Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to Marine Site Characterization Surveys Off of New Jersey and New York, 7926-7950 [2020-02661]

Download as PDF 7926 Federal Register / Vol. 85, No. 29 / Wednesday, February 12, 2020 / Notices Office staff including a report on the status of commercial landings for species not covered during an earlier committee meeting, bycatch reporting, protected resources, and a presentation on the status of the of the For-Hire Electronic Reporting Amendment. NOAA Fisheries Southeast Fisheries Science Center staff will provide a presentation on the status of the Commercial Electronic Logbook Program and updates on the Atlantic Science Coordination Workshop, the Fishery Independent Surveys Workshop, and changes to the Marine Recreational Information Program (MRIP) weight estimates. The Council will discuss and take action as necessary. The Council will review any Exempted Fishing Permits received as necessary. The Council will receive an update on the Kitty Hawk Wind Project. The Council will receive reports from the following committees: Committee of the Whole; Shrimp; Habitat; Mackerel Cobia; Snapper Grouper; Dolphin Wahoo; SOPPs, and Executive Finance. The Council will take action as appropriate. The Council will receive agency and liaison reports; and discuss other business and upcoming meetings and take action as necessary. Documents regarding these issues are available from the Council office (see ADDRESSES). Although non-emergency issues not contained in this agenda may come before this group for discussion, those issues may not be the subject of formal action during this meeting. Action will be restricted to those issues specifically identified in this notice and any issues arising after publication of this notice that require emergency action under section 305(c) of the Magnuson-Stevens Fishery Conservation and Management Act, provided the public has been notified of the Council’s intent to take final action to address the emergency. lotter on DSKBCFDHB2PROD with NOTICES Special Accommodations These meetings are physically accessible to people with disabilities. Requests for auxiliary aids should be directed to the council office (see ADDRESSES) 5 days prior to the meeting. Note: The times and sequence specified in this agenda are subject to change. Authority: 16 U.S.C. 1801 et seq. VerDate Sep<11>2014 17:03 Feb 11, 2020 Jkt 250001 Dated: February 7, 2020. Tracey L. Thompson, Acting Deputy Director, Office of Sustainable Fisheries, National Marine Fisheries Service. [FR Doc. 2020–02772 Filed 2–11–20; 8:45 am] BILLING CODE 3510–22–P DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration [RTID 0648–XR010] Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to Marine Site Characterization Surveys Off of New Jersey and New York National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice; proposed incidental harassment authorization; request for comments on proposed authorization and possible renewal. AGENCY: NMFS has received a request from Atlantic Shores Offshore Wind, LLC (Atlantic Shores) for authorization to take marine mammals incidental to marine site characterization surveys off the coasts of New York and New Jersey in the area of the Commercial Lease of Submerged Lands for Renewable Energy Development on the Outer Continental Shelf (OCS–A 0499) and along potential submarine cable routes to a landfall location in New York or New Jersey. Pursuant to the Marine Mammal Protection Act (MMPA), NMFS is requesting comments on its proposal to issue an incidental harassment authorization (IHA) to incidentally take marine mammals during the specified activities. NMFS is also requesting comments on a possible one-year renewal that could be issued under certain circumstances and if all requirements are met, as described in Request for Public Comments at the end of this notice. NMFS will consider public comments prior to making any final decision on the issuance of the requested MMPA authorizations and agency responses will be summarized in the final notice of our decision. DATES: Comments and information must be received no later than March 13, 2020. SUMMARY: Comments should be addressed to Jolie Harrison, Chief, Permits and Conservation Division, Office of Protected Resources, National Marine Fisheries Service. Physical comments should be sent to 1315 East- ADDRESSES: PO 00000 Frm 00010 Fmt 4703 Sfmt 4703 West Highway, Silver Spring, MD 20910 and electronic comments should be sent to ITP.carduner@noaa.gov. Instructions: NMFS is not responsible for comments sent by any other method, to any other address or individual, or received after the end of the comment period. Comments received electronically, including all attachments, must not exceed a 25megabyte file size. Attachments to electronic comments will be accepted in Microsoft Word or Excel or Adobe PDF file formats only. All comments received are a part of the public record and will generally be posted online at www.fisheries.noaa.gov/national/ marine-mammal-protection/incidentaltake-authorizations-other-energyactivities-renewable without change. All personal identifying information (e.g., name, address) voluntarily submitted by the commenter may be publicly accessible. Do not submit confidential business information or otherwise sensitive or protected information. FOR FURTHER INFORMATION CONTACT: Jordan Carduner, Office of Protected Resources, NMFS, (301) 427–8401. Electronic copies of the applications and supporting documents, as well as a list of the references cited in this document, may be obtained by visiting the internet at: www.fisheries.noaa.gov/ national/marine-mammal-protection/ incidental-take-authorizations-otherenergy-activities-renewable. In case of problems accessing these documents, please call the contact listed above. SUPPLEMENTARY INFORMATION: Background The MMPA prohibits the ‘‘take’’ of marine mammals, with certain exceptions. Sections 101(a)(5)(A) and (D) of the MMPA (16 U.S.C. 1361 et seq.) direct the Secretary of Commerce (as delegated to NMFS) to allow, upon request, the incidental, but not intentional, taking of small numbers of marine mammals by U.S. citizens who engage in a specified activity (other than commercial fishing) within a specified geographical region if certain findings are made and either regulations are issued or, if the taking is limited to harassment, a notice of a proposed incidental take authorization may be provided to the public for review. Authorization for incidental takings shall be granted if NMFS finds that the taking will have a negligible impact on the species or stock(s) and will not have an unmitigable adverse impact on the availability of the species or stock(s) for taking for subsistence uses (where relevant). Further, NMFS must prescribe the permissible methods of taking and E:\FR\FM\12FEN1.SGM 12FEN1 Federal Register / Vol. 85, No. 29 / Wednesday, February 12, 2020 / Notices other ‘‘means of effecting the least practicable adverse impact’’ on the affected species or stocks and their habitat, paying particular attention to rookeries, mating grounds, and areas of similar significance, and on the availability of such species or stocks for taking for certain subsistence uses (referred to in shorthand as ‘‘mitigation’’); and requirements pertaining to the mitigation, monitoring and reporting of such takings are set forth. The definitions of all applicable MMPA statutory terms cited above are included in the relevant sections below. lotter on DSKBCFDHB2PROD with NOTICES National Environmental Policy Act To comply with the National Environmental Policy Act of 1969 (NEPA; 42 U.S.C. 4321 et seq.) and NOAA Administrative Order (NAO) 216–6A, NMFS must evaluate our proposed action (i.e., the promulgation of regulations and subsequent issuance of incidental take authorization) and alternatives with respect to potential impacts on the human environment. This action is consistent with categories of activities identified in Categorical Exclusion B4 of the Companion Manual for NAO 216–6A, which do not individually or cumulatively have the potential for significant impacts on the quality of the human environment and for which we have not identified any extraordinary circumstances that would preclude this categorical exclusion. Accordingly, NMFS has preliminarily determined that the proposed action qualifies to be categorically excluded from further NEPA review. Information in Atlantic Shores’ application and this notice collectively provide the environmental information related to proposed issuance of these regulations and subsequent incidental take authorization for public review and comment. We will review all comments submitted in response to this notice prior to concluding our NEPA process or making a final decision on the request for incidental take authorization. Summary of Request On November 5, 2019, NMFS received a request from Atlantic Shores for an IHA to take marine mammals incidental to marine site characterization surveys off the coast of New York and New Jersey in the area of the Commercial Lease of Submerged Lands for Renewable Energy Development on the Outer Continental Shelf (OCS–A 0499) and along potential submarine cable routes to a landfall location in either New York or New Jersey. A revised VerDate Sep<11>2014 17:03 Feb 11, 2020 Jkt 250001 application was received on December 30, 2019. NMFS deemed that request to be adequate and complete. Atlantic Shores’ request is for the take of 12 marine mammal species by Level B harassment. Neither Atlantic Shores nor NMFS expects serious injury or mortality to result from this activity and the activity is expected to last no more than one year, therefore, an IHA is appropriate. Description of the Proposed Activity Overview Atlantic Shores proposes to conduct marine site characterization surveys, including high-resolution geophysical (HRG) and geotechnical surveys, in the area of Commercial Lease of Submerged Lands for Renewable Energy Development on the Outer Continental Shelf #OCS–A 0499 (Lease Area) and along potential submarine cable routes to landfall locations in either New York or New Jersey. The purpose of the proposed surveys are to support the preliminary site characterization, siting, and engineering design of offshore wind project facilities including wind turbine generators, offshore substations, and submarine cables within the Lease Area and along export cable routes (ECRs). As many as three survey vessels may be operate concurrently as part of the proposed surveys. Underwater sound resulting from Atlantic Shores’ proposed site characterization surveys has the potential to result in incidental take of marine mammals in the form of behavioral harassment. Dates and Duration The estimated duration of the surveys is expected to be up to 350 total days between April 2020 and April 2021. This schedule is based on 24-hour operations and includes potential down time due to inclement weather. Specific Geographic Region Atlantic Shores’ survey activities would occur in the Northwest Atlantic Ocean within Federal waters. Surveys would occur in the Lease Area and along potential submarine cable routes to landfall locations in either New York or New Jersey (see Figure 1–1 in the IHA application). Detailed Description of the Specified Activities Atlantic Shores’ proposed marine site characterization surveys include highresolution geophysical (HRG) and geotechnical survey activities. These survey activities would occur within the both the Lease Area and within ECRs between the Lease Area and the coasts PO 00000 Frm 00011 Fmt 4703 Sfmt 4703 7927 of New York and New Jersey. The Lease Area is approximately 742 square kilometers (km) (183,353 acres) and is located approximately 18 nautical miles (nm; 34 km) southeast of Atlantic City, New Jersey (see Figure 1–1 in the IHA application). For the purpose of this IHA the Lease Area and ECRs are collectively referred to as the Project Area. Geophysical and shallow geotechnical survey activities are anticipated to be supported by vessels which will maintain a speed of approximately to 3.5 knots (kn) while transiting survey lines. The proposed HRG and geotechnical survey activities are described below. Geotechnical Survey Activities Atlantic Shores’ proposed geotechnical survey activities would include the following: • Sample boreholes to determine geological and geotechnical characteristics of sediments; • Deep cone penetration tests (CPTs) to determine stratigraphy and in situ conditions of the deep surface sediments; and • Shallow CPTs to determine stratigraphy and in situ conditions of the near surface sediments. Geotechnical investigation activities are anticipated to be conducted from a drill ship equipped with dynamic positioning (DP) thrusters. Impact to the seafloor from this equipment will be limited to the minimal contact of the sampling equipment, and inserted boring and probes. In considering whether marine mammal harassment is an expected outcome of exposure to a particular activity or sound source, NMFS considers the nature of the exposure itself (e.g., the magnitude, frequency, or duration of exposure), characteristics of the marine mammals potentially exposed, and the conditions specific to the geographic area where the activity is expected to occur (e.g., whether the activity is planned in a foraging area, breeding area, nursery or pupping area, or other biologically important area for the species). We then consider the expected response of the exposed animal and whether the nature and duration or intensity of that response is expected to cause disruption of behavioral patterns (e.g., migration, breathing, nursing, breeding, feeding, or sheltering) or injury. Geotechnical survey activities would be conducted from a drill ship equipped with DP thrusters. DP thrusters would be used to position the sampling vessel on station and maintain position at each sampling location during the sampling E:\FR\FM\12FEN1.SGM 12FEN1 7928 Federal Register / Vol. 85, No. 29 / Wednesday, February 12, 2020 / Notices activity. Sound produced through use of DP thrusters is similar to that produced by transiting vessels and DP thrusters are typically operated either in a similarly predictable manner or used for short durations around stationary activities. NMFS does not believe acoustic impacts from DP thrusters are likely to result in take of marine mammals in the absence of activity- or location-specific circumstances that may otherwise represent specific concerns for marine mammals (i.e., activities proposed in area known to be of particular importance for a particular species), or associated activities that may increase the potential to result in take when in concert with DP thrusters. In this case, we are not aware of any such circumstances. Therefore, NMFS believes the likelihood of DP thrusters used during the proposed geotechnical surveys resulting in harassment of marine mammals to be so low as to be discountable. As DP thrusters are not expected to result in take of marine mammals, these activities are not analyzed further in this document. Field studies conducted off the coast of Virginia to determine the underwater noise produced by CPTs and borehole drilling found that these activities did not result in underwater noise levels that exceeded current thresholds for Level B harassment of marine mammals (Kalapinski, 2015). Given the small size and energy footprint of CPTs and boring cores, NMFS believes the likelihood that noise from these activities would exceed the Level B harassment threshold at any appreciable distance is so low as to be discountable. Therefore, geotechnical survey activities, including CPTs and borehole drilling, are not expected to result in harassment of marine mammals and are not analyzed further in this document. Geophysical Survey Activities Atlantic Shores has proposed that HRG survey operations would be conducted continuously 24 hours per day. Based on 24-hour operations, the estimated total duration of the proposed activities would be approximately 350 survey days (including 210 survey days within the Lease Area and 140 survey days within the ECR areas; see Table 1). These estimated durations include estimated weather down time. TABLE 1—SUMMARY OF PROPOSED HRG SURVEY SEGMENTS Duration (survey days) Survey segment Lease Area ........................... Northern ECR ....................... Southern ECR ...................... 210 80 60 All areas combined ........... 350 The HRG survey activities will be supported by vessels of sufficient size to accomplish the survey goals in each of the specified survey areas. It is assumed surveys in each of the identified survey areas will be executed by a single vessel during any given campaign (i.e., no more than one survey vessel would operate in the Lease Area at any given time, but there may be one survey vessel operating in the Lease Area and one vessel operating each of the ECR areas concurrently, i.e., three vessels). HRG equipment will either be mounted to or towed behind the survey vessel at a typical survey speed of approximately 3.5 kn (6.5 km) per hour. The geophysical survey activities proposed by Atlantic Shores would include the following: • Depth sounding (multibeam depth sounder) to determine water depths and general bottom topography (currently estimated to range from approximately 5 meters (m) to 40 m in depth; • Magnetic intensity measurements (gradiometer) for detecting local variations in regional magnetic field from geological strata and potential ferrous objects on and below the bottom; • Seafloor imaging (side scan sonar) for seabed sediment classification purposes, to identify natural and manmade acoustic targets resting on the bottom as well as any anomalous features; • Shallow penetration sub-bottom profiler (pinger/chirp) to map the near surface stratigraphy (top zero to five m soils below seabed); and • Medium penetration sub-bottom profiler (chirps/parametric profilers/ sparkers) to map deeper subsurface stratigraphy as needed (soils down to 75 m to 100 m below seabed). Table 2 identifies the representative survey equipment that may be used in support of planned geophysical survey activities. The make and model of the listed geophysical equipment may vary depending on availability and the final equipment choices will vary depending upon the final survey design, vessel availability, and survey contractor selection. Geophysical surveys are expected to use several equipment types concurrently in order to collect multiple aspects of geophysical data along one transect. Selection of equipment combinations is based on specific survey objectives. TABLE 2—SUMMARY OF HRG SURVEY EQUIPMENT PROPOSED FOR USE BY ATLANTIC SHORES HRG equipment category Specific HRG equipment Single Beam Echosounders Kongsberg EA 400 ............. Teledyne ODOM Echotrac CVM. Applied Acoustics DuraSpark 240. Edgetech 2000–DSS .......... Edgetech 216 ..................... Edgetech 424 ..................... Edgetech 512i .................... Teledyne Benthos Chirp III ............................................. Kongsberg GeoPulse ......... Innomar SES–2000 Medium–100 Parametric. Applied Acoustics S-Boom Triple Plate. Applied Acoustics S-Boom Sparker ............................... lotter on DSKBCFDHB2PROD with NOTICES Sub-Bottom Profiler ............ Boomer ............................... VerDate Sep<11>2014 17:03 Feb 11, 2020 Jkt 250001 PO 00000 Operating frequency range (kHz) Source level (dB rms) Beamwidth (degrees) Typical pulse duration (ms) Pulse repetition rate 38 to 200 ....... 24 ................... 222.8 224.6 31 20 0.3 0.3 10 10 0.25 to 5 ........ 211.4 180 2.5 1.6 2 to 16 ........... 2 to 16 ........... 4 to 24 ........... 0.5 to 12 ........ 2 to 7 ............. 10 to 20 ......... 2 to 12 ........... 85 to 115 ....... 178 179 180 180 197 205 214 241 24 17, 20, or 24 71 80 100 30 30, 40, or 55 2 6.3 10 4 10 15 15 16 2 10 10 2 10 10 10 10 40 0.01 to 20 ...... 203 80 0.8 3 0.01 to 20 ...... 195 98 0.8 3 Frm 00012 Fmt 4703 Sfmt 4703 E:\FR\FM\12FEN1.SGM 12FEN1 7929 Federal Register / Vol. 85, No. 29 / Wednesday, February 12, 2020 / Notices The deployment of HRG survey equipment, including the equipment planned for use during Atlantic Shores’ proposed activity, produces sound in the marine environment that has the potential to result in harassment of marine mammals. Proposed mitigation, monitoring, and reporting measures are described in detail later in this document (please see Proposed Mitigation and Proposed Monitoring and Reporting). Description of Marine Mammals in the Area of Specified Activity Sections 3 and 4 of the IHA application summarize available information regarding status and trends, distribution and habitat preferences, and behavior and life history, of the potentially affected species. Additional information regarding population trends and threats may be found in NMFS’ Stock Assessment Reports (SARs; www.fisheries.noaa.gov/national/ marine-mammal-protection/marinemammal-stock-assessments) and more general information about these species (e.g., physical and behavioral descriptions) may be found on NMFS’ website (www.fisheries.noaa.gov/findspecies). All species that could potentially occur in the proposed survey areas are included in Table 4–1 of the IHA application. However, the temporal and/or spatial occurrence of several species listed in Table 7–2 of the IHA application is such that take of these species is not expected to occur either because they have very low densities in the project area or are known to occur further offshore than the project area. These are: The blue whale (Balaenoptera musculus), Bryde’s whale (Balaenoptera edeni), Cuvier’s beaked whale (Ziphius cavirostris), four species of Mesoplodont beaked whale (Mesoplodon spp.), dwarf and pygmy sperm whale (Kogia sima and Kogia breviceps), short-finned pilot whale (Globicephala macrorhynchus), northern bottlenose whale (Hyperoodon ampullatus), killer whale (Orcinus orca), pygmy killer whale (Feresa attenuata), false killer whale (Pseudorca crassidens), melon-headed whale (Peponocephala electra), striped dolphin (Stenella coeruleoalba), whitebeaked dolphin (Lagenorhynchus albirostris), pantropical spotted dolphin (Stenella attenuata), Fraser’s dolphin (Lagenodelphis hosei), rough-toothed dolphin (Steno bredanensis), Clymene dolphin (Stenella clymene), spinner dolphin (Stenella longirostris), hooded seal (Cystophora cristata), and harp seal (Pagophilus groenlandicus). As take of these species is not anticipated as a result of the proposed activities, these species are not analyzed further. Table 3 summarizes information related to the population or stock, including regulatory status under the MMPA and ESA and potential biological removal (PBR), where known. For taxonomy, we follow Committee on Taxonomy (2018). PBR is defined by the MMPA as the maximum number of animals, not including natural mortalities, that may be removed from a marine mammal stock while allowing that stock to reach or maintain its optimum sustainable population (as described in NMFS’ SARs). While no mortality is anticipated or authorized here, PBR is included here as a gross indicator of the status of the species and other threats. Marine mammal abundance estimates presented in this document represent the total number of individuals that make up a given stock or the total number estimated within a particular study or survey area. NMFS’ stock abundance estimates for most species represent the total estimate of individuals within the geographic area, if known, that comprises that stock. For some species, this geographic area may extend beyond U.S. waters. All managed stocks in this region are assessed in NMFS’ U.S. Atlantic SARs. All values presented in Table 3 are the most recent available at the time of publication and are available in the 2019 draft Atlantic SARs (Hayes et al., 2019), available online at: www.fisheries.noaa.gov/ national/marine-mammal-protection/ marine-mammal-stock-assessmentreports-region. TABLE 3—MARINE MAMMALS KNOWN TO OCCUR IN THE SURVEY AREA THAT MAY BE AFFECTED BY ATLANTIC SHORES’ PROPOSED ACTIVITY Common name (scientific name) Stock I MMPA and ESA status; strategic (Y/N) 1 Stock abundance (CV, Nmin, most recent abundance survey) 2 I Predicted abundance (CV) 3 Annual M/SI 4 PBR 4 I I Occurrence in project area I Toothed whales (Odontoceti) Sperm whale (Physeter macrocephalus). Long-finned pilot whale (Globicephala melas). Atlantic white-sided dolphin (Lagenorhynchus acutus). Bottlenose dolphin (Tursiops truncatus). lotter on DSKBCFDHB2PROD with NOTICES dolphin 6 Common (Delphinus delphis). Atlantic spotted dolphin (Stenella frontalis). Risso’s dolphin (Grampus griseus). Harbor porpoise (Phocoena phocoena). North Atlantic .................... E; Y 4,349 (0.28; 3,451; n/a) .... 5,353 (0.12) 6.9 0.0 Rare. W. North Atlantic ............... --; N 39,215 (0.3; 30,627; n/a) .. 18,977 (0.11) 5 306 21 Rare. W. North Atlantic ............... --; N 93,233 (0.71; 54,443; n/a) 37,180 (0.07) 544 26 Common. W. North Atlantic, Offshore --; N 97,476 (0.06) 5 519 28 Common offshore. W. North Atlantic, Coastal Migratory. W. North Atlantic ............... --; N 62,851 (0.23; 51,914; 2011). 6,639 (0.41; 4,759; 2015) 48 --; N Common. W. North Atlantic ............... --; N Common. W. North Atlantic ............... --; N Gulf of Maine/Bay of Fundy. --; N 172,825 (0.21; 145,216; 2011). 39,921 (0.27; 32,032; 2012). 35,493 (0.19; 30,289; 2011). 95,543 (0.31; 74,034; 2011). 86,098 (0.12) 1,452 6.1– 13.2 419 Common nearshore. 55,436 (0.32) 320 0 7,732 (0.09) 303 54.3 Rare. * 45,089 (0.12) 851 217 Common. Occur seasonally. Baleen whales (Mysticeti) North Atlantic right whale (Eubalaena glacialis). Humpback whale 7 (Megaptera novaeangliae). VerDate Sep<11>2014 W. North Atlantic ............... E; Y 428 (0; 418; n/a) ............... * 535 (0.45) 0.8 6.85 Gulf of Maine .................... --; N 1,396 (0; 1,380; n/a) ......... * 1,637 (0.07) 22 12.15 17:03 Feb 11, 2020 I Jkt 250001 PO 00000 I Frm 00013 Fmt 4703 Sfmt 4703 I I E:\FR\FM\12FEN1.SGM 12FEN1 Common year round. I 7930 Federal Register / Vol. 85, No. 29 / Wednesday, February 12, 2020 / Notices TABLE 3—MARINE MAMMALS KNOWN TO OCCUR IN THE SURVEY AREA THAT MAY BE AFFECTED BY ATLANTIC SHORES’ PROPOSED ACTIVITY—Continued Common name (scientific name) Fin whale 6 (Balaenoptera physalus). Sei whale (Balaenoptera borealis). Minke whale 6 (Balaenoptera acutorostrata). MMPA and ESA status; strategic (Y/N) 1 Stock Stock abundance (CV, Nmin, most recent abundance survey) 2 Predicted abundance (CV) 3 Annual M/SI 4 PBR 4 W. North Atlantic ............... E; Y 7,418 (0.25; 6,025; n/a) .... 4,633 (0.08) 12 2.35 Nova Scotia ....................... E; Y 6,292 (1.015; 3,098; n/a) .. * 717 (0.30) 6.2 1.0 Canadian East Coast ........ --; N 24,202 (0.3; 18,902; n/a) .. * 2,112 (0.05) 8.0 7.0 1,389 5,410 Occurrence in project area Year round in continental shelf and slope waters. Year round in continental shelf and slope waters. Year round in continental shelf and slope waters. Earless seals (Phocidae) Gray seal 8 (Halichoerus grypus). Harbor seal (Phoca vitulina) W. North Atlantic ............... --; N 27,131 (0.19; 23,158; n/a) ........................ W. North Atlantic ............... --; N 75,834 (0.15; 66,884; 2012). ........................ I 2,006 I 350 Common. Common. I lotter on DSKBCFDHB2PROD with NOTICES 1 ESA status: Endangered (E), Threatened (T)/MMPA status: Depleted (D). A dash (-) indicates that the species is not listed under the ESA or designated as depleted under the MMPA. Under the MMPA, a strategic stock is one for which the level of direct human-caused mortality exceeds PBR (see footnote 3) or which is determined to be declining and likely to be listed under the ESA within the foreseeable future. Any species or stock listed under the ESA is automatically designated under the MMPA as depleted and as a strategic stock. 2 Stock abundance as reported in NMFS marine mammal stock assessment reports (SAR) except where otherwise noted. SARs available online at: www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-stock-assessments. CV is coefficient of variation; Nmin is the minimum estimate of stock abundance. In some cases, CV is not applicable. For certain stocks, abundance estimates are actual counts of animals and there is no associated CV. The most recent abundance survey that is reflected in the abundance estimate is presented; there may be more recent surveys that have not yet been incorporated into the estimate. All values presented here are from the 2019 draft Atlantic SARs (Hayes et al., 2019). 3 This information represents species- or guild-specific abundance predicted by recent habitat-based cetacean density models (Roberts et al., 2016, 2017, 2018). These models provide the best available scientific information regarding predicted density patterns of cetaceans in the U.S. Atlantic Ocean, and we provide the corresponding abundance predictions as a point of reference. Total abundance estimates were produced by computing the mean density of all pixels in the modeled area and multiplying by its area. For those species marked with an asterisk, the available information supported development of either two or four seasonal models; each model has an associated abundance prediction. Here, we report the maximum predicted abundance. 4 Potential biological removal, defined by the MMPA as the maximum number of animals, not including natural mortalities, that may be removed from a marine mammal stock while allowing that stock to reach or maintain its optimum sustainable population size (OSP). Annual M/SI, found in NMFS’ SARs, represent annual levels of human-caused mortality plus serious injury from all sources combined (e.g., commercial fisheries, subsistence hunting, ship strike). Annual M/SI values often cannot be determined precisely and is in some cases presented as a minimum value. All M/SI values are as presented in the draft 2019 SARs (Hayes et al., 2019). 5 Abundance estimates are in some cases reported for a guild or group of species when those species are difficult to differentiate at sea. Similarly, the habitatbased cetacean density models produced by Roberts et al. (2016, 2017, 2018) are based in part on available observational data which, in some cases, is limited to genus or guild in terms of taxonomic definition. Roberts et al. (2016, 2017, 2018) produced density models to genus level for Globicephala spp. and produced a density model for bottlenose dolphins that does not differentiate between offshore and coastal stocks. 6 Abundance as reported in the 2007 Canadian Trans-North Atlantic Sighting Survey (TNASS), which provided full coverage of the Atlantic Canadian coast (Lawson and Gosselin, 2009). Abundance estimates from TNASS were corrected for perception and availability bias, when possible. In general, where the TNASS survey effort provided superior coverage of a stock’s range (as compared with NOAA shipboard survey effort), the resulting abundance estimate is considered more accurate than the current NMFS abundance estimate (derived from survey effort with inferior coverage of the stock range). NMFS stock abundance estimate for the common dolphin is 70,184. NMFS stock abundance estimate for the fin whale is 1,618. NMFS stock abundance estimate for the minke whale is 2,591. 7 2018 U.S. Atlantic draft SAR for the Gulf of Maine feeding population lists a current abundance estimate of 896 individuals. However, we note that the estimate is defined on the basis of feeding location alone (i.e., Gulf of Maine) and is therefore likely an underestimate. 8 NMFS stock abundance estimate applies to U.S. population only, actual stock abundance is approximately 505,000. Four marine mammal species that are listed under the Endangered Species Act (ESA) may be present in the survey area and are included in the take request: The North Atlantic right, fin, sei, and sperm whale. Below is a description of the species that have the highest likelihood of occurring in the project area and are thus expected to potentially be taken by the proposed activities. For the majority of species potentially present in the specific geographic region, NMFS has designated only a single generic stock (e.g., ‘‘western North Atlantic’’) for management purposes. This includes the ‘‘Canadian east coast’’ stock of minke whales, which includes all minke whales found in U.S. waters is also a generic stock for management purposes. For humpback whales, NMFS defines stocks on the basis of feeding locations, i.e., Gulf of Maine. However, references to humpback whales in this document refer to any individuals of the species VerDate Sep<11>2014 17:03 Feb 11, 2020 Jkt 250001 that are found in the specific geographic region. North Atlantic Right Whale The North Atlantic right whale ranges from calving grounds in the southeastern United States to feeding grounds in New England waters and into Canadian waters (Hayes et al., 2018). Surveys have demonstrated the existence of seven areas where North Atlantic right whales congregate seasonally, including north and east of the proposed project area in Georges Bank, off Cape Cod, and in Massachusetts Bay (Hayes et al., 2018). In the late fall months (e.g. October), right whales are generally thought to depart from the feeding grounds in the North Atlantic and move south to their calving grounds off Georgia and Florida. However, recent research indicates our understanding of their movement patterns remains incomplete (Davis et al. 2017). A review of passive acoustic monitoring data from 2004 to 2014 PO 00000 Frm 00014 Fmt 4703 Sfmt 4703 throughout the western North Atlantic demonstrated nearly continuous yearround right whale presence across their entire habitat range (for at least some individuals), including in locations previously thought of as migratory corridors, suggesting that not all of the population undergoes a consistent annual migration (Davis et al. 2017). The western North Atlantic population demonstrated overall growth of 2.8 percent per year between 1990 to 2010, despite a decline in 1993 and no growth between 1997 and 2000 (Pace et al. 2017). However, since 2010 the population has been in decline, with a 99.99 percent probability of a decline of just under 1 percent per year (Pace et al. 2017). Between 1990 and 2015, calving rates varied substantially, with low calving rates coinciding with all three periods of decline or no growth (Pace et al. 2017). On average, North Atlantic right whale calving rates are estimated to be roughly half that of southern right whales (Eubalaena australis) (Pace et al. E:\FR\FM\12FEN1.SGM 12FEN1 lotter on DSKBCFDHB2PROD with NOTICES Federal Register / Vol. 85, No. 29 / Wednesday, February 12, 2020 / Notices 2017), which are increasing in abundance (NMFS 2015). In 2018, no new North Atlantic right whale calves were documented in their calving grounds; this represented the first time since annual NOAA aerial surveys began in 1989 that no new right whale calves were observed. Seven right whale calves were documented in 2019. The current best estimate of population abundance for the species is 409 individuals, based on data as of September 4, 2019 (Pettis et al., 2019). Elevated North Atlantic right whale mortalities have occurred since June 7, 2017 along the U.S. and Canadian coast. As of February, 2020, a total of 30 confirmed dead stranded whales (21 in Canada; 9 in the United States) have been documented. This event has been declared an Unusual Mortality Event (UME), with human interactions, including entanglement in fixed fishing gear and vessel strikes, implicated in at least 15 of the mortalities thus far. More information is available online at: www.fisheries.noaa.gov/national/ marine-life-distress/2017-2019-northatlantic-right-whale-unusual-mortalityevent. Any right whales in the vicinity of the survey areas are expected to be transient, most likely migrating through the area. The proposed survey areas are part of a biologically important migratory area for North Atlantic right whales; this important migratory area is comprised of the waters of the continental shelf offshore the East Coast of the United States and extends from Florida through Massachusetts. NMFS’ regulations at 50 CFR part 224.105 designated nearshore waters of the MidAtlantic Bight as Mid-Atlantic U.S. Seasonal Management Areas (SMA) for right whales in 2008. SMAs were developed to reduce the threat of collisions between ships and right whales around their migratory route and calving grounds. Within SMAs, the regulations require a mandatory vessel speed (less than 10 kn) for all vessels greater than 65 ft. A portion of one SMA overlaps spatially with the northern section of the proposed survey area. This SMA, which is associated with port of New York/New Jersey, is active from November 1 through April 30 of each year. All Atlantic Shores survey vessels, regardless of length, would be required to adhere to a 10 kn vessel speed restriction when operating within this SMA (when the SMA is active from November 1 through April 30). In addition, all Atlantic Shores survey vessels, regardless of length, would be required to adhere to a 10-kn vessel speed restriction when operating in any VerDate Sep<11>2014 17:03 Feb 11, 2020 Jkt 250001 Dynamic Management Area (DMA) declared by NMFS. Humpback Whale Humpback whales are found worldwide in all oceans. Humpback whales were listed as endangered under the Endangered Species Conservation Act (ESCA) in June 1970. In 1973, the ESA replaced the ESCA, and humpbacks continued to be listed as endangered. On September 8, 2016, NMFS divided the species into 14 distinct population segments (DPS), removed the current species-level listing, and in its place listed four DPSs as endangered and one DPS as threatened (81 FR 62259; September 8, 2016). The remaining nine DPSs were not listed. The West Indies DPS, which is not listed under the ESA, is the only DPS of humpback whale that is expected to occur in the project area. Humpback whales utilize the midAtlantic as a migration pathway between calving/mating grounds to the south and feeding grounds in the north (Waring et al. 2007). A key question with regard to humpback whales off the mid-Atlantic states is their stock identity. Using fluke photographs of living and dead whales observed in the region, Barco et al. (2002) reported that 43 percent of 21 live whales matched to the Gulf of Maine, 19 percent to Newfoundland, and 4.8 percent to the Gulf of St Lawrence, while 31.6 percent of 19 dead humpbacks were known Gulf of Maine whales. Although the population composition of the midAtlantic is apparently dominated by Gulf of Maine whales, lack of photographic effort in Newfoundland makes it likely that the observed match rates under-represent the true presence of Canadian whales in the region (Waring et al., 2016). Barco et al. (2002) suggested that the mid-Atlantic region primarily represents a supplemental winter feeding ground used by humpbacks. Since January 2016, elevated humpback whale mortalities have occurred along the Atlantic coast from Maine to Florida. As of February, 2020, partial or full necropsy examinations have been conducted on approximately half of the 111 known cases. Of the whales examined, about 50 percent had evidence of human interaction, either ship strike or entanglement. While a portion of the whales have shown evidence of pre-mortem vessel strike, this finding is not consistent across all whales examined and more research is needed. NOAA is consulting with researchers that are conducting studies on the humpback whale populations, and these efforts may provide PO 00000 Frm 00015 Fmt 4703 Sfmt 4703 7931 information on changes in whale distribution and habitat use that could provide additional insight into how these vessel interactions occurred. Three previous UMEs involving humpback whales have occurred since 2000, in 2003, 2005, and 2006. More information is available at: www.fisheries.noaa.gov/national/ marine-life-distress/2016-2019humpback-whale-unusual-mortalityevent-along-atlantic-coast. Fin Whale Fin whales are common in waters of the U. S. Atlantic Exclusive Economic Zone (EEZ), principally from Cape Hatteras northward (Waring et al., 2016). Fin whales are present north of 35-degree latitude in every season and are broadly distributed throughout the western North Atlantic for most of the year (Waring et al., 2016). They are typically found in small groups of up to five individuals (Brueggeman et al., 1987). The main threats to fin whales are fishery interactions and vessel collisions (Waring et al., 2016). Sei Whale The Nova Scotia stock of sei whales can be found in deeper waters of the continental shelf edge waters of the northeastern U.S. and northeastward to south of Newfoundland. The southern portion of the stock’s range during spring and summer includes the Gulf of Maine and Georges Bank. Spring is the period of greatest abundance in U.S. waters, with sightings concentrated along the eastern margin of Georges Bank and into the Northeast Channel area, and along the southwestern edge of Georges Bank in the area of Hydrographer Canyon (Waring et al., 2015). Sei whales occur in shallower waters to feed. Sei whales are listed as engendered under the ESA, and the Nova Scotia stock is considered strategic and depleted under the MMPA. The main threats to this stock are interactions with fisheries and vessel collisions. Minke Whale Minke whales can be found in temperate, tropical, and high-latitude waters. The Canadian East Coast stock can be found in the area from the western half of the Davis Strait (45°W) to the Gulf of Mexico (Waring et al., 2016). This species generally occupies waters less than 100 m deep on the continental shelf. There appears to be a strong seasonal component to minke whale distribution in the survey areas, in which spring to fall are times of relatively widespread and common occurrence while during winter the E:\FR\FM\12FEN1.SGM 12FEN1 7932 Federal Register / Vol. 85, No. 29 / Wednesday, February 12, 2020 / Notices species appears to be largely absent (Waring et al., 2016). Since January 2017, elevated minke whale mortalities have occurred along the Atlantic coast from Maine through South Carolina. This event has been declared a UME. As of February, 2020 partial or full necropsy examinations have been conducted on approximately 60 percent of the 79 known cases. Preliminary findings in several of the whales have shown evidence of human interactions or infectious disease, but these findings are not consistent across all of the whales examined, so more research is needed. More information is available at: www.fisheries.noaa.gov/ national/marine-life-distress/2017-2019minke-whale-unusual-mortality-eventalong-atlantic-coast. lotter on DSKBCFDHB2PROD with NOTICES Sperm Whale The distribution of the sperm whale in the U.S. EEZ occurs on the continental shelf edge, over the continental slope, and into mid-ocean regions (Waring et al., 2014). The basic social unit of the sperm whale appears to be the mixed school of adult females plus their calves and some juveniles of both sexes, normally numbering 20–40 animals in all. There is evidence that some social bonds persist for many years (Christal et al., 1998). This species forms stable social groups, site fidelity, and latitudinal range limitations in groups of females and juveniles (Whitehead, 2002). In summer, the distribution of sperm whales includes the area east and north of Georges Bank and into the Northeast Channel region, as well as the continental shelf (inshore of the 100-m isobath) south of New England. In the fall, sperm whale occurrence south of New England on the continental shelf is at its highest level, and there remains a continental shelf edge occurrence in the mid-Atlantic bight. In winter, sperm whales are concentrated east and northeast of Cape Hatteras. Long-finned Pilot Whale Long-finned pilot whales are found from North Carolina and north to Iceland, Greenland and the Barents Sea (Waring et al., 2016). In U.S. Atlantic waters the species is distributed principally along the continental shelf edge off the northeastern U.S. coast in winter and early spring and in late spring, pilot whales move onto Georges Bank and into the Gulf of Maine and more northern waters and remain in these areas through late autumn (Waring et al., 2016). Long-finned pilot whales are not listed under the ESA. The Western North Atlantic stock is considered strategic under the MMPA. VerDate Sep<11>2014 17:03 Feb 11, 2020 Jkt 250001 Atlantic White-sided Dolphin White-sided dolphins are found in temperate and sub-polar waters of the North Atlantic, primarily in continental shelf waters to the 100-m depth contour from central West Greenland to North Carolina (Waring et al., 2016). The Gulf of Maine stock is most common in continental shelf waters from Hudson Canyon to Georges Bank, and in the Gulf of Maine and lower Bay of Fundy. Sighting data indicate seasonal shifts in distribution (Northridge et al., 1997). During January to May, low numbers of white-sided dolphins are found from Georges Bank to Jeffreys Ledge (off New Hampshire), with even lower numbers south of Georges Bank, as documented by a few strandings collected on beaches of Virginia to South Carolina. From June through September, large numbers of white-sided dolphins are found from Georges Bank to the lower Bay of Fundy. From October to December, white-sided dolphins occur at intermediate densities from southern Georges Bank to southern Gulf of Maine (Payne and Heinemann 1990). Sightings south of Georges Bank, particularly around Hudson Canyon, occur year round but at low densities. Atlantic Spotted Dolphin Atlantic spotted dolphins are found in tropical and warm temperate waters ranging from southern New England, south to Gulf of Mexico and the Caribbean to Venezuela (Waring et al., 2014). This stock regularly occurs in continental shelf waters south of Cape Hatteras and in continental shelf edge and continental slope waters north of this region (Waring et al., 2014). There are two forms of this species, with the larger ecotype inhabiting the continental shelf and is usually found inside or near the 200 m isobaths (Waring et al., 2014). Common Dolphin The short-beaked common dolphin is found world-wide in temperate to subtropical seas. In the North Atlantic, short-beaked common dolphins are commonly found over the continental shelf between the 100-m and 2,000-m isobaths and over prominent underwater topography and east to the mid-Atlantic Ridge (Waring et al., 2016). Bottlenose Dolphin There are two distinct bottlenose dolphin morphotypes in the western North Atlantic: The coastal and offshore forms (Waring et al., 2016). The offshore form is distributed primarily along the outer continental shelf and continental slope in the Northwest Atlantic Ocean from Georges Bank to the Florida Keys. The coastal morphotype is PO 00000 Frm 00016 Fmt 4703 Sfmt 4703 morphologically and genetically distinct from the larger, more robust morphotype that occupies habitats further offshore. Spatial distribution data, tag-telemetry studies, photo-ID studies and genetic studies demonstrate the existence of a distinct Northern Migratory stock of coastal bottlenose dolphins (Waring et al., 2014). During summer months (July-August), this stock occupies coastal waters from the shoreline to approximately the 25 m isobath between the Chesapeake Bay mouth and Long Island, New York; during winter months (January-March), the stock occupies coastal waters from Cape Lookout, North Carolina, to the North Carolina/Virginia border (Waring et al., 2014). The Western North Atlantic northern migratory coastal stock and the Western North Atlantic offshore stock may be encountered by the proposed survey. Harbor Porpoise In the Lease Area, only the Gulf of Maine/Bay of Fundy stock may be present. This stock is found in U.S. and Canadian Atlantic waters and is concentrated in the northern Gulf of Maine and southern Bay of Fundy region, generally in waters less than 150 m deep (Waring et al., 2016). They are seen from the coastline to deep waters (≤1800 m; Westgate et al. 1998), although the majority of the population is found over the continental shelf (Waring et al., 2016). The main threat to the species is interactions with fisheries, with documented take in the U.S. northeast sink gillnet, mid-Atlantic gillnet, and northeast bottom trawl fisheries and in the Canadian herring weir fisheries (Waring et al., 2016). Harbor Seal The harbor seal is found in all nearshore waters of the North Atlantic and North Pacific Oceans and adjoining seas above about 30°N (Burns, 2009). In the western North Atlantic, harbor seals are distributed from the eastern Canadian Arctic and Greenland south to southern New England and New York, and occasionally to the Carolinas (Waring et al., 2016). Haulout and pupping sites are located off Manomet, MA and the Isles of Shoals, ME, but generally do not occur in areas in southern New England (Waring et al., 2016). Since July 2018, elevated numbers of harbor seal and gray seal mortalities have occurred across Maine, New Hampshire and Massachusetts. This event has been declared a UME. Additionally, stranded seals have shown clinical signs as far south as Virginia, although not in elevated E:\FR\FM\12FEN1.SGM 12FEN1 Federal Register / Vol. 85, No. 29 / Wednesday, February 12, 2020 / Notices lotter on DSKBCFDHB2PROD with NOTICES numbers, therefore the UME investigation now encompasses all seal strandings from Maine to Virginia. Lastly, ice seals (harp and hooded seals) have also started stranding with clinical signs, again not in elevated numbers, and those two seal species have also been added to the UME investigation. As of February, 2020 a total of 3,050 reported strandings (of all species) had occurred, including 94 strandings reported in New Jersey. Full or partial necropsy examinations have been conducted on some of the seals and samples have been collected for testing. Based on tests conducted thus far, the main pathogen found in the seals is phocine distemper virus. NMFS is performing additional testing to identify any other factors that may be involved in this UME. Information on this UME is available online at: www.fisheries.noaa.gov/new-englandmid-atlantic/marine-life-distress/20182019-pinniped-unusual-mortality-eventalong. Gray Seal There are three major populations of gray seals found in the world; eastern Canada (western North Atlantic stock), northwestern Europe and the Baltic Sea. Gray seals in the survey area belong to the western North Atlantic stock. The range for this stock is thought to be from New Jersey to Labrador. Current population trends show that gray seal abundance is likely increasing in the U.S. Atlantic EEZ (Waring et al., 2016). Although the rate of increase is unknown, surveys conducted since their arrival in the 1980s indicate a steady increase in abundance in both Maine and Massachusetts (Waring et al., 2016). It is believed that recolonization by Canadian gray seals is the source of the U.S. population (Waring et al., 2016). As described above, elevated seal mortalities, including gray seals, have occurred from Maine to Virginia since July 2018. This event has been declared a UME, with phocine distemper virus identified as the main pathogen found in the seals. NMFS is performing additional testing to identify any other factors that may be involved in this UME. Information on this UME is available online at: www.fisheries.noaa.gov/new-englandmid-atlantic/marine-life-distress/20182019-pinniped-unusual-mortality-eventalong. Marine Mammal Hearing Hearing is the most important sensory modality for marine mammals underwater, and exposure to anthropogenic sound can have deleterious effects. To appropriately VerDate Sep<11>2014 17:03 Feb 11, 2020 Jkt 250001 assess the potential effects of exposure to sound, it is necessary to understand the frequency ranges marine mammals are able to hear. Current data indicate that not all marine mammal species have equal hearing capabilities (e.g., Richardson et al., 1995; Wartzok and Ketten, 1999; Au and Hastings, 2008). To reflect this, Southall et al. (2007) recommended that marine mammals be divided into functional hearing groups based on directly measured or estimated hearing ranges on the basis of available behavioral response data, audiograms derived using auditory evoked potential techniques, anatomical modeling, and other data. Note that no direct measurements of hearing ability have been successfully completed for mysticetes (i.e., low-frequency cetaceans). Subsequently, NMFS (2016) described generalized hearing ranges for these marine mammal hearing groups. Generalized hearing ranges were chosen based on the approximately 65 decibel (dB) threshold from the normalized composite audiograms, with the exception for lower limits for lowfrequency cetaceans where the lower bound was deemed to be biologically implausible and the lower bound from Southall et al. (2007) retained. The functional groups and the associated frequencies are indicated below (note that these frequency ranges correspond to the range for the composite group, with the entire range not necessarily reflecting the capabilities of every species within that group): • Low-frequency cetaceans (mysticetes): Generalized hearing is estimated to occur between approximately 7 Hertz (Hz) and 35 kilohertz (kHz); • Mid-frequency cetaceans (larger toothed whales, beaked whales, and most delphinids): Generalized hearing is estimated to occur between approximately 150 Hz and 160 kHz; • High-frequency cetaceans (porpoises, river dolphins, and members of the genera Kogia and Cephalorhynchus; including two members of the genus Lagenorhynchus, on the basis of recent echolocation data and genetic data): Generalized hearing is estimated to occur between approximately 275 Hz and 160 kHz; and • Pinnipeds in water; Phocidae (true seals): Generalized hearing is estimated to occur between approximately 50 Hz to 86 kH. The pinniped functional hearing group was modified from Southall et al. (2007) on the basis of data indicating that phocid species have consistently demonstrated an extended frequency range of hearing compared to otariids, especially in the higher frequency range PO 00000 Frm 00017 Fmt 4703 Sfmt 4703 7933 (Hemila¨ et al., 2006; Kastelein et al., 2009; Reichmuth and Holt, 2013). For more detail concerning these groups and associated frequency ranges, please see NMFS (2016) for a review of available information. Fourteen marine mammal species (twelve cetacean and two pinniped (both phocid species) have the reasonable potential to cooccur with the proposed survey activities (see Table 3). Of the cetacean species that may be present, five are classified as low-frequency cetaceans (i.e., all mysticete species), six are classified as mid-frequency cetaceans (i.e., all delphinid species and the sperm whale), and one is classified as a highfrequency cetacean (i.e., harbor porpoise). Potential Effects of Specified Activities on Marine Mammals and Their Habitat This section includes a summary and discussion of the ways that components of the specified activity may impact marine mammals and their habitat. The Estimated Take section later in this document includes a quantitative analysis of the number of individuals that are expected to be taken by this activity. The Negligible Impact Analysis and Determination section considers the content of this section, the Estimated Take section, and the Proposed Mitigation section, to draw conclusions regarding the likely impacts of these activities on the reproductive success or survivorship of individuals and how those impacts on individuals are likely to impact marine mammal species or stocks. Background on Sound Sound is a physical phenomenon consisting of minute vibrations that travel through a medium, such as air or water, and is generally characterized by several variables. Frequency describes the sound’s pitch and is measured in Hz or kHz, while sound level describes the sound’s intensity and is measured in dB. Sound level increases or decreases exponentially with each dB of change. The logarithmic nature of the scale means that each 10-dB increase is a 10fold increase in acoustic power (and a 20-dB increase is then a 100-fold increase in power). A 10-fold increase in acoustic power does not mean that the sound is perceived as being 10 times louder, however. Sound levels are compared to a reference sound pressure (micro-Pascal) to identify the medium. For air and water, these reference pressures are ‘‘re: 20 micro Pascals (mPa)’’ and ‘‘re: 1 mPa,’’ respectively. Root mean square (RMS) is the quadratic mean sound pressure over the duration of an impulse. RMS is E:\FR\FM\12FEN1.SGM 12FEN1 lotter on DSKBCFDHB2PROD with NOTICES 7934 Federal Register / Vol. 85, No. 29 / Wednesday, February 12, 2020 / Notices calculated by squaring all of the sound amplitudes, averaging the squares, and then taking the square root of the average (Urick 1975). RMS accounts for both positive and negative values; squaring the pressures makes all values positive so that they may be accounted for in the summation of pressure levels. This measurement is often used in the context of discussing behavioral effects, in part because behavioral effects, which often result from auditory cues, may be better expressed through averaged units rather than by peak pressures. When sound travels (propagates) from its source, its loudness decreases as the distance traveled by the sound increases. Thus, the loudness of a sound at its source is higher than the loudness of that same sound one km away. Acousticians often refer to the loudness of a sound at its source (typically referenced to one meter from the source) as the source level and the loudness of sound elsewhere as the received level (i.e., typically the receiver). For example, a humpback whale 3 km from a device that has a source level of 230 dB may only be exposed to sound that is 160 dB loud, depending on how the sound travels through water (e.g., spherical spreading (6 dB reduction with doubling of distance) was used in this example). As a result, it is important to understand the difference between source levels and received levels when discussing the loudness of sound in the ocean or its impacts on the marine environment. As sound travels from a source, its propagation in water is influenced by various physical characteristics, including water temperature, depth, salinity, and surface and bottom properties that cause refraction, reflection, absorption, and scattering of sound waves. Oceans are not homogeneous and the contribution of each of these individual factors is extremely complex and interrelated. The physical characteristics that determine the sound’s speed through the water will change with depth, season, geographic location, and with time of day (as a result, in actual active sonar operations, crews will measure oceanic conditions, such as sea water temperature and depth, to calibrate models that determine the path the sonar signal will take as it travels through the ocean and how strong the sound signal will be at a given range along a particular transmission path). As sound travels through the ocean, the intensity associated with the wavefront diminishes, or attenuates. This decrease in intensity is referred to as propagation VerDate Sep<11>2014 17:03 Feb 11, 2020 Jkt 250001 loss, also commonly called transmission loss. Acoustic Impacts Geophysical surveys may temporarily impact marine mammals in the area due to elevated in-water sound levels. Marine mammals are continually exposed to many sources of sound. Naturally occurring sounds such as lightning, rain, sub-sea earthquakes, and biological sounds (e.g., snapping shrimp, whale songs) are widespread throughout the world’s oceans. Marine mammals produce sounds in various contexts and use sound for various biological functions including, but not limited to: (1) Social interactions; (2) foraging; (3) orientation; and (4) predator detection. Interference with producing or receiving these sounds may result in adverse impacts. Audible distance, or received levels of sound depend on the nature of the sound source, ambient noise conditions, and the sensitivity of the receptor to the sound (Richardson et al., 1995). Type and significance of marine mammal reactions to sound are likely dependent on a variety of factors including, but not limited to, (1) the behavioral state of the animal (e.g., feeding, traveling, etc.); (2) frequency of the sound; (3) distance between the animal and the source; and (4) the level of the sound relative to ambient conditions (Southall et al., 2007). When considering the influence of various kinds of sound on the marine environment, it is necessary to understand that different kinds of marine life are sensitive to different frequencies of sound. Current data indicate that not all marine mammal species have equal hearing capabilities (Richardson et al., 1995; Wartzok and Ketten, 1999; Au and Hastings, 2008). Animals are less sensitive to sounds at the outer edges of their functional hearing range and are more sensitive to a range of frequencies within the middle of their functional hearing range. Hearing Impairment Marine mammals may experience temporary or permanent hearing impairment when exposed to loud sounds. Hearing impairment is classified by temporary threshold shift (TTS) and permanent threshold shift (PTS). PTS is considered auditory injury (Southall et al., 2007) and occurs in a specific frequency range and amount. Irreparable damage to the inner or outer cochlear hair cells may cause PTS; however, other mechanisms are also involved, such as exceeding the elastic limits of certain tissues and membranes in the middle and inner ears and PO 00000 Frm 00018 Fmt 4703 Sfmt 4703 resultant changes in the chemical composition of the inner ear fluids (Southall et al., 2007). There are no empirical data for onset of PTS in any marine mammal; therefore, PTS-onset must be estimated from TTS-onset measurements and from the rate of TTS growth with increasing exposure levels above the level eliciting TTS-onset. PTS is presumed to be likely if the hearing threshold is reduced by ≥40 dB (that is, 40 dB of TTS). Temporary Threshold Shift (TTS) TTS is the mildest form of hearing impairment that can occur during exposure to a loud sound (Kryter 1985). While experiencing TTS, the hearing threshold rises and a sound must be stronger in order to be heard. At least in terrestrial mammals, TTS can last from minutes or hours to (in cases of strong TTS) days, can be limited to a particular frequency range, and can occur to varying degrees (i.e., a loss of a certain number of dBs of sensitivity). For sound exposures at or somewhat above the TTS threshold, hearing sensitivity in both terrestrial and marine mammals recovers rapidly after exposure to the noise ends. Marine mammal hearing plays a critical role in communication with conspecifics and in interpretation of environmental cues for purposes such as predator avoidance and prey capture. Depending on the degree (elevation of threshold in dB), duration (i.e., recovery time), and frequency range of TTS and the context in which it is experienced, TTS can have effects on marine mammals ranging from discountable to serious. For example, a marine mammal may be able to readily compensate for a brief, relatively small amount of TTS in a non-critical frequency range that takes place during a time when the animals is traveling through the open ocean, where ambient noise is lower and there are not as many competing sounds present. Alternatively, a larger amount and longer duration of TTS sustained during a time when communication is critical for successful mother/calf interactions could have more serious impacts if it were in the same frequency band as the necessary vocalizations and of a severity that it impeded communication. The fact that animals exposed to levels and durations of sound that would be expected to result in this physiological response would also be expected to have behavioral responses of a comparatively more severe or sustained nature is also notable and potentially of more importance than the simple existence of a TTS. E:\FR\FM\12FEN1.SGM 12FEN1 lotter on DSKBCFDHB2PROD with NOTICES Federal Register / Vol. 85, No. 29 / Wednesday, February 12, 2020 / Notices Currently, TTS data only exist for four species of cetaceans (bottlenose dolphin, beluga whale (Delphinapterus leucas), harbor porpoise, and Yangtze finless porpoise (Neophocaena phocaenoides)) and three species of pinnipeds (northern elephant seal (Mirounga angustirostris), harbor seal, and California sea lion (Zalophus californianus)) exposed to a limited number of sound sources (i.e., mostly tones and octave-band noise) in laboratory settings (e.g., Finneran et al., 2002 and 2010; Nachtigall et al., 2004; Kastak et al., 2005; Lucke et al., 2009; Mooney et al., 2009; Popov et al., 2011; Finneran and Schlundt, 2010). In general, harbor seals (Kastak et al., 2005; Kastelein et al., 2012a) and harbor porpoises (Lucke et al., 2009; Kastelein et al., 2012b) have a lower TTS onset than other measured pinniped or cetacean species. However, even for these animals, which are better able to hear higher frequencies and may be more sensitive to higher frequencies, exposures on the order of approximately 170 dB RMS or higher for brief transient signals are likely required for even temporary (recoverable) changes in hearing sensitivity that would likely not be categorized as physiologically damaging (Lucke et al., 2009). Additionally, the existing marine mammal TTS data come from a limited number of individuals within these species. There are no data available on noise-induced hearing loss for mysticetes. For summaries of data on TTS in marine mammals or for further discussion of TTS onset thresholds, please see Finneran (2015). Scientific literature highlights the inherent complexity of predicting TTS onset in marine mammals, as well as the importance of considering exposure duration when assessing potential impacts (Mooney et al., 2009a, 2009b; Kastak et al., 2007). Generally, with sound exposures of equal energy, quieter sounds (lower sound pressure levels (SPL)) of longer duration were found to induce TTS onset more than louder sounds (higher SPL) of shorter duration (more similar to sub-bottom profilers). For intermittent sounds, less threshold shift will occur than from a continuous exposure with the same energy (some recovery will occur between intermittent exposures) (Kryter et al., 1966; Ward 1997). For sound exposures at or somewhat above the TTS-onset threshold, hearing sensitivity recovers rapidly after exposure to the sound ends; intermittent exposures recover faster in comparison with continuous exposures of the same duration (Finneran et al., 2010). NMFS VerDate Sep<11>2014 17:03 Feb 11, 2020 Jkt 250001 considers TTS as Level B harassment that is mediated by physiological effects on the auditory system. Animals in the Lease Area during the HRG survey are unlikely to incur TTS hearing impairment due to the characteristics of the sound sources, which include low source levels (208 to 221 dB re 1 mPa-m) and generally very short pulses and duration of the sound. Even for high-frequency cetacean species (e.g., harbor porpoises), which may have increased sensitivity to TTS (Lucke et al., 2009; Kastelein et al., 2012b), individuals would have to make a very close approach and also remain very close to vessels operating these sources in order to receive multiple exposures at relatively high levels, as would be necessary to cause TTS. Intermittent exposures—as would occur due to the brief, transient signals produced by these sources—require a higher cumulative SEL to induce TTS than would continuous exposures of the same duration (i.e., intermittent exposure results in lower levels of TTS) (Mooney et al., 2009a; Finneran et al., 2010). Moreover, most marine mammals would more likely avoid a loud sound source rather than swim in such close proximity as to result in TTS. Kremser et al. (2005) noted that the probability of a cetacean swimming through the area of exposure when a sub-bottom profiler emits a pulse is small—because if the animal was in the area, it would have to pass the transducer at close range in order to be subjected to sound levels that could cause TTS and would likely exhibit avoidance behavior to the area near the transducer rather than swim through at such a close range. Further, the restricted beam shape of the majority of the geophysical survey equipment planned for use (Table 1) makes it unlikely that an animal would be exposed more than briefly during the passage of the vessel. Masking Masking is the obscuring of sounds of interest to an animal by other sounds, typically at similar frequencies. Marine mammals are highly dependent on sound, and their ability to recognize sound signals amid other sound is important in communication and detection of both predators and prey (Tyack 2000). Background ambient sound may interfere with or mask the ability of an animal to detect a sound signal even when that signal is above its absolute hearing threshold. Even in the absence of anthropogenic sound, the marine environment is often loud. Natural ambient sound includes contributions from wind, waves, precipitation, other animals, and (at PO 00000 Frm 00019 Fmt 4703 Sfmt 4703 7935 frequencies above 30 kHz) thermal sound resulting from molecular agitation (Richardson et al., 1995). Background sound may also include anthropogenic sound, and masking of natural sounds can result when human activities produce high levels of background sound. Conversely, if the background level of underwater sound is high (e.g., on a day with strong wind and high waves), an anthropogenic sound source would not be detectable as far away as would be possible under quieter conditions and would itself be masked. Ambient sound is highly variable on continental shelves (Myrberg 1978; Desharnais et al., 1999). This results in a high degree of variability in the range at which marine mammals can detect anthropogenic sounds. Although masking is a phenomenon which may occur naturally, the introduction of loud anthropogenic sounds into the marine environment at frequencies important to marine mammals increases the severity and frequency of occurrence of masking. For example, if a baleen whale is exposed to continuous low-frequency sound from an industrial source, this would reduce the size of the area around that whale within which it can hear the calls of another whale. The components of background noise that are similar in frequency to the signal in question primarily determine the degree of masking of that signal. In general, little is known about the degree to which marine mammals rely upon detection of sounds from conspecifics, predators, prey, or other natural sources. In the absence of specific information about the importance of detecting these natural sounds, it is not possible to predict the impact of masking on marine mammals (Richardson et al., 1995). In general, masking effects are expected to be less severe when sounds are transient than when they are continuous. Masking is typically of greater concern for those marine mammals that utilize low-frequency communications, such as baleen whales, because of how far lowfrequency sounds propagate. Marine mammal communications would not likely be masked appreciably by the sub-bottom profiler signals given the directionality of the signals (for most geophysical survey equipment types planned for use (Table 1)) and the brief period when an individual mammal is likely to be within its beam. Non-Auditory Physical Effects (Stress) Classic stress responses begin when an animal’s central nervous system perceives a potential threat to its homeostasis. That perception triggers E:\FR\FM\12FEN1.SGM 12FEN1 lotter on DSKBCFDHB2PROD with NOTICES 7936 Federal Register / Vol. 85, No. 29 / Wednesday, February 12, 2020 / Notices stress responses regardless of whether a stimulus actually threatens the animal; the mere perception of a threat is sufficient to trigger a stress response (Moberg 2000; Seyle 1950). Once an animal’s central nervous system perceives a threat, it mounts a biological response or defense that consists of a combination of the four general biological defense responses: behavioral responses, autonomic nervous system responses, neuroendocrine responses, or immune responses. In the case of many stressors, an animal’s first and sometimes most economical (in terms of biotic costs) response is behavioral avoidance of the potential stressor or avoidance of continued exposure to a stressor. An animal’s second line of defense to stressors involves the sympathetic part of the autonomic nervous system and the classical ‘‘fight or flight’’ response which includes the cardiovascular system, the gastrointestinal system, the exocrine glands, and the adrenal medulla to produce changes in heart rate, blood pressure, and gastrointestinal activity that humans commonly associate with ‘‘stress.’’ These responses have a relatively short duration and may or may not have significant long-term effect on an animal’s welfare. An animal’s third line of defense to stressors involves its neuroendocrine systems; the system that has received the most study has been the hypothalamus-pituitary-adrenal system (also known as the HPA axis in mammals). Unlike stress responses associated with the autonomic nervous system, virtually all neuro-endocrine functions that are affected by stress— including immune competence, reproduction, metabolism, and behavior—are regulated by pituitary hormones. Stress-induced changes in the secretion of pituitary hormones have been implicated in failed reproduction (Moberg 1987; Rivier 1995), altered metabolism (Elasser et al., 2000), reduced immune competence (Blecha 2000), and behavioral disturbance. Increases in the circulation of glucocorticosteroids (cortisol, corticosterone, and aldosterone in marine mammals; see Romano et al., 2004) have been equated with stress for many years. The primary distinction between stress (which is adaptive and does not normally place an animal at risk) and distress is the biotic cost of the response. During a stress response, an animal uses glycogen stores that can be quickly replenished once the stress is alleviated. In such circumstances, the cost of the stress response would not pose a risk to the animal’s welfare. VerDate Sep<11>2014 17:03 Feb 11, 2020 Jkt 250001 However, when an animal does not have sufficient energy reserves to satisfy the energetic costs of a stress response, energy resources must be diverted from other biotic function, which impairs those functions that experience the diversion. For example, when mounting a stress response diverts energy away from growth in young animals, those animals may experience stunted growth. When mounting a stress response diverts energy from a fetus, an animal’s reproductive success and its fitness will suffer. In these cases, the animals will have entered a pre-pathological or pathological state which is called ‘‘distress’’ (Seyle 1950) or ‘‘allostatic loading’’ (McEwen and Wingfield 2003). This pathological state will last until the animal replenishes its biotic reserves sufficient to restore normal function. Note that these examples involved a long-term (days or weeks) stress response exposure to stimuli. Relationships between these physiological mechanisms, animal behavior, and the costs of stress responses have also been documented fairly well through controlled experiments; because this physiology exists in every vertebrate that has been studied, it is not surprising that stress responses and their costs have been documented in both laboratory and freeliving animals (for examples see, Holberton et al., 1996; Hood et al., 1998; Jessop et al., 2003; Krausman et al., 2004; Lankford et al., 2005; Reneerkens et al., 2002; Thompson and Hamer, 2000). Information has also been collected on the physiological responses of marine mammals to exposure to anthropogenic sounds (Fair and Becker 2000; Romano et al., 2002). For example, Rolland et al. (2012) found that noise reduction from reduced ship traffic in the Bay of Fundy was associated with decreased stress in North Atlantic right whales. Studies of other marine animals and terrestrial animals would also lead us to expect some marine mammals to experience physiological stress responses and, perhaps, physiological responses that would be classified as ‘‘distress’’ upon exposure to high frequency, mid-frequency and lowfrequency sounds. For example, Jansen (1998) reported on the relationship between acoustic exposures and physiological responses that are indicative of stress responses in humans (for example, elevated respiration and increased heart rates). Jones (1998) reported on reductions in human performance when faced with acute, repetitive exposures to acoustic disturbance. Trimper et al. (1998) reported on the physiological stress PO 00000 Frm 00020 Fmt 4703 Sfmt 4703 responses of osprey to low-level aircraft noise while Krausman et al. (2004) reported on the auditory and physiology stress responses of endangered Sonoran pronghorn to military overflights. Smith et al. (2004a, 2004b), for example, identified noise-induced physiological transient stress responses in hearingspecialist fish (i.e., goldfish) that accompanied short- and long-term hearing losses. Welch and Welch (1970) reported physiological and behavioral stress responses that accompanied damage to the inner ears of fish and several mammals. Hearing is one of the primary senses marine mammals use to gather information about their environment and to communicate with conspecifics. Although empirical information on the relationship between sensory impairment (TTS, PTS, and acoustic masking) on marine mammals remains limited, it seems reasonable to assume that reducing an animal’s ability to gather information about its environment and to communicate with other members of its species would be stressful for animals that use hearing as their primary sensory mechanism. Therefore, we assume that acoustic exposures sufficient to trigger onset PTS or TTS would be accompanied by physiological stress responses because terrestrial animals exhibit those responses under similar conditions (NRC 2003). More importantly, marine mammals might experience stress responses at received levels lower than those necessary to trigger onset TTS. Based on empirical studies of the time required to recover from stress responses (Moberg 2000), we also assume that stress responses are likely to persist beyond the time interval required for animals to recover from TTS and might result in pathological and pre-pathological states that would be as significant as behavioral responses to TTS. In general, there are few data on the potential for strong, anthropogenic underwater sounds to cause nonauditory physical effects in marine mammals. The available data do not allow identification of a specific exposure level above which nonauditory effects can be expected (Southall et al., 2007). There is no definitive evidence that any of these effects occur even for marine mammals in close proximity to an anthropogenic sound source. In addition, marine mammals that show behavioral avoidance of survey vessels and related sound sources are unlikely to incur nonauditory impairment or other physical effects. NMFS does not expect that the generally short-term, intermittent, and E:\FR\FM\12FEN1.SGM 12FEN1 Federal Register / Vol. 85, No. 29 / Wednesday, February 12, 2020 / Notices lotter on DSKBCFDHB2PROD with NOTICES transitory HRG and geotechnical activities would create conditions of long-term, continuous noise and chronic acoustic exposure leading to long-term physiological stress responses in marine mammals. Behavioral Disturbance Behavioral disturbance may include a variety of effects, including subtle changes in behavior (e.g., minor or brief avoidance of an area or changes in vocalizations), more conspicuous changes in similar behavioral activities, and more sustained and/or potentially severe reactions, such as displacement from or abandonment of high-quality habitat. Behavioral responses to sound are highly variable and context-specific and any reactions depend on numerous intrinsic and extrinsic factors (e.g., species, state of maturity, experience, current activity, reproductive state, auditory sensitivity, time of day), as well as the interplay between factors (e.g., Richardson et al., 1995; Wartzok et al., 2003; Southall et al., 2007; Weilgart, 2007; Archer et al., 2010). Behavioral reactions can vary not only among individuals but also within an individual, depending on previous experience with a sound source, context, and numerous other factors (Ellison et al., 2012), and can vary depending on characteristics associated with the sound source (e.g., whether it is moving or stationary, number of sources, distance from the source). Please see Appendices B–C of Southall et al. (2007) for a review of studies involving marine mammal behavioral responses to sound. Habituation can occur when an animal’s response to a stimulus wanes with repeated exposure, usually in the absence of unpleasant associated events (Wartzok et al., 2003). Animals are most likely to habituate to sounds that are predictable and unvarying. It is important to note that habituation is appropriately considered as a ‘‘progressive reduction in response to stimuli that are perceived as neither aversive nor beneficial,’’ rather than as, more generally, moderation in response to human disturbance (Bejder et al., 2009). The opposite process is sensitization, when an unpleasant experience leads to subsequent responses, often in the form of avoidance, at a lower level of exposure. As noted, behavioral state may affect the type of response. For example, animals that are resting may show greater behavioral change in response to disturbing sound levels than animals that are highly motivated to remain in an area for feeding (Richardson et al., 1995; NRC 2003; Wartzok et al., 2003). VerDate Sep<11>2014 17:03 Feb 11, 2020 Jkt 250001 Controlled experiments with captive marine mammals have shown pronounced behavioral reactions, including avoidance of loud sound sources (Ridgway et al., 1997; Finneran et al., 2003). Observed responses of wild marine mammals to loud, pulsed sound sources (typically seismic airguns or acoustic harassment devices) have been varied but often consist of avoidance behavior or other behavioral changes suggesting discomfort (Morton and Symonds, 2002; see also Richardson et al., 1995; Nowacek et al., 2007). Available studies show wide variation in response to underwater sound; therefore, it is difficult to predict specifically how any given sound in a particular instance might affect marine mammals perceiving the signal. If a marine mammal does react briefly to an underwater sound by changing its behavior or moving a small distance, the impacts of the change are unlikely to be significant to the individual, let alone the stock or population. However, if a sound source displaces marine mammals from an important feeding or breeding area for a prolonged period, impacts on individuals and populations could be significant (e.g., Lusseau and Bejder, 2007; Weilgart 2007; NRC 2005). However, there are broad categories of potential response, which we describe in greater detail here, that include alteration of dive behavior, alteration of foraging behavior, effects to breathing, interference with or alteration of vocalization, avoidance, and flight. Changes in dive behavior can vary widely and may consist of increased or decreased dive times and surface intervals as well as changes in the rates of ascent and descent during a dive (e.g., Frankel and Clark 2000; Costa et al., 2003; Ng and Leung 2003; Nowacek et al., 2004; Goldbogen et al., 2013a,b). Variations in dive behavior may reflect interruptions in biologically significant activities (e.g., foraging) or they may be of little biological significance. The impact of an alteration to dive behavior resulting from an acoustic exposure depends on what the animal is doing at the time of the exposure and the type and magnitude of the response. Disruption of feeding behavior can be difficult to correlate with anthropogenic sound exposure, so it is usually inferred by observed displacement from known foraging areas, the appearance of secondary indicators (e.g., bubble nets or sediment plumes), or changes in dive behavior. As for other types of behavioral response, the frequency, duration, and temporal pattern of signal presentation, as well as differences in species sensitivity, are likely contributing factors to differences in PO 00000 Frm 00021 Fmt 4703 Sfmt 4703 7937 response in any given circumstance (e.g., Croll et al., 2001; Nowacek et al.; 2004; Madsen et al., 2006; Yazvenko et al., 2007). A determination of whether foraging disruptions incur fitness consequences would require information on or estimates of the energetic requirements of the affected individuals and the relationship between prey availability, foraging effort and success, and the life history stage of the animal. Variations in respiration naturally vary with different behaviors and alterations to breathing rate as a function of acoustic exposure can be expected to co-occur with other behavioral reactions, such as a flight response or an alteration in diving. However, respiration rates in and of themselves may be representative of annoyance or an acute stress response. Various studies have shown that respiration rates may either be unaffected or could increase, depending on the species and signal characteristics, again highlighting the importance in understanding species differences in the tolerance of underwater noise when determining the potential for impacts resulting from anthropogenic sound exposure (e.g., Kastelein et al., 2001, 2005b, 2006; Gailey et al., 2007). Marine mammals vocalize for different purposes and across multiple modes, such as whistling, echolocation click production, calling, and singing. Changes in vocalization behavior in response to anthropogenic noise can occur for any of these modes and may result from a need to compete with an increase in background noise or may reflect increased vigilance or a startle response. For example, in the presence of potentially masking signals, humpback whales and killer whales have been observed to increase the length of their songs (Miller et al., 2000; Fristrup et al., 2003; Foote et al., 2004), while right whales have been observed to shift the frequency content of their calls upward while reducing the rate of calling in areas of increased anthropogenic noise (Parks et al., 2007b). In some cases, animals may cease sound production during production of aversive signals (Bowles et al., 1994). Avoidance is the displacement of an individual from an area or migration path as a result of the presence of a sound or other stressors, and is one of the most obvious manifestations of disturbance in marine mammals (Richardson et al., 1995). For example, gray whales are known to change direction—deflecting from customary migratory paths—in order to avoid noise from seismic surveys (Malme et al., E:\FR\FM\12FEN1.SGM 12FEN1 lotter on DSKBCFDHB2PROD with NOTICES 7938 Federal Register / Vol. 85, No. 29 / Wednesday, February 12, 2020 / Notices 1984). Avoidance may be short-term, with animals returning to the area once the noise has ceased (e.g., Bowles et al., 1994; Goold 1996; Stone et al., 2000; Morton and Symonds, 2002; Gailey et al., 2007). Longer-term displacement is possible, however, which may lead to changes in abundance or distribution patterns of the affected species in the affected region if habituation to the presence of the sound does not occur (e.g., Blackwell et al., 2004; Bejder et al., 2006; Teilmann et al., 2006). A flight response is a dramatic change in normal movement to a directed and rapid movement away from the perceived location of a sound source. The flight response differs from other avoidance responses in the intensity of the response (e.g., directed movement, rate of travel). Relatively little information on flight responses of marine mammals to anthropogenic signals exist, although observations of flight responses to the presence of predators have occurred (Connor and Heithaus, 1996). The result of a flight response could range from brief, temporary exertion and displacement from the area where the signal provokes flight to, in extreme cases, marine mammal strandings (Evans and England, 2001). However, it should be noted that response to a perceived predator does not necessarily invoke flight (Ford and Reeves, 2008) and whether individuals are solitary or in groups may influence the response. Behavioral disturbance can also impact marine mammals in more subtle ways. Increased vigilance may result in costs related to diversion of focus and attention (i.e., when a response consists of increased vigilance, it may come at the cost of decreased attention to other critical behaviors such as foraging or resting). These effects have generally not been demonstrated for marine mammals, but studies involving fish and terrestrial animals have shown that increased vigilance may substantially reduce feeding rates (e.g., Beauchamp and Livoreil, 1997; Fritz et al., 2002; Purser and Radford, 2011). In addition, chronic disturbance can cause population declines through reduction of fitness (e.g., decline in body condition) and subsequent reduction in reproductive success, survival, or both (e.g., Harrington and Veitch, 1992; Daan et al., 1996; Bradshaw et al., 1998). However, Ridgway et al. (2006) reported that increased vigilance in bottlenose dolphins exposed to sound over a fiveday period did not cause any sleep deprivation or stress effects. Many animals perform vital functions, such as feeding, resting, traveling, and socializing, on a diel cycle (24-hour VerDate Sep<11>2014 17:03 Feb 11, 2020 Jkt 250001 cycle). Disruption of such functions resulting from reactions to stressors such as sound exposure are more likely to be significant if they last more than one diel cycle or recur on subsequent days (Southall et al., 2007). Consequently, a behavioral response lasting less than one day and not recurring on subsequent days is not considered particularly severe unless it could directly affect reproduction or survival (Southall et al., 2007). Note that there is a difference between multi-day substantive behavioral reactions and multi-day anthropogenic activities. For example, just because an activity lasts for multiple days does not necessarily mean that individual animals are either exposed to activity-related stressors for multiple days or, further, exposed in a manner resulting in sustained multi-day substantive behavioral responses. Marine mammals are likely to avoid the HRG survey activity, especially the naturally shy harbor porpoise, while the harbor seals might be attracted to them out of curiosity. However, because the sub-bottom profilers and other HRG survey equipment operate from a moving vessel, and the maximum radius to the Level B harassment threshold is relatively small, the area and time that this equipment would be affecting a given location is very small. Further, once an area has been surveyed, it is not likely that it will be surveyed again, thereby reducing the likelihood of repeated HRG-related impacts within the survey area. We have also considered the potential for severe behavioral responses such as stranding and associated indirect injury or mortality from Atlantic Shores’s use of HRG survey equipment, on the basis of a 2008 mass stranding of approximately 100 melon-headed whales in a Madagascar lagoon system. An investigation of the event indicated that use of a high-frequency mapping system (12-kHz multibeam echosounder) was the most plausible and likely initial behavioral trigger of the event, while providing the caveat that there is no unequivocal and easily identifiable single cause (Southall et al., 2013). The investigatory panel’s conclusion was based on (1) very close temporal and spatial association and directed movement of the survey with the stranding event; (2) the unusual nature of such an event coupled with previously documented apparent behavioral sensitivity of the species to other sound types (Southall et al., 2006; Brownell et al., 2009); and (3) the fact that all other possible factors considered were determined to be unlikely causes. Specifically, regarding survey patterns prior to the event and in relation to PO 00000 Frm 00022 Fmt 4703 Sfmt 4703 bathymetry, the vessel transited in a north-south direction on the shelf break parallel to the shore, ensonifying large areas of deep-water habitat prior to operating intermittently in a concentrated area offshore from the stranding site; this may have trapped the animals between the sound source and the shore, thus driving them towards the lagoon system. The investigatory panel systematically excluded or deemed highly unlikely nearly all potential reasons for these animals leaving their typical pelagic habitat for an area extremely atypical for the species (i.e., a shallow lagoon system). Notably, this was the first time that such a system has been associated with a stranding event. The panel also noted several site- and situation-specific secondary factors that may have contributed to the avoidance responses that led to the eventual entrapment and mortality of the whales. Specifically, shoreward-directed surface currents and elevated chlorophyll levels in the area preceding the event may have played a role (Southall et al., 2013). The report also notes that prior use of a similar system in the general area may have sensitized the animals and also concluded that, for odontocete cetaceans that hear well in higher frequency ranges where ambient noise is typically quite low, high-power active sonars operating in this range may be more easily audible and have potential effects over larger areas than low frequency systems that have more typically been considered in terms of anthropogenic noise impacts. It is, however, important to note that the relatively lower output frequency, higher output power, and complex nature of the system implicated in this event, in context of the other factors noted here, likely produced a fairly unusual set of circumstances that indicate that such events would likely remain rare and are not necessarily relevant to use of lower-power, higherfrequency systems more commonly used for HRG survey applications. The risk of similar events recurring may be very low, given the extensive use of active acoustic systems used for scientific and navigational purposes worldwide on a daily basis and the lack of direct evidence of such responses previously reported. Tolerance Numerous studies have shown that underwater sounds from industrial activities are often readily detectable by marine mammals in the water at distances of many km. However, other studies have shown that marine mammals at distances more than a few E:\FR\FM\12FEN1.SGM 12FEN1 Federal Register / Vol. 85, No. 29 / Wednesday, February 12, 2020 / Notices lotter on DSKBCFDHB2PROD with NOTICES km away often show no apparent response to industrial activities of various types (Miller et al., 2005). This is often true even in cases when the sounds must be readily audible to the animals based on measured received levels and the hearing sensitivity of that mammal group. Although various baleen whales, toothed whales, and (less frequently) pinnipeds have been shown to react behaviorally to underwater sound from sources such as airgun pulses or vessels under some conditions, at other times, mammals of all three types have shown no overt reactions (e.g., Malme et al., 1986; Richardson et al., 1995; Madsen and Mohl 2000; Croll et al., 2001; Jacobs and Terhune 2002; Madsen et al., 2002; Miller et al., 2005). In general, pinnipeds seem to be more tolerant of exposure to some types of underwater sound than are baleen whales. Richardson et al. (1995) found that vessel sound does not seem to affect pinnipeds that are already in the water. Richardson et al. (1995) went on to explain that seals on haul-outs sometimes respond strongly to the presence of vessels and at other times appear to show considerable tolerance of vessels, and Brueggeman et al. (1992) observed ringed seals (Pusa hispida) hauled out on ice pans displaying shortterm escape reactions when a ship approached within 0.16–0.31 miles (0.25–0.5 km). Due to the relatively high vessel traffic in the Lease Area it is possible that marine mammals are habituated to noise (e.g., DP thrusters) from project vessels in the area. Vessel Strike Ship strikes of marine mammals can cause major wounds, which may lead to the death of the animal. An animal at the surface could be struck directly by a vessel, a surfacing animal could hit the bottom of a vessel, or a vessel’s propeller could injure an animal just below the surface. The severity of injuries typically depends on the size and speed of the vessel (Knowlton and Kraus 2001; Laist et al., 2001; Vanderlaan and Taggart 2007). The most vulnerable marine mammals are those that spend extended periods of time at the surface in order to restore oxygen levels within their tissues after deep dives (e.g., the sperm whale). In addition, some baleen whales, such as the North Atlantic right whale, seem generally unresponsive to vessel sound, making them more susceptible to vessel collisions (Nowacek et al., 2004). These species are primarily large, slow moving whales. Smaller marine mammals (e.g., bottlenose dolphin) move quickly through the water column and are often VerDate Sep<11>2014 17:03 Feb 11, 2020 Jkt 250001 seen riding the bow wave of large ships. Marine mammal responses to vessels may include avoidance and changes in dive pattern (NRC 2003). An examination of all known ship strikes from all shipping sources (civilian and military) indicates vessel speed is a principal factor in whether a vessel strike results in death (Knowlton and Kraus 2001; Laist et al., 2001; Jensen and Silber 2003; Vanderlaan and Taggart 2007). In assessing records with known vessel speeds, Laist et al. (2001) found a direct relationship between the occurrence of a whale strike and the speed of the vessel involved in the collision. The authors concluded that most deaths occurred when a vessel was traveling in excess of 24.1 km/h (14.9 mph; 13 kn). Given the slow vessel speeds and predictable course necessary for data acquisition, ship strike is unlikely to occur during the geophysical and geotechnical surveys. Marine mammals would be able to easily avoid the survey vessel due to the slow vessel speed. Further, Atlantic Shores would implement measures (e.g., protected species monitoring, vessel speed restrictions and separation distances; see Proposed Mitigation) set forth in the BOEM lease to reduce the risk of a vessel strike to marine mammal species in the survey area. Marine Mammal Habitat The HRG survey equipment will not contact the seafloor and does not represent a source of pollution. We are not aware of any available literature on impacts to marine mammal prey from sound produced by HRG survey equipment. However, as the HRG survey equipment introduces noise to the marine environment, there is the potential for it to result in avoidance of the area around the HRG survey activities on the part of marine mammal prey. Any avoidance of the area on the part of marine mammal prey would be expected to be short term and temporary. Because of the temporary nature of the disturbance, and the availability of similar habitat and resources (e.g., prey species) in the surrounding area, the impacts to marine mammals and the food sources that they utilize are not expected to cause significant or longterm consequences for individual marine mammals or their populations. Impacts on marine mammal habitat from the proposed activities will be temporary, insignificant, and discountable. Estimated Take This section provides an estimate of the number of incidental takes proposed PO 00000 Frm 00023 Fmt 4703 Sfmt 4703 7939 for authorization through this IHA, which will inform both NMFS’ consideration of ‘‘small numbers’’ and the negligible impact determination. Harassment is the only type of take expected to result from these activities. Except with respect to certain activities not pertinent here, section 3(18) of the MMPA defines ‘‘harassment’’ as any act of pursuit, torment, or annoyance, which (i) has the potential to injure a marine mammal or marine mammal stock in the wild (Level A harassment); or (ii) has the potential to disturb a marine mammal or marine mammal stock in the wild by causing disruption of behavioral patterns, including, but not limited to, migration, breathing, nursing, breeding, feeding, or sheltering (Level B harassment). Authorized takes would be by Level B harassment only, in the form of disruption of behavioral patterns for individual marine mammals resulting from exposure to HRG sources. Based on the nature of the activity and the anticipated effectiveness of the mitigation measures (i.e., exclusion zones and shutdown measures), discussed in detail below in Proposed Mitigation section, Level A harassment is neither anticipated nor proposed to be authorized. As described previously, no mortality is anticipated or proposed to be authorized for this activity. Below we describe how the take is estimated. Generally speaking, we estimate take by considering: (1) Acoustic thresholds above which NMFS believes the best available science indicates marine mammals will be behaviorally harassed or incur some degree of permanent hearing impairment; (2) the area or volume of water that will be ensonified above these levels in a day; (3) the density or occurrence of marine mammals within these ensonified areas; and, (4) and the number of days of activities. We note that while these basic factors can contribute to a basic calculation to provide an initial prediction of takes, additional information that can qualitatively inform take estimates is also sometimes available (e.g., previous monitoring results or average group size). Below, we describe the factors considered here in more detail and present the proposed take estimate. Acoustic Thresholds Using the best available science, NMFS has developed acoustic thresholds that identify the received level of underwater sound above which exposed marine mammals would be reasonably expected to be behaviorally harassed (equated to Level B E:\FR\FM\12FEN1.SGM 12FEN1 7940 Federal Register / Vol. 85, No. 29 / Wednesday, February 12, 2020 / Notices harassment) or to incur PTS of some degree (equated to Level A harassment). Level B Harassment—Though significantly driven by received level, the onset of behavioral disturbance from anthropogenic noise exposure is also informed to varying degrees by other factors related to the source (e.g., frequency, predictability, duty cycle), the environment (e.g., bathymetry), and the receiving animals (hearing, motivation, experience, demography, behavioral context) and can be difficult to predict (Southall et al., 2007, Ellison et al., 2012). Based on what the available science indicates and the practical need to use a threshold based on a factor that is both predictable and measurable for most activities, NMFS uses a generalized acoustic threshold based on received level to estimate the onset of behavioral harassment. NMFS predicts that marine mammals are likely to be behaviorally harassed in a manner we consider Level B harassment when exposed to underwater anthropogenic noise above received levels of 160 dB re 1 mPa (rms) for impulsive and/or intermittent sources (e.g., impact pile driving) and 120 dB rms for continuous sources (e.g., vibratory driving). Atlantic Shores’s proposed activity includes the use of impulsive sources (geophysical survey equipment) therefore use of the 120 and 160 dB re 1 mPa (rms) threshold is applicable. Level A harassment—NMFS’ Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing (Version 2.0) (Technical Guidance, 2018) identifies dual criteria to assess auditory injury (Level A harassment) to five different marine mammal groups (based on hearing sensitivity) as a result of exposure to noise from two different types of sources (impulsive or nonimpulsive). The components of Atlantic Shores’s proposed activity that may result in the take of marine mammals include the use of impulsive sources. These thresholds are provided in Table 4 below. The references, analysis, and methodology used in the development of the thresholds are described in NMFS 2018 Technical Guidance, which may be accessed at: www.fisheries.noaa.gov/national/ marine-mammal-protection/marinemammal-acoustic-technical-guidance. TABLE 4—THRESHOLDS IDENTIFYING THE ONSET OF PERMANENT THRESHOLD SHIFT PTS onset acoustic thresholds * (Received Level) Hearing group Impulsive Low-Frequency (LF) Cetaceans ...................................... Mid-Frequency (MF) Cetaceans ...................................... High-Frequency (HF) Cetaceans ..................................... Phocid Pinnipeds (PW) (Underwater) ............................. Otariid Pinnipeds (OW) (Underwater) ............................. Cell Cell Cell Cell Cell 1: 3: 5: 7: 9: Lpk,flat: Lpk,flat: Lpk,flat: Lpk,flat: Lpk,flat: 219 230 202 218 232 dB; dB; dB; dB; dB; Non-impulsive LE,LF,24h: 183 dB ......................... LE,MF,24h: 185 dB ........................ LE,HF,24h: 155 dB ........................ LE,PW,24h: 185 dB ....................... LE,OW,24h: 203 dB ....................... Cell Cell Cell Cell Cell 2: LE,LF,24h: 199 dB. 4: LE,MF,24h: 198 dB. 6: LE,HF,24h: 173 dB. 8: LE,PW,24h: 201 dB. 10: LE,OW,24h: 219 dB. * Dual metric acoustic thresholds for impulsive sounds: Use whichever results in the largest isopleth for calculating PTS onset. If a non-impulsive sound has the potential of exceeding the peak sound pressure level thresholds associated with impulsive sounds, these thresholds should also be considered. Note: Peak sound pressure (Lpk) has a reference value of 1 μPa, and cumulative sound exposure level (LE) has a reference value of 1μPa2s. In this Table, thresholds are abbreviated to reflect American National Standards Institute standards (ANSI 2013). However, peak sound pressure is defined by ANSI as incorporating frequency weighting, which is not the intent for this Technical Guidance. Hence, the subscript ‘‘flat’’ is being included to indicate peak sound pressure should be flat weighted or unweighted within the generalized hearing range. The subscript associated with cumulative sound exposure level thresholds indicates the designated marine mammal auditory weighting function (LF, MF, and HF cetaceans, and PW and OW pinnipeds) and that the recommended accumulation period is 24 hours. The cumulative sound exposure level thresholds could be exceeded in a multitude of ways (i.e., varying exposure levels and durations, duty cycle). When possible, it is valuable for action proponents to indicate the conditions under which these acoustic thresholds will be exceeded. lotter on DSKBCFDHB2PROD with NOTICES Ensonified Area Here, we describe operational and environmental parameters of the activity that will feed into identifying the area ensonified above the acoustic thresholds, which include source levels and transmission loss coefficient. The proposed survey would entail the use of HRG equipment. The distance to the isopleth corresponding to the threshold for Level B harassment was calculated for all HRG equipment with the potential to result in harassment of marine mammals. NMFS has developed an interim methodology for determining the rms sound pressure level (SPLrms) at the 160-dB isopleth for the purposes of estimating take by Level B harassment resulting from exposure to HRG survey equipment (NMFS, 2019). This methodology incorporates frequency and some directionality to refine estimated ensonified zones. Atlantic Shores used the methods specified in the interim methodology (NMFS, 2019) VerDate Sep<11>2014 17:03 Feb 11, 2020 Jkt 250001 with additional modifications to incorporate a seawater absorption formula and a method to account for energy emitted outside of the primary beam of the source. For sources that operate with different beam widths, the maximum beam width was used. The lowest frequency of the source was used when calculating the absorption coefficient. The formulas used to apply the methodology are described in detail in Appendix B of the IHA application. NMFS considers the data provided by Crocker and Fratantonio (2016) to represent the best available information on source levels associated with HRG equipment and therefore recommends that source levels provided by Crocker and Fratantonio (2016) be incorporated in the method described above to estimate isopleth distances to the Level B harassment threshold. In cases when the source level for a specific type of HRG equipment is not provided in Crocker and Fratantonio (2016), NMFS PO 00000 Frm 00024 Fmt 4703 Sfmt 4703 recommends that either the source levels provided by the manufacturer be used, or, in instances where source levels provided by the manufacturer are unavailable or unreliable, a proxy from Crocker and Fratantonio (2016) be used instead. Table 1 shows the HRG equipment types that may be used during the proposed surveys and the sound levels associated with those HRG equipment types. Table 2–2 in the IHA application shows the literature sources for the sound source levels that are shown in Table 1 and that were incorporated into the modeling of Level B isopleth distances to the Level B harassment threshold. Results of modeling using the methodology described above indicated that, of the HRG survey equipment planned for use by Atlantic Shores that has the potential to result in harassment of marine mammals, sound produced by the Applied Acoustics Dura-Spark 240 sparker would propagate furthest to the E:\FR\FM\12FEN1.SGM 12FEN1 7941 Federal Register / Vol. 85, No. 29 / Wednesday, February 12, 2020 / Notices Level B harassment threshold (Table 5); therefore, for the purposes of the exposure analysis, it was assumed the Applied Acoustics Dura-Spark 240 would be active during the entire duration of the surveys. Thus the distance to the isopleth corresponding to the threshold for Level B harassment for the Applied Acoustics Dura-Spark 240 (estimated at 372 m; Table 5) was used as the basis of the take calculation for all marine mammals. Note that this results in a conservative estimate of the total ensonified area resulting from the proposed activities as Atlantic Shores may not operate the Applied Acoustics Dura-Spark 240 during the entire proposed survey, and for any survey segments in which it is not ultimately operated the distance to the Level B harassment threshold would be less than 372 m (Table 5). However, as Atlantic Shores cannot predict the precise number of survey days that will require the use of the Applied Acoustics Dura-Spark 240, it was assumed that it would operated during the entire duration of the proposed surveys. TABLE 5—MODELED RADIAL DISTANCES FROM HRG SURVEY EQUIPMENT TO ISOPLETHS CORRESPONDING TO LEVEL A HARASSMENT AND LEVEL B HARASSMENT THRESHOLDS Radial distance to level A harassment threshold (m) * Sound source High frequency cetaceans Phocid pinnipeds (underwater) Radial distance to Level B harassment threshold (m) Low frequency cetaceans Mid frequency cetaceans <1 <1 1 <1 <1 <1 <1 n/a n/a <1 2 1 <1 <1 <1 <1 <1 n/a n/a <1 213 220 9 <1 <1 <1 <1 n/a n/a 60 <1 <1 1 <1 <1 <1 <1 n/a n/a <1 172 173 372 4 5 6 7 71 231 116 <1 <1 38 <1 97 <1 <1 13 <1 56 Kongsberg EA 400 ............................................................... Teledyne ODOM Echotrac CVM ......................................... Applied Acoustics Dura-Spark 240 ...................................... Edgetech 2000–DSS ........................................................... Edgetech 216 ....................................................................... Edgetech 424 ....................................................................... Edgetech 512i ...................................................................... Teledyne Benthos Chirp III .................................................. Kongsberg GeoPulse ........................................................... Innomar SES–2000 Medium-100 Parametric ...................... Applied Acoustics ................................................................. S-Boom Triple Plate ............................................................. Applied Acoustics ................................................................. S-Boom ................................................................................ All marine mammals lotter on DSKBCFDHB2PROD with NOTICES * Distances to the Level A harassment threshold based on the larger of the dual criteria (peak SPL and SELcum) are shown. For the Applied Acoustics Dura-Spark 240 the peak SPL metric resulted in larger isopleth distances; for all other sources the SELcum metric resulted in larger isopleth distances. Predicted distances to Level A harassment isopleths, which vary based on marine mammal functional hearing groups (Table 4), were also calculated. The updated acoustic thresholds for impulsive sounds (such as HRG survey equipment) contained in the Technical Guidance (NMFS, 2018) were presented as dual metric acoustic thresholds using both cumulative sound exposure level (SELcum) and peak sound pressure level metrics. As dual metrics, NMFS considers onset of PTS (Level A harassment) to have occurred when either one of the two metrics is exceeded (i.e., the metric resulting in the largest isopleth). The SELcum metric considers both level and duration of exposure, as well as auditory weighting functions by marine mammal hearing group. Modeling of distances to isopleths corresponding to the Level A harassment threshold was performed for all types of HRG equipment proposed for use with the potential to result in harassment of marine mammals. Atlantic Shores used a new model developed by JASCO to calculate distances to Level A harassment VerDate Sep<11>2014 17:03 Feb 11, 2020 Jkt 250001 isopleths based on both the peak SPL and the SELcum metric. For the peak SPL metric, the model is a series of equations that accounts for both seawater absorption and HRG equipment beam patterns (for all HRG sources with beam widths larger than 90°, it was assumed these sources were omnidirectional). For the SELcum metric, a model was developed that accounts for the hearing sensitivity of the marine mammal group, seawater absorption, and beam width for downwards-facing transducers. Details of the modeling methodology for both the peak SPL and SELcum metrics are provided in Appendix A of the IHA application. This model entails the following steps: 1. Weighted broadband source levels were calculated by assuming a flat spectrum between the source minimum and maximum frequency, weighted the spectrum according to the marine mammal hearing group weighting function (NMFS 2018), and summed across frequency. 2. Propagation loss was modeled as a function of oblique range. 3. Per-pulse SEL was modeled for a stationary receiver at a fixed distance off PO 00000 Frm 00025 Fmt 4703 Sfmt 4703 a straight survey line, using a vessel transit speed of 3.5 knots and sourcespecific pulse length and repetition rate. The off-line distance is referred to as the closest point of approach (CPA) and was performed for CPA distances between 1 m and 10 km. The survey line length was modeled as 10 km long (analysis showed longer survey lines increased SEL by a negligible amount). SEL is calculated as SPL + 10 log10 T/15 dB, where T is the pulse duration. 4. The SEL for each survey line was calculated to produce curves of weighted SEL as a function of CPA distance. 5. The curves from Step 4 above were used to estimate the CPA distance to the impact criteria. We note that in the modeling methods described above and in Appendix A of the IHA application, sources that operate with a repetition rate greater than 10 Hz were assessed with the nonimpulsive (intermittent) source criteria while sources with a repetition rate equal to or less than 10 Hz were assessed with the impulsive source criteria. NMFS does not necessarily agree with this step in the modeling E:\FR\FM\12FEN1.SGM 12FEN1 lotter on DSKBCFDHB2PROD with NOTICES 7942 Federal Register / Vol. 85, No. 29 / Wednesday, February 12, 2020 / Notices assessment, which results in nearly all HRG sources being classified as impulsive; however, we note that the classification of the majority of HRG sources as impulsive results in more conservative modeling results. Thus, we have assessed the potential for Level A harassment to result from the proposed activities based on the modeled Level A zones with the acknowledgement that these zones are likely conservative. Modeled isopleth distances to Level A harassment thresholds for all types of HRG equipment and all marine mammal functional hearing groups are shown in Table 5. The dual criteria (peak SPL and SELcum) were applied to all HRG sources using the modeling methodology as described above, and the largest isopleth distances for each functional hearing group were then carried forward in the exposure analysis to be conservative. For the Applied Acoustics Dura-Spark 240 the peak SPL metric resulted in larger isopleth distances; for all HRG sources other than the Applied Acoustics Dura-Spark 240, the SELcum metric resulted in larger isopleth distances. Distances to the Level A harassment threshold based on the larger of the dual criteria (peak SPL and SELcum) are shown in Table 5. Modeled distances to isopleths corresponding to the Level A harassment threshold are very small (< 3 m) for three of the four marine mammal functional hearing groups that may be impacted by the proposed activities (i.e., low frequency and mid frequency cetaceans, and phocid pinnipeds; see Table 5). Based on the very small Level A harassment zones for these functional hearing groups, the potential for species within these functional hearing groups to be taken by Level A harassment is considered so low as to be discountable. These three functional hearing groups encompass all but one of the marine mammal species listed in Table 3 that may be impacted by the proposed activities. There is one species (harbor porpoise) within the high frequency functional hearing group that may be impacted by the proposed activities. The largest modeled distance to the Level A harassment threshold for the high frequency functional hearing group was 220 m (Table 5). However, as noted above, modeled distances to isopleths corresponding to the Level A harassment threshold are assumed to be conservative. Level A harassment would also be more likely to occur at close approach to the sound source or as a result of longer duration exposure to the sound source, and mitigation measures—including a 100-m exclusion VerDate Sep<11>2014 17:03 Feb 11, 2020 Jkt 250001 zone for harbor porpoises—are expected to minimize the potential for close approach or longer duration exposure to active HRG sources. In addition, harbor porpoises are a notoriously shy species which is known to avoid vessels, and would also be expected to avoid a sound source prior to that source reaching a level that would result in injury (Level A harassment). Therefore, we have determined that the potential for take by Level A harassment of harbor porpoises is so low as to be discountable. As NMFS has determined that the likelihood of take of any marine mammals in the form of Level A harassment occurring as a result of the proposed surveys is so low as to be discountable, we therefore do not propose to authorize the take by Level A harassment of any marine mammals. Marine Mammal Occurrence In this section we provide the information about the presence, density, or group dynamics of marine mammals that will inform the take calculations. The habitat-based density models produced by the Duke University Marine Geospatial Ecology Laboratory (Roberts et al., 2016, 2017, 2018) represent the best available information regarding marine mammal densities in the proposed survey area. The density data presented by Roberts et al. (2016, 2017, 2018) incorporates aerial and shipboard line-transect survey data from NMFS and other organizations and incorporates data from 8 physiographic and 16 dynamic oceanographic and biological covariates, and controls for the influence of sea state, group size, availability bias, and perception bias on the probability of making a sighting. These density models were originally developed for all cetacean taxa in the U.S. Atlantic (Roberts et al., 2016). In subsequent years, certain models have been updated on the basis of additional data as well as certain methodological improvements. Our evaluation of the changes leads to a conclusion that these represent the best scientific evidence available. More information, including the model results and supplementary information for each model, is available online at seamap.env.duke.edu/models/ Duke-EC-GOM-2015/. Marine mammal density estimates in the project area (animals/km2) were obtained using these model results (Roberts et al., 2016, 2017, 2018). The updated models incorporate additional sighting data, including sightings from the NOAA Atlantic Marine Assessment Program for Protected Species (AMAPPS) surveys from 2010–2014 (NEFSC & SEFSC, 2011, 2012, 2014a, 2014b, 2015, 2016). PO 00000 Frm 00026 Fmt 4703 Sfmt 4703 For the exposure analysis, density data from Roberts et al. (2016, 2017, 2018) were mapped using a geographic information system (GIS). The density coverages that included any portion of the proposed project area were selected for all potential survey months. For each of the survey areas (i.e., Lease Area, CER North and ECR South), the densities of each species as reported by Roberts et al. (2016, 2017, 2018) were averaged by season; thus, a density was calculated for each species for spring, summer, fall and winter. To be conservative, the greatest seasonal density calculated for each species was then carried forward in the exposure analysis. Estimated seasonal densities (animals per km2) of all marine mammal species that may be taken by the proposed survey, for all survey areas are shown in Tables B–1, B–2 and B–3 in Appendix C of the IHA application. The maximum seasonal density values used to estimate take numbers are shown in Table 6 below. For bottlenose dolphin densities, Roberts et al. (2016, 2017, 2018) does not differentiate by stock. The Western North Atlantic northern migratory coastal stock only occurs in coastal waters from the shoreline to approximately the 20-m isobath (Hayes et al. 2018). As the Lease Area is located within depths exceeding 20-m, where only the offshore stock would be expected to occur, all calculated bottlenose dolphin exposures within the Lease Area were assigned to the offshore stock. However, both stocks have the potential to occur in the ECR North and ECR South survey areas. To account for the potential for mixed stocks within ECR North and South, the survey areas ECR North and South were divided approximately along the 20-m depth isobath, which roughly corresponds to the 10-fathom contour on NOAA navigation charts. As approximately 33 percent of ECR North and ECR South are 20-m or less in depth, 33 percent of the estimated take calculation for bottlenose dolphins was applied to the Western North Atlantic northern migratory coastal stock and the remaining 67 percent was applied to the offshore stock. Similarly, Roberts et al. (2018) produced density models for all seals and did not differentiate by seal species. Because the seasonality and habitat use by gray seals roughly overlaps with that of harbor seals in the survey areas, it was assumed that modeled takes of seals could occur to either of the respective species, thus the total number of modeled takes for seals was applied to each species. E:\FR\FM\12FEN1.SGM 12FEN1 7943 Federal Register / Vol. 85, No. 29 / Wednesday, February 12, 2020 / Notices TABLE 6—MAXIMUM SEASONAL MARINE MAMMAL DENSITIES (NUMBER OF ANIMALS PER 100 KM2) IN THE SURVEY AREAS Species Lease area North Atlantic right whale ............................................................................................................ Humpback whale ......................................................................................................................... Fin whale ..................................................................................................................................... Sei whale ..................................................................................................................................... Minke whale ................................................................................................................................. Sperm Whale ............................................................................................................................... Long-finned pilot whale ................................................................................................................ Bottlenose dolphin (W. N. Atlantic Coastal Migratory) ................................................................ Bottlenose dolphin (W. N. Atlantic Offshore) .............................................................................. Common dolphin .......................................................................................................................... Atlantic white-sided dolphin ......................................................................................................... Atlantic spotted dolphin ............................................................................................................... Risso’s dolphin ............................................................................................................................. Harbor porpoise ........................................................................................................................... Gray seal ..................................................................................................................................... Harbor seal .................................................................................................................................. 0.087 0.076 0.100 0.004 0.055 0.013 0.036 ........................ 21.752 3.120 0.487 0.076 0.010 2.904 4.918 4.918 ECR north 0.068 0.082 0.080 0.004 0.017 0.005 0.012 21.675 21.675 1.644 0.213 0.059 0.001 7.357 9.737 9.737 ECR south 0.073 0.103 0.057 0.002 0.019 0.003 0.009 58.524 58.524 1.114 0.152 0.021 0.002 2.209 6.539 6.539 Note: All density values derived from Roberts et al. (2016, 2017, 2018). Densities shown represent the maximum seasonal density values calculated. Take Calculation and Estimation Here we describe how the information provided above is brought together to produce a quantitative take estimate. In order to estimate the number of marine mammals predicted to be exposed to sound levels that would result in harassment, radial distances to predicted isopleths corresponding to harassment thresholds are calculated, as described above. Those distances are then used to calculate the area(s) around the HRG survey equipment predicted to be ensonified to sound levels that exceed harassment thresholds. The area estimated to be ensonified to relevant thresholds in a single day is then calculated, based on areas predicted to be ensonified around the HRG survey equipment and the estimated trackline distance traveled per day by the survey vessel. Atlantic Shores estimates that proposed surveys will achieve a maximum daily track line distance of 85 km per day during proposed HRG surveys. This distance accounts for the vessel traveling at approximately 3.5 kn and accounts for non-active survey periods. Based on the maximum estimated distance to the Level B harassment threshold of 372 m (Table 5) and the maximum estimated daily track line distance of 85 km, an area of 63.675 km2 would be ensonified to the Level B harassment threshold per day during Atlantic Shores’ proposed surveys. As described above, this is a conservative estimate as it assumes the HRG source that results in the greatest isopleth distance to the Level B harassment threshold would be operated at all times during the entire survey, which may not ultimately occur. The number of marine mammals expected to be incidentally taken per day is then calculated by estimating the number of each species predicted to occur within the daily ensonified area (animals/km2), incorporating the estimated marine mammal densities as described above. Estimated numbers of each species taken per day are then multiplied by the total number of survey days (i.e., 350). The product is then rounded, to generate an estimate of the total number of instances of harassment expected for each species over the duration of the survey. A summary of this method is illustrated in the following formula: Estimated Take = D × ZOI × # of days Where: D = average species density (per km2) and ZOI = maximum daily ensonified area to relevant thresholds. TABLE 7—NUMBERS OF POTENTIAL INCIDENTAL TAKE OF MARINE MAMMALS PROPOSED FOR AUTHORIZATION AND PROPOSED TAKES AS A PERCENTAGE OF POPULATION Proposed takes by level A harassment lotter on DSKBCFDHB2PROD with NOTICES Species North Atlantic right whale ..................................................... Humpback whale ................................................................. Fin whale .............................................................................. Sei whale ............................................................................. Minke whale ......................................................................... Sperm whale 2 ...................................................................... Long-finned pilot whale ........................................................ Bottlenose dolphin (W.N. Atlantic Coastal Migratory) ......... Bottlenose dolphin (W.N. Atlantic Offshore) ........................ Common dolphin .................................................................. Atlantic white-sided dolphin ................................................. Atlantic spotted dolphin 2 ..................................................... Risso’s Dolphin 2 .................................................................. Harbor porpoise ................................................................... Harbor seal .......................................................................... VerDate Sep<11>2014 17:03 Feb 11, 2020 Jkt 250001 PO 00000 Frm 00027 Estimated takes by level B harassment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Fmt 4703 Sfmt 4703 Proposed takes by level B harassment 18 18 20 1 9 2 6 1,102 5,113 544 82 14 2 115 1,404 E:\FR\FM\12FEN1.SGM 9 18 20 1 9 3 6 1,102 5,113 544 82 100 6 115 1,404 12FEN1 Total takes proposed for authorization 9 18 20 1 9 3 6 1,102 5,113 544 82 100 6 115 1,404 Total proposed instances of take as a percentage of population 1 2.2 1.1 0.4 0.1 0.4 0.1 0.0 16.6 8.1 0.6 0.2 0.2 0.1 0.3 1.9 7944 Federal Register / Vol. 85, No. 29 / Wednesday, February 12, 2020 / Notices TABLE 7—NUMBERS OF POTENTIAL INCIDENTAL TAKE OF MARINE MAMMALS PROPOSED FOR AUTHORIZATION AND PROPOSED TAKES AS A PERCENTAGE OF POPULATION—Continued Proposed takes by level A harassment Species Gray seal .............................................................................. Estimated takes by level B harassment 0 Proposed takes by level B harassment 1,404 1,404 Total takes proposed for authorization Total proposed instances of take as a percentage of population 1 1,404 0.3 1 Calculations lotter on DSKBCFDHB2PROD with NOTICES of percentage of stock taken are based on the best available abundance estimate as shown in Table 3. In most cases the best available abundance estimate is provided by Roberts et al. (2016, 2017, 2018), when available, to maintain consistency with density estimates derived from Roberts et al. (2016, 2017, 2018). For North Atlantic right whales the best available abundance estimate is derived from the North Atlantic Right Whale Consortium 2019 Annual Report Card (Pettis et al., 2019). For bottlenose dolphins and seals, Roberts et al. (2016, 2017, 2018) provides only a single abundance estimate and does not provide abundance estimates at the stock or species level (respectively), so abundance estimates used to estimate percentage of stock taken for bottlenose dolphins, gray and harbor seals are derived from NMFS SARs (Hayes et al., 2019). 2 The proposed number of authorized takes (Level B harassment only) for these species has been increased from the estimated take number to mean group size. Sources for mean group size estimates are as follows: Risso’s dolphin: Palka et al. (2018); Atlantic spotted dolphin: Herzing and Perrin (2018); sperm whale: Barkaszi and Kelly (2019). The numbers of takes proposed for authorization are shown in Table 7. Atlantic Shores did not request take authorization for four marine mammal species for which takes by Level B harassment were calculated based on the modeling approach described above: North Atlantic right, fin, sei, and sperm whale. Though the modeling resulted in estimates of take for these species as shown in Table 7, Atlantic Shores determined that take of these species could be avoided due to mitigation. However, given the size of modeled Level B harassment zone, the duration of the proposed surveys, and the fact that surveys will occur 24 hours per day, NMFS is not confident that all takes of these species could be avoided due to mitigation, and we therefore propose to authorize the number of Level B takes modeled for these species, as shown in Table 7. For fin, sei, and sperm whales we propose to authorize the number of takes modeled. For North Atlantic right whale, we propose to authorize 50 percent of the takes modeled, as we expect that proposed mitigation measures, including a 500-m exclusion zone for right whales (which exceeds the Level B harassment zone by over 100-m) will be effective in reducing the potential for takes by Level B harassment. As described above, Roberts et al. (2018) produced density models for all seals and did not differentiate by seal species. The take calculation methodology as described above resulted in an estimate of 1,404 total seal takes. Based on this estimate, Atlantic Shores requested 1,404 takes each of harbor and gray seals, based on an assumption that the modeled takes could occur to either of the respective species. We think this is a reasonable approach and therefore propose to VerDate Sep<11>2014 17:03 Feb 11, 2020 Jkt 250001 authorize the take numbers as shown in Table 7. Using the take methodology approach described above, the take estimates for Risso’s dolphin, spotted dolphin and sperm whale were less than the average group sizes estimated for these species (Table 7). However, information on the social structures of these species indicates these species are likely to be encountered in groups. Therefore it is reasonable to conservatively assume that one group of each of these species will be taken during the proposed survey. We therefore propose to authorize the take of the average group size for these species to account for the possibility that the proposed survey encounters a group of either of these species (Table 7). As described above, NMFS has determined that the likelihood of take of any marine mammals in the form of Level A harassment occurring as a result of the proposed surveys is so low as to be discountable; therefore, we do not propose to authorize take of any marine mammals by Level A harassment. Proposed Mitigation In order to issue an IHA under Section 101(a)(5)(D) of the MMPA, NMFS must set forth the permissible methods of taking pursuant to such activity, and other means of effecting the least practicable impact on such species or stock and its habitat, paying particular attention to rookeries, mating grounds, and areas of similar significance, and on the availability of such species or stock for taking for certain subsistence uses (latter not applicable for this action). NMFS regulations require applicants for incidental take authorizations to include information about the availability and feasibility (economic and technological) of equipment, methods, and manner of PO 00000 Frm 00028 Fmt 4703 Sfmt 4703 conducting such activity or other means of effecting the least practicable adverse impact upon the affected species or stocks and their habitat (50 CFR 216.104(a)(11)). In evaluating how mitigation may or may not be appropriate to ensure the least practicable adverse impact on species or stocks and their habitat, as well as subsistence uses where applicable, we carefully consider two primary factors: (1) The manner in which, and the degree to which, the successful implementation of the measure(s) is expected to reduce impacts to marine mammals, marine mammal species or stocks, and their habitat. This considers the nature of the potential adverse impact being mitigated (likelihood, scope, range). It further considers the likelihood that the measure will be effective if implemented (probability of accomplishing the mitigating result if implemented as planned), the likelihood of effective implementation (probability implemented as planned), and; (2) The practicability of the measures for applicant implementation, which may consider such things as cost, impact on operations, and, in the case of a military readiness activity, personnel safety, practicality of implementation, and impact on the effectiveness of the military readiness activity. Proposed Mitigation Measures NMFS proposes the following mitigation measures be implemented during Atlantic Shores’s proposed marine site characterization surveys. Marine Mammal Exclusion Zones, Buffer Zone and Monitoring Zone Marine mammal exclusion zones (EZ) would be established around the HRG E:\FR\FM\12FEN1.SGM 12FEN1 Federal Register / Vol. 85, No. 29 / Wednesday, February 12, 2020 / Notices lotter on DSKBCFDHB2PROD with NOTICES survey equipment and monitored by protected species observers (PSO) during HRG surveys as follows: • A 500-m EZ would be required for North Atlantic right whales; and • A 100-m EZ would be required for all other marine mammals. If a marine mammal is detected approaching or entering the EZs during the proposed survey, the vessel operator would adhere to the shutdown procedures described below. In addition to the EZs described above, PSOs would visually monitor a 200 m Buffer Zone. During use of acoustic sources with the potential to result in marine mammal harassment (i.e., anytime the acoustic source is active, including ramp-up), occurrences of marine mammals within the Buffer Zone (but outside the EZs) would be communicated to the vessel operator to prepare for potential shutdown of the acoustic source. The Buffer Zone is not applicable when the EZ is greater than 100 meters. PSOs would also be required to observe a 500m Monitoring Zone and record the presence of all marine mammals within this zone. In addition, any marine mammals observed within 372 m of the HRG equipment would be documented by PSOs as taken by Level B harassment. The zones described above would be based upon the radial distance from the active equipment (rather than being based on distance from the vessel itself). Visual Monitoring A minimum of one NMFS-approved PSO must be on duty and conducting visual observations at all times during daylight hours (i.e., from 30 minutes prior to sunrise through 30 minutes following sunset) and 30 minutes prior to and during nighttime ramp-ups of HRG equipment. Visual monitoring would begin no less than 30 minutes prior to ramp-up of HRG equipment and would continue until 30 minutes after use of the acoustic source ceases or until 30 minutes past sunset. PSOs would establish and monitor the applicable EZs, Buffer Zone and Monitoring Zone as described above. Visual PSOs would coordinate to ensure 360° visual coverage around the vessel from the most appropriate observation posts, and would conduct visual observations using binoculars and the naked eye while free from distractions and in a consistent, systematic, and diligent manner. PSOs would estimate distances to marine mammals located in proximity to the vessel and/or relevant using range finders. It would be the responsibility of the Lead PSO on duty to communicate the presence of marine mammals as well as to communicate VerDate Sep<11>2014 17:03 Feb 11, 2020 Jkt 250001 and enforce the action(s) that are necessary to ensure mitigation and monitoring requirements are implemented as appropriate. Position data would be recorded using hand-held or vessel global positioning system (GPS) units for each confirmed marine mammal sighting. Pre-Clearance of the Exclusion Zones Prior to initiating HRG survey activities, Atlantic Shores would implement a 30-minute pre-clearance period. During pre-clearance monitoring (i.e., before ramp-up of HRG equipment begins), the Buffer Zone would also act as an extension of the 100 m EZ in that observations of marine mammals within the 200 m Buffer Zone would also preclude HRG operations from beginning. During this period, PSOs would ensure that no marine mammals are observed within 200 m of the survey equipment (500 m in the case of North Atlantic right whales). HRG equipment would not start up until this 200 m zone (or, 500 m zone in the case of North Atlantic right whales) is clear of marine mammals for at least 30 minutes. The vessel operator would notify a designated PSO of the planned start of HRG survey equipment as agreed upon with the lead PSO; the notification time should not be less than 30 minutes prior to the planned initiation of HRG equipment order to allow the PSOs time to monitor the EZs and Buffer Zone for the 30 minutes of pre-clearance. A PSO conducting pre-clearance observations would be notified again immediately prior to initiating active HRG sources. If a marine mammal were observed within the relevant EZs or Buffer Zone during the pre-clearance period, initiation of HRG survey equipment would not begin until the animal(s) has been observed exiting the respective EZ or Buffer Zone, or, until an additional time period has elapsed with no further sighting (i.e., minimum 15 minutes for small odontocetes and seals, and 30 minutes for all other species). The preclearance requirement would include small delphinoids that approach the vessel (e.g., bow ride). PSOs would also continue to monitor the zone for 30 minutes after survey equipment is shut down or survey activity has concluded. Ramp-Up of Survey Equipment When technically feasible, a ramp-up procedure would be used for geophysical survey equipment capable of adjusting energy levels at the start or re-start of survey activities. The rampup procedure would be used at the beginning of HRG survey activities in order to provide additional protection to marine mammals near the survey area PO 00000 Frm 00029 Fmt 4703 Sfmt 4703 7945 by allowing them to detect the presence of the survey and vacate the area prior to the commencement of survey equipment operation at full power. Ramp-up of the survey equipment would not begin until the relevant EZs and Buffer Zone has been cleared by the PSOs, as described above. HEG equipment would be initiated at their lowest power output and would be incrementally increased to full power. If any marine mammals are detected within the EZs or Buffer Zone prior to or during ramp-up, the HRG equipment would be shut down (as described below). Shutdown Procedures If an HRG source is active and a marine mammal is observed within or entering a relevant EZ (as described above) an immediate shutdown of the HRG survey equipment would be required. When shutdown is called for by a PSO, the acoustic source would be immediately deactivated and any dispute resolved only following deactivation. Any PSO on duty would have the authority to delay the start of survey operations or to call for shutdown of the acoustic source if a marine mammal is detected within the applicable EZ. The vessel operator would establish and maintain clear lines of communication directly between PSOs on duty and crew controlling the HRG source(s) to ensure that shutdown commands are conveyed swiftly while allowing PSOs to maintain watch. Subsequent restart of the HRG equipment would only occur after the marine mammal has either been observed exiting the relevant EZ, or, until an additional time period has elapsed with no further sighting of the animal within the relevant EZ (i.e., 15 minutes for small odontocetes and seals, and 30 minutes for large whales). Upon implementation of shutdown, the HRG source may be reactivated after the marine mammal that triggered the shutdown has been observed exiting the applicable EZ (i.e., the animal is not required to fully exit the Buffer Zone where applicable), or, following a clearance period of 15 minutes for small odontocetes and seals and 30 minutes for all other species with no further observation of the marine mammal(s) within the relevant EZ. If the HRG equipment shuts down for brief periods (i.e., less than 30 minutes) for reasons other than mitigation (e.g., mechanical or electronic failure) the equipment may be re-activated as soon as is practicable at full operational level, without 30 minutes of pre-clearance, only if PSOs have maintained constant visual observation during the shutdown and E:\FR\FM\12FEN1.SGM 12FEN1 7946 Federal Register / Vol. 85, No. 29 / Wednesday, February 12, 2020 / Notices lotter on DSKBCFDHB2PROD with NOTICES no visual detections of marine mammals occurred within the applicable EZs and Buffer Zone during that time. For a shutdown of 30 minutes or longer, or if visual observation was not continued diligently during the pause, preclearance observation is required, as described above. The shutdown requirement would be waived for certain genera of small delphinids (i.e., Delphinus, Lagenorhynchus, Stenella, and Tursiops) under certain circumstances. If a delphinid(s) from these genera is visually detected approaching the vessel (i.e., to bow ride) or towed survey equipment, shutdown would not be required. If there is uncertainty regarding identification of a marine mammal species (i.e., whether the observed marine mammal(s) belongs to one of the delphinid genera for which shutdown is waived), PSOs would use best professional judgment in making the decision to call for a shutdown. If a species for which authorization has not been granted, or, a species for which authorization has been granted but the authorized number of takes have been met, approaches or is observed within the area encompassing the Level B harassment isopleth (372 m), shutdown would occur. Vessel Strike Avoidance Vessel strike avoidance measures would include, but would not be limited to, the following, except under circumstances when complying with these requirements would put the safety of the vessel or crew at risk: • All vessel operators and crew will maintain vigilant watch for cetaceans and pinnipeds, and slow down or stop their vessel to avoid striking these protected species; • All survey vessels, regardless of size, must observe a 10-knot speed restriction in specific areas designated by NMFS for the protection of North Atlantic right whales from vessel strikes: Any DMAs when in effect, and the Mid-Atlantic SMA off the entrance to New York harbor (from November 1 through April 30); • All vessel operators will reduce vessel speed to 10 knots (18.5 km/hr) or less when any large whale, any mother/ calf pairs, large assemblages of nondelphinoid cetaceans are observed near (within 100 m (330 ft)) an underway vessel; • All survey vessels will maintain a separation distance of 500 m (1640 ft) or greater from any sighted North Atlantic right whale; • If underway, vessels must steer a course away from any sighted North Atlantic right whale at 10 knots (18.5 VerDate Sep<11>2014 17:03 Feb 11, 2020 Jkt 250001 km/hr) or less until the 500 m (1640 ft) minimum separation distance has been established. If a North Atlantic right whale is sighted in a vessel’s path, or within 100 m (330 ft) to an underway vessel, the underway vessel must reduce speed and shift the engine to neutral. Engines will not be engaged until the North Atlantic right whale has moved outside of the vessel’s path and beyond 100 m. If stationary, the vessel must not engage engines until the North Atlantic right whale has moved beyond 100 m; • All vessels will maintain a separation distance of 100 m (330 ft) or greater from any sighted non-delphinoid cetacean. If sighted, the vessel underway must reduce speed and shift the engine to neutral, and must not engage the engines until the nondelphinoid cetacean has moved outside of the vessel’s path and beyond 100 m. If a survey vessel is stationary, the vessel will not engage engines until the non-delphinoid cetacean has moved out of the vessel’s path and beyond 100 m; • All vessels will maintain a separation distance of 50 m (164 ft) or greater from any sighted delphinoid cetacean. Any vessel underway remain parallel to a sighted delphinoid cetacean’s course whenever possible, and avoid excessive speed or abrupt changes in direction. Any vessel underway reduces vessel speed to 10 knots (18.5 km/hr) or less when pods (including mother/calf pairs) or large assemblages of delphinoid cetaceans are observed. Vessels may not adjust course and speed until the delphinoid cetaceans have moved beyond 50 m and/or the abeam of the underway vessel; • All vessels will maintain a separation distance of 50 m (164 ft) or greater from any sighted pinniped; and • All vessels underway will not divert or alter course in order to approach any whale, delphinoid cetacean, or pinniped. Any vessel underway will avoid excessive speed or abrupt changes in direction to avoid injury to the sighted cetacean or pinniped. Atlantic Shores will ensure that vessel operators and crew maintain a vigilant watch for marine mammals by slowing down or stopping the vessel to avoid striking marine mammals. Projectspecific training will be conducted for all vessel crew prior to the start of survey activities. Confirmation of the training and understanding of the requirements will be documented on a training course log sheet. Signing the log sheet will certify that the crew members understand and will comply with the necessary requirements throughout the survey activities. PO 00000 Frm 00030 Fmt 4703 Sfmt 4703 Seasonal Operating Requirements As described above, the section of the proposed survey area partially overlaps with a portion of a North Atlantic right whale SMA off the port of New York/ New Jersey. This SMA is active from November 1 through April 30 of each year. All survey vessels, regardless of length, would be required to adhere to vessel speed restrictions (<10 kn) when operating within the SMA during times when the SMA is active. In addition, between watch shifts, members of the monitoring team would consult NMFS’ North Atlantic right whale reporting systems for the presence of North Atlantic right whales throughout survey operations. Members of the monitoring team would also monitor the NMFS North Atlantic right whale reporting systems for the establishment of Dynamic Management Areas (DMA). If NMFS should establish a DMA in the survey area while surveys are underway, Atlantic Shores would contact NMFS within 24 hours of the establishment of the DMA to determine whether alteration of survey activities was warranted to avoid right whales to the extent possible. The proposed mitigation measures are designed to avoid the already low potential for injury in addition to some instances of Level B harassment, and to minimize the potential for vessel strikes. Further, we believe the proposed mitigation measures are practicable for the applicant to implement. Atlantic Shores has proposed additional mitigation measures in addition to the measures described above; for information on the measures proposed by Atlantic Shores, see Section 11 of the IHA application. There are no known marine mammal rookeries or mating or calving grounds in the survey area that would otherwise potentially warrant increased mitigation measures for marine mammals or their habitat (or both). The proposed survey would occur in an area that has been identified as a biologically important area for migration for North Atlantic right whales. However, given the small spatial extent of the survey area relative to the substantially larger spatial extent of the right whale migratory area, the survey is not expected to appreciably reduce migratory habitat nor to negatively impact the migration of North Atlantic right whales, thus mitigation to address the proposed survey’s occurrence in North Atlantic right whale migratory habitat is not warranted. Based on our evaluation of the applicant’s proposed measures, as well as other measures considered by NMFS, E:\FR\FM\12FEN1.SGM 12FEN1 Federal Register / Vol. 85, No. 29 / Wednesday, February 12, 2020 / Notices lotter on DSKBCFDHB2PROD with NOTICES NMFS has preliminarily determined that the proposed mitigation measures provide the means effecting the least practicable impact on the affected species or stocks and their habitat, paying particular attention to rookeries, mating grounds, and areas of similar significance. Proposed Monitoring and Reporting In order to issue an IHA for an activity, Section 101(a)(5)(D) of the MMPA states that NMFS must set forth requirements pertaining to the monitoring and reporting of such taking. The MMPA implementing regulations at 50 CFR 216.104(a)(13) indicate that requests for authorizations must include the suggested means of accomplishing the necessary monitoring and reporting that will result in increased knowledge of the species and of the level of taking or impacts on populations of marine mammals that are expected to be present in the proposed action area. Effective reporting is critical both to compliance as well as ensuring that the most value is obtained from the required monitoring. Monitoring and reporting requirements prescribed by NMFS should contribute to improved understanding of one or more of the following: • Occurrence of marine mammal species or stocks in the area in which take is anticipated (e.g., presence, abundance, distribution, density). • Nature, scope, or context of likely marine mammal exposure to potential stressors/impacts (individual or cumulative, acute or chronic), through better understanding of: (1) Action or environment (e.g., source characterization, propagation, ambient noise); (2) affected species (e.g., life history, dive patterns); (3) co-occurrence of marine mammal species with the action; or (4) biological or behavioral context of exposure (e.g., age, calving or feeding areas). • Individual marine mammal responses (behavioral or physiological) to acoustic stressors (acute, chronic, or cumulative), other stressors, or cumulative impacts from multiple stressors. • How anticipated responses to stressors impact either: (1) Long-term fitness and survival of individual marine mammals; or (2) populations, species, or stocks. • Effects on marine mammal habitat (e.g., marine mammal prey species, acoustic habitat, or other important physical components of marine mammal habitat). • Mitigation and monitoring effectiveness. VerDate Sep<11>2014 17:03 Feb 11, 2020 Jkt 250001 Proposed Monitoring Measures As described above, visual monitoring would be performed by qualified and NMFS-approved PSOs. Atlantic Shores would use independent, dedicated, trained PSOs, meaning that the PSOs must be employed by a third-party observer provider, must have no tasks other than to conduct observational effort, collect data, and communicate with and instruct relevant vessel crew with regard to the presence of marine mammals and mitigation requirements (including brief alerts regarding maritime hazards), and must have successfully completed an approved PSO training course appropriate for their designated task. Atlantic Shores would provide resumes of all proposed PSOs (including alternates) to NMFS for review and approval at least 45 days prior to the start of survey operations. During survey operations (e.g., any day on which use of an HRG source is planned to occur), a minimum of one PSO must be on duty and conducting visual observations at all times on all active survey vessels during daylight hours (i.e., from 30 minutes prior to sunrise through 30 minutes following sunset) and nighttime ramp-ups of HRG equipment. Visual monitoring would begin no less than 30 minutes prior to initiation of HRG survey equipment and would continue until one hour after use of the acoustic source ceases or until 30 minutes past sunset. PSOs would coordinate to ensure 360° visual coverage around the vessel from the most appropriate observation posts, and would conduct visual observations using binoculars and the naked eye while free from distractions and in a consistent, systematic, and diligent manner. PSOs may be on watch for a maximum of four consecutive hours followed by a break of at least two hours between watches and may conduct a maximum of 12 hours of observation per 24-hour period. In cases where multiple vessels are surveying concurrently, any observations of marine mammals would be communicated to PSOs on all survey vessels. PSOs would be equipped with binoculars and have the ability to estimate distances to marine mammals located in proximity to the vessel and/ or exclusion zone using range finders. Reticulated binoculars will also be available to PSOs for use as appropriate based on conditions and visibility to support the monitoring of marine mammals. Position data would be recorded using hand-held or vessel GPS units for each sighting. Observations would take place from the highest available vantage point on the survey PO 00000 Frm 00031 Fmt 4703 Sfmt 4703 7947 vessel. General 360-degree scanning would occur during the monitoring periods, and target scanning by the PSO would occur when alerted of a marine mammal presence. During good conditions (e.g., daylight hours; Beaufort sea state (BSS) 3 or less), to the maximum extent practicable, PSOs would conduct observations when the acoustic source is not operating for comparison of sighting rates and behavior with and without use of the acoustic source and between acquisition periods. Any observations of marine mammals by crew members aboard any vessel associated with the survey would be relayed to the PSO team. Data on all PSO observations would be recorded based on standard PSO collection requirements. This would include dates, times, and locations of survey operations; dates and times of observations, location and weather; details of marine mammal sightings (e.g., species, numbers, behavior); and details of any observed marine mammal take that occurs (e.g., noted behavioral disturbances). Proposed Reporting Measures Within 90 days after completion of survey activities, a final technical report will be provided to NMFS that fully documents the methods and monitoring protocols, summarizes the data recorded during monitoring, summarizes the number of marine mammals estimated to have been taken during survey activities (by species, when known), summarizes the mitigation actions taken during surveys (including what type of mitigation and the species and number of animals that prompted the mitigation action, when known), and provides an interpretation of the results and effectiveness of all mitigation and monitoring. Any recommendations made by NMFS must be addressed in the final report prior to acceptance by NMFS. In addition to the final technical report, Atlantic Shores will provide the reports described below as necessary during survey activities. In the unanticipated event that Atlantic Shores’ activities lead to an injury (Level A harassment) of a marine mammal, Atlantic Shores would immediately cease the specified activities and report the incident to the NMFS Office of Protected Resources Permits and Conservation Division and the NMFS New England/Mid-Atlantic Stranding Coordinator. The report would include the following information: • Time, date, and location (latitude/ longitude) of the incident; • Name and type of vessel involved; E:\FR\FM\12FEN1.SGM 12FEN1 lotter on DSKBCFDHB2PROD with NOTICES 7948 Federal Register / Vol. 85, No. 29 / Wednesday, February 12, 2020 / Notices • Vessel’s speed during and leading up to the incident; • Description of the incident; • Status of all sound source use in the 24 hours preceding the incident; • Water depth; • Environmental conditions (e.g., wind speed and direction, Beaufort sea state, cloud cover, and visibility); • Description of all marine mammal observations in the 24 hours preceding the incident; • Species identification or description of the animal(s) involved; • Fate of the animal(s); and • Photographs or video footage of the animal(s) (if equipment is available). Activities would not resume until NMFS is able to review the circumstances of the event. NMFS would work with Atlantic Shores to minimize reoccurrence of such an event in the future. Atlantic Shores would not resume activities until notified by NMFS. In the event that Atlantic Shores personnel discover an injured or dead marine mammal, Atlantic Shores would report the incident to the OPR Permits and Conservation Division and the NMFS New England/Mid-Atlantic Stranding Coordinator as soon as feasible. The report would include the following information: • Time, date, and location (latitude/ longitude) of the first discovery (and updated location information if known and applicable); • Species identification (if known) or description of the animal(s) involved; • Condition of the animal(s) (including carcass condition if the animal is dead); • Observed behaviors of the animal(s), if alive; • If available, photographs or video footage of the animal(s); and • General circumstances under which the animal was discovered. In the unanticipated event of a ship strike of a marine mammal by any vessel involved in the activities covered by the IHA, Atlantic Shores would report the incident to the NMFS OPR Permits and Conservation Division and the NMFS New England/Mid-Atlantic Stranding Coordinator as soon as feasible. The report would include the following information: • Time, date, and location (latitude/ longitude) of the incident; • Species identification (if known) or description of the animal(s) involved; • Vessel’s speed during and leading up to the incident; • Vessel’s course/heading and what operations were being conducted (if applicable); • Status of all sound sources in use; VerDate Sep<11>2014 17:03 Feb 11, 2020 Jkt 250001 • Description of avoidance measures/ requirements that were in place at the time of the strike and what additional measures were taken, if any, to avoid strike; • Environmental conditions (e.g., wind speed and direction, Beaufort sea state, cloud cover, visibility) immediately preceding the strike; • Estimated size and length of animal that was struck; • Description of the behavior of the marine mammal immediately preceding and following the strike; • If available, description of the presence and behavior of any other marine mammals immediately preceding the strike; • Estimated fate of the animal (e.g., dead, injured but alive, injured and moving, blood or tissue observed in the water, status unknown, disappeared); and • To the extent practicable, photographs or video footage of the animal(s). Negligible Impact Analysis and Determination NMFS has defined negligible impact as an impact resulting from the specified activity that cannot be reasonably expected to, and is not reasonably likely to, adversely affect the species or stock through effects on annual rates of recruitment or survival (50 CFR 216.103). A negligible impact finding is based on the lack of likely adverse effects on annual rates of recruitment or survival (i.e., populationlevel effects). An estimate of the number of takes alone is not enough information on which to base an impact determination. In addition to considering estimates of the number of marine mammals that might be ‘‘taken’’ through harassment, NMFS considers other factors, such as the likely nature of any responses (e.g., intensity, duration), the context of any responses (e.g., critical reproductive time or location, migration), as well as effects on habitat, and the likely effectiveness of the mitigation. We also assess the number, intensity, and context of estimated takes by evaluating this information relative to population status. Consistent with the 1989 preamble for NMFS’s implementing regulations (54 FR 40338; September 29, 1989), the impacts from other past and ongoing anthropogenic activities are incorporated into this analysis via their impacts on the environmental baseline (e.g., as reflected in the regulatory status of the species, population size and growth rate where known, ongoing sources of human-caused mortality, or ambient noise levels). PO 00000 Frm 00032 Fmt 4703 Sfmt 4703 To avoid repetition, our analysis applies to all the species listed in Table 2, given that NMFS expects the anticipated effects of the proposed survey to be similar in nature. NMFS does not anticipate that serious injury or mortality would occur as a result of Atlantic Shores’s proposed survey, even in the absence of proposed mitigation, thus the proposed authorization does not authorize any serious injury or mortality. As discussed in the Potential Effects of Specified Activities on Marine Mammals and their Habitat section, non-auditory physical effects and vessel strike are not expected to occur. Additionally and as discussed previously, given the nature of activity and sounds sources used and especially in consideration of the required mitigation, Level A harassment is neither anticipated nor authorized. We expect that all potential takes would be in the form of short-term Level B behavioral harassment in the form of temporary avoidance of the area, reactions that are considered to be of low severity and with no lasting biological consequences (e.g., Southall et al., 2007). Effects on individuals that are taken by Level B harassment, on the basis of reports in the literature as well as monitoring from other similar activities, will likely be limited to reactions such as increased swimming speeds, increased surfacing time, or decreased foraging (if such activity were occurring) (e.g., Thorson and Reyff, 2006; HDR, Inc., 2012; Lerma, 2014). Most likely, individuals will simply move away from the sound source and temporarily avoid the area where the survey is occurring. We expect that any avoidance of the survey area by marine mammals would be temporary in nature and that any marine mammals that avoid the survey area during the survey activities would not be permanently displaced. Even repeated Level B harassment of some small subset of an overall stock is unlikely to result in any significant realized decrease in viability for the affected individuals, and thus would not result in any adverse impact to the stock as a whole. Instances of more severe behavioral harassment are expected to be minimized by proposed mitigation and monitoring measures. In addition to being temporary and short in overall duration, the acoustic footprint of the proposed survey is small relative to the overall distribution of the animals in the area and their use of the area. Feeding behavior is not likely to be significantly impacted. Prey species are mobile and are broadly distributed throughout the project area; therefore, marine mammals that may be E:\FR\FM\12FEN1.SGM 12FEN1 lotter on DSKBCFDHB2PROD with NOTICES Federal Register / Vol. 85, No. 29 / Wednesday, February 12, 2020 / Notices temporarily displaced during survey activities are expected to be able to resume foraging once they have moved away from areas with disturbing levels of underwater noise. Because of the temporary nature of the disturbance and the availability of similar habitat and resources in the surrounding area, the impacts to marine mammals and the food sources that they utilize are not expected to cause significant or longterm consequences for individual marine mammals or their populations. There are no rookeries, mating or calving grounds known to be biologically important to marine mammals within the proposed survey area and there are no feeding areas known to be biologically important to marine mammals within the proposed survey area. There is no designated critical habitat for any ESA-listed marine mammals in the proposed survey area. The proposed survey area overlaps a portion of a biologically important migratory area for North Atlantic right whales (effective March– April and November–December) that extends from Massachusetts to Florida (LaBrecque, et al., 2015). Off the coasts of Delaware and Maryland, this biologically important migratory area extends from the coast to beyond the shelf break. Due to the fact that that the proposed survey is temporary and the spatial extent of sound produced by the survey would very small relative to the spatial extent of the available migratory habitat in the area, right whale migration is not expected to be impacted by the proposed survey. As described above, North Atlantic right, humpback, and minke whales, and gray and harbor seals are experiencing ongoing UMEs. For North Atlantic right whales, as described above, no injury as a result of the proposed project is expected or proposed for authorization, and Level B harassment takes of right whales are expected to be in the form of avoidance of the immediate area of the proposed survey. In addition, the number of takes proposed for authorization above the Level B harassment threshold are relatively low (i.e., 18), and the take numbers proposed for authorization do not account for the proposed mitigation measures, which would require shutdown of all survey equipment upon observation of a right whale prior to their entering the zone that would be ensonified above the Level B harassment threshold. As no injury or mortality is expected or proposed for authorization, and Level B harassment of North Atlantic right whales will be reduced to the level of least practicable adverse impact through use of proposed VerDate Sep<11>2014 17:03 Feb 11, 2020 Jkt 250001 mitigation measures, the proposed authorized takes of right whales would not exacerbate or compound the ongoing UME in any way. Similarly, no injury or mortality is expected or proposed for authorization for any of the other species with UMEs, Level B harassment will be reduced to the level of least practicable adverse impact through use of proposed mitigation measures, and the proposed authorized takes would not exacerbate or compound the ongoing UMEs. For minke whales, although the ongoing UME is under investigation (as occurs for all UMEs), this event does not provide cause for concern regarding population level impacts, as the likely population abundance is greater than 20,000 whales. Even though the PBR value is based on an abundance for U.S. waters that is negatively biased and a small fraction of the true population abundance, annual M/SI does not exceed the calculated PBR value for minke whales. With regard to humpback whales, the UME does not yet provide cause for concern regarding populationlevel impacts. Despite the UME, the relevant population of humpback whales (the West Indies breeding population, or distinct population segment (DPS)) remains healthy. The West Indies DPS, which consists of the whales whose breeding range includes the Atlantic margin of the Antilles from Cuba to northern Venezuela, and whose feeding range primarily includes the Gulf of Maine, eastern Canada, and western Greenland, was delisted. The status review identified harmful algal blooms, vessel collisions, and fishing gear entanglements as relevant threats for this DPS, but noted that all other threats are considered likely to have no or minor impact on population size or the growth rate of this DPS (Bettridge et al., 2015). As described in Bettridge et al. (2015), the West Indies DPS has a substantial population size (i.e., approximately 10,000; Stevick et al., 2003; Smith et al., 1999; Bettridge et al., 2015), and appears to be experiencing consistent growth. With regard to gray and harbor seals, although the ongoing UME is under investigation, the UME does not yet provide cause for concern regarding population-level impacts to any of these stocks. For harbor seals, the population abundance is over 75,000 and annual M/SI (345) is well below PBR (2,006) (Hayes et al., 2018). For gray seals, the population abundance in the United States is over 27,000, with an estimated abundance including seals in Canada of approximately 505,000, and abundance is likely increasing in the PO 00000 Frm 00033 Fmt 4703 Sfmt 4703 7949 U.S. Atlantic EEZ as well as in Canada (Hayes et al., 2018). The proposed mitigation measures are expected to reduce the number and/or severity of takes by (1) giving animals the opportunity to move away from the sound source before HRG survey equipment reaches full energy; (2) preventing animals from being exposed to sound levels that may otherwise result in injury or more severe behavioral responses. Additional vessel strike avoidance requirements will further mitigate potential impacts to marine mammals during vessel transit to and within the survey area. NMFS concludes that exposures to marine mammal species and stocks due to Atlantic Shores’s proposed survey would result in only short-term (temporary and short in duration) effects to individuals exposed. Marine mammals may temporarily avoid the immediate area, but are not expected to permanently abandon the area. Major shifts in habitat use, distribution, or foraging success are not expected. NMFS does not anticipate the proposed take estimates to impact annual rates of recruitment or survival. In summary and as described above, the following factors primarily support our preliminary determination that the impacts resulting from this activity are not expected to adversely affect the species or stock through effects on annual rates of recruitment or survival: • No mortality, serious injury, or Level A harassment is anticipated or authorized; • The anticipated impacts of the proposed activity on marine mammals would primarily be in the form of temporary behavioral changes due to avoidance of the area around the survey vessel; • The availability of alternate areas of similar habitat value (for foraging, etc.) for marine mammals that may temporarily vacate the survey area during the proposed survey to avoid exposure to sounds from the activity; • The proposed project area does not contain known areas of significance for mating or calving; • Effects on species that serve as prey species for marine mammals from the proposed survey would be minor and temporary and would not be expected to reduce the availability of prey or to affect marine mammal feeding; • The proposed mitigation measures, including visual and acoustic monitoring, exclusion zones, and shutdown measures, are expected to minimize potential impacts to marine mammals. Based on the analysis contained herein of the likely effects of the E:\FR\FM\12FEN1.SGM 12FEN1 7950 Federal Register / Vol. 85, No. 29 / Wednesday, February 12, 2020 / Notices specified activity on marine mammals and their habitat, and taking into consideration the implementation of the proposed monitoring and mitigation measures, NMFS preliminarily finds that the total marine mammal take from the proposed activity will have a negligible impact on all affected marine mammal species or stocks. lotter on DSKBCFDHB2PROD with NOTICES Small Numbers As noted above, only small numbers of incidental take may be authorized under sections 101(a)(5)(A) and (D) of the MMPA for specified activities other than military readiness activities. The MMPA does not define small numbers and so, in practice, where estimated numbers are available, NMFS compares the number of individuals taken to the most appropriate estimation of abundance of the relevant species or stock in our determination of whether an authorization is limited to small numbers of marine mammals. Additionally, other qualitative factors may be considered in the analysis, such as the temporal or spatial scale of the activities. We propose to authorize incidental take of 16 marine mammal stocks. The total amount of taking proposed for authorization is less than 17 percent for one of these stocks, and less than 9 percent for all remaining stocks (Table 7), which we consider to be relatively small percentages and we preliminarily find are small numbers of marine mammals relative to the estimated overall population abundances for those stocks. Based on the analysis contained herein of the proposed activity (including the proposed mitigation and monitoring measures) and the anticipated take of marine mammals, NMFS preliminarily finds that small numbers of marine mammals will be taken relative to the population size of all affected species or stocks. Unmitigable Adverse Impact Analysis and Determination There are no relevant subsistence uses of the affected marine mammal stocks or species implicated by this action. Therefore, NMFS has determined that the total taking of affected species or stocks would not have an unmitigable adverse impact on the availability of such species or stocks for taking for subsistence purposes. Endangered Species Act Section 7(a)(2) of the Endangered Species Act of 1973 (16 U.S.C. 1531 et seq.) requires that each Federal agency insure that any action it authorizes, funds, or carries out is not likely to VerDate Sep<11>2014 17:03 Feb 11, 2020 Jkt 250001 jeopardize the continued existence of any endangered or threatened species or result in the destruction or adverse modification of designated critical habitat. To ensure ESA compliance for the issuance of IHAs, NMFS consults internally, in this case with the NMFS Greater Atlantic Regional Fisheries Office (GARFO), whenever we propose to authorize take for endangered or threatened species. The NMFS Office of Protected Resources is proposing to authorize the incidental take of four species of marine mammals which are listed under the ESA: The North Atlantic right, fin, sei, and sperm whale. BOEM consulted with NMFS GARFO under section 7 of the ESA on commercial wind lease issuance and site assessment activities on the Atlantic Outer Continental Shelf in Massachusetts, Rhode Island, New York and New Jersey Wind Energy Areas. NMFS GARFO issued a Biological Opinion concluding that these activities may adversely affect but are not likely to jeopardize the continued existence of the North Atlantic right, fin, sei and sperm whale. The Biological Opinion can be found online at: www.fisheries.noaa.gov/national/ marine-mammal-protection/incidentaltake-authorizations-other-energyactivities-renewable. NMFS will conclude the ESA section 7 consultation prior to reaching a determination regarding the proposed issuance of the authorization. If the IHA is issued, the Biological Opinion may be amended to include an incidental take statement for these marine mammal species, as appropriate. Proposed Authorization As a result of these preliminary determinations, NMFS proposes to issue an IHA to Atlantic Shores for conducting marine site characterization activities offshore of New York and New Jersey for a period of one year, provided the previously mentioned mitigation, monitoring, and reporting requirements are incorporated. A draft of the proposed IHA can be found at: www.fisheries.noaa.gov/permit/ incidental-take-authorizations-undermarine-mammal-protection-act. Request for Public Comments We request comment on our analyses, the proposed authorization, and any other aspect of this Notice of Proposed IHA for Atlantic Shores’ proposed activity. We also request at this time comment on the potential Renewal of this proposed IHA as described in the paragraph below. Please include with your comments any supporting data or literature citations to help inform PO 00000 Frm 00034 Fmt 4703 Sfmt 9990 decisions on the request for this IHA or a subsequent Renewal IHA. On a case-by-case basis, NMFS may issue a one-year Renewal IHA following notice to the public providing an additional 15 days for public comments when (1) up to another year of identical or nearly identical, or nearly identical, activities as described in the Specified Activities section of this notice is planned or (2) the activities as described in the Specified Activities section of this notice would not be completed by the time the IHA expires and a Renewal would allow for completion of the activities beyond that described in the Dates and Duration section of this notice, provided all of the following conditions are met: • A request for renewal is received no later than 60 days prior to the needed Renewal IHA effective date (recognizing that the Renewal IHA expiration date cannot extend beyond one year from expiration of the initial IHA). • The request for renewal must include the following: (1) An explanation that the activities to be conducted under the requested Renewal IHA are identical to the activities analyzed under the initial IHA, are a subset of the activities, or include changes so minor (e.g., reduction in pile size) that the changes do not affect the previous analyses, mitigation and monitoring requirements, or take estimates (with the exception of reducing the type or amount of take). (2) A preliminary monitoring report showing the results of the required monitoring to date and an explanation showing that the monitoring results do not indicate impacts of a scale or nature not previously analyzed or authorized. • Upon review of the request for Renewal, the status of the affected species or stocks, and any other pertinent information, NMFS determines that there are no more than minor changes in the activities, the mitigation and monitoring measures will remain the same and appropriate, and the findings in the initial IHA remain valid. Dated: February 5, 2020. Donna Wieting, Director, Office of Protected Resources, National Marine Fisheries Service. [FR Doc. 2020–02661 Filed 2–11–20; 8:45 am] BILLING CODE 3510–22–P E:\FR\FM\12FEN1.SGM 12FEN1

Agencies

[Federal Register Volume 85, Number 29 (Wednesday, February 12, 2020)]
[Notices]
[Pages 7926-7950]
From the Federal Register Online via the Government Publishing Office [www.gpo.gov]
[FR Doc No: 2020-02661]


-----------------------------------------------------------------------

DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration

[RTID 0648-XR010]


Takes of Marine Mammals Incidental to Specified Activities; 
Taking Marine Mammals Incidental to Marine Site Characterization 
Surveys Off of New Jersey and New York

AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and 
Atmospheric Administration (NOAA), Commerce.

ACTION: Notice; proposed incidental harassment authorization; request 
for comments on proposed authorization and possible renewal.

-----------------------------------------------------------------------

SUMMARY: NMFS has received a request from Atlantic Shores Offshore 
Wind, LLC (Atlantic Shores) for authorization to take marine mammals 
incidental to marine site characterization surveys off the coasts of 
New York and New Jersey in the area of the Commercial Lease of 
Submerged Lands for Renewable Energy Development on the Outer 
Continental Shelf (OCS-A 0499) and along potential submarine cable 
routes to a landfall location in New York or New Jersey. Pursuant to 
the Marine Mammal Protection Act (MMPA), NMFS is requesting comments on 
its proposal to issue an incidental harassment authorization (IHA) to 
incidentally take marine mammals during the specified activities. NMFS 
is also requesting comments on a possible one-year renewal that could 
be issued under certain circumstances and if all requirements are met, 
as described in Request for Public Comments at the end of this notice. 
NMFS will consider public comments prior to making any final decision 
on the issuance of the requested MMPA authorizations and agency 
responses will be summarized in the final notice of our decision.

DATES: Comments and information must be received no later than March 
13, 2020.

ADDRESSES: Comments should be addressed to Jolie Harrison, Chief, 
Permits and Conservation Division, Office of Protected Resources, 
National Marine Fisheries Service. Physical comments should be sent to 
1315 East-West Highway, Silver Spring, MD 20910 and electronic comments 
should be sent to [email protected].
    Instructions: NMFS is not responsible for comments sent by any 
other method, to any other address or individual, or received after the 
end of the comment period. Comments received electronically, including 
all attachments, must not exceed a 25-megabyte file size. Attachments 
to electronic comments will be accepted in Microsoft Word or Excel or 
Adobe PDF file formats only. All comments received are a part of the 
public record and will generally be posted online at 
www.fisheries.noaa.gov/national/marine-mammal-protection/incidental-take-authorizations-other-energy-activities-renewable without change. 
All personal identifying information (e.g., name, address) voluntarily 
submitted by the commenter may be publicly accessible. Do not submit 
confidential business information or otherwise sensitive or protected 
information.

FOR FURTHER INFORMATION CONTACT: Jordan Carduner, Office of Protected 
Resources, NMFS, (301) 427-8401. Electronic copies of the applications 
and supporting documents, as well as a list of the references cited in 
this document, may be obtained by visiting the internet at: 
www.fisheries.noaa.gov/national/marine-mammal-protection/incidental-take-authorizations-other-energy-activities-renewable. In case of 
problems accessing these documents, please call the contact listed 
above.

SUPPLEMENTARY INFORMATION: 

Background

    The MMPA prohibits the ``take'' of marine mammals, with certain 
exceptions. Sections 101(a)(5)(A) and (D) of the MMPA (16 U.S.C. 1361 
et seq.) direct the Secretary of Commerce (as delegated to NMFS) to 
allow, upon request, the incidental, but not intentional, taking of 
small numbers of marine mammals by U.S. citizens who engage in a 
specified activity (other than commercial fishing) within a specified 
geographical region if certain findings are made and either regulations 
are issued or, if the taking is limited to harassment, a notice of a 
proposed incidental take authorization may be provided to the public 
for review.
    Authorization for incidental takings shall be granted if NMFS finds 
that the taking will have a negligible impact on the species or 
stock(s) and will not have an unmitigable adverse impact on the 
availability of the species or stock(s) for taking for subsistence uses 
(where relevant). Further, NMFS must prescribe the permissible methods 
of taking and

[[Page 7927]]

other ``means of effecting the least practicable adverse impact'' on 
the affected species or stocks and their habitat, paying particular 
attention to rookeries, mating grounds, and areas of similar 
significance, and on the availability of such species or stocks for 
taking for certain subsistence uses (referred to in shorthand as 
``mitigation''); and requirements pertaining to the mitigation, 
monitoring and reporting of such takings are set forth.
    The definitions of all applicable MMPA statutory terms cited above 
are included in the relevant sections below.

National Environmental Policy Act

    To comply with the National Environmental Policy Act of 1969 (NEPA; 
42 U.S.C. 4321 et seq.) and NOAA Administrative Order (NAO) 216-6A, 
NMFS must evaluate our proposed action (i.e., the promulgation of 
regulations and subsequent issuance of incidental take authorization) 
and alternatives with respect to potential impacts on the human 
environment.
    This action is consistent with categories of activities identified 
in Categorical Exclusion B4 of the Companion Manual for NAO 216-6A, 
which do not individually or cumulatively have the potential for 
significant impacts on the quality of the human environment and for 
which we have not identified any extraordinary circumstances that would 
preclude this categorical exclusion. Accordingly, NMFS has 
preliminarily determined that the proposed action qualifies to be 
categorically excluded from further NEPA review.
    Information in Atlantic Shores' application and this notice 
collectively provide the environmental information related to proposed 
issuance of these regulations and subsequent incidental take 
authorization for public review and comment. We will review all 
comments submitted in response to this notice prior to concluding our 
NEPA process or making a final decision on the request for incidental 
take authorization.

Summary of Request

    On November 5, 2019, NMFS received a request from Atlantic Shores 
for an IHA to take marine mammals incidental to marine site 
characterization surveys off the coast of New York and New Jersey in 
the area of the Commercial Lease of Submerged Lands for Renewable 
Energy Development on the Outer Continental Shelf (OCS-A 0499) and 
along potential submarine cable routes to a landfall location in either 
New York or New Jersey. A revised application was received on December 
30, 2019. NMFS deemed that request to be adequate and complete. 
Atlantic Shores' request is for the take of 12 marine mammal species by 
Level B harassment. Neither Atlantic Shores nor NMFS expects serious 
injury or mortality to result from this activity and the activity is 
expected to last no more than one year, therefore, an IHA is 
appropriate.

Description of the Proposed Activity

Overview

    Atlantic Shores proposes to conduct marine site characterization 
surveys, including high-resolution geophysical (HRG) and geotechnical 
surveys, in the area of Commercial Lease of Submerged Lands for 
Renewable Energy Development on the Outer Continental Shelf #OCS-A 0499 
(Lease Area) and along potential submarine cable routes to landfall 
locations in either New York or New Jersey.
    The purpose of the proposed surveys are to support the preliminary 
site characterization, siting, and engineering design of offshore wind 
project facilities including wind turbine generators, offshore 
substations, and submarine cables within the Lease Area and along 
export cable routes (ECRs). As many as three survey vessels may be 
operate concurrently as part of the proposed surveys. Underwater sound 
resulting from Atlantic Shores' proposed site characterization surveys 
has the potential to result in incidental take of marine mammals in the 
form of behavioral harassment.

Dates and Duration

    The estimated duration of the surveys is expected to be up to 350 
total days between April 2020 and April 2021. This schedule is based on 
24-hour operations and includes potential down time due to inclement 
weather.

Specific Geographic Region

    Atlantic Shores' survey activities would occur in the Northwest 
Atlantic Ocean within Federal waters. Surveys would occur in the Lease 
Area and along potential submarine cable routes to landfall locations 
in either New York or New Jersey (see Figure 1-1 in the IHA 
application).

Detailed Description of the Specified Activities

    Atlantic Shores' proposed marine site characterization surveys 
include high-resolution geophysical (HRG) and geotechnical survey 
activities. These survey activities would occur within the both the 
Lease Area and within ECRs between the Lease Area and the coasts of New 
York and New Jersey. The Lease Area is approximately 742 square 
kilometers (km) (183,353 acres) and is located approximately 18 
nautical miles (nm; 34 km) southeast of Atlantic City, New Jersey (see 
Figure 1-1 in the IHA application). For the purpose of this IHA the 
Lease Area and ECRs are collectively referred to as the Project Area.
    Geophysical and shallow geotechnical survey activities are 
anticipated to be supported by vessels which will maintain a speed of 
approximately to 3.5 knots (kn) while transiting survey lines. The 
proposed HRG and geotechnical survey activities are described below.

Geotechnical Survey Activities

    Atlantic Shores' proposed geotechnical survey activities would 
include the following:
     Sample boreholes to determine geological and geotechnical 
characteristics of sediments;
     Deep cone penetration tests (CPTs) to determine 
stratigraphy and in situ conditions of the deep surface sediments; and
     Shallow CPTs to determine stratigraphy and in situ 
conditions of the near surface sediments.
    Geotechnical investigation activities are anticipated to be 
conducted from a drill ship equipped with dynamic positioning (DP) 
thrusters. Impact to the seafloor from this equipment will be limited 
to the minimal contact of the sampling equipment, and inserted boring 
and probes.
    In considering whether marine mammal harassment is an expected 
outcome of exposure to a particular activity or sound source, NMFS 
considers the nature of the exposure itself (e.g., the magnitude, 
frequency, or duration of exposure), characteristics of the marine 
mammals potentially exposed, and the conditions specific to the 
geographic area where the activity is expected to occur (e.g., whether 
the activity is planned in a foraging area, breeding area, nursery or 
pupping area, or other biologically important area for the species). We 
then consider the expected response of the exposed animal and whether 
the nature and duration or intensity of that response is expected to 
cause disruption of behavioral patterns (e.g., migration, breathing, 
nursing, breeding, feeding, or sheltering) or injury.
    Geotechnical survey activities would be conducted from a drill ship 
equipped with DP thrusters. DP thrusters would be used to position the 
sampling vessel on station and maintain position at each sampling 
location during the sampling

[[Page 7928]]

activity. Sound produced through use of DP thrusters is similar to that 
produced by transiting vessels and DP thrusters are typically operated 
either in a similarly predictable manner or used for short durations 
around stationary activities. NMFS does not believe acoustic impacts 
from DP thrusters are likely to result in take of marine mammals in the 
absence of activity- or location-specific circumstances that may 
otherwise represent specific concerns for marine mammals (i.e., 
activities proposed in area known to be of particular importance for a 
particular species), or associated activities that may increase the 
potential to result in take when in concert with DP thrusters. In this 
case, we are not aware of any such circumstances. Therefore, NMFS 
believes the likelihood of DP thrusters used during the proposed 
geotechnical surveys resulting in harassment of marine mammals to be so 
low as to be discountable. As DP thrusters are not expected to result 
in take of marine mammals, these activities are not analyzed further in 
this document.
    Field studies conducted off the coast of Virginia to determine the 
underwater noise produced by CPTs and borehole drilling found that 
these activities did not result in underwater noise levels that 
exceeded current thresholds for Level B harassment of marine mammals 
(Kalapinski, 2015). Given the small size and energy footprint of CPTs 
and boring cores, NMFS believes the likelihood that noise from these 
activities would exceed the Level B harassment threshold at any 
appreciable distance is so low as to be discountable. Therefore, 
geotechnical survey activities, including CPTs and borehole drilling, 
are not expected to result in harassment of marine mammals and are not 
analyzed further in this document.

Geophysical Survey Activities

    Atlantic Shores has proposed that HRG survey operations would be 
conducted continuously 24 hours per day. Based on 24-hour operations, 
the estimated total duration of the proposed activities would be 
approximately 350 survey days (including 210 survey days within the 
Lease Area and 140 survey days within the ECR areas; see Table 1). 
These estimated durations include estimated weather down time.

            Table 1--Summary of Proposed HRG Survey Segments
------------------------------------------------------------------------
                                                             Duration
                     Survey segment                        (survey days)
------------------------------------------------------------------------
Lease Area..............................................             210
Northern ECR............................................              80
Southern ECR............................................              60
                                                         ---------------
  All areas combined....................................             350
------------------------------------------------------------------------

    The HRG survey activities will be supported by vessels of 
sufficient size to accomplish the survey goals in each of the specified 
survey areas. It is assumed surveys in each of the identified survey 
areas will be executed by a single vessel during any given campaign 
(i.e., no more than one survey vessel would operate in the Lease Area 
at any given time, but there may be one survey vessel operating in the 
Lease Area and one vessel operating each of the ECR areas concurrently, 
i.e., three vessels). HRG equipment will either be mounted to or towed 
behind the survey vessel at a typical survey speed of approximately 3.5 
kn (6.5 km) per hour. The geophysical survey activities proposed by 
Atlantic Shores would include the following:
     Depth sounding (multibeam depth sounder) to determine 
water depths and general bottom topography (currently estimated to 
range from approximately 5 meters (m) to 40 m in depth;
     Magnetic intensity measurements (gradiometer) for 
detecting local variations in regional magnetic field from geological 
strata and potential ferrous objects on and below the bottom;
     Seafloor imaging (side scan sonar) for seabed sediment 
classification purposes, to identify natural and man-made acoustic 
targets resting on the bottom as well as any anomalous features;
     Shallow penetration sub-bottom profiler (pinger/chirp) to 
map the near surface stratigraphy (top zero to five m soils below 
seabed); and
     Medium penetration sub-bottom profiler (chirps/parametric 
profilers/sparkers) to map deeper subsurface stratigraphy as needed 
(soils down to 75 m to 100 m below seabed).
    Table 2 identifies the representative survey equipment that may be 
used in support of planned geophysical survey activities. The make and 
model of the listed geophysical equipment may vary depending on 
availability and the final equipment choices will vary depending upon 
the final survey design, vessel availability, and survey contractor 
selection. Geophysical surveys are expected to use several equipment 
types concurrently in order to collect multiple aspects of geophysical 
data along one transect. Selection of equipment combinations is based 
on specific survey objectives.

                                      Table 2--Summary of HRG Survey Equipment Proposed for Use by Atlantic Shores
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                                               Pulse
       HRG equipment category          Specific HRG equipment  Operating frequency range   Source level      Beamwidth     Typical pulse    repetition
                                                                         (kHz)               (dB rms)        (degrees)     duration (ms)       rate
--------------------------------------------------------------------------------------------------------------------------------------------------------
Single Beam Echosounders............  Kongsberg EA 400.......  38 to 200................           222.8              31             0.3              10
                                      Teledyne ODOM Echotrac   24.......................           224.6              20             0.3              10
                                       CVM.
Sparker.............................  Applied Acoustics Dura-  0.25 to 5................           211.4             180             2.5             1.6
                                       Spark 240.
Sub-Bottom Profiler.................  Edgetech 2000-DSS......  2 to 16..................             178              24             6.3              10
                                      Edgetech 216...........  2 to 16..................             179   17, 20, or 24              10              10
                                      Edgetech 424...........  4 to 24..................             180              71               4               2
                                      Edgetech 512i..........  0.5 to 12................             180              80              10              10
                                      Teledyne Benthos Chirp   2 to 7...................             197             100              15              10
                                       III.
                                      .......................  10 to 20.................             205              30              15              10
                                      Kongsberg GeoPulse.....  2 to 12..................             214   30, 40, or 55              16              10
                                      Innomar SES-2000 Medium- 85 to 115................             241               2               2              40
                                       100 Parametric.
Boomer..............................  Applied Acoustics S-     0.01 to 20...............             203              80             0.8               3
                                       Boom Triple Plate.
                                      Applied Acoustics S-     0.01 to 20...............             195              98             0.8               3
                                       Boom.
--------------------------------------------------------------------------------------------------------------------------------------------------------


[[Page 7929]]

    The deployment of HRG survey equipment, including the equipment 
planned for use during Atlantic Shores' proposed activity, produces 
sound in the marine environment that has the potential to result in 
harassment of marine mammals. Proposed mitigation, monitoring, and 
reporting measures are described in detail later in this document 
(please see Proposed Mitigation and Proposed Monitoring and Reporting).

Description of Marine Mammals in the Area of Specified Activity

    Sections 3 and 4 of the IHA application summarize available 
information regarding status and trends, distribution and habitat 
preferences, and behavior and life history, of the potentially affected 
species. Additional information regarding population trends and threats 
may be found in NMFS' Stock Assessment Reports (SARs; 
www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-stock-assessments) and more general information about these species 
(e.g., physical and behavioral descriptions) may be found on NMFS' 
website (www.fisheries.noaa.gov/find-species). All species that could 
potentially occur in the proposed survey areas are included in Table 4-
1 of the IHA application. However, the temporal and/or spatial 
occurrence of several species listed in Table 7-2 of the IHA 
application is such that take of these species is not expected to occur 
either because they have very low densities in the project area or are 
known to occur further offshore than the project area. These are: The 
blue whale (Balaenoptera musculus), Bryde's whale (Balaenoptera edeni), 
Cuvier's beaked whale (Ziphius cavirostris), four species of 
Mesoplodont beaked whale (Mesoplodon spp.), dwarf and pygmy sperm whale 
(Kogia sima and Kogia breviceps), short-finned pilot whale 
(Globicephala macrorhynchus), northern bottlenose whale (Hyperoodon 
ampullatus), killer whale (Orcinus orca), pygmy killer whale (Feresa 
attenuata), false killer whale (Pseudorca crassidens), melon-headed 
whale (Peponocephala electra), striped dolphin (Stenella coeruleoalba), 
white-beaked dolphin (Lagenorhynchus albirostris), pantropical spotted 
dolphin (Stenella attenuata), Fraser's dolphin (Lagenodelphis hosei), 
rough-toothed dolphin (Steno bredanensis), Clymene dolphin (Stenella 
clymene), spinner dolphin (Stenella longirostris), hooded seal 
(Cystophora cristata), and harp seal (Pagophilus groenlandicus). As 
take of these species is not anticipated as a result of the proposed 
activities, these species are not analyzed further.
    Table 3 summarizes information related to the population or stock, 
including regulatory status under the MMPA and ESA and potential 
biological removal (PBR), where known. For taxonomy, we follow 
Committee on Taxonomy (2018). PBR is defined by the MMPA as the maximum 
number of animals, not including natural mortalities, that may be 
removed from a marine mammal stock while allowing that stock to reach 
or maintain its optimum sustainable population (as described in NMFS' 
SARs). While no mortality is anticipated or authorized here, PBR is 
included here as a gross indicator of the status of the species and 
other threats.
    Marine mammal abundance estimates presented in this document 
represent the total number of individuals that make up a given stock or 
the total number estimated within a particular study or survey area. 
NMFS' stock abundance estimates for most species represent the total 
estimate of individuals within the geographic area, if known, that 
comprises that stock. For some species, this geographic area may extend 
beyond U.S. waters. All managed stocks in this region are assessed in 
NMFS' U.S. Atlantic SARs. All values presented in Table 3 are the most 
recent available at the time of publication and are available in the 
2019 draft Atlantic SARs (Hayes et al., 2019), available online at: 
www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-stock-assessment-reports-region.

                  Table 3--Marine Mammals Known to Occur in the Survey Area That May Be Affected by Atlantic Shores' Proposed Activity
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                             MMPA and ESA   Stock abundance (CV,
                                                               status;        Nmin, most recent      Predicted              Annual      Occurrence in
   Common name (scientific name)            Stock          strategic (Y/N)    abundance survey)   abundance (CV)  PBR \4\    M/SI       project area
                                                                 \1\                 \2\                \3\                  \4\
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                               Toothed whales (Odontoceti)
--------------------------------------------------------------------------------------------------------------------------------------------------------
Sperm whale (Physeter               North Atlantic.......  E; Y             4,349 (0.28; 3,451;     5,353 (0.12)      6.9      0.0  Rare.
 macrocephalus).                                                             n/a).
Long-finned pilot whale             W. North Atlantic....  --; N            39,215 (0.3; 30,627;   18,977 (0.11)      306       21  Rare.
 (Globicephala melas).                                                       n/a).                           \5\
Atlantic white-sided dolphin        W. North Atlantic....  --; N            93,233 (0.71;          37,180 (0.07)      544       26  Common.
 (Lagenorhynchus acutus).                                                    54,443; n/a).
Bottlenose dolphin (Tursiops        W. North Atlantic,     --; N            62,851 (0.23;          97,476 (0.06)      519       28  Common offshore.
 truncatus).                         Offshore.                               51,914; 2011).                  \5\
                                    W. North Atlantic,     --; N            6,639 (0.41; 4,759;                        48  6.1-13.  Common nearshore.
                                     Coastal Migratory.                      2015).                                              2
Common dolphin \6\ (Delphinus       W. North Atlantic....  --; N            172,825 (0.21;         86,098 (0.12)    1,452      419  Common.
 delphis).                                                                   145,216; 2011).
Atlantic spotted dolphin (Stenella  W. North Atlantic....  --; N            39,921 (0.27;          55,436 (0.32)      320        0  Common.
 frontalis).                                                                 32,032; 2012).
Risso's dolphin (Grampus griseus).  W. North Atlantic....  --; N            35,493 (0.19;           7,732 (0.09)      303     54.3  Rare.
                                                                             30,289; 2011).
Harbor porpoise (Phocoena           Gulf of Maine/Bay of   --; N            95,543 (0.31;               * 45,089      851      217  Common.
 phocoena).                          Fundy.                                  74,034; 2011).               (0.12)
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                Baleen whales (Mysticeti)
--------------------------------------------------------------------------------------------------------------------------------------------------------
North Atlantic right whale          W. North Atlantic....  E; Y             428 (0; 418; n/a)...    * 535 (0.45)      0.8     6.85  Occur seasonally.
 (Eubalaena glacialis).
Humpback whale \7\ (Megaptera       Gulf of Maine........  --; N            1,396 (0; 1,380; n/   * 1,637 (0.07)       22    12.15  Common year round.
 novaeangliae).                                                              a).

[[Page 7930]]

 
Fin whale \6\ (Balaenoptera         W. North Atlantic....  E; Y             7,418 (0.25; 6,025;     4,633 (0.08)       12     2.35  Year round in
 physalus).                                                                  n/a).                                                   continental shelf
                                                                                                                                     and slope waters.
Sei whale (Balaenoptera borealis).  Nova Scotia..........  E; Y             6,292 (1.015; 3,098;    * 717 (0.30)      6.2      1.0  Year round in
                                                                             n/a).                                                   continental shelf
                                                                                                                                     and slope waters.
Minke whale \6\ (Balaenoptera       Canadian East Coast..  --; N            24,202 (0.3; 18,902;  * 2,112 (0.05)      8.0      7.0  Year round in
 acutorostrata).                                                             n/a).                                                   continental shelf
                                                                                                                                     and slope waters.
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                Earless seals (Phocidae)
--------------------------------------------------------------------------------------------------------------------------------------------------------
Gray seal \8\ (Halichoerus grypus)  W. North Atlantic....  --; N            27,131 (0.19;         ..............    1,389    5,410  Common.
                                                                             23,158; n/a).
Harbor seal (Phoca vitulina)......  W. North Atlantic....  --; N            75,834 (0.15;         ..............    2,006      350  Common.
                                                                             66,884; 2012).
--------------------------------------------------------------------------------------------------------------------------------------------------------
\1\ ESA status: Endangered (E), Threatened (T)/MMPA status: Depleted (D). A dash (-) indicates that the species is not listed under the ESA or
  designated as depleted under the MMPA. Under the MMPA, a strategic stock is one for which the level of direct human-caused mortality exceeds PBR (see
  footnote 3) or which is determined to be declining and likely to be listed under the ESA within the foreseeable future. Any species or stock listed
  under the ESA is automatically designated under the MMPA as depleted and as a strategic stock.
\2\ Stock abundance as reported in NMFS marine mammal stock assessment reports (SAR) except where otherwise noted. SARs available online at:
  www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-stock-assessments. CV is coefficient of variation; Nmin is the minimum estimate
  of stock abundance. In some cases, CV is not applicable. For certain stocks, abundance estimates are actual counts of animals and there is no
  associated CV. The most recent abundance survey that is reflected in the abundance estimate is presented; there may be more recent surveys that have
  not yet been incorporated into the estimate. All values presented here are from the 2019 draft Atlantic SARs (Hayes et al., 2019).
\3\ This information represents species- or guild-specific abundance predicted by recent habitat-based cetacean density models (Roberts et al., 2016,
  2017, 2018). These models provide the best available scientific information regarding predicted density patterns of cetaceans in the U.S. Atlantic
  Ocean, and we provide the corresponding abundance predictions as a point of reference. Total abundance estimates were produced by computing the mean
  density of all pixels in the modeled area and multiplying by its area. For those species marked with an asterisk, the available information supported
  development of either two or four seasonal models; each model has an associated abundance prediction. Here, we report the maximum predicted abundance.
\4\ Potential biological removal, defined by the MMPA as the maximum number of animals, not including natural mortalities, that may be removed from a
  marine mammal stock while allowing that stock to reach or maintain its optimum sustainable population size (OSP). Annual M/SI, found in NMFS' SARs,
  represent annual levels of human-caused mortality plus serious injury from all sources combined (e.g., commercial fisheries, subsistence hunting, ship
  strike). Annual M/SI values often cannot be determined precisely and is in some cases presented as a minimum value. All M/SI values are as presented
  in the draft 2019 SARs (Hayes et al., 2019).
\5\ Abundance estimates are in some cases reported for a guild or group of species when those species are difficult to differentiate at sea. Similarly,
  the habitat-based cetacean density models produced by Roberts et al. (2016, 2017, 2018) are based in part on available observational data which, in
  some cases, is limited to genus or guild in terms of taxonomic definition. Roberts et al. (2016, 2017, 2018) produced density models to genus level
  for Globicephala spp. and produced a density model for bottlenose dolphins that does not differentiate between offshore and coastal stocks.
\6\ Abundance as reported in the 2007 Canadian Trans-North Atlantic Sighting Survey (TNASS), which provided full coverage of the Atlantic Canadian coast
  (Lawson and Gosselin, 2009). Abundance estimates from TNASS were corrected for perception and availability bias, when possible. In general, where the
  TNASS survey effort provided superior coverage of a stock's range (as compared with NOAA shipboard survey effort), the resulting abundance estimate is
  considered more accurate than the current NMFS abundance estimate (derived from survey effort with inferior coverage of the stock range). NMFS stock
  abundance estimate for the common dolphin is 70,184. NMFS stock abundance estimate for the fin whale is 1,618. NMFS stock abundance estimate for the
  minke whale is 2,591.
\7\ 2018 U.S. Atlantic draft SAR for the Gulf of Maine feeding population lists a current abundance estimate of 896 individuals. However, we note that
  the estimate is defined on the basis of feeding location alone (i.e., Gulf of Maine) and is therefore likely an underestimate.
\8\ NMFS stock abundance estimate applies to U.S. population only, actual stock abundance is approximately 505,000.

    Four marine mammal species that are listed under the Endangered 
Species Act (ESA) may be present in the survey area and are included in 
the take request: The North Atlantic right, fin, sei, and sperm whale.
    Below is a description of the species that have the highest 
likelihood of occurring in the project area and are thus expected to 
potentially be taken by the proposed activities. For the majority of 
species potentially present in the specific geographic region, NMFS has 
designated only a single generic stock (e.g., ``western North 
Atlantic'') for management purposes. This includes the ``Canadian east 
coast'' stock of minke whales, which includes all minke whales found in 
U.S. waters is also a generic stock for management purposes. For 
humpback whales, NMFS defines stocks on the basis of feeding locations, 
i.e., Gulf of Maine. However, references to humpback whales in this 
document refer to any individuals of the species that are found in the 
specific geographic region.

North Atlantic Right Whale

    The North Atlantic right whale ranges from calving grounds in the 
southeastern United States to feeding grounds in New England waters and 
into Canadian waters (Hayes et al., 2018). Surveys have demonstrated 
the existence of seven areas where North Atlantic right whales 
congregate seasonally, including north and east of the proposed project 
area in Georges Bank, off Cape Cod, and in Massachusetts Bay (Hayes et 
al., 2018). In the late fall months (e.g. October), right whales are 
generally thought to depart from the feeding grounds in the North 
Atlantic and move south to their calving grounds off Georgia and 
Florida. However, recent research indicates our understanding of their 
movement patterns remains incomplete (Davis et al. 2017). A review of 
passive acoustic monitoring data from 2004 to 2014 throughout the 
western North Atlantic demonstrated nearly continuous year-round right 
whale presence across their entire habitat range (for at least some 
individuals), including in locations previously thought of as migratory 
corridors, suggesting that not all of the population undergoes a 
consistent annual migration (Davis et al. 2017).
    The western North Atlantic population demonstrated overall growth 
of 2.8 percent per year between 1990 to 2010, despite a decline in 1993 
and no growth between 1997 and 2000 (Pace et al. 2017). However, since 
2010 the population has been in decline, with a 99.99 percent 
probability of a decline of just under 1 percent per year (Pace et al. 
2017). Between 1990 and 2015, calving rates varied substantially, with 
low calving rates coinciding with all three periods of decline or no 
growth (Pace et al. 2017). On average, North Atlantic right whale 
calving rates are estimated to be roughly half that of southern right 
whales (Eubalaena australis) (Pace et al.

[[Page 7931]]

2017), which are increasing in abundance (NMFS 2015). In 2018, no new 
North Atlantic right whale calves were documented in their calving 
grounds; this represented the first time since annual NOAA aerial 
surveys began in 1989 that no new right whale calves were observed. 
Seven right whale calves were documented in 2019. The current best 
estimate of population abundance for the species is 409 individuals, 
based on data as of September 4, 2019 (Pettis et al., 2019).
    Elevated North Atlantic right whale mortalities have occurred since 
June 7, 2017 along the U.S. and Canadian coast. As of February, 2020, a 
total of 30 confirmed dead stranded whales (21 in Canada; 9 in the 
United States) have been documented. This event has been declared an 
Unusual Mortality Event (UME), with human interactions, including 
entanglement in fixed fishing gear and vessel strikes, implicated in at 
least 15 of the mortalities thus far. More information is available 
online at: www.fisheries.noaa.gov/national/marine-life-distress/2017-2019-north-atlantic-right-whale-unusual-mortality-event.
    Any right whales in the vicinity of the survey areas are expected 
to be transient, most likely migrating through the area. The proposed 
survey areas are part of a biologically important migratory area for 
North Atlantic right whales; this important migratory area is comprised 
of the waters of the continental shelf offshore the East Coast of the 
United States and extends from Florida through Massachusetts. NMFS' 
regulations at 50 CFR part 224.105 designated nearshore waters of the 
Mid-Atlantic Bight as Mid-Atlantic U.S. Seasonal Management Areas (SMA) 
for right whales in 2008. SMAs were developed to reduce the threat of 
collisions between ships and right whales around their migratory route 
and calving grounds. Within SMAs, the regulations require a mandatory 
vessel speed (less than 10 kn) for all vessels greater than 65 ft. A 
portion of one SMA overlaps spatially with the northern section of the 
proposed survey area. This SMA, which is associated with port of New 
York/New Jersey, is active from November 1 through April 30 of each 
year. All Atlantic Shores survey vessels, regardless of length, would 
be required to adhere to a 10 kn vessel speed restriction when 
operating within this SMA (when the SMA is active from November 1 
through April 30). In addition, all Atlantic Shores survey vessels, 
regardless of length, would be required to adhere to a 10-kn vessel 
speed restriction when operating in any Dynamic Management Area (DMA) 
declared by NMFS.

Humpback Whale

    Humpback whales are found worldwide in all oceans. Humpback whales 
were listed as endangered under the Endangered Species Conservation Act 
(ESCA) in June 1970. In 1973, the ESA replaced the ESCA, and humpbacks 
continued to be listed as endangered. On September 8, 2016, NMFS 
divided the species into 14 distinct population segments (DPS), removed 
the current species-level listing, and in its place listed four DPSs as 
endangered and one DPS as threatened (81 FR 62259; September 8, 2016). 
The remaining nine DPSs were not listed. The West Indies DPS, which is 
not listed under the ESA, is the only DPS of humpback whale that is 
expected to occur in the project area.
    Humpback whales utilize the mid-Atlantic as a migration pathway 
between calving/mating grounds to the south and feeding grounds in the 
north (Waring et al. 2007). A key question with regard to humpback 
whales off the mid-Atlantic states is their stock identity. Using fluke 
photographs of living and dead whales observed in the region, Barco et 
al. (2002) reported that 43 percent of 21 live whales matched to the 
Gulf of Maine, 19 percent to Newfoundland, and 4.8 percent to the Gulf 
of St Lawrence, while 31.6 percent of 19 dead humpbacks were known Gulf 
of Maine whales. Although the population composition of the mid-
Atlantic is apparently dominated by Gulf of Maine whales, lack of 
photographic effort in Newfoundland makes it likely that the observed 
match rates under-represent the true presence of Canadian whales in the 
region (Waring et al., 2016). Barco et al. (2002) suggested that the 
mid-Atlantic region primarily represents a supplemental winter feeding 
ground used by humpbacks.
    Since January 2016, elevated humpback whale mortalities have 
occurred along the Atlantic coast from Maine to Florida. As of 
February, 2020, partial or full necropsy examinations have been 
conducted on approximately half of the 111 known cases. Of the whales 
examined, about 50 percent had evidence of human interaction, either 
ship strike or entanglement. While a portion of the whales have shown 
evidence of pre-mortem vessel strike, this finding is not consistent 
across all whales examined and more research is needed. NOAA is 
consulting with researchers that are conducting studies on the humpback 
whale populations, and these efforts may provide information on changes 
in whale distribution and habitat use that could provide additional 
insight into how these vessel interactions occurred. Three previous 
UMEs involving humpback whales have occurred since 2000, in 2003, 2005, 
and 2006. More information is available at: www.fisheries.noaa.gov/national/marine-life-distress/2016-2019-humpback-whale-unusual-mortality-event-along-atlantic-coast.

Fin Whale

    Fin whales are common in waters of the U. S. Atlantic Exclusive 
Economic Zone (EEZ), principally from Cape Hatteras northward (Waring 
et al., 2016). Fin whales are present north of 35-degree latitude in 
every season and are broadly distributed throughout the western North 
Atlantic for most of the year (Waring et al., 2016). They are typically 
found in small groups of up to five individuals (Brueggeman et al., 
1987). The main threats to fin whales are fishery interactions and 
vessel collisions (Waring et al., 2016).

Sei Whale

    The Nova Scotia stock of sei whales can be found in deeper waters 
of the continental shelf edge waters of the northeastern U.S. and 
northeastward to south of Newfoundland. The southern portion of the 
stock's range during spring and summer includes the Gulf of Maine and 
Georges Bank. Spring is the period of greatest abundance in U.S. 
waters, with sightings concentrated along the eastern margin of Georges 
Bank and into the Northeast Channel area, and along the southwestern 
edge of Georges Bank in the area of Hydrographer Canyon (Waring et al., 
2015). Sei whales occur in shallower waters to feed. Sei whales are 
listed as engendered under the ESA, and the Nova Scotia stock is 
considered strategic and depleted under the MMPA. The main threats to 
this stock are interactions with fisheries and vessel collisions.

Minke Whale

    Minke whales can be found in temperate, tropical, and high-latitude 
waters. The Canadian East Coast stock can be found in the area from the 
western half of the Davis Strait (45[deg]W) to the Gulf of Mexico 
(Waring et al., 2016). This species generally occupies waters less than 
100 m deep on the continental shelf. There appears to be a strong 
seasonal component to minke whale distribution in the survey areas, in 
which spring to fall are times of relatively widespread and common 
occurrence while during winter the

[[Page 7932]]

species appears to be largely absent (Waring et al., 2016).
    Since January 2017, elevated minke whale mortalities have occurred 
along the Atlantic coast from Maine through South Carolina. This event 
has been declared a UME. As of February, 2020 partial or full necropsy 
examinations have been conducted on approximately 60 percent of the 79 
known cases. Preliminary findings in several of the whales have shown 
evidence of human interactions or infectious disease, but these 
findings are not consistent across all of the whales examined, so more 
research is needed. More information is available at: 
www.fisheries.noaa.gov/national/marine-life-distress/2017-2019-minke-whale-unusual-mortality-event-along-atlantic-coast.

Sperm Whale

    The distribution of the sperm whale in the U.S. EEZ occurs on the 
continental shelf edge, over the continental slope, and into mid-ocean 
regions (Waring et al., 2014). The basic social unit of the sperm whale 
appears to be the mixed school of adult females plus their calves and 
some juveniles of both sexes, normally numbering 20-40 animals in all. 
There is evidence that some social bonds persist for many years 
(Christal et al., 1998). This species forms stable social groups, site 
fidelity, and latitudinal range limitations in groups of females and 
juveniles (Whitehead, 2002). In summer, the distribution of sperm 
whales includes the area east and north of Georges Bank and into the 
Northeast Channel region, as well as the continental shelf (inshore of 
the 100-m isobath) south of New England. In the fall, sperm whale 
occurrence south of New England on the continental shelf is at its 
highest level, and there remains a continental shelf edge occurrence in 
the mid-Atlantic bight. In winter, sperm whales are concentrated east 
and northeast of Cape Hatteras.

Long-finned Pilot Whale

    Long-finned pilot whales are found from North Carolina and north to 
Iceland, Greenland and the Barents Sea (Waring et al., 2016). In U.S. 
Atlantic waters the species is distributed principally along the 
continental shelf edge off the northeastern U.S. coast in winter and 
early spring and in late spring, pilot whales move onto Georges Bank 
and into the Gulf of Maine and more northern waters and remain in these 
areas through late autumn (Waring et al., 2016). Long-finned pilot 
whales are not listed under the ESA. The Western North Atlantic stock 
is considered strategic under the MMPA.

Atlantic White-sided Dolphin

    White-sided dolphins are found in temperate and sub-polar waters of 
the North Atlantic, primarily in continental shelf waters to the 100-m 
depth contour from central West Greenland to North Carolina (Waring et 
al., 2016). The Gulf of Maine stock is most common in continental shelf 
waters from Hudson Canyon to Georges Bank, and in the Gulf of Maine and 
lower Bay of Fundy. Sighting data indicate seasonal shifts in 
distribution (Northridge et al., 1997). During January to May, low 
numbers of white-sided dolphins are found from Georges Bank to Jeffreys 
Ledge (off New Hampshire), with even lower numbers south of Georges 
Bank, as documented by a few strandings collected on beaches of 
Virginia to South Carolina. From June through September, large numbers 
of white-sided dolphins are found from Georges Bank to the lower Bay of 
Fundy. From October to December, white-sided dolphins occur at 
intermediate densities from southern Georges Bank to southern Gulf of 
Maine (Payne and Heinemann 1990). Sightings south of Georges Bank, 
particularly around Hudson Canyon, occur year round but at low 
densities.

Atlantic Spotted Dolphin

    Atlantic spotted dolphins are found in tropical and warm temperate 
waters ranging from southern New England, south to Gulf of Mexico and 
the Caribbean to Venezuela (Waring et al., 2014). This stock regularly 
occurs in continental shelf waters south of Cape Hatteras and in 
continental shelf edge and continental slope waters north of this 
region (Waring et al., 2014). There are two forms of this species, with 
the larger ecotype inhabiting the continental shelf and is usually 
found inside or near the 200 m isobaths (Waring et al., 2014).

Common Dolphin

    The short-beaked common dolphin is found world-wide in temperate to 
subtropical seas. In the North Atlantic, short-beaked common dolphins 
are commonly found over the continental shelf between the 100-m and 
2,000-m isobaths and over prominent underwater topography and east to 
the mid-Atlantic Ridge (Waring et al., 2016).

Bottlenose Dolphin

    There are two distinct bottlenose dolphin morphotypes in the 
western North Atlantic: The coastal and offshore forms (Waring et al., 
2016). The offshore form is distributed primarily along the outer 
continental shelf and continental slope in the Northwest Atlantic Ocean 
from Georges Bank to the Florida Keys. The coastal morphotype is 
morphologically and genetically distinct from the larger, more robust 
morphotype that occupies habitats further offshore. Spatial 
distribution data, tag-telemetry studies, photo-ID studies and genetic 
studies demonstrate the existence of a distinct Northern Migratory 
stock of coastal bottlenose dolphins (Waring et al., 2014). During 
summer months (July-August), this stock occupies coastal waters from 
the shoreline to approximately the 25 m isobath between the Chesapeake 
Bay mouth and Long Island, New York; during winter months (January-
March), the stock occupies coastal waters from Cape Lookout, North 
Carolina, to the North Carolina/Virginia border (Waring et al., 2014). 
The Western North Atlantic northern migratory coastal stock and the 
Western North Atlantic offshore stock may be encountered by the 
proposed survey.

Harbor Porpoise

    In the Lease Area, only the Gulf of Maine/Bay of Fundy stock may be 
present. This stock is found in U.S. and Canadian Atlantic waters and 
is concentrated in the northern Gulf of Maine and southern Bay of Fundy 
region, generally in waters less than 150 m deep (Waring et al., 2016). 
They are seen from the coastline to deep waters (>1800 m; Westgate et 
al. 1998), although the majority of the population is found over the 
continental shelf (Waring et al., 2016). The main threat to the species 
is interactions with fisheries, with documented take in the U.S. 
northeast sink gillnet, mid-Atlantic gillnet, and northeast bottom 
trawl fisheries and in the Canadian herring weir fisheries (Waring et 
al., 2016).

Harbor Seal

    The harbor seal is found in all nearshore waters of the North 
Atlantic and North Pacific Oceans and adjoining seas above about 
30[deg]N (Burns, 2009). In the western North Atlantic, harbor seals are 
distributed from the eastern Canadian Arctic and Greenland south to 
southern New England and New York, and occasionally to the Carolinas 
(Waring et al., 2016). Haulout and pupping sites are located off 
Manomet, MA and the Isles of Shoals, ME, but generally do not occur in 
areas in southern New England (Waring et al., 2016).
    Since July 2018, elevated numbers of harbor seal and gray seal 
mortalities have occurred across Maine, New Hampshire and 
Massachusetts. This event has been declared a UME. Additionally, 
stranded seals have shown clinical signs as far south as Virginia, 
although not in elevated

[[Page 7933]]

numbers, therefore the UME investigation now encompasses all seal 
strandings from Maine to Virginia. Lastly, ice seals (harp and hooded 
seals) have also started stranding with clinical signs, again not in 
elevated numbers, and those two seal species have also been added to 
the UME investigation. As of February, 2020 a total of 3,050 reported 
strandings (of all species) had occurred, including 94 strandings 
reported in New Jersey. Full or partial necropsy examinations have been 
conducted on some of the seals and samples have been collected for 
testing. Based on tests conducted thus far, the main pathogen found in 
the seals is phocine distemper virus. NMFS is performing additional 
testing to identify any other factors that may be involved in this UME. 
Information on this UME is available online at: www.fisheries.noaa.gov/new-england-mid-atlantic/marine-life-distress/2018-2019-pinniped-unusual-mortality-event-along.

Gray Seal

    There are three major populations of gray seals found in the world; 
eastern Canada (western North Atlantic stock), northwestern Europe and 
the Baltic Sea. Gray seals in the survey area belong to the western 
North Atlantic stock. The range for this stock is thought to be from 
New Jersey to Labrador. Current population trends show that gray seal 
abundance is likely increasing in the U.S. Atlantic EEZ (Waring et al., 
2016). Although the rate of increase is unknown, surveys conducted 
since their arrival in the 1980s indicate a steady increase in 
abundance in both Maine and Massachusetts (Waring et al., 2016). It is 
believed that recolonization by Canadian gray seals is the source of 
the U.S. population (Waring et al., 2016).
    As described above, elevated seal mortalities, including gray 
seals, have occurred from Maine to Virginia since July 2018. This event 
has been declared a UME, with phocine distemper virus identified as the 
main pathogen found in the seals. NMFS is performing additional testing 
to identify any other factors that may be involved in this UME. 
Information on this UME is available online at: www.fisheries.noaa.gov/new-england-mid-atlantic/marine-life-distress/2018-2019-pinniped-unusual-mortality-event-along.

Marine Mammal Hearing

    Hearing is the most important sensory modality for marine mammals 
underwater, and exposure to anthropogenic sound can have deleterious 
effects. To appropriately assess the potential effects of exposure to 
sound, it is necessary to understand the frequency ranges marine 
mammals are able to hear. Current data indicate that not all marine 
mammal species have equal hearing capabilities (e.g., Richardson et 
al., 1995; Wartzok and Ketten, 1999; Au and Hastings, 2008). To reflect 
this, Southall et al. (2007) recommended that marine mammals be divided 
into functional hearing groups based on directly measured or estimated 
hearing ranges on the basis of available behavioral response data, 
audiograms derived using auditory evoked potential techniques, 
anatomical modeling, and other data. Note that no direct measurements 
of hearing ability have been successfully completed for mysticetes 
(i.e., low-frequency cetaceans). Subsequently, NMFS (2016) described 
generalized hearing ranges for these marine mammal hearing groups. 
Generalized hearing ranges were chosen based on the approximately 65 
decibel (dB) threshold from the normalized composite audiograms, with 
the exception for lower limits for low-frequency cetaceans where the 
lower bound was deemed to be biologically implausible and the lower 
bound from Southall et al. (2007) retained. The functional groups and 
the associated frequencies are indicated below (note that these 
frequency ranges correspond to the range for the composite group, with 
the entire range not necessarily reflecting the capabilities of every 
species within that group):
     Low-frequency cetaceans (mysticetes): Generalized hearing 
is estimated to occur between approximately 7 Hertz (Hz) and 35 
kilohertz (kHz);
     Mid-frequency cetaceans (larger toothed whales, beaked 
whales, and most delphinids): Generalized hearing is estimated to occur 
between approximately 150 Hz and 160 kHz;
     High-frequency cetaceans (porpoises, river dolphins, and 
members of the genera Kogia and Cephalorhynchus; including two members 
of the genus Lagenorhynchus, on the basis of recent echolocation data 
and genetic data): Generalized hearing is estimated to occur between 
approximately 275 Hz and 160 kHz; and
     Pinnipeds in water; Phocidae (true seals): Generalized 
hearing is estimated to occur between approximately 50 Hz to 86 kH.
    The pinniped functional hearing group was modified from Southall et 
al. (2007) on the basis of data indicating that phocid species have 
consistently demonstrated an extended frequency range of hearing 
compared to otariids, especially in the higher frequency range 
(Hemil[auml] et al., 2006; Kastelein et al., 2009; Reichmuth and Holt, 
2013).
    For more detail concerning these groups and associated frequency 
ranges, please see NMFS (2016) for a review of available information. 
Fourteen marine mammal species (twelve cetacean and two pinniped (both 
phocid species) have the reasonable potential to co-occur with the 
proposed survey activities (see Table 3). Of the cetacean species that 
may be present, five are classified as low-frequency cetaceans (i.e., 
all mysticete species), six are classified as mid-frequency cetaceans 
(i.e., all delphinid species and the sperm whale), and one is 
classified as a high-frequency cetacean (i.e., harbor porpoise).

Potential Effects of Specified Activities on Marine Mammals and Their 
Habitat

    This section includes a summary and discussion of the ways that 
components of the specified activity may impact marine mammals and 
their habitat. The Estimated Take section later in this document 
includes a quantitative analysis of the number of individuals that are 
expected to be taken by this activity. The Negligible Impact Analysis 
and Determination section considers the content of this section, the 
Estimated Take section, and the Proposed Mitigation section, to draw 
conclusions regarding the likely impacts of these activities on the 
reproductive success or survivorship of individuals and how those 
impacts on individuals are likely to impact marine mammal species or 
stocks.

Background on Sound

    Sound is a physical phenomenon consisting of minute vibrations that 
travel through a medium, such as air or water, and is generally 
characterized by several variables. Frequency describes the sound's 
pitch and is measured in Hz or kHz, while sound level describes the 
sound's intensity and is measured in dB. Sound level increases or 
decreases exponentially with each dB of change. The logarithmic nature 
of the scale means that each 10-dB increase is a 10-fold increase in 
acoustic power (and a 20-dB increase is then a 100-fold increase in 
power). A 10-fold increase in acoustic power does not mean that the 
sound is perceived as being 10 times louder, however. Sound levels are 
compared to a reference sound pressure (micro-Pascal) to identify the 
medium. For air and water, these reference pressures are ``re: 20 micro 
Pascals ([micro]Pa)'' and ``re: 1 [micro]Pa,'' respectively. Root mean 
square (RMS) is the quadratic mean sound pressure over the duration of 
an impulse. RMS is

[[Page 7934]]

calculated by squaring all of the sound amplitudes, averaging the 
squares, and then taking the square root of the average (Urick 1975). 
RMS accounts for both positive and negative values; squaring the 
pressures makes all values positive so that they may be accounted for 
in the summation of pressure levels. This measurement is often used in 
the context of discussing behavioral effects, in part because 
behavioral effects, which often result from auditory cues, may be 
better expressed through averaged units rather than by peak pressures.
    When sound travels (propagates) from its source, its loudness 
decreases as the distance traveled by the sound increases. Thus, the 
loudness of a sound at its source is higher than the loudness of that 
same sound one km away. Acousticians often refer to the loudness of a 
sound at its source (typically referenced to one meter from the source) 
as the source level and the loudness of sound elsewhere as the received 
level (i.e., typically the receiver). For example, a humpback whale 3 
km from a device that has a source level of 230 dB may only be exposed 
to sound that is 160 dB loud, depending on how the sound travels 
through water (e.g., spherical spreading (6 dB reduction with doubling 
of distance) was used in this example). As a result, it is important to 
understand the difference between source levels and received levels 
when discussing the loudness of sound in the ocean or its impacts on 
the marine environment.
    As sound travels from a source, its propagation in water is 
influenced by various physical characteristics, including water 
temperature, depth, salinity, and surface and bottom properties that 
cause refraction, reflection, absorption, and scattering of sound 
waves. Oceans are not homogeneous and the contribution of each of these 
individual factors is extremely complex and interrelated. The physical 
characteristics that determine the sound's speed through the water will 
change with depth, season, geographic location, and with time of day 
(as a result, in actual active sonar operations, crews will measure 
oceanic conditions, such as sea water temperature and depth, to 
calibrate models that determine the path the sonar signal will take as 
it travels through the ocean and how strong the sound signal will be at 
a given range along a particular transmission path). As sound travels 
through the ocean, the intensity associated with the wavefront 
diminishes, or attenuates. This decrease in intensity is referred to as 
propagation loss, also commonly called transmission loss.

Acoustic Impacts

    Geophysical surveys may temporarily impact marine mammals in the 
area due to elevated in-water sound levels. Marine mammals are 
continually exposed to many sources of sound. Naturally occurring 
sounds such as lightning, rain, sub-sea earthquakes, and biological 
sounds (e.g., snapping shrimp, whale songs) are widespread throughout 
the world's oceans. Marine mammals produce sounds in various contexts 
and use sound for various biological functions including, but not 
limited to: (1) Social interactions; (2) foraging; (3) orientation; and 
(4) predator detection. Interference with producing or receiving these 
sounds may result in adverse impacts. Audible distance, or received 
levels of sound depend on the nature of the sound source, ambient noise 
conditions, and the sensitivity of the receptor to the sound 
(Richardson et al., 1995). Type and significance of marine mammal 
reactions to sound are likely dependent on a variety of factors 
including, but not limited to, (1) the behavioral state of the animal 
(e.g., feeding, traveling, etc.); (2) frequency of the sound; (3) 
distance between the animal and the source; and (4) the level of the 
sound relative to ambient conditions (Southall et al., 2007).
    When considering the influence of various kinds of sound on the 
marine environment, it is necessary to understand that different kinds 
of marine life are sensitive to different frequencies of sound. Current 
data indicate that not all marine mammal species have equal hearing 
capabilities (Richardson et al., 1995; Wartzok and Ketten, 1999; Au and 
Hastings, 2008).
    Animals are less sensitive to sounds at the outer edges of their 
functional hearing range and are more sensitive to a range of 
frequencies within the middle of their functional hearing range.

Hearing Impairment

    Marine mammals may experience temporary or permanent hearing 
impairment when exposed to loud sounds. Hearing impairment is 
classified by temporary threshold shift (TTS) and permanent threshold 
shift (PTS). PTS is considered auditory injury (Southall et al., 2007) 
and occurs in a specific frequency range and amount. Irreparable damage 
to the inner or outer cochlear hair cells may cause PTS; however, other 
mechanisms are also involved, such as exceeding the elastic limits of 
certain tissues and membranes in the middle and inner ears and 
resultant changes in the chemical composition of the inner ear fluids 
(Southall et al., 2007). There are no empirical data for onset of PTS 
in any marine mammal; therefore, PTS-onset must be estimated from TTS-
onset measurements and from the rate of TTS growth with increasing 
exposure levels above the level eliciting TTS-onset. PTS is presumed to 
be likely if the hearing threshold is reduced by >=40 dB (that is, 40 
dB of TTS).

Temporary Threshold Shift (TTS)

    TTS is the mildest form of hearing impairment that can occur during 
exposure to a loud sound (Kryter 1985). While experiencing TTS, the 
hearing threshold rises and a sound must be stronger in order to be 
heard. At least in terrestrial mammals, TTS can last from minutes or 
hours to (in cases of strong TTS) days, can be limited to a particular 
frequency range, and can occur to varying degrees (i.e., a loss of a 
certain number of dBs of sensitivity). For sound exposures at or 
somewhat above the TTS threshold, hearing sensitivity in both 
terrestrial and marine mammals recovers rapidly after exposure to the 
noise ends.
    Marine mammal hearing plays a critical role in communication with 
conspecifics and in interpretation of environmental cues for purposes 
such as predator avoidance and prey capture. Depending on the degree 
(elevation of threshold in dB), duration (i.e., recovery time), and 
frequency range of TTS and the context in which it is experienced, TTS 
can have effects on marine mammals ranging from discountable to 
serious. For example, a marine mammal may be able to readily compensate 
for a brief, relatively small amount of TTS in a non-critical frequency 
range that takes place during a time when the animals is traveling 
through the open ocean, where ambient noise is lower and there are not 
as many competing sounds present. Alternatively, a larger amount and 
longer duration of TTS sustained during a time when communication is 
critical for successful mother/calf interactions could have more 
serious impacts if it were in the same frequency band as the necessary 
vocalizations and of a severity that it impeded communication. The fact 
that animals exposed to levels and durations of sound that would be 
expected to result in this physiological response would also be 
expected to have behavioral responses of a comparatively more severe or 
sustained nature is also notable and potentially of more importance 
than the simple existence of a TTS.

[[Page 7935]]

    Currently, TTS data only exist for four species of cetaceans 
(bottlenose dolphin, beluga whale (Delphinapterus leucas), harbor 
porpoise, and Yangtze finless porpoise (Neophocaena phocaenoides)) and 
three species of pinnipeds (northern elephant seal (Mirounga 
angustirostris), harbor seal, and California sea lion (Zalophus 
californianus)) exposed to a limited number of sound sources (i.e., 
mostly tones and octave-band noise) in laboratory settings (e.g., 
Finneran et al., 2002 and 2010; Nachtigall et al., 2004; Kastak et al., 
2005; Lucke et al., 2009; Mooney et al., 2009; Popov et al., 2011; 
Finneran and Schlundt, 2010). In general, harbor seals (Kastak et al., 
2005; Kastelein et al., 2012a) and harbor porpoises (Lucke et al., 
2009; Kastelein et al., 2012b) have a lower TTS onset than other 
measured pinniped or cetacean species. However, even for these animals, 
which are better able to hear higher frequencies and may be more 
sensitive to higher frequencies, exposures on the order of 
approximately 170 dB RMS or higher for brief transient signals are 
likely required for even temporary (recoverable) changes in hearing 
sensitivity that would likely not be categorized as physiologically 
damaging (Lucke et al., 2009). Additionally, the existing marine mammal 
TTS data come from a limited number of individuals within these 
species. There are no data available on noise-induced hearing loss for 
mysticetes. For summaries of data on TTS in marine mammals or for 
further discussion of TTS onset thresholds, please see Finneran (2015).
    Scientific literature highlights the inherent complexity of 
predicting TTS onset in marine mammals, as well as the importance of 
considering exposure duration when assessing potential impacts (Mooney 
et al., 2009a, 2009b; Kastak et al., 2007). Generally, with sound 
exposures of equal energy, quieter sounds (lower sound pressure levels 
(SPL)) of longer duration were found to induce TTS onset more than 
louder sounds (higher SPL) of shorter duration (more similar to sub-
bottom profilers). For intermittent sounds, less threshold shift will 
occur than from a continuous exposure with the same energy (some 
recovery will occur between intermittent exposures) (Kryter et al., 
1966; Ward 1997). For sound exposures at or somewhat above the TTS-
onset threshold, hearing sensitivity recovers rapidly after exposure to 
the sound ends; intermittent exposures recover faster in comparison 
with continuous exposures of the same duration (Finneran et al., 2010). 
NMFS considers TTS as Level B harassment that is mediated by 
physiological effects on the auditory system.
    Animals in the Lease Area during the HRG survey are unlikely to 
incur TTS hearing impairment due to the characteristics of the sound 
sources, which include low source levels (208 to 221 dB re 1 [micro]Pa-
m) and generally very short pulses and duration of the sound. Even for 
high-frequency cetacean species (e.g., harbor porpoises), which may 
have increased sensitivity to TTS (Lucke et al., 2009; Kastelein et 
al., 2012b), individuals would have to make a very close approach and 
also remain very close to vessels operating these sources in order to 
receive multiple exposures at relatively high levels, as would be 
necessary to cause TTS. Intermittent exposures--as would occur due to 
the brief, transient signals produced by these sources--require a 
higher cumulative SEL to induce TTS than would continuous exposures of 
the same duration (i.e., intermittent exposure results in lower levels 
of TTS) (Mooney et al., 2009a; Finneran et al., 2010). Moreover, most 
marine mammals would more likely avoid a loud sound source rather than 
swim in such close proximity as to result in TTS. Kremser et al. (2005) 
noted that the probability of a cetacean swimming through the area of 
exposure when a sub-bottom profiler emits a pulse is small--because if 
the animal was in the area, it would have to pass the transducer at 
close range in order to be subjected to sound levels that could cause 
TTS and would likely exhibit avoidance behavior to the area near the 
transducer rather than swim through at such a close range. Further, the 
restricted beam shape of the majority of the geophysical survey 
equipment planned for use (Table 1) makes it unlikely that an animal 
would be exposed more than briefly during the passage of the vessel.

Masking

    Masking is the obscuring of sounds of interest to an animal by 
other sounds, typically at similar frequencies. Marine mammals are 
highly dependent on sound, and their ability to recognize sound signals 
amid other sound is important in communication and detection of both 
predators and prey (Tyack 2000). Background ambient sound may interfere 
with or mask the ability of an animal to detect a sound signal even 
when that signal is above its absolute hearing threshold. Even in the 
absence of anthropogenic sound, the marine environment is often loud. 
Natural ambient sound includes contributions from wind, waves, 
precipitation, other animals, and (at frequencies above 30 kHz) thermal 
sound resulting from molecular agitation (Richardson et al., 1995).
    Background sound may also include anthropogenic sound, and masking 
of natural sounds can result when human activities produce high levels 
of background sound. Conversely, if the background level of underwater 
sound is high (e.g., on a day with strong wind and high waves), an 
anthropogenic sound source would not be detectable as far away as would 
be possible under quieter conditions and would itself be masked. 
Ambient sound is highly variable on continental shelves (Myrberg 1978; 
Desharnais et al., 1999). This results in a high degree of variability 
in the range at which marine mammals can detect anthropogenic sounds.
    Although masking is a phenomenon which may occur naturally, the 
introduction of loud anthropogenic sounds into the marine environment 
at frequencies important to marine mammals increases the severity and 
frequency of occurrence of masking. For example, if a baleen whale is 
exposed to continuous low-frequency sound from an industrial source, 
this would reduce the size of the area around that whale within which 
it can hear the calls of another whale. The components of background 
noise that are similar in frequency to the signal in question primarily 
determine the degree of masking of that signal. In general, little is 
known about the degree to which marine mammals rely upon detection of 
sounds from conspecifics, predators, prey, or other natural sources. In 
the absence of specific information about the importance of detecting 
these natural sounds, it is not possible to predict the impact of 
masking on marine mammals (Richardson et al., 1995). In general, 
masking effects are expected to be less severe when sounds are 
transient than when they are continuous. Masking is typically of 
greater concern for those marine mammals that utilize low-frequency 
communications, such as baleen whales, because of how far low-frequency 
sounds propagate.
    Marine mammal communications would not likely be masked appreciably 
by the sub-bottom profiler signals given the directionality of the 
signals (for most geophysical survey equipment types planned for use 
(Table 1)) and the brief period when an individual mammal is likely to 
be within its beam.

Non-Auditory Physical Effects (Stress)

    Classic stress responses begin when an animal's central nervous 
system perceives a potential threat to its homeostasis. That perception 
triggers

[[Page 7936]]

stress responses regardless of whether a stimulus actually threatens 
the animal; the mere perception of a threat is sufficient to trigger a 
stress response (Moberg 2000; Seyle 1950). Once an animal's central 
nervous system perceives a threat, it mounts a biological response or 
defense that consists of a combination of the four general biological 
defense responses: behavioral responses, autonomic nervous system 
responses, neuroendocrine responses, or immune responses.
    In the case of many stressors, an animal's first and sometimes most 
economical (in terms of biotic costs) response is behavioral avoidance 
of the potential stressor or avoidance of continued exposure to a 
stressor. An animal's second line of defense to stressors involves the 
sympathetic part of the autonomic nervous system and the classical 
``fight or flight'' response which includes the cardiovascular system, 
the gastrointestinal system, the exocrine glands, and the adrenal 
medulla to produce changes in heart rate, blood pressure, and 
gastrointestinal activity that humans commonly associate with 
``stress.'' These responses have a relatively short duration and may or 
may not have significant long-term effect on an animal's welfare.
    An animal's third line of defense to stressors involves its 
neuroendocrine systems; the system that has received the most study has 
been the hypothalamus-pituitary-adrenal system (also known as the HPA 
axis in mammals). Unlike stress responses associated with the autonomic 
nervous system, virtually all neuro-endocrine functions that are 
affected by stress--including immune competence, reproduction, 
metabolism, and behavior--are regulated by pituitary hormones. Stress-
induced changes in the secretion of pituitary hormones have been 
implicated in failed reproduction (Moberg 1987; Rivier 1995), altered 
metabolism (Elasser et al., 2000), reduced immune competence (Blecha 
2000), and behavioral disturbance. Increases in the circulation of 
glucocorticosteroids (cortisol, corticosterone, and aldosterone in 
marine mammals; see Romano et al., 2004) have been equated with stress 
for many years.
    The primary distinction between stress (which is adaptive and does 
not normally place an animal at risk) and distress is the biotic cost 
of the response. During a stress response, an animal uses glycogen 
stores that can be quickly replenished once the stress is alleviated. 
In such circumstances, the cost of the stress response would not pose a 
risk to the animal's welfare. However, when an animal does not have 
sufficient energy reserves to satisfy the energetic costs of a stress 
response, energy resources must be diverted from other biotic function, 
which impairs those functions that experience the diversion. For 
example, when mounting a stress response diverts energy away from 
growth in young animals, those animals may experience stunted growth. 
When mounting a stress response diverts energy from a fetus, an 
animal's reproductive success and its fitness will suffer. In these 
cases, the animals will have entered a pre-pathological or pathological 
state which is called ``distress'' (Seyle 1950) or ``allostatic 
loading'' (McEwen and Wingfield 2003). This pathological state will 
last until the animal replenishes its biotic reserves sufficient to 
restore normal function. Note that these examples involved a long-term 
(days or weeks) stress response exposure to stimuli.
    Relationships between these physiological mechanisms, animal 
behavior, and the costs of stress responses have also been documented 
fairly well through controlled experiments; because this physiology 
exists in every vertebrate that has been studied, it is not surprising 
that stress responses and their costs have been documented in both 
laboratory and free-living animals (for examples see, Holberton et al., 
1996; Hood et al., 1998; Jessop et al., 2003; Krausman et al., 2004; 
Lankford et al., 2005; Reneerkens et al., 2002; Thompson and Hamer, 
2000). Information has also been collected on the physiological 
responses of marine mammals to exposure to anthropogenic sounds (Fair 
and Becker 2000; Romano et al., 2002). For example, Rolland et al. 
(2012) found that noise reduction from reduced ship traffic in the Bay 
of Fundy was associated with decreased stress in North Atlantic right 
whales.
    Studies of other marine animals and terrestrial animals would also 
lead us to expect some marine mammals to experience physiological 
stress responses and, perhaps, physiological responses that would be 
classified as ``distress'' upon exposure to high frequency, mid-
frequency and low-frequency sounds. For example, Jansen (1998) reported 
on the relationship between acoustic exposures and physiological 
responses that are indicative of stress responses in humans (for 
example, elevated respiration and increased heart rates). Jones (1998) 
reported on reductions in human performance when faced with acute, 
repetitive exposures to acoustic disturbance. Trimper et al. (1998) 
reported on the physiological stress responses of osprey to low-level 
aircraft noise while Krausman et al. (2004) reported on the auditory 
and physiology stress responses of endangered Sonoran pronghorn to 
military overflights. Smith et al. (2004a, 2004b), for example, 
identified noise-induced physiological transient stress responses in 
hearing-specialist fish (i.e., goldfish) that accompanied short- and 
long-term hearing losses. Welch and Welch (1970) reported physiological 
and behavioral stress responses that accompanied damage to the inner 
ears of fish and several mammals.
    Hearing is one of the primary senses marine mammals use to gather 
information about their environment and to communicate with 
conspecifics. Although empirical information on the relationship 
between sensory impairment (TTS, PTS, and acoustic masking) on marine 
mammals remains limited, it seems reasonable to assume that reducing an 
animal's ability to gather information about its environment and to 
communicate with other members of its species would be stressful for 
animals that use hearing as their primary sensory mechanism. Therefore, 
we assume that acoustic exposures sufficient to trigger onset PTS or 
TTS would be accompanied by physiological stress responses because 
terrestrial animals exhibit those responses under similar conditions 
(NRC 2003). More importantly, marine mammals might experience stress 
responses at received levels lower than those necessary to trigger 
onset TTS. Based on empirical studies of the time required to recover 
from stress responses (Moberg 2000), we also assume that stress 
responses are likely to persist beyond the time interval required for 
animals to recover from TTS and might result in pathological and pre-
pathological states that would be as significant as behavioral 
responses to TTS.
    In general, there are few data on the potential for strong, 
anthropogenic underwater sounds to cause non-auditory physical effects 
in marine mammals. The available data do not allow identification of a 
specific exposure level above which non-auditory effects can be 
expected (Southall et al., 2007). There is no definitive evidence that 
any of these effects occur even for marine mammals in close proximity 
to an anthropogenic sound source. In addition, marine mammals that show 
behavioral avoidance of survey vessels and related sound sources are 
unlikely to incur non-auditory impairment or other physical effects. 
NMFS does not expect that the generally short-term, intermittent, and

[[Page 7937]]

transitory HRG and geotechnical activities would create conditions of 
long-term, continuous noise and chronic acoustic exposure leading to 
long-term physiological stress responses in marine mammals.

Behavioral Disturbance

    Behavioral disturbance may include a variety of effects, including 
subtle changes in behavior (e.g., minor or brief avoidance of an area 
or changes in vocalizations), more conspicuous changes in similar 
behavioral activities, and more sustained and/or potentially severe 
reactions, such as displacement from or abandonment of high-quality 
habitat. Behavioral responses to sound are highly variable and context-
specific and any reactions depend on numerous intrinsic and extrinsic 
factors (e.g., species, state of maturity, experience, current 
activity, reproductive state, auditory sensitivity, time of day), as 
well as the interplay between factors (e.g., Richardson et al., 1995; 
Wartzok et al., 2003; Southall et al., 2007; Weilgart, 2007; Archer et 
al., 2010). Behavioral reactions can vary not only among individuals 
but also within an individual, depending on previous experience with a 
sound source, context, and numerous other factors (Ellison et al., 
2012), and can vary depending on characteristics associated with the 
sound source (e.g., whether it is moving or stationary, number of 
sources, distance from the source). Please see Appendices B-C of 
Southall et al. (2007) for a review of studies involving marine mammal 
behavioral responses to sound.
    Habituation can occur when an animal's response to a stimulus wanes 
with repeated exposure, usually in the absence of unpleasant associated 
events (Wartzok et al., 2003). Animals are most likely to habituate to 
sounds that are predictable and unvarying. It is important to note that 
habituation is appropriately considered as a ``progressive reduction in 
response to stimuli that are perceived as neither aversive nor 
beneficial,'' rather than as, more generally, moderation in response to 
human disturbance (Bejder et al., 2009). The opposite process is 
sensitization, when an unpleasant experience leads to subsequent 
responses, often in the form of avoidance, at a lower level of 
exposure. As noted, behavioral state may affect the type of response. 
For example, animals that are resting may show greater behavioral 
change in response to disturbing sound levels than animals that are 
highly motivated to remain in an area for feeding (Richardson et al., 
1995; NRC 2003; Wartzok et al., 2003). Controlled experiments with 
captive marine mammals have shown pronounced behavioral reactions, 
including avoidance of loud sound sources (Ridgway et al., 1997; 
Finneran et al., 2003). Observed responses of wild marine mammals to 
loud, pulsed sound sources (typically seismic airguns or acoustic 
harassment devices) have been varied but often consist of avoidance 
behavior or other behavioral changes suggesting discomfort (Morton and 
Symonds, 2002; see also Richardson et al., 1995; Nowacek et al., 2007).
    Available studies show wide variation in response to underwater 
sound; therefore, it is difficult to predict specifically how any given 
sound in a particular instance might affect marine mammals perceiving 
the signal. If a marine mammal does react briefly to an underwater 
sound by changing its behavior or moving a small distance, the impacts 
of the change are unlikely to be significant to the individual, let 
alone the stock or population. However, if a sound source displaces 
marine mammals from an important feeding or breeding area for a 
prolonged period, impacts on individuals and populations could be 
significant (e.g., Lusseau and Bejder, 2007; Weilgart 2007; NRC 2005). 
However, there are broad categories of potential response, which we 
describe in greater detail here, that include alteration of dive 
behavior, alteration of foraging behavior, effects to breathing, 
interference with or alteration of vocalization, avoidance, and flight.
    Changes in dive behavior can vary widely and may consist of 
increased or decreased dive times and surface intervals as well as 
changes in the rates of ascent and descent during a dive (e.g., Frankel 
and Clark 2000; Costa et al., 2003; Ng and Leung 2003; Nowacek et al., 
2004; Goldbogen et al., 2013a,b). Variations in dive behavior may 
reflect interruptions in biologically significant activities (e.g., 
foraging) or they may be of little biological significance. The impact 
of an alteration to dive behavior resulting from an acoustic exposure 
depends on what the animal is doing at the time of the exposure and the 
type and magnitude of the response.
    Disruption of feeding behavior can be difficult to correlate with 
anthropogenic sound exposure, so it is usually inferred by observed 
displacement from known foraging areas, the appearance of secondary 
indicators (e.g., bubble nets or sediment plumes), or changes in dive 
behavior. As for other types of behavioral response, the frequency, 
duration, and temporal pattern of signal presentation, as well as 
differences in species sensitivity, are likely contributing factors to 
differences in response in any given circumstance (e.g., Croll et al., 
2001; Nowacek et al.; 2004; Madsen et al., 2006; Yazvenko et al., 
2007). A determination of whether foraging disruptions incur fitness 
consequences would require information on or estimates of the energetic 
requirements of the affected individuals and the relationship between 
prey availability, foraging effort and success, and the life history 
stage of the animal.
    Variations in respiration naturally vary with different behaviors 
and alterations to breathing rate as a function of acoustic exposure 
can be expected to co-occur with other behavioral reactions, such as a 
flight response or an alteration in diving. However, respiration rates 
in and of themselves may be representative of annoyance or an acute 
stress response. Various studies have shown that respiration rates may 
either be unaffected or could increase, depending on the species and 
signal characteristics, again highlighting the importance in 
understanding species differences in the tolerance of underwater noise 
when determining the potential for impacts resulting from anthropogenic 
sound exposure (e.g., Kastelein et al., 2001, 2005b, 2006; Gailey et 
al., 2007).
    Marine mammals vocalize for different purposes and across multiple 
modes, such as whistling, echolocation click production, calling, and 
singing. Changes in vocalization behavior in response to anthropogenic 
noise can occur for any of these modes and may result from a need to 
compete with an increase in background noise or may reflect increased 
vigilance or a startle response. For example, in the presence of 
potentially masking signals, humpback whales and killer whales have 
been observed to increase the length of their songs (Miller et al., 
2000; Fristrup et al., 2003; Foote et al., 2004), while right whales 
have been observed to shift the frequency content of their calls upward 
while reducing the rate of calling in areas of increased anthropogenic 
noise (Parks et al., 2007b). In some cases, animals may cease sound 
production during production of aversive signals (Bowles et al., 1994).
    Avoidance is the displacement of an individual from an area or 
migration path as a result of the presence of a sound or other 
stressors, and is one of the most obvious manifestations of disturbance 
in marine mammals (Richardson et al., 1995). For example, gray whales 
are known to change direction--deflecting from customary migratory 
paths--in order to avoid noise from seismic surveys (Malme et al.,

[[Page 7938]]

1984). Avoidance may be short-term, with animals returning to the area 
once the noise has ceased (e.g., Bowles et al., 1994; Goold 1996; Stone 
et al., 2000; Morton and Symonds, 2002; Gailey et al., 2007). Longer-
term displacement is possible, however, which may lead to changes in 
abundance or distribution patterns of the affected species in the 
affected region if habituation to the presence of the sound does not 
occur (e.g., Blackwell et al., 2004; Bejder et al., 2006; Teilmann et 
al., 2006).
    A flight response is a dramatic change in normal movement to a 
directed and rapid movement away from the perceived location of a sound 
source. The flight response differs from other avoidance responses in 
the intensity of the response (e.g., directed movement, rate of 
travel). Relatively little information on flight responses of marine 
mammals to anthropogenic signals exist, although observations of flight 
responses to the presence of predators have occurred (Connor and 
Heithaus, 1996). The result of a flight response could range from 
brief, temporary exertion and displacement from the area where the 
signal provokes flight to, in extreme cases, marine mammal strandings 
(Evans and England, 2001). However, it should be noted that response to 
a perceived predator does not necessarily invoke flight (Ford and 
Reeves, 2008) and whether individuals are solitary or in groups may 
influence the response.
    Behavioral disturbance can also impact marine mammals in more 
subtle ways. Increased vigilance may result in costs related to 
diversion of focus and attention (i.e., when a response consists of 
increased vigilance, it may come at the cost of decreased attention to 
other critical behaviors such as foraging or resting). These effects 
have generally not been demonstrated for marine mammals, but studies 
involving fish and terrestrial animals have shown that increased 
vigilance may substantially reduce feeding rates (e.g., Beauchamp and 
Livoreil, 1997; Fritz et al., 2002; Purser and Radford, 2011). In 
addition, chronic disturbance can cause population declines through 
reduction of fitness (e.g., decline in body condition) and subsequent 
reduction in reproductive success, survival, or both (e.g., Harrington 
and Veitch, 1992; Daan et al., 1996; Bradshaw et al., 1998). However, 
Ridgway et al. (2006) reported that increased vigilance in bottlenose 
dolphins exposed to sound over a five-day period did not cause any 
sleep deprivation or stress effects.
    Many animals perform vital functions, such as feeding, resting, 
traveling, and socializing, on a diel cycle (24-hour cycle). Disruption 
of such functions resulting from reactions to stressors such as sound 
exposure are more likely to be significant if they last more than one 
diel cycle or recur on subsequent days (Southall et al., 2007). 
Consequently, a behavioral response lasting less than one day and not 
recurring on subsequent days is not considered particularly severe 
unless it could directly affect reproduction or survival (Southall et 
al., 2007). Note that there is a difference between multi-day 
substantive behavioral reactions and multi-day anthropogenic 
activities. For example, just because an activity lasts for multiple 
days does not necessarily mean that individual animals are either 
exposed to activity-related stressors for multiple days or, further, 
exposed in a manner resulting in sustained multi-day substantive 
behavioral responses.
    Marine mammals are likely to avoid the HRG survey activity, 
especially the naturally shy harbor porpoise, while the harbor seals 
might be attracted to them out of curiosity. However, because the sub-
bottom profilers and other HRG survey equipment operate from a moving 
vessel, and the maximum radius to the Level B harassment threshold is 
relatively small, the area and time that this equipment would be 
affecting a given location is very small. Further, once an area has 
been surveyed, it is not likely that it will be surveyed again, thereby 
reducing the likelihood of repeated HRG-related impacts within the 
survey area.
    We have also considered the potential for severe behavioral 
responses such as stranding and associated indirect injury or mortality 
from Atlantic Shores's use of HRG survey equipment, on the basis of a 
2008 mass stranding of approximately 100 melon-headed whales in a 
Madagascar lagoon system. An investigation of the event indicated that 
use of a high-frequency mapping system (12-kHz multibeam echosounder) 
was the most plausible and likely initial behavioral trigger of the 
event, while providing the caveat that there is no unequivocal and 
easily identifiable single cause (Southall et al., 2013). The 
investigatory panel's conclusion was based on (1) very close temporal 
and spatial association and directed movement of the survey with the 
stranding event; (2) the unusual nature of such an event coupled with 
previously documented apparent behavioral sensitivity of the species to 
other sound types (Southall et al., 2006; Brownell et al., 2009); and 
(3) the fact that all other possible factors considered were determined 
to be unlikely causes. Specifically, regarding survey patterns prior to 
the event and in relation to bathymetry, the vessel transited in a 
north-south direction on the shelf break parallel to the shore, 
ensonifying large areas of deep-water habitat prior to operating 
intermittently in a concentrated area offshore from the stranding site; 
this may have trapped the animals between the sound source and the 
shore, thus driving them towards the lagoon system. The investigatory 
panel systematically excluded or deemed highly unlikely nearly all 
potential reasons for these animals leaving their typical pelagic 
habitat for an area extremely atypical for the species (i.e., a shallow 
lagoon system). Notably, this was the first time that such a system has 
been associated with a stranding event. The panel also noted several 
site- and situation-specific secondary factors that may have 
contributed to the avoidance responses that led to the eventual 
entrapment and mortality of the whales. Specifically, shoreward-
directed surface currents and elevated chlorophyll levels in the area 
preceding the event may have played a role (Southall et al., 2013). The 
report also notes that prior use of a similar system in the general 
area may have sensitized the animals and also concluded that, for 
odontocete cetaceans that hear well in higher frequency ranges where 
ambient noise is typically quite low, high-power active sonars 
operating in this range may be more easily audible and have potential 
effects over larger areas than low frequency systems that have more 
typically been considered in terms of anthropogenic noise impacts. It 
is, however, important to note that the relatively lower output 
frequency, higher output power, and complex nature of the system 
implicated in this event, in context of the other factors noted here, 
likely produced a fairly unusual set of circumstances that indicate 
that such events would likely remain rare and are not necessarily 
relevant to use of lower-power, higher-frequency systems more commonly 
used for HRG survey applications. The risk of similar events recurring 
may be very low, given the extensive use of active acoustic systems 
used for scientific and navigational purposes worldwide on a daily 
basis and the lack of direct evidence of such responses previously 
reported.

Tolerance

    Numerous studies have shown that underwater sounds from industrial 
activities are often readily detectable by marine mammals in the water 
at distances of many km. However, other studies have shown that marine 
mammals at distances more than a few

[[Page 7939]]

km away often show no apparent response to industrial activities of 
various types (Miller et al., 2005). This is often true even in cases 
when the sounds must be readily audible to the animals based on 
measured received levels and the hearing sensitivity of that mammal 
group. Although various baleen whales, toothed whales, and (less 
frequently) pinnipeds have been shown to react behaviorally to 
underwater sound from sources such as airgun pulses or vessels under 
some conditions, at other times, mammals of all three types have shown 
no overt reactions (e.g., Malme et al., 1986; Richardson et al., 1995; 
Madsen and Mohl 2000; Croll et al., 2001; Jacobs and Terhune 2002; 
Madsen et al., 2002; Miller et al., 2005). In general, pinnipeds seem 
to be more tolerant of exposure to some types of underwater sound than 
are baleen whales. Richardson et al. (1995) found that vessel sound 
does not seem to affect pinnipeds that are already in the water. 
Richardson et al. (1995) went on to explain that seals on haul-outs 
sometimes respond strongly to the presence of vessels and at other 
times appear to show considerable tolerance of vessels, and Brueggeman 
et al. (1992) observed ringed seals (Pusa hispida) hauled out on ice 
pans displaying short-term escape reactions when a ship approached 
within 0.16-0.31 miles (0.25-0.5 km). Due to the relatively high vessel 
traffic in the Lease Area it is possible that marine mammals are 
habituated to noise (e.g., DP thrusters) from project vessels in the 
area.

Vessel Strike

    Ship strikes of marine mammals can cause major wounds, which may 
lead to the death of the animal. An animal at the surface could be 
struck directly by a vessel, a surfacing animal could hit the bottom of 
a vessel, or a vessel's propeller could injure an animal just below the 
surface. The severity of injuries typically depends on the size and 
speed of the vessel (Knowlton and Kraus 2001; Laist et al., 2001; 
Vanderlaan and Taggart 2007).
    The most vulnerable marine mammals are those that spend extended 
periods of time at the surface in order to restore oxygen levels within 
their tissues after deep dives (e.g., the sperm whale). In addition, 
some baleen whales, such as the North Atlantic right whale, seem 
generally unresponsive to vessel sound, making them more susceptible to 
vessel collisions (Nowacek et al., 2004). These species are primarily 
large, slow moving whales. Smaller marine mammals (e.g., bottlenose 
dolphin) move quickly through the water column and are often seen 
riding the bow wave of large ships. Marine mammal responses to vessels 
may include avoidance and changes in dive pattern (NRC 2003).
    An examination of all known ship strikes from all shipping sources 
(civilian and military) indicates vessel speed is a principal factor in 
whether a vessel strike results in death (Knowlton and Kraus 2001; 
Laist et al., 2001; Jensen and Silber 2003; Vanderlaan and Taggart 
2007). In assessing records with known vessel speeds, Laist et al. 
(2001) found a direct relationship between the occurrence of a whale 
strike and the speed of the vessel involved in the collision. The 
authors concluded that most deaths occurred when a vessel was traveling 
in excess of 24.1 km/h (14.9 mph; 13 kn). Given the slow vessel speeds 
and predictable course necessary for data acquisition, ship strike is 
unlikely to occur during the geophysical and geotechnical surveys. 
Marine mammals would be able to easily avoid the survey vessel due to 
the slow vessel speed. Further, Atlantic Shores would implement 
measures (e.g., protected species monitoring, vessel speed restrictions 
and separation distances; see Proposed Mitigation) set forth in the 
BOEM lease to reduce the risk of a vessel strike to marine mammal 
species in the survey area.

Marine Mammal Habitat

    The HRG survey equipment will not contact the seafloor and does not 
represent a source of pollution. We are not aware of any available 
literature on impacts to marine mammal prey from sound produced by HRG 
survey equipment. However, as the HRG survey equipment introduces noise 
to the marine environment, there is the potential for it to result in 
avoidance of the area around the HRG survey activities on the part of 
marine mammal prey. Any avoidance of the area on the part of marine 
mammal prey would be expected to be short term and temporary.
    Because of the temporary nature of the disturbance, and the 
availability of similar habitat and resources (e.g., prey species) in 
the surrounding area, the impacts to marine mammals and the food 
sources that they utilize are not expected to cause significant or 
long-term consequences for individual marine mammals or their 
populations. Impacts on marine mammal habitat from the proposed 
activities will be temporary, insignificant, and discountable.

Estimated Take

    This section provides an estimate of the number of incidental takes 
proposed for authorization through this IHA, which will inform both 
NMFS' consideration of ``small numbers'' and the negligible impact 
determination.
    Harassment is the only type of take expected to result from these 
activities. Except with respect to certain activities not pertinent 
here, section 3(18) of the MMPA defines ``harassment'' as any act of 
pursuit, torment, or annoyance, which (i) has the potential to injure a 
marine mammal or marine mammal stock in the wild (Level A harassment); 
or (ii) has the potential to disturb a marine mammal or marine mammal 
stock in the wild by causing disruption of behavioral patterns, 
including, but not limited to, migration, breathing, nursing, breeding, 
feeding, or sheltering (Level B harassment).
    Authorized takes would be by Level B harassment only, in the form 
of disruption of behavioral patterns for individual marine mammals 
resulting from exposure to HRG sources. Based on the nature of the 
activity and the anticipated effectiveness of the mitigation measures 
(i.e., exclusion zones and shutdown measures), discussed in detail 
below in Proposed Mitigation section, Level A harassment is neither 
anticipated nor proposed to be authorized.
    As described previously, no mortality is anticipated or proposed to 
be authorized for this activity. Below we describe how the take is 
estimated.
    Generally speaking, we estimate take by considering: (1) Acoustic 
thresholds above which NMFS believes the best available science 
indicates marine mammals will be behaviorally harassed or incur some 
degree of permanent hearing impairment; (2) the area or volume of water 
that will be ensonified above these levels in a day; (3) the density or 
occurrence of marine mammals within these ensonified areas; and, (4) 
and the number of days of activities. We note that while these basic 
factors can contribute to a basic calculation to provide an initial 
prediction of takes, additional information that can qualitatively 
inform take estimates is also sometimes available (e.g., previous 
monitoring results or average group size). Below, we describe the 
factors considered here in more detail and present the proposed take 
estimate.

Acoustic Thresholds

    Using the best available science, NMFS has developed acoustic 
thresholds that identify the received level of underwater sound above 
which exposed marine mammals would be reasonably expected to be 
behaviorally harassed (equated to Level B

[[Page 7940]]

harassment) or to incur PTS of some degree (equated to Level A 
harassment).
    Level B Harassment--Though significantly driven by received level, 
the onset of behavioral disturbance from anthropogenic noise exposure 
is also informed to varying degrees by other factors related to the 
source (e.g., frequency, predictability, duty cycle), the environment 
(e.g., bathymetry), and the receiving animals (hearing, motivation, 
experience, demography, behavioral context) and can be difficult to 
predict (Southall et al., 2007, Ellison et al., 2012). Based on what 
the available science indicates and the practical need to use a 
threshold based on a factor that is both predictable and measurable for 
most activities, NMFS uses a generalized acoustic threshold based on 
received level to estimate the onset of behavioral harassment. NMFS 
predicts that marine mammals are likely to be behaviorally harassed in 
a manner we consider Level B harassment when exposed to underwater 
anthropogenic noise above received levels of 160 dB re 1 [mu]Pa (rms) 
for impulsive and/or intermittent sources (e.g., impact pile driving) 
and 120 dB rms for continuous sources (e.g., vibratory driving). 
Atlantic Shores's proposed activity includes the use of impulsive 
sources (geophysical survey equipment) therefore use of the 120 and 160 
dB re 1 [mu]Pa (rms) threshold is applicable.
    Level A harassment--NMFS' Technical Guidance for Assessing the 
Effects of Anthropogenic Sound on Marine Mammal Hearing (Version 2.0) 
(Technical Guidance, 2018) identifies dual criteria to assess auditory 
injury (Level A harassment) to five different marine mammal groups 
(based on hearing sensitivity) as a result of exposure to noise from 
two different types of sources (impulsive or non-impulsive). The 
components of Atlantic Shores's proposed activity that may result in 
the take of marine mammals include the use of impulsive sources.
    These thresholds are provided in Table 4 below. The references, 
analysis, and methodology used in the development of the thresholds are 
described in NMFS 2018 Technical Guidance, which may be accessed at: 
www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-acoustic-technical-guidance.

                     Table 4--Thresholds Identifying the Onset of Permanent Threshold Shift
----------------------------------------------------------------------------------------------------------------
                                                    PTS onset acoustic thresholds \*\ (Received Level)
             Hearing group              ------------------------------------------------------------------------
                                                  Impulsive                         Non-impulsive
----------------------------------------------------------------------------------------------------------------
Low-Frequency (LF) Cetaceans...........  Cell 1: Lpk,flat: 219 dB;   Cell 2: LE,LF,24h: 199 dB.
                                          LE,LF,24h: 183 dB.
Mid-Frequency (MF) Cetaceans...........  Cell 3: Lpk,flat: 230 dB;   Cell 4: LE,MF,24h: 198 dB.
                                          LE,MF,24h: 185 dB.
High-Frequency (HF) Cetaceans..........  Cell 5: Lpk,flat: 202 dB;   Cell 6: LE,HF,24h: 173 dB.
                                          LE,HF,24h: 155 dB.
Phocid Pinnipeds (PW) (Underwater).....  Cell 7: Lpk,flat: 218 dB;   Cell 8: LE,PW,24h: 201 dB.
                                          LE,PW,24h: 185 dB.
Otariid Pinnipeds (OW) (Underwater)....  Cell 9: Lpk,flat: 232 dB;   Cell 10: LE,OW,24h: 219 dB.
                                          LE,OW,24h: 203 dB.
----------------------------------------------------------------------------------------------------------------
* Dual metric acoustic thresholds for impulsive sounds: Use whichever results in the largest isopleth for
  calculating PTS onset. If a non-impulsive sound has the potential of exceeding the peak sound pressure level
  thresholds associated with impulsive sounds, these thresholds should also be considered.
Note: Peak sound pressure (Lpk) has a reference value of 1 [micro]Pa, and cumulative sound exposure level (LE)
  has a reference value of 1[micro]Pa\2\s. In this Table, thresholds are abbreviated to reflect American
  National Standards Institute standards (ANSI 2013). However, peak sound pressure is defined by ANSI as
  incorporating frequency weighting, which is not the intent for this Technical Guidance. Hence, the subscript
  ``flat'' is being included to indicate peak sound pressure should be flat weighted or unweighted within the
  generalized hearing range. The subscript associated with cumulative sound exposure level thresholds indicates
  the designated marine mammal auditory weighting function (LF, MF, and HF cetaceans, and PW and OW pinnipeds)
  and that the recommended accumulation period is 24 hours. The cumulative sound exposure level thresholds could
  be exceeded in a multitude of ways (i.e., varying exposure levels and durations, duty cycle). When possible,
  it is valuable for action proponents to indicate the conditions under which these acoustic thresholds will be
  exceeded.

Ensonified Area

    Here, we describe operational and environmental parameters of the 
activity that will feed into identifying the area ensonified above the 
acoustic thresholds, which include source levels and transmission loss 
coefficient.
    The proposed survey would entail the use of HRG equipment. The 
distance to the isopleth corresponding to the threshold for Level B 
harassment was calculated for all HRG equipment with the potential to 
result in harassment of marine mammals. NMFS has developed an interim 
methodology for determining the rms sound pressure level 
(SPLrms) at the 160-dB isopleth for the purposes of 
estimating take by Level B harassment resulting from exposure to HRG 
survey equipment (NMFS, 2019). This methodology incorporates frequency 
and some directionality to refine estimated ensonified zones. Atlantic 
Shores used the methods specified in the interim methodology (NMFS, 
2019) with additional modifications to incorporate a seawater 
absorption formula and a method to account for energy emitted outside 
of the primary beam of the source. For sources that operate with 
different beam widths, the maximum beam width was used. The lowest 
frequency of the source was used when calculating the absorption 
coefficient. The formulas used to apply the methodology are described 
in detail in Appendix B of the IHA application.
    NMFS considers the data provided by Crocker and Fratantonio (2016) 
to represent the best available information on source levels associated 
with HRG equipment and therefore recommends that source levels provided 
by Crocker and Fratantonio (2016) be incorporated in the method 
described above to estimate isopleth distances to the Level B 
harassment threshold. In cases when the source level for a specific 
type of HRG equipment is not provided in Crocker and Fratantonio 
(2016), NMFS recommends that either the source levels provided by the 
manufacturer be used, or, in instances where source levels provided by 
the manufacturer are unavailable or unreliable, a proxy from Crocker 
and Fratantonio (2016) be used instead. Table 1 shows the HRG equipment 
types that may be used during the proposed surveys and the sound levels 
associated with those HRG equipment types. Table 2-2 in the IHA 
application shows the literature sources for the sound source levels 
that are shown in Table 1 and that were incorporated into the modeling 
of Level B isopleth distances to the Level B harassment threshold.
    Results of modeling using the methodology described above indicated 
that, of the HRG survey equipment planned for use by Atlantic Shores 
that has the potential to result in harassment of marine mammals, sound 
produced by the Applied Acoustics Dura-Spark 240 sparker would 
propagate furthest to the

[[Page 7941]]

Level B harassment threshold (Table 5); therefore, for the purposes of 
the exposure analysis, it was assumed the Applied Acoustics Dura-Spark 
240 would be active during the entire duration of the surveys. Thus the 
distance to the isopleth corresponding to the threshold for Level B 
harassment for the Applied Acoustics Dura-Spark 240 (estimated at 372 
m; Table 5) was used as the basis of the take calculation for all 
marine mammals. Note that this results in a conservative estimate of 
the total ensonified area resulting from the proposed activities as 
Atlantic Shores may not operate the Applied Acoustics Dura-Spark 240 
during the entire proposed survey, and for any survey segments in which 
it is not ultimately operated the distance to the Level B harassment 
threshold would be less than 372 m (Table 5). However, as Atlantic 
Shores cannot predict the precise number of survey days that will 
require the use of the Applied Acoustics Dura-Spark 240, it was assumed 
that it would operated during the entire duration of the proposed 
surveys.

Table 5--Modeled Radial Distances from HRG Survey Equipment to Isopleths Corresponding to Level A Harassment and
                                          Level B Harassment Thresholds
----------------------------------------------------------------------------------------------------------------
                                       Radial distance to level A harassment threshold (m) *          Radial
                                 ----------------------------------------------------------------   distance to
                                                                                                      Level B
                                                                                                    harassment
          Sound source             Low frequency   Mid frequency  High frequency      Phocid       threshold (m)
                                     cetaceans       cetaceans       cetaceans       pinnipeds   ---------------
                                                                                   (underwater)     All marine
                                                                                                      mammals
----------------------------------------------------------------------------------------------------------------
Kongsberg EA 400................              <1               2             213              <1             172
Teledyne ODOM Echotrac CVM......              <1               1             220              <1             173
Applied Acoustics Dura-Spark 240               1              <1               9               1             372
Edgetech 2000-DSS...............              <1              <1              <1              <1               4
Edgetech 216....................              <1              <1              <1              <1               5
Edgetech 424....................              <1              <1              <1              <1               6
Edgetech 512i...................              <1              <1              <1              <1               7
Teledyne Benthos Chirp III......             n/a             n/a             n/a             n/a              71
Kongsberg GeoPulse..............             n/a             n/a             n/a             n/a             231
Innomar SES-2000 Medium-100                   <1              <1              60              <1             116
 Parametric.....................
Applied Acoustics...............              <1              <1              38              <1              97
S-Boom Triple Plate.............
Applied Acoustics...............              <1              <1              13              <1              56
S-Boom..........................
----------------------------------------------------------------------------------------------------------------
* Distances to the Level A harassment threshold based on the larger of the dual criteria (peak SPL and SELcum)
  are shown. For the Applied Acoustics Dura-Spark 240 the peak SPL metric resulted in larger isopleth distances;
  for all other sources the SELcum metric resulted in larger isopleth distances.

    Predicted distances to Level A harassment isopleths, which vary 
based on marine mammal functional hearing groups (Table 4), were also 
calculated. The updated acoustic thresholds for impulsive sounds (such 
as HRG survey equipment) contained in the Technical Guidance (NMFS, 
2018) were presented as dual metric acoustic thresholds using both 
cumulative sound exposure level (SELcum) and peak sound 
pressure level metrics. As dual metrics, NMFS considers onset of PTS 
(Level A harassment) to have occurred when either one of the two 
metrics is exceeded (i.e., the metric resulting in the largest 
isopleth). The SELcum metric considers both level and 
duration of exposure, as well as auditory weighting functions by marine 
mammal hearing group.
    Modeling of distances to isopleths corresponding to the Level A 
harassment threshold was performed for all types of HRG equipment 
proposed for use with the potential to result in harassment of marine 
mammals. Atlantic Shores used a new model developed by JASCO to 
calculate distances to Level A harassment isopleths based on both the 
peak SPL and the SELcum metric. For the peak SPL metric, the 
model is a series of equations that accounts for both seawater 
absorption and HRG equipment beam patterns (for all HRG sources with 
beam widths larger than 90[deg], it was assumed these sources were 
omnidirectional). For the SELcum metric, a model was 
developed that accounts for the hearing sensitivity of the marine 
mammal group, seawater absorption, and beam width for downwards-facing 
transducers. Details of the modeling methodology for both the peak SPL 
and SELcum metrics are provided in Appendix A of the IHA 
application. This model entails the following steps:
    1. Weighted broadband source levels were calculated by assuming a 
flat spectrum between the source minimum and maximum frequency, 
weighted the spectrum according to the marine mammal hearing group 
weighting function (NMFS 2018), and summed across frequency.
    2. Propagation loss was modeled as a function of oblique range.
    3. Per-pulse SEL was modeled for a stationary receiver at a fixed 
distance off a straight survey line, using a vessel transit speed of 
3.5 knots and source-specific pulse length and repetition rate. The 
off-line distance is referred to as the closest point of approach (CPA) 
and was performed for CPA distances between 1 m and 10 km. The survey 
line length was modeled as 10 km long (analysis showed longer survey 
lines increased SEL by a negligible amount). SEL is calculated as SPL + 
10 log10 T/15 dB, where T is the pulse duration.
    4. The SEL for each survey line was calculated to produce curves of 
weighted SEL as a function of CPA distance.
    5. The curves from Step 4 above were used to estimate the CPA 
distance to the impact criteria.
    We note that in the modeling methods described above and in 
Appendix A of the IHA application, sources that operate with a 
repetition rate greater than 10 Hz were assessed with the non-impulsive 
(intermittent) source criteria while sources with a repetition rate 
equal to or less than 10 Hz were assessed with the impulsive source 
criteria. NMFS does not necessarily agree with this step in the 
modeling

[[Page 7942]]

assessment, which results in nearly all HRG sources being classified as 
impulsive; however, we note that the classification of the majority of 
HRG sources as impulsive results in more conservative modeling results. 
Thus, we have assessed the potential for Level A harassment to result 
from the proposed activities based on the modeled Level A zones with 
the acknowledgement that these zones are likely conservative.
    Modeled isopleth distances to Level A harassment thresholds for all 
types of HRG equipment and all marine mammal functional hearing groups 
are shown in Table 5. The dual criteria (peak SPL and 
SELcum) were applied to all HRG sources using the modeling 
methodology as described above, and the largest isopleth distances for 
each functional hearing group were then carried forward in the exposure 
analysis to be conservative. For the Applied Acoustics Dura-Spark 240 
the peak SPL metric resulted in larger isopleth distances; for all HRG 
sources other than the Applied Acoustics Dura-Spark 240, the 
SELcum metric resulted in larger isopleth distances. 
Distances to the Level A harassment threshold based on the larger of 
the dual criteria (peak SPL and SELcum) are shown in Table 
5.
    Modeled distances to isopleths corresponding to the Level A 
harassment threshold are very small (< 3 m) for three of the four 
marine mammal functional hearing groups that may be impacted by the 
proposed activities (i.e., low frequency and mid frequency cetaceans, 
and phocid pinnipeds; see Table 5). Based on the very small Level A 
harassment zones for these functional hearing groups, the potential for 
species within these functional hearing groups to be taken by Level A 
harassment is considered so low as to be discountable. These three 
functional hearing groups encompass all but one of the marine mammal 
species listed in Table 3 that may be impacted by the proposed 
activities. There is one species (harbor porpoise) within the high 
frequency functional hearing group that may be impacted by the proposed 
activities. The largest modeled distance to the Level A harassment 
threshold for the high frequency functional hearing group was 220 m 
(Table 5). However, as noted above, modeled distances to isopleths 
corresponding to the Level A harassment threshold are assumed to be 
conservative. Level A harassment would also be more likely to occur at 
close approach to the sound source or as a result of longer duration 
exposure to the sound source, and mitigation measures--including a 100-
m exclusion zone for harbor porpoises--are expected to minimize the 
potential for close approach or longer duration exposure to active HRG 
sources. In addition, harbor porpoises are a notoriously shy species 
which is known to avoid vessels, and would also be expected to avoid a 
sound source prior to that source reaching a level that would result in 
injury (Level A harassment). Therefore, we have determined that the 
potential for take by Level A harassment of harbor porpoises is so low 
as to be discountable. As NMFS has determined that the likelihood of 
take of any marine mammals in the form of Level A harassment occurring 
as a result of the proposed surveys is so low as to be discountable, we 
therefore do not propose to authorize the take by Level A harassment of 
any marine mammals.

Marine Mammal Occurrence

    In this section we provide the information about the presence, 
density, or group dynamics of marine mammals that will inform the take 
calculations.
    The habitat-based density models produced by the Duke University 
Marine Geospatial Ecology Laboratory (Roberts et al., 2016, 2017, 2018) 
represent the best available information regarding marine mammal 
densities in the proposed survey area. The density data presented by 
Roberts et al. (2016, 2017, 2018) incorporates aerial and shipboard 
line-transect survey data from NMFS and other organizations and 
incorporates data from 8 physiographic and 16 dynamic oceanographic and 
biological covariates, and controls for the influence of sea state, 
group size, availability bias, and perception bias on the probability 
of making a sighting. These density models were originally developed 
for all cetacean taxa in the U.S. Atlantic (Roberts et al., 2016). In 
subsequent years, certain models have been updated on the basis of 
additional data as well as certain methodological improvements. Our 
evaluation of the changes leads to a conclusion that these represent 
the best scientific evidence available. More information, including the 
model results and supplementary information for each model, is 
available online at seamap.env.duke.edu/models/Duke-EC-GOM-2015/. 
Marine mammal density estimates in the project area (animals/km\2\) 
were obtained using these model results (Roberts et al., 2016, 2017, 
2018). The updated models incorporate additional sighting data, 
including sightings from the NOAA Atlantic Marine Assessment Program 
for Protected Species (AMAPPS) surveys from 2010-2014 (NEFSC & SEFSC, 
2011, 2012, 2014a, 2014b, 2015, 2016).
    For the exposure analysis, density data from Roberts et al. (2016, 
2017, 2018) were mapped using a geographic information system (GIS). 
The density coverages that included any portion of the proposed project 
area were selected for all potential survey months. For each of the 
survey areas (i.e., Lease Area, CER North and ECR South), the densities 
of each species as reported by Roberts et al. (2016, 2017, 2018) were 
averaged by season; thus, a density was calculated for each species for 
spring, summer, fall and winter. To be conservative, the greatest 
seasonal density calculated for each species was then carried forward 
in the exposure analysis. Estimated seasonal densities (animals per 
km\2\) of all marine mammal species that may be taken by the proposed 
survey, for all survey areas are shown in Tables B-1, B-2 and B-3 in 
Appendix C of the IHA application. The maximum seasonal density values 
used to estimate take numbers are shown in Table 6 below.
    For bottlenose dolphin densities, Roberts et al. (2016, 2017, 2018) 
does not differentiate by stock. The Western North Atlantic northern 
migratory coastal stock only occurs in coastal waters from the 
shoreline to approximately the 20-m isobath (Hayes et al. 2018). As the 
Lease Area is located within depths exceeding 20-m, where only the 
offshore stock would be expected to occur, all calculated bottlenose 
dolphin exposures within the Lease Area were assigned to the offshore 
stock. However, both stocks have the potential to occur in the ECR 
North and ECR South survey areas. To account for the potential for 
mixed stocks within ECR North and South, the survey areas ECR North and 
South were divided approximately along the 20-m depth isobath, which 
roughly corresponds to the 10-fathom contour on NOAA navigation charts. 
As approximately 33 percent of ECR North and ECR South are 20-m or less 
in depth, 33 percent of the estimated take calculation for bottlenose 
dolphins was applied to the Western North Atlantic northern migratory 
coastal stock and the remaining 67 percent was applied to the offshore 
stock. Similarly, Roberts et al. (2018) produced density models for all 
seals and did not differentiate by seal species. Because the 
seasonality and habitat use by gray seals roughly overlaps with that of 
harbor seals in the survey areas, it was assumed that modeled takes of 
seals could occur to either of the respective species, thus the total 
number of modeled takes for seals was applied to each species.

[[Page 7943]]



     Table 6--Maximum Seasonal Marine Mammal Densities (Number of Animals per 100 km\2\) in the Survey Areas
----------------------------------------------------------------------------------------------------------------
                             Species                                Lease area       ECR north       ECR south
----------------------------------------------------------------------------------------------------------------
North Atlantic right whale......................................           0.087           0.068           0.073
Humpback whale..................................................           0.076           0.082           0.103
Fin whale.......................................................           0.100           0.080           0.057
Sei whale.......................................................           0.004           0.004           0.002
Minke whale.....................................................           0.055           0.017           0.019
Sperm Whale.....................................................           0.013           0.005           0.003
Long-finned pilot whale.........................................           0.036           0.012           0.009
Bottlenose dolphin (W. N. Atlantic Coastal Migratory)...........  ..............          21.675          58.524
Bottlenose dolphin (W. N. Atlantic Offshore)....................          21.752          21.675          58.524
Common dolphin..................................................           3.120           1.644           1.114
Atlantic white-sided dolphin....................................           0.487           0.213           0.152
Atlantic spotted dolphin........................................           0.076           0.059           0.021
Risso's dolphin.................................................           0.010           0.001           0.002
Harbor porpoise.................................................           2.904           7.357           2.209
Gray seal.......................................................           4.918           9.737           6.539
Harbor seal.....................................................           4.918           9.737           6.539
----------------------------------------------------------------------------------------------------------------
Note: All density values derived from Roberts et al. (2016, 2017, 2018). Densities shown represent the maximum
  seasonal density values calculated.

Take Calculation and Estimation

    Here we describe how the information provided above is brought 
together to produce a quantitative take estimate.
    In order to estimate the number of marine mammals predicted to be 
exposed to sound levels that would result in harassment, radial 
distances to predicted isopleths corresponding to harassment thresholds 
are calculated, as described above. Those distances are then used to 
calculate the area(s) around the HRG survey equipment predicted to be 
ensonified to sound levels that exceed harassment thresholds. The area 
estimated to be ensonified to relevant thresholds in a single day is 
then calculated, based on areas predicted to be ensonified around the 
HRG survey equipment and the estimated trackline distance traveled per 
day by the survey vessel.
    Atlantic Shores estimates that proposed surveys will achieve a 
maximum daily track line distance of 85 km per day during proposed HRG 
surveys. This distance accounts for the vessel traveling at 
approximately 3.5 kn and accounts for non-active survey periods. Based 
on the maximum estimated distance to the Level B harassment threshold 
of 372 m (Table 5) and the maximum estimated daily track line distance 
of 85 km, an area of 63.675 km\2\ would be ensonified to the Level B 
harassment threshold per day during Atlantic Shores' proposed surveys. 
As described above, this is a conservative estimate as it assumes the 
HRG source that results in the greatest isopleth distance to the Level 
B harassment threshold would be operated at all times during the entire 
survey, which may not ultimately occur.
    The number of marine mammals expected to be incidentally taken per 
day is then calculated by estimating the number of each species 
predicted to occur within the daily ensonified area (animals/km\2\), 
incorporating the estimated marine mammal densities as described above. 
Estimated numbers of each species taken per day are then multiplied by 
the total number of survey days (i.e., 350). The product is then 
rounded, to generate an estimate of the total number of instances of 
harassment expected for each species over the duration of the survey. A 
summary of this method is illustrated in the following formula:

Estimated Take = D x ZOI x # of days

    Where: D = average species density (per km\2\) and ZOI = maximum 
daily ensonified area to relevant thresholds.

Table 7--Numbers of Potential Incidental Take of Marine Mammals Proposed for Authorization and Proposed Takes as
                                           a Percentage of Population
----------------------------------------------------------------------------------------------------------------
                                                                                                  Total proposed
                                  Proposed takes     Estimated    Proposed takes    Total takes    instances of
             Species                by level A    takes by level    by level B     proposed for      take as a
                                    harassment     B harassment     harassment     authorization   percentage of
                                                                                                  population \1\
----------------------------------------------------------------------------------------------------------------
North Atlantic right whale......               0              18               9               9             2.2
Humpback whale..................               0              18              18              18             1.1
Fin whale.......................               0              20              20              20             0.4
Sei whale.......................               0               1               1               1             0.1
Minke whale.....................               0               9               9               9             0.4
Sperm whale \2\.................               0               2               3               3             0.1
Long-finned pilot whale.........               0               6               6               6             0.0
Bottlenose dolphin (W.N.                       0           1,102           1,102           1,102            16.6
 Atlantic Coastal Migratory)....
Bottlenose dolphin (W.N.                       0           5,113           5,113           5,113             8.1
 Atlantic Offshore).............
Common dolphin..................               0             544             544             544             0.6
Atlantic white-sided dolphin....               0              82              82              82             0.2
Atlantic spotted dolphin \2\....               0              14             100             100             0.2
Risso's Dolphin \2\.............               0               2               6               6             0.1
Harbor porpoise.................               0             115             115             115             0.3
Harbor seal.....................               0           1,404           1,404           1,404             1.9

[[Page 7944]]

 
Gray seal.......................               0           1,404           1,404           1,404             0.3
----------------------------------------------------------------------------------------------------------------
\1\ Calculations of percentage of stock taken are based on the best available abundance estimate as shown in
  Table 3. In most cases the best available abundance estimate is provided by Roberts et al. (2016, 2017, 2018),
  when available, to maintain consistency with density estimates derived from Roberts et al. (2016, 2017, 2018).
  For North Atlantic right whales the best available abundance estimate is derived from the North Atlantic Right
  Whale Consortium 2019 Annual Report Card (Pettis et al., 2019). For bottlenose dolphins and seals, Roberts et
  al. (2016, 2017, 2018) provides only a single abundance estimate and does not provide abundance estimates at
  the stock or species level (respectively), so abundance estimates used to estimate percentage of stock taken
  for bottlenose dolphins, gray and harbor seals are derived from NMFS SARs (Hayes et al., 2019).
\2\ The proposed number of authorized takes (Level B harassment only) for these species has been increased from
  the estimated take number to mean group size. Sources for mean group size estimates are as follows: Risso's
  dolphin: Palka et al. (2018); Atlantic spotted dolphin: Herzing and Perrin (2018); sperm whale: Barkaszi and
  Kelly (2019).

    The numbers of takes proposed for authorization are shown in Table 
7. Atlantic Shores did not request take authorization for four marine 
mammal species for which takes by Level B harassment were calculated 
based on the modeling approach described above: North Atlantic right, 
fin, sei, and sperm whale. Though the modeling resulted in estimates of 
take for these species as shown in Table 7, Atlantic Shores determined 
that take of these species could be avoided due to mitigation. However, 
given the size of modeled Level B harassment zone, the duration of the 
proposed surveys, and the fact that surveys will occur 24 hours per 
day, NMFS is not confident that all takes of these species could be 
avoided due to mitigation, and we therefore propose to authorize the 
number of Level B takes modeled for these species, as shown in Table 7. 
For fin, sei, and sperm whales we propose to authorize the number of 
takes modeled. For North Atlantic right whale, we propose to authorize 
50 percent of the takes modeled, as we expect that proposed mitigation 
measures, including a 500-m exclusion zone for right whales (which 
exceeds the Level B harassment zone by over 100-m) will be effective in 
reducing the potential for takes by Level B harassment.
    As described above, Roberts et al. (2018) produced density models 
for all seals and did not differentiate by seal species. The take 
calculation methodology as described above resulted in an estimate of 
1,404 total seal takes. Based on this estimate, Atlantic Shores 
requested 1,404 takes each of harbor and gray seals, based on an 
assumption that the modeled takes could occur to either of the 
respective species. We think this is a reasonable approach and 
therefore propose to authorize the take numbers as shown in Table 7.
    Using the take methodology approach described above, the take 
estimates for Risso's dolphin, spotted dolphin and sperm whale were 
less than the average group sizes estimated for these species (Table 
7). However, information on the social structures of these species 
indicates these species are likely to be encountered in groups. 
Therefore it is reasonable to conservatively assume that one group of 
each of these species will be taken during the proposed survey. We 
therefore propose to authorize the take of the average group size for 
these species to account for the possibility that the proposed survey 
encounters a group of either of these species (Table 7).
    As described above, NMFS has determined that the likelihood of take 
of any marine mammals in the form of Level A harassment occurring as a 
result of the proposed surveys is so low as to be discountable; 
therefore, we do not propose to authorize take of any marine mammals by 
Level A harassment.

Proposed Mitigation

    In order to issue an IHA under Section 101(a)(5)(D) of the MMPA, 
NMFS must set forth the permissible methods of taking pursuant to such 
activity, and other means of effecting the least practicable impact on 
such species or stock and its habitat, paying particular attention to 
rookeries, mating grounds, and areas of similar significance, and on 
the availability of such species or stock for taking for certain 
subsistence uses (latter not applicable for this action). NMFS 
regulations require applicants for incidental take authorizations to 
include information about the availability and feasibility (economic 
and technological) of equipment, methods, and manner of conducting such 
activity or other means of effecting the least practicable adverse 
impact upon the affected species or stocks and their habitat (50 CFR 
216.104(a)(11)).
    In evaluating how mitigation may or may not be appropriate to 
ensure the least practicable adverse impact on species or stocks and 
their habitat, as well as subsistence uses where applicable, we 
carefully consider two primary factors:
    (1) The manner in which, and the degree to which, the successful 
implementation of the measure(s) is expected to reduce impacts to 
marine mammals, marine mammal species or stocks, and their habitat. 
This considers the nature of the potential adverse impact being 
mitigated (likelihood, scope, range). It further considers the 
likelihood that the measure will be effective if implemented 
(probability of accomplishing the mitigating result if implemented as 
planned), the likelihood of effective implementation (probability 
implemented as planned), and;
    (2) The practicability of the measures for applicant 
implementation, which may consider such things as cost, impact on 
operations, and, in the case of a military readiness activity, 
personnel safety, practicality of implementation, and impact on the 
effectiveness of the military readiness activity.

Proposed Mitigation Measures

    NMFS proposes the following mitigation measures be implemented 
during Atlantic Shores's proposed marine site characterization surveys.

Marine Mammal Exclusion Zones, Buffer Zone and Monitoring Zone

    Marine mammal exclusion zones (EZ) would be established around the 
HRG

[[Page 7945]]

survey equipment and monitored by protected species observers (PSO) 
during HRG surveys as follows:
     A 500-m EZ would be required for North Atlantic right 
whales; and
     A 100-m EZ would be required for all other marine mammals.
    If a marine mammal is detected approaching or entering the EZs 
during the proposed survey, the vessel operator would adhere to the 
shutdown procedures described below. In addition to the EZs described 
above, PSOs would visually monitor a 200 m Buffer Zone. During use of 
acoustic sources with the potential to result in marine mammal 
harassment (i.e., anytime the acoustic source is active, including 
ramp-up), occurrences of marine mammals within the Buffer Zone (but 
outside the EZs) would be communicated to the vessel operator to 
prepare for potential shutdown of the acoustic source. The Buffer Zone 
is not applicable when the EZ is greater than 100 meters. PSOs would 
also be required to observe a 500-m Monitoring Zone and record the 
presence of all marine mammals within this zone. In addition, any 
marine mammals observed within 372 m of the HRG equipment would be 
documented by PSOs as taken by Level B harassment. The zones described 
above would be based upon the radial distance from the active equipment 
(rather than being based on distance from the vessel itself).

Visual Monitoring

    A minimum of one NMFS-approved PSO must be on duty and conducting 
visual observations at all times during daylight hours (i.e., from 30 
minutes prior to sunrise through 30 minutes following sunset) and 30 
minutes prior to and during nighttime ramp-ups of HRG equipment. Visual 
monitoring would begin no less than 30 minutes prior to ramp-up of HRG 
equipment and would continue until 30 minutes after use of the acoustic 
source ceases or until 30 minutes past sunset. PSOs would establish and 
monitor the applicable EZs, Buffer Zone and Monitoring Zone as 
described above. Visual PSOs would coordinate to ensure 360[deg] visual 
coverage around the vessel from the most appropriate observation posts, 
and would conduct visual observations using binoculars and the naked 
eye while free from distractions and in a consistent, systematic, and 
diligent manner. PSOs would estimate distances to marine mammals 
located in proximity to the vessel and/or relevant using range finders. 
It would be the responsibility of the Lead PSO on duty to communicate 
the presence of marine mammals as well as to communicate and enforce 
the action(s) that are necessary to ensure mitigation and monitoring 
requirements are implemented as appropriate. Position data would be 
recorded using hand-held or vessel global positioning system (GPS) 
units for each confirmed marine mammal sighting.

Pre-Clearance of the Exclusion Zones

    Prior to initiating HRG survey activities, Atlantic Shores would 
implement a 30-minute pre-clearance period. During pre-clearance 
monitoring (i.e., before ramp-up of HRG equipment begins), the Buffer 
Zone would also act as an extension of the 100 m EZ in that 
observations of marine mammals within the 200 m Buffer Zone would also 
preclude HRG operations from beginning. During this period, PSOs would 
ensure that no marine mammals are observed within 200 m of the survey 
equipment (500 m in the case of North Atlantic right whales). HRG 
equipment would not start up until this 200 m zone (or, 500 m zone in 
the case of North Atlantic right whales) is clear of marine mammals for 
at least 30 minutes. The vessel operator would notify a designated PSO 
of the planned start of HRG survey equipment as agreed upon with the 
lead PSO; the notification time should not be less than 30 minutes 
prior to the planned initiation of HRG equipment order to allow the 
PSOs time to monitor the EZs and Buffer Zone for the 30 minutes of pre-
clearance. A PSO conducting pre-clearance observations would be 
notified again immediately prior to initiating active HRG sources.
    If a marine mammal were observed within the relevant EZs or Buffer 
Zone during the pre-clearance period, initiation of HRG survey 
equipment would not begin until the animal(s) has been observed exiting 
the respective EZ or Buffer Zone, or, until an additional time period 
has elapsed with no further sighting (i.e., minimum 15 minutes for 
small odontocetes and seals, and 30 minutes for all other species). The 
pre-clearance requirement would include small delphinoids that approach 
the vessel (e.g., bow ride). PSOs would also continue to monitor the 
zone for 30 minutes after survey equipment is shut down or survey 
activity has concluded.

Ramp-Up of Survey Equipment

    When technically feasible, a ramp-up procedure would be used for 
geophysical survey equipment capable of adjusting energy levels at the 
start or re-start of survey activities. The ramp-up procedure would be 
used at the beginning of HRG survey activities in order to provide 
additional protection to marine mammals near the survey area by 
allowing them to detect the presence of the survey and vacate the area 
prior to the commencement of survey equipment operation at full power. 
Ramp-up of the survey equipment would not begin until the relevant EZs 
and Buffer Zone has been cleared by the PSOs, as described above. HEG 
equipment would be initiated at their lowest power output and would be 
incrementally increased to full power. If any marine mammals are 
detected within the EZs or Buffer Zone prior to or during ramp-up, the 
HRG equipment would be shut down (as described below).

Shutdown Procedures

    If an HRG source is active and a marine mammal is observed within 
or entering a relevant EZ (as described above) an immediate shutdown of 
the HRG survey equipment would be required. When shutdown is called for 
by a PSO, the acoustic source would be immediately deactivated and any 
dispute resolved only following deactivation. Any PSO on duty would 
have the authority to delay the start of survey operations or to call 
for shutdown of the acoustic source if a marine mammal is detected 
within the applicable EZ. The vessel operator would establish and 
maintain clear lines of communication directly between PSOs on duty and 
crew controlling the HRG source(s) to ensure that shutdown commands are 
conveyed swiftly while allowing PSOs to maintain watch. Subsequent 
restart of the HRG equipment would only occur after the marine mammal 
has either been observed exiting the relevant EZ, or, until an 
additional time period has elapsed with no further sighting of the 
animal within the relevant EZ (i.e., 15 minutes for small odontocetes 
and seals, and 30 minutes for large whales).
    Upon implementation of shutdown, the HRG source may be reactivated 
after the marine mammal that triggered the shutdown has been observed 
exiting the applicable EZ (i.e., the animal is not required to fully 
exit the Buffer Zone where applicable), or, following a clearance 
period of 15 minutes for small odontocetes and seals and 30 minutes for 
all other species with no further observation of the marine mammal(s) 
within the relevant EZ. If the HRG equipment shuts down for brief 
periods (i.e., less than 30 minutes) for reasons other than mitigation 
(e.g., mechanical or electronic failure) the equipment may be re-
activated as soon as is practicable at full operational level, without 
30 minutes of pre-clearance, only if PSOs have maintained constant 
visual observation during the shutdown and

[[Page 7946]]

no visual detections of marine mammals occurred within the applicable 
EZs and Buffer Zone during that time. For a shutdown of 30 minutes or 
longer, or if visual observation was not continued diligently during 
the pause, pre-clearance observation is required, as described above.
    The shutdown requirement would be waived for certain genera of 
small delphinids (i.e., Delphinus, Lagenorhynchus, Stenella, and 
Tursiops) under certain circumstances. If a delphinid(s) from these 
genera is visually detected approaching the vessel (i.e., to bow ride) 
or towed survey equipment, shutdown would not be required. If there is 
uncertainty regarding identification of a marine mammal species (i.e., 
whether the observed marine mammal(s) belongs to one of the delphinid 
genera for which shutdown is waived), PSOs would use best professional 
judgment in making the decision to call for a shutdown.
    If a species for which authorization has not been granted, or, a 
species for which authorization has been granted but the authorized 
number of takes have been met, approaches or is observed within the 
area encompassing the Level B harassment isopleth (372 m), shutdown 
would occur.

Vessel Strike Avoidance

    Vessel strike avoidance measures would include, but would not be 
limited to, the following, except under circumstances when complying 
with these requirements would put the safety of the vessel or crew at 
risk:
     All vessel operators and crew will maintain vigilant watch 
for cetaceans and pinnipeds, and slow down or stop their vessel to 
avoid striking these protected species;
     All survey vessels, regardless of size, must observe a 10-
knot speed restriction in specific areas designated by NMFS for the 
protection of North Atlantic right whales from vessel strikes: Any DMAs 
when in effect, and the Mid-Atlantic SMA off the entrance to New York 
harbor (from November 1 through April 30);
     All vessel operators will reduce vessel speed to 10 knots 
(18.5 km/hr) or less when any large whale, any mother/calf pairs, large 
assemblages of non-delphinoid cetaceans are observed near (within 100 m 
(330 ft)) an underway vessel;
     All survey vessels will maintain a separation distance of 
500 m (1640 ft) or greater from any sighted North Atlantic right whale;
     If underway, vessels must steer a course away from any 
sighted North Atlantic right whale at 10 knots (18.5 km/hr) or less 
until the 500 m (1640 ft) minimum separation distance has been 
established. If a North Atlantic right whale is sighted in a vessel's 
path, or within 100 m (330 ft) to an underway vessel, the underway 
vessel must reduce speed and shift the engine to neutral. Engines will 
not be engaged until the North Atlantic right whale has moved outside 
of the vessel's path and beyond 100 m. If stationary, the vessel must 
not engage engines until the North Atlantic right whale has moved 
beyond 100 m;
     All vessels will maintain a separation distance of 100 m 
(330 ft) or greater from any sighted non-delphinoid cetacean. If 
sighted, the vessel underway must reduce speed and shift the engine to 
neutral, and must not engage the engines until the non-delphinoid 
cetacean has moved outside of the vessel's path and beyond 100 m. If a 
survey vessel is stationary, the vessel will not engage engines until 
the non-delphinoid cetacean has moved out of the vessel's path and 
beyond 100 m;
     All vessels will maintain a separation distance of 50 m 
(164 ft) or greater from any sighted delphinoid cetacean. Any vessel 
underway remain parallel to a sighted delphinoid cetacean's course 
whenever possible, and avoid excessive speed or abrupt changes in 
direction. Any vessel underway reduces vessel speed to 10 knots (18.5 
km/hr) or less when pods (including mother/calf pairs) or large 
assemblages of delphinoid cetaceans are observed. Vessels may not 
adjust course and speed until the delphinoid cetaceans have moved 
beyond 50 m and/or the abeam of the underway vessel;
     All vessels will maintain a separation distance of 50 m 
(164 ft) or greater from any sighted pinniped; and
     All vessels underway will not divert or alter course in 
order to approach any whale, delphinoid cetacean, or pinniped. Any 
vessel underway will avoid excessive speed or abrupt changes in 
direction to avoid injury to the sighted cetacean or pinniped.
    Atlantic Shores will ensure that vessel operators and crew maintain 
a vigilant watch for marine mammals by slowing down or stopping the 
vessel to avoid striking marine mammals. Project-specific training will 
be conducted for all vessel crew prior to the start of survey 
activities. Confirmation of the training and understanding of the 
requirements will be documented on a training course log sheet. Signing 
the log sheet will certify that the crew members understand and will 
comply with the necessary requirements throughout the survey 
activities.

Seasonal Operating Requirements

    As described above, the section of the proposed survey area 
partially overlaps with a portion of a North Atlantic right whale SMA 
off the port of New York/New Jersey. This SMA is active from November 1 
through April 30 of each year. All survey vessels, regardless of 
length, would be required to adhere to vessel speed restrictions (<10 
kn) when operating within the SMA during times when the SMA is active. 
In addition, between watch shifts, members of the monitoring team would 
consult NMFS' North Atlantic right whale reporting systems for the 
presence of North Atlantic right whales throughout survey operations. 
Members of the monitoring team would also monitor the NMFS North 
Atlantic right whale reporting systems for the establishment of Dynamic 
Management Areas (DMA). If NMFS should establish a DMA in the survey 
area while surveys are underway, Atlantic Shores would contact NMFS 
within 24 hours of the establishment of the DMA to determine whether 
alteration of survey activities was warranted to avoid right whales to 
the extent possible.
    The proposed mitigation measures are designed to avoid the already 
low potential for injury in addition to some instances of Level B 
harassment, and to minimize the potential for vessel strikes. Further, 
we believe the proposed mitigation measures are practicable for the 
applicant to implement. Atlantic Shores has proposed additional 
mitigation measures in addition to the measures described above; for 
information on the measures proposed by Atlantic Shores, see Section 11 
of the IHA application.
    There are no known marine mammal rookeries or mating or calving 
grounds in the survey area that would otherwise potentially warrant 
increased mitigation measures for marine mammals or their habitat (or 
both). The proposed survey would occur in an area that has been 
identified as a biologically important area for migration for North 
Atlantic right whales. However, given the small spatial extent of the 
survey area relative to the substantially larger spatial extent of the 
right whale migratory area, the survey is not expected to appreciably 
reduce migratory habitat nor to negatively impact the migration of 
North Atlantic right whales, thus mitigation to address the proposed 
survey's occurrence in North Atlantic right whale migratory habitat is 
not warranted.
    Based on our evaluation of the applicant's proposed measures, as 
well as other measures considered by NMFS,

[[Page 7947]]

NMFS has preliminarily determined that the proposed mitigation measures 
provide the means effecting the least practicable impact on the 
affected species or stocks and their habitat, paying particular 
attention to rookeries, mating grounds, and areas of similar 
significance.

Proposed Monitoring and Reporting

    In order to issue an IHA for an activity, Section 101(a)(5)(D) of 
the MMPA states that NMFS must set forth requirements pertaining to the 
monitoring and reporting of such taking. The MMPA implementing 
regulations at 50 CFR 216.104(a)(13) indicate that requests for 
authorizations must include the suggested means of accomplishing the 
necessary monitoring and reporting that will result in increased 
knowledge of the species and of the level of taking or impacts on 
populations of marine mammals that are expected to be present in the 
proposed action area. Effective reporting is critical both to 
compliance as well as ensuring that the most value is obtained from the 
required monitoring.
    Monitoring and reporting requirements prescribed by NMFS should 
contribute to improved understanding of one or more of the following:
     Occurrence of marine mammal species or stocks in the area 
in which take is anticipated (e.g., presence, abundance, distribution, 
density).
     Nature, scope, or context of likely marine mammal exposure 
to potential stressors/impacts (individual or cumulative, acute or 
chronic), through better understanding of: (1) Action or environment 
(e.g., source characterization, propagation, ambient noise); (2) 
affected species (e.g., life history, dive patterns); (3) co-occurrence 
of marine mammal species with the action; or (4) biological or 
behavioral context of exposure (e.g., age, calving or feeding areas).
     Individual marine mammal responses (behavioral or 
physiological) to acoustic stressors (acute, chronic, or cumulative), 
other stressors, or cumulative impacts from multiple stressors.
     How anticipated responses to stressors impact either: (1) 
Long-term fitness and survival of individual marine mammals; or (2) 
populations, species, or stocks.
     Effects on marine mammal habitat (e.g., marine mammal prey 
species, acoustic habitat, or other important physical components of 
marine mammal habitat).
     Mitigation and monitoring effectiveness.

Proposed Monitoring Measures

    As described above, visual monitoring would be performed by 
qualified and NMFS-approved PSOs. Atlantic Shores would use 
independent, dedicated, trained PSOs, meaning that the PSOs must be 
employed by a third-party observer provider, must have no tasks other 
than to conduct observational effort, collect data, and communicate 
with and instruct relevant vessel crew with regard to the presence of 
marine mammals and mitigation requirements (including brief alerts 
regarding maritime hazards), and must have successfully completed an 
approved PSO training course appropriate for their designated task. 
Atlantic Shores would provide resumes of all proposed PSOs (including 
alternates) to NMFS for review and approval at least 45 days prior to 
the start of survey operations.
    During survey operations (e.g., any day on which use of an HRG 
source is planned to occur), a minimum of one PSO must be on duty and 
conducting visual observations at all times on all active survey 
vessels during daylight hours (i.e., from 30 minutes prior to sunrise 
through 30 minutes following sunset) and nighttime ramp-ups of HRG 
equipment. Visual monitoring would begin no less than 30 minutes prior 
to initiation of HRG survey equipment and would continue until one hour 
after use of the acoustic source ceases or until 30 minutes past 
sunset. PSOs would coordinate to ensure 360[deg] visual coverage around 
the vessel from the most appropriate observation posts, and would 
conduct visual observations using binoculars and the naked eye while 
free from distractions and in a consistent, systematic, and diligent 
manner. PSOs may be on watch for a maximum of four consecutive hours 
followed by a break of at least two hours between watches and may 
conduct a maximum of 12 hours of observation per 24-hour period. In 
cases where multiple vessels are surveying concurrently, any 
observations of marine mammals would be communicated to PSOs on all 
survey vessels.
    PSOs would be equipped with binoculars and have the ability to 
estimate distances to marine mammals located in proximity to the vessel 
and/or exclusion zone using range finders. Reticulated binoculars will 
also be available to PSOs for use as appropriate based on conditions 
and visibility to support the monitoring of marine mammals. Position 
data would be recorded using hand-held or vessel GPS units for each 
sighting. Observations would take place from the highest available 
vantage point on the survey vessel. General 360-degree scanning would 
occur during the monitoring periods, and target scanning by the PSO 
would occur when alerted of a marine mammal presence.
    During good conditions (e.g., daylight hours; Beaufort sea state 
(BSS) 3 or less), to the maximum extent practicable, PSOs would conduct 
observations when the acoustic source is not operating for comparison 
of sighting rates and behavior with and without use of the acoustic 
source and between acquisition periods. Any observations of marine 
mammals by crew members aboard any vessel associated with the survey 
would be relayed to the PSO team.
    Data on all PSO observations would be recorded based on standard 
PSO collection requirements. This would include dates, times, and 
locations of survey operations; dates and times of observations, 
location and weather; details of marine mammal sightings (e.g., 
species, numbers, behavior); and details of any observed marine mammal 
take that occurs (e.g., noted behavioral disturbances).

Proposed Reporting Measures

    Within 90 days after completion of survey activities, a final 
technical report will be provided to NMFS that fully documents the 
methods and monitoring protocols, summarizes the data recorded during 
monitoring, summarizes the number of marine mammals estimated to have 
been taken during survey activities (by species, when known), 
summarizes the mitigation actions taken during surveys (including what 
type of mitigation and the species and number of animals that prompted 
the mitigation action, when known), and provides an interpretation of 
the results and effectiveness of all mitigation and monitoring. Any 
recommendations made by NMFS must be addressed in the final report 
prior to acceptance by NMFS.
    In addition to the final technical report, Atlantic Shores will 
provide the reports described below as necessary during survey 
activities. In the unanticipated event that Atlantic Shores' activities 
lead to an injury (Level A harassment) of a marine mammal, Atlantic 
Shores would immediately cease the specified activities and report the 
incident to the NMFS Office of Protected Resources Permits and 
Conservation Division and the NMFS New England/Mid-Atlantic Stranding 
Coordinator. The report would include the following information:
     Time, date, and location (latitude/longitude) of the 
incident;
     Name and type of vessel involved;

[[Page 7948]]

     Vessel's speed during and leading up to the incident;
     Description of the incident;
     Status of all sound source use in the 24 hours preceding 
the incident;
     Water depth;
     Environmental conditions (e.g., wind speed and direction, 
Beaufort sea state, cloud cover, and visibility);
     Description of all marine mammal observations in the 24 
hours preceding the incident;
     Species identification or description of the animal(s) 
involved;
     Fate of the animal(s); and
     Photographs or video footage of the animal(s) (if 
equipment is available).
    Activities would not resume until NMFS is able to review the 
circumstances of the event. NMFS would work with Atlantic Shores to 
minimize reoccurrence of such an event in the future. Atlantic Shores 
would not resume activities until notified by NMFS.
    In the event that Atlantic Shores personnel discover an injured or 
dead marine mammal, Atlantic Shores would report the incident to the 
OPR Permits and Conservation Division and the NMFS New England/Mid-
Atlantic Stranding Coordinator as soon as feasible. The report would 
include the following information:
     Time, date, and location (latitude/longitude) of the first 
discovery (and updated location information if known and applicable);
     Species identification (if known) or description of the 
animal(s) involved;
     Condition of the animal(s) (including carcass condition if 
the animal is dead);
     Observed behaviors of the animal(s), if alive;
     If available, photographs or video footage of the 
animal(s); and
     General circumstances under which the animal was 
discovered.
    In the unanticipated event of a ship strike of a marine mammal by 
any vessel involved in the activities covered by the IHA, Atlantic 
Shores would report the incident to the NMFS OPR Permits and 
Conservation Division and the NMFS New England/Mid-Atlantic Stranding 
Coordinator as soon as feasible. The report would include the following 
information:
     Time, date, and location (latitude/longitude) of the 
incident;
     Species identification (if known) or description of the 
animal(s) involved;
     Vessel's speed during and leading up to the incident;
     Vessel's course/heading and what operations were being 
conducted (if applicable);
     Status of all sound sources in use;
     Description of avoidance measures/requirements that were 
in place at the time of the strike and what additional measures were 
taken, if any, to avoid strike;
     Environmental conditions (e.g., wind speed and direction, 
Beaufort sea state, cloud cover, visibility) immediately preceding the 
strike;
     Estimated size and length of animal that was struck;
     Description of the behavior of the marine mammal 
immediately preceding and following the strike;
     If available, description of the presence and behavior of 
any other marine mammals immediately preceding the strike;
     Estimated fate of the animal (e.g., dead, injured but 
alive, injured and moving, blood or tissue observed in the water, 
status unknown, disappeared); and
     To the extent practicable, photographs or video footage of 
the animal(s).

Negligible Impact Analysis and Determination

    NMFS has defined negligible impact as an impact resulting from the 
specified activity that cannot be reasonably expected to, and is not 
reasonably likely to, adversely affect the species or stock through 
effects on annual rates of recruitment or survival (50 CFR 216.103). A 
negligible impact finding is based on the lack of likely adverse 
effects on annual rates of recruitment or survival (i.e., population-
level effects). An estimate of the number of takes alone is not enough 
information on which to base an impact determination. In addition to 
considering estimates of the number of marine mammals that might be 
``taken'' through harassment, NMFS considers other factors, such as the 
likely nature of any responses (e.g., intensity, duration), the context 
of any responses (e.g., critical reproductive time or location, 
migration), as well as effects on habitat, and the likely effectiveness 
of the mitigation. We also assess the number, intensity, and context of 
estimated takes by evaluating this information relative to population 
status. Consistent with the 1989 preamble for NMFS's implementing 
regulations (54 FR 40338; September 29, 1989), the impacts from other 
past and ongoing anthropogenic activities are incorporated into this 
analysis via their impacts on the environmental baseline (e.g., as 
reflected in the regulatory status of the species, population size and 
growth rate where known, ongoing sources of human-caused mortality, or 
ambient noise levels).
    To avoid repetition, our analysis applies to all the species listed 
in Table 2, given that NMFS expects the anticipated effects of the 
proposed survey to be similar in nature.
    NMFS does not anticipate that serious injury or mortality would 
occur as a result of Atlantic Shores's proposed survey, even in the 
absence of proposed mitigation, thus the proposed authorization does 
not authorize any serious injury or mortality. As discussed in the 
Potential Effects of Specified Activities on Marine Mammals and their 
Habitat section, non-auditory physical effects and vessel strike are 
not expected to occur. Additionally and as discussed previously, given 
the nature of activity and sounds sources used and especially in 
consideration of the required mitigation, Level A harassment is neither 
anticipated nor authorized. We expect that all potential takes would be 
in the form of short-term Level B behavioral harassment in the form of 
temporary avoidance of the area, reactions that are considered to be of 
low severity and with no lasting biological consequences (e.g., 
Southall et al., 2007).
    Effects on individuals that are taken by Level B harassment, on the 
basis of reports in the literature as well as monitoring from other 
similar activities, will likely be limited to reactions such as 
increased swimming speeds, increased surfacing time, or decreased 
foraging (if such activity were occurring) (e.g., Thorson and Reyff, 
2006; HDR, Inc., 2012; Lerma, 2014). Most likely, individuals will 
simply move away from the sound source and temporarily avoid the area 
where the survey is occurring. We expect that any avoidance of the 
survey area by marine mammals would be temporary in nature and that any 
marine mammals that avoid the survey area during the survey activities 
would not be permanently displaced. Even repeated Level B harassment of 
some small subset of an overall stock is unlikely to result in any 
significant realized decrease in viability for the affected 
individuals, and thus would not result in any adverse impact to the 
stock as a whole. Instances of more severe behavioral harassment are 
expected to be minimized by proposed mitigation and monitoring 
measures.
    In addition to being temporary and short in overall duration, the 
acoustic footprint of the proposed survey is small relative to the 
overall distribution of the animals in the area and their use of the 
area. Feeding behavior is not likely to be significantly impacted. Prey 
species are mobile and are broadly distributed throughout the project 
area; therefore, marine mammals that may be

[[Page 7949]]

temporarily displaced during survey activities are expected to be able 
to resume foraging once they have moved away from areas with disturbing 
levels of underwater noise. Because of the temporary nature of the 
disturbance and the availability of similar habitat and resources in 
the surrounding area, the impacts to marine mammals and the food 
sources that they utilize are not expected to cause significant or 
long-term consequences for individual marine mammals or their 
populations.
    There are no rookeries, mating or calving grounds known to be 
biologically important to marine mammals within the proposed survey 
area and there are no feeding areas known to be biologically important 
to marine mammals within the proposed survey area. There is no 
designated critical habitat for any ESA-listed marine mammals in the 
proposed survey area. The proposed survey area overlaps a portion of a 
biologically important migratory area for North Atlantic right whales 
(effective March-April and November-December) that extends from 
Massachusetts to Florida (LaBrecque, et al., 2015). Off the coasts of 
Delaware and Maryland, this biologically important migratory area 
extends from the coast to beyond the shelf break. Due to the fact that 
that the proposed survey is temporary and the spatial extent of sound 
produced by the survey would very small relative to the spatial extent 
of the available migratory habitat in the area, right whale migration 
is not expected to be impacted by the proposed survey.
    As described above, North Atlantic right, humpback, and minke 
whales, and gray and harbor seals are experiencing ongoing UMEs. For 
North Atlantic right whales, as described above, no injury as a result 
of the proposed project is expected or proposed for authorization, and 
Level B harassment takes of right whales are expected to be in the form 
of avoidance of the immediate area of the proposed survey. In addition, 
the number of takes proposed for authorization above the Level B 
harassment threshold are relatively low (i.e., 18), and the take 
numbers proposed for authorization do not account for the proposed 
mitigation measures, which would require shutdown of all survey 
equipment upon observation of a right whale prior to their entering the 
zone that would be ensonified above the Level B harassment threshold. 
As no injury or mortality is expected or proposed for authorization, 
and Level B harassment of North Atlantic right whales will be reduced 
to the level of least practicable adverse impact through use of 
proposed mitigation measures, the proposed authorized takes of right 
whales would not exacerbate or compound the ongoing UME in any way.
    Similarly, no injury or mortality is expected or proposed for 
authorization for any of the other species with UMEs, Level B 
harassment will be reduced to the level of least practicable adverse 
impact through use of proposed mitigation measures, and the proposed 
authorized takes would not exacerbate or compound the ongoing UMEs. For 
minke whales, although the ongoing UME is under investigation (as 
occurs for all UMEs), this event does not provide cause for concern 
regarding population level impacts, as the likely population abundance 
is greater than 20,000 whales. Even though the PBR value is based on an 
abundance for U.S. waters that is negatively biased and a small 
fraction of the true population abundance, annual M/SI does not exceed 
the calculated PBR value for minke whales. With regard to humpback 
whales, the UME does not yet provide cause for concern regarding 
population-level impacts. Despite the UME, the relevant population of 
humpback whales (the West Indies breeding population, or distinct 
population segment (DPS)) remains healthy. The West Indies DPS, which 
consists of the whales whose breeding range includes the Atlantic 
margin of the Antilles from Cuba to northern Venezuela, and whose 
feeding range primarily includes the Gulf of Maine, eastern Canada, and 
western Greenland, was delisted. The status review identified harmful 
algal blooms, vessel collisions, and fishing gear entanglements as 
relevant threats for this DPS, but noted that all other threats are 
considered likely to have no or minor impact on population size or the 
growth rate of this DPS (Bettridge et al., 2015). As described in 
Bettridge et al. (2015), the West Indies DPS has a substantial 
population size (i.e., approximately 10,000; Stevick et al., 2003; 
Smith et al., 1999; Bettridge et al., 2015), and appears to be 
experiencing consistent growth. With regard to gray and harbor seals, 
although the ongoing UME is under investigation, the UME does not yet 
provide cause for concern regarding population-level impacts to any of 
these stocks. For harbor seals, the population abundance is over 75,000 
and annual M/SI (345) is well below PBR (2,006) (Hayes et al., 2018). 
For gray seals, the population abundance in the United States is over 
27,000, with an estimated abundance including seals in Canada of 
approximately 505,000, and abundance is likely increasing in the U.S. 
Atlantic EEZ as well as in Canada (Hayes et al., 2018).
    The proposed mitigation measures are expected to reduce the number 
and/or severity of takes by (1) giving animals the opportunity to move 
away from the sound source before HRG survey equipment reaches full 
energy; (2) preventing animals from being exposed to sound levels that 
may otherwise result in injury or more severe behavioral responses. 
Additional vessel strike avoidance requirements will further mitigate 
potential impacts to marine mammals during vessel transit to and within 
the survey area.
    NMFS concludes that exposures to marine mammal species and stocks 
due to Atlantic Shores's proposed survey would result in only short-
term (temporary and short in duration) effects to individuals exposed. 
Marine mammals may temporarily avoid the immediate area, but are not 
expected to permanently abandon the area. Major shifts in habitat use, 
distribution, or foraging success are not expected. NMFS does not 
anticipate the proposed take estimates to impact annual rates of 
recruitment or survival.
    In summary and as described above, the following factors primarily 
support our preliminary determination that the impacts resulting from 
this activity are not expected to adversely affect the species or stock 
through effects on annual rates of recruitment or survival:
     No mortality, serious injury, or Level A harassment is 
anticipated or authorized;
     The anticipated impacts of the proposed activity on marine 
mammals would primarily be in the form of temporary behavioral changes 
due to avoidance of the area around the survey vessel;
     The availability of alternate areas of similar habitat 
value (for foraging, etc.) for marine mammals that may temporarily 
vacate the survey area during the proposed survey to avoid exposure to 
sounds from the activity;
     The proposed project area does not contain known areas of 
significance for mating or calving;
     Effects on species that serve as prey species for marine 
mammals from the proposed survey would be minor and temporary and would 
not be expected to reduce the availability of prey or to affect marine 
mammal feeding;
     The proposed mitigation measures, including visual and 
acoustic monitoring, exclusion zones, and shutdown measures, are 
expected to minimize potential impacts to marine mammals.
    Based on the analysis contained herein of the likely effects of the

[[Page 7950]]

specified activity on marine mammals and their habitat, and taking into 
consideration the implementation of the proposed monitoring and 
mitigation measures, NMFS preliminarily finds that the total marine 
mammal take from the proposed activity will have a negligible impact on 
all affected marine mammal species or stocks.

Small Numbers

    As noted above, only small numbers of incidental take may be 
authorized under sections 101(a)(5)(A) and (D) of the MMPA for 
specified activities other than military readiness activities. The MMPA 
does not define small numbers and so, in practice, where estimated 
numbers are available, NMFS compares the number of individuals taken to 
the most appropriate estimation of abundance of the relevant species or 
stock in our determination of whether an authorization is limited to 
small numbers of marine mammals. Additionally, other qualitative 
factors may be considered in the analysis, such as the temporal or 
spatial scale of the activities.
    We propose to authorize incidental take of 16 marine mammal stocks. 
The total amount of taking proposed for authorization is less than 17 
percent for one of these stocks, and less than 9 percent for all 
remaining stocks (Table 7), which we consider to be relatively small 
percentages and we preliminarily find are small numbers of marine 
mammals relative to the estimated overall population abundances for 
those stocks.
    Based on the analysis contained herein of the proposed activity 
(including the proposed mitigation and monitoring measures) and the 
anticipated take of marine mammals, NMFS preliminarily finds that small 
numbers of marine mammals will be taken relative to the population size 
of all affected species or stocks.

Unmitigable Adverse Impact Analysis and Determination

    There are no relevant subsistence uses of the affected marine 
mammal stocks or species implicated by this action. Therefore, NMFS has 
determined that the total taking of affected species or stocks would 
not have an unmitigable adverse impact on the availability of such 
species or stocks for taking for subsistence purposes.

Endangered Species Act

    Section 7(a)(2) of the Endangered Species Act of 1973 (16 U.S.C. 
1531 et seq.) requires that each Federal agency insure that any action 
it authorizes, funds, or carries out is not likely to jeopardize the 
continued existence of any endangered or threatened species or result 
in the destruction or adverse modification of designated critical 
habitat. To ensure ESA compliance for the issuance of IHAs, NMFS 
consults internally, in this case with the NMFS Greater Atlantic 
Regional Fisheries Office (GARFO), whenever we propose to authorize 
take for endangered or threatened species.
    The NMFS Office of Protected Resources is proposing to authorize 
the incidental take of four species of marine mammals which are listed 
under the ESA: The North Atlantic right, fin, sei, and sperm whale. 
BOEM consulted with NMFS GARFO under section 7 of the ESA on commercial 
wind lease issuance and site assessment activities on the Atlantic 
Outer Continental Shelf in Massachusetts, Rhode Island, New York and 
New Jersey Wind Energy Areas. NMFS GARFO issued a Biological Opinion 
concluding that these activities may adversely affect but are not 
likely to jeopardize the continued existence of the North Atlantic 
right, fin, sei and sperm whale. The Biological Opinion can be found 
online at: www.fisheries.noaa.gov/national/marine-mammal-protection/incidental-take-authorizations-other-energy-activities-renewable. NMFS 
will conclude the ESA section 7 consultation prior to reaching a 
determination regarding the proposed issuance of the authorization. If 
the IHA is issued, the Biological Opinion may be amended to include an 
incidental take statement for these marine mammal species, as 
appropriate.

Proposed Authorization

    As a result of these preliminary determinations, NMFS proposes to 
issue an IHA to Atlantic Shores for conducting marine site 
characterization activities offshore of New York and New Jersey for a 
period of one year, provided the previously mentioned mitigation, 
monitoring, and reporting requirements are incorporated. A draft of the 
proposed IHA can be found at: www.fisheries.noaa.gov/permit/incidental-take-authorizations-under-marine-mammal-protection-act.

Request for Public Comments

    We request comment on our analyses, the proposed authorization, and 
any other aspect of this Notice of Proposed IHA for Atlantic Shores' 
proposed activity. We also request at this time comment on the 
potential Renewal of this proposed IHA as described in the paragraph 
below. Please include with your comments any supporting data or 
literature citations to help inform decisions on the request for this 
IHA or a subsequent Renewal IHA.
    On a case-by-case basis, NMFS may issue a one-year Renewal IHA 
following notice to the public providing an additional 15 days for 
public comments when (1) up to another year of identical or nearly 
identical, or nearly identical, activities as described in the 
Specified Activities section of this notice is planned or (2) the 
activities as described in the Specified Activities section of this 
notice would not be completed by the time the IHA expires and a Renewal 
would allow for completion of the activities beyond that described in 
the Dates and Duration section of this notice, provided all of the 
following conditions are met:
     A request for renewal is received no later than 60 days 
prior to the needed Renewal IHA effective date (recognizing that the 
Renewal IHA expiration date cannot extend beyond one year from 
expiration of the initial IHA).
     The request for renewal must include the following:
    (1) An explanation that the activities to be conducted under the 
requested Renewal IHA are identical to the activities analyzed under 
the initial IHA, are a subset of the activities, or include changes so 
minor (e.g., reduction in pile size) that the changes do not affect the 
previous analyses, mitigation and monitoring requirements, or take 
estimates (with the exception of reducing the type or amount of take).
    (2) A preliminary monitoring report showing the results of the 
required monitoring to date and an explanation showing that the 
monitoring results do not indicate impacts of a scale or nature not 
previously analyzed or authorized.
     Upon review of the request for Renewal, the status of the 
affected species or stocks, and any other pertinent information, NMFS 
determines that there are no more than minor changes in the activities, 
the mitigation and monitoring measures will remain the same and 
appropriate, and the findings in the initial IHA remain valid.

    Dated: February 5, 2020.
Donna Wieting,
Director, Office of Protected Resources, National Marine Fisheries 
Service.
[FR Doc. 2020-02661 Filed 2-11-20; 8:45 am]
 BILLING CODE 3510-22-P


This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.