Endangered and Threatened Wildlife and Plants; Endangered Species Act Listing Determination for the Coral Pocillopora meandrina, 40480-40506 [2020-14304]
Download as PDF
40480
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric
Administration
[Docket No. 200626–0172; RTID 0648–
XG232]
Endangered and Threatened Wildlife
and Plants; Endangered Species Act
Listing Determination for the Coral
Pocillopora meandrina
National Marine Fisheries
Service (NMFS), National Oceanic and
Atmospheric Administration (NOAA),
Commerce.
ACTION: Notice; 12-month finding and
availability of status review documents.
AGENCY:
We, NMFS, have completed a
comprehensive status review under the
Endangered Species Act (ESA) for the
Indo-Pacific, reef-building coral
Pocillopora meandrina. After reviewing
the best scientific and commercial data
available, including the General Status
Review of Indo-Pacific Reef-building
Corals and the P. meandrina Status
Review Report, we have determined that
listing P. meandrina as threatened or
endangered based on its status
throughout all or a significant portion of
its range under the ESA is not warranted
at this time.
DATES: This finding was made on July 6,
2020.
ADDRESSES: The petition, General Status
Assessment of Indo-Pacific Reefbuilding Corals, P. meandrina Status
Review Report, Federal Register notice,
and the list of references can be
accessed electronically online at:
https://www.fisheries.noaa.gov/species/
pocillopora-meandrina-coral#
conservation-management.
FOR FURTHER INFORMATION CONTACT:
Lance Smith, NMFS, Pacific Islands
Regional Office, Protected Resources
Division, (808) 725–5131; or Celeste
Stout, NMFS, Office of Protected
Resources, (301) 427–8436.
SUPPLEMENTARY INFORMATION:
SUMMARY:
Background
This 12-month finding is a response
to a petition to list P. meandrina under
the ESA. Background to the petition, 90day finding, and policy on listing
species under the ESA is provided
below.
Petition and 90-Day Finding
On March 14, 2018, we received a
petition from the Center for Biological
Diversity to list the Indo-Pacific reefbuilding coral Pocillopora meandrina in
Hawaii as an endangered or threatened
species under the ESA. Under the ESA,
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
a listing determination addresses the
status of a species, its subspecies, and,
for any vertebrate species, any distinct
population segment (DPS) that
interbreeds when mature (16 U.S.C.
1532(16)). Under the ESA, a species is
‘‘endangered’’ if it is in danger of
extinction throughout all or a significant
portion of its range, or ‘‘threatened’’ if
it is likely to become endangered within
the foreseeable future throughout all or
a significant portion of its range (ESA
sections 3(6) and 3(20), respectively, 16
U.S.C. 1532(6) and (20)). The petition
requested that the Hawaii portion of the
species’ range be considered a
significant portion of its range, thus the
petition focused primarily on the status
of P. meandrina in Hawaii. However,
the petition also requested that P.
meandrina be listed throughout its
range, and provided some information
on its status and threats outside of
Hawaii. In light of recent court
decisions regarding our policy on the
interpretation of the phrase ‘‘significant
portion of its range’’ (SPR) under the
ESA (79 FR 37577, July 1, 2014), we
interpreted the petition as a request to
first consider the status of P. meandrina
throughout its range, followed by an
SPR review consisting of: (1) Analysis of
any SPRs, including the portion of the
range within Hawaii; and (2)
determination of the status of SPRs.
On September 20, 2018, we published
a 90-day finding (83 FR 47592)
announcing that the petition presented
substantial scientific or commercial
information indicating that P.
meandrina may be warranted for listing
under the ESA throughout all or a
significant portion of its range. We also
announced the initiation of a status
review of the species, as required by
section 4(b)(3)(a) of the ESA, and
requested information to inform the
agency’s decision on whether this
species warrants listing as endangered
or threatened under the ESA.
Listing Species Under the Endangered
Species Act
We are responsible for determining
whether P. meandrina is threatened or
endangered under the ESA (16 U.S.C.
1531 et seq.). To make this
determination, we first consider
whether a group of organisms
constitutes a ‘‘species’’ under section 3
of the ESA, then whether the status of
the species qualifies it for listing as
either threatened or endangered. Section
3 of the ESA defines species to include
subspecies and, for any vertebrate
species, any DPS that interbreeds when
mature (16 U.S.C. 1532(16)). As noted
previously, because P. meandrina is an
invertebrate species, the ESA does not
PO 00000
Frm 00002
Fmt 4701
Sfmt 4703
consider listing individual populations
as DPSs.
Section 3 of the ESA defines an
endangered species as any species
which is in danger of extinction
throughout all or a significant portion of
its range, and a threatened species as
one which is likely to become an
endangered species within the
foreseeable future throughout all or a
significant portion of its range. Thus, in
the context of the ESA, the Services
interpret an ‘‘endangered species’’ to be
one that is presently at risk of
extinction. A ‘‘threatened species’’ is
not currently at risk of extinction, but is
likely to become so in the foreseeable
future (that is, at a later time). The key
statutory difference between a
threatened and endangered species is
the timing of when a species is or is
likely to become in danger of extinction,
either presently (endangered) or in the
foreseeable future (threatened).
When we consider whether a species
qualifies as threatened under the ESA,
we must consider the meaning of the
term ‘‘foreseeable future.’’ It is
appropriate to interpret ‘‘foreseeable
future’’ as the horizon over which
predictions about the conservation
status of the species can be reasonably
relied upon. What constitutes the
foreseeable future for a particular
species depends on species-specific
factors such as the life history of the
species, habitat characteristics,
availability of data, particular threats,
ability to predict threats, and the
reliability to forecast the effects of these
threats and future events on the status
of the species under consideration. That
is, the foreseeability of a species’ future
status is case specific and depends upon
both the foreseeability of threats to the
species and foreseeability of the species’
response to those threats. Our
consideration of the foreseeable future
for this status review is described in the
Global Climate Change and the
Foreseeable Future section below.
The statute requires us to determine
whether any species is endangered or
threatened throughout all or a
significant portion of its range as a
result of any one or a combination of
any of the following factors: The present
or threatened destruction, modification,
or curtailment of its habitat or range;
overutilization for commercial,
recreational, scientific, or educational
purposes; disease or predation; the
inadequacy of existing regulatory
mechanisms; or other natural or
manmade factors affecting its continued
existence. 16 U.S.C. 1533(a)(1). We are
also required to make listing
determinations based solely on the best
scientific and commercial data
E:\FR\FM\06JYN2.SGM
06JYN2
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
available, after conducting a review of
the species’ status and after taking into
account efforts, if any, being made by
any state or foreign nation (or
subdivision thereof) to protect the
species. 16 U.S.C. 1533(b)(1)(A).
General Status Assessment, Status
Review Report, and Extinction Risk
Assessment Team
The rangewide Status Review of P.
meandrina consists of two documents:
(1) The General Status Assessment
(GSA) of Indo-Pacific Reef-building
Corals (Smith 2019a); and (2) the P.
meandrina Status Review Report (SRR;
Smith 2019b). The GSA (Smith 2019a)
provides contextual information on the
status and trends of Indo-Pacific reefbuilding corals, and the SRR (Smith
2019b) reports the status and trends of
P. meandrina based on the best
available scientific information. Based
on the information provided in the
Status Review reports (Smith 2019a,b),
an Extinction Risk Assessment (ERA)
was carried out as specified in the
‘‘Guidance on Responding to Petitions
and Conducting Status Reviews under
the Endangered Species Act’’ (NMFS
2017). As per the guidance, an ERA
Team was established, consisting of
seven reef-building coral subject matter
experts, and the Team used the
information in the Status Review reports
to provide ratings of P. meandrina’s
extinction risk, described in the final
section of the SRR (Smith 2019b).
The two reports that make up this
Status Review (Smith 2019a,b) represent
a compilation of the best available
scientific and commercial information
on the P. meandrina’s biology, ecology,
life history, threats, and status from
information contained in the petition,
our files, a comprehensive literature
search, and consultation with IndoPacific reef coral experts. We also
considered information submitted by
the public in response to our 90-day
finding (83 FR 47592; September 20,
2018). The draft Status Review reports
(Smith 2019a,b) underwent independent
peer review by reef coral experts as
required by the Office of Management
and Budget (OMB) Final Information
Quality Bulletin for Peer Review (M–
05–03; December 16, 2004). The peer
reviewers were asked to evaluate the
adequacy, appropriateness, and
application of data used in the Status
Review reports, including the Extinction
Risk Assessment methodology. Peer
reviewer comments were addressed
prior to dissemination and finalization
of the Status Review reports and
publication of this finding, as described
in the Peer Review Report.
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
We subsequently reviewed the Status
Review reports (Smith 2019a,b), their
cited references, and peer review
comments, and believe the Status
Review reports, upon which this 12month finding are based, provide the
best available scientific and commercial
information on P. meandrina. Much of
the information discussed below on the
species’ biology, distribution,
abundance, threats, and extinction risk
is presented in the Status Review
reports (Smith 2019a,b). However, in
making the 12-month finding
determinations (i.e., our decisions that
P. meandrina is not warranted for
listing rangewide, nor as any SPRs), we
have independently applied the
statutory provisions of the ESA,
including evaluation of the factors set
forth in section 4(a)(1)(A)-(E) and our
regulations regarding listing
determinations at 50 CFR part 424. The
Status Review reports (Smith 2019a,b)
and the Peer Review Report are
available on our website at https://
www.cio.noaa.gov/services_programs/
prplans/PRsummaries.html.
Global Climate Change and the
Foreseeable Future
Many of the threats to P. meandrina,
including the most severe threats, stem
from global climate change (Smith
2019b). As described in the preceding
‘‘Listing Species Under the Endangered
Species Act’’ section, the purpose of this
finding is to determine the extinction
risk of the species now and in the
foreseeable future. The extinction risk of
P. meandrina now and in the immediate
future depends on the impacts of threats
resulting from the continuation of
ongoing climate change. Its extinction
risk in the future depends on how far
into the future climate change threats
are foreseeable, and what impacts those
threats will have on the species over
that timeframe. Thus, this section
provides an overview of global climate
change and existing guidance, a
description of the climate change status
quo, the rationale for our determination
of the length of the foreseeable future for
the most important threats to P.
meandrina (ocean warming and ocean
acidification), and descriptions of the
impacts of those threats on the species
over the foreseeable future.
Overview of Global Climate Change and
Existing Guidance
Global climate change refers to
increased concentrations of greenhouse
gases (GHGs; primarily carbon dioxide,
but also methane, nitrous oxide, and
others) in the atmosphere from
anthropogenic emissions, and
subsequent warming of the earth,
PO 00000
Frm 00003
Fmt 4701
Sfmt 4703
40481
acidification of the oceans, rising sealevels, and other impacts since the
beginning of the industrial era in the
mid-19th century. Since that time, the
release of carbon dioxide (CO2) from
industrial and agricultural activities has
resulted in atmospheric CO2
concentrations that have increased from
approximately 280 ppm in 1850 to 410
ppm in 2019 (Smith 2019a). The
resulting warming of the earth has been
unequivocal, and each of the last three
decades has been successively warmer
than any preceding decade since 1850.
The climate change components of the
P. meandrina Status Review were based
on the International Panel on Climate
Change’s (IPCC) Fifth Assessment
Report ‘‘Climate Change 2013: The
Physical Science Basis’’ (AR5; IPCC
2013a), the IPCC’s ‘‘Global Warming of
1.5° C’’ (1.5° Report; IPCC 2018), and
other climate change literature cited in
the GSA and SRR. The IPCC published
the 1.5° Report to compare the impacts
of global warming of 1.5° C vs. 2.0° C
above pre-industrial levels, in response
to the 2015 Paris Agreement’s objective
of limiting global warming to 1.5° C.
The IPCC’s AR5 and the 1.5° Report
together represent the largest synthesis
of global climate change physical
science ever compiled. The IPCC is
currently compiling its Sixth
Assessment Report (AR6), due to be
published in 2021 or 2022 (Smith
2019a).
Observed and projected global mean
surface temperatures (GMST) from the
pre-industrial baseline period of 1850–
1900 to the year 2100 provide context
for the climate change threats facing P.
meandrina and other species. GMST
refers to the mean of land and sea
temperatures observed at the earth’s
surface. Since the pre-industrial period,
GMST has increased by nearly 1° C due
to GHG emissions, and estimated
anthropogenic global warming is
currently increasing at approximately
0.2° C per decade due to past and
ongoing GHG emissions. Warming
greater than the global annual average is
being experienced in many land regions
and seasons, including two to three
times higher in the Arctic. Warming is
generally higher over land than over the
ocean, thus warming of the ocean lags
behind warming of air at the earth’s
surface. Regardless of future emissions,
warming from past anthropogenic GHG
emissions since the pre-industrial
period will persist for centuries to
millennia, and will continue to cause
further long-term changes in the climate
system, such as sea-level rise, with
associated impacts (Smith 2019a).
In order to ensure consistency in the
application of climate change science to
E:\FR\FM\06JYN2.SGM
06JYN2
40482
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
ESA decisions, in 2016 NMFS issued
‘‘Guidance for Treatment of Climate
Change in NMFS Endangered Species
Act Decisions’’ (Climate Guidance,
NMFS 2016). The Climate Guidance
provides seven policy considerations,
the first two of which are particularly
relevant to the P. meandrina finding: (1)
‘‘Consideration of future climate
condition uncertainty—For ESA
decisions involving species influenced
by climate change, NMFS will use
climate indicator values (i.e.,
quantitative projections of ocean
warming, ocean acidification, and other
climate change impacts) projected under
the International Panel on Climate
Change (IPCC)’s Representative
Concentration Pathway 8.5 when data
are available. When data specific to that
pathway are not available we will use
the best available science that is as
consistent as possible with RCP 8.5’’,
and (2) ‘‘Selecting a climate change
projection timeframe—(A) When
predicting the future status of species in
ESA Section 4, NMFS will project
climate change effects for the longest
time period over which we can foresee
the effects of climate change on the
species’ status.’’ (NMFS 2016). The
application of these two policy
considerations to the P. meandrina
finding are described below.
RCP8.5
As the Status Quo
AR5 (IPCC 2013a) projected GMST
from 2006 over the remainder of the
21st century using a set of four
representative concentration pathways
(RCPs) that provide a standard
framework for consistently modeling
future climate change under different
assumptions. The four RCPs span a
range of possible futures, from high
GHG emissions peaking near 2100
(RCP8.5), to intermediate emissions
(RCP6.0 and RCP4.5), to low emissions
(RCP2.6). The 1.5° Report (IPCC 2018)
developed additional pathways with
lower emissions than RCP2.6. The
IPCC’s pathways are based on projected
concentrations of CO2 and other GHGs
in the earth’s atmosphere. As
atmospheric GHG concentrations
increase, less of the sun’s heat can be
radiated back into space, causing the
earth to absorb more heat. The increased
heat forces changes on the earth’s
climate system, and thus is referred to
as ‘‘radiative forcing.’’ AR5’s four RCPs
are named according to radiative forcing
of 2.6, 4.5, 6.0, and 8.5 Watts per square
meter of the earth’s surface. These result
from atmospheric CO2 concentrations of
421 (RCP2.6), 538 (RCP4.5), 670
(RCP6.0), and 936 (RCP8.5) ppm in
2100. The 1.5° Report includes
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
pathways with lower CO2 levels than
RCP2.6 (IPCC 2013a, 2018).
The various pathways were developed
with the intent of providing different
potential climate change projections to
guide policy discussions. The IPCC does
not attach likelihoods to the pathways.
Taken together, the four pathways in
AR5 project wide ranges of increases in
GMSTs, ocean warming, ocean
acidification, sea level rise, and other
changes globally throughout the 21st
century (Smith 2019a). Summaries of
the most recent information on observed
and projected ocean warming, ocean
acidification, and sea-level rise are
provided in the GSA (Smith 2019a), and
support RCP8.5 as representative of the
status quo. For example, according to
the most recent Global Carbon Budget
report (Friedlingstein et al 2019), global
CO2 emissions from fossil fuels and
industry grew continuously from 2010
to 2019; and global atmospheric CO2
concentration grew from approximately
385 in 2010 to 410 ppm in 2019, with
each year setting new historic highs,
according to NOAA’s Earth System
Research Laboratory (ESRL) station on
Mauna Kea, Hawaii (https://
www.esrl.noaa.gov/gmd/ccgg/trends/,
accessed December 2019). This rapid
growth in global CO2 emissions and
atmospheric CO2 is more consistent
with RCP8.5 than any of the other
pathways in AR5 (IPCC 2013a) or the
1.5° C Report (IPCC 2018).
The Foreseeable Future for P.
meandrina
The Climate Guidance (NMFS 2016)
directs us to determine the longest
period over which we can reasonably
foresee the effects of climate change on
the species. The IPCC pathways (IPCC
2013a, IPCC 2018) use the year 2100 as
the main end-point for their climate
change projections. The IPCC’s AR5 and
the 1.5° Reports (IPCC 2013a, IPCC
2018), together with the large and
growing scientific literature on
projected impacts of the IPCC pathways
on coral reef ecosystems, provide
considerable information on how
climate change threats are likely to
affect corals and coral reefs from now to
2100. Although there is wide variability
in the IPCC pathways (e.g., RCP8.5 vs.
the 1.5° Report’s pathways would result
in highly contrasting impacts to most of
the world’s ecosystems over the 21st
century), 2100 is foreseeable because
some pathways are more likely than
others over that timeframe, as explained
in the following paragraph.
Since the status quo is best
represented by RCP8.5, we consider
climate indicator values projected under
RCP8.5 to be likely over at least the near
PO 00000
Frm 00004
Fmt 4701
Sfmt 4703
future. Beyond that, current GHG
emissions policies resulting from the
2015 Paris Agreement may eventually
lead to climate indicator values
projected under the intermediate
emissions pathways RCPs 6.0 and 4.5
(CAT 2019, Hausfather and Peters 2020,
UNEP 2019). However, such projections
have high inherent uncertainty (IPCC
2018, Jeffery et al. 2018), thus climate
indicator values projected under RCP8.5
may continue to prevail beyond the near
future. Therefore, based on the status
quo, current policies, and uncertainty,
we consider it likely that climate
indicator values between now and 2100
will be within the collective ranges of
those projected under RCPs 8.5, 6.0, and
4.5.
The two most severe threats to P.
meandrina are ocean warming and
ocean acidification, both of which are
caused by climate change (Smith
2019a,b). Projections of climate
indicator values for ocean warming (sea
surface temperature) and ocean
acidification (sea surface pH and
aragonite saturation state) under RCPs
8.5, 6.0, and 4.5 within the range of P.
meandrina are described in the
following sections. These projections
lead to our conclusions about the length
of the foreseeable future for ocean
warming and ocean acidification that
will be applied to the P. meandrina 12month finding.
The Foreseeable Future for Ocean
Warming and P. meandrina. Global
warming projections under RCPs 8.5,
6.0, and 4.5 over the 21st century, and
subsequent ocean warming impacts on
P. meandrina, are described in NMFS
(2020a) and summarized here. AR5’s
Supplementary Materials (IPCC
2013b,c,d) provide detailed projections
of future warming of air over land and
sea grid points of the earth’s surface
under each RCP for the time periods
2016–2035, 2046–2065, and 2081–2100,
including regional projections within
the range of P. meandrina. Warming of
seawater at the sea’s surface lags behind
warming of air at the sea’s surface.
Although AR5’s detailed projections in
the Supplementary Materials are for air
at the sea’s surface, they indicate likely
proportional warming of seawater
(NMFS 2020a, Fig. 1).
For each RCP (8.5, 6.0, 4.5) and time
period (2016–2035, 2046–2065, 2081–
2100), AR5 provides global maps of
projected annual warming across the
earth’s surface, as explained in more
detail in NMFS (2020a). Projected
additional warming above what has
already occurred is highest under
RCP8.5, intermediate under RCP6.0, and
lowest under RCP4.5 (NMFS 2020a, Fig.
2). The ranges of projected warming
E:\FR\FM\06JYN2.SGM
06JYN2
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
under the three RCPs overlap with one
another, illustrating the high variability
in the projections (NMFS 2020a, Fig. 3).
Within the range of P. meandrina, AR5
provides regional maps of projected
annual warming for the eastern Pacific
Ocean, the western Indian Ocean, the
northern Indian Ocean, the Coral
Triangle, northern Australia, and the
tropical Pacific. As with the global
projections, projected additional
warming within the range of P.
meandrina above what has already
occurred is highest under RCP8.5 (2–4
°C), intermediate under RCP6.0 (1–3 °C),
and lowest under RCP4.5 (1–2 °C), but
with high variability (NMFS 2020a,
Figs. 4–9).
Ocean warming can result in the
bleaching of the tissues of reef-building
coral colonies, including P. meandrina
colonies, whereby the unicellular
photosynthetic algae living within their
tissues (zooxanthellae) are expelled in
response to stress. For many reefbuilding coral species, including P.
meandrina, an increase of only 1 °C–2
°C above the normal local seasonal
maximum ocean temperature can
induce bleaching. Corals can withstand
mild to moderate bleaching; however,
severe, repeated, or prolonged bleaching
can lead to colony death (Smith 2019a).
The projected responses of reefbuilding corals to ocean warming in the
21st century under RCPs 8.5, 6.0 and 4.5
have been modeled in several recent
papers. An analysis of likely disease
outbreaks in reef-building corals
resulting from ocean warming projected
by RCP8.5 and RCP4.5 concluded that
both pathways are likely to cause
sharply increased coral disease before
2100 (Maynard et al. 2015). An analysis
of the timing and extent of Annual
Severe Bleaching (ASB) of the world’s
coral reefs under RCPs 8.5 and 4.5
found that the average timing of ASB
would be only 11 years earlier under
RCP8.5 (2043) than RCP4.5 (2054; van
Hooidonk et al. 2016). Similarly, an
analysis of the timing and extent of
warming-induced bleaching of the
world’s coral reefs under RCPs 8.5, 6.0,
and 4.5 found little difference between
the pathways, with 60–100 percent of
Indo-Pacific coral reefs experiencing
severe bleaching by 2100 under all three
pathways (Hoegh-Guldberg et al. 2017).
A study of the adaptive capacity of a
population of the Indo-Pacific reefbuilding coral Acorpora hyacinthus to
ocean warming projected that it would
go extinct by 2055 and 2080 under RCPs
8.5 and 6.0, respectively, and decline by
60 percent by 2100 under RCP4.5 as a
result of warming-induced bleaching
(Bay et al. 2017). These papers illustrate
that the overall projected trends are
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
sharply downward under all three RCPs
in terms of ocean warming impacts on
Indo-Pacific reef-building corals.
As far as we know, there are no
reports that model projected responses
of P. meandrina to ocean warming in
the 21st century under any of the RCPs.
As described in the SRR (Smith 2019b),
we consider P. meandrina’s
vulnerability to ocean warming in the
21st century to be high, based on
observed susceptibility to the ocean
warming that has occurred over the past
several decades, together with
increasing exposure as the oceans
continue to warm throughout the
remainder of the century. We expect
vulnerability of P. meandrina to ocean
warming to increase in the 21st century
as climate change worsens, resulting in
higher frequency, severity, and
magnitude of warming-induced
bleaching events (Smith 2019b).
Based on the available information,
we cannot distinguish the likely
responses of P. meandrina to projected
ocean warming under the three RCPs
from one another because: (1) All three
RCPs project large increases in warming
relative to historical rates of change
(NMFS 2020a, Fig. 1), especially in the
late 21st century (NMFS 2020a, Fig. 2);
(2) the ranges of warming projected by
each RCP are broad and overlapping
with one another (NMFS 2020a, Fig. 3),
reflecting high uncertainty; (3) the
projections are for warming of air at the
sea’s surface, but warming of the ocean
itself lags behind, reducing distinctions
between RCPs; and (4) as has already
been documented, there is high spatial
variability in how P. meandrina’s
responds to a given warming event, and
high temporal variability in how a given
P. meandrina population responds to
multiple warming events over time
(Smith 2019b), reflecting high
uncertainty in projecting the responses
of this species to warming.
The Foreseeable Future for Ocean
Acidification and P. meandrina. Ocean
acidification projections under RCPs
8.5, 6.0, and 4.5 over the 21st century
are described in AR5 (IPCC 2013a), and
summarized in NMFS (2020a) for P.
meandrina’s range. Unlike for global
warming, AR5 does not include detailed
regional comparisons of projected ocean
acidification under the different RCPs.
Ocean acidification, however, reduces
the aragonite saturation state (Warg) in
seawater by lowering the
supersaturation of carbonite minerals
including aragonite, the form of calcite
that makes up the skeletons of reefbuilding corals (Smith 2019a).
Under RCP8.5, mean global pH of
open surface waters is projected to
decline from the 1986–2005 average of
PO 00000
Frm 00005
Fmt 4701
Sfmt 4703
40483
approximately 8.12 to approximately
7.77 by 2100, with the greatest
reductions in the higher latitude areas of
the P. meandrina’s range, such as the
southern Great Barrier Reef (GBR) and
the northern Philippines, resulting in
Warg levels dropping to 1.75–2.5 in open
surface waters within most of the
species’ range by 2090. Under RCP6.0,
mean pH is projected to decline to
approximately 7.88 by 2100, resulting in
Warg levels dropping to 2.25–3 within
most of the species’ range by 2090.
Under RCP4.5, mean pH is projected to
decline to approximately 7.97 by 2100,
resulting in Warg levels dropping to
2.75–3.25 within most of the species’
range by 2090 (NMFS 2020a, Figs. 10–
12).
These general projections are for open
surface waters, and are not necessarily
representative of nearshore waters,
because of multiple physical factors that
cause high natural variability in pH of
seawater and Warg on coral reefs. The
projected ocean acidification of open
surface waters is expected to eventually
result in proportional reductions in
seawater pH and Warg on coral reefs, but
these changes will lag behind open
surface waters and be much more
variable both spatially and temporally
(Smith 2019a). For example, while the
Warg levels of open surface waters are
projected to decline to 1.75–2.5 within
most of the range of P. meandrina by
2090 (NMFS 2020a, Fig. 12), an analysis
of 19 coral reefs in the Indo-Pacific
projected Warg levels to range from
approximately 1.4 to 3.0 at the sites in
2100 (Eyre et al. 2018).
As described in more detail in the
GSA (Smith 2019a), ocean acidification
impacts reef-building corals and coral
reef communities in several ways. The
reduced Warg levels from ocean
acidification result in decreased
calcification of coral colonies, leading to
lower skeletal growth rates and lower
skeletal density. Generally, Warg should
be >3 to enable adequate calcification of
reef-building corals, and Warg levels of
<3 result in reduced calcification.
Reduced pH from ocean acidification
can also inhibit coral reproduction,
leading to lower fertilization,
settlement, and recruitment. Reduced
Warg levels also cause increased
dissolution of the calcium carbonate
structure of coral reefs, leading to reef
erosion rates outpacing accretion rates
(Smith 2019a).
The projected responses of reefbuilding corals and coral reefs to ocean
acidification in the 21st century under
conditions projected for RCPs 8.5, 6.0
and 4.5 have been reviewed or modeled
in several recent papers. A review of
laboratory studies on the effects of
E:\FR\FM\06JYN2.SGM
06JYN2
40484
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
ocean acidification and ocean warming
spanning the entire range of conditions
projected under the three RCPs found
that RCP8.5 would result in the greatest
reduction in calcification (≤20 percent),
but that the impacts of different levels
of ocean acidification were complicated
by species, habitat type, and
interactions with warming (Kornder et
al. 2018). A model of the effects of ocean
acidification alone (i.e., without
considering the additive effect of ocean
warming) projected under RCP8.5 found
that the skeletal density of reef-building
Porites corals is likely to decrease by 20
percent by 2100 (Mollica et al. 2018).
An analysis of the timing and extent of
ocean acidification and ocean warming
on the world’s coral reefs under the
three RCPs found that there would be
progressively greater and earlier
declines in calcification under RCPs 8.5,
6.0, and 4.5, respectively, over the 21st
century. Spatial variability in the
projected calcification reductions was
very high, especially in the Indo-Pacific
(van Hooidonk et al. 2014).
As far as we know, there are no
reports that model projected responses
of P. meandrina to ocean acidification
in the 21st century under any of the
RCPs. As described in the SRR (Smith
2019b), we consider P. meandrina’s
vulnerability to ocean acidification in
the 21st century to be high, based on
high susceptibility and moderate to high
exposure throughout the remainder of
the century. We expect vulnerability of
P. meandrina to ocean acidification to
increase in the 21st century as climate
change worsens, resulting in reductions
in calcification and skeletal growth
(Smith 2019b).
Based on the available information,
we cannot distinguish the likely
responses of P. meandrina to projected
ocean acidification under the three
RCPs from one another because: (1) All
three RCPs project worsening ocean
acidification and reduced Warg levels
over the 21st century (NMFS 2020a, Fig.
10–12); (2) the ranges of reduced Warg
levels projected by each RCP are broad
and overlapping with one another
(NMFS 2020a, Fig. 12), reflecting high
uncertainty; (3) the projections of
reduced Warg levels vary depending on
whether feedbacks are considered
(NMFS 2020a, Fig. 12), reflecting
additional uncertainty; and (4) the
above projections are for open surface
waters, but many abiotic and biotic
factors cause greater fluctuations and
different mean values in pH and Warg on
coral reefs than in open surface waters,
resulting in high spatial and temporal
variability in the impacts of ocean
acidification on reef-building corals
such as P. meandrina (Smith 2019b),
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
thereby further blurring the distinctions
between projections of the three RCPs.
Foreseeable Future Conclusion. Ocean
warming and ocean acidification
represent the two greatest threats to P.
meandrina in the foreseeable future,
both of which are caused by climate
change. While different levels of ocean
warming are projected under RCPs 8.5,
6.0, and 4.5 from now to 2100, the
projected impacts of warming-induced
bleaching on P. meandrina are not
clearly distinctive between the RCPs,
and all three RCPs result in
substantially worsening impacts. Thus,
impacts of warming-induced bleaching
on P. meandrina are reasonably
foreseeable to 2100.
Likewise, while different levels of
ocean acidification are projected under
RCPs 8.5, 6.0, and 4.5 from now to 2100,
the projected impacts of reduced Warg
levels on P. meandrina are not clearly
distinctive between the RCPs, and all
three RCPs result in substantially
worsening impacts. Thus, impacts from
ocean acidification and reduced Warg
levels on P. meandrina are also
reasonably foreseeable to 2100.
Indo-Pacific Reef-Building Corals
Indo-Pacific reef-building corals share
many biological characteristics, occupy
many similar habitat types, are subject
to similar key trends, and are threatened
primarily by the same suite of global
climate change and local threats. In
addition, typically more information is
available on the status and trends of reef
coral communities (e.g., live coral cover)
than species-specific information. Thus,
to provide context for determining the
status of P. meandrina, general
information on Indo-Pacific reefbuilding coral biology, habitats, key
trends, and threats is provided in the
GSA (Smith 2019a) and summarized
below.
Biology and Habitats
Reef-building corals are defined by
symbioses with unicellular
photosynthetic algae living within their
tissues (zooxanthellae), giving them the
capacity to grow large skeletons and
thrive in nutrient-poor tropical and
subtropical seas. Since reef-building
corals are defined by their symbiosis
with zooxanthellae, they are sometimes
referred to as ‘‘zooxanthellate’’ or
‘‘hermatypic’’ corals. Reef-building
corals collectively produce shallow
coral reefs over time, but also occur in
non-reef and mesophotic areas, both of
which are defined in the habitat section
below. That is, these species are reefbuilding, but they are not reefdependent, thus reef-building corals are
PO 00000
Frm 00006
Fmt 4701
Sfmt 4703
not limited to shallow coral reefs
(NMFS 2014).
Reef-building corals are marine
invertebrates in the phylum Cnidaria
that occur as polyps, usually forming
colonies of many clonal polyps on a
calcium carbonate skeleton. The
Cnidaria include true stony corals (class
Anthozoa, order Scleractinia, including
both reef-building, zooxanthellate and
non-reef-building, azooxanthellate
species), the blue coral (class Anthozoa,
order Helioporacea), and fire corals
(class Hydrozoa, order Milleporina).
Most reef-building corals form complex
colonies made up of a tissue layer of
polyps (a column with mouth and
tentacles on the upper side) growing on
top of a calcium carbonate skeleton,
which the polyps produce through the
process of calcification (Brainard et al.
2011). As of 2019, Veron estimates that
758 species of reef-building corals occur
in the Indo-Pacific, over 90 percent of
the world’s total (Corals of the World,
https://www.coralsoftheworld.org,
November 2019).
Most Indo-Pacific reef-building corals
have many biological features that
complicate the determination of the
status of any given species, including
but not necessarily limited to the
following: They are modular, colonial,
and sessile; the definition of the
individual is ambiguous; the taxonomy
of many species is uncertain; field
identification of species is difficult;
each colony is a collection of coralalgae-microbe symbiotic relationships;
they have high skeletal plasticity; they
utilize a combination of sexual and
asexual reproduction; hybridization
may be common in many species; and
they typically occur as many
populations across very large ranges.
These and other biological features of
Indo-Pacific reef-building corals are
described in more detail in the GSA
(Smith 2019a).
Indo-Pacific reef-building corals occur
on shallow coral reefs (<30 m depth), as
well as in non-reef and mesophotic
areas (≤30 m depth), in the tropical and
sub-tropical waters of the Indian and
Pacific Oceans, including the eastern
Pacific. This vast region includes over
50,000 islands and over 40,000 km of
continental coastline, spanning
approximately 180 degrees longitude
and 60 degrees latitude, and including
more than 90 percent of the total coral
reefs of the world. In addition to this
region’s extensive shallow coral reefs,
the Indo-Pacific includes: (1) Abundant
non-reef habitat, defined as areas where
environmental conditions prevent reef
formation by reef-building corals, but
some reef-building coral species are
present; and (2) vast but scarcely known
E:\FR\FM\06JYN2.SGM
06JYN2
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
mesophotic habitat, defined as areas
deeper than 30 meters of depth where
reef-building corals are present. Shallow
coral reefs, non-reef habitat, and
mesophotic habitat are not necessarily
sharply delineated from one another,
thus one may gradually blend into
another. The total area of non-reef and
mesophotic habitats is likely far greater
than the total area of shallow coral reef
habitats in the Indo-Pacific (NMFS
2014).
In addition to the biological features
described above, there are several
habitat features of Indo-Pacific reefbuilding coral species that should be
considered in the determination of the
status of any given species including,
but not necessarily limited to: (1)
Specific substrate and water quality
requirements of each life history stage;
(2) ranges of many of these species
encompass shallow coral reef, non-reef,
and mesophotic habitats that vary
tremendously across latitude, longitude,
depth, distance from land, and in other
ways; and (3) physical variability in
habitat characteristics within the ranges
of these species produces spatial and
temporal refuges from threats. That is,
habitat heterogeneity and refugia
produce a patchy mosaic of conditions
across the ranges of Indo-Pacific reefbuilding corals, which complicates the
determination of the status of any given
species. These and other habitat features
of Indo-Pacific reef-building corals are
described in more detail in the GSA
(Smith 2019a).
Key Trends
The health of reef-building coral
communities is largely determined by
the extent of disturbance, together with
recovery from it. The most common
measure of the condition of Indo-Pacific
reef-building corals is live coral cover.
Resilience is the capacity of a
community to recover from disturbance.
Observations and projections of
anthropogenic disturbance, recovery
time, coral cover, and overall resilience
of Indo-Pacific reef-building coral
communities provide insight on the
status and trends of these communities.
The main threats to Indo-Pacific reefbuilding corals are acute and chronic
anthropogenic disturbances, most of
which have been increasing over the last
half-century or more. In particular,
warming-induced coral bleaching events
are acute disturbances that have been
increasing in frequency, severity, and
magnitude over the last several decades,
especially since 2014. Other
disturbances of Indo-Pacific coral reef
communities are chronic, such as ocean
acidification because of its continual
effects on both coral calcification and
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
reef accretion, and localized land-based
sources of pollution and coral disease
outbreaks. Both acute and chronic
anthropogenic disturbances are
broadening and worsening on coral reefs
near human populations throughout the
Indo-Pacific, and all anthropogenic
disturbances of Indo-Pacific coral reefs
are projected to worsen throughout the
foreseeable future (Smith 2019a,b).
Studies of the recovery of Indo-Pacific
reef-building corals (excluding the
eastern Pacific) show that the majority
of sites showed significant recovery
from, or resistance to, anthropogenic
disturbance over the latter part of the
20th century and early part of the 21st
century (Tables 1a and 1b, Smith
2019a). The available information does
not indicate that the capacity for
recovery of Indo-Pacific reef-building
corals has substantially declined.
However, due to increased frequency of
disturbance, the amount of time
available for corals to recover has
declined. Furthermore, since the
frequency of disturbance is projected to
increase as climate change worsens,
recovery time is projected to continue to
decrease throughout the foreseeable
future (Smith 2019a,b).
The available information clearly
indicates that mean coral cover has
declined across much of the IndoPacific since the 1970s (Tables 2 and 3,
Smith 2019a), and likely many decades
before then in some locations. High
spatial and temporal variability
influenced by a large number of natural
and anthropogenic factors can mask the
overall trend in coral cover, but longterm monitoring programs and metaanalyses demonstrate downward
temporal trends in most of the IndoPacific. Because disturbance is projected
to increase in frequency throughout the
foreseeable future (Smith 2019a,b), and
this is expected to result in reduced
recovery times, mean coral cover in the
Indo-Pacific is also projected to
decrease, especially as climate change
worsens (Smith 2019a).
Despite increasing disturbance,
decreasing recovery times, and
decreasing coral cover, the available
information suggests that overall
resilience of Indo-Pacific reef-building
corals remains quite high because: (1)
Observed impacts of disturbances on
corals have been spatially highly
variable due to habitat heterogeneity; (2)
factors that confer resilience (high
habitat heterogeneity, large ecosystem
size, high coral and reef fish species
diversity) have not declined; (3)
observed responses of corals to
disturbances indicate that most either
recovered or were resistant; and (4)
observed responses of corals to
PO 00000
Frm 00007
Fmt 4701
Sfmt 4703
40485
disturbances indicate that phase shifts
have so far been either rare or reversed.
However, the trends in disturbance,
recovery time, and coral cover are
projected to worsen with climate
change, thus overall resilience is also
projected to decrease throughout the
foreseeable future (Smith 2019a,b).
Threats
We consider global climate changerelated threats of ocean warming, ocean
acidification, and sea-level rise, and the
local threats of fishing, land-based
sources of pollution, coral disease,
predation, and collection and trade, to
be the most important to the extinction
risk of Indo-Pacific reef-building corals
currently and throughout the
foreseeable future. The most important
of these is ocean warming. In addition,
five lesser global and local threats are
also described (changes in ocean
circulation, changes in tropical storms,
human-induced physical damage,
invasive species, and changes in
salinity). The interactions of threats
with one another could be significantly
worse than any individual threat,
especially as each threat grows. Each
threat, and the interactions of threats,
are described both in terms of observed
effects since relevant scientific
information became available (usually
mid-20th century), and projected effects
throughout the foreseeable future (Smith
2019a,b).
The effects of most threats to IndoPacific reef-building corals have already
been observed to be worsening, based
on the monitoring results and the
scientific literature. Ocean warming in
conjunction with the other threats have
recently resulted in the worst impacts to
Indo-Pacific reef-building corals ever
observed. These impacts are further
described in terms of increasing
disturbance, less time available for
recovery, decreasing coral cover, and
decreasing resilience in the trends
section above. All threats are projected
to worsen throughout the foreseeable
future (Smith 2019a,b), based on the
scientific literature, climate change
models, and other information such as
human population trends in the IndoPacific.
Summary for Indo-Pacific Reef-Building
Corals
Indo-Pacific reef-building corals are a
diverse group (≈760 species) with many
biological features that complicate the
determination of the status of any given
species. These species occur in vast and
diverse habitats including shallow coral
reefs, non-reef areas, and mesophotic
areas throughout the Pacific and Indian
Oceans. Key observed trends include
E:\FR\FM\06JYN2.SGM
06JYN2
40486
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
increasing anthropogenic disturbances,
decreasing recovery time, and
decreasing live coral cover, while
overall resilience remains high.
However, all trends are projected to
worsen throughout the foreseeable
future (Smith 2019a,b). Community
trends do not necessarily represent
individual species trends, but they
provide valuable context that inform
investigations of the status of species
within the community such as P.
meandrina.
Pocillopora meandrina Status Review
This status review of P. meandrina is
based on the methodology provided in
the ‘‘Guidance on Responding to
Petitions and Conducting Status
Reviews under the Endangered Species
Act’’ (NMFS 2017): An overall
extinction risk assessment of the species
is based on dual assessments of its
demographic risk factors (distribution,
abundance, productivity, diversity) and
a threats evaluation. Thus, the P.
meandrina SRR (Smith 2019b) covers
introductory information (biology,
habitat), demographic risk factors,
threats evaluation, and extinction risk
assessment, which are summarized
below.
Biology and Habitats
Pocillopora meandrina was described
by James Dana from specimens collected
in Hawai‘i (Dana 1846a, b), thus the
formal scientific name is ‘‘Pocillopora
meandrina, Dana 1846’’.
Morphologically, P. meandrina colonies
are small upright bushes, with branches
radiating from the initial point of
growth. Adult colonies are commonly
20–40 cm (8–16 in) in diameter, with
branches radiating from the initial point
of growth. Coloration is typically light
brown or cream, but may also be green
or pink (Fenner 2005, Corals of the
World website,https://
www.coralsoftheworld.org, accessed
November 2019).
Taxonomic uncertainty refers to how
a species should be scientifically
classified. Taxonomic uncertainty
appears to be lower for P. meandrina
than some other Pocillopora species,
and available information supports the
conclusion that P. meandrina is a valid
species. Whereas taxonomic uncertainty
refers to how a species should be
scientifically classified, species
identification uncertainty refers to how
a species should be identified in the
field. We do not believe that species
identification uncertainty for P.
meandrina affects the quality of the
information used in this status review.
The taxonomic and species
identification uncertainty for P.
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
meandrina are described in detail in the
SRR (Smith 2019b).
As with most other reef-building
corals, P. meandrina is modular (the
primary polyp produces geneticallyidentical secondary polyps or
‘‘modules’’) and colonial (the polyps
aggregate to form a colony). The primary
and secondary polyps are connected
seamlessly through both tissue and
skeleton into a colony. A colony can
continue to exist even if numerous
polyps die, the colony is broken apart,
or otherwise damaged (Smith 2019a,b).
Under the ESA, the ‘‘physiological
colony’’ (Hughes 1984), defined as any
colony of the species whether sexually
or asexually produced, is considered an
individual for reef-building colonial
coral species such as P. meandrina
(NMFS 2014).
Reef-building corals like P.
meandrina build reefs because they are
sessile (the colony is attached to the
substrate), secreting their own custommade substrates which grow into
skeletons, providing the primary
building blocks for coral reef structure.
One of the most important aspects of
sessile life history for consideration of
extinction risk is that colonies cannot
flee from unfavorable environmental
conditions, thus must have substantial
capacity for acclimatization to the
natural variability in environmental
conditions at their location. Likewise,
since P. meandrina populations are
distributed throughout a large range
with environmental conditions that vary
by latitude, longitude, proximity to
land, etc., the populations must have
substantial capacity for adaptation to
the natural variability in environmental
conditions across their ranges (Smith
2019a,b).
Reef-building corals like P.
meandrina act as plants during the day
by utilizing photosynthesis (autotrophic
feeding), and they act as animals during
the night by utilizing predation
(heterotrophic feeding). Autotrophic
feeding is accomplished via symbiosis
with unicellular photosynthetic algae
living within the host coral’s tissues
(zooxanthellae). The host coral benefits
by receiving fixed organic carbon and
other nutrients from the zooxanthellae,
and the zooxanthellae benefit by
receiving inorganic waste metabolites
from the coral host as well as protection
from grazing. This exchange of nutrients
allows both partners to flourish and
helps the host coral secrete calcium
carbonate that forms the skeletal
structure of the coral colony.
Heterotrophic feeding is accomplished
by extending their nematocystcontaining tentacles to sting and capture
zooplankton (Smith 2019a,b).
PO 00000
Frm 00008
Fmt 4701
Sfmt 4703
Pocillopora meandrina reproduces
both sexually and asexually. Sexual
reproduction is by broadcast spawning,
and asexual reproduction is by
fragmentation. The larvae of P.
meandrina disperse by swimming,
drifting, or rafting, providing the
potential for high dispersal. The larvae
readily recruit to both natural and
artificial hard surfaces. Like many
branching coral species, P. meandrina
has high skeletal growth rates relative to
most other Indo-Pacific reef-building
coral species (Smith 2019b). Pocillopora
meandrina has been classified as a
competitive species, based on its
broadcast spawning, rapid skeletal
growth, and branching colony
morphology, which allow it to recruit
quickly to available substrate and
successfully compete for space (Darling
et al. 2012). More information about P.
meandrina’s reproduction, dispersal,
recruitment, and growth is provided in
the Productivity portion of the
Demographic Factors section, and in the
SRR (Smith 2019b).
The preferred habitat of P. meandrina
is high energy reef crests and upper reef
slopes. In Hawai‘i where there are
relatively few other coral species to
compete with, P. meandrina dominates
such high energy habitat to the extent
that it has been termed the ‘‘P.
meandrina zone’’ (Dollar 1982). The
species is abundant in other types of
high energy habitats, including non-reef
habitats like lava bedrock, and
unconsolidated rocks and boulders. The
species also occurs in lower abundances
in most other habitats where reefbuilding corals are found, such as
middle and lower reef slopes, back-reef
areas such as reef flats and patch reefs,
and atoll lagoons. In addition, P.
meandrina can be one of the most
common corals found on artificial
substrates, such as concrete structures
and metal buoys. Although much more
common in shallow water, P.
meandrina occurs at depths of >30 m
(98 ft; Smith 2019b).
In summary, several characteristics of
P. meandrina’s biology and habitat
moderate its extinction risk. As with
most other reef-building corals, P.
meandrina occurs as colonies of polyps
that can continue to exist even if
numerous polyps die, the colony is
broken apart, or otherwise damaged.
Since colonies are sessile, they cannot
flee from unfavorable environmental
conditions, thus must have substantial
capacity for acclimatization and
adaptation to the natural variability in
environmental conditions at their
location. In addition, P. meandrina has
a high capacity to successfully compete
for space with other reef-building corals,
E:\FR\FM\06JYN2.SGM
06JYN2
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
especially following disturbances when
it is often one of the first coral species
to colonize denuded substrates. With
regard to habitat, it is most abundant in
high energy habitats with strong
currents and constant wave action such
as reef crests and upper reef slopes
throughout its range, but is also found
on deeper reef slopes, back-reef areas,
lava, boulders, and artificial substrates
(Smith 2019b).
Demographic Factors
In order to determine the extinction
risk of species being considered for ESA
listing, NMFS uses a demographic risk
analysis framework that considers the
four demographic factors of distribution,
abundance, productivity, and diversity
(NMFS 2017). Each demographic risk
factor is described for P. meandrina
below.
Distribution. Pocillopora meandrina
is found on most coral reefs of the IndoPacific and eastern Pacific, with its
range encompassing >230° longitude
from the western Indian Ocean to the
eastern Pacific Ocean, and ≈60° latitude
from the northern Ryukyu Islands to
central western Australia in the western
Pacific, and the Gulf of California to
Easter Island in the eastern Pacific.
Distribution of P. meandrina is
summarized here in terms of geographic
distribution across the Indo-Pacific area,
as well as depth distribution, based on
the detailed descriptions in the SRR
(Smith 2019b).
The Corals of the World website
(https://www.coralsoftheworld.org)
provides comprehensive range
information for all 758 currently known
Indo-Pacific reef-building corals, based
on presence/absence in 133 Indo-Pacific
ecoregions. As of February 2019, the
website showed P. meandrina as
present in 91 of the 133 ecoregions,
from Madagascar in the western Indian
Ocean to the Pacific coast of Colombia,
and from southern Japan to the southern
Great Barrier Reef (GBR) in Australia
(Fig. 2, Smith 2019b). In addition, we
found information confirming P.
meandrina in four ecoregions in the
southeastern and eastern Pacific,
including the Austral Islands, the
Tuamotu Archipelago, the Marquesas
Islands, and Clipperton Atoll. Therefore,
these 95 ecoregions are considered to be
the current, known range of P.
meandrina. There is no evidence of any
reduction in its range due to human
impacts, thus we consider its historic
and current ranges to be the same
(Smith 2019b).
Although P. meandrina is usually
more common at depths of <5 m (16 ft)
than in deeper areas, its habitat breadth
encompasses most habitats found on
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
coral reefs and non-reef habitat between
the surface and >30 m (98 ft) of depth.
For example, in a transect from 8 m (26
ft) to 36 m (118 ft) depth on Fanning
Island in Kiribati surveyed in the early
1970s, colonies of P. meandrina were
recorded at 31 m (102 ft) and 34 m (112
ft). Maximum cover of P. meandrina on
the transect was at 10 m (33 ft), where
it made up 25 percent of live coral
cover. The cover of P. meandrina may
have been even greater at depths <8 m,
but those shallower areas were not
surveyed (Maragos 1974). Observations
of P. meandrina elsewhere also indicate
that the species sometimes occurs at 30
m (98 ft) or deeper (Smith 2019b). Based
on this information, we consider the
depth range of P. meandrina from the
surface to at least 34 m (112 ft).
We conclude that P. meandrina’s
distribution is very large and stable. The
geographic distribution of P. meandrina
encompasses >230° longitude and ≈60°
latitude, and includes 95 of the 133
Indo-Pacific ecoregions, giving it a
larger range than about two-thirds IndoPacific reef-building coral species.
Although P. meandrina is usually more
common at depths of <5 m (16 ft) than
in deeper areas, its depth range is from
the surface to at least 34 m (112 ft).
There is no evidence of any reduction
in its range due to human impacts, and
we consider its historic and current
ranges to be the same (Smith 2019b).
Abundance. Three types of
abundance information are summarized
below for P. meandrina from ecoregions
for which information is available: (1)
Relative abundances from 65
ecoregions; (2) absolute abundances
from eight ecoregions; and (3)
abundance trends from 10 ecoregions.
With regard to relative abundances, in
the 65 ecoregions for which information
is available, it is dominant in seven,
common in 18, uncommon in 36, and
rare in four ecoregions (Fig. 3, Smith
2019b). The majority of P. meandrina’s
ecoregions are in the western Pacific
and the Indian Oceans, where it has an
intermediate level of abundance
(common or uncommon; DeVantier and
Turak 2017). It is a very common
species in many of the Pocilloporadominated reef coral communities of the
central Pacific. While coral reef
communities of the eastern Pacific are
also Pocillopora-dominated, P.
meandrina is one of the less common
Pocillopora species in much of that area.
It is only rare around the fringes of its
range (Smith 2019b).
With regard to absolute abundance,
we estimate P. meandrina’s total
population is at least several tens of
billions of colonies. The estimated total
population for the eight ecoregions (four
PO 00000
Frm 00009
Fmt 4701
Sfmt 4703
40487
entire ecoregions and portions of four
others) within U.S. waters in 2012–2018
was 1.48 billion colonies (Table 3,
Smith 2019b). U.S. waters make up
approximately 1 percent of the species’
range, but relative abundances are
higher in some of the ecoregions within
U.S. waters (especially the main
Hawaiian Islands) than most of the rest
of the species’ range. We base our
estimate of P. meandrina’s total
population on estimated population
abundance of P. meandrina in U.S.
waters (1.48 billion colonies), the
proportion of the species’ range within
U.S. waters (≈1 percent), and the
assumption that the population density
of P. meandrina is lower in foreign
waters than U.S. waters (Smith 2019b).
With regard to abundance trends, in
the 10 ecoregions for which time-series
abundance data or information are
available, abundance of P. meandrina
appears to be decreasing in five
ecoregions and stable in five ecoregions.
The abundance of P. meandrina has
decreased by over 90 percent since 1975
in the Chagos Archipelago Ecoregion, by
approximately 70 percent since 1999 in
the Main Hawaiian Islands Ecoregion,
and appears to have also decreased by
an undeterminable amount in the
Marianas Islands, Northwestern
Hawaiian Islands, and Galapagos
Islands Ecoregions. In contrast, based on
the abundance data and information, P.
meandrina abundance appears to be
relatively stable in the GBR Far North,
GBR North-central, Samoa-TuvaluTonga, Society Islands, and Mexico
West Ecoregions (Smith 2019b).
We conclude that P. meandrina’s
overall abundance is very high, but its
overall abundance trend is unknown.
Abundance is very high because (1) the
relative abundance results indicate that
P. meandrina is dominant or common
in about one-third of its very large
range; and (2) the absolute abundance
results show that the U.S. population
alone (which makes up only ≈1 percent
of the species’ range) is approximately
1.48 billion colonies. Because we only
have abundance trend data or
information from 10 of the 95
ecoregions, the trend in P. meandrina’s
overall abundance is unknown. Of the
10 ecoregions for which abundance
trend data or information are available,
P. meandrina’s abundance appears to be
decreasing in five ecoregions, and
relatively stable in five ecoregions
(Smith 2019b).
Productivity. Productivity refers to the
overall population growth rate of P.
meandrina in all 95 ecoregions
combined. The most important factors
influencing P. meandrina’s productivity
(reproduction, dispersal, recruitment,
E:\FR\FM\06JYN2.SGM
06JYN2
40488
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
growth, and adaptability) provide a
qualitative indication of its
productivity. The species has high
reproductive capacity, which helps it
outcompete other coral species,
especially in response to disturbances. It
also has the potential for broad pelagic
dispersal of larvae, either by swimming,
drifting, or rafting; the latter refers to
settlement of larvae on natural or
artificial flotsam which then carries the
coral to permanent settlement habitat
(Smith 2019b). Recruitment of P.
meandrina has been studied in Hawai‘i,
where it has been shown to be the most
successful coral species at colonizing
new substrates, such as fresh lava flows
on the Big Island (Grigg and Maragos
1974). The species also recruits
unusually well to a variety of artificial
substrates, including metal, concrete,
and PVC pipe (Smith 2019b). Like many
branching coral species, P. meandrina
has high skeletal growth rates relative to
most other Indo-Pacific reef-building
coral species (Jokiel and Tyler 1992).
Unlike most other reef corals, typical
colonies of P. meandrina stop growing
at around 40 cm (16 in) in diameter, and
the species has a relatively short life
span compared to other corals (Coles
and Brown 2007). The high recruitment,
rapid growth, and short life span of P.
meandrina result in rapid turnover of
the population at a given location
(Smith 2019b).
Rapid turnover of P. meandrina
populations provide capacity to adjust
to changing conditions (adaptability)
because the most resistant genotypes
survive disturbances like bleaching
events, then reproduce relatively
quickly to claim open substrate. The
high reproductive capacity, broad
dispersal, high recruitment, rapid
skeletal growth, and adaptability of P.
meandrina allow it to pioneer available
substrate and successfully compete for
space (Coles and Brown 2007, Darling et
al. 2012). These life history
characteristics of P. meandrina provide
buffering against threats such as
warming-induced bleaching by
providing the potential for rapid
recovery from die-offs. High
reproductive capacity, broad dispersal,
high recruitment, rapid skeletal growth,
and adaptability are all characteristics of
high productivity, i.e., they all
positively affect population growth rate.
Thus, we consider P. meandrina’s
productivity to be high. Also, P.
meandrina has made strong recoveries
in recent years from various types of
disturbances at multiple locations
throughout its range, displacing less
competitive coral species and becoming
more abundant than before the
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
disturbances (e.g., GBR, Society
Islands). These recoveries demonstrate
continued high productivity, thus we
consider P. meandrina’s productivity to
be stable (Smith 2019b).
We conclude that P. meandrina’s
productivity is both high and stable.
The high reproductive capacity, broad
dispersal, high recruitment, rapid
skeletal growth, and adaptability of P.
meandrina are all characteristics of high
productivity, i.e., they all positively
affect population growth rate. In
addition, P. meandrina’s abundance has
remained stable in recent years in half
the ecoregions (5/10) where information
is available, whether there have been
disturbances or not (Smith 2019b).
Diversity. Diversity includes both the
diversity of genotypes (i.e., the genetic
constitution of an individual) and
phenotypes (i.e., the observable
characteristics of an individual) within
a population. Genotypic diversity is
defined as the numbers of genotypes
present in a population. Phenotypic
diversity is defined as the numbers of
phenotypes present in a population, and
is affected by both genotype and
environmental factors (Smith 2019b).
Robust populations have higher levels
of genotypic and phenotypic diversity.
Although there is little information
available on the diversity of P.
meandrina, the few species-specific
studies that are available show high
genotypic (Magalon et al. 2005; Dr. Rob
Toonen, personal communication) and
phenotypic (Hughes et al. 2018, Muir et
al. 2017) diversity within portions of
individual ecoregions.
The spatial and temporal habitat
heterogeneity of P. meandrina’s range is
very high, contributing to the
maintenance of high phenotypic
diversity for the species. Phenotypic
diversity can be maintained by spatial
and temporal variation in habitat
characteristics, because variable
environmental factors result in the
expression of different phenotypes. As
described above, P. meandrina occurs in
95 ecoregions, and has a depth range of
at least 0–34 m (112 ft). The spatial
variation in P. meandrina’s habitats is
very high due to the habitat
heterogeneity of its range. In addition,
these habitats are exposed to a great deal
of temporal variation in conditions on
diurnal, lunar, seasonal, and decadal
timescales. The broad geographic and
depth distribution of P. meandrina
includes nearly the entire range of
habitats for Indo-Pacific reef-building
corals (Smith 2019).
We conclude that P. meandrina’s
diversity is both high and stable.
Although there is little information
available on the genotypic and
PO 00000
Frm 00010
Fmt 4701
Sfmt 4703
phenotypic diversity of P. meandrina,
the evidence summarized above
suggests that both types of diversity are
high for this species, mainly because of
its large distribution and habitat
heterogeneity. Furthermore, the species’
distribution has not been reduced, and
abundance has not declined in half of
the ecoregions for which information is
available.
Demographic Factors Conclusion. The
distribution, abundance, productivity,
and diversity of P. meandrina
substantially moderate its extinction
risk. The geographic distribution of P.
meandrina includes 95 of the 133 IndoPacific coral reef ecoregions, giving it a
very large range. While P. meandrina is
most commonly found in shallow, highenergy habitats such as reef crests and
shallow forereefs, its depth distribution
extends from the surface to at least 34
m (112 ft). Because of its broad
geographic and depth distributions, P.
meandrina occurs in many different
types of habitats, from shallow to deep,
high to low latitudes, offshore to
inshore, and so on. These different
habitat types provide different
environmental conditions in response to
any given disturbance, ensuring that
some populations will be less affected
than others, thereby moderating
extinction risk (Smith 2019b).
The relative abundance of P.
meandrina varies substantially across
its range, from one of the most dominant
reef-building coral species in the lowdiversity coral reef communities of the
central Pacific, to an uncommon species
in the high-diversity coral reef
communities of the Coral Triangle and
surrounding areas. It is a dominant or
common species in 25 of its 95
ecoregions. The absolute abundance of
P. meandrina is estimated as at least
several tens of billions of colonies. In
the 10 ecoregions for which abundance
trend information is available, P.
meandrina appears to be decreasing in
five ecoregions, and stable in five
ecoregions. Because we only have
abundance trend information from 10 of
the 95 ecoregions, the trend in P.
meandrina’s overall abundance is
unknown. Despite declining abundance
in some ecoregions, the species’
abundance moderates extinction risk by
providing tens of billions of colonies
distributed across many ecoregions that
can replenish reefs depleted by
disturbance (Smith 2019b).
The high reproductive capacity, broad
dispersal, high recruitment, rapid
skeletal growth, and adaptability of P.
meandrina are all characteristics of high
productivity, i.e., they all positively
affect population growth rate. Such high
productivity moderates extinction risk
E:\FR\FM\06JYN2.SGM
06JYN2
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
by providing the potential for rapid
recovery from die-offs, as documented
in some of its 95 ecoregions (Smith
2019b).
Genetic studies show high genotypic
diversity in P. meandrina on small
geographic scales (e.g., one island), and
genotypic diversity is likely even higher
within individual ecoregions, let alone
across the 95 ecoregions that make up
the range of the species. Studies of the
responses of P. meandrina to elevated
seawater temperatures show high
phenotypic diversity in multiple
locations. Such high diversity
moderates extinction risk by providing
the capacity to adapt to changing local
conditions (Smith 2019b).
Threats Evaluation
Section 4(a)(1) of the ESA and NMFS’
implementing regulations (50 CFR part
424) state that the agency must
determine whether a species is
endangered or threatened because of
any one or a combination of the
following five factors: (A) Present or
threatened destruction, modification, or
curtailment of habitat or range; (B)
overutilization for commercial,
recreational, scientific, or educational
purposes; (C) disease or predation; (D)
inadequacy of existing regulatory
mechanisms; or (E) other natural or
manmade factors affecting its continued
existence. Based on the 2011 SRR
(Brainard et al. 2011), the 2014 final
coral listing rule (NMFS 2014), and the
GSA (Smith 2019a), there are 10 main
types of threats to Indo-Pacific reefbuilding corals, including P. meandrina,
currently and in the foreseeable future:
Ocean warming, ocean acidification,
sea-level rise, fishing, land-based
sources of pollution, coral disease,
predation, collection and trade, a group
of secondary threats (weakening ocean
currents, increasing tropical storms,
physical damage, invasive species, and
changes in salinity), and the interactions
of threats. The inadequacy of existing
regulatory mechanisms is an important
influence on the threats, and thus is also
described in this section.
The observed and projected trends of
each threat, as well as the vulnerability
of P. meandrina to each threat, are
described. Vulnerability of a species to
a threat is a function of susceptibility
and exposure, considered at the
appropriate spatial and temporal scales.
The spatial scale is the 95 ecoregions
that make up the current range of P.
meandrina (Fig. 2, Smith 2019b), and
the temporal scale is the foreseeable
future (now to 2100). Susceptibility
refers to the response of P. meandrina
colonies to the adverse conditions
produced by the threat. Exposure refers
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
to the degree to which P. meandrina
colonies are likely to be subjected to the
threats throughout its range, thus the
overall vulnerability of a coral species to
threats depends on the proportion of
colonies that are exposed to the threats.
A species may not necessarily be highly
vulnerable to a threat even when it is
highly susceptible to the threat, if
exposure is low. Consideration of the
appropriate spatial and temporal scales
is particularly important, because of
potential high variability in threats both
spatially over P. meandrina’s large
range, and temporally over the 21st
century (NMFS 2014).
Ocean Warming (Factor E). As
described in the GSA (Smith 2019a) and
NMFS (2020a), the available
information regarding ocean warming
and Indo-Pacific reef-building corals
including P. meandrina leads to the
following conclusions about this threat:
(1) Substantial ocean warming,
including in the tropical/subtropical
Indo-Pacific, has already occurred and
continues to occur; (2) ocean warming,
including in the tropical/subtropical
Indo-Pacific, is projected to continue at
an accelerated rate under RCPs 8.5, 6.0,
and 4.5 throughout the foreseeable
future; (3) substantial warming-induced
mass bleaching of Indo-Pacific reef coral
communities has already occurred and
continues to occur; (4) warminginduced mass bleaching of Indo-Pacific
reef coral communities is projected to
rapidly increase in frequency, intensity,
and magnitude under RCPs 8.5, 6.0, and
4.5 throughout the foreseeable future;
and (5) coral reefs will be severely
affected by such warming (Smith 2019a,
NMFS 2020a).
The vulnerability of P. meandrina to
ocean warming is summarized here in
terms of its susceptibility and exposure
to this threat, based on information in
the SRR (Smith 2019b). Genus-level
surveys of warming-induced bleaching
susceptibility have found that
Pocillopora species can be among the
more susceptible of reef-building corals.
Species-level studies and observations
of P. meandrina at many locations
recorded high susceptibilities to the
1998, 2014–17, and other bleaching
events (Sheppard et al. 2017, Smith
2019b). However, studies and
observations of P. meandrina have also
recorded resistance to warming-induced
bleaching at many locations throughout
the species’ range, or that bleached
colonies recovered readily (Muir et al.
2017, Hughes et al. 2018, Smith 2019b).
Thus, we consider the overall
susceptibility of P. meandrina to ocean
warming to be moderate to high (Smith
2019b). Exposure of colonies of P.
meandrina to ocean warming varies
PO 00000
Frm 00011
Fmt 4701
Sfmt 4703
40489
spatially with latitude, depth, habitat
type, and other spatial factors (e.g.,
windward vs. leeward sides of islands),
and temporally with tidal, diurnal,
seasonal, and decadal cycles (Smith
2019b). However, as described in the
GSA and summarized above, several
factors suggest that P. meandrina’s
exposure to ocean warming is already
quite high, and rapidly increasing. Thus
we consider exposure of P. meandrina
to ocean warming to be high. We
consider the current vulnerability of P.
meandrina to ocean warming to be high,
based on moderate to high susceptibility
combined with high exposure. We
expect vulnerability of P. meandrina to
ocean warming to increase throughout
the foreseeable future as climate change
worsens, resulting in higher frequency,
severity, and magnitude of warminginduced bleaching events (Smith
2019a,b, NMFS 2020a).
Ocean Acidification (Factor E). As
described in the GSA (Smith 2019a) and
NMFS (2020a), the available
information regarding ocean
acidification and Indo-Pacific reefbuilding corals including P. meandrina
leads to the following conclusions about
this threat: (1) Ocean acidification has
already occurred in the tropical/
subtropical Indo-Pacific and continues
to occur; (2) ocean acidification,
including in the tropical/subtropical
Indo-Pacific, is projected to continue at
an accelerated rate under RCPs 8.5, 6.0,
and 4.5 throughout the foreseeable
future; (3) ocean acidification has
already affected Indo-Pacific reefbuilding coral communities by reducing
calcification rates and subsequent
effects on skeletal growth (reduced
growth rates and skeletal densities) of
corals, and by increasing erosion of
coral reefs; and (4) the effects of ocean
acidification on Indo-Pacific reefbuilding coral communities are
projected to steadily increase under
RCPs 8.5, 6.0, and 4.5 throughout the
foreseeable future by reducing coral
calcification, increasing reef erosion,
impacting coral reproduction, reducing
reef coral diversity, and simplifying
coral reef communities (Smith 2019a,
NMFS 2020a).
The vulnerability of P. meandrina to
ocean acidification is summarized here
in terms of its susceptibility and
exposure to this threat, based on
information in the SRR (Smith 2019b).
Some studies have found that ocean
acidification reduces calcification and
skeletal growth rates of P. meandrina
and other Pocillopora species
(Muehllehner and Edmunds 2008,
Fabricius et al. 2011), while others have
found that Pocillopora species have
some capacity to resist the effects of
E:\FR\FM\06JYN2.SGM
06JYN2
40490
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
ocean acidification (Comeau et al. 2014,
Putnam et al. 2013). The currently
available information does not indicate
that P. meandrina or other Pocillopora
species have the capacity to acclimatize
to, adapt to, or resist the effects the
levels of ocean acidification expected in
the foreseeable future (Smith 2019b).
Exposure of P. meandrina colonies to
ocean acidification will likely continue
to be highly variable, but also likely to
increase throughout the foreseeable
future because of the projected increase
in ocean acidification, as described in
the GSA (Smith 2019b). We consider the
current vulnerability of P. meandrina to
ocean acidification to be high, based on
high susceptibility combined with
highly variable exposure. We expect
vulnerability of P. meandrina to ocean
acidification to increase throughout the
foreseeable future as climate change
worsens, resulting in higher severity
and magnitude of ocean acidification
(Smith 2019a,b).
Sea Level Rise (Factor E). As
described in the GSA (Smith 2019a), the
available information regarding sealevel rise and Indo-Pacific reef-building
corals including P. meandrina leads to
the following conclusions about this
threat: (1) Sea-level rise has already
occurred and continues to occur
globally; (2) sea-level rise in parts of the
tropical/subtropical Indo-Pacific has
been approximately three times the
global rate; (3) sea-level rise projected
under RCP8.5 for the 21st century will
exceed recent rates both globally and in
the Indo-Pacific; (4) the effects of sealevel rise to date on Indo-Pacific reefbuilding corals are complex, with no
clear trend yet apparent; and (5) the
effects of sea-level rise on Indo-Pacific
reef coral communities are projected to
steadily increase and broaden under
RCP8.5 throughout the foreseeable
future (Smith 2019a).
The vulnerability of P. meandrina to
sea level rise is summarized here in
terms of its susceptibility and exposure
to this threat, based on information in
the SRR (Smith 2019b). We consider the
susceptibility of P. meandrina to sea
level rise to be low. As far as we know,
there is no species-specific information
available on the susceptibility of P.
meandrina to sea level rise. Reefbuilding corals that are unable to keep
up with rising sea levels, unable to
settle on newly available substrates, and
occur in nearshore habitats such as reef
flats, would be the most susceptible to
sea level rise (Smith 2019a). As
described in the SRR (Smith 2019b), P.
meandrina is a colonizing species that
readily settles on newly available
substrates, has relatively rapid skeletal
growth, and occurs primarily on reef
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
crests and shallow forereefs (not reef
flats). Exposure of P. meandrina
colonies to sea-level rise will likely
continue to be highly variable, but also
likely to increase throughout the
foreseeable future (Smith 2019a,b). We
consider the current vulnerability of P.
meandrina to sea-level rise to be low,
based on low susceptibility combined
with highly variable exposure. We
expect vulnerability of P. meandrina to
sea-level rise to increase throughout the
foreseeable future as climate change
worsens, resulting in higher severity
and magnitude of sea-level rise (Smith
2019a,b).
Fishing (Factor A). As described in
the GSA (Smith 2019a), the available
information regarding fishing and IndoPacific reef-building corals including P.
meandrina leads to the following
conclusions about this threat: (1) Direct
effects of fishing, namely damage from
fishing gears and methods used in food
fish and marine aquarium fisheries,
have been observed in much of the
Indo-Pacific; (2) indirect effects, or the
trophic effects of fishing, have not been
observed in the Indo-Pacific as they
have in the Caribbean; and (3) both
direct and indirect effects of fishing are
projected to increase in the Indo-Pacific
throughout the foreseeable future (Smith
2019a).
The vulnerability of P. meandrina to
fishing is summarized here in terms of
its susceptibility and exposure to this
threat, based on information in the SRR
(Smith 2019b). We consider the
susceptibility of P. meandrina to the
direct and indirect effects of fishing to
be moderate. Direct effects include
entanglement, abrasion, and breakage by
fishing line and other gear where fishing
pressure is high, such as in the main
Hawaiian Islands (Asoh et al. 2004).
However, P. meandrina populations
remain high in areas that have been
heavily fished for many decades (Smith
2019b). While exposure of P. meandrina
to fishing is high in certain areas, it is
low to none in a large proportion of the
species’ range, resulting in low exposure
overall. Much of P. meandrina’s range
occurs in remote areas that are difficult
to reach by fishers, or in marine
protected areas where fishing is
restricted or banned. In addition, P.
meandrina is found primarily on reef
crests and upper reef slopes, where
constant wave action discourages
human access and fishing (Smith
2019b). We consider the current
vulnerability of P. meandrina to fishing
to be low to moderate, based on
moderate susceptibility combined with
low exposure. We expect vulnerability
of P. meandrina to fishing to increase
throughout the foreseeable future as the
PO 00000
Frm 00012
Fmt 4701
Sfmt 4703
human population and fishing pressure
increase (Smith 2019a,b).
Land-Based Sources of Pollution
(Factor A). Land-based sources of
pollution (LBSP) refers to turbidity,
sediment, nutrients, contaminants, and
other types of pollution affecting reefbuilding corals that originate from
coastal development, urbanization,
agriculture, and other human activities
on land. The many different forms of
LBSP collectively affect all life history
stages of reef-building corals in
numerous ways. As described in the
GSA (Smith 2019a), based on the
available information regarding the
effects of LBSP on Indo-Pacific reefbuilding corals, we conclude that: (1)
Effects of LBSP have been observed in
much of the Indo-Pacific, namely
impacts on coral growth, reproduction,
and survival in areas with the highest
levels of pollution; and (2) such effects
are projected to increase in much of the
Indo-Pacific throughout the foreseeable
future (Smith 2019a).
The vulnerabilities of P. meandrina to
turbidity, sediment, nutrients, and
contaminants are summarized here in
terms of its susceptibility and exposure
to this threat. Based on the information
described in the SRR (Smith 2019b), we
consider the susceptibilities of P.
meandrina to be low for turbidity,
moderate for sediment and nutrients,
and high for contaminants. We consider
P. meandrina’s overall susceptibility to
all LBSP combined to be moderate
(Smith 2019b). Exposure of colonies of
P. meandrina to LBSP is likely high in
areas subject to intense coastal
development, urbanization, agriculture,
and other human activities on land.
However, some of P. meandrina’s range
is far from human activities on land
(e.g., uninhabited atolls, islands, barrier
reefs, etc.), also limiting exposure. Thus,
exposure of P. meandrina to LBSP is
high in some areas, but low to none in
a large proportion of the species’ range,
resulting in low exposure overall (Smith
2019b). We consider the current
vulnerability of P. meandrina to LBSP
to be low to moderate, based on
moderate overall susceptibility
combined with low overall exposure.
We expect vulnerability of P. meandrina
to LBSP to increase throughout the
foreseeable future as the human
population and coastal development
increase (Smith 2019a,b).
Coral Disease (Factor C). As described
in the GSA (Smith 2019a), the available
information regarding diseases of IndoPacific reef-building corals including P.
meandrina leads to the following
conclusions about this threat: (1) Coral
diseases and subsequent mortalities of
Indo-Pacific reef-building corals are
E:\FR\FM\06JYN2.SGM
06JYN2
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
being increasingly observed, and while
quantifiable temporal trends are lacking,
the environmental stressors that lead to
coral diseases (especially ocean
warming) have clearly increased; and (2)
environmental stressors that lead to
coral diseases are projected to increase
sharply in the Indo-Pacific under
RCP8.5 throughout the foreseeable
future, thus coral diseases and
subsequent coral mortalities are also
likely to increase (Smith 2019a).
The vulnerability of P. meandrina to
coral disease is summarized here in
terms of its susceptibility and exposure
to this threat, based on information in
the SRR (Smith 2019b). Studies of coral
disease in the Hawaiian Islands have
consistently found P. meandrina to have
low susceptibility to disease (Aeby
2006, Aeby et al. 2009). Furthermore,
genus and family level information from
Hawaii and elsewhere in the IndoPacific indicate low susceptibilities of
Pocillopora and Pocilloporidae to coral
disease relative to other reef-building
corals (Brainard et al. 2012, RuizMoreno et al. 2012). Exposure of
colonies of P. meandrina to coral
disease depends on exposure to other
threats, especially ocean warming and
LBSP. As noted above, exposure of P.
meandrina to ocean warming and LBSP
is highly variable across the species’
range, but for different reasons.
Exposure to both threats is expected to
increase throughout the foreseeable
future. Thus, P. meandrina’s exposure
to coral disease is likely highly variable
across its range (Smith 2019b). We
consider the current vulnerability of P.
meandrina to coral disease to be low,
based on low susceptibility combined
with highly variable exposure. We
expect vulnerability of P. meandrina to
coral disease to increase throughout the
foreseeable future as ocean warming,
LBSP, and other threats increase,
because these threats generally produce
conditions that favor coral disease
(Smith 2019a,b).
Predation (Factor C). As described in
the GSA (Smith 2019a), the available
information regarding predation of IndoPacific reef-building corals including P.
meandrina leads to the following
conclusions about this threat: (1) Both
chronic and acute predation, especially
acute crown of thorns starfish (COTS)
outbreaks, have been observed in many
parts of the Indo-Pacific and, while
quantifiable temporal trends are lacking,
environmental stressors that lead to
predator outbreaks (e.g., land-based
sources of pollution) have also
increased; and (2) both chronic and
acute predation and its impacts are
projected to increase in much of the
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
Indo-Pacific throughout the foreseeable
future (Smith 2019a).
The vulnerability of P. meandrina to
predation is summarized here in terms
of its susceptibility and exposure to this
threat, based on information in the SRR
(Smith 2019b). The crown of thorns
starfish (COTS) is considered the most
important predator because of its large
size, potential for extremely large
outbreaks, high coral tissue
consumption rate, and capacity to
remove tissue from entire coral colonies
(Glynn 1976). Acropora and Pocillopora
species are among the most favored
coral prey of COTS, and sharp
reductions in populations of both genera
in response to COTS outbreaks have
been recorded across the Indo-Pacific
(Pratchett et al. 2017, Keesing et al.
2019). Aside from COTS, other
predators such as Drupella snails can
result in colony damage and mortality of
Pocillopora species including P.
meandrina, especially after bleachings
or other events that weaken the
colonies. However, generally these other
predators do not cause severe damage
because they typically remove a small
portion of tissue or skeleton, and do not
often occur in large numbers. Thus, the
susceptibility of P. meandrina to
predation is moderate (Smith 2019b).
Exposure of colonies of P. meandrina to
predation depends on predator
abundances. Generally, predator
abundances and exposure are low most
of the time on coral reefs, interspersed
with brief periods of high abundances
and subsequent high exposure. Thus, P.
meandrina’s exposure to predation is
likely highly variable across its range
(Smith 2019b). We consider the current
vulnerability of P. meandrina to
predation to be moderate, based on
moderate susceptibility combined with
highly variable exposure. We expect
vulnerability of P. meandrina to
predation to increase throughout the
foreseeable future as LBSP, fishing, and
other threats increase, because these
threats generally produce conditions
that favor predators (Smith 2019a,b).
Collection and Trade (Factor B).
Collection and trade refers to the
physical process of taking reef-building
corals from their natural habitat
(collection) for the purpose of sale in the
marine aquarium and ornamental
industries (trade). As described in the
GSA (Smith 2019a), the available
information regarding collection and
trade of Indo-Pacific reef-building corals
including P. meandrina leads to the
following conclusions about this threat:
(1) Collection and trade of Indo-Pacific
reef-building corals has grown
significantly in recent decades, along
with the resulting detrimental effects to
PO 00000
Frm 00013
Fmt 4701
Sfmt 4703
40491
corals and their habitats; and (2)
collection and trade, and their effects
are projected to increase in much of the
Indo-Pacific throughout the foreseeable
future, although these effects may be
partially offset by increases in
mariculture (Smith 2019a).
The vulnerability of P. meandrina to
collection and trade is summarized here
in terms of its susceptibility and
exposure to this threat, based on
information in the SRR (Smith 2019b).
As of May 2019, none of the largest
marine aquarium coral wholesalers in
the United States, an industry that sells
a vast diversity of both captive bred and
wild caught corals, had P. meandrina
listed for sale, nor does it appear to have
been sold over the last 15 years (Smith
2019b). In contrast to its lack of
popularity in the marine aquarium
industry, P. meandrina was among the
top four genera in the ornamental
industry (Thornhill 2012). Skeletons are
cleaned and sold as curios or
decorations, and colonies of Acropora
and Pocillopora species are especially
popular in many countries. Data
collected by the Convention on
International Trade in Endangered
Species of Wild Fauna and Flora
(CITES) suggests that collection of
Pocillopora species including P.
meandrina for the domestic curio trade
may be substantial in many countries
(Smith 2019b). Exposure of colonies of
P. meandrina to collection and trade
depends on the proportion of the total
population that is harvested annually.
The total annual harvest of P.
meandrina for the ornamental industry
is not likely to be more than a few
hundreds of thousands to a few million
colonies. Even if a few million colonies
are collected annually, that is still
relatively small compared to the tens of
billions of colonies in P. meandrina’s
total population, thus exposure to
collection and trade is considered to be
low (Smith 2019b). We consider the
current vulnerability of P. meandrina to
collection and trade to be low to
moderate, based on moderate
susceptibility combined with low
exposure. We expect vulnerability of P.
meandrina to collection and trade to
increase throughout the foreseeable
future, because future domestic and
international demand for ornamental
corals is expected to grow as the human
population and affluence grow (Smith
2019a,b).
Other Threats (Factors A, E). In
addition to the above primary threats,
other threats to Indo-Pacific reefbuilding corals include two global
threats (changes in ocean circulation
and tropical storms, Factor E), and three
local threats (human-induced physical
E:\FR\FM\06JYN2.SGM
06JYN2
40492
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
damage, Factor A; invasive species, and
changes in salinity, both Factor E;
Brainard et al. 2011). These are not
considered primary threats because they
are either uncertain (the global threats)
or highly localized on small spatial
scales (the local threats). Nevertheless,
they may affect the extinction risk of
some Indo-Pacific reef-building coral
species, including P. meandrina,
throughout the foreseeable future (Smith
2019a).
The vulnerabilities of P. meandrina to
these other threats are summarized here
in terms of its susceptibility and
exposure to these five threats, based on
information in the SRR (Smith 2019b).
We consider the current vulnerabilities
of P. meandrina to changes in ocean
circulation and tropical storms to be
low, based on low susceptibilities
combined with highly variable
exposures. We expect vulnerabilities of
P. meandrina to changes in ocean
circulation and tropical storms to
increase in the foreseeable future as
climate change worsens. We consider
the current vulnerabilities of P.
meandrina to human-induced physical
damage, invasive species, and changes
in salinity to be very low to low, based
on low susceptibilities combined with
very low exposures. We expect
vulnerabilities of P. meandrina to
human-induced physical damage,
invasive species, and changes in salinity
to increase throughout the foreseeable
future as human activities increase and
climate change worsens (Smith
2019a,b).
Interactions of Threats (Factor E). The
threats described above often affect
Indo-Pacific reef-building corals
simultaneously or sequentially, thus
threats may interact with one another to
affect corals in different ways than they
would individually. As described in the
GSA (Smith 2019a), there are many
types of potential interactions, almost
all of which are negative, such as the
worsening of warming-induced coral
bleaching by ocean acidification
(Anthony et al. 2011, 2016) and LBSP
(Fabricius 2011, Wooldridge 2016).
Most studies oversimplify the
interactions of threats by only
considering interactions of two threats.
The reality is that most or all threats
interact with one another at various
spatial and temporal scales, thus the
effects of these interactions could be
significantly worse than any individual
threat alone, especially as each threat
grows throughout the foreseeable future
(Smith 2019a).
We consider the current
vulnerabilities of P. meandrina to the
interactions of the threats with one
another to be unknown. As explained in
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
the SRR (Smith 2019b), there is very
little information available on the
interactions of the threats with one
another for P. meandrina or other
Pocillopora species, thus the available
information is inadequate to determine
P. meandrina’s susceptibilities to the
interactions of threats. Likewise, the
available information is inadequate to
determine exposure, thus we consider P.
meandrina’s susceptibilities and
exposures to the interactions of threats
to be unknown (Smith 2019b). However,
based on the available information on
the effects of the interactions of these
threats on other Indo-Pacific reefbuilding corals, as described in the GSA
(Smith 2019a), we consider it likely that
the overall effect of the interactions of
these threats with one another on P.
meandrina is negative, and that these
impacts will worsen throughout the
foreseeable future as threats worsen
(Smith 2019a,b).
Inadequacy of Existing Regulatory
Mechanisms (Factor D). While not a
threat, existing regulatory mechanisms
are a very important influence on the
threats, and thus constitute one of the
five listing factors. Existing regulatory
mechanisms refers to treaties,
agreements, laws, and regulations at all
levels of government that may affect the
continued existence of Indo-Pacific reefbuilding corals. Relevant regulatory
mechanisms include all those related to
GHG management globally, and the
management of local threats in the 68
countries with Indo-Pacific reefbuilding corals (NMFS 2012, 2014), the
great majority of which have P.
meandrina in their waters (Smith
2019b).
As described in more detail in the
GSA (Smith 2019a), GHGs are regulated
through international agreements (e.g.,
the Paris Agreement, signed in 2016),
and through statutes and regulations at
the national, state, and local levels.
Twenty countries, the ‘‘G20’’ nations,
are responsible for approximately 78
percent of global emissions, and are led
by the top three emitters, China, the
United States, and India, which are
together responsible for about half of
global emissions (UNEP 2019). All 20
signed the Paris Agreement; however, in
2017, the US announced its withdrawal,
to take effect in November 2020.
Previous international agreements on
reducing GHGs, such as the Kyoto
Protocol of 1997, have not been effective
at controlling global GHG emissions, as
shown by the increase in global GHG
emissions over the past decades. Even if
implementation of the Paris Agreement
successfully limits global temperature
increases to 1.5 °C during the 21st
century as intended (i.e., 0.5 °C warmer
PO 00000
Frm 00014
Fmt 4701
Sfmt 4703
than now), impacts to reef-building
corals, including P. meandrina, would
still occur because these communities
are already on a downward trajectory,
and the additional warming would
make things worse (IPCC 2018, Smith
2019a,b).
As described in more detail in the
GSA (Smith 2019a), existing regulatory
mechanisms that address the major local
threats (i.e., fishing, land-based sources
of pollution, coral diseases, coral
predators, collection and trade) consist
primarily of national and local fisheries,
coastal, and watershed management
laws and regulations in the 68 countries
where Indo-Pacific reef-building corals
occur, but also include some
international conventions. Regulatory
mechanisms align well with some
threats (e.g., fishing, collection and
trade) but not others (e.g., coral diseases
and predators). The relevant regulatory
mechanisms generally consist of five
categories: general coral protection,
coral collection control, fishing controls,
pollution controls, and managed areas,
each of which are summarized below for
the 68 countries. These regulatory
mechanisms do not address climate
change threats, but they typically were
not intended to do so (NMFS 2012,
NMFS 2014, Smith 2019a).
General coral protection regulatory
mechanisms include overarching
environmental laws that may protect
corals from damage, harm, and
destruction, and specific coral reef
management laws. Of the 68 countries,
18 (27 percent) have general coral
protection laws. Coral collection and
trade regulatory mechanisms include
specific laws that prohibit the
collection, harvest, and mining of
corals. Of the 68 countries, 32 (50
percent) have laws prohibiting the
collection of live corals from coral reefs.
Fishing regulations that pertain to reefs,
include regulations that prohibit
explosives, poisons and chemicals,
electrocution, spearfishing, specific
mesh sizes of nets, or other fishing gear.
Of the 68 countries, 53 (78 percent) have
laws that regulate coral reef fisheries.
Pollution control regulations include oil
pollution laws, marine pollution laws,
ship-based pollution laws, and coastal
land use and development laws. Of the
68 countries, 23 (34 percent) have laws
that regulate pollution of coral reef
waters. Managed area regulatory
mechanisms include the capacity to
create national parks and reserves,
sanctuaries, and marine protected areas.
Of the 68 countries, nearly all have
managed areas that include coral reefs.
Details about these five categories of
regulatory mechanisms for the
E:\FR\FM\06JYN2.SGM
06JYN2
40493
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
management of local threats are
provided in the GSA (Smith 2019a).
The 2014 final coral listing rule
concluded that global regulatory
mechanisms for GHG emissions
management were ineffective at
reducing global climate change-related
impacts to Indo-Pacific reef-building
coral species at that time (NMFS 2014).
Since then, the Paris Agreement was
developed in 2015 and signed in 2016
(UN 2016), representing a major
potential advance in GHG emissions
management because its successful
implementation would limit GMST to
1.5 °C above pre-industrial, as explained
in the GSA (Smith 2019a). However,
there are several reasons why there is
uncertainty with regard to successful
implementation of the Paris Agreement:
(1) Despite past international
agreements for GHG emissions
management (e.g., 1997 Kyoto Protocol,
2009 Copenhagen Accord), global GHG
emissions and atmospheric CO2 levels
have both risen to historically high
levels and continue to do so; (2) the
world’s second largest GHG emitter, the
United States withdrew from the Paris
Agreement in 2017; and (3) the most
recent Emissions Gap Report from
November 2019 concludes that globally,
current policies are on track to result in
global warming of 3.5° C by 2100 (UNEP
2019). Finally, even successful
implementation of the Paris Agreement
(i.e., limiting warming to 1.5 °C) would
still result in additional warming, and
thus worsening of the current
conditions. Therefore, we conclude that
current global regulatory mechanisms
for management of GHG emissions are
expected to be unsuccessful at reducing
global climate change-related impacts to
Indo-Pacific reef-building corals,
including P. meandrina (Smith
2019a,b).
The 2014 final coral listing rule
concluded that national, state, local, and
other regulatory mechanisms in the 68
countries with Indo-Pacific reefbuilding corals were generally
ineffective at preventing or sufficiently
controlling local threats to these species
(NMFS 2014). Since that time, new coral
reef MPAs have been established in the
Indo-Pacific, slightly increasing the total
proportion of coral reef ecosystems
protected by MPAs in the region.
However, human populations have also
grown in many Indo-Pacific countries
during that time, most likely leading to
an increase in local threats since we
completed our analysis in 2014. Thus,
we conclude that current regulatory
mechanisms are ineffective at reducing
the impacts of local threats to IndoPacific reef-building corals including P.
meandrina (Smith 2019a,b).
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
Threats Conclusion. We consider
global climate change-related threats of
ocean warming, ocean acidification, and
sea-level rise, and the local threats of
fishing, land-based sources of pollution,
coral disease, predation, and collection
and trade, to be the most significant to
the extinction risk of Indo-Pacific reefbuilding corals, including P. meandrina,
currently and throughout the
foreseeable future. The most important
of these threats is ocean warming. In
addition, the interactions of threats with
one another could be significantly worse
than any individual threat, especially as
each threat grows. Most threats have
already been observed to be worsening,
based on the monitoring results and the
scientific literature. Ocean warming in
conjunction with the other threats have
recently resulted in the worst impacts to
Indo-Pacific reef-building corals ever
observed. All threats are expected to
worsen throughout the foreseeable
future, and to be exacerbated by the
inadequacy of existing regulatory
mechanisms (Smith 2019a).
The current susceptibilities,
exposures, and subsequent
vulnerabilities of P. meandrina to the
threats are described in the SRR (Smith
2019b) and summarized here. For each
threat, vulnerability is a function of
susceptibility and exposure. Based on
these vulnerability ratings, the six worst
threats to P. meandrina currently are
ocean warming (high), ocean
acidification (high), predation
(moderate), fishing (low to moderate),
land-based sources of pollution (low to
moderate), and collection and trade (low
to moderate). There is not enough
information to determine P.
meandrina’s vulnerability to the
interactions of threats. Vulnerabilities of
P. meandrina to all threats are expected
to increase throughout the foreseeable
future, and to be exacerbated by the
inadequacy of existing regulatory
mechanisms (Smith 2019a,b).
Rangewide Extinction Risk Assessment
An extinction risk assessment (ERA)
was carried out by a seven member ERA
Team for P. meandrina across its entire
range, in accordance with the
‘‘Guidance on Responding to Petitions
and Conducting Status Reviews under
the Endangered Species Act’’ (NMFS
2017). The Team used the information
provided in both the GSA and SRR
(Smith 2019a,b) to provide the
rangewide quantitative ratings of P.
meandrina’s demographic risk, threats,
and overall extinction risk under
RCP8.5 over the foreseeable future. Draft
ratings were conducted in August and
September, 2019, then a Team meeting
was held on September 30, 2019, to
PO 00000
Frm 00015
Fmt 4701
Sfmt 4703
discuss the draft ratings and to ensure
that all Team members had a common
understanding of the guidance. The
final ratings were completed in October
2019.
Demographic Risk Factors. The
demographic risk assessment utilized
the information provided in the SRR
(Smith 2019b) on P. meandrina’s four
demographic risk factors of distribution,
abundance, productivity, and diversity.
ERA Team members were instructed to
assign a risk rating to each of the four
demographic risk factors, based on
information in the SRR, on a scale of 1
(low risk) to 3 (high risk), for the
foreseeable future, assuming conditions
projected under RCP8.5. Draft and final
ratings were conducted based on the
same written information, resulting in
mean ratings of 1.0 to 1.6 for the four
demographic factors (Table 1).
TABLE 1—ERA TEAM’S DRAFT AND
FINAL RATINGS OF P. meandrina’S
RISK
FACTORS,
DEMOGRAPHIC
WHERE 1 = LOW RISK, 2 = MODERATE RISK, AND 3 = HIGH RISK,
UNDER RCP8.5 OVER THE FORESEEABLE FUTURE
[Now to 2100; Smith 2019b]
ERA Team’s ratings of demographic risk factors
Mean Ratings
(± Standard Deviation)
Distribution ........
Abundance ........
Productivity .......
Diversity ............
1.1
1.6
1.0
1.1
Draft
(±0.38)
(±0.53)
(±0.00)
(±0.38)
Final
1.1
1.6
1.0
1.0
(±0.38)
(±0.53)
(±0.00)
(±0.00)
The Team rated P. meandrina’s
distribution as a low risk in both the
draft and final ratings (Table 1). The
distribution of P. meandrina is larger
than about two-thirds of Indo-Pacific
reef-building coral species, and includes
most coral reefs in the Indo-Pacific. The
species also has a broad depth range,
occurring from the surface to at least 34
m (112 ft). There is no evidence of any
reduction in its range due to human
impacts, thus its historic and current
ranges are considered to be the same.
Although all threats are projected to
increase under RCP8.5 over the
foreseeable future P. meandrina’s
distribution is not likely to contribute
significantly to extinction risk.
The Team rated P. meandrina’s
abundance as a moderate risk in both
the draft and final ratings (Table 1). In
the 10 ecoregions for which time-series
abundance data or information are
available, abundance appears to be
decreasing in five ecoregions and stable
in five ecoregions. Because of these
declines in abundance that have already
E:\FR\FM\06JYN2.SGM
06JYN2
40494
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
been observed, and projections of
increasing threats under RCP8.5 over
the foreseeable future, P. meandrina’s
abundance is likely to contribute
significantly to extinction risk.
The Team rated P. meandrina’s
productivity as the lowest possible risk
in both the draft and final ratings (Table
1). Productivity of P. meandrina is high
due to its high reproductive capacity,
broad dispersal, high recruitment, rapid
skeletal growth, and adaptability, i.e.,
these characteristics of the species all
positively affect population growth rate.
Although all threats are projected to
increase under RCP8.5 over the
foreseeable future, P. meandrina’s
productivity is not likely to contribute
significantly to extinction risk.
The Team rated P. meandrina’s
diversity as a low risk in both the draft
and final ratings (Table 1). Diversity of
P. meandrina is due to high genotypic
and phenotypic diversity, and a large
range with very high habitat
heterogeneity. There is no evidence that
either productivity or diversity have
been reduced. Although all threats are
projected to increase under RCP8.5 over
the foreseeable future, P. meandrina’s
diversity is not likely to contribute
significantly to extinction risk.
In conclusion, P. meandrina’s
demographic factors are indicative of a
robust and resilient species that is better
suited for responding to ongoing and
projected threats than most other reefbuilding coral species. While abundance
has declined in some ecoregions in
recent years, the species’ high
productivity provides capacity for
recovery. All threats are projected to
worsen under RCP8.5 over the
foreseeable future, but P. meandrina’s
demographic factors moderate its
extinction risk (Smith 2019b).
Threats Evaluation. The threats
assessment utilized the information
provided in the GSA and SRR (Smith
2019a,b) on P. meandrina’s 10 threats of
ocean warming, ocean acidification, sealevel rise, fishing, land-based sources of
pollution, coral disease, predation,
collection and trade, other threats, and
interactions of threats, ERA Team
members were instructed to assign a risk
rating to each of the 10 threats, based on
information in the GSA and SRR (Smith
2019a,b), on a scale of 1 (low risk) to 3
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
(high risk), for the foreseeable future,
assuming conditions projected under
RCP8.5. Draft and final ratings were
conducted based on the same written
information, resulting in mean ratings of
0.7 to 2.1 for the 10 threats (Table 2).
TABLE 2—MEAN RESULTS OF THE 7MEMBER ERA TEAM’S DRAFT AND
FINAL RATINGS OF P. meandrina’S
THREATS, WHERE 1 = LOW RISK, 2
= MODERATE RISK, AND 3 = HIGH
RISK, UNDER RCP8.5 OVER THE
FORESEEABLE FUTURE
[Now to 2100; Smith 2019b]
ERA Team’s ratings of threats
Mean Ratings
(± Standard Deviation)
Draft
Ocean warming
Ocean acidification ................
Sea-level rise ....
Fishing ..............
Land-based
sources pollution ................
Coral disease ....
Predation ..........
Collection and
trade ..............
Other threats .....
Interactions of
threats ...........
Final
2.1 (±0.69)
1.9 (±0.38)
1.9 (±0.90)
1.0 (±0.00)
1.4 (±0.53)
1.7 (±0.76)
1.0 (±0.00)
1.2 (±0.39)
1.3 (±0.49)
1.3 (±0.49)
1.3 (±0.49)
1.3 (±0.49)
1.3 (±0.49)
1.3 (±0.49)
1.2 (±0.39)
0.7 (±0.52)
1.2 (±0.39)
0.7 (±0.52)
1.9 (±0.69)
1.9 (±0.38)
In both the draft and final ratings, the
Team rated ocean warming, ocean
acidification, and interactions of threats
as posing moderate risk to the species
(1.7–2.1), while the other seven threats
were rated as posing low risk (0.7–1.4;
Table 2). The worst threats to P.
meandrina include those caused by
global climate change (ocean warming
and ocean acidification), and the Team
unanimously agreed that these threats
stem from the inadequacy of regulatory
mechanisms for greenhouse gas
emissions management. Ocean warming
and ocean acidification were rated as
posing increased risk (Table 2), because
of observed impacts that are already
occurring, but mostly because the
frequency, severity, and magnitude of
these threats are likely to worsen under
RCP8.5 over the foreseeable future.
The interactions of threats were also
rated as posing increased risk to P.
PO 00000
Frm 00016
Fmt 4701
Sfmt 4703
meandrina in both the draft and final
ratings (Table 2). While there is little
information available on the effects of
the interactions of threats on P.
meandrina, general information on the
negative effects of interactions of threats
on reef-building corals indicates a large
number of negative interactions (Smith
2019a). In addition, there are likely to be
many negative interactions that are still
unknown, and these interactions are
likely to become worse under RCP8.5
over the foreseeable future.
While the other seven threats were all
rated as relatively less severe in both the
draft and final ratings (Table 2), at least
some of them can be severe on small
spatial scales, and most or all have the
potential to negatively interact with
other threats. For example, fishing,
land-based sources of pollution, and
predation heavily impact P. meandrina
in portions of its range, and may
negatively interact with one another and
other threats.
In conclusion, P. meandrina faces a
multitude of growing, interacting threats
that are projected to worsen in the
foreseeable future under RCP8.5. The
species’ strong demographic factors
moderate all threats, but the gradual
worsening of threats is expected to
result in a steady increase in extinction
risk under RCP8.5 over the foreseeable
future (Smith 2019b).
Overall Extinction Risk. Guided by
the results from their demographic risk
and threats assessments, each ERA
Team member independently applied
their professional judgment to rate the
overall extinction risk of P. meandrina
across its range as Low, Moderate, or
High, using the definitions provided in
the SRR (Smith 2019b). The extinction
risk ratings were made assuming
conditions projected under RCP8.5 over
the foreseeable future. In contrast to the
demographic risk and threats ratings,
extinction risk was rated using the
‘‘likelihood point’’ method, whereby
each Team member had 10 ‘likelihood
points’ that could be distributed among
the three extinction risk categories. The
likelihood point method allows
expression of uncertainty by Team
members (NMFS 2017). The draft, final,
and mean extinction risk ratings are
shown in Table 3 below.
E:\FR\FM\06JYN2.SGM
06JYN2
40495
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
TABLE 3—DRAFT, FINAL, AND MEAN RESULTS OF THE 7-MEMBER ERA TEAM’S RATINGS OF P. meandrina’S OVERALL
EXTINCTION RISK UNDER RCP8.5 OVER THE FORESEEABLE FUTURE
[Now to 2100; Smith 2019b]
Number of Likelihood Points (%)
ERA Team’s ratings
of extinction risk
Draft
Low ..........................................................................................................................................................
Final
Mean
High ..........................................................................................................................................................
33.5
(47.9%)
26.5
(37.9%)
10 (14.3%)
24.5
(35.0%)
39.5
(56.4%)
6 (8.6%)
Total .........................................................................................................................................................
70
70
Moderate ..................................................................................................................................................
The Low extinction risk category
received 33.5 points (47.9 percent) in
the draft rating, and 24.5 points (35.0
percent) in the final rating, for a mean
of 29 points (41.4 percent; Table 3).
Several Team members moved
likelihood points from Low to Moderate
for the final rating following the
September 30, 2019, Team meeting at
which the climate change assumptions
in the SRR were emphasized (i.e.,
assumption of conditions projected
under RCP8.5 from now to 2100).
Species at Low extinction risk have
stable or increasing trends in abundance
and productivity with connected,
diverse populations, and are not facing
threats that result in declining trends in
distribution, abundance, productivity,
or diversity. Currently, P. meandrina
has high and stable productivity and
diversity, a very large distribution, very
high abundance, and stable (five
ecoregions) or decreasing (five
ecoregions) abundance in the 10
ecoregions for which abundance trend
data or information are available. The
species has life history characteristics
that provide resilience to disturbances
and a high capacity for recovery.
However, P. meandrina faces multiple
threats, the worst of which are expected
to increase under RCP8.5 over the
foreseeable future. Thus, on the one
hand, most demographic factors suggest
Low extinction risk of P. meandrina, but
on the other hand, recent declining
abundance trends in five of the 10
known ecoregions, as well as increasing
threats under RCP8.5 over the
foreseeable future, suggest higher
extinction risk in the foreseeable future.
The Moderate extinction risk category
received 26.5 points (37.9 percent) in
the draft rating, and 39.5 points (56.4
percent) in the final rating, for a mean
of 33 points (47.1 percent; Table 3).
Several Team members moved
likelihood points from Low to Moderate,
and one Team member moved
likelihood points from High to
Moderate, for the final rating following
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
the September 30, 2019, Team meeting.
Species at Moderate extinction risk are
on a trajectory that puts them at a high
level of extinction risk in the foreseeable
future, due to projected threats or
declining trends in distribution,
abundance, productivity, or diversity.
While P. meandrina’s distribution,
productivity, and diversity are currently
strong and stable, recent abundance
trends are declining in half of the
ecoregions for which data or
information are available (five of 10
ecoregions). In addition, all threats are
expected to worsen in the foreseeable
future, especially the most important
threats to the species. Ocean warming
and ocean acidification are projected to
worsen under RCP8.5 over the
foreseeable future, resulting in increased
frequency, magnitude, and severity of
warming-induced coral bleaching,
reduced coral calcification, and
increased reef erosion. These climate
change threats are likely to be
exacerbated by local threats such as
fishing and land-based sources of
pollution throughout much of P.
meandrina’s range.
The High extinction risk category
received 10 points (14.3 percent) in the
draft rating, and 6 points (8.6 percent)
in the final rating, for a mean of 8 points
(11.4 percent; Table 3). One Team
member moved likelihood points from
High to Moderate, for the final rating
following the September 30, 2019, Team
meeting in response to clarification
regarding the temporal distinction
between High and Moderate extinction
risk (Smith 2019b). Species at High
extinction risk are those whose
continued persistence is in question due
to weak demographic factors, or that
face clear and present threats such as
imminent destruction. However, P.
meandrina has strong demographic
factors, with the possible exception of
abundance. Thus, while threats to P.
meandrina are expected to occur over
the foreseeable future (now to 2100),
impacts so severe as to place the species
PO 00000
Frm 00017
Fmt 4701
Sfmt 4703
29 (41.4%)
33 (47.1%)
8 (11.4%)
at high extinction risk are not expected
in the immediate future (now to 2030),
therefore the species is not considered
to be at high risk of extinction.
In conclusion, the information in the
GSA (Smith 2019a), the SRR (Smith
2019b), and the ERA Team’s results
(Tables 1–3) provide support for P.
meandrina currently being at low risk of
extinction throughout its range, and at
low to moderate risk of extinction
throughout its range in the foreseeable
future. The ERA was conducted
assuming that conditions projected
under RCP8.5 will occur within the
range of P. meandrina over the
foreseeable future. The ERA Team’s
ratings were only for P. meandrina
rangewide, thus the Team did not
consider whether any smaller areas
within its range constitute Significant
Portions of its Range (Smith 2019b).
Rangewide Determination
Section 4(b)(1)(A) of the ESA requires
that NMFS make listing determinations
based solely on the best scientific and
commercial data available after
conducting a review of the status of the
species and taking into account those
efforts, if any, being made by any state
or foreign nation, or political
subdivisions thereof, to protect and
conserve the species. We have
independently reviewed the best
available scientific and commercial
information including the petition,
public comments submitted on the 90day finding (83 FR 47592; September
20, 2018), the GSA (Smith 2019a), the
SRR (Smith 2019b), and literature cited
therein and in this finding. In addition,
we have consulted with a large number
of species experts and individuals
familiar with P. meandrina (Smith
2019b). This rangewide determination is
based on our interpretation of the status
of P. meandrina throughout its range
currently and over foreseeable future
(now to 2100).
Pocillopora meandrina can be
characterized as a species with strong
E:\FR\FM\06JYN2.SGM
06JYN2
40496
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
demographic factors facing broad and
worsening threats: It has a very large
and stable distribution, very high
overall abundance but unknown overall
abundance trend, high and stable
productivity, and high and stable
diversity. But it faces multiple global
and local threats, all of which are
worsening, and existing regulatory
mechanisms are inadequate to
ameliorate the major threats. Based on
the same written information, the ERA
Team rated P. meandrina’s extinction
risk twice, resulting in 47.9, 37.9, and
14.3 percent, and 35.0, 56.4, and 8.6
percent, in the Low, Moderate, High risk
categories, respectively, in the draft and
final ratings (Table 3). Before the final
rating, an ERA Team meeting was held
to emphasize that the Team was to
assume the worst-case climate change
pathway (RCP8.5, and only RCP8.5)
over the foreseeable future for the
extinction risk ratings. As explained in
the Foreseeable Future for P. meandrina
section above, we consider it likely that
climate indicator values between now
and 2100 will be within the collective
ranges of those projected under RCPs
8.5, 6.0, and 4.5, and not necessarily
limited to the range of conditions
projected by the worst-case pathway
RCP8.5. However, all three pathways
lead to worsening conditions in the
foreseeable future, and their impacts on
P. meandrina cannot be clearly
distinguished from one another based
on the existing data and uncertainties.
Thus, we interpret their final extinction
risk rating as representing the worstcase scenario for P. meandrina.
Although all threats are projected to
worsen within P. meandrina’s range
over the foreseeable future (Smith
2019a,b; NMFS 2020a), the following
characteristics of the species moderate
its extinction risk, as documented in the
SRR (Smith 2019b): (1) The species’
unusually large geographic distribution
(95 ecoregions; SRR, Section 3.2.1),
broad depth distribution (0–34 m; SRR,
Section 3.2.2), and wide habitat breadth
(SRR, section 2.4), provide P.
meandrina uncommonly high habitat
heterogeneity (SRR, section 3.4), which
creates patchiness of conditions across
its range at any given time, thus many
portions of its range are unaffected or
lightly affected by any given threat; (2)
its very high abundance (at least several
tens of billions of colonies; SRR, Section
3.2.2), together with high habitat
heterogeneity, likely result in many
billions of colonies surviving even the
worst disturbances; (3) even when high
mortality occurs, its high productivity
provides the capacity for the affected
populations to recover quickly, as has
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
been documented at sites within several
ecoregions (e.g., on the GBR, at Fagatele
Bay in American Samoa, at the Kahe
Power Plant in the main Hawaiian
Islands, and at Moorea in the Society
Islands; SRR, Section 3.2.3); (4)
likewise, its high productivity provides
the capacity for populations to recover
relatively quickly from disturbances
compared to more sensitive reef coral
species, allowing P. meandrina to take
over denuded substrates and to
sometimes become more abundant after
disturbances than before them, as has
been documented in several ecoregions
(SRR, Section 3.3); (5) it recruits to
artificial substrates more readily than
most other Indo-Pacific reef corals, often
dominating the coral communities on
the metal, concrete, and PVC surfaces of
seawalls, Fish Aggregation Devices,
pipes, and other manmade structures
(SRR, Section 3.3); (6) in some
populations that suffered high mortality
from warming-induced bleaching,
subsequent warming resulted in much
less mortality (e.g., west Mexico, SRR,
Section 4.1), suggesting acclimatization
(i.e., surviving colonies became
acclimated to the changing conditions)
or adaptation (i.e., relatively heatresistant progeny of surviving colonies
were naturally selected by the changing
conditions) of the surviving
populations; and (7) adaptation may be
enhanced by its high genotypic diversity
(i.e., some of its many distinct
populations likely have genotypes that
will be naturally selected by the
changing conditions) and high dispersal
(i.e., the progeny of naturally selected
genotypes may widely disperse,
establishing new populations with
improved fitness; SRR, Sections 3.3 and
3.4).
Taken together, these demographic
characteristics of P. meandrina are
expected to substantially moderate the
impacts of the worsening threats over
the foreseeable future. While broadly
deteriorating conditions will likely
result in a downward trajectory of P.
meandrina’s overall abundance in the
foreseeable future, the demographic
characteristics summarized above are
expected to allow the species to at least
partially recover from many
disturbances, thereby slowing the
downward trajectory. Thus, our
interpretation of the information in the
GSA (Smith 2019a), SRR (Smith 2019b),
and this finding is that P. meandrina is
currently at low risk of extinction
throughout its range. As explained in
the Listing Species Under the
Endangered Species Act section of this
finding, an ‘‘endangered species’’ is
presently at risk of extinction
PO 00000
Frm 00018
Fmt 4701
Sfmt 4703
throughout all or a significant portion of
its range. Because P. meandrina is
currently at low risk of extinction
throughout its range, it does not meet
the definition of an endangered species,
and is thus not warranted for listing as
endangered at this time.
As also explained in the Listing
Species Under the Endangered Species
Act section of this finding, a
‘‘threatened species’’ is not currently at
risk of extinction, but is likely to
become so in the foreseeable future.
Based on the information in the GSA
(Smith 2019a), SRR (Smith 2019b), and
this finding, P. meandrina is expected
to face low to moderate extinction risk
in the foreseeable future throughout its
range. That is, we expect its extinction
risk to increase slightly from its current
low level, to low to moderate in the
foreseeable future, in response to
worsening threats. We do not expect
extinction risk to grow rapidly in the
foreseeable future, because as described
earlier in this section, P. meandrina has
several demographic characteristics that
moderate its extinction risk. As
described in the Rangewide Extinction
Risk Assessment section, we interpret
the ERA Team’s final extinction risk
rating (approximately 35, 56, and 9
percent in the Low, Moderate, High risk
categories, respectively, Table 3) as
representing the worst-case scenario for
P. meandrina, because the Team
assumed the high emissions climate
change pathway (RCP8.5, and only
RCP8.5) in the foreseeable future for the
extinction risk ratings. As explained in
the Foreseeable Future for P. meandrina
section, we consider it likely that
climate indicator values between now
and 2100 will be within the collective
ranges of those projected by RCP8.5 and
the intermediate emissions pathways
RCPs 6.0, and 4.5, rather than limited to
those projected by RCP8.5 alone.
Because we expect P. meandrina to face
a low to moderate risk of extinction in
the foreseeable future throughout its
range, it does not meet the definition of
a threatened species, and is thus not
warranted for listing as threatened at
this time.
The definitions of both ‘‘threatened’’
and ‘‘endangered’’ in the ESA contain
the phrase ‘‘significant portion of its
range’’ (SPR), referring to an area
smaller than the entire range of the
species which must be considered when
evaluating a species’ risk of extinction.
Under the final SPR Policy announced
in July 2014, should we find that the
species is of low extinction risk
throughout its range and not warranted
for listing, as we have for P. meandrina,
then we must go on to consider whether
the species may have a higher risk of
E:\FR\FM\06JYN2.SGM
06JYN2
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
extinction in a significant portion of its
range (79 FR 37577; July 1, 2014). If the
species within the SPR meets the
definition of threatened or endangered,
then the species should be listed
throughout its range based on the status
within that SPR. The following sections
provide the SPR analysis and
determinations for P. meandrina.
SPR Analysis
The SPR analysis for P. meandrina
consists of two steps: (1) Identification
of any portions of its range that are
significant, and thus qualify as SPRs;
and (2) assessment of the extinction risk
of each SPR. This SPR analysis is based
on the SPR policy in light of recent
court decisions, as explained below. In
two recent District Court cases
challenging listing decisions made by
the U.S. Fish and Wildlife Service, the
definition of ‘‘significant’’ in the SPR
Policy was invalidated. The courts held
that the threshold component of the
definition was ‘‘impermissible,’’
because it set too high a standard.
Specifically, the courts held that under
the threshold in the policy, a species
would never be listed based on the
status of the portion, because in order
for a portion to meet the threshold, the
species would be threatened or
endangered rangewide. Center for
Biological Diversity, et al. v. Jewell, 248
F. Supp. 3d 946, 958 (D. Ariz. 2017);
Desert Survivors v. DOI 321 F. Supp. 3d.
1011 (N.D. Cal., 2018). Accordingly, we
do not rely on our definition in the
policy, but instead our analysis
independently construes and applies a
biological significance standard,
drawing from the demographic factors
for P. meandrina described in the SRR
(i.e., distribution, abundance,
productivity, and diversity) as they
apply to each SPR. That is, each P.
meandrina SPR is identified based on
its significance to the viability of the
species, in terms of that SPR’s
distribution, abundance, productivity,
and diversity.
Identification of the Four SPRs
The first step of the SPR analysis is to
identify any SPRs. We determined that
several portions of P. meandrina’s range
are significant to the viability of the
species, in terms of each SPR’s
demographic factors (distribution,
abundance, productivity, and diversity).
The range of this species encompasses
95 ecoregions spread across the IndoPacific from the western Indian Ocean
to the eastern Pacific Ocean, including
the western Indian Ocean (Ecoregions
#1–10), the western Pacific Ocean
(Ecoregions #11–68), the central Pacific
Ocean (Ecoregions #69–87), and the
VerDate Sep<11>2014
04:08 Jul 03, 2020
Jkt 250001
eastern Pacific Ocean (Ecoregions #88–
95; NMFS 2020b, Map 1). Based on the
information in the SRR (Smith 2019b)
and NMFS (2020b), which is the best
currently available information on the
distribution of P. meandrina, we
identified four SPRs: (1) SPR A, the 68
ecoregions within the western Indian
and western Pacific areas (NMFS 2020b,
Map 2); (2) SPR B, the 27 ecoregions
within the central Pacific and eastern
Pacific areas (NMFS 2020, Map 3); (3)
SPR C, the 58 ecoregions within the
western Pacific area (NMFS 2020b, Map
4); and (4) SPR D, the 19 ecoregions
within the central Pacific area (NMFS
2020b, Map 5). As shown on the maps
(NMFS 2020b), SPR A encompasses SPR
C, and SPR B encompasses SPR D.
Rationales for why each of these four
areas qualify as an SPR are provided
below. Other portions of P. meandrina’s
range were considered, but found not to
qualify as SPRs.
SPR A qualifies as an SPR because it
is significant to the viability of P.
meandrina, based on the population’s
distribution and diversity. SPR A’s
distribution consists of 68 ecoregions
(#1–68), or over 70 percent of P.
meandrina’s ecoregions (68/95
ecoregions), and approximately 85
percent of P. meandrina’s coral reef area
(Table 4). The population’s ecoregions
extend from the western edge of the
species’ range in the western Indian
Ocean to the central western portion of
its range in the Pacific Ocean (NMFS
2020b). Because SPR A’s distribution
covers over 70 percent of the species’
ecoregions and approximately 85
percent of its coral reef area (NMFS
2020b), SPR A includes approximately
70 to 85 percent of P. meandrina’s total
abundance. Distribution and abundance
strongly influence a population’s
productivity and diversity (see SRR,
Sections 3.3 and 3.4), thus SPR A likely
contains approximately 70 to 85 percent
of P. meandrina’s total productivity and
diversity. Since SPR A includes most of
P. meandrina’s distribution, abundance,
productivity, and diversity, the species
would not be viable in the absence of
this population. Therefore, SPR A is
significant to the viability of P.
meandrina and qualifies as an SPR.
SPR B qualifies as an SPR because it
is significant to the viability of P.
meandrina, based on the population’s
distribution, abundance, and
productivity. SPR B’s distribution
consists of 27 ecoregions (#69–95), or
approximately 30 percent of P.
meandrina’s ecoregions (27/95
ecoregions) and approximately 15
percent of its coral reef area (Table 4).
The population’s ecoregions extend
from the central eastern portion of its
PO 00000
Frm 00019
Fmt 4701
Sfmt 4703
40497
range to the eastern fringe of its range
in the Pacific Ocean (NMFS 2020b). SPR
B’s distribution covers less than onethird of the species’ ecoregions, and an
even lower proportion of its coral reef
area. However, the western portion of
the population (i.e., Ecoregions #69–87)
connects the eastern Pacific ecoregions
(#88–95) with the rest of the species
(i.e., Ecoregions #1–68). In addition, the
abundance of this population is
important because all ecoregions where
P. meandrina is dominant occur within
this population (NMFS 2020b).
Distribution and abundance strongly
influence a population’s productivity
and diversity (see SRR, Sections 3.3 and
3.4), thus SPR B likely contains
approximately 15 to 30 percent of P.
meandrina’s total productivity and
diversity. Even though SPR B represents
less than one-third of P. meandrina’s
ecoregions, the following characteristics
of the population are especially valuable
for maintaining the species’ viability as
threats worsen throughout the 21st
century: (1) It contains all ecoregions
where P. meandrina is dominant; (2) it
provides a link to between the species’
isolated ecoregions in the eastern Pacific
to the bulk of its ecoregions in the
western Pacific; and (3) it contains a
high proportion of islands and atolls
with small or no human populations
(NMFS 2020b) where local threats are
likely to be relatively low in the
foreseeable future, and thus may
provide refuges for maintaining the
species’ resilience as conditions
deteriorate. Therefore, SPR B is
significant to the viability of P.
meandrina and qualifies as an SPR.
SPR C qualifies as an SPR because it
is significant to the viability of P.
meandrina, based on the population’s
distribution and diversity. SPR C’s
distribution consists of 58 ecoregions
(#11–68), or approximately 60 percent
of P. meandrina’s ecoregions (58/95
ecoregions) and approximately 76
percent of its coral reef area (Table 4).
The population’s ecoregions all occur
within the central western portion of its
range in the Pacific Ocean. SPR C
includes a high proportion of P.
meandrina’s coral reef area (76 percent)
because it encompasses the entire Coral
Reef Triangle, which has the highest
density of coral reefs in the world
(NMFS 2020b). In addition, SPR C
connects the western Indian Ocean
ecoregions (#1–10) with the rest of the
species’ ecoregions to the east (i.e.,
Ecoregions #69–95). Distribution and
abundance strongly influence a
population’s productivity and diversity
(see SRR, Sections 3.3 and 3.4), thus
SPR C likely contains approximately 60
E:\FR\FM\06JYN2.SGM
06JYN2
40498
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
to 76 percent of P. meandrina’s total
productivity and diversity. Since SPR C
includes the large majority of P.
meandrina’s distribution, abundance,
productivity, and diversity, the species
would not be viable in the absence of
this population. Therefore, SPR C is
significant to the viability of P.
meandrina and qualifies as an SPR.
SPR D qualifies as an SPR because it
is significant to the viability of P.
meandrina, based on the population’s
distribution, abundance, and
productivity. SPR D’s distribution
consists of 19 ecoregions (#69–87),
representing only 20 percent of P.
meandrina’s ecoregions (19/95
ecoregions) and approximately 14
percent of its coral reef area (Table 4).
The population’s ecoregions are located
in the central eastern portion of its range
in the Pacific Ocean (NMFS 2020b).
While SPR D’s distribution covers only
one-fifth of the species’ ecoregions, this
population connects the eastern Pacific
ecoregions (#88–95) with the rest of the
species (i.e., Ecoregions #1–68). In
addition, the abundance of this
population is important because all
ecoregions where P. meandrina is
dominant occur within this population
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
(NMFS 2020b). Distribution and
abundance strongly influence a
population’s productivity and diversity
(see SRR, Sections 3.3 and 3.4), thus
SPR D likely contains approximately 14
to 20 percent of P. meandrina’s total
productivity and diversity. Even though
SPR D represents less than one-quarter
of P. meandrina’s ecoregions, the
following characteristics of the
population are especially valuable for
maintaining the species’ viability as
threats worsen throughout the 21st
century: (1) It contains all ecoregions
where P. meandrina is dominant; (2) it
provides a link to between the species’
isolated ecoregions in the eastern Pacific
to the bulk of its ecoregions in the
western Pacific; and (3) it contains a
high proportion of islands and atolls
with small or no human populations
(NMFS 2020b) where local threats are
likely to be relatively low in the
foreseeable future, and thus may
provide refuges for maintaining the
species’ resilience as conditions
deteriorate. Therefore, SPR D is
significant to the viability of P.
meandrina and qualifies as an SPR.
Aside from SPRs A–D, no other
portions of the range of P. meandrina
PO 00000
Frm 00020
Fmt 4701
Sfmt 4703
considered were found to qualify as
SPRs, based on the currently available
best information, as presented in the
SRR (Smith 2019b) and NMFS (2020b).
The ecoregions on the fringes of the
species’ range in the western Indian
Ocean (#1–10) and in the eastern Pacific
Ocean (#88–95), are not significant to
the viability of P. meandrina because:
(1) Their distributions represent small
proportions of the species’ range, and do
not connect large portions of the
species’ range with one another; (2)
their abundances are much smaller than
SPRs A–D; (3) productivity depends on
abundance, thus their productivities are
likely relatively low; and (4) diversity
depends on distribution, thus their
diversities are likely relatively low.
Likewise, other groupings of ecoregions
are not significant to the viability of P.
meandrina for the same reasons, even
groups with more ecoregions than SPRs
B (27 ecoregions) and D (19 ecoregions)
such as those of the Coral Triangle (#15–
42, 28 ecoregions), because they do not
possess the unique characteristics
described above for SPRs B and D.
BILLING CODE 3510–22–P
E:\FR\FM\06JYN2.SGM
06JYN2
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
40499
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
PO 00000
Frm 00021
Fmt 4701
Sfmt 4703
E:\FR\FM\06JYN2.SGM
06JYN2
EN06JY20.003
BILLING CODE 3510–22–C
40500
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
Extinction Risk Assessments of the Four
SPRs
The second step in our SPR analysis
was to determine the status of each SPR
with an Extinction Risk Assessment
(ERA) similar to the process described
in the Rangewide Extinction Risk
Assessment section, except that the ERA
Team was not involved. Instead, based
on the information in the GSA (Smith
2019a), SRR (2019b), and NMFS
(2020b), staff of the NMFS Pacific
Islands Regional Office analyzed the
demographic factors and threats for each
of the four SPRs to inform its extinction
risk.
SPR A. SPR A’s distribution consists
of P. meandrina’s Ecoregions #1–68, an
area ≈15,500 km (9,630 mi) wide from
the western Indian Ocean to the western
Pacific Ocean, encompassing
approximately 197,000 km2 of coral
reefs. Its range includes some remote
areas with small or no human
populations, including most of the
Maldives and Seychelles in the Indian
Ocean, and parts of eastern Indonesia,
the northern GBR, and the Kimberley
Coast of Australia in the Pacific Ocean,
and many others (Smith 2019b, Fig. 2;
NMFS 2020b). As is typical of P.
meandrina, SPR A is more common at
depths of <5 m (16 ft) than in deeper
areas. The deepest P. meandrina
colonies recorded within SPR A are
from 30 m (98 ft) at Farallon de
Medinilla in the Mariana Islands, and
deepest colonies recorded for the
species as a whole are from a depth of
34 m (112 ft; Smith 2019b, Section
3.1.2). Thus, SPR A’s depth range is
from the surface to at least 30 m. There
is no evidence of any reduction in its
range due to human impacts, thus we
consider SPR A’s historic and current
ranges to be the same. Therefore, based
on the best available information
provided in the SRR (Smith 2019b), we
consider SPR A’s distribution to be very
large and stable (Table 4).
Of SPR A’s 68 ecoregions, relative
abundance information is available for
38 ecoregions, in which it is not
dominant in any, common in eight,
uncommon in 29, and rare in one
(Smith 2019b, Fig. 2; NMFS 2020b). We
estimate P. meandrina’s total
population to be at least several tens of
billions of colonies (Smith 2019b,
Section 3.2.2), and SPR A includes
approximately 85 percent of the species’
coral reef area (Table 4, NMFS 2020b).
However, the relative abundances of P.
meandrina in SPR A’s ecoregions are
mostly uncommon, unlike the central
Pacific where it is common or
dominant. Thus, we estimate the
population of SPR A to be a few tens of
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
billions of colonies. In the four
ecoregions for which time-series
abundance data or information are
available for SPR A, abundance appears
to be decreasing in two ecoregions
(Chagos Archipelago, Marianas Islands)
and stable in two ecoregions (GBR Far
North, GBR North-central; Smith 2019b,
Table 4; NMFS 2020b). Therefore, based
on the best available information
provided above, we consider SPR A’s
overall abundance to be very high, but
its overall abundance trend is unknown
(Table 4).
Based on the information in the SRR,
we consider SPR A’s productivity to be
high, despite declining abundance
trends in some ecoregions. Evidence for
high productivity is provided by
observations from the GBR indicating
strong recoveries in recent years from
disturbances by displacing less
competitive coral species and becoming
more abundant than before the
disturbances. In addition, studies and
observations from ecoregions in other
populations have documented multiple
recoveries (Smith 2019b, Section 3.2.3).
These recoveries demonstrate continued
high productivity, thus we consider SPR
A’s productivity to be high and stable
(Table 4).
Although there is little information
available on the genotypic and
phenotypic diversity of SPR A, its large
distribution and high habitat
heterogeneity suggest that both types of
diversity are high for this population. In
addition, the population’s distribution
has not been reduced (Smith 2019b,
Section 3.1). Therefore, we consider
SPR A’s diversity to be high and stable
(Table 4).
The vulnerabilities of P. meandrina to
each of the 10 threats were rated in the
SRR, based on the species’ susceptibility
and exposure to each threat, over the
foreseeable future assuming that RCP8.5
is the most likely future climate
scenario (Smith 2019b, Table 6). Since
SPR A includes approximately 85
percent of the range of P. meandrina in
terms of coral reef area (Table 4), the
threats to SPR A are similar as to the
entire species, thus the threat
vulnerability ratings are applicable to
SPR A. Threat vulnerabilities were rated
as: High for ocean warming and ocean
acidification; Moderate for predation;
Low to Moderate for fishing, land-based
sources of pollution, and collection and
trade; Low for sea-level rise, disease,
and other threats (global); Very Low to
Low for other threats (local), and
Unknown for interactions of threats.
Vulnerabilities to all threats are
expected to increase throughout the
foreseeable future under RCP8.5 (Smith
2019b, Table 6). SPR A’s strong
PO 00000
Frm 00022
Fmt 4701
Sfmt 4703
demographic factors moderate all
threats, but the gradual worsening of
threats is expected to result in a steady
increase in extinction risk throughout
the foreseeable future (Smith 2019b).
The extinction risk of SPR A depends
on its demographic factors and threats.
Populations at Low extinction risk have
stable or increasing trends in abundance
and productivity with connected,
diverse populations, and are not facing
threats that result in declining trends in
distribution, abundance, productivity,
or diversity (NMFS 2017). Currently,
SPR A has a very large distribution, very
high abundance, stable (two ecoregions)
or decreasing (two ecoregions)
abundance in the four ecoregions for
which abundance trend data or
information are available, and high and
stable productivity and diversity. The
population has life history
characteristics that provide resilience to
disturbances and a high capacity for
recovery. However, SPR A faces
multiple threats, the worst of which are
expected to increase in the foreseeable
future (NMFS 2020a, Smith 2019a).
Thus, on the one hand, most
demographic factors suggest Low
extinction risk for SPR A, but on the
other hand, recent declining abundance
trends in two of the four known
ecoregions, as well as increasing threats
throughout the foreseeable future,
suggest increased extinction risk.
Species at Moderate extinction risk
are on a trajectory that puts them at a
high level of extinction risk in the
foreseeable future, due to projected
threats or declining trends in
distribution, abundance, productivity,
or diversity. While SPR A’s distribution,
productivity, and diversity are currently
strong and stable, recent abundance
trends are declining in half of the
ecoregions for which data or
information are available (two of four
ecoregions). In addition, all threats are
expected to worsen throughout the
foreseeable future, including the two
greatest threats, ocean warming and
ocean acidification, resulting in
increased frequency, magnitude, and
severity of warming-induced coral
bleaching, reduced coral calcification,
and increased reef erosion. These
climate change threats are likely to be
exacerbated by local threats such as
fishing and land-based sources of
pollution throughout much of SPR A’s
range. In conclusion, the information in
the GSA (Smith 2019a), the SRR (Smith
2019b), and NMFS (2020b) provide
support for SPR A currently being at
low to moderate extinction risk
throughout the foreseeable future.
SPR B. SPR B’s distribution consists
of P. meandrina’s Ecoregions #69–95, an
E:\FR\FM\06JYN2.SGM
06JYN2
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
area ≈13,300 km (8,300 mi) wide in the
central and eastern Pacific Ocean,
encompassing approximately 35,000
km2 of coral reefs as well as extensive
non-reef and mesophotic habitats
(NMFS 2020b). Its range includes many
remote areas with small or no human
populations, including the
Northwestern Hawaiian Islands, Line
Islands, Tuamotu Archipelago, most of
the Galapagos Islands, Revillagigedo
Islands, Clipperton Atoll, and others
(Smith 2019b, Fig. 2; NMFS 2020b). As
is typical of P. meandrina, SPR B is
more common at depths of <5 m (16 ft)
than in deeper areas. The deepest P.
meandrina colonies on record are from
SPR B at a depth of 34 m (112 ft; Smith
2019b, Section 3.1.2). Thus, SPR B’s
depth range is from the surface to 34 m.
There is no evidence of any reduction
in its range due to human impacts, thus
we consider SPR B’s historic and
current ranges to be the same. Therefore,
based on the best available information
provided in the SRR (Smith 2019b), we
consider SPR B’s distribution to be large
and stable (Table 4).
Relative abundance information is
available for all of SPR B’s 27
ecoregions, in which it is dominant in
seven, common in 10, uncommon in
seven, and rare in three. It is a very
common species in many of the
Pocillopora-dominated reef coral
communities of the central Pacific, and
is common to rare in the eastern Pacific
(Smith 2019b, Fig. 2; NMFS 2020b). We
estimate P. meandrina’s total
population to be at least several tens of
billions of colonies (Smith 2019b,
Section 3.2.2), but SPR B includes only
about 15 percent of the species’ coral
reef area (Table 4, NMFS 2020b).
However, this population includes all
seven ecoregions where P. meandrina is
dominant, and the species is dominant
or common in 17 of the population’s 27
ecoregions. Thus, we estimate SPR B’s
total population to be at least several
billion colonies. In the six ecoregions
for which time-series abundance data or
information are available for SPR B,
abundance appears to be decreasing in
three ecoregions (Northwestern
Hawaiian Islands, Main Hawaiian
Islands, Galapagos Islands) and stable in
three ecoregions (Samoa-Tuvalu-Tonga,
Society Islands, Mexico West; Smith
2019b, Table 4; NMFS 2020b).
Therefore, based on the best available
information provided above, we
consider SPR B’s overall abundance to
be high, but its overall abundance trend
is unknown (Table 4).
Based on the information in the SRR,
we consider SPR B’s productivity to be
high, despite declining abundance
trends in some ecoregions. Evidence for
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
high productivity is provided by SPR
B’s recovery from disturbance in several
ecoregions, including: (1) Demographic
data suggests that recovery from back-toback bleaching events is occurring in
the MHI Ecoregion (i.e., fewer adults
colonies in 2016 than in 2013 show
adult colony mortality from the 2014
and 2015 bleaching events, but more
juvenile colonies in 2016 than in 2013
suggests the initial stages of recovery
from the bleaching events); and (2)
studies and observations in other
ecoregions (e.g., GBR, Society Islands)
indicate strong recoveries in recent
years from various types of disturbances
at multiple locations throughout its
range, by displacing less competitive
coral species and becoming more
abundant than before the disturbances
(Smith 2019b, Section 3.2.3). These
recoveries demonstrate continued high
productivity, thus we consider SPR B’s
productivity to be high and stable (Table
4).
Although there is little information
available on the genotypic and
phenotypic diversity of SPR B, its large
distribution and high habitat
heterogeneity suggest that both types of
diversity are very high for this
population. In addition, information
from portions of individual ecoregions
within SPR B shows high genotype and
phenotypic diversity (Smith 2019b,
Section 3.4). Furthermore, the
population’s distribution has not been
reduced (Smith 2019b, Section 3.1).
Therefore, we consider SPR B’s
diversity to be high and stable (Table 4).
The vulnerabilities of P. meandrina to
each of the 10 threats were rated in the
SRR, based on the species’ susceptibility
and exposure to each threat, for the
foreseeable future assuming that RCP8.5
is the most likely future climate
scenario (Smith 2019b, Table 6). Threat
vulnerabilities were rated as: High for
ocean warming and ocean acidification;
Moderate for predation; Low to
Moderate for fishing, land-based sources
of pollution, and collection and trade;
Low for sea-level rise, disease, and other
threats (global); Very Low to Low for
other threats (local), and Unknown for
interactions of threats. Vulnerabilities to
all threats are expected to increase in
the foreseeable future under RCP8.5
(Smith 2019b, Table 6). Since SPR B has
lower human population density and a
higher proportion of remote areas than
P. meandrina’s entire range (Smith
2019b), local threats (fishing, land-based
sources of pollution, collection and
trade, and other local threats) are likely
less severe in SPR B’s range than across
the range of the species. However, the
vulnerability of SPR B to climate change
threats (ocean warming, ocean
PO 00000
Frm 00023
Fmt 4701
Sfmt 4703
40501
acidification, sea-level rise) are likely
similar as for P. meandrina rangewide.
SPR B’s strong demographic factors
moderate all threats, but the gradual
worsening of threats is expected to
result in a steady increase in extinction
risk throughout the 21st century (Smith
2019b).
The extinction risk of SPR B depends
on its demographic factors and threats.
Populations at Low extinction risk have
stable or increasing trends in abundance
and productivity with connected,
diverse populations, and are not facing
threats that result in declining trends in
distribution, abundance, productivity,
or diversity (NMFS 2017). Although
SPR B only includes approximately 15
percent of the range of P. meandrina, it
nevertheless covers approximately
35,000 km2 of reef area, and extensive
non-reef and mesophotic habitats
(NMFS 2020b). Currently, SPR B has a
large distribution, high abundance,
stable (three ecoregions) or decreasing
(three ecoregions) abundance in the six
ecoregions for which abundance trend
data or information are available, and
high and stable productivity and
diversity. The population has life
history characteristics that provide
resilience to disturbances and a high
capacity for recovery. However, SPR B
faces multiple threats, the worst of
which are expected to increase in the
foreseeable future (NMFS 2020a, Smith
2019a). Thus, on the one hand, most
demographic factors suggest Low
extinction risk for SPR B, but on the
other hand, recent declining abundance
trends in two of the four known
ecoregions, as well as increasing threats
throughout the foreseeable future,
suggest increased extinction risk.
Species at Moderate extinction risk
are on a trajectory that puts them at a
high level of extinction risk in the
foreseeable future, due to projected
threats or declining trends in
distribution, abundance, productivity,
or diversity. While SPR B’s distribution,
productivity, and diversity are currently
strong and stable, recent abundance
trends are declining in half of the
ecoregions for which data or
information are available (three of six
ecoregions). In addition, all threats are
expected to worsen in the foreseeable
future, including the two greatest
threats, ocean warming and ocean
acidification, resulting in increased
frequency, magnitude, and severity of
warming-induced coral bleaching,
reduced coral calcification, and
increased reef erosion. These climate
change threats are likely to be
exacerbated by local threats such as
fishing and land-based sources of
pollution in some of SPR B’s range. In
E:\FR\FM\06JYN2.SGM
06JYN2
40502
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
conclusion, the information in the GSA
(Smith 2019a), the SRR (Smith 2019b),
and NMFS (2020b) provide support for
SPR B currently being at low to
moderate extinction risk throughout the
foreseeable future.
SPR C. SPR C’s distribution consists
of P. meandrina’s Ecoregions #11–68
from the western Indian Ocean to the
western Pacific Ocean. Its range
encompasses the densest aggregations of
coral reefs in the world, amounting to
approximately 178,000 km2 of coral reef
area (Table 4). The population includes
some remote areas with small or no
human populations, including parts of
eastern Indonesia, the northern GBR, the
Kimberley Coast of northwest Australia,
and parts of New Guinea and the
Solomon Islands, in addition to others
(Smith 2019b, Fig. 2; NMFS 2020b). As
is typical of P. meandrina, SPR C is
more common at depths of <5 m (16 ft)
than in deeper areas. The deepest P.
meandrina colonies recorded within
SPR C are from 30 m (98 ft) at Farallon
de Medinilla in the Mariana Islands,
and deepest colonies recorded for the
species as a whole are from a depth of
34 m (112 ft; Smith 2019b, Section
3.1.2). Thus, SPR C’s depth range is
from the surface to at least 30 m. There
is no evidence of any reduction in its
range due to human impacts, thus we
consider SPR C’s historic and current
ranges to be the same. Therefore, based
on the best available information
provided in the SRR (Smith 2019b), we
consider SPR C’s distribution to be very
large and stable (Table 4).
Of SPR C’s 58 ecoregions, relative
abundance information is available for
34 ecoregions, in which it is common in
seven, and uncommon in 27 (Smith
2019b, Fig. 2; NMFS 2020b). SPR C
contains the entire Coral Triangle
(Indonesia, Malaysia, Papua New
Guinea, Philippines, Solomon Islands),
which has over half of the coral reef area
in the Indo-Pacific (Smith 2019a). While
many of the Coral Triangle’s ecoregions
are relatively small, they collectively
include over 25,000 islands, providing
extensive habitat for SPR C. The total
abundance estimate for P. meandrina is
at least several tens of billions of
colonies (Smith 2019b, Section 3.2.2),
and SPR C includes approximately 76
percent of the species’ coral reef habitat
area (NMFS 2020b), although P.
meandrina is uncommon in most of the
population’s ecoregions. Thus, we
estimate SPR C’s abundance to be a few
tens of billions of colonies. In the three
ecoregions for which time-series
abundance data or information are
available for SPR C, abundance appears
to be decreasing in one ecoregion
(Marianas Islands) and stable in two
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
ecoregions (GBR Far North, GBR Northcentral; Smith 2019b, Table 4; NMFS
2020b). Therefore, based on the best
available information provided above,
we consider SPR C’s overall abundance
to be very high, but its overall
abundance trend is unknown (Table 4).
Based on the information in the SRR,
we consider SPR C’s productivity to be
high, despite declining abundance
trends in one ecoregion. Evidence for
high productivity is provided by
observations from the GBR indicating
strong recoveries in recent years from
disturbances by displacing less
competitive coral species and becoming
more abundant than before the
disturbances. In addition, studies and
observations from ecoregions outside of
SPR C have documented multiple
recoveries (Smith 2019b, Section 3.2.3).
These recoveries demonstrate continued
high productivity, thus we consider SPR
C’s productivity to be high and stable
(Table 4).
Although there is little information
available on the genotypic and
phenotypic diversity of SPR C, its large
distribution and high habitat
heterogeneity suggest that both types of
diversity are high for this population. In
addition, the population’s distribution
has not been reduced (Smith 2019b,
Section 3.1). Therefore, we consider
SPR C’s diversity to be high and stable
(Table 4).
The vulnerabilities of P. meandrina to
each of the 10 threats were rated in the
SRR, based on the species’ susceptibility
and exposure to each threat, for the
foreseeable future assuming that RCP8.5
is the most likely future climate
scenario (Smith 2019b, Table 6). Since
SPR C includes approximately 76
percent of the range of P. meandrina,
the threats to SPR C are similar as to the
entire species, thus the threat
vulnerability ratings are applicable to
SPR C. Threat vulnerabilities were rated
as: high for ocean warming and ocean
acidification; Moderate for predation;
Low to Moderate for fishing, land-based
sources of pollution, and collection and
trade; Low for sea-level rise, disease,
and other threats (global); Very Low to
Low for other threats (local), and
Unknown for interactions of threats.
Vulnerabilities to all threats are
expected to increase in the foreseeable
future under RCP8.5 (Smith 2019b,
Table 6). While the global threats to SPR
C are likely very similar as to the
species as a whole, the local threats
such as fishing, land-based sources of
pollution, collection and trade, etc. are
likely somewhat worse for SPR C
because of the large human population
and rapid industrialization within much
of the Coral Triangle. However, SPR C
PO 00000
Frm 00024
Fmt 4701
Sfmt 4703
also includes many remote areas with
small or no human populations where
local threats are virtually absent, such as
parts of eastern Indonesia, northern
Australia, Papua New Guinea, the
Solomon Islands, and others (Smith
2019a; NMFS 2020b). SPR C’s strong
demographic factors moderate all
threats, but the gradual worsening of
threats is expected to result in a steady
increase in extinction risk throughout
the foreseeable future (Smith 2019b).
The extinction risk of SPR C depends
on its demographic factors and threats.
Populations at Low extinction risk have
stable or increasing trends in abundance
and productivity with connected,
diverse populations, and are not facing
threats that result in declining trends in
distribution, abundance, productivity,
or diversity (NMFS 2017). Currently,
SPR C has a very large distribution, very
high abundance, stable (two ecoregions)
or decreasing (one ecoregion)
abundance in the three ecoregions for
which abundance trend data or
information are available, and high and
stable productivity and diversity. The
population has life history
characteristics that provide resilience to
disturbances and a high capacity for
recovery. However, SPR C faces
multiple threats, the worst of which are
expected to increase in the foreseeable
future (Smith 2019a). Thus, on the one
hand, most demographic factors suggest
Low extinction risk for SPR C, but on
the other hand, recent declining
abundance trends in one of the three
known ecoregions, as well as increasing
threats in the foreseeable future, suggest
increased extinction risk.
Species at Moderate extinction risk
are on a trajectory that puts them at a
high level of extinction risk in the
foreseeable future, due to projected
threats or declining trends in
distribution, abundance, productivity,
or diversity. While SPR C’s distribution,
productivity, and diversity are currently
strong and stable, recent abundance
trends are declining in one of the three
ecoregions for which data or
information are available. In addition,
all threats are expected to worsen in the
foreseeable future, including the two
greatest threats, ocean warming and
ocean acidification, resulting in
increased frequency, magnitude, and
severity of warming-induced coral
bleaching, reduced coral calcification,
and increased reef erosion. These
climate change threats are likely to be
exacerbated by local threats such as
fishing and land-based sources of
pollution throughout much of SPR C’s
range. In conclusion, the information in
the GSA (Smith 2019a), the SRR (Smith
2019b), and NMFS (2020b) provide
E:\FR\FM\06JYN2.SGM
06JYN2
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
support for SPR C currently being at low
to moderate extinction risk throughout
the foreseeable future.
SPR D. SPR D’s distribution consists
of P. meandrina’s Ecoregions #69–87.
Although the smallest SPR, and the one
with the fewest ecoregions, the
population encompasses an area ≈6,500
km (4,000 mi) wide in the central
Pacific Ocean that includes
approximately 32,000 km2 of coral reefs
as well as extensive non-reef and
mesophotic habitats (NMFS 2020b). Its
range includes many remote areas with
small or no human populations,
including the Northwestern Hawaiian
Islands, the Line Islands, and the
Tuamotu Archipelago, and others
(Smith 2019b, Fig. 2; NMFS 2020b). As
is typical of P. meandrina, SPR D is
more common at depths of <5 m (16 ft)
than in deeper areas. The deepest P.
meandrina colonies on record are from
SPR D at a depth of 34 m (112 ft; Smith
2019b, Section 3.1.2). Thus, SPR D’s
depth range is from the surface to 34 m.
There is no evidence of any reduction
in its range due to human impacts, thus
we consider SPR D’s historic and
current ranges to be the same. Therefore,
based on the best available information
provided in the SRR (Smith 2019b), we
consider SPR D’s distribution to be large
and stable (Table 4).
Relative abundance information is
available for all of SPR D’s 19
ecoregions, in which it is dominant in
seven, common in 7, and uncommon in
five. Many of the coral reef communities
within this population are Pocilloporadominated, and P. meandrina is one of
the most common species in many of
SPR D’s ecoregions (Smith 2019b, Fig. 2;
NMFS 2020b). We estimate P.
meandrina’s total population to be at
least several tens of billions of colonies
(Smith 2019b, Section 3.2.2), but SPR D
includes only about 14 percent of the
species’ coral reef area (NMFS 2020b).
However, this population includes all
seven ecoregions where P. meandrina is
dominant, and the species is dominant
or common in 14 of the population’s 19
ecoregions. Thus, we estimate SPR D’s
total population to be at least several
billion colonies. In the four ecoregions
for which time-series abundance data or
information are available for SPR D,
abundance appears to be decreasing in
two ecoregions (Northwestern Hawaiian
Islands, Main Hawaiian Islands) and
stable in two ecoregions (Samoa-TuvaluTonga, Society Islands; Smith 2019b,
Table 4; NMFS 2020b). Therefore, based
on the best available information
provided above, we consider SPR D’s
overall abundance to be high, but its
overall abundance trend is unknown
(Table 4).
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
Based on the information in the SRR,
we consider SPR D’s productivity to be
high, despite declining abundance
trends in some ecoregions. Evidence for
high productivity is provided by SPR
D’s recovery from disturbance in several
ecoregions, including: (1) Demographic
data suggests that recovery from back-toback bleaching events is occurring in
the MHI Ecoregion (i.e., fewer adults
colonies in 2016 than in 2013 show
adult colony mortality from the 2014
and 2015 bleaching events, but more
juvenile colonies in 2016 than in 2013
suggests the initial stages of recovery
from the bleaching events); and (2)
studies and observations in other
ecoregions (e.g., Society Islands)
indicate strong recoveries in recent
years from various types of disturbances
at multiple locations throughout its
range, by displacing less competitive
coral species and becoming more
abundant than before the disturbances
(Smith 2019b, Section 3.2.3). These
recoveries demonstrate continued high
productivity, thus we consider SPR D’s
productivity to be high and stable (Table
4).
Although there is little information
available on the genotypic and
phenotypic diversity of SPR D, its large
distribution and high habitat
heterogeneity suggest that both types of
diversity are very high for this
population. In addition, information
from portions of individual ecoregions
within SPR D shows high genotype and
phenotypic diversity (Smith 2019b,
Section 3.4). Furthermore, the
population’s distribution has not been
reduced (Smith 2019b, Section 3.1).
Therefore, we consider SPR D’s
diversity to be high and stable (Table 4).
The vulnerabilities of P. meandrina to
each of the 10 threats were rated in the
SRR, based on the species’ susceptibility
and exposure to each threat, for the
foreseeable future assuming that RCP8.5
is the most likely future climate
scenario (Smith 2019b, Table 6). Threat
vulnerabilities were rated as: high for
ocean warming and ocean acidification;
Moderate for predation; Low to
Moderate for fishing, land-based sources
of pollution, and collection and trade;
Low for sea-level rise, disease, and other
threats (global); Very Low to Low for
other threats (local), and Unknown for
interactions of threats. Vulnerabilities to
all threats are expected to increase in
the foreseeable future under RCP8.5
(Smith 2019b, Table 6). Since SPR D has
lower human population density and a
higher proportion of remote areas than
P. meandrina’s entire range (Smith
2019b), local threats (fishing, land-based
sources of pollution, collection and
trade, and other local threats) are likely
PO 00000
Frm 00025
Fmt 4701
Sfmt 4703
40503
less severe in SPR D’s range than across
the range of the species. However, the
vulnerability of SPR D to climate change
threats (ocean warming, ocean
acidification, sea-level rise) are likely
similar as for P. meandrina rangewide.
SPR D’s strong demographic factors
moderate all threats, but the gradual
worsening of threats is expected to
result in a steady increase in extinction
risk throughout the 21st century (Smith
2019b).
The extinction risk of SPR D depends
on its demographic factors and threats.
Populations at Low extinction risk have
stable or increasing trends in abundance
and productivity with connected,
diverse populations, and are not facing
threats that result in declining trends in
distribution, abundance, productivity,
or diversity (NMFS 2017). Currently,
SPR D has a large distribution, high
abundance, stable (two ecoregions) or
decreasing (two ecoregions) abundance
in the four ecoregions for which
abundance trend data or information are
available, and high and stable
productivity and diversity. The
population has life history
characteristics that provide resilience to
disturbances and a high capacity for
recovery. However, SPR D faces
multiple threats, the worst of which are
expected to increase in the foreseeable
future (Smith 2019a). Thus, on the one
hand, most demographic factors suggest
Low extinction risk for SPR D, but on
the other hand, recent declining
abundance trends in two of the four
known ecoregions, as well as increasing
threats in the foreseeable future, suggest
increased extinction risk.
Species at Moderate extinction risk
are on a trajectory that puts them at a
high level of extinction risk in the
foreseeable future, due to projected
threats or declining trends in
distribution, abundance, productivity,
or diversity. While SPR D’s distribution,
productivity, and diversity are currently
strong and stable, recent abundance
trends are declining in half of the
ecoregions for which data or
information are available (two of four
ecoregions). In addition, all threats are
expected to worsen in the foreseeable
future, including the two greatest
threats, ocean warming and ocean
acidification, resulting in increased
frequency, magnitude, and severity of
warming-induced coral bleaching,
reduced coral calcification, and
increased reef erosion. These climate
change threats are likely to be
exacerbated by local threats such as
fishing and land-based sources of
pollution in some of SPR D’s range. In
conclusion, the information in the GSA
(Smith 2019a), the SRR (Smith 2019b),
E:\FR\FM\06JYN2.SGM
06JYN2
40504
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
and NMFS (2020b) provide support for
SPR D currently being at low to
moderate extinction risk throughout the
foreseeable future.
SPR Determinations
Determinations based on status of the
species within SPRs follow the process
described in the introduction to the
Rangewide Determination above. If the
species within the SPR meets the
definition of threatened or endangered,
then the species should be listed
throughout its range based on the status
within that SPR. The determinations for
P. meandrina’s four SPRs are based on
our interpretation of the information
described above on the status of each
SPR throughout its range currently and
over foreseeable future.
SPR A
SPR A can be characterized as a
population with strong demographic
factors facing broad and worsening
threats: It has a very large and stable
distribution, very high overall
abundance but unknown overall
abundance trend, high and stable
productivity, and high and stable
diversity (Table 4). But it faces multiple
global and local threats, all of which are
worsening, and existing regulatory
mechanisms are inadequate to
ameliorate the threats. As explained in
the Foreseeable Future for P. meandrina
section above, we consider it likely that
climate indicator values between now
and 2100 will be within the collective
ranges of those projected under RCPs
8.5, 6.0, and 4.5.
Although all threats are projected to
worsen within SPR A’s range over the
foreseeable future (Smith 2019a,b;
NMFS 2020a), the following
characteristics of the population
moderate its extinction risk,
summarized from information in the
SRR (Smith 2019b), NMFS (2020b), and
the SPR A component of the Extinction
Risk Assessments of the SPRs section
above: (1) Its very large geographic
distribution (68 ecoregions, ≈197,000
km2 of reef area; NMFS 2020b), broad
depth distribution (0-≥30 m; NMFS
2020b), and wide habitat breadth (SRR,
Section 2.4), provide SPR A high habitat
heterogeneity (SRR, section 3.4), which
creates patchiness of conditions across
its range at any given time, thus many
portions of its range are unaffected or
lightly affected by any given threat; (2)
its very high abundance (a few tens of
billions of colonies; NMFS 2020b),
together with high habitat heterogeneity,
likely result in many billions of colonies
surviving even the worst disturbances;
(3) even when high mortality occurs, its
high productivity provides the capacity
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
for the affected populations to recover
quickly, as has been documented at sites
in the GBR (SRR, Section 3.2.3); (4)
likewise, its high productivity provides
the capacity for populations to recover
relatively quickly from disturbances
compared to more sensitive reef coral
species, allowing SPR A to take over
denuded substrates and to sometimes
become more abundant after
disturbances than before them, as has
been documented at sites in the GBR
(SRR, Section 3.3); (5) it recruits to
artificial substrates more readily than
most other Indo-Pacific reef corals, often
dominating the coral communities on
the metal, concrete, and PVC surfaces of
seawalls, Fish Aggregation Devices,
pipes, and other manmade structures
(SRR, Section 3.3); (6) in other P.
meandrina populations that suffered
high mortality from warming-induced
bleaching, subsequent warming resulted
in less mortality (SRR, Section 4.1),
suggesting the potential for
acclimatization and adaptation in this
population; and (7) adaptation may be
enhanced by its high genotypic diversity
(SRR, Section 3.3) and high dispersal
(SRR, Section 3.4).
Taken together, these demographic
characteristics of SPR A are expected to
substantially moderate the impacts of
the worsening threats over the
foreseeable future. While broadly
deteriorating conditions will likely
result in a downward trajectory of SPR
A’s overall abundance in the foreseeable
future, the demographic characteristics
summarized above are expected to allow
the population to at least partially
recover from many disturbances,
thereby slowing the downward
trajectory. Thus, our interpretation of
the information in the GSA (Smith
2019a), SRR (Smith 2019b), and this
finding is that SPR A is currently at low
risk of extinction, and that it will be at
low to moderate risk of extinction in the
foreseeable future. Therefore, P.
meandrina is not warranted for listing
as endangered or threatened under the
ESA at this time based on its status
within SPR A.
SPR B
SPR B can be characterized as a
population with strong demographic
factors facing broad and worsening
threats: it has a large and stable
distribution, high overall abundance but
unknown overall abundance trend, high
and stable productivity, and high and
stable diversity (Table 4). But it faces
multiple global and local threats, all of
which are worsening, and existing
regulatory mechanisms are inadequate
to ameliorate the threats. As explained
in the Foreseeable Future for P.
PO 00000
Frm 00026
Fmt 4701
Sfmt 4703
meandrina section above, we consider it
likely that climate indicator values
between now and 2100 will be within
the collective ranges of those projected
under RCPs 8.5, 6.0, and 4.5.
Although all threats are projected to
worsen within SPR B’s range over the
foreseeable future (Smith 2019a,b;
NMFS 2020a), the following
characteristics of the population
moderate its extinction risk,
summarized from information in the
SRR (Smith 2019b), NMFS (2020b), and
the SPR B component of the Extinction
Risk Assessments of the SPRs section
above: (1) Its large geographic
distribution (27 ecoregions, ≈35,000 km2
of reef area, extensive non-reef and
mesophotic habitats; NMFS 2020b),
broad depth distribution (0–34 m;
NMFS 2020b), and wide habitat breadth
(SRR, Section 2.4), provide SPR B high
habitat heterogeneity (SRR, section 3.4),
which creates patchiness of conditions
across its range at any given time, thus
many portions of its range are
unaffected or lightly affected by any
given threat; (2) its high abundance (at
least several billion colonies; NMFS
2020b), together with high habitat
heterogeneity, likely result in billions of
colonies surviving even the worst
disturbances; (3) even when high
mortality occurs, its high productivity
provides the capacity for the affected
populations to recover quickly, as has
been documented at sites within several
ecoregions (e.g., at Fagatele Bay in
American Samoa, at the Kahe Power
Plant in the main Hawaiian Islands, and
at Moorea in the Society Islands; SRR,
Section 3.2.3); (4) likewise, its high
productivity provides the capacity for
populations to recover relatively quickly
from disturbances compared to more
sensitive reef coral species, allowing
SPR B to take over denuded substrates
and to sometimes become more
abundant after disturbances than before
them, as has been documented in some
of SPR B’s ecoregions (SRR, Section
3.3); (5) it recruits to artificial substrates
more readily than most other IndoPacific reef corals, often dominating the
coral communities on the metal,
concrete, and PVC surfaces of seawalls,
Fish Aggregation Devices, pipes, and
other manmade structures (SRR, Section
3.3); (6) in some sub-populations that
suffered high mortality from warminginduced bleaching, subsequent warming
resulted in less mortality (e.g., Oahu,
main Hawaiian Islands, SRR, Section
4.1), suggesting acclimatization or
adaptation of the surviving populations;
and (7) adaptation may be enhanced by
its high genotypic diversity (SRR,
E:\FR\FM\06JYN2.SGM
06JYN2
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
Section 3.3) and high dispersal (SRR,
Section 3.4).
Taken together, these demographic
characteristics of SPR B are expected to
substantially moderate the impacts of
the worsening threats over the
foreseeable future. Although SPR B only
consists of approximately 15 percent of
the range of P. meandrina, it
nevertheless covers approximately
35,000 km2 of reef area (Table 4), as well
as extensive non-reef and mesophotic
habitats, spread across the central and
eastern Pacific, thus constituting a large
distribution. In addition, SPR B’s
distribution includes over 1,000 atolls
and islands with small or no human
populations (NMFS 2020b) where local
threats are relatively low. While broadly
deteriorating conditions will likely
result in a downward trajectory of SPR
B’s overall abundance in the foreseeable
future, the demographic characteristics
summarized above are expected to allow
the population to at least partially
recover from many disturbances,
thereby slowing the downward
trajectory. Thus, our interpretation of
the information in the GSA (Smith
2019a), SRR (Smith 2019b), and this
finding is that SPR B is currently at low
risk of extinction, and that it will be at
low to moderate risk of extinction in the
foreseeable future. Therefore, P.
meandrina is not warranted for listing
as endangered or threatened under the
ESA at this time based on its status
within SPR B.
SPR C
SPR C can be characterized as a
population with strong demographic
factors facing broad and worsening
threats: it has a very large and stable
distribution, very high overall
abundance but unknown overall
abundance trend, high and stable
productivity, and high and stable
diversity (Table 4). But it faces multiple
global and local threats, all of which are
worsening, and existing regulatory
mechanisms are inadequate to
ameliorate the threats. As explained in
the Foreseeable Future for P. meandrina
section above, we consider it likely that
climate indicator values between now
and 2100 will be within the collective
ranges of those projected under RCPs
8.5, 6.0, and 4.5.
Although all threats are projected to
worsen within SPR C’s range over the
foreseeable future (Smith 2019a,b;
NMFS 2020a), the following
characteristics of the population
moderate its extinction risk,
summarized from information in the
SRR (Smith 2019b), NMFS (2020b), and
the SPR C component of the Extinction
Risk Assessments of the SPRs section
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
above: (1) Its very large geographic
distribution (58 ecoregions, ≈178,000
km2 of reef area; NMFS 2020b), broad
depth distribution (0-≥30 m; NMFS
2020b), and wide habitat breadth (SRR,
Section 2.4), provide SPR C high habitat
heterogeneity (SRR, section 3.4), which
creates patchiness of conditions across
its range at any given time, thus many
portions of its range are unaffected or
lightly affected by any given threat; (2)
its very high abundance (a few tens of
billions of colonies; NMFS 2020b),
together with high habitat heterogeneity,
likely result in many billions of colonies
surviving even the worst disturbances;
(3) even when high mortality occurs, its
high productivity provides the capacity
for the affected populations to recover
quickly, as has been documented on the
GBR (Section 3.2.3); (4) likewise, its
high productivity provides the capacity
for populations to recover relatively
quickly from disturbances compared to
more sensitive reef coral species,
allowing SPR C to take over denuded
substrates and to sometimes become
more abundant after disturbances than
before them, as has been documented on
the GBR (SRR, Section 3.3); (5) it
recruits to artificial substrates more
readily than most other Indo-Pacific reef
corals, often dominating the coral
communities on the metal, concrete,
and PVC surfaces of seawalls, Fish
Aggregation Devices, pipes, and other
manmade structures (SRR, Section 3.3);
(6) in other P. meandrina populations
that suffered high mortality from
warming-induced bleaching, subsequent
warming resulted in less mortality (SRR,
Section 4.1), suggesting the potential for
acclimatization and adaptation in this
population; and (7) adaptation may be
enhanced by its high genotypic diversity
(SRR, Section 3.3) and high dispersal
(SRR, Section 3.4).
Taken together, these demographic
characteristics of SPR C are expected to
substantially moderate the impacts of
the worsening threats over the
foreseeable future. While broadly
deteriorating conditions will likely
result in a downward trajectory of SPR
C’s overall abundance in the foreseeable
future, the demographic characteristics
summarized above are expected to allow
the population to at least partially
recover from many disturbances,
thereby slowing the downward
trajectory. Thus, our interpretation of
the information in the GSA (Smith
2019a), SRR (Smith 2019b), and this
finding is that SPR C is currently at low
risk of extinction, and that it will be at
low to moderate risk of extinction in the
foreseeable future. Therefore, P.
meandrina is not warranted for listing
PO 00000
Frm 00027
Fmt 4701
Sfmt 4703
40505
as endangered or threatened under the
ESA at this time based on its status
within SPR C.
SPR D
SPR D can be characterized as a
population with strong demographic
factors facing broad and worsening
threats: it has a large and stable
distribution, high overall abundance but
unknown overall abundance trend, high
and stable productivity, and high and
stable diversity (Table 4). But it faces
multiple global and local threats, all of
which are worsening, and existing
regulatory mechanisms are inadequate
to ameliorate the threats. As explained
in the Foreseeable Future for P.
meandrina section above, we consider it
likely that climate indicator values
between now and 2100 will be within
the collective ranges of those projected
under RCPs 8.5, 6.0, and 4.5.
Although all threats are projected to
worsen within SPR D’s range over the
foreseeable future (Smith 2019a,b;
NMFS 2020a), the following
characteristics of the population
moderate its extinction risk,
summarized from information in the
SRR (Smith 2019b), NMFS (2020b), and
the SPR D component of the Extinction
Risk Assessments of the SPRs section
above: (1) Its large geographic
distribution (19 ecoregions, ≈32,000 km2
of reef area, extensive non-reef and
mesophotic habitats; NMFS 2020b),
broad depth distribution (0–34 m;
NMFS 2020b), and wide habitat breadth
(SRR, Section 2.4), provide SPR D high
habitat heterogeneity (SRR, section 3.4),
which creates patchiness of conditions
across its range at any given time, thus
many portions of its range are
unaffected or lightly affected by any
given threat; (2) its high abundance (at
least several billion colonies; NMFS
2020b), together with high habitat
heterogeneity, likely result in billions of
colonies surviving even the worst
disturbances; (3) even when high
mortality occurs, its high productivity
provides the capacity for the affected
populations to recover quickly, as has
been documented at sites within several
ecoregions (e.g., at Fagatele Bay in
American Samoa, at the Kahe Power
Plant in the main Hawaiian Islands, and
at Moorea in the Society Islands; SRR,
Section 3.2.3); (4) likewise, its high
productivity provides the capacity for
populations to recover relatively quickly
from disturbances compared to more
sensitive reef coral species, allowing
SPR D to take over denuded substrates
and to sometimes become more
abundant after disturbances than before
them, as has been documented in some
of SPR D’s ecoregions (SRR, Section
E:\FR\FM\06JYN2.SGM
06JYN2
40506
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 / Notices
3.3); (5) it recruits to artificial substrates
more readily than most other IndoPacific reef corals, often dominating the
coral communities on the metal,
concrete, and PVC surfaces of seawalls,
Fish Aggregation Devices, pipes, and
other manmade structures (SRR, Section
3.3); (6) in some sub-populations that
suffered high mortality from warminginduced bleaching, subsequent warming
resulted in less mortality (e.g., Oahu,
main Hawaiian Islands, SRR, Section
4.1), suggesting acclimatization or
adaptation of the surviving populations;
and (7) adaptation may be enhanced by
its high genotypic diversity (SRR,
Section 3.3) and high dispersal (SRR,
Section 3.4).
Taken together, these demographic
characteristics of SPR D are expected to
substantially moderate the impacts of
the worsening threats over the
foreseeable future. Although SPR D only
consists of approximately 14 percent of
the range of P. meandrina, it
nevertheless covers approximately
VerDate Sep<11>2014
03:34 Jul 03, 2020
Jkt 250001
32,000 km2 of reef area (Table 4), as well
as extensive non-reef and mesophotic
habitats, spread across the central
Pacific, thus constituting a large
distribution. In addition, SPR D’s
distribution includes over 1,000 atolls
and islands with small or no human
populations (NMFS 2020b) where local
threats are relatively low. While broadly
deteriorating conditions will likely
result in a downward trajectory of SPR
D’s overall abundance in the foreseeable
future, the demographic characteristics
summarized above are expected to allow
the population to at least partially
recover from many disturbances,
thereby slowing the downward
trajectory. Thus, our interpretation of
the information in the GSA (Smith
2019a), SRR (Smith 2019b), and this
finding is that SPR D is currently at low
risk of extinction, and that it will be at
low to moderate risk of extinction in the
foreseeable future. Therefore, P.
meandrina is not warranted for listing
PO 00000
Frm 00028
Fmt 4701
Sfmt 9990
as endangered or threatened under the
ESA at this time based on its status
within SPR D.
This is a final action, and, therefore,
we are not soliciting public comments.
References
A complete list of the references used
in this 12-month finding is available at
https://www.fisheries.noaa.gov/species/
pocillopora-meandrinacoral#conservation-management and
upon request (see FOR FURTHER
INFORMATION CONTACT).
Authority
The authority for this action is the
Endangered Species Act of 1973, as
amended (16 U.S.C. 1531 et seq.).
Dated: June 29, 2020.
Donna Wieting,
Director, Office of Protected Resources,
National Marine Fisheries Service.
[FR Doc. 2020–14304 Filed 7–2–20; 8:45 am]
BILLING CODE 3510–22–P
E:\FR\FM\06JYN2.SGM
06JYN2
Agencies
[Federal Register Volume 85, Number 129 (Monday, July 6, 2020)]
[Notices]
[Pages 40480-40506]
From the Federal Register Online via the Government Publishing Office [www.gpo.gov]
[FR Doc No: 2020-14304]
[[Page 40479]]
Vol. 85
Monday,
No. 129
July 6, 2020
Part IV
Department of Commerce
-----------------------------------------------------------------------
National Oceanic and Atmospheric Administration
-----------------------------------------------------------------------
Endangered and Threatened Wildlife and Plants; Endangered Species Act
Listing Determination for the Coral Pocillopora meandrina; Notice
Federal Register / Vol. 85, No. 129 / Monday, July 6, 2020 /
Notices
[[Page 40480]]
-----------------------------------------------------------------------
DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric Administration
[Docket No. 200626-0172; RTID 0648-XG232]
Endangered and Threatened Wildlife and Plants; Endangered Species
Act Listing Determination for the Coral Pocillopora meandrina
AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and
Atmospheric Administration (NOAA), Commerce.
ACTION: Notice; 12-month finding and availability of status review
documents.
-----------------------------------------------------------------------
SUMMARY: We, NMFS, have completed a comprehensive status review under
the Endangered Species Act (ESA) for the Indo-Pacific, reef-building
coral Pocillopora meandrina. After reviewing the best scientific and
commercial data available, including the General Status Review of Indo-
Pacific Reef-building Corals and the P. meandrina Status Review Report,
we have determined that listing P. meandrina as threatened or
endangered based on its status throughout all or a significant portion
of its range under the ESA is not warranted at this time.
DATES: This finding was made on July 6, 2020.
ADDRESSES: The petition, General Status Assessment of Indo-Pacific
Reef-building Corals, P. meandrina Status Review Report, Federal
Register notice, and the list of references can be accessed
electronically online at: https://www.fisheries.noaa.gov/species/pocillopora-meandrina-coral#conservation-management.
FOR FURTHER INFORMATION CONTACT: Lance Smith, NMFS, Pacific Islands
Regional Office, Protected Resources Division, (808) 725-5131; or
Celeste Stout, NMFS, Office of Protected Resources, (301) 427-8436.
SUPPLEMENTARY INFORMATION:
Background
This 12-month finding is a response to a petition to list P.
meandrina under the ESA. Background to the petition, 90-day finding,
and policy on listing species under the ESA is provided below.
Petition and 90-Day Finding
On March 14, 2018, we received a petition from the Center for
Biological Diversity to list the Indo-Pacific reef-building coral
Pocillopora meandrina in Hawaii as an endangered or threatened species
under the ESA. Under the ESA, a listing determination addresses the
status of a species, its subspecies, and, for any vertebrate species,
any distinct population segment (DPS) that interbreeds when mature (16
U.S.C. 1532(16)). Under the ESA, a species is ``endangered'' if it is
in danger of extinction throughout all or a significant portion of its
range, or ``threatened'' if it is likely to become endangered within
the foreseeable future throughout all or a significant portion of its
range (ESA sections 3(6) and 3(20), respectively, 16 U.S.C. 1532(6) and
(20)). The petition requested that the Hawaii portion of the species'
range be considered a significant portion of its range, thus the
petition focused primarily on the status of P. meandrina in Hawaii.
However, the petition also requested that P. meandrina be listed
throughout its range, and provided some information on its status and
threats outside of Hawaii. In light of recent court decisions regarding
our policy on the interpretation of the phrase ``significant portion of
its range'' (SPR) under the ESA (79 FR 37577, July 1, 2014), we
interpreted the petition as a request to first consider the status of
P. meandrina throughout its range, followed by an SPR review consisting
of: (1) Analysis of any SPRs, including the portion of the range within
Hawaii; and (2) determination of the status of SPRs.
On September 20, 2018, we published a 90-day finding (83 FR 47592)
announcing that the petition presented substantial scientific or
commercial information indicating that P. meandrina may be warranted
for listing under the ESA throughout all or a significant portion of
its range. We also announced the initiation of a status review of the
species, as required by section 4(b)(3)(a) of the ESA, and requested
information to inform the agency's decision on whether this species
warrants listing as endangered or threatened under the ESA.
Listing Species Under the Endangered Species Act
We are responsible for determining whether P. meandrina is
threatened or endangered under the ESA (16 U.S.C. 1531 et seq.). To
make this determination, we first consider whether a group of organisms
constitutes a ``species'' under section 3 of the ESA, then whether the
status of the species qualifies it for listing as either threatened or
endangered. Section 3 of the ESA defines species to include subspecies
and, for any vertebrate species, any DPS that interbreeds when mature
(16 U.S.C. 1532(16)). As noted previously, because P. meandrina is an
invertebrate species, the ESA does not consider listing individual
populations as DPSs.
Section 3 of the ESA defines an endangered species as any species
which is in danger of extinction throughout all or a significant
portion of its range, and a threatened species as one which is likely
to become an endangered species within the foreseeable future
throughout all or a significant portion of its range. Thus, in the
context of the ESA, the Services interpret an ``endangered species'' to
be one that is presently at risk of extinction. A ``threatened
species'' is not currently at risk of extinction, but is likely to
become so in the foreseeable future (that is, at a later time). The key
statutory difference between a threatened and endangered species is the
timing of when a species is or is likely to become in danger of
extinction, either presently (endangered) or in the foreseeable future
(threatened).
When we consider whether a species qualifies as threatened under
the ESA, we must consider the meaning of the term ``foreseeable
future.'' It is appropriate to interpret ``foreseeable future'' as the
horizon over which predictions about the conservation status of the
species can be reasonably relied upon. What constitutes the foreseeable
future for a particular species depends on species-specific factors
such as the life history of the species, habitat characteristics,
availability of data, particular threats, ability to predict threats,
and the reliability to forecast the effects of these threats and future
events on the status of the species under consideration. That is, the
foreseeability of a species' future status is case specific and depends
upon both the foreseeability of threats to the species and
foreseeability of the species' response to those threats. Our
consideration of the foreseeable future for this status review is
described in the Global Climate Change and the Foreseeable Future
section below.
The statute requires us to determine whether any species is
endangered or threatened throughout all or a significant portion of its
range as a result of any one or a combination of any of the following
factors: The present or threatened destruction, modification, or
curtailment of its habitat or range; overutilization for commercial,
recreational, scientific, or educational purposes; disease or
predation; the inadequacy of existing regulatory mechanisms; or other
natural or manmade factors affecting its continued existence. 16 U.S.C.
1533(a)(1). We are also required to make listing determinations based
solely on the best scientific and commercial data
[[Page 40481]]
available, after conducting a review of the species' status and after
taking into account efforts, if any, being made by any state or foreign
nation (or subdivision thereof) to protect the species. 16 U.S.C.
1533(b)(1)(A).
General Status Assessment, Status Review Report, and Extinction Risk
Assessment Team
The rangewide Status Review of P. meandrina consists of two
documents: (1) The General Status Assessment (GSA) of Indo-Pacific
Reef-building Corals (Smith 2019a); and (2) the P. meandrina Status
Review Report (SRR; Smith 2019b). The GSA (Smith 2019a) provides
contextual information on the status and trends of Indo-Pacific reef-
building corals, and the SRR (Smith 2019b) reports the status and
trends of P. meandrina based on the best available scientific
information. Based on the information provided in the Status Review
reports (Smith 2019a,b), an Extinction Risk Assessment (ERA) was
carried out as specified in the ``Guidance on Responding to Petitions
and Conducting Status Reviews under the Endangered Species Act'' (NMFS
2017). As per the guidance, an ERA Team was established, consisting of
seven reef-building coral subject matter experts, and the Team used the
information in the Status Review reports to provide ratings of P.
meandrina's extinction risk, described in the final section of the SRR
(Smith 2019b).
The two reports that make up this Status Review (Smith 2019a,b)
represent a compilation of the best available scientific and commercial
information on the P. meandrina's biology, ecology, life history,
threats, and status from information contained in the petition, our
files, a comprehensive literature search, and consultation with Indo-
Pacific reef coral experts. We also considered information submitted by
the public in response to our 90-day finding (83 FR 47592; September
20, 2018). The draft Status Review reports (Smith 2019a,b) underwent
independent peer review by reef coral experts as required by the Office
of Management and Budget (OMB) Final Information Quality Bulletin for
Peer Review (M-05-03; December 16, 2004). The peer reviewers were asked
to evaluate the adequacy, appropriateness, and application of data used
in the Status Review reports, including the Extinction Risk Assessment
methodology. Peer reviewer comments were addressed prior to
dissemination and finalization of the Status Review reports and
publication of this finding, as described in the Peer Review Report.
We subsequently reviewed the Status Review reports (Smith 2019a,b),
their cited references, and peer review comments, and believe the
Status Review reports, upon which this 12-month finding are based,
provide the best available scientific and commercial information on P.
meandrina. Much of the information discussed below on the species'
biology, distribution, abundance, threats, and extinction risk is
presented in the Status Review reports (Smith 2019a,b). However, in
making the 12-month finding determinations (i.e., our decisions that P.
meandrina is not warranted for listing rangewide, nor as any SPRs), we
have independently applied the statutory provisions of the ESA,
including evaluation of the factors set forth in section 4(a)(1)(A)-(E)
and our regulations regarding listing determinations at 50 CFR part
424. The Status Review reports (Smith 2019a,b) and the Peer Review
Report are available on our website at https://www.cio.noaa.gov/services_programs/prplans/PRsummaries.html.
Global Climate Change and the Foreseeable Future
Many of the threats to P. meandrina, including the most severe
threats, stem from global climate change (Smith 2019b). As described in
the preceding ``Listing Species Under the Endangered Species Act''
section, the purpose of this finding is to determine the extinction
risk of the species now and in the foreseeable future. The extinction
risk of P. meandrina now and in the immediate future depends on the
impacts of threats resulting from the continuation of ongoing climate
change. Its extinction risk in the future depends on how far into the
future climate change threats are foreseeable, and what impacts those
threats will have on the species over that timeframe. Thus, this
section provides an overview of global climate change and existing
guidance, a description of the climate change status quo, the rationale
for our determination of the length of the foreseeable future for the
most important threats to P. meandrina (ocean warming and ocean
acidification), and descriptions of the impacts of those threats on the
species over the foreseeable future.
Overview of Global Climate Change and Existing Guidance
Global climate change refers to increased concentrations of
greenhouse gases (GHGs; primarily carbon dioxide, but also methane,
nitrous oxide, and others) in the atmosphere from anthropogenic
emissions, and subsequent warming of the earth, acidification of the
oceans, rising sea-levels, and other impacts since the beginning of the
industrial era in the mid-19th century. Since that time, the release of
carbon dioxide (CO2) from industrial and agricultural
activities has resulted in atmospheric CO2 concentrations
that have increased from approximately 280 ppm in 1850 to 410 ppm in
2019 (Smith 2019a). The resulting warming of the earth has been
unequivocal, and each of the last three decades has been successively
warmer than any preceding decade since 1850. The climate change
components of the P. meandrina Status Review were based on the
International Panel on Climate Change's (IPCC) Fifth Assessment Report
``Climate Change 2013: The Physical Science Basis'' (AR5; IPCC 2013a),
the IPCC's ``Global Warming of 1.5[deg] C'' (1.5[deg] Report; IPCC
2018), and other climate change literature cited in the GSA and SRR.
The IPCC published the 1.5[deg] Report to compare the impacts of global
warming of 1.5[deg] C vs. 2.0[deg] C above pre-industrial levels, in
response to the 2015 Paris Agreement's objective of limiting global
warming to 1.5[deg] C. The IPCC's AR5 and the 1.5[deg] Report together
represent the largest synthesis of global climate change physical
science ever compiled. The IPCC is currently compiling its Sixth
Assessment Report (AR6), due to be published in 2021 or 2022 (Smith
2019a).
Observed and projected global mean surface temperatures (GMST) from
the pre-industrial baseline period of 1850-1900 to the year 2100
provide context for the climate change threats facing P. meandrina and
other species. GMST refers to the mean of land and sea temperatures
observed at the earth's surface. Since the pre-industrial period, GMST
has increased by nearly 1[deg] C due to GHG emissions, and estimated
anthropogenic global warming is currently increasing at approximately
0.2[deg] C per decade due to past and ongoing GHG emissions. Warming
greater than the global annual average is being experienced in many
land regions and seasons, including two to three times higher in the
Arctic. Warming is generally higher over land than over the ocean, thus
warming of the ocean lags behind warming of air at the earth's surface.
Regardless of future emissions, warming from past anthropogenic GHG
emissions since the pre-industrial period will persist for centuries to
millennia, and will continue to cause further long-term changes in the
climate system, such as sea-level rise, with associated impacts (Smith
2019a).
In order to ensure consistency in the application of climate change
science to
[[Page 40482]]
ESA decisions, in 2016 NMFS issued ``Guidance for Treatment of Climate
Change in NMFS Endangered Species Act Decisions'' (Climate Guidance,
NMFS 2016). The Climate Guidance provides seven policy considerations,
the first two of which are particularly relevant to the P. meandrina
finding: (1) ``Consideration of future climate condition uncertainty--
For ESA decisions involving species influenced by climate change, NMFS
will use climate indicator values (i.e., quantitative projections of
ocean warming, ocean acidification, and other climate change impacts)
projected under the International Panel on Climate Change (IPCC)'s
Representative Concentration Pathway 8.5 when data are available. When
data specific to that pathway are not available we will use the best
available science that is as consistent as possible with RCP 8.5'', and
(2) ``Selecting a climate change projection timeframe--(A) When
predicting the future status of species in ESA Section 4, NMFS will
project climate change effects for the longest time period over which
we can foresee the effects of climate change on the species' status.''
(NMFS 2016). The application of these two policy considerations to the
P. meandrina finding are described below.
RCP8.5 As the Status Quo
AR5 (IPCC 2013a) projected GMST from 2006 over the remainder of the
21st century using a set of four representative concentration pathways
(RCPs) that provide a standard framework for consistently modeling
future climate change under different assumptions. The four RCPs span a
range of possible futures, from high GHG emissions peaking near 2100
(RCP8.5), to intermediate emissions (RCP6.0 and RCP4.5), to low
emissions (RCP2.6). The 1.5[deg] Report (IPCC 2018) developed
additional pathways with lower emissions than RCP2.6. The IPCC's
pathways are based on projected concentrations of CO2 and
other GHGs in the earth's atmosphere. As atmospheric GHG concentrations
increase, less of the sun's heat can be radiated back into space,
causing the earth to absorb more heat. The increased heat forces
changes on the earth's climate system, and thus is referred to as
``radiative forcing.'' AR5's four RCPs are named according to radiative
forcing of 2.6, 4.5, 6.0, and 8.5 Watts per square meter of the earth's
surface. These result from atmospheric CO2 concentrations of
421 (RCP2.6), 538 (RCP4.5), 670 (RCP6.0), and 936 (RCP8.5) ppm in 2100.
The 1.5[deg] Report includes pathways with lower CO2 levels
than RCP2.6 (IPCC 2013a, 2018).
The various pathways were developed with the intent of providing
different potential climate change projections to guide policy
discussions. The IPCC does not attach likelihoods to the pathways.
Taken together, the four pathways in AR5 project wide ranges of
increases in GMSTs, ocean warming, ocean acidification, sea level rise,
and other changes globally throughout the 21st century (Smith 2019a).
Summaries of the most recent information on observed and projected
ocean warming, ocean acidification, and sea-level rise are provided in
the GSA (Smith 2019a), and support RCP8.5 as representative of the
status quo. For example, according to the most recent Global Carbon
Budget report (Friedlingstein et al 2019), global CO2
emissions from fossil fuels and industry grew continuously from 2010 to
2019; and global atmospheric CO2 concentration grew from
approximately 385 in 2010 to 410 ppm in 2019, with each year setting
new historic highs, according to NOAA's Earth System Research
Laboratory (ESRL) station on Mauna Kea, Hawaii (https://www.esrl.noaa.gov/gmd/ccgg/trends/, accessed December 2019). This rapid
growth in global CO2 emissions and atmospheric
CO2 is more consistent with RCP8.5 than any of the other
pathways in AR5 (IPCC 2013a) or the 1.5[deg] C Report (IPCC 2018).
The Foreseeable Future for P. meandrina
The Climate Guidance (NMFS 2016) directs us to determine the
longest period over which we can reasonably foresee the effects of
climate change on the species. The IPCC pathways (IPCC 2013a, IPCC
2018) use the year 2100 as the main end-point for their climate change
projections. The IPCC's AR5 and the 1.5[deg] Reports (IPCC 2013a, IPCC
2018), together with the large and growing scientific literature on
projected impacts of the IPCC pathways on coral reef ecosystems,
provide considerable information on how climate change threats are
likely to affect corals and coral reefs from now to 2100. Although
there is wide variability in the IPCC pathways (e.g., RCP8.5 vs. the
1.5[deg] Report's pathways would result in highly contrasting impacts
to most of the world's ecosystems over the 21st century), 2100 is
foreseeable because some pathways are more likely than others over that
timeframe, as explained in the following paragraph.
Since the status quo is best represented by RCP8.5, we consider
climate indicator values projected under RCP8.5 to be likely over at
least the near future. Beyond that, current GHG emissions policies
resulting from the 2015 Paris Agreement may eventually lead to climate
indicator values projected under the intermediate emissions pathways
RCPs 6.0 and 4.5 (CAT 2019, Hausfather and Peters 2020, UNEP 2019).
However, such projections have high inherent uncertainty (IPCC 2018,
Jeffery et al. 2018), thus climate indicator values projected under
RCP8.5 may continue to prevail beyond the near future. Therefore, based
on the status quo, current policies, and uncertainty, we consider it
likely that climate indicator values between now and 2100 will be
within the collective ranges of those projected under RCPs 8.5, 6.0,
and 4.5.
The two most severe threats to P. meandrina are ocean warming and
ocean acidification, both of which are caused by climate change (Smith
2019a,b). Projections of climate indicator values for ocean warming
(sea surface temperature) and ocean acidification (sea surface pH and
aragonite saturation state) under RCPs 8.5, 6.0, and 4.5 within the
range of P. meandrina are described in the following sections. These
projections lead to our conclusions about the length of the foreseeable
future for ocean warming and ocean acidification that will be applied
to the P. meandrina 12-month finding.
The Foreseeable Future for Ocean Warming and P. meandrina. Global
warming projections under RCPs 8.5, 6.0, and 4.5 over the 21st century,
and subsequent ocean warming impacts on P. meandrina, are described in
NMFS (2020a) and summarized here. AR5's Supplementary Materials (IPCC
2013b,c,d) provide detailed projections of future warming of air over
land and sea grid points of the earth's surface under each RCP for the
time periods 2016-2035, 2046-2065, and 2081-2100, including regional
projections within the range of P. meandrina. Warming of seawater at
the sea's surface lags behind warming of air at the sea's surface.
Although AR5's detailed projections in the Supplementary Materials are
for air at the sea's surface, they indicate likely proportional warming
of seawater (NMFS 2020a, Fig. 1).
For each RCP (8.5, 6.0, 4.5) and time period (2016-2035, 2046-2065,
2081-2100), AR5 provides global maps of projected annual warming across
the earth's surface, as explained in more detail in NMFS (2020a).
Projected additional warming above what has already occurred is highest
under RCP8.5, intermediate under RCP6.0, and lowest under RCP4.5 (NMFS
2020a, Fig. 2). The ranges of projected warming
[[Page 40483]]
under the three RCPs overlap with one another, illustrating the high
variability in the projections (NMFS 2020a, Fig. 3). Within the range
of P. meandrina, AR5 provides regional maps of projected annual warming
for the eastern Pacific Ocean, the western Indian Ocean, the northern
Indian Ocean, the Coral Triangle, northern Australia, and the tropical
Pacific. As with the global projections, projected additional warming
within the range of P. meandrina above what has already occurred is
highest under RCP8.5 (2-4 [deg]C), intermediate under RCP6.0 (1-3
[deg]C), and lowest under RCP4.5 (1-2 [deg]C), but with high
variability (NMFS 2020a, Figs. 4-9).
Ocean warming can result in the bleaching of the tissues of reef-
building coral colonies, including P. meandrina colonies, whereby the
unicellular photosynthetic algae living within their tissues
(zooxanthellae) are expelled in response to stress. For many reef-
building coral species, including P. meandrina, an increase of only 1
[deg]C-2 [deg]C above the normal local seasonal maximum ocean
temperature can induce bleaching. Corals can withstand mild to moderate
bleaching; however, severe, repeated, or prolonged bleaching can lead
to colony death (Smith 2019a).
The projected responses of reef-building corals to ocean warming in
the 21st century under RCPs 8.5, 6.0 and 4.5 have been modeled in
several recent papers. An analysis of likely disease outbreaks in reef-
building corals resulting from ocean warming projected by RCP8.5 and
RCP4.5 concluded that both pathways are likely to cause sharply
increased coral disease before 2100 (Maynard et al. 2015). An analysis
of the timing and extent of Annual Severe Bleaching (ASB) of the
world's coral reefs under RCPs 8.5 and 4.5 found that the average
timing of ASB would be only 11 years earlier under RCP8.5 (2043) than
RCP4.5 (2054; van Hooidonk et al. 2016). Similarly, an analysis of the
timing and extent of warming-induced bleaching of the world's coral
reefs under RCPs 8.5, 6.0, and 4.5 found little difference between the
pathways, with 60-100 percent of Indo-Pacific coral reefs experiencing
severe bleaching by 2100 under all three pathways (Hoegh-Guldberg et
al. 2017). A study of the adaptive capacity of a population of the
Indo-Pacific reef-building coral Acorpora hyacinthus to ocean warming
projected that it would go extinct by 2055 and 2080 under RCPs 8.5 and
6.0, respectively, and decline by 60 percent by 2100 under RCP4.5 as a
result of warming-induced bleaching (Bay et al. 2017). These papers
illustrate that the overall projected trends are sharply downward under
all three RCPs in terms of ocean warming impacts on Indo-Pacific reef-
building corals.
As far as we know, there are no reports that model projected
responses of P. meandrina to ocean warming in the 21st century under
any of the RCPs. As described in the SRR (Smith 2019b), we consider P.
meandrina's vulnerability to ocean warming in the 21st century to be
high, based on observed susceptibility to the ocean warming that has
occurred over the past several decades, together with increasing
exposure as the oceans continue to warm throughout the remainder of the
century. We expect vulnerability of P. meandrina to ocean warming to
increase in the 21st century as climate change worsens, resulting in
higher frequency, severity, and magnitude of warming-induced bleaching
events (Smith 2019b).
Based on the available information, we cannot distinguish the
likely responses of P. meandrina to projected ocean warming under the
three RCPs from one another because: (1) All three RCPs project large
increases in warming relative to historical rates of change (NMFS
2020a, Fig. 1), especially in the late 21st century (NMFS 2020a, Fig.
2); (2) the ranges of warming projected by each RCP are broad and
overlapping with one another (NMFS 2020a, Fig. 3), reflecting high
uncertainty; (3) the projections are for warming of air at the sea's
surface, but warming of the ocean itself lags behind, reducing
distinctions between RCPs; and (4) as has already been documented,
there is high spatial variability in how P. meandrina's responds to a
given warming event, and high temporal variability in how a given P.
meandrina population responds to multiple warming events over time
(Smith 2019b), reflecting high uncertainty in projecting the responses
of this species to warming.
The Foreseeable Future for Ocean Acidification and P. meandrina.
Ocean acidification projections under RCPs 8.5, 6.0, and 4.5 over the
21st century are described in AR5 (IPCC 2013a), and summarized in NMFS
(2020a) for P. meandrina's range. Unlike for global warming, AR5 does
not include detailed regional comparisons of projected ocean
acidification under the different RCPs. Ocean acidification, however,
reduces the aragonite saturation state ([Omega]arg) in
seawater by lowering the supersaturation of carbonite minerals
including aragonite, the form of calcite that makes up the skeletons of
reef-building corals (Smith 2019a).
Under RCP8.5, mean global pH of open surface waters is projected to
decline from the 1986-2005 average of approximately 8.12 to
approximately 7.77 by 2100, with the greatest reductions in the higher
latitude areas of the P. meandrina's range, such as the southern Great
Barrier Reef (GBR) and the northern Philippines, resulting in
[Omega]arg levels dropping to 1.75-2.5 in open surface
waters within most of the species' range by 2090. Under RCP6.0, mean pH
is projected to decline to approximately 7.88 by 2100, resulting in
[Omega]arg levels dropping to 2.25-3 within most of the
species' range by 2090. Under RCP4.5, mean pH is projected to decline
to approximately 7.97 by 2100, resulting in [Omega]arg
levels dropping to 2.75-3.25 within most of the species' range by 2090
(NMFS 2020a, Figs. 10-12).
These general projections are for open surface waters, and are not
necessarily representative of nearshore waters, because of multiple
physical factors that cause high natural variability in pH of seawater
and [Omega]arg on coral reefs. The projected ocean
acidification of open surface waters is expected to eventually result
in proportional reductions in seawater pH and [Omega]arg on
coral reefs, but these changes will lag behind open surface waters and
be much more variable both spatially and temporally (Smith 2019a). For
example, while the [Omega]arg levels of open surface waters
are projected to decline to 1.75-2.5 within most of the range of P.
meandrina by 2090 (NMFS 2020a, Fig. 12), an analysis of 19 coral reefs
in the Indo-Pacific projected [Omega]arg levels to range
from approximately 1.4 to 3.0 at the sites in 2100 (Eyre et al. 2018).
As described in more detail in the GSA (Smith 2019a), ocean
acidification impacts reef-building corals and coral reef communities
in several ways. The reduced [Omega]arg levels from ocean
acidification result in decreased calcification of coral colonies,
leading to lower skeletal growth rates and lower skeletal density.
Generally, [Omega]arg should be >3 to enable adequate
calcification of reef-building corals, and [Omega]arg levels
of <3 result in reduced calcification. Reduced pH from ocean
acidification can also inhibit coral reproduction, leading to lower
fertilization, settlement, and recruitment. Reduced
[Omega]arg levels also cause increased dissolution of the
calcium carbonate structure of coral reefs, leading to reef erosion
rates outpacing accretion rates (Smith 2019a).
The projected responses of reef-building corals and coral reefs to
ocean acidification in the 21st century under conditions projected for
RCPs 8.5, 6.0 and 4.5 have been reviewed or modeled in several recent
papers. A review of laboratory studies on the effects of
[[Page 40484]]
ocean acidification and ocean warming spanning the entire range of
conditions projected under the three RCPs found that RCP8.5 would
result in the greatest reduction in calcification (>20 percent), but
that the impacts of different levels of ocean acidification were
complicated by species, habitat type, and interactions with warming
(Kornder et al. 2018). A model of the effects of ocean acidification
alone (i.e., without considering the additive effect of ocean warming)
projected under RCP8.5 found that the skeletal density of reef-building
Porites corals is likely to decrease by 20 percent by 2100 (Mollica et
al. 2018). An analysis of the timing and extent of ocean acidification
and ocean warming on the world's coral reefs under the three RCPs found
that there would be progressively greater and earlier declines in
calcification under RCPs 8.5, 6.0, and 4.5, respectively, over the 21st
century. Spatial variability in the projected calcification reductions
was very high, especially in the Indo-Pacific (van Hooidonk et al.
2014).
As far as we know, there are no reports that model projected
responses of P. meandrina to ocean acidification in the 21st century
under any of the RCPs. As described in the SRR (Smith 2019b), we
consider P. meandrina's vulnerability to ocean acidification in the
21st century to be high, based on high susceptibility and moderate to
high exposure throughout the remainder of the century. We expect
vulnerability of P. meandrina to ocean acidification to increase in the
21st century as climate change worsens, resulting in reductions in
calcification and skeletal growth (Smith 2019b).
Based on the available information, we cannot distinguish the
likely responses of P. meandrina to projected ocean acidification under
the three RCPs from one another because: (1) All three RCPs project
worsening ocean acidification and reduced [Omega]arg levels
over the 21st century (NMFS 2020a, Fig. 10-12); (2) the ranges of
reduced [Omega]arg levels projected by each RCP are broad
and overlapping with one another (NMFS 2020a, Fig. 12), reflecting high
uncertainty; (3) the projections of reduced [Omega]arg
levels vary depending on whether feedbacks are considered (NMFS 2020a,
Fig. 12), reflecting additional uncertainty; and (4) the above
projections are for open surface waters, but many abiotic and biotic
factors cause greater fluctuations and different mean values in pH and
[Omega]arg on coral reefs than in open surface waters,
resulting in high spatial and temporal variability in the impacts of
ocean acidification on reef-building corals such as P. meandrina (Smith
2019b), thereby further blurring the distinctions between projections
of the three RCPs.
Foreseeable Future Conclusion. Ocean warming and ocean
acidification represent the two greatest threats to P. meandrina in the
foreseeable future, both of which are caused by climate change. While
different levels of ocean warming are projected under RCPs 8.5, 6.0,
and 4.5 from now to 2100, the projected impacts of warming-induced
bleaching on P. meandrina are not clearly distinctive between the RCPs,
and all three RCPs result in substantially worsening impacts. Thus,
impacts of warming-induced bleaching on P. meandrina are reasonably
foreseeable to 2100.
Likewise, while different levels of ocean acidification are
projected under RCPs 8.5, 6.0, and 4.5 from now to 2100, the projected
impacts of reduced [Omega]arg levels on P. meandrina are not
clearly distinctive between the RCPs, and all three RCPs result in
substantially worsening impacts. Thus, impacts from ocean acidification
and reduced [Omega]arg levels on P. meandrina are also
reasonably foreseeable to 2100.
Indo-Pacific Reef-Building Corals
Indo-Pacific reef-building corals share many biological
characteristics, occupy many similar habitat types, are subject to
similar key trends, and are threatened primarily by the same suite of
global climate change and local threats. In addition, typically more
information is available on the status and trends of reef coral
communities (e.g., live coral cover) than species-specific information.
Thus, to provide context for determining the status of P. meandrina,
general information on Indo-Pacific reef-building coral biology,
habitats, key trends, and threats is provided in the GSA (Smith 2019a)
and summarized below.
Biology and Habitats
Reef-building corals are defined by symbioses with unicellular
photosynthetic algae living within their tissues (zooxanthellae),
giving them the capacity to grow large skeletons and thrive in
nutrient-poor tropical and subtropical seas. Since reef-building corals
are defined by their symbiosis with zooxanthellae, they are sometimes
referred to as ``zooxanthellate'' or ``hermatypic'' corals. Reef-
building corals collectively produce shallow coral reefs over time, but
also occur in non-reef and mesophotic areas, both of which are defined
in the habitat section below. That is, these species are reef-building,
but they are not reef-dependent, thus reef-building corals are not
limited to shallow coral reefs (NMFS 2014).
Reef-building corals are marine invertebrates in the phylum
Cnidaria that occur as polyps, usually forming colonies of many clonal
polyps on a calcium carbonate skeleton. The Cnidaria include true stony
corals (class Anthozoa, order Scleractinia, including both reef-
building, zooxanthellate and non-reef-building, azooxanthellate
species), the blue coral (class Anthozoa, order Helioporacea), and fire
corals (class Hydrozoa, order Milleporina). Most reef-building corals
form complex colonies made up of a tissue layer of polyps (a column
with mouth and tentacles on the upper side) growing on top of a calcium
carbonate skeleton, which the polyps produce through the process of
calcification (Brainard et al. 2011). As of 2019, Veron estimates that
758 species of reef-building corals occur in the Indo-Pacific, over 90
percent of the world's total (Corals of the World, https://www.coralsoftheworld.org, November 2019).
Most Indo-Pacific reef-building corals have many biological
features that complicate the determination of the status of any given
species, including but not necessarily limited to the following: They
are modular, colonial, and sessile; the definition of the individual is
ambiguous; the taxonomy of many species is uncertain; field
identification of species is difficult; each colony is a collection of
coral-algae-microbe symbiotic relationships; they have high skeletal
plasticity; they utilize a combination of sexual and asexual
reproduction; hybridization may be common in many species; and they
typically occur as many populations across very large ranges. These and
other biological features of Indo-Pacific reef-building corals are
described in more detail in the GSA (Smith 2019a).
Indo-Pacific reef-building corals occur on shallow coral reefs (<30
m depth), as well as in non-reef and mesophotic areas (>30 m depth), in
the tropical and sub-tropical waters of the Indian and Pacific Oceans,
including the eastern Pacific. This vast region includes over 50,000
islands and over 40,000 km of continental coastline, spanning
approximately 180 degrees longitude and 60 degrees latitude, and
including more than 90 percent of the total coral reefs of the world.
In addition to this region's extensive shallow coral reefs, the Indo-
Pacific includes: (1) Abundant non-reef habitat, defined as areas where
environmental conditions prevent reef formation by reef-building
corals, but some reef-building coral species are present; and (2) vast
but scarcely known
[[Page 40485]]
mesophotic habitat, defined as areas deeper than 30 meters of depth
where reef-building corals are present. Shallow coral reefs, non-reef
habitat, and mesophotic habitat are not necessarily sharply delineated
from one another, thus one may gradually blend into another. The total
area of non-reef and mesophotic habitats is likely far greater than the
total area of shallow coral reef habitats in the Indo-Pacific (NMFS
2014).
In addition to the biological features described above, there are
several habitat features of Indo-Pacific reef-building coral species
that should be considered in the determination of the status of any
given species including, but not necessarily limited to: (1) Specific
substrate and water quality requirements of each life history stage;
(2) ranges of many of these species encompass shallow coral reef, non-
reef, and mesophotic habitats that vary tremendously across latitude,
longitude, depth, distance from land, and in other ways; and (3)
physical variability in habitat characteristics within the ranges of
these species produces spatial and temporal refuges from threats. That
is, habitat heterogeneity and refugia produce a patchy mosaic of
conditions across the ranges of Indo-Pacific reef-building corals,
which complicates the determination of the status of any given species.
These and other habitat features of Indo-Pacific reef-building corals
are described in more detail in the GSA (Smith 2019a).
Key Trends
The health of reef-building coral communities is largely determined
by the extent of disturbance, together with recovery from it. The most
common measure of the condition of Indo-Pacific reef-building corals is
live coral cover. Resilience is the capacity of a community to recover
from disturbance. Observations and projections of anthropogenic
disturbance, recovery time, coral cover, and overall resilience of
Indo-Pacific reef-building coral communities provide insight on the
status and trends of these communities.
The main threats to Indo-Pacific reef-building corals are acute and
chronic anthropogenic disturbances, most of which have been increasing
over the last half-century or more. In particular, warming-induced
coral bleaching events are acute disturbances that have been increasing
in frequency, severity, and magnitude over the last several decades,
especially since 2014. Other disturbances of Indo-Pacific coral reef
communities are chronic, such as ocean acidification because of its
continual effects on both coral calcification and reef accretion, and
localized land-based sources of pollution and coral disease outbreaks.
Both acute and chronic anthropogenic disturbances are broadening and
worsening on coral reefs near human populations throughout the Indo-
Pacific, and all anthropogenic disturbances of Indo-Pacific coral reefs
are projected to worsen throughout the foreseeable future (Smith
2019a,b).
Studies of the recovery of Indo-Pacific reef-building corals
(excluding the eastern Pacific) show that the majority of sites showed
significant recovery from, or resistance to, anthropogenic disturbance
over the latter part of the 20th century and early part of the 21st
century (Tables 1a and 1b, Smith 2019a). The available information does
not indicate that the capacity for recovery of Indo-Pacific reef-
building corals has substantially declined. However, due to increased
frequency of disturbance, the amount of time available for corals to
recover has declined. Furthermore, since the frequency of disturbance
is projected to increase as climate change worsens, recovery time is
projected to continue to decrease throughout the foreseeable future
(Smith 2019a,b).
The available information clearly indicates that mean coral cover
has declined across much of the Indo-Pacific since the 1970s (Tables 2
and 3, Smith 2019a), and likely many decades before then in some
locations. High spatial and temporal variability influenced by a large
number of natural and anthropogenic factors can mask the overall trend
in coral cover, but long-term monitoring programs and meta-analyses
demonstrate downward temporal trends in most of the Indo-Pacific.
Because disturbance is projected to increase in frequency throughout
the foreseeable future (Smith 2019a,b), and this is expected to result
in reduced recovery times, mean coral cover in the Indo-Pacific is also
projected to decrease, especially as climate change worsens (Smith
2019a).
Despite increasing disturbance, decreasing recovery times, and
decreasing coral cover, the available information suggests that overall
resilience of Indo-Pacific reef-building corals remains quite high
because: (1) Observed impacts of disturbances on corals have been
spatially highly variable due to habitat heterogeneity; (2) factors
that confer resilience (high habitat heterogeneity, large ecosystem
size, high coral and reef fish species diversity) have not declined;
(3) observed responses of corals to disturbances indicate that most
either recovered or were resistant; and (4) observed responses of
corals to disturbances indicate that phase shifts have so far been
either rare or reversed. However, the trends in disturbance, recovery
time, and coral cover are projected to worsen with climate change, thus
overall resilience is also projected to decrease throughout the
foreseeable future (Smith 2019a,b).
Threats
We consider global climate change-related threats of ocean warming,
ocean acidification, and sea-level rise, and the local threats of
fishing, land-based sources of pollution, coral disease, predation, and
collection and trade, to be the most important to the extinction risk
of Indo-Pacific reef-building corals currently and throughout the
foreseeable future. The most important of these is ocean warming. In
addition, five lesser global and local threats are also described
(changes in ocean circulation, changes in tropical storms, human-
induced physical damage, invasive species, and changes in salinity).
The interactions of threats with one another could be significantly
worse than any individual threat, especially as each threat grows. Each
threat, and the interactions of threats, are described both in terms of
observed effects since relevant scientific information became available
(usually mid-20th century), and projected effects throughout the
foreseeable future (Smith 2019a,b).
The effects of most threats to Indo-Pacific reef-building corals
have already been observed to be worsening, based on the monitoring
results and the scientific literature. Ocean warming in conjunction
with the other threats have recently resulted in the worst impacts to
Indo-Pacific reef-building corals ever observed. These impacts are
further described in terms of increasing disturbance, less time
available for recovery, decreasing coral cover, and decreasing
resilience in the trends section above. All threats are projected to
worsen throughout the foreseeable future (Smith 2019a,b), based on the
scientific literature, climate change models, and other information
such as human population trends in the Indo-Pacific.
Summary for Indo-Pacific Reef-Building Corals
Indo-Pacific reef-building corals are a diverse group ([ap]760
species) with many biological features that complicate the
determination of the status of any given species. These species occur
in vast and diverse habitats including shallow coral reefs, non-reef
areas, and mesophotic areas throughout the Pacific and Indian Oceans.
Key observed trends include
[[Page 40486]]
increasing anthropogenic disturbances, decreasing recovery time, and
decreasing live coral cover, while overall resilience remains high.
However, all trends are projected to worsen throughout the foreseeable
future (Smith 2019a,b). Community trends do not necessarily represent
individual species trends, but they provide valuable context that
inform investigations of the status of species within the community
such as P. meandrina.
Pocillopora meandrina Status Review
This status review of P. meandrina is based on the methodology
provided in the ``Guidance on Responding to Petitions and Conducting
Status Reviews under the Endangered Species Act'' (NMFS 2017): An
overall extinction risk assessment of the species is based on dual
assessments of its demographic risk factors (distribution, abundance,
productivity, diversity) and a threats evaluation. Thus, the P.
meandrina SRR (Smith 2019b) covers introductory information (biology,
habitat), demographic risk factors, threats evaluation, and extinction
risk assessment, which are summarized below.
Biology and Habitats
Pocillopora meandrina was described by James Dana from specimens
collected in Hawai`i (Dana 1846a, b), thus the formal scientific name
is ``Pocillopora meandrina, Dana 1846''. Morphologically, P. meandrina
colonies are small upright bushes, with branches radiating from the
initial point of growth. Adult colonies are commonly 20-40 cm (8-16 in)
in diameter, with branches radiating from the initial point of growth.
Coloration is typically light brown or cream, but may also be green or
pink (Fenner 2005, Corals of the World website,https://www.coralsoftheworld.org, accessed November 2019).
Taxonomic uncertainty refers to how a species should be
scientifically classified. Taxonomic uncertainty appears to be lower
for P. meandrina than some other Pocillopora species, and available
information supports the conclusion that P. meandrina is a valid
species. Whereas taxonomic uncertainty refers to how a species should
be scientifically classified, species identification uncertainty refers
to how a species should be identified in the field. We do not believe
that species identification uncertainty for P. meandrina affects the
quality of the information used in this status review. The taxonomic
and species identification uncertainty for P. meandrina are described
in detail in the SRR (Smith 2019b).
As with most other reef-building corals, P. meandrina is modular
(the primary polyp produces genetically-identical secondary polyps or
``modules'') and colonial (the polyps aggregate to form a colony). The
primary and secondary polyps are connected seamlessly through both
tissue and skeleton into a colony. A colony can continue to exist even
if numerous polyps die, the colony is broken apart, or otherwise
damaged (Smith 2019a,b). Under the ESA, the ``physiological colony''
(Hughes 1984), defined as any colony of the species whether sexually or
asexually produced, is considered an individual for reef-building
colonial coral species such as P. meandrina (NMFS 2014).
Reef-building corals like P. meandrina build reefs because they are
sessile (the colony is attached to the substrate), secreting their own
custom-made substrates which grow into skeletons, providing the primary
building blocks for coral reef structure. One of the most important
aspects of sessile life history for consideration of extinction risk is
that colonies cannot flee from unfavorable environmental conditions,
thus must have substantial capacity for acclimatization to the natural
variability in environmental conditions at their location. Likewise,
since P. meandrina populations are distributed throughout a large range
with environmental conditions that vary by latitude, longitude,
proximity to land, etc., the populations must have substantial capacity
for adaptation to the natural variability in environmental conditions
across their ranges (Smith 2019a,b).
Reef-building corals like P. meandrina act as plants during the day
by utilizing photosynthesis (autotrophic feeding), and they act as
animals during the night by utilizing predation (heterotrophic
feeding). Autotrophic feeding is accomplished via symbiosis with
unicellular photosynthetic algae living within the host coral's tissues
(zooxanthellae). The host coral benefits by receiving fixed organic
carbon and other nutrients from the zooxanthellae, and the
zooxanthellae benefit by receiving inorganic waste metabolites from the
coral host as well as protection from grazing. This exchange of
nutrients allows both partners to flourish and helps the host coral
secrete calcium carbonate that forms the skeletal structure of the
coral colony. Heterotrophic feeding is accomplished by extending their
nematocyst-containing tentacles to sting and capture zooplankton (Smith
2019a,b).
Pocillopora meandrina reproduces both sexually and asexually.
Sexual reproduction is by broadcast spawning, and asexual reproduction
is by fragmentation. The larvae of P. meandrina disperse by swimming,
drifting, or rafting, providing the potential for high dispersal. The
larvae readily recruit to both natural and artificial hard surfaces.
Like many branching coral species, P. meandrina has high skeletal
growth rates relative to most other Indo-Pacific reef-building coral
species (Smith 2019b). Pocillopora meandrina has been classified as a
competitive species, based on its broadcast spawning, rapid skeletal
growth, and branching colony morphology, which allow it to recruit
quickly to available substrate and successfully compete for space
(Darling et al. 2012). More information about P. meandrina's
reproduction, dispersal, recruitment, and growth is provided in the
Productivity portion of the Demographic Factors section, and in the SRR
(Smith 2019b).
The preferred habitat of P. meandrina is high energy reef crests
and upper reef slopes. In Hawai`i where there are relatively few other
coral species to compete with, P. meandrina dominates such high energy
habitat to the extent that it has been termed the ``P. meandrina zone''
(Dollar 1982). The species is abundant in other types of high energy
habitats, including non-reef habitats like lava bedrock, and
unconsolidated rocks and boulders. The species also occurs in lower
abundances in most other habitats where reef-building corals are found,
such as middle and lower reef slopes, back-reef areas such as reef
flats and patch reefs, and atoll lagoons. In addition, P. meandrina can
be one of the most common corals found on artificial substrates, such
as concrete structures and metal buoys. Although much more common in
shallow water, P. meandrina occurs at depths of >30 m (98 ft; Smith
2019b).
In summary, several characteristics of P. meandrina's biology and
habitat moderate its extinction risk. As with most other reef-building
corals, P. meandrina occurs as colonies of polyps that can continue to
exist even if numerous polyps die, the colony is broken apart, or
otherwise damaged. Since colonies are sessile, they cannot flee from
unfavorable environmental conditions, thus must have substantial
capacity for acclimatization and adaptation to the natural variability
in environmental conditions at their location. In addition, P.
meandrina has a high capacity to successfully compete for space with
other reef-building corals,
[[Page 40487]]
especially following disturbances when it is often one of the first
coral species to colonize denuded substrates. With regard to habitat,
it is most abundant in high energy habitats with strong currents and
constant wave action such as reef crests and upper reef slopes
throughout its range, but is also found on deeper reef slopes, back-
reef areas, lava, boulders, and artificial substrates (Smith 2019b).
Demographic Factors
In order to determine the extinction risk of species being
considered for ESA listing, NMFS uses a demographic risk analysis
framework that considers the four demographic factors of distribution,
abundance, productivity, and diversity (NMFS 2017). Each demographic
risk factor is described for P. meandrina below.
Distribution. Pocillopora meandrina is found on most coral reefs of
the Indo-Pacific and eastern Pacific, with its range encompassing
>230[deg] longitude from the western Indian Ocean to the eastern
Pacific Ocean, and [ap]60[deg] latitude from the northern Ryukyu
Islands to central western Australia in the western Pacific, and the
Gulf of California to Easter Island in the eastern Pacific.
Distribution of P. meandrina is summarized here in terms of geographic
distribution across the Indo-Pacific area, as well as depth
distribution, based on the detailed descriptions in the SRR (Smith
2019b).
The Corals of the World website (https://www.coralsoftheworld.org)
provides comprehensive range information for all 758 currently known
Indo-Pacific reef-building corals, based on presence/absence in 133
Indo-Pacific ecoregions. As of February 2019, the website showed P.
meandrina as present in 91 of the 133 ecoregions, from Madagascar in
the western Indian Ocean to the Pacific coast of Colombia, and from
southern Japan to the southern Great Barrier Reef (GBR) in Australia
(Fig. 2, Smith 2019b). In addition, we found information confirming P.
meandrina in four ecoregions in the southeastern and eastern Pacific,
including the Austral Islands, the Tuamotu Archipelago, the Marquesas
Islands, and Clipperton Atoll. Therefore, these 95 ecoregions are
considered to be the current, known range of P. meandrina. There is no
evidence of any reduction in its range due to human impacts, thus we
consider its historic and current ranges to be the same (Smith 2019b).
Although P. meandrina is usually more common at depths of <5 m (16
ft) than in deeper areas, its habitat breadth encompasses most habitats
found on coral reefs and non-reef habitat between the surface and >30 m
(98 ft) of depth. For example, in a transect from 8 m (26 ft) to 36 m
(118 ft) depth on Fanning Island in Kiribati surveyed in the early
1970s, colonies of P. meandrina were recorded at 31 m (102 ft) and 34 m
(112 ft). Maximum cover of P. meandrina on the transect was at 10 m (33
ft), where it made up 25 percent of live coral cover. The cover of P.
meandrina may have been even greater at depths <8 m, but those
shallower areas were not surveyed (Maragos 1974). Observations of P.
meandrina elsewhere also indicate that the species sometimes occurs at
30 m (98 ft) or deeper (Smith 2019b). Based on this information, we
consider the depth range of P. meandrina from the surface to at least
34 m (112 ft).
We conclude that P. meandrina's distribution is very large and
stable. The geographic distribution of P. meandrina encompasses
>230[deg] longitude and [ap]60[deg] latitude, and includes 95 of the
133 Indo-Pacific ecoregions, giving it a larger range than about two-
thirds Indo-Pacific reef-building coral species. Although P. meandrina
is usually more common at depths of <5 m (16 ft) than in deeper areas,
its depth range is from the surface to at least 34 m (112 ft). There is
no evidence of any reduction in its range due to human impacts, and we
consider its historic and current ranges to be the same (Smith 2019b).
Abundance. Three types of abundance information are summarized
below for P. meandrina from ecoregions for which information is
available: (1) Relative abundances from 65 ecoregions; (2) absolute
abundances from eight ecoregions; and (3) abundance trends from 10
ecoregions. With regard to relative abundances, in the 65 ecoregions
for which information is available, it is dominant in seven, common in
18, uncommon in 36, and rare in four ecoregions (Fig. 3, Smith 2019b).
The majority of P. meandrina's ecoregions are in the western Pacific
and the Indian Oceans, where it has an intermediate level of abundance
(common or uncommon; DeVantier and Turak 2017). It is a very common
species in many of the Pocillopora-dominated reef coral communities of
the central Pacific. While coral reef communities of the eastern
Pacific are also Pocillopora-dominated, P. meandrina is one of the less
common Pocillopora species in much of that area. It is only rare around
the fringes of its range (Smith 2019b).
With regard to absolute abundance, we estimate P. meandrina's total
population is at least several tens of billions of colonies. The
estimated total population for the eight ecoregions (four entire
ecoregions and portions of four others) within U.S. waters in 2012-2018
was 1.48 billion colonies (Table 3, Smith 2019b). U.S. waters make up
approximately 1 percent of the species' range, but relative abundances
are higher in some of the ecoregions within U.S. waters (especially the
main Hawaiian Islands) than most of the rest of the species' range. We
base our estimate of P. meandrina's total population on estimated
population abundance of P. meandrina in U.S. waters (1.48 billion
colonies), the proportion of the species' range within U.S. waters
([ap]1 percent), and the assumption that the population density of P.
meandrina is lower in foreign waters than U.S. waters (Smith 2019b).
With regard to abundance trends, in the 10 ecoregions for which
time-series abundance data or information are available, abundance of
P. meandrina appears to be decreasing in five ecoregions and stable in
five ecoregions. The abundance of P. meandrina has decreased by over 90
percent since 1975 in the Chagos Archipelago Ecoregion, by
approximately 70 percent since 1999 in the Main Hawaiian Islands
Ecoregion, and appears to have also decreased by an undeterminable
amount in the Marianas Islands, Northwestern Hawaiian Islands, and
Galapagos Islands Ecoregions. In contrast, based on the abundance data
and information, P. meandrina abundance appears to be relatively stable
in the GBR Far North, GBR North-central, Samoa-Tuvalu-Tonga, Society
Islands, and Mexico West Ecoregions (Smith 2019b).
We conclude that P. meandrina's overall abundance is very high, but
its overall abundance trend is unknown. Abundance is very high because
(1) the relative abundance results indicate that P. meandrina is
dominant or common in about one-third of its very large range; and (2)
the absolute abundance results show that the U.S. population alone
(which makes up only [ap]1 percent of the species' range) is
approximately 1.48 billion colonies. Because we only have abundance
trend data or information from 10 of the 95 ecoregions, the trend in P.
meandrina's overall abundance is unknown. Of the 10 ecoregions for
which abundance trend data or information are available, P. meandrina's
abundance appears to be decreasing in five ecoregions, and relatively
stable in five ecoregions (Smith 2019b).
Productivity. Productivity refers to the overall population growth
rate of P. meandrina in all 95 ecoregions combined. The most important
factors influencing P. meandrina's productivity (reproduction,
dispersal, recruitment,
[[Page 40488]]
growth, and adaptability) provide a qualitative indication of its
productivity. The species has high reproductive capacity, which helps
it outcompete other coral species, especially in response to
disturbances. It also has the potential for broad pelagic dispersal of
larvae, either by swimming, drifting, or rafting; the latter refers to
settlement of larvae on natural or artificial flotsam which then
carries the coral to permanent settlement habitat (Smith 2019b).
Recruitment of P. meandrina has been studied in Hawai`i, where it has
been shown to be the most successful coral species at colonizing new
substrates, such as fresh lava flows on the Big Island (Grigg and
Maragos 1974). The species also recruits unusually well to a variety of
artificial substrates, including metal, concrete, and PVC pipe (Smith
2019b). Like many branching coral species, P. meandrina has high
skeletal growth rates relative to most other Indo-Pacific reef-building
coral species (Jokiel and Tyler 1992). Unlike most other reef corals,
typical colonies of P. meandrina stop growing at around 40 cm (16 in)
in diameter, and the species has a relatively short life span compared
to other corals (Coles and Brown 2007). The high recruitment, rapid
growth, and short life span of P. meandrina result in rapid turnover of
the population at a given location (Smith 2019b).
Rapid turnover of P. meandrina populations provide capacity to
adjust to changing conditions (adaptability) because the most resistant
genotypes survive disturbances like bleaching events, then reproduce
relatively quickly to claim open substrate. The high reproductive
capacity, broad dispersal, high recruitment, rapid skeletal growth, and
adaptability of P. meandrina allow it to pioneer available substrate
and successfully compete for space (Coles and Brown 2007, Darling et
al. 2012). These life history characteristics of P. meandrina provide
buffering against threats such as warming-induced bleaching by
providing the potential for rapid recovery from die-offs. High
reproductive capacity, broad dispersal, high recruitment, rapid
skeletal growth, and adaptability are all characteristics of high
productivity, i.e., they all positively affect population growth rate.
Thus, we consider P. meandrina's productivity to be high. Also, P.
meandrina has made strong recoveries in recent years from various types
of disturbances at multiple locations throughout its range, displacing
less competitive coral species and becoming more abundant than before
the disturbances (e.g., GBR, Society Islands). These recoveries
demonstrate continued high productivity, thus we consider P.
meandrina's productivity to be stable (Smith 2019b).
We conclude that P. meandrina's productivity is both high and
stable. The high reproductive capacity, broad dispersal, high
recruitment, rapid skeletal growth, and adaptability of P. meandrina
are all characteristics of high productivity, i.e., they all positively
affect population growth rate. In addition, P. meandrina's abundance
has remained stable in recent years in half the ecoregions (5/10) where
information is available, whether there have been disturbances or not
(Smith 2019b).
Diversity. Diversity includes both the diversity of genotypes
(i.e., the genetic constitution of an individual) and phenotypes (i.e.,
the observable characteristics of an individual) within a population.
Genotypic diversity is defined as the numbers of genotypes present in a
population. Phenotypic diversity is defined as the numbers of
phenotypes present in a population, and is affected by both genotype
and environmental factors (Smith 2019b). Robust populations have higher
levels of genotypic and phenotypic diversity. Although there is little
information available on the diversity of P. meandrina, the few
species-specific studies that are available show high genotypic
(Magalon et al. 2005; Dr. Rob Toonen, personal communication) and
phenotypic (Hughes et al. 2018, Muir et al. 2017) diversity within
portions of individual ecoregions.
The spatial and temporal habitat heterogeneity of P. meandrina's
range is very high, contributing to the maintenance of high phenotypic
diversity for the species. Phenotypic diversity can be maintained by
spatial and temporal variation in habitat characteristics, because
variable environmental factors result in the expression of different
phenotypes. As described above, P. meandrina occurs in 95 ecoregions,
and has a depth range of at least 0-34 m (112 ft). The spatial
variation in P. meandrina's habitats is very high due to the habitat
heterogeneity of its range. In addition, these habitats are exposed to
a great deal of temporal variation in conditions on diurnal, lunar,
seasonal, and decadal timescales. The broad geographic and depth
distribution of P. meandrina includes nearly the entire range of
habitats for Indo-Pacific reef-building corals (Smith 2019).
We conclude that P. meandrina's diversity is both high and stable.
Although there is little information available on the genotypic and
phenotypic diversity of P. meandrina, the evidence summarized above
suggests that both types of diversity are high for this species, mainly
because of its large distribution and habitat heterogeneity.
Furthermore, the species' distribution has not been reduced, and
abundance has not declined in half of the ecoregions for which
information is available.
Demographic Factors Conclusion. The distribution, abundance,
productivity, and diversity of P. meandrina substantially moderate its
extinction risk. The geographic distribution of P. meandrina includes
95 of the 133 Indo-Pacific coral reef ecoregions, giving it a very
large range. While P. meandrina is most commonly found in shallow,
high-energy habitats such as reef crests and shallow forereefs, its
depth distribution extends from the surface to at least 34 m (112 ft).
Because of its broad geographic and depth distributions, P. meandrina
occurs in many different types of habitats, from shallow to deep, high
to low latitudes, offshore to inshore, and so on. These different
habitat types provide different environmental conditions in response to
any given disturbance, ensuring that some populations will be less
affected than others, thereby moderating extinction risk (Smith 2019b).
The relative abundance of P. meandrina varies substantially across
its range, from one of the most dominant reef-building coral species in
the low-diversity coral reef communities of the central Pacific, to an
uncommon species in the high-diversity coral reef communities of the
Coral Triangle and surrounding areas. It is a dominant or common
species in 25 of its 95 ecoregions. The absolute abundance of P.
meandrina is estimated as at least several tens of billions of
colonies. In the 10 ecoregions for which abundance trend information is
available, P. meandrina appears to be decreasing in five ecoregions,
and stable in five ecoregions. Because we only have abundance trend
information from 10 of the 95 ecoregions, the trend in P. meandrina's
overall abundance is unknown. Despite declining abundance in some
ecoregions, the species' abundance moderates extinction risk by
providing tens of billions of colonies distributed across many
ecoregions that can replenish reefs depleted by disturbance (Smith
2019b).
The high reproductive capacity, broad dispersal, high recruitment,
rapid skeletal growth, and adaptability of P. meandrina are all
characteristics of high productivity, i.e., they all positively affect
population growth rate. Such high productivity moderates extinction
risk
[[Page 40489]]
by providing the potential for rapid recovery from die-offs, as
documented in some of its 95 ecoregions (Smith 2019b).
Genetic studies show high genotypic diversity in P. meandrina on
small geographic scales (e.g., one island), and genotypic diversity is
likely even higher within individual ecoregions, let alone across the
95 ecoregions that make up the range of the species. Studies of the
responses of P. meandrina to elevated seawater temperatures show high
phenotypic diversity in multiple locations. Such high diversity
moderates extinction risk by providing the capacity to adapt to
changing local conditions (Smith 2019b).
Threats Evaluation
Section 4(a)(1) of the ESA and NMFS' implementing regulations (50
CFR part 424) state that the agency must determine whether a species is
endangered or threatened because of any one or a combination of the
following five factors: (A) Present or threatened destruction,
modification, or curtailment of habitat or range; (B) overutilization
for commercial, recreational, scientific, or educational purposes; (C)
disease or predation; (D) inadequacy of existing regulatory mechanisms;
or (E) other natural or manmade factors affecting its continued
existence. Based on the 2011 SRR (Brainard et al. 2011), the 2014 final
coral listing rule (NMFS 2014), and the GSA (Smith 2019a), there are 10
main types of threats to Indo-Pacific reef-building corals, including
P. meandrina, currently and in the foreseeable future: Ocean warming,
ocean acidification, sea-level rise, fishing, land-based sources of
pollution, coral disease, predation, collection and trade, a group of
secondary threats (weakening ocean currents, increasing tropical
storms, physical damage, invasive species, and changes in salinity),
and the interactions of threats. The inadequacy of existing regulatory
mechanisms is an important influence on the threats, and thus is also
described in this section.
The observed and projected trends of each threat, as well as the
vulnerability of P. meandrina to each threat, are described.
Vulnerability of a species to a threat is a function of susceptibility
and exposure, considered at the appropriate spatial and temporal
scales. The spatial scale is the 95 ecoregions that make up the current
range of P. meandrina (Fig. 2, Smith 2019b), and the temporal scale is
the foreseeable future (now to 2100). Susceptibility refers to the
response of P. meandrina colonies to the adverse conditions produced by
the threat. Exposure refers to the degree to which P. meandrina
colonies are likely to be subjected to the threats throughout its
range, thus the overall vulnerability of a coral species to threats
depends on the proportion of colonies that are exposed to the threats.
A species may not necessarily be highly vulnerable to a threat even
when it is highly susceptible to the threat, if exposure is low.
Consideration of the appropriate spatial and temporal scales is
particularly important, because of potential high variability in
threats both spatially over P. meandrina's large range, and temporally
over the 21st century (NMFS 2014).
Ocean Warming (Factor E). As described in the GSA (Smith 2019a) and
NMFS (2020a), the available information regarding ocean warming and
Indo-Pacific reef-building corals including P. meandrina leads to the
following conclusions about this threat: (1) Substantial ocean warming,
including in the tropical/subtropical Indo-Pacific, has already
occurred and continues to occur; (2) ocean warming, including in the
tropical/subtropical Indo-Pacific, is projected to continue at an
accelerated rate under RCPs 8.5, 6.0, and 4.5 throughout the
foreseeable future; (3) substantial warming-induced mass bleaching of
Indo-Pacific reef coral communities has already occurred and continues
to occur; (4) warming-induced mass bleaching of Indo-Pacific reef coral
communities is projected to rapidly increase in frequency, intensity,
and magnitude under RCPs 8.5, 6.0, and 4.5 throughout the foreseeable
future; and (5) coral reefs will be severely affected by such warming
(Smith 2019a, NMFS 2020a).
The vulnerability of P. meandrina to ocean warming is summarized
here in terms of its susceptibility and exposure to this threat, based
on information in the SRR (Smith 2019b). Genus-level surveys of
warming-induced bleaching susceptibility have found that Pocillopora
species can be among the more susceptible of reef-building corals.
Species-level studies and observations of P. meandrina at many
locations recorded high susceptibilities to the 1998, 2014-17, and
other bleaching events (Sheppard et al. 2017, Smith 2019b). However,
studies and observations of P. meandrina have also recorded resistance
to warming-induced bleaching at many locations throughout the species'
range, or that bleached colonies recovered readily (Muir et al. 2017,
Hughes et al. 2018, Smith 2019b). Thus, we consider the overall
susceptibility of P. meandrina to ocean warming to be moderate to high
(Smith 2019b). Exposure of colonies of P. meandrina to ocean warming
varies spatially with latitude, depth, habitat type, and other spatial
factors (e.g., windward vs. leeward sides of islands), and temporally
with tidal, diurnal, seasonal, and decadal cycles (Smith 2019b).
However, as described in the GSA and summarized above, several factors
suggest that P. meandrina's exposure to ocean warming is already quite
high, and rapidly increasing. Thus we consider exposure of P. meandrina
to ocean warming to be high. We consider the current vulnerability of
P. meandrina to ocean warming to be high, based on moderate to high
susceptibility combined with high exposure. We expect vulnerability of
P. meandrina to ocean warming to increase throughout the foreseeable
future as climate change worsens, resulting in higher frequency,
severity, and magnitude of warming-induced bleaching events (Smith
2019a,b, NMFS 2020a).
Ocean Acidification (Factor E). As described in the GSA (Smith
2019a) and NMFS (2020a), the available information regarding ocean
acidification and Indo-Pacific reef-building corals including P.
meandrina leads to the following conclusions about this threat: (1)
Ocean acidification has already occurred in the tropical/subtropical
Indo-Pacific and continues to occur; (2) ocean acidification, including
in the tropical/subtropical Indo-Pacific, is projected to continue at
an accelerated rate under RCPs 8.5, 6.0, and 4.5 throughout the
foreseeable future; (3) ocean acidification has already affected Indo-
Pacific reef-building coral communities by reducing calcification rates
and subsequent effects on skeletal growth (reduced growth rates and
skeletal densities) of corals, and by increasing erosion of coral
reefs; and (4) the effects of ocean acidification on Indo-Pacific reef-
building coral communities are projected to steadily increase under
RCPs 8.5, 6.0, and 4.5 throughout the foreseeable future by reducing
coral calcification, increasing reef erosion, impacting coral
reproduction, reducing reef coral diversity, and simplifying coral reef
communities (Smith 2019a, NMFS 2020a).
The vulnerability of P. meandrina to ocean acidification is
summarized here in terms of its susceptibility and exposure to this
threat, based on information in the SRR (Smith 2019b). Some studies
have found that ocean acidification reduces calcification and skeletal
growth rates of P. meandrina and other Pocillopora species (Muehllehner
and Edmunds 2008, Fabricius et al. 2011), while others have found that
Pocillopora species have some capacity to resist the effects of
[[Page 40490]]
ocean acidification (Comeau et al. 2014, Putnam et al. 2013). The
currently available information does not indicate that P. meandrina or
other Pocillopora species have the capacity to acclimatize to, adapt
to, or resist the effects the levels of ocean acidification expected in
the foreseeable future (Smith 2019b). Exposure of P. meandrina colonies
to ocean acidification will likely continue to be highly variable, but
also likely to increase throughout the foreseeable future because of
the projected increase in ocean acidification, as described in the GSA
(Smith 2019b). We consider the current vulnerability of P. meandrina to
ocean acidification to be high, based on high susceptibility combined
with highly variable exposure. We expect vulnerability of P. meandrina
to ocean acidification to increase throughout the foreseeable future as
climate change worsens, resulting in higher severity and magnitude of
ocean acidification (Smith 2019a,b).
Sea Level Rise (Factor E). As described in the GSA (Smith 2019a),
the available information regarding sea-level rise and Indo-Pacific
reef-building corals including P. meandrina leads to the following
conclusions about this threat: (1) Sea-level rise has already occurred
and continues to occur globally; (2) sea-level rise in parts of the
tropical/subtropical Indo-Pacific has been approximately three times
the global rate; (3) sea-level rise projected under RCP8.5 for the 21st
century will exceed recent rates both globally and in the Indo-Pacific;
(4) the effects of sea-level rise to date on Indo-Pacific reef-building
corals are complex, with no clear trend yet apparent; and (5) the
effects of sea-level rise on Indo-Pacific reef coral communities are
projected to steadily increase and broaden under RCP8.5 throughout the
foreseeable future (Smith 2019a).
The vulnerability of P. meandrina to sea level rise is summarized
here in terms of its susceptibility and exposure to this threat, based
on information in the SRR (Smith 2019b). We consider the susceptibility
of P. meandrina to sea level rise to be low. As far as we know, there
is no species-specific information available on the susceptibility of
P. meandrina to sea level rise. Reef-building corals that are unable to
keep up with rising sea levels, unable to settle on newly available
substrates, and occur in nearshore habitats such as reef flats, would
be the most susceptible to sea level rise (Smith 2019a). As described
in the SRR (Smith 2019b), P. meandrina is a colonizing species that
readily settles on newly available substrates, has relatively rapid
skeletal growth, and occurs primarily on reef crests and shallow
forereefs (not reef flats). Exposure of P. meandrina colonies to sea-
level rise will likely continue to be highly variable, but also likely
to increase throughout the foreseeable future (Smith 2019a,b). We
consider the current vulnerability of P. meandrina to sea-level rise to
be low, based on low susceptibility combined with highly variable
exposure. We expect vulnerability of P. meandrina to sea-level rise to
increase throughout the foreseeable future as climate change worsens,
resulting in higher severity and magnitude of sea-level rise (Smith
2019a,b).
Fishing (Factor A). As described in the GSA (Smith 2019a), the
available information regarding fishing and Indo-Pacific reef-building
corals including P. meandrina leads to the following conclusions about
this threat: (1) Direct effects of fishing, namely damage from fishing
gears and methods used in food fish and marine aquarium fisheries, have
been observed in much of the Indo-Pacific; (2) indirect effects, or the
trophic effects of fishing, have not been observed in the Indo-Pacific
as they have in the Caribbean; and (3) both direct and indirect effects
of fishing are projected to increase in the Indo-Pacific throughout the
foreseeable future (Smith 2019a).
The vulnerability of P. meandrina to fishing is summarized here in
terms of its susceptibility and exposure to this threat, based on
information in the SRR (Smith 2019b). We consider the susceptibility of
P. meandrina to the direct and indirect effects of fishing to be
moderate. Direct effects include entanglement, abrasion, and breakage
by fishing line and other gear where fishing pressure is high, such as
in the main Hawaiian Islands (Asoh et al. 2004). However, P. meandrina
populations remain high in areas that have been heavily fished for many
decades (Smith 2019b). While exposure of P. meandrina to fishing is
high in certain areas, it is low to none in a large proportion of the
species' range, resulting in low exposure overall. Much of P.
meandrina's range occurs in remote areas that are difficult to reach by
fishers, or in marine protected areas where fishing is restricted or
banned. In addition, P. meandrina is found primarily on reef crests and
upper reef slopes, where constant wave action discourages human access
and fishing (Smith 2019b). We consider the current vulnerability of P.
meandrina to fishing to be low to moderate, based on moderate
susceptibility combined with low exposure. We expect vulnerability of
P. meandrina to fishing to increase throughout the foreseeable future
as the human population and fishing pressure increase (Smith 2019a,b).
Land-Based Sources of Pollution (Factor A). Land-based sources of
pollution (LBSP) refers to turbidity, sediment, nutrients,
contaminants, and other types of pollution affecting reef-building
corals that originate from coastal development, urbanization,
agriculture, and other human activities on land. The many different
forms of LBSP collectively affect all life history stages of reef-
building corals in numerous ways. As described in the GSA (Smith
2019a), based on the available information regarding the effects of
LBSP on Indo-Pacific reef-building corals, we conclude that: (1)
Effects of LBSP have been observed in much of the Indo-Pacific, namely
impacts on coral growth, reproduction, and survival in areas with the
highest levels of pollution; and (2) such effects are projected to
increase in much of the Indo-Pacific throughout the foreseeable future
(Smith 2019a).
The vulnerabilities of P. meandrina to turbidity, sediment,
nutrients, and contaminants are summarized here in terms of its
susceptibility and exposure to this threat. Based on the information
described in the SRR (Smith 2019b), we consider the susceptibilities of
P. meandrina to be low for turbidity, moderate for sediment and
nutrients, and high for contaminants. We consider P. meandrina's
overall susceptibility to all LBSP combined to be moderate (Smith
2019b). Exposure of colonies of P. meandrina to LBSP is likely high in
areas subject to intense coastal development, urbanization,
agriculture, and other human activities on land. However, some of P.
meandrina's range is far from human activities on land (e.g.,
uninhabited atolls, islands, barrier reefs, etc.), also limiting
exposure. Thus, exposure of P. meandrina to LBSP is high in some areas,
but low to none in a large proportion of the species' range, resulting
in low exposure overall (Smith 2019b). We consider the current
vulnerability of P. meandrina to LBSP to be low to moderate, based on
moderate overall susceptibility combined with low overall exposure. We
expect vulnerability of P. meandrina to LBSP to increase throughout the
foreseeable future as the human population and coastal development
increase (Smith 2019a,b).
Coral Disease (Factor C). As described in the GSA (Smith 2019a),
the available information regarding diseases of Indo-Pacific reef-
building corals including P. meandrina leads to the following
conclusions about this threat: (1) Coral diseases and subsequent
mortalities of Indo-Pacific reef-building corals are
[[Page 40491]]
being increasingly observed, and while quantifiable temporal trends are
lacking, the environmental stressors that lead to coral diseases
(especially ocean warming) have clearly increased; and (2)
environmental stressors that lead to coral diseases are projected to
increase sharply in the Indo-Pacific under RCP8.5 throughout the
foreseeable future, thus coral diseases and subsequent coral
mortalities are also likely to increase (Smith 2019a).
The vulnerability of P. meandrina to coral disease is summarized
here in terms of its susceptibility and exposure to this threat, based
on information in the SRR (Smith 2019b). Studies of coral disease in
the Hawaiian Islands have consistently found P. meandrina to have low
susceptibility to disease (Aeby 2006, Aeby et al. 2009). Furthermore,
genus and family level information from Hawaii and elsewhere in the
Indo-Pacific indicate low susceptibilities of Pocillopora and
Pocilloporidae to coral disease relative to other reef-building corals
(Brainard et al. 2012, Ruiz-Moreno et al. 2012). Exposure of colonies
of P. meandrina to coral disease depends on exposure to other threats,
especially ocean warming and LBSP. As noted above, exposure of P.
meandrina to ocean warming and LBSP is highly variable across the
species' range, but for different reasons. Exposure to both threats is
expected to increase throughout the foreseeable future. Thus, P.
meandrina's exposure to coral disease is likely highly variable across
its range (Smith 2019b). We consider the current vulnerability of P.
meandrina to coral disease to be low, based on low susceptibility
combined with highly variable exposure. We expect vulnerability of P.
meandrina to coral disease to increase throughout the foreseeable
future as ocean warming, LBSP, and other threats increase, because
these threats generally produce conditions that favor coral disease
(Smith 2019a,b).
Predation (Factor C). As described in the GSA (Smith 2019a), the
available information regarding predation of Indo-Pacific reef-building
corals including P. meandrina leads to the following conclusions about
this threat: (1) Both chronic and acute predation, especially acute
crown of thorns starfish (COTS) outbreaks, have been observed in many
parts of the Indo-Pacific and, while quantifiable temporal trends are
lacking, environmental stressors that lead to predator outbreaks (e.g.,
land-based sources of pollution) have also increased; and (2) both
chronic and acute predation and its impacts are projected to increase
in much of the Indo-Pacific throughout the foreseeable future (Smith
2019a).
The vulnerability of P. meandrina to predation is summarized here
in terms of its susceptibility and exposure to this threat, based on
information in the SRR (Smith 2019b). The crown of thorns starfish
(COTS) is considered the most important predator because of its large
size, potential for extremely large outbreaks, high coral tissue
consumption rate, and capacity to remove tissue from entire coral
colonies (Glynn 1976). Acropora and Pocillopora species are among the
most favored coral prey of COTS, and sharp reductions in populations of
both genera in response to COTS outbreaks have been recorded across the
Indo-Pacific (Pratchett et al. 2017, Keesing et al. 2019). Aside from
COTS, other predators such as Drupella snails can result in colony
damage and mortality of Pocillopora species including P. meandrina,
especially after bleachings or other events that weaken the colonies.
However, generally these other predators do not cause severe damage
because they typically remove a small portion of tissue or skeleton,
and do not often occur in large numbers. Thus, the susceptibility of P.
meandrina to predation is moderate (Smith 2019b). Exposure of colonies
of P. meandrina to predation depends on predator abundances. Generally,
predator abundances and exposure are low most of the time on coral
reefs, interspersed with brief periods of high abundances and
subsequent high exposure. Thus, P. meandrina's exposure to predation is
likely highly variable across its range (Smith 2019b). We consider the
current vulnerability of P. meandrina to predation to be moderate,
based on moderate susceptibility combined with highly variable
exposure. We expect vulnerability of P. meandrina to predation to
increase throughout the foreseeable future as LBSP, fishing, and other
threats increase, because these threats generally produce conditions
that favor predators (Smith 2019a,b).
Collection and Trade (Factor B). Collection and trade refers to the
physical process of taking reef-building corals from their natural
habitat (collection) for the purpose of sale in the marine aquarium and
ornamental industries (trade). As described in the GSA (Smith 2019a),
the available information regarding collection and trade of Indo-
Pacific reef-building corals including P. meandrina leads to the
following conclusions about this threat: (1) Collection and trade of
Indo-Pacific reef-building corals has grown significantly in recent
decades, along with the resulting detrimental effects to corals and
their habitats; and (2) collection and trade, and their effects are
projected to increase in much of the Indo-Pacific throughout the
foreseeable future, although these effects may be partially offset by
increases in mariculture (Smith 2019a).
The vulnerability of P. meandrina to collection and trade is
summarized here in terms of its susceptibility and exposure to this
threat, based on information in the SRR (Smith 2019b). As of May 2019,
none of the largest marine aquarium coral wholesalers in the United
States, an industry that sells a vast diversity of both captive bred
and wild caught corals, had P. meandrina listed for sale, nor does it
appear to have been sold over the last 15 years (Smith 2019b). In
contrast to its lack of popularity in the marine aquarium industry, P.
meandrina was among the top four genera in the ornamental industry
(Thornhill 2012). Skeletons are cleaned and sold as curios or
decorations, and colonies of Acropora and Pocillopora species are
especially popular in many countries. Data collected by the Convention
on International Trade in Endangered Species of Wild Fauna and Flora
(CITES) suggests that collection of Pocillopora species including P.
meandrina for the domestic curio trade may be substantial in many
countries (Smith 2019b). Exposure of colonies of P. meandrina to
collection and trade depends on the proportion of the total population
that is harvested annually. The total annual harvest of P. meandrina
for the ornamental industry is not likely to be more than a few
hundreds of thousands to a few million colonies. Even if a few million
colonies are collected annually, that is still relatively small
compared to the tens of billions of colonies in P. meandrina's total
population, thus exposure to collection and trade is considered to be
low (Smith 2019b). We consider the current vulnerability of P.
meandrina to collection and trade to be low to moderate, based on
moderate susceptibility combined with low exposure. We expect
vulnerability of P. meandrina to collection and trade to increase
throughout the foreseeable future, because future domestic and
international demand for ornamental corals is expected to grow as the
human population and affluence grow (Smith 2019a,b).
Other Threats (Factors A, E). In addition to the above primary
threats, other threats to Indo-Pacific reef-building corals include two
global threats (changes in ocean circulation and tropical storms,
Factor E), and three local threats (human-induced physical
[[Page 40492]]
damage, Factor A; invasive species, and changes in salinity, both
Factor E; Brainard et al. 2011). These are not considered primary
threats because they are either uncertain (the global threats) or
highly localized on small spatial scales (the local threats).
Nevertheless, they may affect the extinction risk of some Indo-Pacific
reef-building coral species, including P. meandrina, throughout the
foreseeable future (Smith 2019a).
The vulnerabilities of P. meandrina to these other threats are
summarized here in terms of its susceptibility and exposure to these
five threats, based on information in the SRR (Smith 2019b). We
consider the current vulnerabilities of P. meandrina to changes in
ocean circulation and tropical storms to be low, based on low
susceptibilities combined with highly variable exposures. We expect
vulnerabilities of P. meandrina to changes in ocean circulation and
tropical storms to increase in the foreseeable future as climate change
worsens. We consider the current vulnerabilities of P. meandrina to
human-induced physical damage, invasive species, and changes in
salinity to be very low to low, based on low susceptibilities combined
with very low exposures. We expect vulnerabilities of P. meandrina to
human-induced physical damage, invasive species, and changes in
salinity to increase throughout the foreseeable future as human
activities increase and climate change worsens (Smith 2019a,b).
Interactions of Threats (Factor E). The threats described above
often affect Indo-Pacific reef-building corals simultaneously or
sequentially, thus threats may interact with one another to affect
corals in different ways than they would individually. As described in
the GSA (Smith 2019a), there are many types of potential interactions,
almost all of which are negative, such as the worsening of warming-
induced coral bleaching by ocean acidification (Anthony et al. 2011,
2016) and LBSP (Fabricius 2011, Wooldridge 2016). Most studies
oversimplify the interactions of threats by only considering
interactions of two threats. The reality is that most or all threats
interact with one another at various spatial and temporal scales, thus
the effects of these interactions could be significantly worse than any
individual threat alone, especially as each threat grows throughout the
foreseeable future (Smith 2019a).
We consider the current vulnerabilities of P. meandrina to the
interactions of the threats with one another to be unknown. As
explained in the SRR (Smith 2019b), there is very little information
available on the interactions of the threats with one another for P.
meandrina or other Pocillopora species, thus the available information
is inadequate to determine P. meandrina's susceptibilities to the
interactions of threats. Likewise, the available information is
inadequate to determine exposure, thus we consider P. meandrina's
susceptibilities and exposures to the interactions of threats to be
unknown (Smith 2019b). However, based on the available information on
the effects of the interactions of these threats on other Indo-Pacific
reef-building corals, as described in the GSA (Smith 2019a), we
consider it likely that the overall effect of the interactions of these
threats with one another on P. meandrina is negative, and that these
impacts will worsen throughout the foreseeable future as threats worsen
(Smith 2019a,b).
Inadequacy of Existing Regulatory Mechanisms (Factor D). While not
a threat, existing regulatory mechanisms are a very important influence
on the threats, and thus constitute one of the five listing factors.
Existing regulatory mechanisms refers to treaties, agreements, laws,
and regulations at all levels of government that may affect the
continued existence of Indo-Pacific reef-building corals. Relevant
regulatory mechanisms include all those related to GHG management
globally, and the management of local threats in the 68 countries with
Indo-Pacific reef-building corals (NMFS 2012, 2014), the great majority
of which have P. meandrina in their waters (Smith 2019b).
As described in more detail in the GSA (Smith 2019a), GHGs are
regulated through international agreements (e.g., the Paris Agreement,
signed in 2016), and through statutes and regulations at the national,
state, and local levels. Twenty countries, the ``G20'' nations, are
responsible for approximately 78 percent of global emissions, and are
led by the top three emitters, China, the United States, and India,
which are together responsible for about half of global emissions (UNEP
2019). All 20 signed the Paris Agreement; however, in 2017, the US
announced its withdrawal, to take effect in November 2020. Previous
international agreements on reducing GHGs, such as the Kyoto Protocol
of 1997, have not been effective at controlling global GHG emissions,
as shown by the increase in global GHG emissions over the past decades.
Even if implementation of the Paris Agreement successfully limits
global temperature increases to 1.5 [deg]C during the 21st century as
intended (i.e., 0.5 [deg]C warmer than now), impacts to reef-building
corals, including P. meandrina, would still occur because these
communities are already on a downward trajectory, and the additional
warming would make things worse (IPCC 2018, Smith 2019a,b).
As described in more detail in the GSA (Smith 2019a), existing
regulatory mechanisms that address the major local threats (i.e.,
fishing, land-based sources of pollution, coral diseases, coral
predators, collection and trade) consist primarily of national and
local fisheries, coastal, and watershed management laws and regulations
in the 68 countries where Indo-Pacific reef-building corals occur, but
also include some international conventions. Regulatory mechanisms
align well with some threats (e.g., fishing, collection and trade) but
not others (e.g., coral diseases and predators). The relevant
regulatory mechanisms generally consist of five categories: general
coral protection, coral collection control, fishing controls, pollution
controls, and managed areas, each of which are summarized below for the
68 countries. These regulatory mechanisms do not address climate change
threats, but they typically were not intended to do so (NMFS 2012, NMFS
2014, Smith 2019a).
General coral protection regulatory mechanisms include overarching
environmental laws that may protect corals from damage, harm, and
destruction, and specific coral reef management laws. Of the 68
countries, 18 (27 percent) have general coral protection laws. Coral
collection and trade regulatory mechanisms include specific laws that
prohibit the collection, harvest, and mining of corals. Of the 68
countries, 32 (50 percent) have laws prohibiting the collection of live
corals from coral reefs. Fishing regulations that pertain to reefs,
include regulations that prohibit explosives, poisons and chemicals,
electrocution, spearfishing, specific mesh sizes of nets, or other
fishing gear. Of the 68 countries, 53 (78 percent) have laws that
regulate coral reef fisheries. Pollution control regulations include
oil pollution laws, marine pollution laws, ship-based pollution laws,
and coastal land use and development laws. Of the 68 countries, 23 (34
percent) have laws that regulate pollution of coral reef waters.
Managed area regulatory mechanisms include the capacity to create
national parks and reserves, sanctuaries, and marine protected areas.
Of the 68 countries, nearly all have managed areas that include coral
reefs. Details about these five categories of regulatory mechanisms for
the
[[Page 40493]]
management of local threats are provided in the GSA (Smith 2019a).
The 2014 final coral listing rule concluded that global regulatory
mechanisms for GHG emissions management were ineffective at reducing
global climate change-related impacts to Indo-Pacific reef-building
coral species at that time (NMFS 2014). Since then, the Paris Agreement
was developed in 2015 and signed in 2016 (UN 2016), representing a
major potential advance in GHG emissions management because its
successful implementation would limit GMST to 1.5 [deg]C above pre-
industrial, as explained in the GSA (Smith 2019a). However, there are
several reasons why there is uncertainty with regard to successful
implementation of the Paris Agreement: (1) Despite past international
agreements for GHG emissions management (e.g., 1997 Kyoto Protocol,
2009 Copenhagen Accord), global GHG emissions and atmospheric
CO2 levels have both risen to historically high levels and
continue to do so; (2) the world's second largest GHG emitter, the
United States withdrew from the Paris Agreement in 2017; and (3) the
most recent Emissions Gap Report from November 2019 concludes that
globally, current policies are on track to result in global warming of
3.5[deg] C by 2100 (UNEP 2019). Finally, even successful implementation
of the Paris Agreement (i.e., limiting warming to 1.5 [deg]C) would
still result in additional warming, and thus worsening of the current
conditions. Therefore, we conclude that current global regulatory
mechanisms for management of GHG emissions are expected to be
unsuccessful at reducing global climate change-related impacts to Indo-
Pacific reef-building corals, including P. meandrina (Smith 2019a,b).
The 2014 final coral listing rule concluded that national, state,
local, and other regulatory mechanisms in the 68 countries with Indo-
Pacific reef-building corals were generally ineffective at preventing
or sufficiently controlling local threats to these species (NMFS 2014).
Since that time, new coral reef MPAs have been established in the Indo-
Pacific, slightly increasing the total proportion of coral reef
ecosystems protected by MPAs in the region. However, human populations
have also grown in many Indo-Pacific countries during that time, most
likely leading to an increase in local threats since we completed our
analysis in 2014. Thus, we conclude that current regulatory mechanisms
are ineffective at reducing the impacts of local threats to Indo-
Pacific reef-building corals including P. meandrina (Smith 2019a,b).
Threats Conclusion. We consider global climate change-related
threats of ocean warming, ocean acidification, and sea-level rise, and
the local threats of fishing, land-based sources of pollution, coral
disease, predation, and collection and trade, to be the most
significant to the extinction risk of Indo-Pacific reef-building
corals, including P. meandrina, currently and throughout the
foreseeable future. The most important of these threats is ocean
warming. In addition, the interactions of threats with one another
could be significantly worse than any individual threat, especially as
each threat grows. Most threats have already been observed to be
worsening, based on the monitoring results and the scientific
literature. Ocean warming in conjunction with the other threats have
recently resulted in the worst impacts to Indo-Pacific reef-building
corals ever observed. All threats are expected to worsen throughout the
foreseeable future, and to be exacerbated by the inadequacy of existing
regulatory mechanisms (Smith 2019a).
The current susceptibilities, exposures, and subsequent
vulnerabilities of P. meandrina to the threats are described in the SRR
(Smith 2019b) and summarized here. For each threat, vulnerability is a
function of susceptibility and exposure. Based on these vulnerability
ratings, the six worst threats to P. meandrina currently are ocean
warming (high), ocean acidification (high), predation (moderate),
fishing (low to moderate), land-based sources of pollution (low to
moderate), and collection and trade (low to moderate). There is not
enough information to determine P. meandrina's vulnerability to the
interactions of threats. Vulnerabilities of P. meandrina to all threats
are expected to increase throughout the foreseeable future, and to be
exacerbated by the inadequacy of existing regulatory mechanisms (Smith
2019a,b).
Rangewide Extinction Risk Assessment
An extinction risk assessment (ERA) was carried out by a seven
member ERA Team for P. meandrina across its entire range, in accordance
with the ``Guidance on Responding to Petitions and Conducting Status
Reviews under the Endangered Species Act'' (NMFS 2017). The Team used
the information provided in both the GSA and SRR (Smith 2019a,b) to
provide the rangewide quantitative ratings of P. meandrina's
demographic risk, threats, and overall extinction risk under RCP8.5
over the foreseeable future. Draft ratings were conducted in August and
September, 2019, then a Team meeting was held on September 30, 2019, to
discuss the draft ratings and to ensure that all Team members had a
common understanding of the guidance. The final ratings were completed
in October 2019.
Demographic Risk Factors. The demographic risk assessment utilized
the information provided in the SRR (Smith 2019b) on P. meandrina's
four demographic risk factors of distribution, abundance, productivity,
and diversity. ERA Team members were instructed to assign a risk rating
to each of the four demographic risk factors, based on information in
the SRR, on a scale of 1 (low risk) to 3 (high risk), for the
foreseeable future, assuming conditions projected under RCP8.5. Draft
and final ratings were conducted based on the same written information,
resulting in mean ratings of 1.0 to 1.6 for the four demographic
factors (Table 1).
Table 1--ERA Team's Draft and Final Ratings of P. meandrina's
Demographic Risk Factors, Where 1 = Low Risk, 2 = Moderate Risk, and 3 =
High Risk, Under RCP8.5 Over the Foreseeable Future
[Now to 2100; Smith 2019b]
------------------------------------------------------------------------
Mean Ratings ( Standard
ERA Team's ratings of demographic risk factors Deviation)
-------------------------
Draft Final
------------------------------------------------------------------------
Distribution.................................. 1.1 (0.38) minus>0.38)
Abundance..................................... 1.6 (0.53) minus>0.53)
Productivity.................................. 1.0 (0.00) minus>0.00)
Diversity..................................... 1.1 (0.38) minus>0.00)
------------------------------------------------------------------------
The Team rated P. meandrina's distribution as a low risk in both
the draft and final ratings (Table 1). The distribution of P. meandrina
is larger than about two-thirds of Indo-Pacific reef-building coral
species, and includes most coral reefs in the Indo-Pacific. The species
also has a broad depth range, occurring from the surface to at least 34
m (112 ft). There is no evidence of any reduction in its range due to
human impacts, thus its historic and current ranges are considered to
be the same. Although all threats are projected to increase under
RCP8.5 over the foreseeable future P. meandrina's distribution is not
likely to contribute significantly to extinction risk.
The Team rated P. meandrina's abundance as a moderate risk in both
the draft and final ratings (Table 1). In the 10 ecoregions for which
time-series abundance data or information are available, abundance
appears to be decreasing in five ecoregions and stable in five
ecoregions. Because of these declines in abundance that have already
[[Page 40494]]
been observed, and projections of increasing threats under RCP8.5 over
the foreseeable future, P. meandrina's abundance is likely to
contribute significantly to extinction risk.
The Team rated P. meandrina's productivity as the lowest possible
risk in both the draft and final ratings (Table 1). Productivity of P.
meandrina is high due to its high reproductive capacity, broad
dispersal, high recruitment, rapid skeletal growth, and adaptability,
i.e., these characteristics of the species all positively affect
population growth rate. Although all threats are projected to increase
under RCP8.5 over the foreseeable future, P. meandrina's productivity
is not likely to contribute significantly to extinction risk.
The Team rated P. meandrina's diversity as a low risk in both the
draft and final ratings (Table 1). Diversity of P. meandrina is due to
high genotypic and phenotypic diversity, and a large range with very
high habitat heterogeneity. There is no evidence that either
productivity or diversity have been reduced. Although all threats are
projected to increase under RCP8.5 over the foreseeable future, P.
meandrina's diversity is not likely to contribute significantly to
extinction risk.
In conclusion, P. meandrina's demographic factors are indicative of
a robust and resilient species that is better suited for responding to
ongoing and projected threats than most other reef-building coral
species. While abundance has declined in some ecoregions in recent
years, the species' high productivity provides capacity for recovery.
All threats are projected to worsen under RCP8.5 over the foreseeable
future, but P. meandrina's demographic factors moderate its extinction
risk (Smith 2019b).
Threats Evaluation. The threats assessment utilized the information
provided in the GSA and SRR (Smith 2019a,b) on P. meandrina's 10
threats of ocean warming, ocean acidification, sea-level rise, fishing,
land-based sources of pollution, coral disease, predation, collection
and trade, other threats, and interactions of threats, ERA Team members
were instructed to assign a risk rating to each of the 10 threats,
based on information in the GSA and SRR (Smith 2019a,b), on a scale of
1 (low risk) to 3 (high risk), for the foreseeable future, assuming
conditions projected under RCP8.5. Draft and final ratings were
conducted based on the same written information, resulting in mean
ratings of 0.7 to 2.1 for the 10 threats (Table 2).
Table 2--Mean Results of the 7-Member ERA Team's Draft and Final Ratings
of P. meandrina's Threats, Where 1 = Low Risk, 2 = Moderate Risk, and 3
= High Risk, under RCP8.5 over the Foreseeable Future
[Now to 2100; Smith 2019b]
------------------------------------------------------------------------
Mean Ratings ( Standard
ERA Team's ratings of threats Deviation)
-------------------------
Draft Final
------------------------------------------------------------------------
Ocean warming................................. 2.1 (0.69) minus>0.38)
Ocean acidification........................... 1.9 (0.90) minus>0.76)
Sea-level rise................................ 1.0 (0.00) minus>0.00)
Fishing....................................... 1.4 (0.53) minus>0.39)
Land-based sources pollution.................. 1.3 (0.49) minus>0.49)
Coral disease................................. 1.3 (0.49) minus>0.49)
Predation..................................... 1.3 (0.49) minus>0.49)
Collection and trade.......................... 1.2 (0.39) minus>0.39)
Other threats................................. 0.7 (0.52) minus>0.52)
Interactions of threats....................... 1.9 (0.69) minus>0.38)
------------------------------------------------------------------------
In both the draft and final ratings, the Team rated ocean warming,
ocean acidification, and interactions of threats as posing moderate
risk to the species (1.7-2.1), while the other seven threats were rated
as posing low risk (0.7-1.4; Table 2). The worst threats to P.
meandrina include those caused by global climate change (ocean warming
and ocean acidification), and the Team unanimously agreed that these
threats stem from the inadequacy of regulatory mechanisms for
greenhouse gas emissions management. Ocean warming and ocean
acidification were rated as posing increased risk (Table 2), because of
observed impacts that are already occurring, but mostly because the
frequency, severity, and magnitude of these threats are likely to
worsen under RCP8.5 over the foreseeable future.
The interactions of threats were also rated as posing increased
risk to P. meandrina in both the draft and final ratings (Table 2).
While there is little information available on the effects of the
interactions of threats on P. meandrina, general information on the
negative effects of interactions of threats on reef-building corals
indicates a large number of negative interactions (Smith 2019a). In
addition, there are likely to be many negative interactions that are
still unknown, and these interactions are likely to become worse under
RCP8.5 over the foreseeable future.
While the other seven threats were all rated as relatively less
severe in both the draft and final ratings (Table 2), at least some of
them can be severe on small spatial scales, and most or all have the
potential to negatively interact with other threats. For example,
fishing, land-based sources of pollution, and predation heavily impact
P. meandrina in portions of its range, and may negatively interact with
one another and other threats.
In conclusion, P. meandrina faces a multitude of growing,
interacting threats that are projected to worsen in the foreseeable
future under RCP8.5. The species' strong demographic factors moderate
all threats, but the gradual worsening of threats is expected to result
in a steady increase in extinction risk under RCP8.5 over the
foreseeable future (Smith 2019b).
Overall Extinction Risk. Guided by the results from their
demographic risk and threats assessments, each ERA Team member
independently applied their professional judgment to rate the overall
extinction risk of P. meandrina across its range as Low, Moderate, or
High, using the definitions provided in the SRR (Smith 2019b). The
extinction risk ratings were made assuming conditions projected under
RCP8.5 over the foreseeable future. In contrast to the demographic risk
and threats ratings, extinction risk was rated using the ``likelihood
point'' method, whereby each Team member had 10 `likelihood points'
that could be distributed among the three extinction risk categories.
The likelihood point method allows expression of uncertainty by Team
members (NMFS 2017). The draft, final, and mean extinction risk ratings
are shown in Table 3 below.
[[Page 40495]]
Table 3--Draft, Final, and Mean Results of the 7-Member ERA Team's
Ratings of P. meandrina's Overall Extinction Risk Under RCP8.5 Over the
Foreseeable Future
[Now to 2100; Smith 2019b]
------------------------------------------------------------------------
Number of Likelihood Points (%)
ERA Team's ratings of extinction --------------------------------------
risk Draft Final Mean
------------------------------------------------------------------------
Low.............................. 33.5 24.5 29 (41.4%)
(47.9%) (35.0%)
Moderate......................... 26.5 39.5 33 (47.1%)
(37.9%) (56.4%)
High............................. 10 (14.3%) 6 (8.6%) 8 (11.4%)
--------------------------------------
Total............................ 70 70
------------------------------------------------------------------------
The Low extinction risk category received 33.5 points (47.9
percent) in the draft rating, and 24.5 points (35.0 percent) in the
final rating, for a mean of 29 points (41.4 percent; Table 3). Several
Team members moved likelihood points from Low to Moderate for the final
rating following the September 30, 2019, Team meeting at which the
climate change assumptions in the SRR were emphasized (i.e., assumption
of conditions projected under RCP8.5 from now to 2100). Species at Low
extinction risk have stable or increasing trends in abundance and
productivity with connected, diverse populations, and are not facing
threats that result in declining trends in distribution, abundance,
productivity, or diversity. Currently, P. meandrina has high and stable
productivity and diversity, a very large distribution, very high
abundance, and stable (five ecoregions) or decreasing (five ecoregions)
abundance in the 10 ecoregions for which abundance trend data or
information are available. The species has life history characteristics
that provide resilience to disturbances and a high capacity for
recovery. However, P. meandrina faces multiple threats, the worst of
which are expected to increase under RCP8.5 over the foreseeable
future. Thus, on the one hand, most demographic factors suggest Low
extinction risk of P. meandrina, but on the other hand, recent
declining abundance trends in five of the 10 known ecoregions, as well
as increasing threats under RCP8.5 over the foreseeable future, suggest
higher extinction risk in the foreseeable future.
The Moderate extinction risk category received 26.5 points (37.9
percent) in the draft rating, and 39.5 points (56.4 percent) in the
final rating, for a mean of 33 points (47.1 percent; Table 3). Several
Team members moved likelihood points from Low to Moderate, and one Team
member moved likelihood points from High to Moderate, for the final
rating following the September 30, 2019, Team meeting. Species at
Moderate extinction risk are on a trajectory that puts them at a high
level of extinction risk in the foreseeable future, due to projected
threats or declining trends in distribution, abundance, productivity,
or diversity. While P. meandrina's distribution, productivity, and
diversity are currently strong and stable, recent abundance trends are
declining in half of the ecoregions for which data or information are
available (five of 10 ecoregions). In addition, all threats are
expected to worsen in the foreseeable future, especially the most
important threats to the species. Ocean warming and ocean acidification
are projected to worsen under RCP8.5 over the foreseeable future,
resulting in increased frequency, magnitude, and severity of warming-
induced coral bleaching, reduced coral calcification, and increased
reef erosion. These climate change threats are likely to be exacerbated
by local threats such as fishing and land-based sources of pollution
throughout much of P. meandrina's range.
The High extinction risk category received 10 points (14.3 percent)
in the draft rating, and 6 points (8.6 percent) in the final rating,
for a mean of 8 points (11.4 percent; Table 3). One Team member moved
likelihood points from High to Moderate, for the final rating following
the September 30, 2019, Team meeting in response to clarification
regarding the temporal distinction between High and Moderate extinction
risk (Smith 2019b). Species at High extinction risk are those whose
continued persistence is in question due to weak demographic factors,
or that face clear and present threats such as imminent destruction.
However, P. meandrina has strong demographic factors, with the possible
exception of abundance. Thus, while threats to P. meandrina are
expected to occur over the foreseeable future (now to 2100), impacts so
severe as to place the species at high extinction risk are not expected
in the immediate future (now to 2030), therefore the species is not
considered to be at high risk of extinction.
In conclusion, the information in the GSA (Smith 2019a), the SRR
(Smith 2019b), and the ERA Team's results (Tables 1-3) provide support
for P. meandrina currently being at low risk of extinction throughout
its range, and at low to moderate risk of extinction throughout its
range in the foreseeable future. The ERA was conducted assuming that
conditions projected under RCP8.5 will occur within the range of P.
meandrina over the foreseeable future. The ERA Team's ratings were only
for P. meandrina rangewide, thus the Team did not consider whether any
smaller areas within its range constitute Significant Portions of its
Range (Smith 2019b).
Rangewide Determination
Section 4(b)(1)(A) of the ESA requires that NMFS make listing
determinations based solely on the best scientific and commercial data
available after conducting a review of the status of the species and
taking into account those efforts, if any, being made by any state or
foreign nation, or political subdivisions thereof, to protect and
conserve the species. We have independently reviewed the best available
scientific and commercial information including the petition, public
comments submitted on the 90-day finding (83 FR 47592; September 20,
2018), the GSA (Smith 2019a), the SRR (Smith 2019b), and literature
cited therein and in this finding. In addition, we have consulted with
a large number of species experts and individuals familiar with P.
meandrina (Smith 2019b). This rangewide determination is based on our
interpretation of the status of P. meandrina throughout its range
currently and over foreseeable future (now to 2100).
Pocillopora meandrina can be characterized as a species with strong
[[Page 40496]]
demographic factors facing broad and worsening threats: It has a very
large and stable distribution, very high overall abundance but unknown
overall abundance trend, high and stable productivity, and high and
stable diversity. But it faces multiple global and local threats, all
of which are worsening, and existing regulatory mechanisms are
inadequate to ameliorate the major threats. Based on the same written
information, the ERA Team rated P. meandrina's extinction risk twice,
resulting in 47.9, 37.9, and 14.3 percent, and 35.0, 56.4, and 8.6
percent, in the Low, Moderate, High risk categories, respectively, in
the draft and final ratings (Table 3). Before the final rating, an ERA
Team meeting was held to emphasize that the Team was to assume the
worst-case climate change pathway (RCP8.5, and only RCP8.5) over the
foreseeable future for the extinction risk ratings. As explained in the
Foreseeable Future for P. meandrina section above, we consider it
likely that climate indicator values between now and 2100 will be
within the collective ranges of those projected under RCPs 8.5, 6.0,
and 4.5, and not necessarily limited to the range of conditions
projected by the worst-case pathway RCP8.5. However, all three pathways
lead to worsening conditions in the foreseeable future, and their
impacts on P. meandrina cannot be clearly distinguished from one
another based on the existing data and uncertainties. Thus, we
interpret their final extinction risk rating as representing the worst-
case scenario for P. meandrina.
Although all threats are projected to worsen within P. meandrina's
range over the foreseeable future (Smith 2019a,b; NMFS 2020a), the
following characteristics of the species moderate its extinction risk,
as documented in the SRR (Smith 2019b): (1) The species' unusually
large geographic distribution (95 ecoregions; SRR, Section 3.2.1),
broad depth distribution (0-34 m; SRR, Section 3.2.2), and wide habitat
breadth (SRR, section 2.4), provide P. meandrina uncommonly high
habitat heterogeneity (SRR, section 3.4), which creates patchiness of
conditions across its range at any given time, thus many portions of
its range are unaffected or lightly affected by any given threat; (2)
its very high abundance (at least several tens of billions of colonies;
SRR, Section 3.2.2), together with high habitat heterogeneity, likely
result in many billions of colonies surviving even the worst
disturbances; (3) even when high mortality occurs, its high
productivity provides the capacity for the affected populations to
recover quickly, as has been documented at sites within several
ecoregions (e.g., on the GBR, at Fagatele Bay in American Samoa, at the
Kahe Power Plant in the main Hawaiian Islands, and at Moorea in the
Society Islands; SRR, Section 3.2.3); (4) likewise, its high
productivity provides the capacity for populations to recover
relatively quickly from disturbances compared to more sensitive reef
coral species, allowing P. meandrina to take over denuded substrates
and to sometimes become more abundant after disturbances than before
them, as has been documented in several ecoregions (SRR, Section 3.3);
(5) it recruits to artificial substrates more readily than most other
Indo-Pacific reef corals, often dominating the coral communities on the
metal, concrete, and PVC surfaces of seawalls, Fish Aggregation
Devices, pipes, and other manmade structures (SRR, Section 3.3); (6) in
some populations that suffered high mortality from warming-induced
bleaching, subsequent warming resulted in much less mortality (e.g.,
west Mexico, SRR, Section 4.1), suggesting acclimatization (i.e.,
surviving colonies became acclimated to the changing conditions) or
adaptation (i.e., relatively heat-resistant progeny of surviving
colonies were naturally selected by the changing conditions) of the
surviving populations; and (7) adaptation may be enhanced by its high
genotypic diversity (i.e., some of its many distinct populations likely
have genotypes that will be naturally selected by the changing
conditions) and high dispersal (i.e., the progeny of naturally selected
genotypes may widely disperse, establishing new populations with
improved fitness; SRR, Sections 3.3 and 3.4).
Taken together, these demographic characteristics of P. meandrina
are expected to substantially moderate the impacts of the worsening
threats over the foreseeable future. While broadly deteriorating
conditions will likely result in a downward trajectory of P.
meandrina's overall abundance in the foreseeable future, the
demographic characteristics summarized above are expected to allow the
species to at least partially recover from many disturbances, thereby
slowing the downward trajectory. Thus, our interpretation of the
information in the GSA (Smith 2019a), SRR (Smith 2019b), and this
finding is that P. meandrina is currently at low risk of extinction
throughout its range. As explained in the Listing Species Under the
Endangered Species Act section of this finding, an ``endangered
species'' is presently at risk of extinction throughout all or a
significant portion of its range. Because P. meandrina is currently at
low risk of extinction throughout its range, it does not meet the
definition of an endangered species, and is thus not warranted for
listing as endangered at this time.
As also explained in the Listing Species Under the Endangered
Species Act section of this finding, a ``threatened species'' is not
currently at risk of extinction, but is likely to become so in the
foreseeable future. Based on the information in the GSA (Smith 2019a),
SRR (Smith 2019b), and this finding, P. meandrina is expected to face
low to moderate extinction risk in the foreseeable future throughout
its range. That is, we expect its extinction risk to increase slightly
from its current low level, to low to moderate in the foreseeable
future, in response to worsening threats. We do not expect extinction
risk to grow rapidly in the foreseeable future, because as described
earlier in this section, P. meandrina has several demographic
characteristics that moderate its extinction risk. As described in the
Rangewide Extinction Risk Assessment section, we interpret the ERA
Team's final extinction risk rating (approximately 35, 56, and 9
percent in the Low, Moderate, High risk categories, respectively, Table
3) as representing the worst-case scenario for P. meandrina, because
the Team assumed the high emissions climate change pathway (RCP8.5, and
only RCP8.5) in the foreseeable future for the extinction risk ratings.
As explained in the Foreseeable Future for P. meandrina section, we
consider it likely that climate indicator values between now and 2100
will be within the collective ranges of those projected by RCP8.5 and
the intermediate emissions pathways RCPs 6.0, and 4.5, rather than
limited to those projected by RCP8.5 alone. Because we expect P.
meandrina to face a low to moderate risk of extinction in the
foreseeable future throughout its range, it does not meet the
definition of a threatened species, and is thus not warranted for
listing as threatened at this time.
The definitions of both ``threatened'' and ``endangered'' in the
ESA contain the phrase ``significant portion of its range'' (SPR),
referring to an area smaller than the entire range of the species which
must be considered when evaluating a species' risk of extinction. Under
the final SPR Policy announced in July 2014, should we find that the
species is of low extinction risk throughout its range and not
warranted for listing, as we have for P. meandrina, then we must go on
to consider whether the species may have a higher risk of
[[Page 40497]]
extinction in a significant portion of its range (79 FR 37577; July 1,
2014). If the species within the SPR meets the definition of threatened
or endangered, then the species should be listed throughout its range
based on the status within that SPR. The following sections provide the
SPR analysis and determinations for P. meandrina.
SPR Analysis
The SPR analysis for P. meandrina consists of two steps: (1)
Identification of any portions of its range that are significant, and
thus qualify as SPRs; and (2) assessment of the extinction risk of each
SPR. This SPR analysis is based on the SPR policy in light of recent
court decisions, as explained below. In two recent District Court cases
challenging listing decisions made by the U.S. Fish and Wildlife
Service, the definition of ``significant'' in the SPR Policy was
invalidated. The courts held that the threshold component of the
definition was ``impermissible,'' because it set too high a standard.
Specifically, the courts held that under the threshold in the policy, a
species would never be listed based on the status of the portion,
because in order for a portion to meet the threshold, the species would
be threatened or endangered rangewide. Center for Biological Diversity,
et al. v. Jewell, 248 F. Supp. 3d 946, 958 (D. Ariz. 2017); Desert
Survivors v. DOI 321 F. Supp. 3d. 1011 (N.D. Cal., 2018). Accordingly,
we do not rely on our definition in the policy, but instead our
analysis independently construes and applies a biological significance
standard, drawing from the demographic factors for P. meandrina
described in the SRR (i.e., distribution, abundance, productivity, and
diversity) as they apply to each SPR. That is, each P. meandrina SPR is
identified based on its significance to the viability of the species,
in terms of that SPR's distribution, abundance, productivity, and
diversity.
Identification of the Four SPRs
The first step of the SPR analysis is to identify any SPRs. We
determined that several portions of P. meandrina's range are
significant to the viability of the species, in terms of each SPR's
demographic factors (distribution, abundance, productivity, and
diversity). The range of this species encompasses 95 ecoregions spread
across the Indo-Pacific from the western Indian Ocean to the eastern
Pacific Ocean, including the western Indian Ocean (Ecoregions #1-10),
the western Pacific Ocean (Ecoregions #11-68), the central Pacific
Ocean (Ecoregions #69-87), and the eastern Pacific Ocean (Ecoregions
#88-95; NMFS 2020b, Map 1). Based on the information in the SRR (Smith
2019b) and NMFS (2020b), which is the best currently available
information on the distribution of P. meandrina, we identified four
SPRs: (1) SPR A, the 68 ecoregions within the western Indian and
western Pacific areas (NMFS 2020b, Map 2); (2) SPR B, the 27 ecoregions
within the central Pacific and eastern Pacific areas (NMFS 2020, Map
3); (3) SPR C, the 58 ecoregions within the western Pacific area (NMFS
2020b, Map 4); and (4) SPR D, the 19 ecoregions within the central
Pacific area (NMFS 2020b, Map 5). As shown on the maps (NMFS 2020b),
SPR A encompasses SPR C, and SPR B encompasses SPR D. Rationales for
why each of these four areas qualify as an SPR are provided below.
Other portions of P. meandrina's range were considered, but found not
to qualify as SPRs.
SPR A qualifies as an SPR because it is significant to the
viability of P. meandrina, based on the population's distribution and
diversity. SPR A's distribution consists of 68 ecoregions (#1-68), or
over 70 percent of P. meandrina's ecoregions (68/95 ecoregions), and
approximately 85 percent of P. meandrina's coral reef area (Table 4).
The population's ecoregions extend from the western edge of the
species' range in the western Indian Ocean to the central western
portion of its range in the Pacific Ocean (NMFS 2020b). Because SPR A's
distribution covers over 70 percent of the species' ecoregions and
approximately 85 percent of its coral reef area (NMFS 2020b), SPR A
includes approximately 70 to 85 percent of P. meandrina's total
abundance. Distribution and abundance strongly influence a population's
productivity and diversity (see SRR, Sections 3.3 and 3.4), thus SPR A
likely contains approximately 70 to 85 percent of P. meandrina's total
productivity and diversity. Since SPR A includes most of P. meandrina's
distribution, abundance, productivity, and diversity, the species would
not be viable in the absence of this population. Therefore, SPR A is
significant to the viability of P. meandrina and qualifies as an SPR.
SPR B qualifies as an SPR because it is significant to the
viability of P. meandrina, based on the population's distribution,
abundance, and productivity. SPR B's distribution consists of 27
ecoregions (#69-95), or approximately 30 percent of P. meandrina's
ecoregions (27/95 ecoregions) and approximately 15 percent of its coral
reef area (Table 4). The population's ecoregions extend from the
central eastern portion of its range to the eastern fringe of its range
in the Pacific Ocean (NMFS 2020b). SPR B's distribution covers less
than one-third of the species' ecoregions, and an even lower proportion
of its coral reef area. However, the western portion of the population
(i.e., Ecoregions #69-87) connects the eastern Pacific ecoregions (#88-
95) with the rest of the species (i.e., Ecoregions #1-68). In addition,
the abundance of this population is important because all ecoregions
where P. meandrina is dominant occur within this population (NMFS
2020b). Distribution and abundance strongly influence a population's
productivity and diversity (see SRR, Sections 3.3 and 3.4), thus SPR B
likely contains approximately 15 to 30 percent of P. meandrina's total
productivity and diversity. Even though SPR B represents less than one-
third of P. meandrina's ecoregions, the following characteristics of
the population are especially valuable for maintaining the species'
viability as threats worsen throughout the 21st century: (1) It
contains all ecoregions where P. meandrina is dominant; (2) it provides
a link to between the species' isolated ecoregions in the eastern
Pacific to the bulk of its ecoregions in the western Pacific; and (3)
it contains a high proportion of islands and atolls with small or no
human populations (NMFS 2020b) where local threats are likely to be
relatively low in the foreseeable future, and thus may provide refuges
for maintaining the species' resilience as conditions deteriorate.
Therefore, SPR B is significant to the viability of P. meandrina and
qualifies as an SPR.
SPR C qualifies as an SPR because it is significant to the
viability of P. meandrina, based on the population's distribution and
diversity. SPR C's distribution consists of 58 ecoregions (#11-68), or
approximately 60 percent of P. meandrina's ecoregions (58/95
ecoregions) and approximately 76 percent of its coral reef area (Table
4). The population's ecoregions all occur within the central western
portion of its range in the Pacific Ocean. SPR C includes a high
proportion of P. meandrina's coral reef area (76 percent) because it
encompasses the entire Coral Reef Triangle, which has the highest
density of coral reefs in the world (NMFS 2020b). In addition, SPR C
connects the western Indian Ocean ecoregions (#1-10) with the rest of
the species' ecoregions to the east (i.e., Ecoregions #69-95).
Distribution and abundance strongly influence a population's
productivity and diversity (see SRR, Sections 3.3 and 3.4), thus SPR C
likely contains approximately 60
[[Page 40498]]
to 76 percent of P. meandrina's total productivity and diversity. Since
SPR C includes the large majority of P. meandrina's distribution,
abundance, productivity, and diversity, the species would not be viable
in the absence of this population. Therefore, SPR C is significant to
the viability of P. meandrina and qualifies as an SPR.
SPR D qualifies as an SPR because it is significant to the
viability of P. meandrina, based on the population's distribution,
abundance, and productivity. SPR D's distribution consists of 19
ecoregions (#69-87), representing only 20 percent of P. meandrina's
ecoregions (19/95 ecoregions) and approximately 14 percent of its coral
reef area (Table 4). The population's ecoregions are located in the
central eastern portion of its range in the Pacific Ocean (NMFS 2020b).
While SPR D's distribution covers only one-fifth of the species'
ecoregions, this population connects the eastern Pacific ecoregions
(#88-95) with the rest of the species (i.e., Ecoregions #1-68). In
addition, the abundance of this population is important because all
ecoregions where P. meandrina is dominant occur within this population
(NMFS 2020b). Distribution and abundance strongly influence a
population's productivity and diversity (see SRR, Sections 3.3 and
3.4), thus SPR D likely contains approximately 14 to 20 percent of P.
meandrina's total productivity and diversity. Even though SPR D
represents less than one-quarter of P. meandrina's ecoregions, the
following characteristics of the population are especially valuable for
maintaining the species' viability as threats worsen throughout the
21st century: (1) It contains all ecoregions where P. meandrina is
dominant; (2) it provides a link to between the species' isolated
ecoregions in the eastern Pacific to the bulk of its ecoregions in the
western Pacific; and (3) it contains a high proportion of islands and
atolls with small or no human populations (NMFS 2020b) where local
threats are likely to be relatively low in the foreseeable future, and
thus may provide refuges for maintaining the species' resilience as
conditions deteriorate. Therefore, SPR D is significant to the
viability of P. meandrina and qualifies as an SPR.
Aside from SPRs A-D, no other portions of the range of P. meandrina
considered were found to qualify as SPRs, based on the currently
available best information, as presented in the SRR (Smith 2019b) and
NMFS (2020b). The ecoregions on the fringes of the species' range in
the western Indian Ocean (#1-10) and in the eastern Pacific Ocean (#88-
95), are not significant to the viability of P. meandrina because: (1)
Their distributions represent small proportions of the species' range,
and do not connect large portions of the species' range with one
another; (2) their abundances are much smaller than SPRs A-D; (3)
productivity depends on abundance, thus their productivities are likely
relatively low; and (4) diversity depends on distribution, thus their
diversities are likely relatively low. Likewise, other groupings of
ecoregions are not significant to the viability of P. meandrina for the
same reasons, even groups with more ecoregions than SPRs B (27
ecoregions) and D (19 ecoregions) such as those of the Coral Triangle
(#15-42, 28 ecoregions), because they do not possess the unique
characteristics described above for SPRs B and D.
BILLING CODE 3510-22-P
[[Page 40499]]
[GRAPHIC] [TIFF OMITTED] TN06JY20.003
BILLING CODE 3510-22-C
[[Page 40500]]
Extinction Risk Assessments of the Four SPRs
The second step in our SPR analysis was to determine the status of
each SPR with an Extinction Risk Assessment (ERA) similar to the
process described in the Rangewide Extinction Risk Assessment section,
except that the ERA Team was not involved. Instead, based on the
information in the GSA (Smith 2019a), SRR (2019b), and NMFS (2020b),
staff of the NMFS Pacific Islands Regional Office analyzed the
demographic factors and threats for each of the four SPRs to inform its
extinction risk.
SPR A. SPR A's distribution consists of P. meandrina's Ecoregions
#1-68, an area [ap]15,500 km (9,630 mi) wide from the western Indian
Ocean to the western Pacific Ocean, encompassing approximately 197,000
km\2\ of coral reefs. Its range includes some remote areas with small
or no human populations, including most of the Maldives and Seychelles
in the Indian Ocean, and parts of eastern Indonesia, the northern GBR,
and the Kimberley Coast of Australia in the Pacific Ocean, and many
others (Smith 2019b, Fig. 2; NMFS 2020b). As is typical of P.
meandrina, SPR A is more common at depths of <5 m (16 ft) than in
deeper areas. The deepest P. meandrina colonies recorded within SPR A
are from 30 m (98 ft) at Farallon de Medinilla in the Mariana Islands,
and deepest colonies recorded for the species as a whole are from a
depth of 34 m (112 ft; Smith 2019b, Section 3.1.2). Thus, SPR A's depth
range is from the surface to at least 30 m. There is no evidence of any
reduction in its range due to human impacts, thus we consider SPR A's
historic and current ranges to be the same. Therefore, based on the
best available information provided in the SRR (Smith 2019b), we
consider SPR A's distribution to be very large and stable (Table 4).
Of SPR A's 68 ecoregions, relative abundance information is
available for 38 ecoregions, in which it is not dominant in any, common
in eight, uncommon in 29, and rare in one (Smith 2019b, Fig. 2; NMFS
2020b). We estimate P. meandrina's total population to be at least
several tens of billions of colonies (Smith 2019b, Section 3.2.2), and
SPR A includes approximately 85 percent of the species' coral reef area
(Table 4, NMFS 2020b). However, the relative abundances of P. meandrina
in SPR A's ecoregions are mostly uncommon, unlike the central Pacific
where it is common or dominant. Thus, we estimate the population of SPR
A to be a few tens of billions of colonies. In the four ecoregions for
which time-series abundance data or information are available for SPR
A, abundance appears to be decreasing in two ecoregions (Chagos
Archipelago, Marianas Islands) and stable in two ecoregions (GBR Far
North, GBR North-central; Smith 2019b, Table 4; NMFS 2020b). Therefore,
based on the best available information provided above, we consider SPR
A's overall abundance to be very high, but its overall abundance trend
is unknown (Table 4).
Based on the information in the SRR, we consider SPR A's
productivity to be high, despite declining abundance trends in some
ecoregions. Evidence for high productivity is provided by observations
from the GBR indicating strong recoveries in recent years from
disturbances by displacing less competitive coral species and becoming
more abundant than before the disturbances. In addition, studies and
observations from ecoregions in other populations have documented
multiple recoveries (Smith 2019b, Section 3.2.3). These recoveries
demonstrate continued high productivity, thus we consider SPR A's
productivity to be high and stable (Table 4).
Although there is little information available on the genotypic and
phenotypic diversity of SPR A, its large distribution and high habitat
heterogeneity suggest that both types of diversity are high for this
population. In addition, the population's distribution has not been
reduced (Smith 2019b, Section 3.1). Therefore, we consider SPR A's
diversity to be high and stable (Table 4).
The vulnerabilities of P. meandrina to each of the 10 threats were
rated in the SRR, based on the species' susceptibility and exposure to
each threat, over the foreseeable future assuming that RCP8.5 is the
most likely future climate scenario (Smith 2019b, Table 6). Since SPR A
includes approximately 85 percent of the range of P. meandrina in terms
of coral reef area (Table 4), the threats to SPR A are similar as to
the entire species, thus the threat vulnerability ratings are
applicable to SPR A. Threat vulnerabilities were rated as: High for
ocean warming and ocean acidification; Moderate for predation; Low to
Moderate for fishing, land-based sources of pollution, and collection
and trade; Low for sea-level rise, disease, and other threats (global);
Very Low to Low for other threats (local), and Unknown for interactions
of threats. Vulnerabilities to all threats are expected to increase
throughout the foreseeable future under RCP8.5 (Smith 2019b, Table 6).
SPR A's strong demographic factors moderate all threats, but the
gradual worsening of threats is expected to result in a steady increase
in extinction risk throughout the foreseeable future (Smith 2019b).
The extinction risk of SPR A depends on its demographic factors and
threats. Populations at Low extinction risk have stable or increasing
trends in abundance and productivity with connected, diverse
populations, and are not facing threats that result in declining trends
in distribution, abundance, productivity, or diversity (NMFS 2017).
Currently, SPR A has a very large distribution, very high abundance,
stable (two ecoregions) or decreasing (two ecoregions) abundance in the
four ecoregions for which abundance trend data or information are
available, and high and stable productivity and diversity. The
population has life history characteristics that provide resilience to
disturbances and a high capacity for recovery. However, SPR A faces
multiple threats, the worst of which are expected to increase in the
foreseeable future (NMFS 2020a, Smith 2019a). Thus, on the one hand,
most demographic factors suggest Low extinction risk for SPR A, but on
the other hand, recent declining abundance trends in two of the four
known ecoregions, as well as increasing threats throughout the
foreseeable future, suggest increased extinction risk.
Species at Moderate extinction risk are on a trajectory that puts
them at a high level of extinction risk in the foreseeable future, due
to projected threats or declining trends in distribution, abundance,
productivity, or diversity. While SPR A's distribution, productivity,
and diversity are currently strong and stable, recent abundance trends
are declining in half of the ecoregions for which data or information
are available (two of four ecoregions). In addition, all threats are
expected to worsen throughout the foreseeable future, including the two
greatest threats, ocean warming and ocean acidification, resulting in
increased frequency, magnitude, and severity of warming-induced coral
bleaching, reduced coral calcification, and increased reef erosion.
These climate change threats are likely to be exacerbated by local
threats such as fishing and land-based sources of pollution throughout
much of SPR A's range. In conclusion, the information in the GSA (Smith
2019a), the SRR (Smith 2019b), and NMFS (2020b) provide support for SPR
A currently being at low to moderate extinction risk throughout the
foreseeable future.
SPR B. SPR B's distribution consists of P. meandrina's Ecoregions
#69-95, an
[[Page 40501]]
area [ap]13,300 km (8,300 mi) wide in the central and eastern Pacific
Ocean, encompassing approximately 35,000 km\2\ of coral reefs as well
as extensive non-reef and mesophotic habitats (NMFS 2020b). Its range
includes many remote areas with small or no human populations,
including the Northwestern Hawaiian Islands, Line Islands, Tuamotu
Archipelago, most of the Galapagos Islands, Revillagigedo Islands,
Clipperton Atoll, and others (Smith 2019b, Fig. 2; NMFS 2020b). As is
typical of P. meandrina, SPR B is more common at depths of <5 m (16 ft)
than in deeper areas. The deepest P. meandrina colonies on record are
from SPR B at a depth of 34 m (112 ft; Smith 2019b, Section 3.1.2).
Thus, SPR B's depth range is from the surface to 34 m. There is no
evidence of any reduction in its range due to human impacts, thus we
consider SPR B's historic and current ranges to be the same. Therefore,
based on the best available information provided in the SRR (Smith
2019b), we consider SPR B's distribution to be large and stable (Table
4).
Relative abundance information is available for all of SPR B's 27
ecoregions, in which it is dominant in seven, common in 10, uncommon in
seven, and rare in three. It is a very common species in many of the
Pocillopora-dominated reef coral communities of the central Pacific,
and is common to rare in the eastern Pacific (Smith 2019b, Fig. 2; NMFS
2020b). We estimate P. meandrina's total population to be at least
several tens of billions of colonies (Smith 2019b, Section 3.2.2), but
SPR B includes only about 15 percent of the species' coral reef area
(Table 4, NMFS 2020b). However, this population includes all seven
ecoregions where P. meandrina is dominant, and the species is dominant
or common in 17 of the population's 27 ecoregions. Thus, we estimate
SPR B's total population to be at least several billion colonies. In
the six ecoregions for which time-series abundance data or information
are available for SPR B, abundance appears to be decreasing in three
ecoregions (Northwestern Hawaiian Islands, Main Hawaiian Islands,
Galapagos Islands) and stable in three ecoregions (Samoa-Tuvalu-Tonga,
Society Islands, Mexico West; Smith 2019b, Table 4; NMFS 2020b).
Therefore, based on the best available information provided above, we
consider SPR B's overall abundance to be high, but its overall
abundance trend is unknown (Table 4).
Based on the information in the SRR, we consider SPR B's
productivity to be high, despite declining abundance trends in some
ecoregions. Evidence for high productivity is provided by SPR B's
recovery from disturbance in several ecoregions, including: (1)
Demographic data suggests that recovery from back-to-back bleaching
events is occurring in the MHI Ecoregion (i.e., fewer adults colonies
in 2016 than in 2013 show adult colony mortality from the 2014 and 2015
bleaching events, but more juvenile colonies in 2016 than in 2013
suggests the initial stages of recovery from the bleaching events); and
(2) studies and observations in other ecoregions (e.g., GBR, Society
Islands) indicate strong recoveries in recent years from various types
of disturbances at multiple locations throughout its range, by
displacing less competitive coral species and becoming more abundant
than before the disturbances (Smith 2019b, Section 3.2.3). These
recoveries demonstrate continued high productivity, thus we consider
SPR B's productivity to be high and stable (Table 4).
Although there is little information available on the genotypic and
phenotypic diversity of SPR B, its large distribution and high habitat
heterogeneity suggest that both types of diversity are very high for
this population. In addition, information from portions of individual
ecoregions within SPR B shows high genotype and phenotypic diversity
(Smith 2019b, Section 3.4). Furthermore, the population's distribution
has not been reduced (Smith 2019b, Section 3.1). Therefore, we consider
SPR B's diversity to be high and stable (Table 4).
The vulnerabilities of P. meandrina to each of the 10 threats were
rated in the SRR, based on the species' susceptibility and exposure to
each threat, for the foreseeable future assuming that RCP8.5 is the
most likely future climate scenario (Smith 2019b, Table 6). Threat
vulnerabilities were rated as: High for ocean warming and ocean
acidification; Moderate for predation; Low to Moderate for fishing,
land-based sources of pollution, and collection and trade; Low for sea-
level rise, disease, and other threats (global); Very Low to Low for
other threats (local), and Unknown for interactions of threats.
Vulnerabilities to all threats are expected to increase in the
foreseeable future under RCP8.5 (Smith 2019b, Table 6). Since SPR B has
lower human population density and a higher proportion of remote areas
than P. meandrina's entire range (Smith 2019b), local threats (fishing,
land-based sources of pollution, collection and trade, and other local
threats) are likely less severe in SPR B's range than across the range
of the species. However, the vulnerability of SPR B to climate change
threats (ocean warming, ocean acidification, sea-level rise) are likely
similar as for P. meandrina rangewide. SPR B's strong demographic
factors moderate all threats, but the gradual worsening of threats is
expected to result in a steady increase in extinction risk throughout
the 21st century (Smith 2019b).
The extinction risk of SPR B depends on its demographic factors and
threats. Populations at Low extinction risk have stable or increasing
trends in abundance and productivity with connected, diverse
populations, and are not facing threats that result in declining trends
in distribution, abundance, productivity, or diversity (NMFS 2017).
Although SPR B only includes approximately 15 percent of the range of
P. meandrina, it nevertheless covers approximately 35,000 km\2\ of reef
area, and extensive non-reef and mesophotic habitats (NMFS 2020b).
Currently, SPR B has a large distribution, high abundance, stable
(three ecoregions) or decreasing (three ecoregions) abundance in the
six ecoregions for which abundance trend data or information are
available, and high and stable productivity and diversity. The
population has life history characteristics that provide resilience to
disturbances and a high capacity for recovery. However, SPR B faces
multiple threats, the worst of which are expected to increase in the
foreseeable future (NMFS 2020a, Smith 2019a). Thus, on the one hand,
most demographic factors suggest Low extinction risk for SPR B, but on
the other hand, recent declining abundance trends in two of the four
known ecoregions, as well as increasing threats throughout the
foreseeable future, suggest increased extinction risk.
Species at Moderate extinction risk are on a trajectory that puts
them at a high level of extinction risk in the foreseeable future, due
to projected threats or declining trends in distribution, abundance,
productivity, or diversity. While SPR B's distribution, productivity,
and diversity are currently strong and stable, recent abundance trends
are declining in half of the ecoregions for which data or information
are available (three of six ecoregions). In addition, all threats are
expected to worsen in the foreseeable future, including the two
greatest threats, ocean warming and ocean acidification, resulting in
increased frequency, magnitude, and severity of warming-induced coral
bleaching, reduced coral calcification, and increased reef erosion.
These climate change threats are likely to be exacerbated by local
threats such as fishing and land-based sources of pollution in some of
SPR B's range. In
[[Page 40502]]
conclusion, the information in the GSA (Smith 2019a), the SRR (Smith
2019b), and NMFS (2020b) provide support for SPR B currently being at
low to moderate extinction risk throughout the foreseeable future.
SPR C. SPR C's distribution consists of P. meandrina's Ecoregions
#11-68 from the western Indian Ocean to the western Pacific Ocean. Its
range encompasses the densest aggregations of coral reefs in the world,
amounting to approximately 178,000 km\2\ of coral reef area (Table 4).
The population includes some remote areas with small or no human
populations, including parts of eastern Indonesia, the northern GBR,
the Kimberley Coast of northwest Australia, and parts of New Guinea and
the Solomon Islands, in addition to others (Smith 2019b, Fig. 2; NMFS
2020b). As is typical of P. meandrina, SPR C is more common at depths
of <5 m (16 ft) than in deeper areas. The deepest P. meandrina colonies
recorded within SPR C are from 30 m (98 ft) at Farallon de Medinilla in
the Mariana Islands, and deepest colonies recorded for the species as a
whole are from a depth of 34 m (112 ft; Smith 2019b, Section 3.1.2).
Thus, SPR C's depth range is from the surface to at least 30 m. There
is no evidence of any reduction in its range due to human impacts, thus
we consider SPR C's historic and current ranges to be the same.
Therefore, based on the best available information provided in the SRR
(Smith 2019b), we consider SPR C's distribution to be very large and
stable (Table 4).
Of SPR C's 58 ecoregions, relative abundance information is
available for 34 ecoregions, in which it is common in seven, and
uncommon in 27 (Smith 2019b, Fig. 2; NMFS 2020b). SPR C contains the
entire Coral Triangle (Indonesia, Malaysia, Papua New Guinea,
Philippines, Solomon Islands), which has over half of the coral reef
area in the Indo-Pacific (Smith 2019a). While many of the Coral
Triangle's ecoregions are relatively small, they collectively include
over 25,000 islands, providing extensive habitat for SPR C. The total
abundance estimate for P. meandrina is at least several tens of
billions of colonies (Smith 2019b, Section 3.2.2), and SPR C includes
approximately 76 percent of the species' coral reef habitat area (NMFS
2020b), although P. meandrina is uncommon in most of the population's
ecoregions. Thus, we estimate SPR C's abundance to be a few tens of
billions of colonies. In the three ecoregions for which time-series
abundance data or information are available for SPR C, abundance
appears to be decreasing in one ecoregion (Marianas Islands) and stable
in two ecoregions (GBR Far North, GBR North-central; Smith 2019b, Table
4; NMFS 2020b). Therefore, based on the best available information
provided above, we consider SPR C's overall abundance to be very high,
but its overall abundance trend is unknown (Table 4).
Based on the information in the SRR, we consider SPR C's
productivity to be high, despite declining abundance trends in one
ecoregion. Evidence for high productivity is provided by observations
from the GBR indicating strong recoveries in recent years from
disturbances by displacing less competitive coral species and becoming
more abundant than before the disturbances. In addition, studies and
observations from ecoregions outside of SPR C have documented multiple
recoveries (Smith 2019b, Section 3.2.3). These recoveries demonstrate
continued high productivity, thus we consider SPR C's productivity to
be high and stable (Table 4).
Although there is little information available on the genotypic and
phenotypic diversity of SPR C, its large distribution and high habitat
heterogeneity suggest that both types of diversity are high for this
population. In addition, the population's distribution has not been
reduced (Smith 2019b, Section 3.1). Therefore, we consider SPR C's
diversity to be high and stable (Table 4).
The vulnerabilities of P. meandrina to each of the 10 threats were
rated in the SRR, based on the species' susceptibility and exposure to
each threat, for the foreseeable future assuming that RCP8.5 is the
most likely future climate scenario (Smith 2019b, Table 6). Since SPR C
includes approximately 76 percent of the range of P. meandrina, the
threats to SPR C are similar as to the entire species, thus the threat
vulnerability ratings are applicable to SPR C. Threat vulnerabilities
were rated as: high for ocean warming and ocean acidification; Moderate
for predation; Low to Moderate for fishing, land-based sources of
pollution, and collection and trade; Low for sea-level rise, disease,
and other threats (global); Very Low to Low for other threats (local),
and Unknown for interactions of threats. Vulnerabilities to all threats
are expected to increase in the foreseeable future under RCP8.5 (Smith
2019b, Table 6). While the global threats to SPR C are likely very
similar as to the species as a whole, the local threats such as
fishing, land-based sources of pollution, collection and trade, etc.
are likely somewhat worse for SPR C because of the large human
population and rapid industrialization within much of the Coral
Triangle. However, SPR C also includes many remote areas with small or
no human populations where local threats are virtually absent, such as
parts of eastern Indonesia, northern Australia, Papua New Guinea, the
Solomon Islands, and others (Smith 2019a; NMFS 2020b). SPR C's strong
demographic factors moderate all threats, but the gradual worsening of
threats is expected to result in a steady increase in extinction risk
throughout the foreseeable future (Smith 2019b).
The extinction risk of SPR C depends on its demographic factors and
threats. Populations at Low extinction risk have stable or increasing
trends in abundance and productivity with connected, diverse
populations, and are not facing threats that result in declining trends
in distribution, abundance, productivity, or diversity (NMFS 2017).
Currently, SPR C has a very large distribution, very high abundance,
stable (two ecoregions) or decreasing (one ecoregion) abundance in the
three ecoregions for which abundance trend data or information are
available, and high and stable productivity and diversity. The
population has life history characteristics that provide resilience to
disturbances and a high capacity for recovery. However, SPR C faces
multiple threats, the worst of which are expected to increase in the
foreseeable future (Smith 2019a). Thus, on the one hand, most
demographic factors suggest Low extinction risk for SPR C, but on the
other hand, recent declining abundance trends in one of the three known
ecoregions, as well as increasing threats in the foreseeable future,
suggest increased extinction risk.
Species at Moderate extinction risk are on a trajectory that puts
them at a high level of extinction risk in the foreseeable future, due
to projected threats or declining trends in distribution, abundance,
productivity, or diversity. While SPR C's distribution, productivity,
and diversity are currently strong and stable, recent abundance trends
are declining in one of the three ecoregions for which data or
information are available. In addition, all threats are expected to
worsen in the foreseeable future, including the two greatest threats,
ocean warming and ocean acidification, resulting in increased
frequency, magnitude, and severity of warming-induced coral bleaching,
reduced coral calcification, and increased reef erosion. These climate
change threats are likely to be exacerbated by local threats such as
fishing and land-based sources of pollution throughout much of SPR C's
range. In conclusion, the information in the GSA (Smith 2019a), the SRR
(Smith 2019b), and NMFS (2020b) provide
[[Page 40503]]
support for SPR C currently being at low to moderate extinction risk
throughout the foreseeable future.
SPR D. SPR D's distribution consists of P. meandrina's Ecoregions
#69-87. Although the smallest SPR, and the one with the fewest
ecoregions, the population encompasses an area [ap]6,500 km (4,000 mi)
wide in the central Pacific Ocean that includes approximately 32,000
km\2\ of coral reefs as well as extensive non-reef and mesophotic
habitats (NMFS 2020b). Its range includes many remote areas with small
or no human populations, including the Northwestern Hawaiian Islands,
the Line Islands, and the Tuamotu Archipelago, and others (Smith 2019b,
Fig. 2; NMFS 2020b). As is typical of P. meandrina, SPR D is more
common at depths of <5 m (16 ft) than in deeper areas. The deepest P.
meandrina colonies on record are from SPR D at a depth of 34 m (112 ft;
Smith 2019b, Section 3.1.2). Thus, SPR D's depth range is from the
surface to 34 m. There is no evidence of any reduction in its range due
to human impacts, thus we consider SPR D's historic and current ranges
to be the same. Therefore, based on the best available information
provided in the SRR (Smith 2019b), we consider SPR D's distribution to
be large and stable (Table 4).
Relative abundance information is available for all of SPR D's 19
ecoregions, in which it is dominant in seven, common in 7, and uncommon
in five. Many of the coral reef communities within this population are
Pocillopora-dominated, and P. meandrina is one of the most common
species in many of SPR D's ecoregions (Smith 2019b, Fig. 2; NMFS
2020b). We estimate P. meandrina's total population to be at least
several tens of billions of colonies (Smith 2019b, Section 3.2.2), but
SPR D includes only about 14 percent of the species' coral reef area
(NMFS 2020b). However, this population includes all seven ecoregions
where P. meandrina is dominant, and the species is dominant or common
in 14 of the population's 19 ecoregions. Thus, we estimate SPR D's
total population to be at least several billion colonies. In the four
ecoregions for which time-series abundance data or information are
available for SPR D, abundance appears to be decreasing in two
ecoregions (Northwestern Hawaiian Islands, Main Hawaiian Islands) and
stable in two ecoregions (Samoa-Tuvalu-Tonga, Society Islands; Smith
2019b, Table 4; NMFS 2020b). Therefore, based on the best available
information provided above, we consider SPR D's overall abundance to be
high, but its overall abundance trend is unknown (Table 4).
Based on the information in the SRR, we consider SPR D's
productivity to be high, despite declining abundance trends in some
ecoregions. Evidence for high productivity is provided by SPR D's
recovery from disturbance in several ecoregions, including: (1)
Demographic data suggests that recovery from back-to-back bleaching
events is occurring in the MHI Ecoregion (i.e., fewer adults colonies
in 2016 than in 2013 show adult colony mortality from the 2014 and 2015
bleaching events, but more juvenile colonies in 2016 than in 2013
suggests the initial stages of recovery from the bleaching events); and
(2) studies and observations in other ecoregions (e.g., Society
Islands) indicate strong recoveries in recent years from various types
of disturbances at multiple locations throughout its range, by
displacing less competitive coral species and becoming more abundant
than before the disturbances (Smith 2019b, Section 3.2.3). These
recoveries demonstrate continued high productivity, thus we consider
SPR D's productivity to be high and stable (Table 4).
Although there is little information available on the genotypic and
phenotypic diversity of SPR D, its large distribution and high habitat
heterogeneity suggest that both types of diversity are very high for
this population. In addition, information from portions of individual
ecoregions within SPR D shows high genotype and phenotypic diversity
(Smith 2019b, Section 3.4). Furthermore, the population's distribution
has not been reduced (Smith 2019b, Section 3.1). Therefore, we consider
SPR D's diversity to be high and stable (Table 4).
The vulnerabilities of P. meandrina to each of the 10 threats were
rated in the SRR, based on the species' susceptibility and exposure to
each threat, for the foreseeable future assuming that RCP8.5 is the
most likely future climate scenario (Smith 2019b, Table 6). Threat
vulnerabilities were rated as: high for ocean warming and ocean
acidification; Moderate for predation; Low to Moderate for fishing,
land-based sources of pollution, and collection and trade; Low for sea-
level rise, disease, and other threats (global); Very Low to Low for
other threats (local), and Unknown for interactions of threats.
Vulnerabilities to all threats are expected to increase in the
foreseeable future under RCP8.5 (Smith 2019b, Table 6). Since SPR D has
lower human population density and a higher proportion of remote areas
than P. meandrina's entire range (Smith 2019b), local threats (fishing,
land-based sources of pollution, collection and trade, and other local
threats) are likely less severe in SPR D's range than across the range
of the species. However, the vulnerability of SPR D to climate change
threats (ocean warming, ocean acidification, sea-level rise) are likely
similar as for P. meandrina rangewide. SPR D's strong demographic
factors moderate all threats, but the gradual worsening of threats is
expected to result in a steady increase in extinction risk throughout
the 21st century (Smith 2019b).
The extinction risk of SPR D depends on its demographic factors and
threats. Populations at Low extinction risk have stable or increasing
trends in abundance and productivity with connected, diverse
populations, and are not facing threats that result in declining trends
in distribution, abundance, productivity, or diversity (NMFS 2017).
Currently, SPR D has a large distribution, high abundance, stable (two
ecoregions) or decreasing (two ecoregions) abundance in the four
ecoregions for which abundance trend data or information are available,
and high and stable productivity and diversity. The population has life
history characteristics that provide resilience to disturbances and a
high capacity for recovery. However, SPR D faces multiple threats, the
worst of which are expected to increase in the foreseeable future
(Smith 2019a). Thus, on the one hand, most demographic factors suggest
Low extinction risk for SPR D, but on the other hand, recent declining
abundance trends in two of the four known ecoregions, as well as
increasing threats in the foreseeable future, suggest increased
extinction risk.
Species at Moderate extinction risk are on a trajectory that puts
them at a high level of extinction risk in the foreseeable future, due
to projected threats or declining trends in distribution, abundance,
productivity, or diversity. While SPR D's distribution, productivity,
and diversity are currently strong and stable, recent abundance trends
are declining in half of the ecoregions for which data or information
are available (two of four ecoregions). In addition, all threats are
expected to worsen in the foreseeable future, including the two
greatest threats, ocean warming and ocean acidification, resulting in
increased frequency, magnitude, and severity of warming-induced coral
bleaching, reduced coral calcification, and increased reef erosion.
These climate change threats are likely to be exacerbated by local
threats such as fishing and land-based sources of pollution in some of
SPR D's range. In conclusion, the information in the GSA (Smith 2019a),
the SRR (Smith 2019b),
[[Page 40504]]
and NMFS (2020b) provide support for SPR D currently being at low to
moderate extinction risk throughout the foreseeable future.
SPR Determinations
Determinations based on status of the species within SPRs follow
the process described in the introduction to the Rangewide
Determination above. If the species within the SPR meets the definition
of threatened or endangered, then the species should be listed
throughout its range based on the status within that SPR. The
determinations for P. meandrina's four SPRs are based on our
interpretation of the information described above on the status of each
SPR throughout its range currently and over foreseeable future.
SPR A
SPR A can be characterized as a population with strong demographic
factors facing broad and worsening threats: It has a very large and
stable distribution, very high overall abundance but unknown overall
abundance trend, high and stable productivity, and high and stable
diversity (Table 4). But it faces multiple global and local threats,
all of which are worsening, and existing regulatory mechanisms are
inadequate to ameliorate the threats. As explained in the Foreseeable
Future for P. meandrina section above, we consider it likely that
climate indicator values between now and 2100 will be within the
collective ranges of those projected under RCPs 8.5, 6.0, and 4.5.
Although all threats are projected to worsen within SPR A's range
over the foreseeable future (Smith 2019a,b; NMFS 2020a), the following
characteristics of the population moderate its extinction risk,
summarized from information in the SRR (Smith 2019b), NMFS (2020b), and
the SPR A component of the Extinction Risk Assessments of the SPRs
section above: (1) Its very large geographic distribution (68
ecoregions, [ap]197,000 km\2\ of reef area; NMFS 2020b), broad depth
distribution (0->=30 m; NMFS 2020b), and wide habitat breadth (SRR,
Section 2.4), provide SPR A high habitat heterogeneity (SRR, section
3.4), which creates patchiness of conditions across its range at any
given time, thus many portions of its range are unaffected or lightly
affected by any given threat; (2) its very high abundance (a few tens
of billions of colonies; NMFS 2020b), together with high habitat
heterogeneity, likely result in many billions of colonies surviving
even the worst disturbances; (3) even when high mortality occurs, its
high productivity provides the capacity for the affected populations to
recover quickly, as has been documented at sites in the GBR (SRR,
Section 3.2.3); (4) likewise, its high productivity provides the
capacity for populations to recover relatively quickly from
disturbances compared to more sensitive reef coral species, allowing
SPR A to take over denuded substrates and to sometimes become more
abundant after disturbances than before them, as has been documented at
sites in the GBR (SRR, Section 3.3); (5) it recruits to artificial
substrates more readily than most other Indo-Pacific reef corals, often
dominating the coral communities on the metal, concrete, and PVC
surfaces of seawalls, Fish Aggregation Devices, pipes, and other
manmade structures (SRR, Section 3.3); (6) in other P. meandrina
populations that suffered high mortality from warming-induced
bleaching, subsequent warming resulted in less mortality (SRR, Section
4.1), suggesting the potential for acclimatization and adaptation in
this population; and (7) adaptation may be enhanced by its high
genotypic diversity (SRR, Section 3.3) and high dispersal (SRR, Section
3.4).
Taken together, these demographic characteristics of SPR A are
expected to substantially moderate the impacts of the worsening threats
over the foreseeable future. While broadly deteriorating conditions
will likely result in a downward trajectory of SPR A's overall
abundance in the foreseeable future, the demographic characteristics
summarized above are expected to allow the population to at least
partially recover from many disturbances, thereby slowing the downward
trajectory. Thus, our interpretation of the information in the GSA
(Smith 2019a), SRR (Smith 2019b), and this finding is that SPR A is
currently at low risk of extinction, and that it will be at low to
moderate risk of extinction in the foreseeable future. Therefore, P.
meandrina is not warranted for listing as endangered or threatened
under the ESA at this time based on its status within SPR A.
SPR B
SPR B can be characterized as a population with strong demographic
factors facing broad and worsening threats: it has a large and stable
distribution, high overall abundance but unknown overall abundance
trend, high and stable productivity, and high and stable diversity
(Table 4). But it faces multiple global and local threats, all of which
are worsening, and existing regulatory mechanisms are inadequate to
ameliorate the threats. As explained in the Foreseeable Future for P.
meandrina section above, we consider it likely that climate indicator
values between now and 2100 will be within the collective ranges of
those projected under RCPs 8.5, 6.0, and 4.5.
Although all threats are projected to worsen within SPR B's range
over the foreseeable future (Smith 2019a,b; NMFS 2020a), the following
characteristics of the population moderate its extinction risk,
summarized from information in the SRR (Smith 2019b), NMFS (2020b), and
the SPR B component of the Extinction Risk Assessments of the SPRs
section above: (1) Its large geographic distribution (27 ecoregions,
[ap]35,000 km\2\ of reef area, extensive non-reef and mesophotic
habitats; NMFS 2020b), broad depth distribution (0-34 m; NMFS 2020b),
and wide habitat breadth (SRR, Section 2.4), provide SPR B high habitat
heterogeneity (SRR, section 3.4), which creates patchiness of
conditions across its range at any given time, thus many portions of
its range are unaffected or lightly affected by any given threat; (2)
its high abundance (at least several billion colonies; NMFS 2020b),
together with high habitat heterogeneity, likely result in billions of
colonies surviving even the worst disturbances; (3) even when high
mortality occurs, its high productivity provides the capacity for the
affected populations to recover quickly, as has been documented at
sites within several ecoregions (e.g., at Fagatele Bay in American
Samoa, at the Kahe Power Plant in the main Hawaiian Islands, and at
Moorea in the Society Islands; SRR, Section 3.2.3); (4) likewise, its
high productivity provides the capacity for populations to recover
relatively quickly from disturbances compared to more sensitive reef
coral species, allowing SPR B to take over denuded substrates and to
sometimes become more abundant after disturbances than before them, as
has been documented in some of SPR B's ecoregions (SRR, Section 3.3);
(5) it recruits to artificial substrates more readily than most other
Indo-Pacific reef corals, often dominating the coral communities on the
metal, concrete, and PVC surfaces of seawalls, Fish Aggregation
Devices, pipes, and other manmade structures (SRR, Section 3.3); (6) in
some sub-populations that suffered high mortality from warming-induced
bleaching, subsequent warming resulted in less mortality (e.g., Oahu,
main Hawaiian Islands, SRR, Section 4.1), suggesting acclimatization or
adaptation of the surviving populations; and (7) adaptation may be
enhanced by its high genotypic diversity (SRR,
[[Page 40505]]
Section 3.3) and high dispersal (SRR, Section 3.4).
Taken together, these demographic characteristics of SPR B are
expected to substantially moderate the impacts of the worsening threats
over the foreseeable future. Although SPR B only consists of
approximately 15 percent of the range of P. meandrina, it nevertheless
covers approximately 35,000 km\2\ of reef area (Table 4), as well as
extensive non-reef and mesophotic habitats, spread across the central
and eastern Pacific, thus constituting a large distribution. In
addition, SPR B's distribution includes over 1,000 atolls and islands
with small or no human populations (NMFS 2020b) where local threats are
relatively low. While broadly deteriorating conditions will likely
result in a downward trajectory of SPR B's overall abundance in the
foreseeable future, the demographic characteristics summarized above
are expected to allow the population to at least partially recover from
many disturbances, thereby slowing the downward trajectory. Thus, our
interpretation of the information in the GSA (Smith 2019a), SRR (Smith
2019b), and this finding is that SPR B is currently at low risk of
extinction, and that it will be at low to moderate risk of extinction
in the foreseeable future. Therefore, P. meandrina is not warranted for
listing as endangered or threatened under the ESA at this time based on
its status within SPR B.
SPR C
SPR C can be characterized as a population with strong demographic
factors facing broad and worsening threats: it has a very large and
stable distribution, very high overall abundance but unknown overall
abundance trend, high and stable productivity, and high and stable
diversity (Table 4). But it faces multiple global and local threats,
all of which are worsening, and existing regulatory mechanisms are
inadequate to ameliorate the threats. As explained in the Foreseeable
Future for P. meandrina section above, we consider it likely that
climate indicator values between now and 2100 will be within the
collective ranges of those projected under RCPs 8.5, 6.0, and 4.5.
Although all threats are projected to worsen within SPR C's range
over the foreseeable future (Smith 2019a,b; NMFS 2020a), the following
characteristics of the population moderate its extinction risk,
summarized from information in the SRR (Smith 2019b), NMFS (2020b), and
the SPR C component of the Extinction Risk Assessments of the SPRs
section above: (1) Its very large geographic distribution (58
ecoregions, [ap]178,000 km\2\ of reef area; NMFS 2020b), broad depth
distribution (0->=30 m; NMFS 2020b), and wide habitat breadth (SRR,
Section 2.4), provide SPR C high habitat heterogeneity (SRR, section
3.4), which creates patchiness of conditions across its range at any
given time, thus many portions of its range are unaffected or lightly
affected by any given threat; (2) its very high abundance (a few tens
of billions of colonies; NMFS 2020b), together with high habitat
heterogeneity, likely result in many billions of colonies surviving
even the worst disturbances; (3) even when high mortality occurs, its
high productivity provides the capacity for the affected populations to
recover quickly, as has been documented on the GBR (Section 3.2.3); (4)
likewise, its high productivity provides the capacity for populations
to recover relatively quickly from disturbances compared to more
sensitive reef coral species, allowing SPR C to take over denuded
substrates and to sometimes become more abundant after disturbances
than before them, as has been documented on the GBR (SRR, Section 3.3);
(5) it recruits to artificial substrates more readily than most other
Indo-Pacific reef corals, often dominating the coral communities on the
metal, concrete, and PVC surfaces of seawalls, Fish Aggregation
Devices, pipes, and other manmade structures (SRR, Section 3.3); (6) in
other P. meandrina populations that suffered high mortality from
warming-induced bleaching, subsequent warming resulted in less
mortality (SRR, Section 4.1), suggesting the potential for
acclimatization and adaptation in this population; and (7) adaptation
may be enhanced by its high genotypic diversity (SRR, Section 3.3) and
high dispersal (SRR, Section 3.4).
Taken together, these demographic characteristics of SPR C are
expected to substantially moderate the impacts of the worsening threats
over the foreseeable future. While broadly deteriorating conditions
will likely result in a downward trajectory of SPR C's overall
abundance in the foreseeable future, the demographic characteristics
summarized above are expected to allow the population to at least
partially recover from many disturbances, thereby slowing the downward
trajectory. Thus, our interpretation of the information in the GSA
(Smith 2019a), SRR (Smith 2019b), and this finding is that SPR C is
currently at low risk of extinction, and that it will be at low to
moderate risk of extinction in the foreseeable future. Therefore, P.
meandrina is not warranted for listing as endangered or threatened
under the ESA at this time based on its status within SPR C.
SPR D
SPR D can be characterized as a population with strong demographic
factors facing broad and worsening threats: it has a large and stable
distribution, high overall abundance but unknown overall abundance
trend, high and stable productivity, and high and stable diversity
(Table 4). But it faces multiple global and local threats, all of which
are worsening, and existing regulatory mechanisms are inadequate to
ameliorate the threats. As explained in the Foreseeable Future for P.
meandrina section above, we consider it likely that climate indicator
values between now and 2100 will be within the collective ranges of
those projected under RCPs 8.5, 6.0, and 4.5.
Although all threats are projected to worsen within SPR D's range
over the foreseeable future (Smith 2019a,b; NMFS 2020a), the following
characteristics of the population moderate its extinction risk,
summarized from information in the SRR (Smith 2019b), NMFS (2020b), and
the SPR D component of the Extinction Risk Assessments of the SPRs
section above: (1) Its large geographic distribution (19 ecoregions,
[ap]32,000 km\2\ of reef area, extensive non-reef and mesophotic
habitats; NMFS 2020b), broad depth distribution (0-34 m; NMFS 2020b),
and wide habitat breadth (SRR, Section 2.4), provide SPR D high habitat
heterogeneity (SRR, section 3.4), which creates patchiness of
conditions across its range at any given time, thus many portions of
its range are unaffected or lightly affected by any given threat; (2)
its high abundance (at least several billion colonies; NMFS 2020b),
together with high habitat heterogeneity, likely result in billions of
colonies surviving even the worst disturbances; (3) even when high
mortality occurs, its high productivity provides the capacity for the
affected populations to recover quickly, as has been documented at
sites within several ecoregions (e.g., at Fagatele Bay in American
Samoa, at the Kahe Power Plant in the main Hawaiian Islands, and at
Moorea in the Society Islands; SRR, Section 3.2.3); (4) likewise, its
high productivity provides the capacity for populations to recover
relatively quickly from disturbances compared to more sensitive reef
coral species, allowing SPR D to take over denuded substrates and to
sometimes become more abundant after disturbances than before them, as
has been documented in some of SPR D's ecoregions (SRR, Section
[[Page 40506]]
3.3); (5) it recruits to artificial substrates more readily than most
other Indo-Pacific reef corals, often dominating the coral communities
on the metal, concrete, and PVC surfaces of seawalls, Fish Aggregation
Devices, pipes, and other manmade structures (SRR, Section 3.3); (6) in
some sub-populations that suffered high mortality from warming-induced
bleaching, subsequent warming resulted in less mortality (e.g., Oahu,
main Hawaiian Islands, SRR, Section 4.1), suggesting acclimatization or
adaptation of the surviving populations; and (7) adaptation may be
enhanced by its high genotypic diversity (SRR, Section 3.3) and high
dispersal (SRR, Section 3.4).
Taken together, these demographic characteristics of SPR D are
expected to substantially moderate the impacts of the worsening threats
over the foreseeable future. Although SPR D only consists of
approximately 14 percent of the range of P. meandrina, it nevertheless
covers approximately 32,000 km\2\ of reef area (Table 4), as well as
extensive non-reef and mesophotic habitats, spread across the central
Pacific, thus constituting a large distribution. In addition, SPR D's
distribution includes over 1,000 atolls and islands with small or no
human populations (NMFS 2020b) where local threats are relatively low.
While broadly deteriorating conditions will likely result in a downward
trajectory of SPR D's overall abundance in the foreseeable future, the
demographic characteristics summarized above are expected to allow the
population to at least partially recover from many disturbances,
thereby slowing the downward trajectory. Thus, our interpretation of
the information in the GSA (Smith 2019a), SRR (Smith 2019b), and this
finding is that SPR D is currently at low risk of extinction, and that
it will be at low to moderate risk of extinction in the foreseeable
future. Therefore, P. meandrina is not warranted for listing as
endangered or threatened under the ESA at this time based on its status
within SPR D.
This is a final action, and, therefore, we are not soliciting
public comments.
References
A complete list of the references used in this 12-month finding is
available at https://www.fisheries.noaa.gov/species/pocillopora-meandrina-coral#conservation-management and upon request (see FOR
FURTHER INFORMATION CONTACT).
Authority
The authority for this action is the Endangered Species Act of
1973, as amended (16 U.S.C. 1531 et seq.).
Dated: June 29, 2020.
Donna Wieting,
Director, Office of Protected Resources, National Marine Fisheries
Service.
[FR Doc. 2020-14304 Filed 7-2-20; 8:45 am]
BILLING CODE 3510-22-P