Yaw Maneuver Conditions-Rudder Reversals, 71203-71210 [2022-25291]

Download as PDF 71203 Rules and Regulations Federal Register Vol. 87, No. 224 Tuesday, November 22, 2022 This section of the FEDERAL REGISTER contains regulatory documents having general applicability and legal effect, most of which are keyed to and codified in the Code of Federal Regulations, which is published under 50 titles pursuant to 44 U.S.C. 1510. The Code of Federal Regulations is sold by the Superintendent of Documents. DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 25 [Docket No.: FAA–2018–0653; Amdt. No. 25–147] RIN 2120–AK89 Yaw Maneuver Conditions—Rudder Reversals Federal Aviation Administration (FAA), DOT. ACTION: Final rule. AGENCY: The FAA is adding a new load condition to the design standards for transport category airplanes. The new load condition requires such airplanes to be designed to withstand the loads caused by rapid reversals of the rudder pedals, and applies to transport category airplanes that have a powered rudder control surface or surfaces. This rule is necessary because accident and incident data show that pilots sometimes make rudder reversals during flight, even though such reversals are unnecessary and discouraged by flightcrew training programs. The current design standards do not require the airplane structure to withstand the loads that may result from such reversals. If the loads on the airplane exceed those for which it is designed, the airplane structure may fail, resulting in catastrophic loss of control of the airplane. This final rule aims to prevent structural failure of the rudder and vertical stabilizer that may result from these rudder reversals. DATES: Effective January 23, 2023. ADDRESSES: For information on where to obtain copies of rulemaking documents and other information related to this final rule, see ‘‘How To Obtain Additional Information’’ in the SUPPLEMENTARY INFORMATION section of this document. FOR FURTHER INFORMATION CONTACT: For technical questions concerning this khammond on DSKJM1Z7X2PROD with RULES SUMMARY: VerDate Sep<11>2014 16:01 Nov 21, 2022 Jkt 259001 action, contact Todd Martin, Materials and Structural Properties Section, AIR– 621, Policy and Innovation Division, Aircraft Certification Service, Federal Aviation Administration, 2200 South 216th Street, Des Moines, WA 98198; telephone and fax (206) 231–3210; email Todd.Martin@faa.gov. SUPPLEMENTARY INFORMATION: Authority for This Rulemaking The FAA’s authority to issue rules on aviation safety is found in Title 49 of the United States Code. Subtitle I, Section 106 describes the authority of the FAA Administrator. Subtitle VII, Aviation Programs, describes in more detail the scope of the agency’s authority. This rulemaking is promulgated under the authority described in Subtitle VII, Part A, Subpart III, Section 44701, ‘‘General Requirements.’’ Under that section, the FAA is charged with promoting safe flight of civil aircraft in air commerce by prescribing regulations and minimum standards for the design and performance of aircraft that the Administrator finds necessary for safety in air commerce. This regulation is within the scope of that authority. It prescribes new safety standards for the design of transport-category airplanes. I. Overview of Final Rule This rule adds a new load condition to the design standards in title 14, Code of Federal Regulations (14 CFR) part 25, to require transport category airplanes that have a powered rudder control surface or surfaces to be designed to withstand the loads caused by rapid reversals of the rudder pedals. Specifically, applicants for design approval must show that their proposed airplane design can withstand an initial full rudder pedal input, followed by three full-pedal reversals at the maximum sideslip angle, followed by return of the rudder to neutral. Due to the rarity of such multiple reversals, the rule specifies the new load condition is an ultimate load condition rather than a limit load condition. Consequently, the applicant does not have to apply an additional factor of safety to the calculated load levels.1 1 The terms ‘‘limit,’’ ‘‘ultimate,’’ and ‘‘factor of safety’’ are addressed in §§ 25.301, 25.303, and 25.305. To summarize, design loads are typically expressed in terms of limit loads, which are then multiplied by a factor of safety, usually 1.5, to determine ultimate loads. In this final rule, the PO 00000 Frm 00001 Fmt 4700 Sfmt 4700 This final rule affects manufacturers of transport category airplanes applying for a new type certificate after the effective date of the final rule. The rule may also affect applicants applying for an amended or supplemental type certificate as determined under 14 CFR 21.101, ‘‘Designation of applicable regulations,’’ after the effective date of the final rule. The final rule will entail minimal cost, with expected net safety benefits from the reduced risk of rudder reversal accidents. II. Background A. Statement of the Problem The rudder is a vertical control surface on the tail of most airplanes that helps the airplane to turn. Rudder control systems are either powered or unpowered.2 Accident and incident data show pilots sometimes make multiple and unnecessary rudder reversals during flight. In addition, FAA-sponsored research 3 indicates that pilots use the rudder more often than previously expected and often in ways not recommended by manufacturers. Section 25.1583(a)(3)(ii) requires manufacturers to provide documentation that warns pilots against making large and rapid control reversals, as they may result in design loads are expressed as ultimate loads and no additional safety factor is applied. 2 A powered rudder control surface is one in which the force required to deflect the surface against the airstream is generated or augmented by non-mechanical means, such as hydraulic or electric systems. Powered rudder control systems include fly-by-wire and hydro-mechanical systems. An unpowered rudder control surface is one for which the force required to deflect the rudder control surface is transmitted from the pilot’s rudder pedal directly to the rudder control surface through mechanical means. Unpowered rudder control systems are also known as mechanical systems. Incorporation of a powered yaw damper into an otherwise unpowered rudder control system does not constitute a powered rudder control system. Other powered systems, such as electrical, hydraulic, or pneumatic systems, may aid in the reduction of pedal forces required for single engineout operations or to trim out pedal force to maintain a steady heading. However, if such a powered systems does not contribute to hinge moment generation (the twisting force on the rudder surface) during maneuvering of a fully operational airplane, it is not a powered rudder control system. 3 Report No. DOT/FAA/AM–10/14, ‘‘An International Survey of Transport Airplane Pilots’ Experiences and Perspectives of Lateral/Directional Control Events and Rudder Issues in Transport Airplanes (Rudder Survey),’’ dated October 2010, is available in the Docket and at https://www.faa.gov/ data_research/research/med_humanfacs/ oamtechreports/2010s/media/201014.pdf. E:\FR\FM\22NOR1.SGM 22NOR1 71204 Federal Register / Vol. 87, No. 224 / Tuesday, November 22, 2022 / Rules and Regulations khammond on DSKJM1Z7X2PROD with RULES structural failures at any speed, including airspeeds below the design maneuvering speed (VA). Despite the § 25.1583(a)(3)(ii) requirement, and that such rudder reversals are unnecessary and discouraged by flightcrew training programs, these events continue to occur. Section 25.351 (‘‘Yaw maneuver conditions’’), which sets forth the standard for protecting the airplane’s vertical stabilizer from pilotcommanded maneuver loads, only addresses a single, full rudder input at airspeeds up to the design diving speed (VD).4 This design standard does not protect the airplane from the loads imposed by repeated inputs in opposing directions, or rudder reversals.5 If the loads on the vertical stabilizer exceed those for which it is designed, the vertical stabilizer may fail, resulting in the catastrophic loss of airplane control. The primary example of this risk is the crash of American Airlines Flight 587 (AA587), which occurred near Queens, New York, on November 12, 2001, and resulted in the death of all 260 passengers and crew aboard and of five persons on the ground. The National Transportation Safety Board (NTSB) found that the probable cause of the accident was ‘‘the in-flight separation of the vertical stabilizer [airplane fin] as a result of loads above ultimate design created by the first officer’s unnecessary and excessive rudder pedal inputs.’’ 6 The NTSB also noted that contributing to these rudder pedal inputs were characteristics of the Airbus A300–600 rudder system design and elements of the American Airlines Advanced Aircraft Maneuvering Program. Although the AA587 accident is the only catastrophic accident resulting from rudder reversals, other notable accidents and incidents involving airplanes that have a powered control ruder surface have occurred.7 Ultimate 4 V is the design diving speed: the maximum D speed at which the airplane is certified to fly. See 14 CFR 1.2 and 25.335. 5 A rudder ‘‘reversal’’ is a continuous, pilotcommanded control movement starting from control displacement in one direction followed by control displacement in the opposite direction. 6 NTSB Aircraft Accident Report NTSB/AAR–04/ 04, ‘‘In-flight Separation of Vertical Stabilizer, American Airlines Flight 587, Airbus Industrie A300–605R, N14053, Belle Harbor, New York, November 12, 2001,’’ dated October 26, 2004, https://www.ntsb.gov/investigations/Accident Reports/Reports/AAR0404.pdf, p. 160. 7 FAA Aviation Rulemaking Advisory Committee. Flight Controls Harmonization Working Group. ‘‘Rudder Pedal Sensitivity/Rudder Reversal Recommendation Report,’’ November 7, 2013. (ARAC Rudder Reversal Report). This Report identifies four notable rudder events to which the FAA adds the Interflug incident discussed in the NTSB AA587 Report. VerDate Sep<11>2014 16:01 Nov 21, 2022 Jkt 259001 loads were exceeded in two of the other notable rudder reversal events: an incident involving Interflug (Moscow, February 11, 1991) and an accident involving American Airlines Flight 903 (AA903) (near West Palm Beach, Florida, May 12, 1997).8 The Interflug incident involved multiple rudder reversals, and loads of 1.55 and 1.35 times the limit load were recorded. For the AA903 incident, eight rudder reversals occurred, and a load of 1.53 times the limit load was recorded.9 A catastrophe similar to AA587 was averted in these two events only because the vertical stabilizers were stronger than required by design standards.10 In another event, an incident involving Air Canada Flight 190 (AC190) (over the state of Washington, January 10, 2008), four rudder reversals occurred, and the limit load was exceeded by 29 percent.11 Finally, in an incident involving Provincial Airlines Limited (St. John’s, Newfoundland and Labrador, May 27, 2005), the pilot commanded a pedal reversal during climb-out, when the airplane entered an aerodynamic stall.12 The loads occurring during this event were less than limit loads, but this incident is additional evidence that pedal reversals occur in service. In 2006, the FAA sponsored a survey 13 to better comprehend transport category pilots’ understanding and use of the rudder. This survey inquired of transport pilots from all over the world. The FAA’s analysis of the survey data found that— • Pilots use the rudder more than FAA experts previously thought and often in ways not recommended by manufacturers. • Pilots make erroneous rudder pedal inputs, some of which include rudder reversals. • Even after specific training, many pilots are not aware that they should not make rudder reversals, even below VA. Over the last several years, training and changes to airplane flight manuals directed the pilot to avoid making cyclic 8 NTSB Aircraft Accident Report NTSB/AAR–04/ 04, pp. 106–109. 9 NTSB Aircraft Accident Report NTSB/AAR–04/ 04, pp. 104. 10 NTSB Aircraft Accident Report NTSB/AAR– 04/04, pp. 38–39. 11 Transportation Safety Board of Canada (TSB) Aviation Investigation Report A08W0007, ‘‘Encounter with Wake Turbulence,’’ https:// www.bst-tsb.gc.ca/eng/rapports-reports/aviation/ 2008/A08W0007/A08W0007.html. 12 TSB Aviation Investigation Report A05A0059, ‘‘Stall and Loss of Control During Climb,’’ https:// www.bst-tsb.gc.ca/eng/rapports-reports/aviation/ 2005/a05a0059/a05a0059.html. 13 Report No. DOT/FAA/AM–10/14 (see footnote 3), OMB Control No. 2120–0712. PO 00000 Frm 00002 Fmt 4700 Sfmt 4700 control inputs. The rudder reversals that caused the AC190 incident in 2008 and the Provincial Airlines Limited incident in 2005 occurred despite these efforts. Pilots in airplane upset situations (e.g., wake vortex encounters) may revert to prior training and make sequential rudder reversals. Based on information from the survey, the FAA expects that repeated rudder reversals will continue to occur despite flightcrew training, because training alone cannot address all potential flightcrew behaviors that can lead to such inputs. For example, the relationship between rudder inputs and the roll and yaw responses of the airplane can become confusing to pilots. This is particularly true with the large yaw and roll rates that result from large rudder inputs, combined with naturallyoccurring delays between pedal input and airplane response that result from transport airplane flight dynamics. Such confusion might lead pilots to command repeated rudder reversals. B. National Transportation Safety Board (NTSB) Recommendation Following the AA587 accident, the NTSB submitted safety recommendations to the FAA. The NTSB stated, ‘‘[f]or airplanes with variable stop rudder travel limiter systems, protection from dangerous structural loads resulting from sustained alternating large rudder pedal inputs can be achieved by reducing the sensitivity of the rudder control system (for example, by increasing the pedal forces), which would make it harder for pilots to quickly perform alternating full rudder inputs.’’ 14 In Safety Recommendation A–04–056,15 the NTSB recommended the FAA modify part 25 to ‘‘include a certification standard that will ensure safe handling qualities in the yaw axis throughout the flight envelope, including limits for rudder pedal sensitivity.’’ This final rule addresses this recommendation and will reduce the likelihood of an event that would be similar to the AA587 accident. C. Aviation Rulemaking Advisory Committee (ARAC) Activity In 2011, the FAA tasked the ARAC to consider the need to add a new flight maneuver load condition to part 25, subpart C, that would ‘‘ensure airplane structural capability in the presence of 14 NTSB Safety Recommendation, November 10, 2004, at p. 2. This document is available in the docket and at https://www.ntsb.gov/safety/safetyrecs/RecLetters/A04_56_62.pdf. 15 NTSB Safety Recommendation A–04–056, dated November 10, 2004, is available in the docket and at https://www.ntsb.gov/safety/safety-recs/ RecLetters/A04_56_62.pdf. E:\FR\FM\22NOR1.SGM 22NOR1 Federal Register / Vol. 87, No. 224 / Tuesday, November 22, 2022 / Rules and Regulations rudder reversals’’ and increasing sideslip angles (yaw angles) at airspeeds up to VD. The FAA also tasked the ARAC to consider whether other airworthiness standards would address this concern, such as pedal characteristics that would discourage pilots from making rudder reversals.16 The ARAC delegated this task to the Transport Airplane and Engine subcommittee, which assigned it to the Flight Controls Harmonization Working Group (FCHWG) of the subcommittee. The ARAC FCHWG completed its report in November 2013.17 ARAC approved the report and submitted it to the FAA on December 30, 2013. One of the recommendations of the ARAC FCHWG Rudder Reversal Report was to require transport category airplanes to be able to withstand safely the loads imposed by three rudder reversals.18 This final rule adopts that recommendation. The ARAC report indicates that requiring transport category airplanes to operate safely with the vertical stabilizer loads imposed by three full-pedal reversals accounts for most of the attainable safety benefits. With more than three rudder reversals, the ARAC FCHWG found little increase in vertical stabilizer loads. The report’s findings and recommendations guided the formation of the FAA’s Yaw Maneuver Conditions—Rudder Reversals notice of proposed rulemaking (NPRM) (83 FR 32087, July 16, 2018) and this final rule. khammond on DSKJM1Z7X2PROD with RULES D. Summary of the NPRM On July 16, 2018, the FAA published an NPRM that proposed to add a new regulation to address rudder reversal conditions on transport category airplanes (83 FR 32087). The FAA intended that this new requirement would prevent structural failure of the rudder and vertical stabilizer caused by reversals of the rudder pedals. Thus, the FAA proposed to require that airplanes 16 The FAA published this notice of ARAC tasking in the Federal Register on March 28, 2011. Aviation Rulemaking Advisory Committee; Transport Airplane and Engine Issues—New Task, 76 FR 17183. 17 ARAC FCHWG Recommendation Report, ‘‘Rudder Pedal Sensitivity/Rudder Reversal,’’ dated November 7, 2013, is available in the Docket and at https://www.faa.gov/regulations_policies/ rulemaking/committees/documents/media/TAEfchrpsrr-3282011.pdf. 18 One member of the ARAC FCHWG did not support any rulemaking. The remaining members of the ARAC FCHWG found that a yaw maneuver load condition would be the optimal way to protect the airplane from the excessive loads that can result from multiple rudder reversals because they found systems solutions, such as fly-by-wire systems and manual systems with appropriate yaw dampers, to be too design-prescriptive. The members of the ARAC FCHWG held divided opinions, however, on what the load condition should be. VerDate Sep<11>2014 16:01 Nov 21, 2022 Jkt 259001 be able to withstand the structural loads caused by three full reversals (doublets) of the rudder pedals. The FAA proposed to apply the requirement only to airplanes with powered rudder control surfaces. E. Rulemaking by the European Union Aviation Safety Agency (EASA) On November 5, 2018, EASA published amendment 22 to Certification Specifications 25 (CS–25). This amendment included a new regulation, CS 25.353, ‘‘Rudder control reversal conditions,’’ as well as Acceptable Means of Compliance 25.353. EASA’s new regulation is similar to this final rule except that the final rule adopted by the FAA applies only to airplanes that have a powered rudder control surface or surfaces. F. Advisory Material FAA Advisory Circular (AC) 25.353– 1, ‘‘Rudder Control Reversal Conditions,’’ which accompanies this rule, provides guidance on acceptable means, but not the only means, of showing compliance with § 25.353. AC 25.353–1 is available in the public docket for this rulemaking. III. Discussion of Public Comments and Final Rule The FAA received comments from the NTSB, Airline Pilots Association, International (ALPA), ATR, Crew Systems, Textron Aviation, Airbus, The Boeing Company, and Bombardier Aerospace. The NTSB, ALPA, ATR, and Crew Systems supported the proposal and did not suggest changes to it. Textron Aviation and Airbus requested that the rule specify a single, full-pedal command followed by one rudder reversal and return to neutral, rather than three rudder reversals as proposed in the NPRM. Those two companies, along with Boeing, also requested other changes, as described in this section of the preamble. Bombardier Aerospace commented on the rule’s cost, suggesting that the FAA issue guidance to limit the rule’s applicability. A. Necessity of Three Reversals In the NPRM, the FAA proposed a design load condition that consists of a single, full-pedal command followed by three full-pedal reversals and return to neutral. Two airplane manufacturers, Textron Aviation and Airbus, requested that the rule instead specify a single, full-pedal command followed by one rudder reversal and return to neutral. These companies believed this condition was more appropriate given the rarity of rudder reversals and the uniqueness of the AA587 accident PO 00000 Frm 00003 Fmt 4700 Sfmt 4700 71205 airplane. They advocated that a single, full-pedal command followed by one rudder reversal and return to neutral would cover all other known incidents, stated their concern that the proposed criteria could result in weight penalties or detrimental system changes, and proposed that enhanced flightcrew training would be more effective than designing for multiple rudder reversals. The FAA emphasizes that while rudder reversals are rare, they can lead to serious consequences. The AA587 accident and four other accidents and incidents involved multiple rudder reversals, some of which were full-pedal reversals. Since these accidents occurred, modern airplane design requirements have not changed in a manner that would deter pilots from making such multiple reversals. Additionally, based on information received in response to the 2006 pilot survey, the FAA found that some respondents reported making rudder pedal reversals (cyclic rudder-pedal commands).19 Moreover, an analysis in the ARAC report shows that loads would continue to increase upon subsequent pedal reversals. Therefore, a single, full-pedal command followed by one full-pedal reversal and return to neutral would not represent the conditions resulting from multiple fullpedal reversals that may result in injuries to occupants or a structural failure that jeopardizes continued safe flight and landing of the airplane. Data from all manufacturers on the ARAC FCHWG showed that after three fullpedal reversals, the maximum sideslip angle does not increase significantly. Maximum sideslip angle causes the maximum loads on the vertical stabilizer; therefore, three full-pedal reversals result in a load condition that accounts for most of the attainable safety benefits. Regarding the concern that the proposed multiple reversal condition could result in potential weight penalties or detrimental system changes in future designs, as discussed in the NPRM preamble, the FAA expects that most applicants will use control laws to comply with this rule. Because manufacturers typically implement control laws through systems and software, use of this solution to comply would result in little to no incremental cost in the form of weight, equipment, maintenance, or training for those airplanes with powered rudder control surfaces. Based on information from the 2006 survey, the FAA does not agree with 19 Report No. DOT/FAA/AM–10/14 at p. 14 (see footnote 3). E:\FR\FM\22NOR1.SGM 22NOR1 71206 Federal Register / Vol. 87, No. 224 / Tuesday, November 22, 2022 / Rules and Regulations khammond on DSKJM1Z7X2PROD with RULES Textron and Airbus that enhanced flight crew training would be more effective than designing for multiple full-pedal reversals. As described earlier in the preamble, the FAA’s analysis of the survey found that even after specific training, many pilots are not aware that they should not make full-pedal reversals, even below VA. While training and changes to airplane flight manuals directed the pilot to avoid making cyclic control inputs, the pedal reversals that caused the AC190 incident in 2008 and the Provincial Airlines Limited incident in 2005 occurred despite these efforts. Moreover, in transport category airplanes, rudder inputs are generally limited to aligning the airplane with the runway during crosswind landings and controlling engine-out situations, which occur predominately at low speeds. At high speeds, the pilot normally directly rolls the airplane using the ailerons.20 If the pilot does use the rudder to control the airplane at high speeds, there will be a significant phase lag between the rudder input and the roll response because the roll response is a secondary effect of the yawing moment generated by the rudder.21 The roll does not result from the rudder input directly. Even if the rudder is subsequently deflected in the opposite direction (rudder reversal), the airplane can continue to roll and yaw in one direction before reversing because of the phase lag. The relationship between rudder inputs and the roll and yaw response of the airplane can become confusing to pilots, particularly with the large yaw and roll rates that would result from large rudder inputs, causing the pilots to input multiple rudder reversals. For the foregoing reasons, the FAA has determined that a three full-pedal reversal condition is necessary to account for the effects of multiple rudder reversals that the FAA expects to occur in service. The FAA adopts this aspect of the proposal without change. B. Applicability Airbus requested that the rule apply only to new aircraft designs; Bombardier requested that the rule apply only to new airplanes or to airplanes where the rudder system has been significantly modified. The FAA agrees in part with the comments regarding applicability. This final rule requires that new airplane designs meet the new standards. Where an applicant proposes 20 An aileron is a hinged control service on the trailing edge of the wing of a fixed-wing aircraft, one aileron per wing. 21 The yaw axis is defined to be perpendicular to the wings and to the normal line of flight. A yaw movement is a change in the direction of the aircraft to the left or right around the yaw axis. VerDate Sep<11>2014 16:01 Nov 21, 2022 Jkt 259001 a change to a previously approved type design, § 21.101, ‘‘Designation of applicable regulations,’’ requires an assessment to determine the amendment level (version) of each regulation to be applied to that type design change. The FAA would determine under the provisions of § 21.101 whether this final rule would be applied to a changed airplane design. Additionally, Airbus requested that the rule apply to all transport category airplanes, including those with unpowered control surfaces. Similarly, the corresponding and recently adopted European Union Aviation Safety Agency (EASA) rule, CS 25.353, applies to all airplanes, including those with unpowered control surfaces. However, in the NPRM, the FAA proposed to apply this rule only to airplanes with a powered control surface or surfaces. A powered rudder control surface is one in which the force required to deflect the surface against the airstream is generated or augmented by hydraulic or electric systems. In contrast, an unpowered rudder control surface is one for which the force required to deflect the surface against the airstream is transmitted from the pilot’s rudder pedal directly through mechanical means, without any augmentation from hydraulic or electrical systems. Powered rudder control systems include fly-bywire (FBW) and hydro-mechanical systems, while unpowered rudder control systems are also known as mechanical systems. Incorporation of a powered yaw damper into an otherwise unpowered rudder control system does not constitute a powered rudder control surface, for the purpose of this rule. Small business jets that typically have unpowered rudder control surfaces provide immediate feedback to their flightcrews in response to yaw inputs. Those flightcrews are, therefore, less likely to execute inappropriate rudder pedal reversals. The FAA reviewed accident and incident records and found no events in which pilots commanded inappropriate full-pedal reversals on airplanes with unpowered rudder control surfaces. Also, the use of airplanes with unpowered rudder control surfaces is diminishing in the transport category fleet. The only transport category airplane model in U.S. production with an unpowered rudder control surface also has a yaw damper. The normal operation of the yaw damper would be adequate to reduce yaw overshoot loads from fullpedal reversals. As explained in the NPRM and this final rule, the safety benefit of expanding this rule to airplanes with unpowered control surfaces does not PO 00000 Frm 00004 Fmt 4700 Sfmt 4700 outweigh the potentially higher costs of implementation. The FAA may consider the requested change later if data or information become available to indicate that either the safety case has changed or implementation costs have decreased. C. Load Condition Requirements Airbus and Boeing requested the FAA include in the rule the following text: ‘‘Flaps (or flaperons or any other aerodynamic devices when used as flaps) and slats extended configurations are also to be considered if they are used in en route conditions.’’ Including this provision would require applicants to evaluate the rudder reversal conditions with flaps and other devices extended, if the airplane uses those devices in en route conditions.22 Airbus also requested that the rule include the following text: ‘‘Unbalanced aerodynamic moments about the center of gravity must be reacted in a rational or conservative manner considering the airplane inertia forces.’’ This language specifies how the applicant sums the various forces when analyzing the rudder reversal conditions. Both commenters requested the FAA include these requirements in the final rule to be consistent with the ARAC FCHWG report and to harmonize with the EASA regulation. The FAA agrees that the additions identified by commenters should be included in the final rule because both requirements harmonize with the EASA rule (CS 25.353) and clarify how to analyze the load conditions. The two requirements are also found in other part 25 regulations, including §§ 25.345 and 25.351. The FAA notes that the requirement to consider the effect of flaps and slats in en route conditions has slightly different wording than the EASA rule, but has the same meaning. As these changes simply clarify how to analyze the load conditions, they will not add additional burdens. Airbus also requested that the airplane be able to withstand the prescribed conditions at an uppermost speed of VC, rather than VC/MC, as proposed in the NPRM. The FAA disagrees with the commenter. The proposed rule included VC/MC because airplanes have defined limitations for both VC and MC. However, no substantive difference between the two exists because each value of VC has a corresponding value of MC. As a result, using VC/MC is appropriate in this rule. 22 En route conditions means the conditions occurring during any phase of flight after initial climb and before the final descent and landing phase. E:\FR\FM\22NOR1.SGM 22NOR1 Federal Register / Vol. 87, No. 224 / Tuesday, November 22, 2022 / Rules and Regulations D. Warning Monitors Airbus requested that the rule allow an applicant to show compliance via implementing monitors that would warn the pilot of inappropriate rudder use. The FAA does not agree with this comment. Pilot-commanded rudder reversals have occurred during high workload and conditions that are often startling. Thus, depending on the pilot to react appropriately to a warning under such conditions would not provide the equivalent safety benefit as the load conditions in this final rule and would be inconsistent with the EASA regulation. khammond on DSKJM1Z7X2PROD with RULES E. Miscellaneous Modifications As previously noted, EASA published its regulation, CS 25.353, on November 5, 2018, a few months after the FAA issued the NPRM upon which this final rule is based. This final rule contains minor modifications to harmonize with the EASA standard. These modifications are in addition to those described earlier in the final rule (C. Load Condition Requirements). These modifications include: (1) The proposed rule specified that the applicant evaluate the rudder reversal conditions ‘‘from VMC or the highest airspeed for which it is possible to achieve maximum rudder deflection at zero sideslip, whichever is greater, up to VC/MC.’’ This final rule establishes the speed range as ‘‘VMC to VC/MC.’’ This is simpler to apply because it does not require an additional calculation of ‘‘the highest speed for which it is possible . . .’’ and it is consistent with the current rudder maneuver condition required by § 25.351. (Section 25.351 prescribes the speed range as VMC to VD.) (2) This final rule provides that any permanent deformation resulting from the specified ultimate load conditions must not prevent continued safe flight and landing. This requirement is necessary because this final rule, unlike most design load conditions codified in part 25, contains only an ‘‘ultimate’’ load requirement, and does not contain a ‘‘limit’’ load requirement. Design loads are typically expressed in terms of limit loads, which are then multiplied by a factor of safety, usually 1.5, to determine ultimate loads. The airplane structure must be able to withstand limit loads without detrimental permanent deformation and ultimate loads without failure in accordance with § 25.305. Because this rule does not include a limit load requirement, it is necessary to require that no detrimental permanent deformation occur at ultimate load (deformation that would VerDate Sep<11>2014 16:01 Nov 21, 2022 Jkt 259001 prevent continued safe flight and landing). This requirement is also in the corresponding EASA regulation, CS 25.353. (3) The proposed rule specified that the ‘‘rudder control is suddenly displaced’’ in evaluating the ultimate loads that result from the yaw maneuver conditions identified in the proposal. This final rule, however, specifies that the ‘‘rudder control is suddenly and fully displaced as limited by the control system or control surface stops.’’ The term ‘‘fully’’ makes it clear that full displacement of the rudder pedal is required. The phrase ‘‘as limited by the control system or control surface stops’’ further clarifies the requirement by indicating that the conditions may be conducted using rudder control system limiting hardware to establish the reversal loads. Furthermore, the aforementioned requirements are consistent with § 25.351. IV. Regulatory Notices and Analyses Changes to Federal regulations must undergo several economic analyses. First, Executive Orders 12866 and 13563 direct that each Federal agency shall propose or adopt a regulation only upon a reasoned determination that the benefits of the intended regulation justify its costs. Second, the Regulatory Flexibility Act of 1980 (Pub. L. 96–354), as codified in 5 U.S.C. 603 et seq., requires agencies to analyze the economic impact of regulatory changes on small entities. Third, the Trade Agreements Act of 1979 (Pub. L. 96–39), 19 U.S.C. Chapter 13, prohibits agencies from setting standards that create unnecessary obstacles to the foreign commerce of the United States. In developing U.S. standards, the Trade Agreements Act requires agencies to consider international standards and, where appropriate, that they be the basis of U.S. standards. Fourth, the Unfunded Mandates Reform Act of 1995 (Pub. L. 104–4), as codified in 2 U.S.C. Chapter 25, requires agencies to prepare a written assessment of the costs, benefits, and other effects of proposed or final rules that include a Federal mandate likely to result in the expenditure by State, local, or tribal governments, in the aggregate, or by the private sector, of $100 million or more annually (adjusted for inflation with base year of 1995). This portion of the preamble summarizes the FAA’s analysis of the economic impacts of this final rule. In conducting these analyses, the FAA has determined that this final rule has benefits that justify its costs and is not a ‘‘significant regulatory action’’ as defined in section 3(f) of Executive Order 12866. The final rule is also not PO 00000 Frm 00005 Fmt 4700 Sfmt 4700 71207 ‘‘significant’’ as defined in DOT’s rulemaking procedures. The final rule will not have a significant economic impact on a substantial number of small entities, will not create unnecessary obstacles to the foreign commerce of the United States, and will not impose an unfunded mandate on State, local, or tribal governments, or on the private sector by exceeding the threshold identified previously. A. Regulatory Evaluation 1. Background and Statement of Need The genesis of this final rule is the crash of American Airlines Flight 587 (AA587), near Queens, New York, on November 12, 2001, resulting in the death of all 260 passengers and crew aboard, and the death of five persons on the ground. The airplane was destroyed by impact forces and a post-crash fire. The NTSB found that the probable cause of the accident was ‘‘the in-flight separation of the vertical stabilizer [airplane fin] as a result of loads above ultimate design created by the first officer’s unnecessary and excessive rudder pedal inputs.’’ 23 Ultimate loads on the airplane structure are the limit loads (1.0) multiplied by a safety factor, usually 1.5 (as for the vertical stabilizer). An airplane is expected to experience a limit load once in its lifetime and is never expected to experience an ultimate load.24 For the AA587 accident, loads exceeding ultimate loads ranged from 1.83 to 2.14 times the limit load on the vertical stabilizer,25 as a result of four, full, alternating rudder inputs known as ‘‘rudder reversals.’’ Significant rudder reversal events are unusual in the history of commercial airplane flight, having occurred during five notable accidents and incidents, with the AA587 accident being the only catastrophic accident resulting from rudder reversals.26 Ultimate loads were exceeded in two of the other notable rudder reversal events: an incident involving Interflug (Moscow, February 23 NTSB Aircraft Accident Report NTSB/AAR– 04/04, ‘‘In-flight Separation of Vertical Stabilizer, American Airlines Flight 587, Airbus Industrie A300–605R, N14053, Belle Harbor, New York, November 12, 2001’’ at 160 (Oct. 26, 2004), available at https://www.ntsb.gov/investigations/ AccidentReports/Reports/AAR0404.pdf. 24 NTSB Aircraft Accident Report NTSB/AAR– 04/04, p. 31, n. 53. 25 NTSB Aircraft Accident Report NTSB/AAR– 04/04, p. 104. 26 FAA Aviation Rulemaking Advisory Committee. Flight Controls Harmonization Working Group. ‘‘Rudder Pedal Sensitivity/Rudder Reversal Recommendation Report,’’ November 7, 2013. (ARAC Rudder Reversal Report). This Report identifies four notable rudder events to which the FAA adds the Interflug incident discussed in the NTSB AA587 Report. E:\FR\FM\22NOR1.SGM 22NOR1 71208 Federal Register / Vol. 87, No. 224 / Tuesday, November 22, 2022 / Rules and Regulations khammond on DSKJM1Z7X2PROD with RULES 11, 1991) and an accident involving American Airlines Flight 903 (AA903) (near West Palm Beach, Florida, May 12, 1997).27 The Interflug incident involved multiple rudder reversals, and loads of 1.55 and 1.35 times the limit load were recorded. For the AA903 incident, eight rudder reversals occurred, and a load of 1.53 times the limit load was recorded.28 A catastrophe similar to AA587 was averted in these two events only because the vertical stabilizers were stronger than required by design standards.29 In a fourth event—Air Canada Flight 190 (AC190) (over the state of Washington, January 10, 2008)— four rudder reversals occurred, and the limit load was exceeded by 29 percent.30 The fifth event was a de Havilland DHC–8–100 (Dash 8) (St. John’s, Newfoundland and Labrador, May 27, 2005) in which the pilot commanded a pedal reversal during climb-out, when the airplane entered an aerodynamic stall.31 There were no injuries, and the airplane was not damaged. The ARAC FCHWG determined the loads occurring during this event were less than limit load, but this incident is additional evidence that pedal reversals occur in service. In transport category airplanes, rudder inputs are generally limited to aligning the airplane with the runway during crosswind landings and controlling engine-out situations, which occur predominately at low speeds. At high speeds, the pilot normally directly rolls the airplane using the ailerons.32 If the pilot does use the rudder to control the airplane at high speeds, there will be a significant phase lag between the rudder input and the roll response because the 27 NTSB Aircraft Accident Report NTSB/AAR– 04/04, pp. 106–109; see also NTSB Aircraft Accident Report AA903 (NTSB DCA97MA049). 28 NTSB Aircraft Accident Report NTSB/AAR– 04/04, pp. 104; Report on the Investigation of the Abnormal Behavior of an Airbus A310–304 Aircraft on 11.02.199 at Moscow, Air Accident Investigation Department of the German Federal Office of Aviation, Reference 6X002–0/91. 29 NTSB Aircraft Accident Report NTSB/AAR– 04/04, pp. 38–39. 30 Transportation Safety Board of Canada (TSB) Aviation Investigation Report A08W0007, ‘‘Encounter with Wake Turbulence,’’ https:// www.bst-tsb.gc.ca/eng/rapports-reports/aviation/ 2008/08W0007/A08W0007.html. 31 TSB Aviation Investigation Report A05A0059, ‘‘Stall and Loss of Control During Climb,’’ https:// www.bst-tsb.gc.ca/eng/rapports-reports/aviation/ 2005/a05a0059/a05a0059.html. 32 An aileron is a hinged control service on the trailing edge of the wing of a fixed-wing aircraft, one aileron per wing. VerDate Sep<11>2014 16:01 Nov 21, 2022 Jkt 259001 roll response is a secondary effect of the yawing moment generated by the rudder.33 The roll does not result from the rudder input directly. Even if the rudder is subsequently deflected in the opposite direction (rudder reversal), the airplane can continue to roll and yaw in one direction before reversing because of the phase lag. The relationship between rudder inputs and the roll and yaw response of the airplane can become confusing to pilots, particularly with the large yaw and roll rates that would result from large rudder inputs, causing the pilots to input multiple rudder reversals. Following the AA587 accident in November 2004, the NTSB issued Safety Recommendation A–04–56, recommending that the FAA modify part 25 ‘‘to include a certification standard that will ensure safe handling qualities in the yaw axis throughout the flight envelope . . . .’’ 34 In 2011, the FAA tasked ARAC to consider the need for rulemaking to address the rudder reversal issue. ARAC delegated this task to the Transport Airplane and Engine subcommittee, which assigned it to the FCHWG. One of the recommendations of the ARAC FCHWG Rudder Reversal Report, issued on November 7, 2013, was to require transport category airplanes to be able to withstand safely the loads imposed by three rudder reversals. This final rule adopts that recommendation. The ARAC report indicates that requiring transport category airplanes to operate safely with the vertical stabilizer loads imposed by three full-pedal reversals accounts for most of the attainable safety benefits. With more than three rudder reversals, the FCHWG found little increase in vertical stabilizer loads. 2. Impacts of This Final Rule Since the catastrophic AA587 accident, the FAA has requested that applicants for new type certificates show that their designs are capable of continued safe flight and landing after experiencing repeated rudder reversals. For airplanes with fly-by-wire (FBW) systems, manufacturers have been able to show capability by means of control laws, incorporated through software 33 The yaw axis is defined to be perpendicular to the wings and to the normal line of flight. A yaw movement is a change in the direction of the aircraft to the left or right around the yaw axis. 34 NTSB Safety Recommendation A–04–56 (Nov. 10, 2004), available at https://www.ntsb.gov/safety/ safety-recs/RecLetters/A04_56_62.pdf. PO 00000 Frm 00006 Fmt 4700 Sfmt 4700 changes, adding no weight and imposing no additional maintenance cost to the airplanes. Many, if not all, of these designs have demonstrated tolerance to three or more rudder reversals. Aside from converting to an FBW or hydro-mechanical system, alternatives available to manufacturers specializing in airplane designs with mechanical rudders include increasing the reliability of the yaw damper and strengthening the airplane vertical stabilizer. To estimate the cost of the final rule, the FAA reviewed unit cost estimates from U.S. airplane manufacturers and incorporated these estimates into an airplane life cycle model. The FAA received one estimate for large part 25 airplanes and two estimates for small part 25 airplanes (i.e., business jets). A manufacturer specializing in mechanical rather than FBW rudder systems provided a business jet estimate that reflects significantly higher compliance costs. This manufacturer’s most cost-efficient approach to addressing the requirement—although high in comparison to manufacturers that use FBW systems exclusively—is to comply with a strengthened vertical stabilizer. The cost of complying with a more reliable yaw damper was higher than strengthening the vertical stabilizer, and higher still if complying by converting to an FBW rudder system for new models. As a result of these high costs and the reasons set forth in the NPRM and the preceding ‘‘Discussion of Comments and Final Rule,’’ this final rule will not apply to airplanes with unpowered (mechanical) rudder control surfaces. An unpowered rudder control surface is one whose movement is affected through mechanical means, without any augmentation (for example, from hydraulic or electrical systems). Accordingly, the final rule does not apply to models with mechanical rudder control systems, but applies only to models with FBW or hydromechanical rudder systems. The FAA estimates the costs of the final rule using unit cost per model estimates from industry for FBW models and the agency’s estimates of the number of new large airplane and business jet certifications with FBW rudder systems in the ten years after the effective date of the final rule. These estimates are shown in Table 1. E:\FR\FM\22NOR1.SGM 22NOR1 Federal Register / Vol. 87, No. 224 / Tuesday, November 22, 2022 / Rules and Regulations 71209 TABLE 1—COST ESTIMATED FOR FINAL RULE ($ 2016) Number of new FBW models (10 yrs) Cost per model Large Airplanes ............................................................................................................................ Business Jets ............................................................................................................................... $300,000 235,000 2 2 $600,000 470,000 Total Costs ........................................................................................................................... ........................ ........................ 1,070,000 With these cost estimates, the FAA concludes the final rule will entail minimal cost, with expected net safety benefits from the reduced risk of rudder reversal accidents. B. Regulatory Flexibility Determination khammond on DSKJM1Z7X2PROD with RULES Costs The Regulatory Flexibility Act of 1980 (Pub. L. 96–354) (RFA) establishes ‘‘as a principle of regulatory issuance that agencies shall endeavor, consistent with the objectives of the rule and of applicable statutes, to fit regulatory and informational requirements to the scale of the businesses, organizations, and governmental jurisdictions subject to regulation. To achieve this principle, agencies are required to solicit and consider flexible regulatory proposals and to explain the rationale for their actions to assure that such proposals are given serious consideration.’’ The RFA covers a wide range of small entities, including small businesses, not-forprofit organizations, and small governmental jurisdictions. Agencies must perform a review to determine whether a rule will have a significant economic impact on a substantial number of small entities. If the agency determines that it will, the agency must prepare a regulatory flexibility analysis as described in the RFA. However, if an agency determines that a rule is not expected to have a significant economic impact on a substantial number of small entities, section 605(b) of the RFA provides that the head of the agency may so certify and a regulatory flexibility analysis is not required. The certification must include a statement providing the factual basis for this determination, and the reasoning should be clear. As noted above, because manufacturers with FBW rudder systems have been able to show compliance by means of low-cost changes to control laws incorporated through software changes, the FAA estimates the costs of this final rule to be minimal. Therefore, pursuant to section 605(b), the head of the FAA certifies that this final rule will not have a significant economic impact on a substantial number of small entities. VerDate Sep<11>2014 16:01 Nov 21, 2022 Jkt 259001 C. International Trade Impact Assessment collection associated with this final rule. The Trade Agreements Act of 1979 (Pub. L. 96–39) prohibits Federal agencies from establishing standards or engaging in related activities that create unnecessary obstacles to the foreign commerce of the United States. Pursuant to this Act, the establishment of standards is not considered an unnecessary obstacle to the foreign commerce of the United States, so long as the standard has a legitimate domestic objective, such as the protection of safety, and does not operate in a manner that excludes imports that meet this objective. The statute also requires consideration of international standards and, where appropriate, that they be the basis for U.S. standards. The FAA has assessed the effect of this final rule and determined that its purpose is to protect the safety of U.S. civil aviation. Therefore, the final rule is in compliance with the Trade Agreements Act. F. International Compatibility D. Unfunded Mandates Assessment Title II of the Unfunded Mandates Reform Act of 1995 (Pub. L. 104–4) requires each Federal agency to prepare a written statement assessing the effects of any Federal mandate in a proposed or final agency rule that may result in an expenditure of $100 million or more (in 1995 dollars) in any one year by State, local, and tribal governments, in the aggregate, or by the private sector; such a mandate is deemed to be a ‘‘significant regulatory action.’’ The FAA currently uses an inflation-adjusted value of $155.0 million in lieu of $100 million. This final rule does not contain such a mandate. Therefore, the requirements of Title II of the Act do not apply. E. Paperwork Reduction Act The Paperwork Reduction Act of 1995 (44 U.S.C. 3507(d)) requires that the FAA consider the impact of paperwork and other information collection burdens imposed on the public. The FAA has determined that there is no new requirement for information PO 00000 Frm 00007 Fmt 4700 Sfmt 4700 In keeping with U.S. obligations under the Convention on International Civil Aviation, it is FAA policy to conform to International Civil Aviation Organization (ICAO) Standards and Recommended Practices to the maximum extent practicable. The FAA has determined that there are no ICAO Standards and Recommended Practices that correspond to these regulations. G. Environmental Analysis FAA Order 1050.1F, Environmental Impacts: Policies and Procedures, identifies FAA actions that are categorically excluded from preparation of an environmental assessment or environmental impact statement under the National Environmental Policy Act in the absence of extraordinary circumstances. The FAA has determined this rulemaking action qualifies for the categorical exclusion identified in paragraph 5–6.6 for regulations and involves no extraordinary circumstances. V. Executive Order Determinations A. Executive Order 13132, Federalism The FAA has analyzed this final rule under the principles and criteria of Executive Order 13132, Federalism. The agency determined that this action will not have a substantial direct effect on the States, or the relationship between the Federal Government and the States, or on the distribution of power and responsibilities among the various levels of government, and, therefore, does not have Federalism implications. B. Executive Order 13211, Regulations that Significantly Affect Energy Supply, Distribution, or Use The FAA analyzed this final rule under Executive Order 13211, Actions Concerning Regulations that Significantly Affect Energy Supply, Distribution, or Use (May 18, 2001). The agency has determined that it is not a ‘‘significant energy action’’ under the executive order and it is not likely to E:\FR\FM\22NOR1.SGM 22NOR1 71210 Federal Register / Vol. 87, No. 224 / Tuesday, November 22, 2022 / Rules and Regulations have a significant adverse effect on the supply, distribution, or use of energy. C. Executive Order 13609, International Cooperation Executive Order 13609, Promoting International Regulatory Cooperation, (77 FR 26413, May 4, 2012) promotes international regulatory cooperation to meet shared challenges involving health, safety, labor, security, environmental, and other issues and reduce, eliminate, or prevent unnecessary differences in regulatory requirements. The FAA has analyzed this action under the policy and agency responsibilities of Executive Order 13609. The agency has determined that this action would eliminate differences between U.S. aviation standards and those of other civil aviation authorities by harmonizing with the corresponding EASA requirement. As noted above, EASA published its corresponding regulation, CS 25.353, on November 5, 2018. This final rule harmonizes with that standard, with the exception that this rule excludes airplanes that have an unpowered rudder control surface(s). VI. How to Obtain Additional Information List of Subjects in 14 CFR Part 25 Aircraft, Aviation safety, Reporting and recordkeeping requirements. The Amendment In consideration of the foregoing, the Federal Aviation Administration amends chapter I of title 14, Code of Federal Regulations as follows: PART 25—AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES 1. The authority citation for part 25 continues to read as follows: A. Rulemaking Documents ■ An electronic copy of a rulemaking document may be obtained by using the internet— 1. Search the Federal eRulemaking Portal (https://www.regulations.gov); 2. Visit the FAA’s Regulations and Policies web page at https:// www.faa.gov/regulations_policies/; or 3. Access the Government Printing Office’s web page at https:// www.gpo.gov/fdsys/. Copies may also be obtained by sending a request (identified by notice, amendment, or docket number of this rulemaking) to the Federal Aviation Administration, Office of Rulemaking, ARM–1, 800 Independence Avenue SW, Washington, DC 20591, or by calling (202) 267–9680. Authority: 49 U.S.C. 106(f), 106(g), 40113, 44701, 44702 and 44704. B. Comments Submitted to the Docket khammond on DSKJM1Z7X2PROD with RULES C. Small Business Regulatory Enforcement Fairness Act The Small Business Regulatory Enforcement Fairness Act (SBREFA) of 1996 (Pub. L. 104–121) (set forth as a note to 5 U.S.C. 601) requires the FAA to comply with small entity requests for information or advice about compliance with statutes and regulations within its jurisdiction. A small entity with questions regarding this document may contact its local FAA official or the person listed under the FOR FURTHER INFORMATION CONTACT heading at the beginning of the preamble. To find out more about SBREFA on the internet, visit https://www.faa.gov/regulations_ policies/rulemaking/sbre_act/. Comments received may be viewed by going to https://www.regulations.gov and following the online instructions to search the docket number for this action. Anyone is able to search the electronic form of all comments received into any of the FAA’s dockets by the name of the individual submitting the comment (or signing the comment, if submitted on behalf of an association, business, labor union, etc.). VerDate Sep<11>2014 16:01 Nov 21, 2022 Jkt 259001 2. Add § 25.353 under the undesignated center heading ‘‘Flight Maneuver and Gust Conditions’’ to read as follows: ■ assumed to be zero. The applicant must assume a pilot force of 200 pounds when evaluating each of the following conditions: (a) With the airplane in unaccelerated flight at zero yaw, the flightdeck rudder control is suddenly and fully displaced to achieve the resulting rudder deflection, as limited by the control system or the control surface stops. (b) With the airplane yawed to the overswing sideslip angle, the flightdeck rudder control is suddenly and fully displaced in the opposite direction, as limited by the control system or control surface stops. (c) With the airplane yawed to the opposite overswing sideslip angle, the flightdeck rudder control is suddenly and fully displaced in the opposite direction, as limited by the control system or control surface stops. (d) With the airplane yawed to the subsequent overswing sideslip angle, the flightdeck rudder control is suddenly and fully displaced in the opposite direction, as limited by the control system or control surface stops. (e) With the airplane yawed to the opposite overswing sideslip angle, the flightdeck rudder control is suddenly returned to neutral. Issued under authority provided by 49 U.S.C. 106(f), and 44701(a) in Washington, DC, on or about November 16, 2022. Billy Nolen, Acting Administrator. [FR Doc. 2022–25291 Filed 11–21–22; 8:45 am] BILLING CODE 4910–13–P § 25.353 Rudder control reversal conditions. DEPARTMENT OF TRANSPORTATION Airplanes with a powered rudder control surface or surfaces must be designed for loads, considered to be ultimate, resulting from the yaw maneuver conditions specified in paragraphs (a) through (e) of this section at speeds from VMC to VC/MC. Any permanent deformation resulting from these ultimate load conditions must not prevent continued safe flight and landing. The applicant must evaluate these conditions with the landing gear retracted and speed brakes (and spoilers when used as speed brakes) retracted. The applicant must evaluate the effects of flaps, flaperons, or any other aerodynamic devices when used as flaps, and slats-extended configurations, if they are used in en route conditions. Unbalanced aerodynamic moments about the center of gravity must be reacted in a rational or conservative manner considering the airplane inertia forces. In computing the loads on the airplane, the yawing velocity may be Federal Aviation Administration PO 00000 Frm 00008 Fmt 4700 Sfmt 4700 14 CFR Part 47 [Docket No. FAA–2022–1514; Amdt. No. 47– 33] RIN 2120–AL45 Increase the Duration of Aircraft Registration Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Direct final rule; request for comments. AGENCY: The FAA is extending the duration of aircraft registration certificates from three years to seven years. Initial Certificates of Aircraft Registration will expire seven years from the month issued. In addition, the FAA is applying this amendment to all aircraft currently registered under existing FAA regulations governing SUMMARY: E:\FR\FM\22NOR1.SGM 22NOR1

Agencies

[Federal Register Volume 87, Number 224 (Tuesday, November 22, 2022)]
[Rules and Regulations]
[Pages 71203-71210]
From the Federal Register Online via the Government Publishing Office [www.gpo.gov]
[FR Doc No: 2022-25291]



========================================================================
Rules and Regulations
                                                Federal Register
________________________________________________________________________

This section of the FEDERAL REGISTER contains regulatory documents 
having general applicability and legal effect, most of which are keyed 
to and codified in the Code of Federal Regulations, which is published 
under 50 titles pursuant to 44 U.S.C. 1510.

The Code of Federal Regulations is sold by the Superintendent of Documents. 

========================================================================


Federal Register / Vol. 87 , No. 224 / Tuesday, November 22, 2022 / 
Rules and Regulations

[[Page 71203]]



DEPARTMENT OF TRANSPORTATION

Federal Aviation Administration

14 CFR Part 25

[Docket No.: FAA-2018-0653; Amdt. No. 25-147]
RIN 2120-AK89


Yaw Maneuver Conditions--Rudder Reversals

AGENCY: Federal Aviation Administration (FAA), DOT.

ACTION: Final rule.

-----------------------------------------------------------------------

SUMMARY: The FAA is adding a new load condition to the design standards 
for transport category airplanes. The new load condition requires such 
airplanes to be designed to withstand the loads caused by rapid 
reversals of the rudder pedals, and applies to transport category 
airplanes that have a powered rudder control surface or surfaces. This 
rule is necessary because accident and incident data show that pilots 
sometimes make rudder reversals during flight, even though such 
reversals are unnecessary and discouraged by flightcrew training 
programs. The current design standards do not require the airplane 
structure to withstand the loads that may result from such reversals. 
If the loads on the airplane exceed those for which it is designed, the 
airplane structure may fail, resulting in catastrophic loss of control 
of the airplane. This final rule aims to prevent structural failure of 
the rudder and vertical stabilizer that may result from these rudder 
reversals.

DATES: Effective January 23, 2023.

ADDRESSES: For information on where to obtain copies of rulemaking 
documents and other information related to this final rule, see ``How 
To Obtain Additional Information'' in the SUPPLEMENTARY INFORMATION 
section of this document.

FOR FURTHER INFORMATION CONTACT: For technical questions concerning 
this action, contact Todd Martin, Materials and Structural Properties 
Section, AIR-621, Policy and Innovation Division, Aircraft 
Certification Service, Federal Aviation Administration, 2200 South 
216th Street, Des Moines, WA 98198; telephone and fax (206) 231-3210; 
email [email protected].

SUPPLEMENTARY INFORMATION: 

Authority for This Rulemaking

    The FAA's authority to issue rules on aviation safety is found in 
Title 49 of the United States Code. Subtitle I, Section 106 describes 
the authority of the FAA Administrator. Subtitle VII, Aviation 
Programs, describes in more detail the scope of the agency's authority.
    This rulemaking is promulgated under the authority described in 
Subtitle VII, Part A, Subpart III, Section 44701, ``General 
Requirements.'' Under that section, the FAA is charged with promoting 
safe flight of civil aircraft in air commerce by prescribing 
regulations and minimum standards for the design and performance of 
aircraft that the Administrator finds necessary for safety in air 
commerce. This regulation is within the scope of that authority. It 
prescribes new safety standards for the design of transport-category 
airplanes.

I. Overview of Final Rule

    This rule adds a new load condition to the design standards in 
title 14, Code of Federal Regulations (14 CFR) part 25, to require 
transport category airplanes that have a powered rudder control surface 
or surfaces to be designed to withstand the loads caused by rapid 
reversals of the rudder pedals. Specifically, applicants for design 
approval must show that their proposed airplane design can withstand an 
initial full rudder pedal input, followed by three full-pedal reversals 
at the maximum sideslip angle, followed by return of the rudder to 
neutral. Due to the rarity of such multiple reversals, the rule 
specifies the new load condition is an ultimate load condition rather 
than a limit load condition. Consequently, the applicant does not have 
to apply an additional factor of safety to the calculated load 
levels.\1\
---------------------------------------------------------------------------

    \1\ The terms ``limit,'' ``ultimate,'' and ``factor of safety'' 
are addressed in Sec. Sec.  25.301, 25.303, and 25.305. To 
summarize, design loads are typically expressed in terms of limit 
loads, which are then multiplied by a factor of safety, usually 1.5, 
to determine ultimate loads. In this final rule, the design loads 
are expressed as ultimate loads and no additional safety factor is 
applied.
---------------------------------------------------------------------------

    This final rule affects manufacturers of transport category 
airplanes applying for a new type certificate after the effective date 
of the final rule. The rule may also affect applicants applying for an 
amended or supplemental type certificate as determined under 14 CFR 
21.101, ``Designation of applicable regulations,'' after the effective 
date of the final rule.
    The final rule will entail minimal cost, with expected net safety 
benefits from the reduced risk of rudder reversal accidents.

II. Background

A. Statement of the Problem

    The rudder is a vertical control surface on the tail of most 
airplanes that helps the airplane to turn. Rudder control systems are 
either powered or unpowered.\2\ Accident and incident data show pilots 
sometimes make multiple and unnecessary rudder reversals during flight. 
In addition, FAA-sponsored research \3\ indicates that pilots use the 
rudder more often than previously expected and often in ways not 
recommended by manufacturers. Section 25.1583(a)(3)(ii) requires 
manufacturers to provide documentation that warns pilots against making 
large and rapid control reversals, as they may result in

[[Page 71204]]

structural failures at any speed, including airspeeds below the design 
maneuvering speed (VA). Despite the Sec.  25.1583(a)(3)(ii) 
requirement, and that such rudder reversals are unnecessary and 
discouraged by flightcrew training programs, these events continue to 
occur.
---------------------------------------------------------------------------

    \2\ A powered rudder control surface is one in which the force 
required to deflect the surface against the airstream is generated 
or augmented by non-mechanical means, such as hydraulic or electric 
systems. Powered rudder control systems include fly-by-wire and 
hydro-mechanical systems. An unpowered rudder control surface is one 
for which the force required to deflect the rudder control surface 
is transmitted from the pilot's rudder pedal directly to the rudder 
control surface through mechanical means. Unpowered rudder control 
systems are also known as mechanical systems. Incorporation of a 
powered yaw damper into an otherwise unpowered rudder control system 
does not constitute a powered rudder control system. Other powered 
systems, such as electrical, hydraulic, or pneumatic systems, may 
aid in the reduction of pedal forces required for single engine-out 
operations or to trim out pedal force to maintain a steady heading. 
However, if such a powered systems does not contribute to hinge 
moment generation (the twisting force on the rudder surface) during 
maneuvering of a fully operational airplane, it is not a powered 
rudder control system.
    \3\ Report No. DOT/FAA/AM-10/14, ``An International Survey of 
Transport Airplane Pilots' Experiences and Perspectives of Lateral/
Directional Control Events and Rudder Issues in Transport Airplanes 
(Rudder Survey),'' dated October 2010, is available in the Docket 
and at https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/201014.pdf.
---------------------------------------------------------------------------

    Section 25.351 (``Yaw maneuver conditions''), which sets forth the 
standard for protecting the airplane's vertical stabilizer from pilot-
commanded maneuver loads, only addresses a single, full rudder input at 
airspeeds up to the design diving speed (VD).\4\ This design 
standard does not protect the airplane from the loads imposed by 
repeated inputs in opposing directions, or rudder reversals.\5\ If the 
loads on the vertical stabilizer exceed those for which it is designed, 
the vertical stabilizer may fail, resulting in the catastrophic loss of 
airplane control.
---------------------------------------------------------------------------

    \4\ VD is the design diving speed: the maximum speed 
at which the airplane is certified to fly. See 14 CFR 1.2 and 
25.335.
    \5\ A rudder ``reversal'' is a continuous, pilot-commanded 
control movement starting from control displacement in one direction 
followed by control displacement in the opposite direction.
---------------------------------------------------------------------------

    The primary example of this risk is the crash of American Airlines 
Flight 587 (AA587), which occurred near Queens, New York, on November 
12, 2001, and resulted in the death of all 260 passengers and crew 
aboard and of five persons on the ground. The National Transportation 
Safety Board (NTSB) found that the probable cause of the accident was 
``the in-flight separation of the vertical stabilizer [airplane fin] as 
a result of loads above ultimate design created by the first officer's 
unnecessary and excessive rudder pedal inputs.'' \6\ The NTSB also 
noted that contributing to these rudder pedal inputs were 
characteristics of the Airbus A300-600 rudder system design and 
elements of the American Airlines Advanced Aircraft Maneuvering 
Program.
---------------------------------------------------------------------------

    \6\ NTSB Aircraft Accident Report NTSB/AAR-04/04, ``In-flight 
Separation of Vertical Stabilizer, American Airlines Flight 587, 
Airbus Industrie A300-605R, N14053, Belle Harbor, New York, November 
12, 2001,'' dated October 26, 2004, https://www.ntsb.gov/investigations/AccidentReports/Reports/AAR0404.pdf, p. 160.
---------------------------------------------------------------------------

    Although the AA587 accident is the only catastrophic accident 
resulting from rudder reversals, other notable accidents and incidents 
involving airplanes that have a powered control ruder surface have 
occurred.\7\ Ultimate loads were exceeded in two of the other notable 
rudder reversal events: an incident involving Interflug (Moscow, 
February 11, 1991) and an accident involving American Airlines Flight 
903 (AA903) (near West Palm Beach, Florida, May 12, 1997).\8\ The 
Interflug incident involved multiple rudder reversals, and loads of 
1.55 and 1.35 times the limit load were recorded. For the AA903 
incident, eight rudder reversals occurred, and a load of 1.53 times the 
limit load was recorded.\9\ A catastrophe similar to AA587 was averted 
in these two events only because the vertical stabilizers were stronger 
than required by design standards.\10\ In another event, an incident 
involving Air Canada Flight 190 (AC190) (over the state of Washington, 
January 10, 2008), four rudder reversals occurred, and the limit load 
was exceeded by 29 percent.\11\ Finally, in an incident involving 
Provincial Airlines Limited (St. John's, Newfoundland and Labrador, May 
27, 2005), the pilot commanded a pedal reversal during climb-out, when 
the airplane entered an aerodynamic stall.\12\ The loads occurring 
during this event were less than limit loads, but this incident is 
additional evidence that pedal reversals occur in service.
---------------------------------------------------------------------------

    \7\ FAA Aviation Rulemaking Advisory Committee. Flight Controls 
Harmonization Working Group. ``Rudder Pedal Sensitivity/Rudder 
Reversal Recommendation Report,'' November 7, 2013. (ARAC Rudder 
Reversal Report). This Report identifies four notable rudder events 
to which the FAA adds the Interflug incident discussed in the NTSB 
AA587 Report.
    \8\ NTSB Aircraft Accident Report NTSB/AAR-04/04, pp. 106-109.
    \9\ NTSB Aircraft Accident Report NTSB/AAR-04/04, pp. 104.
    \10\ NTSB Aircraft Accident Report NTSB/AAR-04/04, pp. 38-39.
    \11\ Transportation Safety Board of Canada (TSB) Aviation 
Investigation Report A08W0007, ``Encounter with Wake Turbulence,'' 
https://www.bst-tsb.gc.ca/eng/rapports-reports/aviation/2008/A08W0007/A08W0007.html.
    \12\ TSB Aviation Investigation Report A05A0059, ``Stall and 
Loss of Control During Climb,'' https://www.bst-tsb.gc.ca/eng/rapports-reports/aviation/2005/a05a0059/a05a0059.html.
---------------------------------------------------------------------------

    In 2006, the FAA sponsored a survey \13\ to better comprehend 
transport category pilots' understanding and use of the rudder. This 
survey inquired of transport pilots from all over the world. The FAA's 
analysis of the survey data found that--
---------------------------------------------------------------------------

    \13\ Report No. DOT/FAA/AM-10/14 (see footnote 3), OMB Control 
No. 2120-0712.
---------------------------------------------------------------------------

     Pilots use the rudder more than FAA experts previously 
thought and often in ways not recommended by manufacturers.
     Pilots make erroneous rudder pedal inputs, some of which 
include rudder reversals.
     Even after specific training, many pilots are not aware 
that they should not make rudder reversals, even below VA. 
Over the last several years, training and changes to airplane flight 
manuals directed the pilot to avoid making cyclic control inputs. The 
rudder reversals that caused the AC190 incident in 2008 and the 
Provincial Airlines Limited incident in 2005 occurred despite these 
efforts.
    Pilots in airplane upset situations (e.g., wake vortex encounters) 
may revert to prior training and make sequential rudder reversals. 
Based on information from the survey, the FAA expects that repeated 
rudder reversals will continue to occur despite flightcrew training, 
because training alone cannot address all potential flightcrew 
behaviors that can lead to such inputs. For example, the relationship 
between rudder inputs and the roll and yaw responses of the airplane 
can become confusing to pilots. This is particularly true with the 
large yaw and roll rates that result from large rudder inputs, combined 
with naturally-occurring delays between pedal input and airplane 
response that result from transport airplane flight dynamics. Such 
confusion might lead pilots to command repeated rudder reversals.

B. National Transportation Safety Board (NTSB) Recommendation

    Following the AA587 accident, the NTSB submitted safety 
recommendations to the FAA. The NTSB stated, ``[f]or airplanes with 
variable stop rudder travel limiter systems, protection from dangerous 
structural loads resulting from sustained alternating large rudder 
pedal inputs can be achieved by reducing the sensitivity of the rudder 
control system (for example, by increasing the pedal forces), which 
would make it harder for pilots to quickly perform alternating full 
rudder inputs.'' \14\ In Safety Recommendation A-04-056,\15\ the NTSB 
recommended the FAA modify part 25 to ``include a certification 
standard that will ensure safe handling qualities in the yaw axis 
throughout the flight envelope, including limits for rudder pedal 
sensitivity.'' This final rule addresses this recommendation and will 
reduce the likelihood of an event that would be similar to the AA587 
accident.
---------------------------------------------------------------------------

    \14\ NTSB Safety Recommendation, November 10, 2004, at p. 2. 
This document is available in the docket and at https://www.ntsb.gov/safety/safety-recs/RecLetters/A04_56_62.pdf.
    \15\ NTSB Safety Recommendation A-04-056, dated November 10, 
2004, is available in the docket and at https://www.ntsb.gov/safety/safety-recs/RecLetters/A04_56_62.pdf.
---------------------------------------------------------------------------

C. Aviation Rulemaking Advisory Committee (ARAC) Activity

    In 2011, the FAA tasked the ARAC to consider the need to add a new 
flight maneuver load condition to part 25, subpart C, that would 
``ensure airplane structural capability in the presence of

[[Page 71205]]

rudder reversals'' and increasing sideslip angles (yaw angles) at 
airspeeds up to VD. The FAA also tasked the ARAC to consider 
whether other airworthiness standards would address this concern, such 
as pedal characteristics that would discourage pilots from making 
rudder reversals.\16\ The ARAC delegated this task to the Transport 
Airplane and Engine subcommittee, which assigned it to the Flight 
Controls Harmonization Working Group (FCHWG) of the subcommittee.
---------------------------------------------------------------------------

    \16\ The FAA published this notice of ARAC tasking in the 
Federal Register on March 28, 2011. Aviation Rulemaking Advisory 
Committee; Transport Airplane and Engine Issues--New Task, 76 FR 
17183.
---------------------------------------------------------------------------

    The ARAC FCHWG completed its report in November 2013.\17\ ARAC 
approved the report and submitted it to the FAA on December 30, 2013. 
One of the recommendations of the ARAC FCHWG Rudder Reversal Report was 
to require transport category airplanes to be able to withstand safely 
the loads imposed by three rudder reversals.\18\ This final rule adopts 
that recommendation. The ARAC report indicates that requiring transport 
category airplanes to operate safely with the vertical stabilizer loads 
imposed by three full-pedal reversals accounts for most of the 
attainable safety benefits. With more than three rudder reversals, the 
ARAC FCHWG found little increase in vertical stabilizer loads.
---------------------------------------------------------------------------

    \17\ ARAC FCHWG Recommendation Report, ``Rudder Pedal 
Sensitivity/Rudder Reversal,'' dated November 7, 2013, is available 
in the Docket and at https://www.faa.gov/regulations_policies/rulemaking/committees/documents/media/TAEfch-rpsrr-3282011.pdf.
    \18\ One member of the ARAC FCHWG did not support any 
rulemaking. The remaining members of the ARAC FCHWG found that a yaw 
maneuver load condition would be the optimal way to protect the 
airplane from the excessive loads that can result from multiple 
rudder reversals because they found systems solutions, such as fly-
by-wire systems and manual systems with appropriate yaw dampers, to 
be too design-prescriptive. The members of the ARAC FCHWG held 
divided opinions, however, on what the load condition should be.
---------------------------------------------------------------------------

    The report's findings and recommendations guided the formation of 
the FAA's Yaw Maneuver Conditions--Rudder Reversals notice of proposed 
rulemaking (NPRM) (83 FR 32087, July 16, 2018) and this final rule.

D. Summary of the NPRM

    On July 16, 2018, the FAA published an NPRM that proposed to add a 
new regulation to address rudder reversal conditions on transport 
category airplanes (83 FR 32087). The FAA intended that this new 
requirement would prevent structural failure of the rudder and vertical 
stabilizer caused by reversals of the rudder pedals. Thus, the FAA 
proposed to require that airplanes be able to withstand the structural 
loads caused by three full reversals (doublets) of the rudder pedals. 
The FAA proposed to apply the requirement only to airplanes with 
powered rudder control surfaces.

E. Rulemaking by the European Union Aviation Safety Agency (EASA)

    On November 5, 2018, EASA published amendment 22 to Certification 
Specifications 25 (CS-25). This amendment included a new regulation, CS 
25.353, ``Rudder control reversal conditions,'' as well as Acceptable 
Means of Compliance 25.353. EASA's new regulation is similar to this 
final rule except that the final rule adopted by the FAA applies only 
to airplanes that have a powered rudder control surface or surfaces.

F. Advisory Material

    FAA Advisory Circular (AC) 25.353-1, ``Rudder Control Reversal 
Conditions,'' which accompanies this rule, provides guidance on 
acceptable means, but not the only means, of showing compliance with 
Sec.  25.353. AC 25.353-1 is available in the public docket for this 
rulemaking.

III. Discussion of Public Comments and Final Rule

    The FAA received comments from the NTSB, Airline Pilots 
Association, International (ALPA), ATR, Crew Systems, Textron Aviation, 
Airbus, The Boeing Company, and Bombardier Aerospace. The NTSB, ALPA, 
ATR, and Crew Systems supported the proposal and did not suggest 
changes to it. Textron Aviation and Airbus requested that the rule 
specify a single, full-pedal command followed by one rudder reversal 
and return to neutral, rather than three rudder reversals as proposed 
in the NPRM. Those two companies, along with Boeing, also requested 
other changes, as described in this section of the preamble. Bombardier 
Aerospace commented on the rule's cost, suggesting that the FAA issue 
guidance to limit the rule's applicability.

A. Necessity of Three Reversals

    In the NPRM, the FAA proposed a design load condition that consists 
of a single, full-pedal command followed by three full-pedal reversals 
and return to neutral. Two airplane manufacturers, Textron Aviation and 
Airbus, requested that the rule instead specify a single, full-pedal 
command followed by one rudder reversal and return to neutral. These 
companies believed this condition was more appropriate given the rarity 
of rudder reversals and the uniqueness of the AA587 accident airplane. 
They advocated that a single, full-pedal command followed by one rudder 
reversal and return to neutral would cover all other known incidents, 
stated their concern that the proposed criteria could result in weight 
penalties or detrimental system changes, and proposed that enhanced 
flightcrew training would be more effective than designing for multiple 
rudder reversals.
    The FAA emphasizes that while rudder reversals are rare, they can 
lead to serious consequences. The AA587 accident and four other 
accidents and incidents involved multiple rudder reversals, some of 
which were full-pedal reversals. Since these accidents occurred, modern 
airplane design requirements have not changed in a manner that would 
deter pilots from making such multiple reversals. Additionally, based 
on information received in response to the 2006 pilot survey, the FAA 
found that some respondents reported making rudder pedal reversals 
(cyclic rudder-pedal commands).\19\ Moreover, an analysis in the ARAC 
report shows that loads would continue to increase upon subsequent 
pedal reversals. Therefore, a single, full-pedal command followed by 
one full-pedal reversal and return to neutral would not represent the 
conditions resulting from multiple full-pedal reversals that may result 
in injuries to occupants or a structural failure that jeopardizes 
continued safe flight and landing of the airplane. Data from all 
manufacturers on the ARAC FCHWG showed that after three full-pedal 
reversals, the maximum sideslip angle does not increase significantly. 
Maximum sideslip angle causes the maximum loads on the vertical 
stabilizer; therefore, three full-pedal reversals result in a load 
condition that accounts for most of the attainable safety benefits.
---------------------------------------------------------------------------

    \19\ Report No. DOT/FAA/AM-10/14 at p. 14 (see footnote 3).
---------------------------------------------------------------------------

    Regarding the concern that the proposed multiple reversal condition 
could result in potential weight penalties or detrimental system 
changes in future designs, as discussed in the NPRM preamble, the FAA 
expects that most applicants will use control laws to comply with this 
rule. Because manufacturers typically implement control laws through 
systems and software, use of this solution to comply would result in 
little to no incremental cost in the form of weight, equipment, 
maintenance, or training for those airplanes with powered rudder 
control surfaces.
    Based on information from the 2006 survey, the FAA does not agree 
with

[[Page 71206]]

Textron and Airbus that enhanced flight crew training would be more 
effective than designing for multiple full-pedal reversals. As 
described earlier in the preamble, the FAA's analysis of the survey 
found that even after specific training, many pilots are not aware that 
they should not make full-pedal reversals, even below VA. 
While training and changes to airplane flight manuals directed the 
pilot to avoid making cyclic control inputs, the pedal reversals that 
caused the AC190 incident in 2008 and the Provincial Airlines Limited 
incident in 2005 occurred despite these efforts.
    Moreover, in transport category airplanes, rudder inputs are 
generally limited to aligning the airplane with the runway during 
crosswind landings and controlling engine-out situations, which occur 
predominately at low speeds. At high speeds, the pilot normally 
directly rolls the airplane using the ailerons.\20\ If the pilot does 
use the rudder to control the airplane at high speeds, there will be a 
significant phase lag between the rudder input and the roll response 
because the roll response is a secondary effect of the yawing moment 
generated by the rudder.\21\ The roll does not result from the rudder 
input directly. Even if the rudder is subsequently deflected in the 
opposite direction (rudder reversal), the airplane can continue to roll 
and yaw in one direction before reversing because of the phase lag. The 
relationship between rudder inputs and the roll and yaw response of the 
airplane can become confusing to pilots, particularly with the large 
yaw and roll rates that would result from large rudder inputs, causing 
the pilots to input multiple rudder reversals.
---------------------------------------------------------------------------

    \20\ An aileron is a hinged control service on the trailing edge 
of the wing of a fixed-wing aircraft, one aileron per wing.
    \21\ The yaw axis is defined to be perpendicular to the wings 
and to the normal line of flight. A yaw movement is a change in the 
direction of the aircraft to the left or right around the yaw axis.
---------------------------------------------------------------------------

    For the foregoing reasons, the FAA has determined that a three 
full-pedal reversal condition is necessary to account for the effects 
of multiple rudder reversals that the FAA expects to occur in service. 
The FAA adopts this aspect of the proposal without change.

B. Applicability

    Airbus requested that the rule apply only to new aircraft designs; 
Bombardier requested that the rule apply only to new airplanes or to 
airplanes where the rudder system has been significantly modified. The 
FAA agrees in part with the comments regarding applicability. This 
final rule requires that new airplane designs meet the new standards. 
Where an applicant proposes a change to a previously approved type 
design, Sec.  21.101, ``Designation of applicable regulations,'' 
requires an assessment to determine the amendment level (version) of 
each regulation to be applied to that type design change. The FAA would 
determine under the provisions of Sec.  21.101 whether this final rule 
would be applied to a changed airplane design.
    Additionally, Airbus requested that the rule apply to all transport 
category airplanes, including those with unpowered control surfaces. 
Similarly, the corresponding and recently adopted European Union 
Aviation Safety Agency (EASA) rule, CS 25.353, applies to all 
airplanes, including those with unpowered control surfaces. However, in 
the NPRM, the FAA proposed to apply this rule only to airplanes with a 
powered control surface or surfaces.
    A powered rudder control surface is one in which the force required 
to deflect the surface against the airstream is generated or augmented 
by hydraulic or electric systems. In contrast, an unpowered rudder 
control surface is one for which the force required to deflect the 
surface against the airstream is transmitted from the pilot's rudder 
pedal directly through mechanical means, without any augmentation from 
hydraulic or electrical systems. Powered rudder control systems include 
fly-by-wire (FBW) and hydro-mechanical systems, while unpowered rudder 
control systems are also known as mechanical systems. Incorporation of 
a powered yaw damper into an otherwise unpowered rudder control system 
does not constitute a powered rudder control surface, for the purpose 
of this rule.
    Small business jets that typically have unpowered rudder control 
surfaces provide immediate feedback to their flightcrews in response to 
yaw inputs. Those flightcrews are, therefore, less likely to execute 
inappropriate rudder pedal reversals. The FAA reviewed accident and 
incident records and found no events in which pilots commanded 
inappropriate full-pedal reversals on airplanes with unpowered rudder 
control surfaces. Also, the use of airplanes with unpowered rudder 
control surfaces is diminishing in the transport category fleet. The 
only transport category airplane model in U.S. production with an 
unpowered rudder control surface also has a yaw damper. The normal 
operation of the yaw damper would be adequate to reduce yaw overshoot 
loads from full-pedal reversals.
    As explained in the NPRM and this final rule, the safety benefit of 
expanding this rule to airplanes with unpowered control surfaces does 
not outweigh the potentially higher costs of implementation. The FAA 
may consider the requested change later if data or information become 
available to indicate that either the safety case has changed or 
implementation costs have decreased.

C. Load Condition Requirements

    Airbus and Boeing requested the FAA include in the rule the 
following text: ``Flaps (or flaperons or any other aerodynamic devices 
when used as flaps) and slats extended configurations are also to be 
considered if they are used in en route conditions.'' Including this 
provision would require applicants to evaluate the rudder reversal 
conditions with flaps and other devices extended, if the airplane uses 
those devices in en route conditions.\22\ Airbus also requested that 
the rule include the following text: ``Unbalanced aerodynamic moments 
about the center of gravity must be reacted in a rational or 
conservative manner considering the airplane inertia forces.'' This 
language specifies how the applicant sums the various forces when 
analyzing the rudder reversal conditions. Both commenters requested the 
FAA include these requirements in the final rule to be consistent with 
the ARAC FCHWG report and to harmonize with the EASA regulation.
---------------------------------------------------------------------------

    \22\ En route conditions means the conditions occurring during 
any phase of flight after initial climb and before the final descent 
and landing phase.
---------------------------------------------------------------------------

    The FAA agrees that the additions identified by commenters should 
be included in the final rule because both requirements harmonize with 
the EASA rule (CS 25.353) and clarify how to analyze the load 
conditions. The two requirements are also found in other part 25 
regulations, including Sec. Sec.  25.345 and 25.351. The FAA notes that 
the requirement to consider the effect of flaps and slats in en route 
conditions has slightly different wording than the EASA rule, but has 
the same meaning. As these changes simply clarify how to analyze the 
load conditions, they will not add additional burdens.
    Airbus also requested that the airplane be able to withstand the 
prescribed conditions at an uppermost speed of VC, rather 
than VC/MC, as proposed in the NPRM. The FAA 
disagrees with the commenter. The proposed rule included VC/
MC because airplanes have defined limitations for both 
VC and MC. However, no substantive difference 
between the two exists because each value of VC has a 
corresponding value of MC. As a result, using VC/
MC is appropriate in this rule.

[[Page 71207]]

D. Warning Monitors

    Airbus requested that the rule allow an applicant to show 
compliance via implementing monitors that would warn the pilot of 
inappropriate rudder use. The FAA does not agree with this comment. 
Pilot-commanded rudder reversals have occurred during high workload and 
conditions that are often startling. Thus, depending on the pilot to 
react appropriately to a warning under such conditions would not 
provide the equivalent safety benefit as the load conditions in this 
final rule and would be inconsistent with the EASA regulation.

E. Miscellaneous Modifications

    As previously noted, EASA published its regulation, CS 25.353, on 
November 5, 2018, a few months after the FAA issued the NPRM upon which 
this final rule is based. This final rule contains minor modifications 
to harmonize with the EASA standard. These modifications are in 
addition to those described earlier in the final rule (C. Load 
Condition Requirements). These modifications include:
    (1) The proposed rule specified that the applicant evaluate the 
rudder reversal conditions ``from VMC or the highest 
airspeed for which it is possible to achieve maximum rudder deflection 
at zero sideslip, whichever is greater, up to VC/
MC.'' This final rule establishes the speed range as 
``VMC to VC/MC.'' This is simpler to 
apply because it does not require an additional calculation of ``the 
highest speed for which it is possible . . .'' and it is consistent 
with the current rudder maneuver condition required by Sec.  25.351. 
(Section 25.351 prescribes the speed range as VMC to 
VD.)
    (2) This final rule provides that any permanent deformation 
resulting from the specified ultimate load conditions must not prevent 
continued safe flight and landing. This requirement is necessary 
because this final rule, unlike most design load conditions codified in 
part 25, contains only an ``ultimate'' load requirement, and does not 
contain a ``limit'' load requirement. Design loads are typically 
expressed in terms of limit loads, which are then multiplied by a 
factor of safety, usually 1.5, to determine ultimate loads. The 
airplane structure must be able to withstand limit loads without 
detrimental permanent deformation and ultimate loads without failure in 
accordance with Sec.  25.305. Because this rule does not include a 
limit load requirement, it is necessary to require that no detrimental 
permanent deformation occur at ultimate load (deformation that would 
prevent continued safe flight and landing). This requirement is also in 
the corresponding EASA regulation, CS 25.353.
    (3) The proposed rule specified that the ``rudder control is 
suddenly displaced'' in evaluating the ultimate loads that result from 
the yaw maneuver conditions identified in the proposal. This final 
rule, however, specifies that the ``rudder control is suddenly and 
fully displaced as limited by the control system or control surface 
stops.'' The term ``fully'' makes it clear that full displacement of 
the rudder pedal is required. The phrase ``as limited by the control 
system or control surface stops'' further clarifies the requirement by 
indicating that the conditions may be conducted using rudder control 
system limiting hardware to establish the reversal loads. Furthermore, 
the aforementioned requirements are consistent with Sec.  25.351.

IV. Regulatory Notices and Analyses

    Changes to Federal regulations must undergo several economic 
analyses. First, Executive Orders 12866 and 13563 direct that each 
Federal agency shall propose or adopt a regulation only upon a reasoned 
determination that the benefits of the intended regulation justify its 
costs. Second, the Regulatory Flexibility Act of 1980 (Pub. L. 96-354), 
as codified in 5 U.S.C. 603 et seq., requires agencies to analyze the 
economic impact of regulatory changes on small entities. Third, the 
Trade Agreements Act of 1979 (Pub. L. 96-39), 19 U.S.C. Chapter 13, 
prohibits agencies from setting standards that create unnecessary 
obstacles to the foreign commerce of the United States. In developing 
U.S. standards, the Trade Agreements Act requires agencies to consider 
international standards and, where appropriate, that they be the basis 
of U.S. standards. Fourth, the Unfunded Mandates Reform Act of 1995 
(Pub. L. 104-4), as codified in 2 U.S.C. Chapter 25, requires agencies 
to prepare a written assessment of the costs, benefits, and other 
effects of proposed or final rules that include a Federal mandate 
likely to result in the expenditure by State, local, or tribal 
governments, in the aggregate, or by the private sector, of $100 
million or more annually (adjusted for inflation with base year of 
1995). This portion of the preamble summarizes the FAA's analysis of 
the economic impacts of this final rule.
    In conducting these analyses, the FAA has determined that this 
final rule has benefits that justify its costs and is not a 
``significant regulatory action'' as defined in section 3(f) of 
Executive Order 12866. The final rule is also not ``significant'' as 
defined in DOT's rulemaking procedures. The final rule will not have a 
significant economic impact on a substantial number of small entities, 
will not create unnecessary obstacles to the foreign commerce of the 
United States, and will not impose an unfunded mandate on State, local, 
or tribal governments, or on the private sector by exceeding the 
threshold identified previously.

A. Regulatory Evaluation

1. Background and Statement of Need
    The genesis of this final rule is the crash of American Airlines 
Flight 587 (AA587), near Queens, New York, on November 12, 2001, 
resulting in the death of all 260 passengers and crew aboard, and the 
death of five persons on the ground. The airplane was destroyed by 
impact forces and a post-crash fire.
    The NTSB found that the probable cause of the accident was ``the 
in-flight separation of the vertical stabilizer [airplane fin] as a 
result of loads above ultimate design created by the first officer's 
unnecessary and excessive rudder pedal inputs.'' \23\ Ultimate loads on 
the airplane structure are the limit loads (1.0) multiplied by a safety 
factor, usually 1.5 (as for the vertical stabilizer). An airplane is 
expected to experience a limit load once in its lifetime and is never 
expected to experience an ultimate load.\24\ For the AA587 accident, 
loads exceeding ultimate loads ranged from 1.83 to 2.14 times the limit 
load on the vertical stabilizer,\25\ as a result of four, full, 
alternating rudder inputs known as ``rudder reversals.''
---------------------------------------------------------------------------

    \23\ NTSB Aircraft Accident Report NTSB/AAR-04/04, ``In-flight 
Separation of Vertical Stabilizer, American Airlines Flight 587, 
Airbus Industrie A300-605R, N14053, Belle Harbor, New York, November 
12, 2001'' at 160 (Oct. 26, 2004), available at https://www.ntsb.gov/investigations/AccidentReports/Reports/AAR0404.pdf.
    \24\ NTSB Aircraft Accident Report NTSB/AAR-04/04, p. 31, n. 53.
    \25\ NTSB Aircraft Accident Report NTSB/AAR-04/04, p. 104.
---------------------------------------------------------------------------

    Significant rudder reversal events are unusual in the history of 
commercial airplane flight, having occurred during five notable 
accidents and incidents, with the AA587 accident being the only 
catastrophic accident resulting from rudder reversals.\26\ Ultimate 
loads were exceeded in two of the other notable rudder reversal events: 
an incident involving Interflug (Moscow, February

[[Page 71208]]

11, 1991) and an accident involving American Airlines Flight 903 
(AA903) (near West Palm Beach, Florida, May 12, 1997).\27\ The 
Interflug incident involved multiple rudder reversals, and loads of 
1.55 and 1.35 times the limit load were recorded. For the AA903 
incident, eight rudder reversals occurred, and a load of 1.53 times the 
limit load was recorded.\28\ A catastrophe similar to AA587 was averted 
in these two events only because the vertical stabilizers were stronger 
than required by design standards.\29\ In a fourth event--Air Canada 
Flight 190 (AC190) (over the state of Washington, January 10, 2008)--
four rudder reversals occurred, and the limit load was exceeded by 29 
percent.\30\ The fifth event was a de Havilland DHC-8-100 (Dash 8) (St. 
John's, Newfoundland and Labrador, May 27, 2005) in which the pilot 
commanded a pedal reversal during climb-out, when the airplane entered 
an aerodynamic stall.\31\ There were no injuries, and the airplane was 
not damaged. The ARAC FCHWG determined the loads occurring during this 
event were less than limit load, but this incident is additional 
evidence that pedal reversals occur in service.
---------------------------------------------------------------------------

    \26\ FAA Aviation Rulemaking Advisory Committee. Flight Controls 
Harmonization Working Group. ``Rudder Pedal Sensitivity/Rudder 
Reversal Recommendation Report,'' November 7, 2013. (ARAC Rudder 
Reversal Report). This Report identifies four notable rudder events 
to which the FAA adds the Interflug incident discussed in the NTSB 
AA587 Report.
    \27\ NTSB Aircraft Accident Report NTSB/AAR-04/04, pp. 106-109; 
see also NTSB Aircraft Accident Report AA903 (NTSB DCA97MA049).
    \28\ NTSB Aircraft Accident Report NTSB/AAR-04/04, pp. 104; 
Report on the Investigation of the Abnormal Behavior of an Airbus 
A310-304 Aircraft on 11.02.199 at Moscow, Air Accident Investigation 
Department of the German Federal Office of Aviation, Reference 
6X002-0/91.
    \29\ NTSB Aircraft Accident Report NTSB/AAR-04/04, pp. 38-39.
    \30\ Transportation Safety Board of Canada (TSB) Aviation 
Investigation Report A08W0007, ``Encounter with Wake Turbulence,'' 
https://www.bst-tsb.gc.ca/eng/rapports-reports/aviation/2008/08W0007/A08W0007.html.
    \31\ TSB Aviation Investigation Report A05A0059, ``Stall and 
Loss of Control During Climb,'' https://www.bst-tsb.gc.ca/eng/rapports-reports/aviation/2005/a05a0059/a05a0059.html.
---------------------------------------------------------------------------

    In transport category airplanes, rudder inputs are generally 
limited to aligning the airplane with the runway during crosswind 
landings and controlling engine-out situations, which occur 
predominately at low speeds. At high speeds, the pilot normally 
directly rolls the airplane using the ailerons.\32\ If the pilot does 
use the rudder to control the airplane at high speeds, there will be a 
significant phase lag between the rudder input and the roll response 
because the roll response is a secondary effect of the yawing moment 
generated by the rudder.\33\ The roll does not result from the rudder 
input directly. Even if the rudder is subsequently deflected in the 
opposite direction (rudder reversal), the airplane can continue to roll 
and yaw in one direction before reversing because of the phase lag. The 
relationship between rudder inputs and the roll and yaw response of the 
airplane can become confusing to pilots, particularly with the large 
yaw and roll rates that would result from large rudder inputs, causing 
the pilots to input multiple rudder reversals.
---------------------------------------------------------------------------

    \32\ An aileron is a hinged control service on the trailing edge 
of the wing of a fixed-wing aircraft, one aileron per wing.
    \33\ The yaw axis is defined to be perpendicular to the wings 
and to the normal line of flight. A yaw movement is a change in the 
direction of the aircraft to the left or right around the yaw axis.
---------------------------------------------------------------------------

    Following the AA587 accident in November 2004, the NTSB issued 
Safety Recommendation A-04-56, recommending that the FAA modify part 25 
``to include a certification standard that will ensure safe handling 
qualities in the yaw axis throughout the flight envelope . . . .'' \34\ 
In 2011, the FAA tasked ARAC to consider the need for rulemaking to 
address the rudder reversal issue. ARAC delegated this task to the 
Transport Airplane and Engine subcommittee, which assigned it to the 
FCHWG. One of the recommendations of the ARAC FCHWG Rudder Reversal 
Report, issued on November 7, 2013, was to require transport category 
airplanes to be able to withstand safely the loads imposed by three 
rudder reversals. This final rule adopts that recommendation. The ARAC 
report indicates that requiring transport category airplanes to operate 
safely with the vertical stabilizer loads imposed by three full-pedal 
reversals accounts for most of the attainable safety benefits. With 
more than three rudder reversals, the FCHWG found little increase in 
vertical stabilizer loads.
---------------------------------------------------------------------------

    \34\ NTSB Safety Recommendation A-04-56 (Nov. 10, 2004), 
available at https://www.ntsb.gov/safety/safety-recs/RecLetters/A04_56_62.pdf.
---------------------------------------------------------------------------

2. Impacts of This Final Rule
    Since the catastrophic AA587 accident, the FAA has requested that 
applicants for new type certificates show that their designs are 
capable of continued safe flight and landing after experiencing 
repeated rudder reversals. For airplanes with fly-by-wire (FBW) 
systems, manufacturers have been able to show capability by means of 
control laws, incorporated through software changes, adding no weight 
and imposing no additional maintenance cost to the airplanes. Many, if 
not all, of these designs have demonstrated tolerance to three or more 
rudder reversals. Aside from converting to an FBW or hydro-mechanical 
system, alternatives available to manufacturers specializing in 
airplane designs with mechanical rudders include increasing the 
reliability of the yaw damper and strengthening the airplane vertical 
stabilizer.
    To estimate the cost of the final rule, the FAA reviewed unit cost 
estimates from U.S. airplane manufacturers and incorporated these 
estimates into an airplane life cycle model. The FAA received one 
estimate for large part 25 airplanes and two estimates for small part 
25 airplanes (i.e., business jets).
    A manufacturer specializing in mechanical rather than FBW rudder 
systems provided a business jet estimate that reflects significantly 
higher compliance costs. This manufacturer's most cost-efficient 
approach to addressing the requirement--although high in comparison to 
manufacturers that use FBW systems exclusively--is to comply with a 
strengthened vertical stabilizer. The cost of complying with a more 
reliable yaw damper was higher than strengthening the vertical 
stabilizer, and higher still if complying by converting to an FBW 
rudder system for new models.
    As a result of these high costs and the reasons set forth in the 
NPRM and the preceding ``Discussion of Comments and Final Rule,'' this 
final rule will not apply to airplanes with unpowered (mechanical) 
rudder control surfaces. An unpowered rudder control surface is one 
whose movement is affected through mechanical means, without any 
augmentation (for example, from hydraulic or electrical systems). 
Accordingly, the final rule does not apply to models with mechanical 
rudder control systems, but applies only to models with FBW or hydro-
mechanical rudder systems.
    The FAA estimates the costs of the final rule using unit cost per 
model estimates from industry for FBW models and the agency's estimates 
of the number of new large airplane and business jet certifications 
with FBW rudder systems in the ten years after the effective date of 
the final rule. These estimates are shown in Table 1.

[[Page 71209]]



                                 Table 1--Cost Estimated for Final Rule ($ 2016)
----------------------------------------------------------------------------------------------------------------
                                                                                   Number of new
                                                                  Cost per model    FBW models         Costs
                                                                                     (10 yrs)
----------------------------------------------------------------------------------------------------------------
Large Airplanes.................................................        $300,000               2        $600,000
Business Jets...................................................         235,000               2         470,000
                                                                 -----------------------------------------------
    Total Costs.................................................  ..............  ..............       1,070,000
----------------------------------------------------------------------------------------------------------------

    With these cost estimates, the FAA concludes the final rule will 
entail minimal cost, with expected net safety benefits from the reduced 
risk of rudder reversal accidents.

B. Regulatory Flexibility Determination

    The Regulatory Flexibility Act of 1980 (Pub. L. 96-354) (RFA) 
establishes ``as a principle of regulatory issuance that agencies shall 
endeavor, consistent with the objectives of the rule and of applicable 
statutes, to fit regulatory and informational requirements to the scale 
of the businesses, organizations, and governmental jurisdictions 
subject to regulation. To achieve this principle, agencies are required 
to solicit and consider flexible regulatory proposals and to explain 
the rationale for their actions to assure that such proposals are given 
serious consideration.'' The RFA covers a wide range of small entities, 
including small businesses, not-for-profit organizations, and small 
governmental jurisdictions.
    Agencies must perform a review to determine whether a rule will 
have a significant economic impact on a substantial number of small 
entities. If the agency determines that it will, the agency must 
prepare a regulatory flexibility analysis as described in the RFA. 
However, if an agency determines that a rule is not expected to have a 
significant economic impact on a substantial number of small entities, 
section 605(b) of the RFA provides that the head of the agency may so 
certify and a regulatory flexibility analysis is not required. The 
certification must include a statement providing the factual basis for 
this determination, and the reasoning should be clear.
    As noted above, because manufacturers with FBW rudder systems have 
been able to show compliance by means of low-cost changes to control 
laws incorporated through software changes, the FAA estimates the costs 
of this final rule to be minimal. Therefore, pursuant to section 
605(b), the head of the FAA certifies that this final rule will not 
have a significant economic impact on a substantial number of small 
entities.

C. International Trade Impact Assessment

    The Trade Agreements Act of 1979 (Pub. L. 96-39) prohibits Federal 
agencies from establishing standards or engaging in related activities 
that create unnecessary obstacles to the foreign commerce of the United 
States. Pursuant to this Act, the establishment of standards is not 
considered an unnecessary obstacle to the foreign commerce of the 
United States, so long as the standard has a legitimate domestic 
objective, such as the protection of safety, and does not operate in a 
manner that excludes imports that meet this objective. The statute also 
requires consideration of international standards and, where 
appropriate, that they be the basis for U.S. standards.
    The FAA has assessed the effect of this final rule and determined 
that its purpose is to protect the safety of U.S. civil aviation. 
Therefore, the final rule is in compliance with the Trade Agreements 
Act.

D. Unfunded Mandates Assessment

    Title II of the Unfunded Mandates Reform Act of 1995 (Pub. L. 104-
4) requires each Federal agency to prepare a written statement 
assessing the effects of any Federal mandate in a proposed or final 
agency rule that may result in an expenditure of $100 million or more 
(in 1995 dollars) in any one year by State, local, and tribal 
governments, in the aggregate, or by the private sector; such a mandate 
is deemed to be a ``significant regulatory action.'' The FAA currently 
uses an inflation-adjusted value of $155.0 million in lieu of $100 
million.
    This final rule does not contain such a mandate. Therefore, the 
requirements of Title II of the Act do not apply.

E. Paperwork Reduction Act

    The Paperwork Reduction Act of 1995 (44 U.S.C. 3507(d)) requires 
that the FAA consider the impact of paperwork and other information 
collection burdens imposed on the public. The FAA has determined that 
there is no new requirement for information collection associated with 
this final rule.

F. International Compatibility

    In keeping with U.S. obligations under the Convention on 
International Civil Aviation, it is FAA policy to conform to 
International Civil Aviation Organization (ICAO) Standards and 
Recommended Practices to the maximum extent practicable. The FAA has 
determined that there are no ICAO Standards and Recommended Practices 
that correspond to these regulations.

G. Environmental Analysis

    FAA Order 1050.1F, Environmental Impacts: Policies and Procedures, 
identifies FAA actions that are categorically excluded from preparation 
of an environmental assessment or environmental impact statement under 
the National Environmental Policy Act in the absence of extraordinary 
circumstances. The FAA has determined this rulemaking action qualifies 
for the categorical exclusion identified in paragraph 5-6.6 for 
regulations and involves no extraordinary circumstances.

V. Executive Order Determinations

A. Executive Order 13132, Federalism

    The FAA has analyzed this final rule under the principles and 
criteria of Executive Order 13132, Federalism. The agency determined 
that this action will not have a substantial direct effect on the 
States, or the relationship between the Federal Government and the 
States, or on the distribution of power and responsibilities among the 
various levels of government, and, therefore, does not have Federalism 
implications.

B. Executive Order 13211, Regulations that Significantly Affect Energy 
Supply, Distribution, or Use

    The FAA analyzed this final rule under Executive Order 13211, 
Actions Concerning Regulations that Significantly Affect Energy Supply, 
Distribution, or Use (May 18, 2001). The agency has determined that it 
is not a ``significant energy action'' under the executive order and it 
is not likely to

[[Page 71210]]

have a significant adverse effect on the supply, distribution, or use 
of energy.

C. Executive Order 13609, International Cooperation

    Executive Order 13609, Promoting International Regulatory 
Cooperation, (77 FR 26413, May 4, 2012) promotes international 
regulatory cooperation to meet shared challenges involving health, 
safety, labor, security, environmental, and other issues and reduce, 
eliminate, or prevent unnecessary differences in regulatory 
requirements. The FAA has analyzed this action under the policy and 
agency responsibilities of Executive Order 13609. The agency has 
determined that this action would eliminate differences between U.S. 
aviation standards and those of other civil aviation authorities by 
harmonizing with the corresponding EASA requirement. As noted above, 
EASA published its corresponding regulation, CS 25.353, on November 5, 
2018. This final rule harmonizes with that standard, with the exception 
that this rule excludes airplanes that have an unpowered rudder control 
surface(s).

VI. How to Obtain Additional Information

A. Rulemaking Documents

    An electronic copy of a rulemaking document may be obtained by 
using the internet--
    1. Search the Federal eRulemaking Portal (https://www.regulations.gov);
    2. Visit the FAA's Regulations and Policies web page at https://www.faa.gov/regulations_policies/; or
    3. Access the Government Printing Office's web page at https://www.gpo.gov/fdsys/.
    Copies may also be obtained by sending a request (identified by 
notice, amendment, or docket number of this rulemaking) to the Federal 
Aviation Administration, Office of Rulemaking, ARM-1, 800 Independence 
Avenue SW, Washington, DC 20591, or by calling (202) 267-9680.

B. Comments Submitted to the Docket

    Comments received may be viewed by going to https://www.regulations.gov and following the online instructions to search the 
docket number for this action. Anyone is able to search the electronic 
form of all comments received into any of the FAA's dockets by the name 
of the individual submitting the comment (or signing the comment, if 
submitted on behalf of an association, business, labor union, etc.).

C. Small Business Regulatory Enforcement Fairness Act

    The Small Business Regulatory Enforcement Fairness Act (SBREFA) of 
1996 (Pub. L. 104-121) (set forth as a note to 5 U.S.C. 601) requires 
the FAA to comply with small entity requests for information or advice 
about compliance with statutes and regulations within its jurisdiction. 
A small entity with questions regarding this document may contact its 
local FAA official or the person listed under the FOR FURTHER 
INFORMATION CONTACT heading at the beginning of the preamble. To find 
out more about SBREFA on the internet, visit https://www.faa.gov/regulations_policies/rulemaking/sbre_act/.

List of Subjects in 14 CFR Part 25

    Aircraft, Aviation safety, Reporting and recordkeeping 
requirements.

The Amendment

    In consideration of the foregoing, the Federal Aviation 
Administration amends chapter I of title 14, Code of Federal 
Regulations as follows:

PART 25--AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES

0
1. The authority citation for part 25 continues to read as follows:

    Authority:  49 U.S.C. 106(f), 106(g), 40113, 44701, 44702 and 
44704.

0
2. Add Sec.  25.353 under the undesignated center heading ``Flight 
Maneuver and Gust Conditions'' to read as follows:


Sec.  25.353  Rudder control reversal conditions.

    Airplanes with a powered rudder control surface or surfaces must be 
designed for loads, considered to be ultimate, resulting from the yaw 
maneuver conditions specified in paragraphs (a) through (e) of this 
section at speeds from VMC to VC/MC. 
Any permanent deformation resulting from these ultimate load conditions 
must not prevent continued safe flight and landing. The applicant must 
evaluate these conditions with the landing gear retracted and speed 
brakes (and spoilers when used as speed brakes) retracted. The 
applicant must evaluate the effects of flaps, flaperons, or any other 
aerodynamic devices when used as flaps, and slats-extended 
configurations, if they are used in en route conditions. Unbalanced 
aerodynamic moments about the center of gravity must be reacted in a 
rational or conservative manner considering the airplane inertia 
forces. In computing the loads on the airplane, the yawing velocity may 
be assumed to be zero. The applicant must assume a pilot force of 200 
pounds when evaluating each of the following conditions:
    (a) With the airplane in unaccelerated flight at zero yaw, the 
flightdeck rudder control is suddenly and fully displaced to achieve 
the resulting rudder deflection, as limited by the control system or 
the control surface stops.
    (b) With the airplane yawed to the overswing sideslip angle, the 
flightdeck rudder control is suddenly and fully displaced in the 
opposite direction, as limited by the control system or control surface 
stops.
    (c) With the airplane yawed to the opposite overswing sideslip 
angle, the flightdeck rudder control is suddenly and fully displaced in 
the opposite direction, as limited by the control system or control 
surface stops.
    (d) With the airplane yawed to the subsequent overswing sideslip 
angle, the flightdeck rudder control is suddenly and fully displaced in 
the opposite direction, as limited by the control system or control 
surface stops.
    (e) With the airplane yawed to the opposite overswing sideslip 
angle, the flightdeck rudder control is suddenly returned to neutral.

    Issued under authority provided by 49 U.S.C. 106(f), and 
44701(a) in Washington, DC, on or about November 16, 2022.
Billy Nolen,
Acting Administrator.
[FR Doc. 2022-25291 Filed 11-21-22; 8:45 am]
BILLING CODE 4910-13-P


This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.