$
Cyanide**	22	5.2
Fluoride (total)	$e^{A+B\ln(H)}$ where $A = 6.7319$ and $B = 0.5394$	$e^{A+B\ln(H)}$, but <u>mustshall</u> not exceed 4.0 mg/L where $A = 6.0445$ and B = 0.5394
Lead (dissolved)	$e^{A+B\ln(H)} \times \left\{ \begin{array}{c} 1.46203 - \\ \left[(\ln(H))(0.145712) \right] \end{array} \right\} *$	$e^{A+B\ln(H)} \times \{1.46203 - (1n(H))(0.145712)\} *$
	where $A = -1.301$ and $B = 1.273$	where $A = -2.863$ and $B = 1.273$
Manganese (dissolved)	$e^{A+B\ln(H)} \times 0.9812*$	$e^{A+B\ln(H)} \times 0.9812*$

	where $A = 4.9187$ and $B = 0.7467$	where $A = 4.0635$ and $B = 0.7467$	
Mercury (dissolved)	2.6 × 0.85* = 2.2	$1.3 \times 0.85^* = 1.1$	
Nickel (dissolved)	$e^{A+B\ln(H)} \times 0.998*$	$e^{A+B\ln(H)} \times 0.997 *$	
	where $A = 0.5173$ and $B = 0.8460$	where $A = -2.286$ and $B = 0.8460$	
TRC	19	11	
Zinc (dissolved)	$e^{A+B\ln(H)} \times 0.978*$	$e^{A+B\ln(H)} \times 0.986*$	
	where $A = 0.9035$ and $B = 0.8473$	where $A = -0.4456$ and $B = 0.8473$	
Benzene	4200	860	
Ethylbenzene	150	14	
Toluene	2000	600	
Xylene(s)	920	360	
where: $\mu g/L = e^{x} = 1$ $\ln(H) = e^{x} = e^{x} = e^{x} = e^{x}$	microgram per liter base of natural logarithms raised to the x-power natural logarithm of <u>hardness (in mg/L as</u> <u>CaCO₃)Hardness</u> conversion factor multiplier for dissolved metals standard to be evaluated using either of the following USEPA approved methods, incorporated by reference at 35 Ill. Adm. Code 301.106: Method OIA-1677, DW: Available Cyanide by		

Flow Injection, Ligand Exchange, and Amperometry, January 2004, Document Number EPA-821-R-04-001 or Cyanide Amenable to Chlorination, Standard Methods 4500-CN-G (40 CFR 136.3)