Taking of Marine Mammals Incidental to Specific Activities; Taking of Marine Mammals Incidental To Pile Driving Activities During Construction of a Ferry Terminal at Seaplane Lagoon, Alameda Point, San Francisco, California, 34347-34371 [2019-15299]
Download as PDF
Federal Register / Vol. 84, No. 138 / Thursday, July 18, 2019 / Notices
parties, at the rate for the intermediate
reseller, if available, or at the all-others
rate.20 In this review, we have
preliminarily calculated a weightedaverage dumping margin of 14.73
percent for Borusan. In addition, we
have preliminarily calculated a de
minimis margin for Toscelik, the other
mandatory respondent. When only one
weighted-average dumping margin for
the individually investigated
respondent is not zero, de minimis, or
based entirely on facts available, the rate
for companies that we did not examine
will be equal to that single weightedaverage dumping margin. Accordingly,
we have preliminarily assigned to Kale
Baglanti, Noksel Selik, and Cinar Boru,
companies not individually examined
in this review, a margin of 14.74
percent, which is the all-others rate
established in the less-than-fair-value
investigation.
khammond on DSKBBV9HB2PROD with NOTICES
Cash Deposit Requirements
The following cash deposit
requirements will be effective upon
publication of the notice of final results
of administrative review for all
shipments of welded pipe and tube from
Turkey entered, or withdrawn from
warehouse, for consumption on or after
the date of publication of the final
results of this administrative review, as
provided for by section 751(a)(2)(C) of
the Act: (1) The cash deposit rate for the
companies under review will be the rate
established in the final results of this
review (except, if the rate is zero or de
minimis, no cash deposit will be
required); (2) for merchandise exported
by manufacturers or exporters not
covered in this review but covered in a
prior segment of the proceeding, the
cash deposit rate will continue to be the
company-specific rate published for the
most recently completed segment of this
proceeding in which the manufacturer
or exporter participated; (3) if the
exporter is not a firm covered in this
review, a prior review, or the less-thanfair-value investigation, but the
manufacturer is, the cash deposit rate
will be the rate established for the most
recently completed segment of the
proceeding for the manufacturer of the
merchandise; and (4) the cash deposit
rate for all other manufacturers or
exporters will continue to be 14.74
percent ad valorem, the all-others rate
established in the less-than-fair-value
20 See, e.g., Magnesium Metal from the Russian
Federation: Preliminary Results of Antidumping
Duty Administrative Review, 75 FR 26922, 26923
(May 13, 2010), unchanged in Magnesium Metal
from the Russian Federation: Final Results of
Antidumping Duty Administrative Review, 75 FR
56989 (September 17, 2010).
VerDate Sep<11>2014
17:56 Jul 17, 2019
Jkt 247001
investigation.21 These cash deposit
requirements, when imposed, shall
remain in effect until further notice.
Disclosure and Public Comment
Commerce intends to disclose the
calculations used in our analysis to
interested parties in this review within
five days of the date of publication of
this notice in accordance with 19 CFR
351.224(b). Interested parties are invited
to comment on the preliminary results
of this review. Pursuant to 19 CFR
351.309(c)(1)(ii), interested parties may
submit case briefs no later than 30 days
after the date of publication of this
notice. Rebuttal briefs, limited to issues
raised in the case briefs, may be filed no
later than five days after the time limit
for filing case briefs.22 Parties who
submit case briefs or rebuttal briefs in
this proceeding are requested to submit
with each brief: (1) A statement of the
issue, (2) a brief summary of the
argument, and (3) a table of
authorities.23 Executive summaries
should be limited to five pages total,
including footnotes.24 Case and rebuttal
briefs should be filed using ACCESS.25
Pursuant to 19 CFR 351.310(c), any
interested party may request a hearing
within 30 days of the publication of this
notice in the Federal Register. If a
hearing is requested, Commerce will
notify interested parties of the hearing
schedule. Interested parties who wish to
request a hearing, or to participate if one
is requested, must submit a written
request to the Assistant Secretary for
Enforcement and Compliance, filed
electronically via ACCESS within 30
days after the date of publication of this
notice. Requests should contain: (1) The
party’s name, address, and telephone
number; (2) the number of participants;
and (3) a list of the issues to be
discussed. Issues raised in the hearing
will be limited to those raised in the
respective case and rebuttal briefs. If a
request for a hearing is made, parties
will be notified of the time and date for
the hearing to be held at the U.S.
Department of Commerce, 1401
Constitution Avenue NW, Washington,
DC 20230.
We intend to issue the final results of
this administrative review, including
the results of our analysis of issues
raised by the parties in the written
comments, within 120 days of
publication of these preliminary results
21 See Antidumping Duty Order; Welded Carbon
Steel Standard Pipe and Tube Products from
Turkey, 51 FR 17784 (May 15, 1986).
22 See 19 CFR 351.309(d)(1).
23 See 19 CFR 351.309(c)(2) and (d)(2).
24 Id.
25 See 19 CFR 351.303.
PO 00000
Frm 00016
Fmt 4703
Sfmt 4703
34347
in the Federal Register, unless
otherwise extended.26
Notification to Importers
This notice also serves as a
preliminary reminder to importers of
their responsibility under 19 CFR
351.402(f) to file a certificate regarding
the reimbursement of antidumping
duties prior to liquidation of the
relevant entries during this review
period. Failure to comply with this
requirement could result in Commerce’s
presumption that reimbursement of
antidumping duties occurred and the
subsequent assessment of double
antidumping duties.
Notification to Interested Parties
These preliminary results of
administrative review are issued and
published in accordance with sections
751(a)(1) and 777(i)(1) of the Act and 19
CFR 351.221(b)(4).
Dated: July 10, 2019.
Jeffrey I. Kessler,
Assistant Secretary for Enforcement and
Compliance.
Appendix—List of Topics Discussed in
the Preliminary Decision Memorandum
I. Summary
II. Background
III. Scope of the Order
IV. Rates for Respondents Not Selected for
Individual Examination
V. Preliminary Determination of No
Shipments
VI. Discussion of the Methodology
VII. Currency Conversion
VIII. Recommendation
[FR Doc. 2019–15193 Filed 7–17–19; 8:45 am]
BILLING CODE 3510–DS–P
DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric
Administration
RIN 0648–XR009
Taking of Marine Mammals Incidental
to Specific Activities; Taking of Marine
Mammals Incidental To Pile Driving
Activities During Construction of a
Ferry Terminal at Seaplane Lagoon,
Alameda Point, San Francisco,
California
National Marine Fisheries
Service (NMFS), National Oceanic and
Atmospheric Administration (NOAA),
Commerce.
ACTION: Notice; proposed incidental
harassment authorization; request for
comments on proposed authorization
and possible renewal.
AGENCY:
26 See
E:\FR\FM\18JYN1.SGM
section 751(a)(3)(A) of the Act.
18JYN1
34348
Federal Register / Vol. 84, No. 138 / Thursday, July 18, 2019 / Notices
NMFS has received a request
from the City of Alameda (City) for
authorization to take marine mammals
incidental to pile driving activities
during construction of a ferry terminal
at Seaplane Lagoon, Alameda Point, San
Francisco, California. Pursuant to the
Marine Mammal Protection Act
(MMPA), NMFS is requesting comments
on its proposal to issue an incidental
harassment authorization (IHA) to
incidentally take marine mammals
during the specified activities. NMFS is
also requesting comments on a possible
one-year renewal that could be issued
under certain circumstances and if all
requirements are met, as described in
Request for Public Comments at the end
of this notice. NMFS will consider
public comments prior to making any
final decision on the issuance of the
requested MMPA authorizations and
agency responses will be summarized in
the final notice of our decision.
DATES: Comments and information must
be received no later than August 19,
2019.
ADDRESSES: Comments should be
addressed to Jolie Harrison, Chief,
Permits and Conservation Division,
Office of Protected Resources, National
Marine Fisheries Service. Physical
comments should be sent to 1315 EastWest Highway, Silver Spring, MD 20910
and electronic comments should be sent
to ITP.Egger@noaa.gov.
Instructions: NMFS is not responsible
for comments sent by any other method,
to any other address or individual, or
received after the end of the comment
period. Comments received
electronically, including all
attachments, must not exceed a 25megabyte file size. Attachments to
electronic comments will be accepted in
Microsoft Word or Excel or Adobe PDF
file formats only. All comments
received are a part of the public record
and will generally be posted online at
https://www.fisheries.noaa.gov/permit/
incidental-take-authorizations-undermarine-mammal-protection-act without
change. All personal identifying
information (e.g., name, address)
voluntarily submitted by the commenter
may be publicly accessible. Do not
submit confidential business
information or otherwise sensitive or
protected information.
FOR FURTHER INFORMATION CONTACT:
Stephanie Egger, Office of Protected
Resources, NMFS, (301) 427–8401.
Electronic copies of the application and
supporting documents, as well as a list
of the references cited in this document,
may be obtained online at: https://
www.fisheries.noaa.gov/permit/
incidental-take-authorizations-under-
khammond on DSKBBV9HB2PROD with NOTICES
SUMMARY:
VerDate Sep<11>2014
17:56 Jul 17, 2019
Jkt 247001
marine-mammal-protection-act. In case
of problems accessing these documents,
please call the contact listed above.
SUPPLEMENTARY INFORMATION:
Background
The MMPA prohibits the ‘‘take’’ of
marine mammals, with certain
exceptions. Sections 101(a)(5)(A) and
(D) of the MMPA (16 U.S.C. 1361 et
seq.) direct the Secretary of Commerce
(as delegated to NMFS) to allow, upon
request, the incidental, but not
intentional, taking of small numbers of
marine mammals by U.S. citizens who
engage in a specified activity (other than
commercial fishing) within a specified
geographical region if certain findings
are made and either regulations are
issued or, if the taking is limited to
harassment, a notice of a proposed
incidental take authorization may be
provided to the public for review.
Authorization for incidental takings
shall be granted if NMFS finds that the
taking will have a negligible impact on
the species or stock(s) and will not have
an unmitigable adverse impact on the
availability of the species or stock(s) for
taking for subsistence uses (where
relevant). Further, NMFS must prescribe
the permissible methods of taking and
other ‘‘means of effecting the least
practicable adverse impact’’ on the
affected species or stocks and their
habitat, paying particular attention to
rookeries, mating grounds, and areas of
similar significance, and on the
availability of such species or stocks for
taking for certain subsistence uses
(referred to in shorthand as
‘‘mitigation’’); and requirements
pertaining to the mitigation, monitoring
and reporting of such takings are set
forth.
National Environmental Policy Act
To comply with the National
Environmental Policy Act of 1969
(NEPA; 42 U.S.C. 4321 et seq.) and
NOAA Administrative Order (NAO)
216–6A, NMFS must review our
proposed action (i.e., the issuance of an
incidental harassment authorization)
with respect to potential impacts on the
human environment. This action is
consistent with categories of activities
identified in Categorical Exclusion B4
(incidental harassment authorizations
with no anticipated serious injury or
mortality) of the Companion Manual for
NOAA Administrative Order 216–6A,
which do not individually or
cumulatively have the potential for
significant impacts on the quality of the
human environment and for which we
have not identified any extraordinary
circumstances that would preclude this
categorical exclusion. Accordingly,
PO 00000
Frm 00017
Fmt 4703
Sfmt 4703
NMFS has preliminarily determined
that the issuance of the proposed IHA
qualifies to be categorically excluded
from further NEPA review.
We will review all comments
submitted in response to this notice
prior to concluding our NEPA process
or making a final decision on the IHA
request.
Summary of Request
On February 22, 2019, NMFS received
a request from the City for an IHA to
take marine mammals incidental to pile
driving activities during construction of
a ferry terminal in Seaplane Lagoon,
Alameda, California. The application
was deemed adequate and complete on
June 28, 2019. The applicant’s request is
for take seven species of marine
mammals by Level B harassment only.
Neither the City nor NMFS expects
serious injury or mortality to result from
this activity and, therefore, an IHA is
appropriate.
Description of Proposed Activity
Overview
The purpose of this project is to
provide facilities to expand the existing
ferry service from Alameda and Oakland
to San Francisco in order to address the
limited capacity at the existing Main
Street Ferry Terminal, accommodate the
anticipated increase in demand for ferry
service from Alameda to San Francisco
due to planned development of the
Alameda Point Project, and to provide
enhanced emergency response services
to Alameda in the event of transbay
service disruptions.
Currently, the nearest operational
ferry terminal to Alameda Point is the
Alameda Main Street Terminal along
the Oakland Alameda Estuary. There is
also a ferry terminal that serves
Oakland’s Jack London Square. Both of
these terminals are owned and operated
by the San Francisco Bay Area Water
Emergency Transportation Authority
(WETA). Peak time ferry service
demand is at capacity. It is not unusual
for passengers to be left behind at
Alameda during the morning commutes,
and parking demand at the facility
currently outstrips available spaces.
Ferry ridership at the Alameda Main
Street WETA terminal is currently at 94
percent capacity and rose 12 percent in
the last calendar year. WETA and the
City intend to establish a commuteoriented ferry service between Seaplane
Lagoon and San Francisco once
operating funds and terminal and vessel
assets are secured to operate the
expansion service.
The Project encompasses both
landside and waterside components;
E:\FR\FM\18JYN1.SGM
18JYN1
Federal Register / Vol. 84, No. 138 / Thursday, July 18, 2019 / Notices
however, the in-water work components
are discussed in this document. Please
refer to the application for more
information on landside components.
The in-water sound from the pile
driving and removal activities, may
incidentally take seven species of
marine mammals by Level B harassment
only.
Dates and Duration
khammond on DSKBBV9HB2PROD with NOTICES
Project construction is proposed to
begin in during early August 2019 and
will be completed within approximately
one year of initiation. All of the in-water
work (float installation with piles and
gangway) is expected to be completed
within one environmental work season
(August 1 to November 30).
Construction will occur during
VerDate Sep<11>2014
17:56 Jul 17, 2019
Jkt 247001
weekdays and on weekends if needed.
Site preparation and ground
improvements will occur over one
month, and could overlap with in-water
work. Construction of landside
improvements will require
approximately 4 to 6 months.
Approximately 24 total days of pile
driving activities are estimated to occur,
with 12 days of vibratory hammering
installation and removal for template
piles, 6 days of vibratory hammering for
permanent piles, and 6 days of impact
hammering for permanent piles. These
are discussed in further detail below.
Specific Geographic Region
Seaplane Lagoon is located at the
western end of Alameda Island within
the 150-acre Waterfront Town Center
PO 00000
Frm 00018
Fmt 4703
Sfmt 4703
34349
area of Alameda Point and on the former
Alameda Point Naval Air Station in
Alameda, California. The project area is
located along the eastern shoreline of
Seaplane Lagoon, west of Ferry Point,
south of West Atlantic Avenue, and
north of West Oriskany Avenue (Figure
1).
Seaplane Lagoon is a rectangular
basin approximately 3,000 feet (ft) by
1,600 ft. Breakwaters protect the basin
from wind-generated waves, providing
typically calm conditions. Seaplane
Lagoon is bordered by an existing
concrete and steel sheet pile bulkhead
to the north, rock slope revetments to
the east and west, and a breakwater with
a 600-ft opening to the south. The
proposed location of the ferry terminal
is on the eastern shoreline of the lagoon.
E:\FR\FM\18JYN1.SGM
18JYN1
Federal Register / Vol. 84, No. 138 / Thursday, July 18, 2019 / Notices
khammond on DSKBBV9HB2PROD with NOTICES
Detailed Description of Specific Activity
The Project encompasses both
landside and waterside components,
including the construction and
operation of a new ferry terminal along
the eastern edge of Seaplane Lagoon (see
Figure 3 of the application). Only
waterside components are discussed
below. Please see the application for
information on landside components.
A pier and abutment are required at
the entrance to the ferry terminal to
provide secure and safe entry from the
land to the passenger access gangway
(see Figure 3 of the application). The
VerDate Sep<11>2014
17:56 Jul 17, 2019
Jkt 247001
pier will extend out from the abutment
to provide sufficient depth for the ferry
vessels and float. The abutment will be
located on the shoreline and will consist
of a concrete abutment (24 feet (ft) long
by 3 ft wide) supported on steel piles.
The pier will be placed in the water and
consist of a cast-in-place concrete
structure (83.1 ft long by 20 ft wide)
supported on piles with a perimeter
guardrail. Approximately six 24-inch
(in) diameter octagonal concrete piles
offshore of the revetment and four 24in diameter steel piles inshore of the
revetment will be used for the pier. The
PO 00000
Frm 00019
Fmt 4703
Sfmt 4703
abutment and pier deck will be installed
above the high tide line.
The pier will be covered by a canopy
similar to those on other San Francisco
Bay Area WETA terminals in the San
Francisco Bay Area. Dimensions would
be longer than the pier by 16 ft (100 ft
long by 20 ft wide), with an
approximate height of 8.5 ft to 20 ft
above the pier deck. The additional
length would overhang the pier landside
and shade the stairs up to the pier.
A gangway will connect the pier to
the boarding float. The aluminum
gangway (90 ft long by 10 ft wide) will
E:\FR\FM\18JYN1.SGM
18JYN1
EN18JY19.085
34350
34351
Federal Register / Vol. 84, No. 138 / Thursday, July 18, 2019 / Notices
be supported on the landside end of the
pier by cantilevered seat supports, and
the waterside end of the gangway will
be supported by a boarding float. The
finished walking surface, which will
consist of fiberglass micromesh decking,
will range in elevation from 8.4 ft at the
pier to approximately 4.4 ft above the
water surface on the boarding float.
The Seaplane Lagoon Ferry Terminal
will include a boarding float where
passengers will board and disembark
from the ferry (see Figure 3 of the
application). The float structure will be
a steel pontoon barge (135 ft long by 42
ft wide by 8 ft deep) with internal
compartments. Fenders and mooring
cleats will be located around the
perimeter of the float to accommodate
vessel berthing scenarios. The float will
be held in position with an arrangement
of four 36-in diameter steel guide piles
and two 36-in diameter steel fender
piles, totaling six piles.
Piles will be installed for the
abutment, pier, and float. The 36-in
steel piles will be installed with a
vibratory hammer, 24-in concrete piles
will be installed with an impact
hammer, and 14-in steel template piles
will be installed with a vibratory
hammer (see Table 1 below). The
abutment piles will be installed from
the landside, and are expected to
require an impact hammer to penetrate
the underlying material. Four steel piles
(the abutment piles) will be installed
above the high tide line and therefore
are not discussed further.
Template piles will be used to
support the in-water piles. These will
consist of 12 to 18 14-inch steel H-type
piles (see Table 1 below). One template
typically includes four piles, but up to
six template piles would be used at one
time (see Table 1 below).
TABLE 1—PILE DRIVING AND REMOVAL ACTIVITIES FOR SEAPLANE LAGOON FERRY TERMINAL
Project component
Description
Temporary
template pile
installation
Diameter of Steel Pile (inches) ........................................................................
# of Piles ..........................................................................................................
Temporary
template pile
removal
Permanent
pile installation
Permanent
pile installation
14
18
14
18
24
6
36
6
18
6
18
6
0
0
6
1
0
0
0
0
6
1
0
0
Vibratory Pile Driving
Total Quantity ..................................................................................................
Max # Piles Vibrated per Day ..........................................................................
Impact Pile Driving
Total Quantity ..................................................................................................
Max # Piles Impacted per Day ........................................................................
For further details on the proposed
action and project components, please
refer to the application.
Proposed mitigation, monitoring, and
reporting measures are described in
detail later in this document (please see
Proposed Mitigation and Proposed
Monitoring and Reporting).
khammond on DSKBBV9HB2PROD with NOTICES
Description of Marine Mammals in the
Area of Specified Activities
Sections 3 and 4 of the application
summarize available information
regarding status and trends, distribution
and habitat preferences, and behavior
and life history, of the potentially
affected species. Additional information
regarding population trends and threats
may be found in NMFS’s Stock
Assessment Reports (SARs; https://
www.fisheries.noaa.gov/national/
marine-mammal-protection/marinemammal-stock-assessments) and more
general information about these species
(e.g., physical and behavioral
VerDate Sep<11>2014
17:56 Jul 17, 2019
Jkt 247001
descriptions) may be found on NMFS’s
website (https://
www.fisheries.noaa.gov/find-species).
Table 2 lists all species with expected
potential for occurrence in the project
area and summarizes information
related to the population or stock,
including regulatory status under the
MMPA and ESA and potential
biological removal (PBR), where known.
For taxonomy, we follow Committee on
Taxonomy (2016). PBR is defined by the
MMPA as the maximum number of
animals, not including natural
mortalities, that may be removed from a
marine mammal stock while allowing
that stock to reach or maintain its
optimum sustainable population (as
described in NMFS’s SARs). While no
mortality is anticipated or authorized
here, PBR and annual serious injury and
mortality from anthropogenic sources
are included here as gross indicators of
the status of the species and other
threats.
PO 00000
Frm 00020
Fmt 4703
Sfmt 4703
Marine mammal abundance estimates
presented in this document represent
the total number of individuals that
make up a given stock or the total
number estimated within a particular
study or survey area. NMFS’s stock
abundance estimates for most species
represent the total estimate of
individuals within the geographic area,
if known, that comprises that stock. For
some species, this geographic area may
extend beyond U.S. waters. All managed
stocks in this region are assessed in
NMFS’s U.S. Pacific and SARs (Carretta
et al., 2018). All values presented in
Table 2 are the most recent available at
the time of publication (draft SARS
available online at: https://
www.fisheries.noaa.gov/national/
marine-mammal-protection/draftmarine-mammal-stock-assessmentreports).
E:\FR\FM\18JYN1.SGM
18JYN1
34352
Federal Register / Vol. 84, No. 138 / Thursday, July 18, 2019 / Notices
TABLE 2—MARINE MAMMALS OCCURRENCE IN THE PROJECT AREA
Common name
Scientific name
ESA/
MMPA
status;
strategic
(Y/N) 1
Stock
Stock abundance
(CV, Nmin, most recent
abundance survey) 2
PBR
Annual
M/SI 3
Order Cetartiodactyla—Cetacea—Superfamily Mysticeti (baleen whales)
Family Eschrichtiidae:
Gray whale ..................
Eschrichtius robustus ........
Eastern North Pacific .........
-/- ; N
26,960 (0.05, 25,849,
2016).
801 ...........................
138
Family Balaenopteridae
(rorquals):
Humpback whale ........
Megaptera novaeangliae ...
California/Oregon/Washington.
E/D ; Y
2,900 (0.048, 2,784, 2014)
16.7 (U.S. waters) ....
18.8
Superfamily Odontoceti (toothed whales, dolphins, and porpoises)
Family Delphinidae:
Bottlenose dolphin ......
Family Phocoenidae (porpoises):
Harbor porpoise ..........
Tursiops truncatus .............
California Coastal ..............
-/- ; N
453 (0.06, 346, 2011) ........
2.7 ............................
>2
Phocoena phocoena ..........
San Francisco-Russian
River.
-/- ; N
9,886 (0.51, 6,625, 2011) ..
66 .............................
0
257,606 (n/a, 233,515,
2014).
14,050 (n/a, 7,524, 2013) ..
626,734 (n/a, 530,474,
2014).
20,000 (n/a, 15,830, 2010)
14,011 ......................
≥319
451 ...........................
11,405 ......................
1.8
1.1
542 ...........................
>3.2
30,968 (n/a, 27,348, 2012)
179,000 (n/a, 81,368,
2010).
1,641 ........................
4,882 ........................
43
8.8
Order Carnivora—Superfamily Pinnipedia
Family Otariidae (eared
seals and sea lions):
California sea lion .......
Zalophus californianus .......
U.S. ....................................
-/- ; N
Northern fur seal .........
Callorhinus ursinus ............
California ............................
Eastern North Pacific .........
-/- ; N
-/- ; N
Guadalupe fur seal .....
Family Phocidae (earless
seals):
Pacific harbor seal ......
Northern elephant seal
Arctocephalus townsendi ...
Mexico to California ...........
T/D ; Y
Phoca vitulina richardii ......
Mirounga angustirostris .....
California ............................
California Breeding ............
-/- ; N
-/- ; N
khammond on DSKBBV9HB2PROD with NOTICES
1 Endangered Species Act (ESA) status: Endangered (E), Threatened (T)/MMPA status: Depleted (D). A dash (-) indicates that the species is not listed under the
ESA or designated as depleted under the MMPA. Under the MMPA, a strategic stock is one for which the level of direct human-caused mortality exceeds PBR or
which is determined to be declining and likely to be listed under the ESA within the foreseeable future. Any species or stock listed under the ESA is automatically
designated under the MMPA as depleted and as a strategic stock.
2 NMFS marine mammal stock assessment reports online at: www.nmfs.noaa.gov/pr/sars/. CV is coefficient of variation; Nmin is the minimum estimate of stock
abundance. In some cases, CV is not applicable [explain if this is the case].
3 These values, found in NMFS’s SARs, represent annual levels of human-caused mortality plus serious injury from all sources combined (e.g., commercial fisheries, ship strike). Annual M/SI often cannot be determined precisely and is in some cases presented as a minimum value or range. A CV associated with estimated
mortality due to commercial fisheries is presented in some cases.
NOTE—Italicized species are not expected to be taken or proposed for authorization.
All species that could potentially
occur in the proposed survey areas are
included in Table 2. However, the
temporal and/or spatial occurrence of
humpback whales and Guadalupe fur
seals is such that take is not expected to
occur, and they are not discussed
further beyond the explanation
provided here.
Humpback whales do enter San
Francisco Bay to feed on schooling fish
from late April through October, but are
rarer visitors to the interior of San
Francisco Bay. A recent, seasonal influx
of humpback whales inside San
Francisco Bay near the Golden Gate was
recorded from April to November in
2016 and 2017 (Keener 2017). In May
and June 2019, a lone humpback was
observed in the waters off Alameda;
however, this is a rare occurrence and
the whale was thought to be in poor
health. The whale was observed on May
27, 2019 in the Alameda Seaplane
Lagoon, where it remained until June 5,
VerDate Sep<11>2014
17:56 Jul 17, 2019
Jkt 247001
2019. It was determined to be an adult,
and malnourished, based on the thin
blubber layer. On June 6, 2019, the
whale re-located to an area outside the
Seaplane Lagoon, but still within the
breakwater protecting the Alameda ferry
docks and the USS Hornet. It remained
there for 8 days, exhibiting the same
suite of behaviors seen in the Seaplane
Lagoon. On June 14, 2019, it left
Alameda and moved farther out towards
the main opening of the breakwater,
near the open bay (The Marine Mammal
Center (TMMC), B. Keener, pers. comm.
2019) and has not been observed since.
It is unlikely that this humpback whale
will be in the waters off Alameda when
the project begins. NMFS does expect
take to occur.
Guadalupe fur seals occasionally
range into the waters of northern
California and the Pacific Northwest.
The Farallon Islands (off central
California) and Channel Islands (off
southern California) are used as haul
PO 00000
Frm 00021
Fmt 4703
Sfmt 4703
outs during these movements (Simon
2016). Juvenile Guadalupe fur seals
occasionally strand in the vicinity of
San Francisco, especially during El
Nin˜o events. Most strandings along the
California coast are animals younger
than two years old, with evidence of
malnutrition (NMFS 2017a). Because
Guadalupe fur seals are highly rare in
the area, and sightings are associated
with abnormal weather conditions, such
as El Nin˜o events, NMFS has
determined that no Guadalupe fur seals
are likely to occur in the project vicinity
and, therefore, no take is expected to
occur.
Gray Whale
Gray whales are large baleen whales.
They grow to approximately 50 ft in
length and weigh up to 40 tons. They
are one of the most frequently seen
whales along the California coast, easily
recognized by their mottled gray color
and lack of dorsal fin. Adult whales
carry heavy loads of attached barnacles,
E:\FR\FM\18JYN1.SGM
18JYN1
Federal Register / Vol. 84, No. 138 / Thursday, July 18, 2019 / Notices
khammond on DSKBBV9HB2PROD with NOTICES
which add to their mottled appearance.
Gray whales are divided into the Eastern
North Pacific and Western North Pacific
stocks. Both stocks migrate each year
along the west coast of continental
North America and Alaska. The Eastern
North Pacific stock is much larger and
is more likely to occur in the San
Francisco Bay area. Western North
Pacific Gray whales have summer and
fall feeding grounds in the Okhotsk Sea
off northeast Sakhalin Island, Russia,
and off southeastern Kamchatka in the
Bering Sea (NMFS 2017).
Gray whales are the only baleen
whale known to feed on the sea floor,
where they scoop up bottom sediments
to filter out benthic crustaceans,
mollusks, and worms (NMFS 2015).
They feed in northern waters primarily
off the Bering, Chukchi, and western
Beaufort Seas during the summer.
Between December and January, latestage pregnant females, adult males, and
immature females and males migrate
southward to breeding areas around
Mexico. The northward migration
occurs between February and March.
Coastal waters just outside San
Francisco Bay are considered a
migratory Biologically Important Area
for the northward progression of gray
whales (Calambokidis et al., 2015).
During this time, recently pregnant
females, adult males, immature females,
and females with calves move north to
the feeding grounds (Calambokidis et
al., 2014). A few individuals enter into
the San Francisco Bay during their
northward migration. Foraging
individuals in the San Francisco Bay
may occur in small numbers in waters
adjacent to Alameda Point, outside of
the breakwaters, typically from
December to May.
Since January 1, 2019, elevated gray
whale strandings have occurred along
the west coast of North America from
Mexico through Alaska. This event has
been declared an Unusual Mortality
Event. As of June 21, 2019, 37 gray
whales have stranded in California. Full
or partial necropsy examinations were
conducted on a subset of the whales.
Preliminary findings in several of the
whales have shown evidence of
emaciation. These findings are not
consistent across all of the whales
examined, so more research is needed.
Bottlenose Dolphins
Bottlenose dolphins are distributed
world-wide in tropical and warmtemperate waters. In many regions,
including California, separate coastal
and offshore populations are known
(Walker 1981; Ross and Cockcroft 1990;
Van Waerebeek et al. 1990). The
California coastal stock of bottlenose
VerDate Sep<11>2014
17:56 Jul 17, 2019
Jkt 247001
dolphins is distinct from the offshore
stock, based on significant differences in
genetics and cranial morphology (Perrin
et al. 2011, Lowther-Thielking et al.
2015). California coastal bottlenose
dolphins are found within about one
kilometer (km) of shore (Hansen, 1990;
Carretta et al. 1998; Defran and Weller
1999) with the range extending north
over the last several decades related to
El Nin˜o events and increased ocean
temperatures. As the range of bottlenose
dolphins extended north, dolphins
began entering the Bay in 2010
(Szczepaniak 2013). Until 2016, most
bottlenose dolphins in San Francisco
Bay were observed in the western Bay,
from the Golden Gate Bridge to Oyster
Point and Redwood City (Perlman
2017). Members of the California Coastal
stock are transient and make movements
up and down the coast into some
estuaries, throughout the year.
Harbor Porpoise
Harbor porpoise are seldom found in
waters warmer than 62.6 degrees
Fahrenheit (17 degrees Celsius) (Read
1990) or south of Point Conception, and
occurs as far north as the Bering Sea
(Barlow and Hanan 1995; Carretta et al.,
2017). The San Francisco-Russian River
stock is found from Pescadero, 18 mi (30
km) south of the Bay, to 99 mi (160 km)
north of the Bay at Point Arena (Carretta
et al., 2017). In most areas, harbor
porpoise occurs in small groups,
consisting of just a few individuals.
Occasional sightings of harbor
porpoises in the Bay, including near the
Yerba Buena Island harbor seal haul-out
site, were reported by the Caltrans
marine mammal monitoring program
beginning in 2008 (Caltrans 2018).
Continued sightings from Caltrans and
the Golden Gate Cetacean Research
(GGCR) Organization suggests that the
species is returning to San Francisco
Bay after an absence of approximately
65 years (GGCR 2010). This
re-immergence is not unique to San
Francisco Bay, but rather indicative of
the harbor porpoise in general along the
west coast. GGCR has been issued a
scientific research permit from NMFS
for a multi-year assessment to document
the population abundance and
distribution in the Bay (82 FR 60374).
Recent observations of harbor porpoises
have been reported by GGCR researchers
off Cavallo Point, outside Raccoon Strait
between Tiburon and Angel Island, off
Fort Point and as far into the Bay as
Carquinez Strait (Perlman 2010). Based
on the Caltrans and GGCR monitoring,
over 100 porpoises were seen at one
time entering San Francisco Bay; and
over 600 individual animals have been
documented in a photo-ID database.
PO 00000
Frm 00022
Fmt 4703
Sfmt 4703
34353
Reported sightings are concentrated in
the vicinity of the Golden Gate Bridge
and Angel Island, with lesser numbers
sighted south of Alcatraz and west of
Treasure Island (AECOM 2017).
Harbor Seal
Harbor seals are found from Baja
California to the eastern Aleutian
Islands of Alaska. The species primarily
hauls out on remote mainland and
island beaches and reefs, and estuary
areas. Harbor seals tend to forage locally
within 53 miles (mi) (85 km) of haul-out
sites (Harvey and Goley 2011). Harbor
seal is the most common marine
mammal species observed in the Bay
and individuals are commonly seen
near the San Francisco-Oakland Bay
Bridge east span (CalTrans 2013b,
2013c). Tagging studies have shown that
most seals tagged in the Bay remain in
the Bay (Harvey and Goley 2011;
Manugian 2013). Foraging often occurs
in the Bay, as noted by observations of
seals exhibiting foraging behavior (short
dives less than five minutes, moving
back and forth in an area, and
sometimes tearing up prey at the
surface). Moderate to small numbers are
known to forage in Seaplane Lagoon.
Although solitary in the water, harbor
seals come ashore at haul outs to rest,
socialize, breed, nurse, molt, and
thermoregulate. Habitats used as haul
out sites include tidal rocks, bayflats,
sandbars, and sandy beaches (Zeiner et
al., 1990). Haul out sites are relatively
consistent from year to year (Kopec and
Harvey 1995) and females have been
recorded returning to their own natal
haul out to breed (Cunningham et al.,
2009). Although harbor seals haul out at
approximately 20 locations around San
Francisco Bay, there are three primary
sites: Mowry Slough in the South Bay,
Corte Madera Marsh and Castro Rocks
in the North Bay, and Yerba Buena
Island in the Central Bay (Grigg 2008;
Gibble 2011). Yerba Buena Island haul
out is located approximately five mi
north project area. Harbor seals use
Yerba Buena Island year-round, with the
largest numbers seen during winter
months, when Pacific herring spawn
(Grigg 2008). Two known pinniped
haul-out sites in the vicinity of the
project area are located on an existing
haul out platform approximately 0.5 mi
southeast of the project area (separated
from project activities by approximately
0.3 mi of developed areas on-land), and
at the western end of Breakwater Island,
approximately 1.0 mi southwest of the
pile driving activities (see Figure 4 of
the application).
E:\FR\FM\18JYN1.SGM
18JYN1
34354
Federal Register / Vol. 84, No. 138 / Thursday, July 18, 2019 / Notices
khammond on DSKBBV9HB2PROD with NOTICES
California Sea Lion
California sea lions breed on the
offshore islands of California from May
through July (Heath and Perrin 2009).
During the non-breeding season, adult
and sub-adult males and juveniles
migrate northward along the coast, to
central and northern California, Oregon,
Washington, and Vancouver Island
(Jefferson et al., 1993). They return
south the following spring (Lowry and
Forney 2005; Heath and Perrin 2009).
Females and some juveniles tend to
remain closer to rookeries (Antonelis et
al., 1990; Melin et al., 2008).
In San Francisco Bay, California sea
lions have been observed at Angel
Island and occupying the docks near
Pier 39 which is the largest California
sea lion haul-out in San Francisco Bay.
A maximum of 1,706 sea lions were
counted at Pier 39 in 2009. However,
since then the population has averaged
at about 50–300 depending upon the
season (TMMC 2017). This group of sea
lions has decreased in size in recent
years, coincident with a fluctuating
decrease in the herring population in
the Bay. There are no known breeding
sites within San Francisco Bay. Their
primary breeding site is in the Channel
Islands (USACE 2011). The sea lions
appear at Pier 39 after returning from
the Channel Islands at the beginning of
August (Bauer 1999). No other sea lion
haul out sites have been identified in
the Bay and no pupping has been
observed at the Pier 39 site or any other
site in San Francisco Bay under normal
conditions (USACE 2011). Although
there has been documentation of
pupping on docks in the Bay, this event
was during a domoic acid event. There
is no reason to anticipate that any
domoic events will occur during the
project construction activities.
The project site is approximately 4 mi
away from Pier 39. Although there is
little information regarding the foraging
behavior of the California sea lion in
southern San Francisco Bay, they have
been observed foraging on a regular
basis in the shipping channel south of
Yerba Buena Island.
Foraging grounds have also been
identified for pinnipeds, including sea
lions, between Yerba Buena Island and
Treasure Island, as well as off the
Tiburon Peninsula (Caltrans, 2006). The
California sea lions that use the Pier 39
haul-out site may be feeding on Pacific
VerDate Sep<11>2014
17:56 Jul 17, 2019
Jkt 247001
herring (Clupea harengus), northern
anchovy, and other prey in the waters
of San Francisco Bay (Caltrans, 2013a).
In addition to the Pier 39 haul-out,
California sea lions haul out on buoys
and similar structures throughout San
Francisco Bay. They mainly are seen
swimming off the San Francisco and
Marin shorelines within San Francisco
Bay, but may occasionally enter the
project area to forage and could possibly
haul-out on nearby breakwater islands
or platforms.
Northern Elephant Seal
The northern elephant seal is
common on California coastal mainland
and island sites, where the species
pups, breeds, rests, and molts. The
largest rookeries are on San Nicolas and
San Miguel islands in the northern
Channel Islands. Near the Bay, elephant
seals breed, molt, and haul out at An˜o
Nuevo Island, the Farallon Islands, and
Point Reyes National Seashore.
Northern elephant seals haul out to
give birth and breed from December
through March. Pups remain onshore or
in adjacent shallow water through May.
Both sexes make two foraging
migrations each year: One after breeding
and the second after molting (Stewart
1989; Stewart and DeLong 1995). Adult
females migrate to the central North
Pacific to forage, and males migrate to
the Gulf of Alaska to forage (Robinson
et al. 2012). Pup mortality is high when
they make the first trip to sea in May,
and this period correlates with the time
of most strandings. Pups of the year
return in the late summer and fall, to
haul out at breeding rookery and small
haul out sites, but occasionally they
may make brief stops in the Bay.
Generally, only juvenile elephant
seals enter the Bay and do not remain
long. The most recent sighting near the
project area was in 2012, on the beach
at Clipper Cove on Treasure Island (5 mi
north of the project area), when a
healthy yearling elephant seal hauled
out for approximately 1 day.
Approximately 100 juvenile northern
elephant seals strand in or near the Bay
each year, including individual
strandings at Yerba Buena Island and
Treasure Island (less than 10 strandings
per year).
Northern Fur Seal
Northern fur seal breeds on the
offshore islands of California and in the
PO 00000
Frm 00023
Fmt 4703
Sfmt 4703
Bering Sea from May through July. Two
stocks of Northern fur seals may occur
near the Bay, the California and Eastern
Pacific stocks. The California stock
breeds, pups, and forages off the
California coast. The Eastern Pacific
stock breeds and pups on islands in the
Bering Sea, but females and juveniles
move south to California waters to
forage in the fall and winter months.
Both the California and Eastern
Pacific stocks forage in the offshore
waters of California, but only sick,
emaciated, or injured fur seals enter the
Bay. The Marine Mammal Center
(TMMC) occasionally picks up stranded
fur seals around Yerba Buena Island and
Treasure Island.
Marine Mammal Hearing
Hearing is the most important sensory
modality for marine mammals
underwater, and exposure to
anthropogenic sound can have
deleterious effects. To appropriately
assess the potential effects of exposure
to sound, it is necessary to understand
the frequency ranges marine mammals
are able to hear. Current data indicate
that not all marine mammal species
have equal hearing capabilities (e.g.,
Richardson et al., 1995; Wartzok and
Ketten, 1999; Au and Hastings, 2008).
To reflect this, Southall et al. (2007)
recommended that marine mammals be
divided into functional hearing groups
based on directly measured or estimated
hearing ranges on the basis of available
behavioral response data, audiograms
derived using auditory evoked potential
techniques, anatomical modeling, and
other data. Note that no direct
measurements of hearing ability have
been successfully completed for
mysticetes (i.e., low-frequency
cetaceans). Subsequently, NMFS (2018)
described generalized hearing ranges for
these marine mammal hearing groups.
Generalized hearing ranges were chosen
based on the approximately 65 decibel
(dB) threshold from the normalized
composite audiograms, with the
exception for lower limits for lowfrequency cetaceans where the lower
bound was deemed to be biologically
implausible and the lower bound from
Southall et al. (2007) retained. Marine
mammal hearing groups and their
associated hearing ranges are provided
in Table 3.
E:\FR\FM\18JYN1.SGM
18JYN1
Federal Register / Vol. 84, No. 138 / Thursday, July 18, 2019 / Notices
34355
TABLE 3—MARINE MAMMAL HEARING GROUPS
[NMFS 2018]
Generalized hearing
range *
Hearing group
Low-frequency (LF) cetaceans (baleen whales) .....................................................................................................................
Mid-frequency (MF) cetaceans (dolphins, toothed whales, beaked whales, bottlenose whales) ...........................................
High-frequency (HF) cetaceans (true porpoises, Kogia, river dolphins, cephalorhynchid, Lagenorhynchus cruciger & L.
australis).
Phocid pinnipeds (PW) (underwater) (true seals) ...................................................................................................................
Otariid pinnipeds (OW) (underwater) (sea lions and fur seals) ..............................................................................................
7 Hz to 35 kHz.
150 Hz to 160 kHz.
275 Hz to 160 kHz.
50 Hz to 86 kHz.
60 Hz to 39 kHz.
* Represents the generalized hearing range for the entire group as a composite (i.e., all species within the group), where individual species’
hearing ranges are typically not as broad. Generalized hearing range chosen based on ∼65 dB threshold from normalized composite audiogram,
with the exception for lower limits for LF cetaceans (Southall et al. 2007) and PW pinniped (approximation).
The pinniped functional hearing
group was modified from Southall et al.
(2007) on the basis of data indicating
that phocid species have consistently
demonstrated an extended frequency
range of hearing compared to otariids,
especially in the higher frequency range
(Hemila¨ et al., 2006; Kastelein et al.,
2009; Reichmuth and Holt, 2013).
For more detail concerning these
groups and associated frequency ranges,
please see NMFS (2018) for a review of
available information. Seven marine
mammal species (3 cetacean and 4
pinniped (2 otariid and 2 phocid)
species) have the reasonable potential to
occur during the proposed activities.
Please refer to Table 2. Of the cetacean
species that may be present, one is
classified as low-frequency cetacean
(i.e., all mysticete species), one is
classified as mid-frequency cetacean
(i.e., all delphinid species), and one is
classified as high-frequency cetacean
(i.e., harbor porpoise).
khammond on DSKBBV9HB2PROD with NOTICES
Potential Effects of Specified Activities
on Marine Mammals and Their Habitat
This section includes a summary and
discussion of the ways that components
of the specified activity may impact
marine mammals and their habitat. The
Estimated Take by Incidental
Harassment section later in this
document includes a quantitative
analysis of the number of individuals
that are expected to be taken by this
activity. The Negligible Impact Analysis
and Determination section considers the
content of this section, the Estimated
Take by Incidental Harassment section,
and the Proposed Mitigation section, to
draw conclusions regarding the likely
impacts of these activities on the
reproductive success or survivorship of
individuals and how those impacts on
individuals are likely to impact marine
mammal species or stocks.
Acoustic effects on marine mammals
during the specified activity can occur
from vibratory and impact pile driving.
The effects of underwater noise from the
VerDate Sep<11>2014
17:56 Jul 17, 2019
Jkt 247001
City’s proposed activities have the
potential to result in Level B harassment
of marine mammals in the vicinity of
the action area.
Description of Sound Sources
This section contains a brief technical
background on sound, on the
characteristics of certain sound types,
and on metrics used in this proposal
inasmuch as the information is relevant
to the specified activity and to a
discussion of the potential effects of the
specified activity on marine mammals
found later in this document. For
general information on sound and its
interaction with the marine
environment, please see, e.g., Au and
Hastings (2008); Richardson et al.
(1995); Urick (1983).
Sound travels in waves, the basic
components of which are frequency,
wavelength, velocity, and amplitude.
Frequency is the number of pressure
waves that pass by a reference point per
unit of time and is measured in hertz
(Hz) or cycles per second. Wavelength is
the distance between two peaks or
corresponding points of a sound wave
(length of one cycle). Higher frequency
sounds have shorter wavelengths than
lower frequency sounds, and typically
attenuate (decrease) more rapidly,
except in certain cases in shallower
water. Amplitude is the height of the
sound pressure wave or the ‘‘loudness’’
of a sound and is typically described
using the relative unit of the decibel
(dB). A sound pressure level (SPL) in dB
is described as the ratio between a
measured pressure and a reference
pressure (for underwater sound, this is
1 microPascal (mPa)), and is a
logarithmic unit that accounts for large
variations in amplitude; therefore, a
relatively small change in dB
corresponds to large changes in sound
pressure. The source level (SL)
represents the SPL referenced at a
distance of 1 m from the source
(referenced to 1 mPa), while the received
PO 00000
Frm 00024
Fmt 4703
Sfmt 4703
level is the SPL at the listener’s position
(referenced to 1 mPa).
Root mean square (rms) is the
quadratic mean sound pressure over the
duration of an impulse. Rms is
calculated by squaring all of the sound
amplitudes, averaging the squares, and
then taking the square root of the
average (Urick, 1983). Rms accounts for
both positive and negative values;
squaring the pressures makes all values
positive so that they may be accounted
for in the summation of pressure levels
(Hastings and Popper, 2005). This
measurement is often used in the
context of discussing behavioral effects,
in part because behavioral effects,
which often result from auditory cues,
may be better expressed through
averaged units than by peak pressures.
Sound exposure level (SEL;
represented as dB re 1 mPa2-s) represents
the total energy in a stated frequency
band over a stated time interval or
event, and considers both intensity and
duration of exposure. The per-pulse SEL
is calculated over the time window
containing the entire pulse (i.e., 100
percent of the acoustic energy). SEL is
a cumulative metric; it can be
accumulated over a single pulse, or
calculated over periods containing
multiple pulses. Cumulative SEL
represents the total energy accumulated
by a receiver over a defined time
window or during an event. Peak sound
pressure (also referred to as zero-to-peak
sound pressure or 0-pk) is the maximum
instantaneous sound pressure
measurable in the water at a specified
distance from the source, and is
represented in the same units as the rms
sound pressure.
When underwater objects vibrate or
activity occurs, sound-pressure waves
are created. These waves alternately
compress and decompress the water as
the sound wave travels. Underwater
sound waves radiate in a manner similar
to ripples on the surface of a pond and
may be either directed in a beam or
beams or may radiate in all directions
E:\FR\FM\18JYN1.SGM
18JYN1
khammond on DSKBBV9HB2PROD with NOTICES
34356
Federal Register / Vol. 84, No. 138 / Thursday, July 18, 2019 / Notices
(omnidirectional sources), as is the case
for sound produced by the pile driving
activity considered here. The
compressions and decompressions
associated with sound waves are
detected as changes in pressure by
aquatic life and man-made sound
receptors such as hydrophones.
Even in the absence of sound from the
specified activity, the underwater
environment is typically loud due to
ambient sound, which is defined as
environmental background sound levels
lacking a single source or point
(Richardson et al., 1995). The sound
level of a region is defined by the total
acoustical energy being generated by
known and unknown sources. These
sources may include physical (e.g.,
wind and waves, earthquakes, ice,
atmospheric sound), biological (e.g.,
sounds produced by marine mammals,
fish, and invertebrates), and
anthropogenic (e.g., vessels, dredging,
construction) sound. A number of
sources contribute to ambient sound,
including wind and waves, which are a
main source of naturally occurring
ambient sound for frequencies between
200 hertz (Hz) and 50 kilohertz (kHz)
(Mitson, 1995). In general, ambient
sound levels tend to increase with
increasing wind speed and wave height.
Precipitation can become an important
component of total sound at frequencies
above 500 Hz, and possibly down to 100
Hz during quiet times. Marine mammals
can contribute significantly to ambient
sound levels, as can some fish and
snapping shrimp. The frequency band
for biological contributions is from
approximately 12 Hz to over 100 kHz.
Sources of ambient sound related to
human activity include transportation
(surface vessels), dredging and
construction, oil and gas drilling and
production, geophysical surveys, sonar,
and explosions. Vessel noise typically
dominates the total ambient sound for
frequencies between 20 and 300 Hz. In
general, the frequencies of
anthropogenic sounds are below 1 kHz
and, if higher frequency sound levels
are created, they attenuate rapidly.
The sum of the various natural and
anthropogenic sound sources that
comprise ambient sound at any given
location and time depends not only on
the source levels (as determined by
current weather conditions and levels of
biological and human activity) but also
on the ability of sound to propagate
through the environment. In turn, sound
propagation is dependent on the
spatially and temporally varying
properties of the water column and sea
floor, and is frequency-dependent. As a
result of the dependence on a large
number of varying factors, ambient
VerDate Sep<11>2014
17:56 Jul 17, 2019
Jkt 247001
sound levels can be expected to vary
widely over both coarse and fine spatial
and temporal scales. Sound levels at a
given frequency and location can vary
by 10–20 decibels (dB) from day to day
(Richardson et al., 1995). The result is
that, depending on the source type and
its intensity, sound from the specified
activity may be a negligible addition to
the local environment or could form a
distinctive signal that may affect marine
mammals.
Sounds are often considered to fall
into one of two general types: Pulsed
and non-pulsed (defined in the
following). The distinction between
these two sound types is important
because they have differing potential to
cause physical effects, particularly with
regard to hearing (e.g., Ward, 1997 in
Southall et al., 2007). Please see
Southall et al. (2007) for an in-depth
discussion of these concepts. The
distinction between these two sound
types is not always obvious, as certain
signals share properties of both pulsed
and non-pulsed sounds. A signal near a
source could be categorized as a pulse,
but due to propagation effects as it
moves farther from the source, the
signal duration becomes longer (e.g.,
Greene and Richardson, 1988).
Pulsed sound sources (e.g., airguns,
explosions, gunshots, sonic booms,
impact pile driving) produce signals
that are brief (typically considered to be
less than one second), broadband, atonal
transients (ANSI, 1986, 2005; Harris,
1998; NIOSH, 1998; ISO, 2003) and
occur either as isolated events or
repeated in some succession. Pulsed
sounds are all characterized by a
relatively rapid rise from ambient
pressure to a maximal pressure value
followed by a rapid decay period that
may include a period of diminishing,
oscillating maximal and minimal
pressures, and generally have an
increased capacity to induce physical
injury as compared with sounds that
lack these features.
Non-pulsed sounds can be tonal,
narrowband, or broadband, brief or
prolonged, and may be either
continuous or intermittent (ANSI, 1995;
NIOSH, 1998). Some of these nonpulsed sounds can be transient signals
of short duration but without the
essential properties of pulses (e.g., rapid
rise time). Examples of non-pulsed
sounds include those produced by
vessels, aircraft, machinery operations
such as drilling or dredging, vibratory
pile driving, and active sonar systems.
The duration of such sounds, as
received at a distance, can be greatly
extended in a highly reverberant
environment.
PO 00000
Frm 00025
Fmt 4703
Sfmt 4703
The impulsive sound generated by
impact hammers is characterized by
rapid rise times and high peak levels.
Vibratory hammers produce nonimpulsive, continuous noise at levels
significantly lower than those produced
by impact hammers. Rise time is slower,
reducing the probability and severity of
injury, and sound energy is distributed
over a greater amount of time (e.g.,
Nedwell and Edwards, 2002; Carlson et
al., 2005).
Acoustic Effects on Marine Mammals
We previously provided general
background information on marine
mammal hearing (see Description of
Marine Mammals in the Area of the
Specified Activity). Here, we discuss the
potential effects of sound on marine
mammals.
Note that, in the following discussion,
we refer in many cases to a review
article concerning studies of noiseinduced hearing loss conducted from
1996–2015 (i.e., Finneran, 2015). For
study-specific citations, please see that
work. Anthropogenic sounds cover a
broad range of frequencies and sound
levels and can have a range of highly
variable impacts on marine life, from
none or minor to potentially severe
responses, depending on received
levels, duration of exposure, behavioral
context, and various other factors. The
potential effects of underwater sound
from active acoustic sources can
potentially result in one or more of the
following: Temporary or permanent
hearing impairment, non-auditory
physical or physiological effects,
behavioral disturbance, stress, and
masking (Richardson et al., 1995;
Gordon et al., 2004; Nowacek et al.,
2007; Southall et al., 2007; Go¨tz et al.,
2009). The degree of effect is
intrinsically related to the signal
characteristics, received level, distance
from the source, and duration of the
sound exposure. In general, sudden,
high level sounds can cause hearing
loss, as can longer exposures to lower
level sounds. Temporary or permanent
loss of hearing will occur almost
exclusively for noise within an animal’s
hearing range. We first describe specific
manifestations of acoustic effects before
providing discussion specific to pile
driving and removal activities.
Richardson et al. (1995) described
zones of increasing intensity of effect
that might be expected to occur, in
relation to distance from a source and
assuming that the signal is within an
animal’s hearing range. First is the area
within which the acoustic signal would
be audible (potentially perceived) to the
animal but not strong enough to elicit
any overt behavioral or physiological
E:\FR\FM\18JYN1.SGM
18JYN1
khammond on DSKBBV9HB2PROD with NOTICES
Federal Register / Vol. 84, No. 138 / Thursday, July 18, 2019 / Notices
response. The next zone corresponds
with the area where the signal is audible
to the animal and of sufficient intensity
to elicit behavioral or physiological
responsiveness. Third is a zone within
which, for signals of high intensity, the
received level is sufficient to potentially
cause discomfort or tissue damage to
auditory or other systems. Overlaying
these zones to a certain extent is the
area within which masking (i.e., when a
sound interferes with or masks the
ability of an animal to detect a signal of
interest that is above the absolute
hearing threshold) may occur; the
masking zone may be highly variable in
size.
We describe the more severe effects
(i.e., certain non-auditory physical or
physiological effects) only briefly as we
do not expect that there is a reasonable
likelihood that pile driving may result
in such effects (see below for further
discussion). Potential effects from
explosive impulsive sound sources can
range in severity from effects such as
behavioral disturbance or tactile
perception to physical discomfort, slight
injury of the internal organs and the
auditory system, or mortality (Yelverton
et al., 1973). Non-auditory physiological
effects or injuries that theoretically
might occur in marine mammals
exposed to high level underwater sound
or as a secondary effect of extreme
behavioral reactions (e.g., change in
dive profile as a result of an avoidance
reaction) caused by exposure to sound
include neurological effects, bubble
formation, resonance effects, and other
types of organ or tissue damage (Cox et
al., 2006; Southall et al., 2007; Zimmer
and Tyack, 2007; Tal et al., 2015). The
construction activities considered here
do not involve the use of devices such
as explosives or mid-frequency tactical
sonar that are associated with these
types of effects.
Threshold Shift—Marine mammals
exposed to high-intensity sound, or to
lower-intensity sound for prolonged
periods, can experience hearing
threshold shift (TS), which is the loss of
hearing sensitivity at certain frequency
ranges (Finneran, 2015). TS can be
permanent (PTS), in which case the loss
of hearing sensitivity is not fully
recoverable, or temporary (TTS), in
which case the animal’s hearing
threshold would recover over time
(Southall et al., 2007). Repeated sound
exposure that leads to TTS could cause
PTS. In severe cases of PTS, there can
be total or partial deafness, while in
most cases the animal has an impaired
ability to hear sounds in specific
frequency ranges (Kryter, 1985).
When PTS occurs, there is physical
damage to the sound receptors in the ear
VerDate Sep<11>2014
17:56 Jul 17, 2019
Jkt 247001
(i.e., tissue damage), whereas TTS
represents primarily tissue fatigue and
is reversible (Southall et al., 2007). In
addition, other investigators have
suggested that TTS is within the normal
bounds of physiological variability and
tolerance and does not represent
physical injury (e.g., Ward, 1997).
Therefore, NMFS does not consider TTS
to constitute auditory injury.
Relationships between TTS and PTS
thresholds have not been studied in
marine mammals, and there is no PTS
data for cetaceans, but such
relationships are assumed to be similar
to those in humans and other terrestrial
mammals. PTS typically occurs at
exposure levels at least several decibels
above (a 40-dB threshold shift
approximates PTS onset; e.g., Kryter et
al., 1966; Miller, 1974) that inducing
mild TTS (a 6-dB threshold shift
approximates TTS onset; e.g., Southall
et al. 2007). Based on data from
terrestrial mammals, a precautionary
assumption is that the PTS thresholds
for impulse sounds (such as impact pile
driving pulses as received close to the
source) are at least 6 dB higher than the
TTS threshold on a peak-pressure basis
and PTS cumulative sound exposure
level thresholds are 15 to 20 dB higher
than TTS cumulative sound exposure
level thresholds (Southall et al., 2007).
Given the higher level of sound or
longer exposure duration necessary to
cause PTS as compared with TTS, it is
considerably less likely that PTS could
occur.
TTS is the mildest form of hearing
impairment that can occur during
exposure to sound (Kryter, 1985). While
experiencing TTS, the hearing threshold
rises, and a sound must be at a higher
level in order to be heard. In terrestrial
and marine mammals, TTS can last from
minutes or hours to days (in cases of
strong TTS). In many cases, hearing
sensitivity recovers rapidly after
exposure to the sound ends. Few data
on sound levels and durations necessary
to elicit mild TTS have been obtained
for marine mammals.
Marine mammal hearing plays a
critical role in communication with
conspecifics, and interpretation of
environmental cues for purposes such
as predator avoidance and prey capture.
Depending on the degree (elevation of
threshold in dB), duration (i.e., recovery
time), and frequency range of TTS, and
the context in which it is experienced,
TTS can have effects on marine
mammals ranging from discountable to
serious. For example, a marine mammal
may be able to readily compensate for
a brief, relatively small amount of TTS
in a non-critical frequency range that
occurs during a time where ambient
PO 00000
Frm 00026
Fmt 4703
Sfmt 4703
34357
noise is lower and there are not as many
competing sounds present.
Alternatively, a larger amount and
longer duration of TTS sustained during
time when communication is critical for
successful mother/calf interactions
could have more serious impacts.
Currently, TTS data only exist for four
species of cetaceans (bottlenose dolphin
(Tursiops truncatus), beluga whale
(Delphinapterus leucas), harbor
porpoise, and Yangtze finless porpoise
(Neophocoena asiaeorientalis)) and
three species of pinnipeds (northern
elephant seal, harbor seal, and
California sea lion) exposed to a limited
number of sound sources (i.e., mostly
tones and octave-band noise) in
laboratory settings (Finneran, 2015).
TTS was not observed in trained spotted
(Phoca largha) and ringed (Pusa
hispida) seals exposed to impulsive
noise at levels matching previous
predictions of TTS onset (Reichmuth et
al., 2016). In general, harbor seals and
harbor porpoises have a lower TTS
onset than other measured pinniped or
cetacean species (Finneran, 2015).
Additionally, the existing marine
mammal TTS data come from a limited
number of individuals within these
species. There are no data available on
noise-induced hearing loss for
mysticetes. For summaries of data on
TTS in marine mammals or for further
discussion of TTS onset thresholds,
please see Southall et al. (2007),
Finneran and Jenkins (2012), Finneran
(2015), and NMFS (2018).
Behavioral Effects—Behavioral
disturbance may include a variety of
effects, including subtle changes in
behavior (e.g., minor or brief avoidance
of an area or changes in vocalizations),
more conspicuous changes in similar
behavioral activities, and more
sustained and/or potentially severe
reactions, such as displacement from or
abandonment of high-quality habitat.
Behavioral responses to sound are
highly variable and context-specific and
any reactions depend on numerous
intrinsic and extrinsic factors (e.g.,
species, state of maturity, experience,
current activity, reproductive state,
auditory sensitivity, time of day), as
well as the interplay between factors
(e.g., Richardson et al., 1995; Wartzok et
al., 2003; Southall et al., 2007; Weilgart,
2007; Archer et al., 2010). Behavioral
reactions can vary not only among
individuals but also within an
individual, depending on previous
experience with a sound source,
context, and numerous other factors
(Ellison et al., 2012), and can vary
depending on characteristics associated
with the sound source (e.g., whether it
is moving or stationary, number of
E:\FR\FM\18JYN1.SGM
18JYN1
khammond on DSKBBV9HB2PROD with NOTICES
34358
Federal Register / Vol. 84, No. 138 / Thursday, July 18, 2019 / Notices
sources, distance from the source).
Please see Appendices B–C of Southall
et al. (2007) for a review of studies
involving marine mammal behavioral
responses to sound.
Habituation can occur when an
animal’s response to a stimulus wanes
with repeated exposure, usually in the
absence of unpleasant associated events
(Wartzok et al., 2003). Animals are most
likely to habituate to sounds that are
predictable and unvarying. It is
important to note that habituation is
appropriately considered as a
‘‘progressive reduction in response to
stimuli that are perceived as neither
aversive nor beneficial,’’ rather than as,
more generally, moderation in response
to human disturbance (Bejder et al.,
2009). The opposite process is
sensitization, when an unpleasant
experience leads to subsequent
responses, often in the form of
avoidance, at a lower level of exposure.
As noted, behavioral state may affect the
type of response. For example, animals
that are resting may show greater
behavioral change in response to
disturbing sound levels than animals
that are highly motivated to remain in
an area for feeding (Richardson et al.,
1995; NRC, 2003; Wartzok et al., 2003).
Controlled experiments with captive
marine mammals have showed
pronounced behavioral reactions,
including avoidance of loud sound
sources (Ridgway et al., 1997; Finneran
et al., 2003). Observed responses of wild
marine mammals to loud pulsed sound
sources (typically airguns or acoustic
harassment devices) have been varied
but often consist of avoidance behavior
or other behavioral changes suggesting
discomfort (Morton and Symonds, 2002;
see also Richardson et al., 1995;
Nowacek et al., 2007). However, many
delphinids approach low-frequency
airgun source vessels with no apparent
discomfort or obvious behavioral change
(e.g., Barkaszi et al., 2012), indicating
the importance of frequency output in
relation to the species’ hearing
sensitivity.
Available studies show wide variation
in response to underwater sound;
therefore, it is difficult to predict
specifically how any given sound in a
particular instance might affect marine
mammals perceiving the signal. If a
marine mammal does react briefly to an
underwater sound by changing its
behavior or moving a small distance, the
impacts of the change are unlikely to be
significant to the individual, let alone
the stock or population. However, if a
sound source displaces marine
mammals from an important feeding or
breeding area for a prolonged period,
impacts on individuals and populations
VerDate Sep<11>2014
17:56 Jul 17, 2019
Jkt 247001
could be significant (e.g., Lusseau and
Bejder, 2007; Weilgart, 2007; NRC,
2005). However, there are broad
categories of potential response, which
we describe in greater detail here, that
include alteration of dive behavior,
alteration of foraging behavior, effects to
breathing, interference with or alteration
of vocalization, avoidance, and flight.
Changes in dive behavior can vary
widely and may consist of increased or
decreased dive times and surface
intervals as well as changes in the rates
of ascent and descent during a dive (e.g.,
Frankel and Clark, 2000; Costa et al.,
2003; Ng and Leung, 2003; Nowacek et
al.; 2004; Goldbogen et al., 2013a,
2013b). Variations in dive behavior may
reflect interruptions in biologically
significant activities (e.g., foraging) or
they may be of little biological
significance. The impact of an alteration
to dive behavior resulting from an
acoustic exposure depends on what the
animal is doing at the time of the
exposure and the type and magnitude of
the response.
Disruption of feeding behavior can be
difficult to correlate with anthropogenic
sound exposure, so it is usually inferred
by observed displacement from known
foraging areas, the appearance of
secondary indicators (e.g., bubble nets
or sediment plumes), or changes in dive
behavior. As for other types of
behavioral response, the frequency,
duration, and temporal pattern of signal
presentation, as well as differences in
species sensitivity, are likely
contributing factors to differences in
response in any given circumstance
(e.g., Croll et al., 2001; Nowacek et al.;
2004; Madsen et al., 2006; Yazvenko et
al., 2007). A determination of whether
foraging disruptions incur fitness
consequences would require
information on or estimates of the
energetic requirements of the affected
individuals and the relationship
between prey availability, foraging effort
and success, and the life history stage of
the animal.
Variations in respiration naturally
vary with different behaviors and
alterations to breathing rate as a
function of acoustic exposure can be
expected to co-occur with other
behavioral reactions, such as a flight
response or an alteration in diving.
However, respiration rates in and of
themselves may be representative of
annoyance or an acute stress response.
Various studies have shown that
respiration rates may either be
unaffected or could increase, depending
on the species and signal characteristics,
again highlighting the importance in
understanding species differences in the
tolerance of underwater noise when
PO 00000
Frm 00027
Fmt 4703
Sfmt 4703
determining the potential for impacts
resulting from anthropogenic sound
exposure (e.g., Kastelein et al., 2001,
2005, 2006; Gailey et al., 2007; Gailey et
al., 2016).
Marine mammals vocalize for
different purposes and across multiple
modes, such as whistling, echolocation
click production, calling, and singing.
Changes in vocalization behavior in
response to anthropogenic noise can
occur for any of these modes and may
result from a need to compete with an
increase in background noise or may
reflect increased vigilance or a startle
response. For example, in the presence
of potentially masking signals,
humpback whales and killer whales
have been observed to increase the
length of their songs (Miller et al., 2000;
Fristrup et al., 2003; Foote et al., 2004),
while right whales have been observed
to shift the frequency content of their
calls upward while reducing the rate of
calling in areas of increased
anthropogenic noise (Parks et al., 2007).
In some cases, animals may cease sound
production during production of
aversive signals (Bowles et al., 1994).
Avoidance is the displacement of an
individual from an area or migration
path as a result of the presence of a
sound or other stressors, and is one of
the most obvious manifestations of
disturbance in marine mammals
(Richardson et al., 1995). For example,
gray whales are known to change
direction—deflecting from customary
migratory paths—in order to avoid noise
from airgun surveys (Malme et al.,
1984). Avoidance may be short-term,
with animals returning to the area once
the noise has ceased (e.g., Bowles et al.,
1994; Goold, 1996; Stone et al., 2000;
Morton and Symonds, 2002; Gailey et
al., 2007). Longer-term displacement is
possible, however, which may lead to
changes in abundance or distribution
patterns of the affected species in the
affected region if habituation to the
presence of the sound does not occur
(e.g., Blackwell et al., 2004; Bejder et al.,
2006; Teilmann et al., 2006).
A flight response is a dramatic change
in normal movement to a directed and
rapid movement away from the
perceived location of a sound source.
The flight response differs from other
avoidance responses in the intensity of
the response (e.g., directed movement,
rate of travel). Relatively little
information on flight responses of
marine mammals to anthropogenic
signals exist, although observations of
flight responses to the presence of
predators have occurred (Connor and
Heithaus, 1996). The result of a flight
response could range from brief,
temporary exertion and displacement
E:\FR\FM\18JYN1.SGM
18JYN1
khammond on DSKBBV9HB2PROD with NOTICES
Federal Register / Vol. 84, No. 138 / Thursday, July 18, 2019 / Notices
from the area where the signal provokes
flight to, in extreme cases, marine
mammal strandings (Evans and
England, 2001). However, it should be
noted that response to a perceived
predator does not necessarily invoke
flight (Ford and Reeves, 2008), and
whether individuals are solitary or in
groups may influence the response.
Behavioral disturbance can also
impact marine mammals in more subtle
ways. Increased vigilance may result in
costs related to diversion of focus and
attention (i.e., when a response consists
of increased vigilance, it may come at
the cost of decreased attention to other
critical behaviors such as foraging or
resting). These effects have generally not
been demonstrated for marine
mammals, but studies involving fish
and terrestrial animals have shown that
increased vigilance may substantially
reduce feeding rates (e.g., Beauchamp
and Livoreil, 1997; Fritz et al., 2002;
Purser and Radford, 2011). In addition,
chronic disturbance can cause
population declines through reduction
of fitness (e.g., decline in body
condition) and subsequent reduction in
reproductive success, survival, or both
(e.g., Harrington and Veitch, 1992; Daan
et al., 1996; Bradshaw et al., 1998).
However, Ridgway et al. (2006) reported
that increased vigilance in bottlenose
dolphins exposed to sound over a fiveday period did not cause any sleep
deprivation or stress effects.
Many animals perform vital functions,
such as feeding, resting, traveling, and
socializing, on a diel cycle (24-hour
cycle). Disruption of such functions
resulting from reactions to stressors
such as sound exposure are more likely
to be significant if they last more than
one diel cycle or recur on subsequent
days (Southall et al., 2007).
Consequently, a behavioral response
lasting less than one day and not
recurring on subsequent days is not
considered particularly severe unless it
could directly affect reproduction or
survival (Southall et al., 2007). Note that
there is a difference between multi-day
substantive behavioral reactions and
multi-day anthropogenic activities. For
example, just because an activity lasts
for multiple days does not necessarily
mean that individual animals are either
exposed to activity-related stressors for
multiple days or, further, exposed in a
manner resulting in sustained multi-day
substantive behavioral responses.
Stress Responses—An animal’s
perception of a threat may be sufficient
to trigger stress responses consisting of
some combination of behavioral
responses, autonomic nervous system
responses, neuroendocrine responses, or
immune responses (e.g., Seyle, 1950;
VerDate Sep<11>2014
17:56 Jul 17, 2019
Jkt 247001
Moberg, 2000). In many cases, an
animal’s first and sometimes most
economical (in terms of energetic costs)
response is behavioral avoidance of the
potential stressor. Autonomic nervous
system responses to stress typically
involve changes in heart rate, blood
pressure, and gastrointestinal activity.
These responses have a relatively short
duration and may or may not have a
significant long-term effect on an
animal’s fitness.
Neuroendocrine stress responses often
involve the hypothalamus-pituitaryadrenal system. Virtually all
neuroendocrine functions that are
affected by stress—including immune
competence, reproduction, metabolism,
and behavior—are regulated by pituitary
hormones. Stress-induced changes in
the secretion of pituitary hormones have
been implicated in failed reproduction,
altered metabolism, reduced immune
competence, and behavioral disturbance
(e.g., Moberg, 1987; Blecha, 2000).
Increases in the circulation of
glucocorticoids are also equated with
stress (Romano et al., 2004).
The primary distinction between
stress (which is adaptive and does not
normally place an animal at risk) and
‘‘distress’’ is the cost of the response.
During a stress response, an animal uses
glycogen stores that can be quickly
replenished once the stress is alleviated.
In such circumstances, the cost of the
stress response would not pose serious
fitness consequences. However, when
an animal does not have sufficient
energy reserves to satisfy the energetic
costs of a stress response, energy
resources must be diverted from other
functions. This state of distress will last
until the animal replenishes its
energetic reserves sufficient to restore
normal function.
Relationships between these
physiological mechanisms, animal
behavior, and the costs of stress
responses are well-studied through
controlled experiments and for both
laboratory and free-ranging animals
(e.g., Holberton et al., 1996; Hood et al.,
1998; Jessop et al., 2003; Krausman et
al., 2004; Lankford et al., 2005). Stress
responses due to exposure to
anthropogenic sounds or other stressors
and their effects on marine mammals
have also been reviewed (Fair and
Becker, 2000; Romano et al., 2002b)
and, more rarely, studied in wild
populations (e.g., Romano et al., 2002a).
For example, Rolland et al. (2012) found
that noise reduction from reduced ship
traffic in the Bay of Fundy was
associated with decreased stress in
North Atlantic right whales. These and
other studies lead to a reasonable
expectation that some marine mammals
PO 00000
Frm 00028
Fmt 4703
Sfmt 4703
34359
will experience physiological stress
responses upon exposure to acoustic
stressors and that it is possible that
some of these would be classified as
‘‘distress.’’ In addition, any animal
experiencing TTS would likely also
experience stress responses (NRC,
2003).
Auditory Masking—Sound can
disrupt behavior through masking, or
interfering with, an animal’s ability to
detect, recognize, or discriminate
between acoustic signals of interest (e.g.,
those used for intraspecific
communication and social interactions,
prey detection, predator avoidance,
navigation) (Richardson et al., 1995;
Erbe et al., 2016). Masking occurs when
the receipt of a sound is interfered with
by another coincident sound at similar
frequencies and at similar or higher
intensity, and may occur whether the
sound is natural (e.g., snapping shrimp,
wind, waves, precipitation) or
anthropogenic (e.g., shipping, sonar,
seismic exploration) in origin. The
ability of a noise source to mask
biologically important sounds depends
on the characteristics of both the noise
source and the signal of interest (e.g.,
signal-to-noise ratio, temporal
variability, direction), in relation to each
other and to an animal’s hearing
abilities (e.g., sensitivity, frequency
range, critical ratios, frequency
discrimination, directional
discrimination, age or TTS hearing loss),
and existing ambient noise and
propagation conditions.
Under certain circumstances, marine
mammals experiencing significant
masking could also be impaired from
maximizing their performance fitness in
survival and reproduction. Therefore,
when the coincident (masking) sound is
man-made, it may be considered
harassment when disrupting or altering
critical behaviors. It is important to
distinguish TTS and PTS, which persist
after the sound exposure, from masking,
which occurs during the sound
exposure. Because masking (without
resulting in TS) is not associated with
abnormal physiological function, it is
not considered a physiological effect,
but rather a potential behavioral effect.
The frequency range of the potentially
masking sound is important in
determining any potential behavioral
impacts. For example, low-frequency
signals may have less effect on highfrequency echolocation sounds
produced by odontocetes but are more
likely to affect detection of mysticete
communication calls and other
potentially important natural sounds
such as those produced by surf and
some prey species. The masking of
communication signals by
E:\FR\FM\18JYN1.SGM
18JYN1
khammond on DSKBBV9HB2PROD with NOTICES
34360
Federal Register / Vol. 84, No. 138 / Thursday, July 18, 2019 / Notices
anthropogenic noise may be considered
as a reduction in the communication
space of animals (e.g., Clark et al., 2009)
and may result in energetic or other
costs as animals change their
vocalization behavior (e.g., Miller et al.,
2000; Foote et al., 2004; Parks et al.,
2007; Di Iorio and Clark, 2009; Holt et
al., 2009). Masking can be reduced in
situations where the signal and noise
come from different directions
(Richardson et al., 1995), through
amplitude modulation of the signal, or
through other compensatory behaviors
(Houser and Moore, 2014). Masking can
be tested directly in captive species
(e.g., Erbe, 2008), but in wild
populations it must be either modeled
or inferred from evidence of masking
compensation. There are few studies
addressing real-world masking sounds
likely to be experienced by marine
mammals in the wild (e.g., Branstetter et
al., 2013).
Masking affects both senders and
receivers of acoustic signals and can
potentially have long-term chronic
effects on marine mammals at the
population level as well as at the
individual level. Low-frequency
ambient sound levels have increased by
as much as 20 dB (more than three times
in terms of SPL) in the world’s ocean
from pre-industrial periods, with most
of the increase from distant commercial
shipping (Hildebrand, 2009). All
anthropogenic sound sources, but
especially chronic and lower-frequency
signals (e.g., from vessel traffic),
contribute to elevated ambient sound
levels, thus intensifying masking.
Potential Effects of the City’s
Activity—As described previously (see
Description of Active Acoustic Sound
Sources), the City proposes to conduct
pile driving, including impact and
vibratory driving. The effects of pile
driving on marine mammals are
dependent on several factors, including
the size, type, and depth of the animal;
the depth, intensity, and duration of the
pile driving sound; the depth of the
water column; the substrate of the
habitat; the standoff distance between
the pile and the animal; and the sound
propagation properties of the
environment. With both types, it is
likely that the pile driving could result
in temporary, short term changes in an
animal’s typical behavioral patterns
and/or avoidance of the affected area.
These behavioral changes may include
(Richardson et al., 1995): Changing
durations of surfacing and dives,
number of blows per surfacing, or
moving direction and/or speed;
reduced/increased vocal activities;
changing/cessation of certain behavioral
activities (such as socializing or
VerDate Sep<11>2014
17:56 Jul 17, 2019
Jkt 247001
feeding); visible startle response or
aggressive behavior (such as tail/fluke
slapping or jaw clapping); avoidance of
areas where sound sources are located;
and/or flight responses.
The biological significance of many of
these behavioral disturbances is difficult
to predict, especially if the detected
disturbances appear minor. However,
the consequences of behavioral
modification could be expected to be
biologically significant if the change
affects growth, survival, or
reproduction. Significant behavioral
modifications that could lead to effects
on growth, survival, or reproduction,
such as drastic changes in diving/
surfacing patterns or significant habitat
abandonment are extremely unlikely in
this area (i.e., shallow waters in
modified industrial areas).
Whether impact or vibratory driving,
sound sources would be active for
relatively short durations, with relation
to potential for masking. The
frequencies output by pile driving
activity are lower than those used by
most species expected to be regularly
present for communication or foraging.
We expect insignificant impacts from
masking, and any masking event that
could possibly rise to Level B
harassment under the MMPA would
occur concurrently within the zones of
behavioral harassment already
estimated for vibratory and impact pile
driving, and which have already been
taken into account in the exposure
analysis.
Anticipated Effects on Marine Mammal
Habitat
The proposed activities would not
result in permanent impacts to habitats
used directly by marine mammals
except the actual footprint of the
project. The footprint of the project is
small, and equal to the area the ferry
associated pile placement. The
installation of piles for the new pier will
result in permanent impacts on 61
square feet (ft2) of aquatic habitat. At
best, the impact area, which is located
in Seaplane Lagoon, provides marginal
foraging habitat for marine mammals
and fish. The net loss of such a small
area (25 ft2) of benthic habitat is not
expected to impair the health of these
species or affect their populations.
Project construction and long-term
operation are not expected to disturb
nearby harbor seal haul-outs, which are
located 1.0 mi to the southwest on
Breakwater Island and 0.5 mi to the
southeast on a platform installed by the
City.
The proposed activities may have
potential short-term impacts to food
sources such as forage fish. The
PO 00000
Frm 00029
Fmt 4703
Sfmt 4703
proposed activities could also affect
acoustic habitat (see masking discussion
above), but meaningful impacts are
unlikely. There are no known foraging
hotspots, or other ocean bottom
structures of significant biological
importance to marine mammals present
in the marine waters in the vicinity of
the project areas. Therefore, the main
impact issue associated with the
proposed activity would be temporarily
elevated sound levels and the associated
direct effects on marine mammals, as
discussed previously. The most likely
impact to marine mammal habitat
occurs from pile driving effects on likely
marine mammal prey (i.e., fish) near
where the piles are installed. Impacts to
the immediate substrate during
installation and removal of piles are
anticipated, but these would be limited
to minor, temporary suspension of
sediments, which could impact water
quality and visibility for a short amount
of time, but which would not be
expected to have any effects on
individual marine mammals. Impacts to
substrate are therefore not discussed
further.
Effects to Prey—Sound may affect
marine mammals through impacts on
the abundance, behavior, or distribution
of prey species (e.g., crustaceans,
cephalopods, fish, zooplankton). Marine
mammal prey varies by species, season,
and location and, for some, is not well
documented. Here, we describe studies
regarding the effects of noise on known
marine mammal prey.
Fish utilize the soundscape and
components of sound in their
environment to perform important
functions such as foraging, predator
avoidance, mating, and spawning (e.g.,
Zelick et al., 1999; Fay, 2009).
Depending on their hearing anatomy
and peripheral sensory structures,
which vary among species, fishes hear
sounds using pressure and particle
motion sensitivity capabilities and
detect the motion of surrounding water
(Fay et al., 2008). The potential effects
of noise on fishes depends on the
overlapping frequency range, distance
from the sound source, water depth of
exposure, and species-specific hearing
sensitivity, anatomy, and physiology.
Key impacts to fishes may include
behavioral responses, hearing damage,
barotrauma (pressure-related injuries),
and mortality.
Fish react to sounds which are
especially strong and/or intermittent
low-frequency sounds, and behavioral
responses such as flight or avoidance
are the most likely effects. Short
duration, sharp sounds can cause overt
or subtle changes in fish behavior and
local distribution. The reaction of fish to
E:\FR\FM\18JYN1.SGM
18JYN1
khammond on DSKBBV9HB2PROD with NOTICES
Federal Register / Vol. 84, No. 138 / Thursday, July 18, 2019 / Notices
noise depends on the physiological state
of the fish, past exposures, motivation
(e.g., feeding, spawning, migration), and
other environmental factors. Hastings
and Popper (2005) identified several
studies that suggest fish may relocate to
avoid certain areas of sound energy.
Additional studies have documented
effects of pile driving on fish, although
several are based on studies in support
of large, multiyear bridge construction
projects (e.g., Scholik and Yan, 2001,
2002; Popper and Hastings, 2009).
Several studies have demonstrated that
impulse sounds might affect the
distribution and behavior of some
fishes, potentially impacting foraging
opportunities or increasing energetic
costs (e.g., Fewtrell and McCauley,
2012; Pearson et al., 1992; Skalski et al.,
1992; Santulli et al., 1999; Paxton et al.,
2017). However, some studies have
shown no or slight reaction to impulse
sounds (e.g., Pena et al., 2013; Wardle
et al., 2001; Jorgenson and Gyselman,
2009; Cott et al., 2012). More
commonly, though, the impacts of noise
on fish are temporary.
SPLs of sufficient strength have been
known to cause injury to fish and fish
mortality. However, in most fish
species, hair cells in the ear
continuously regenerate and loss of
auditory function likely is restored
when damaged cells are replaced with
new cells. Halvorsen et al. (2012a)
showed that a TTS of 4–6 dB was
recoverable within 24 hours for one
species. Impacts would be most severe
when the individual fish is close to the
source and when the duration of
exposure is long. Injury caused by
barotrauma can range from slight to
severe and can cause death, and is most
likely for fish with swim bladders.
Barotrauma injuries have been
documented during controlled exposure
to impact pile driving (Halvorsen et al.,
2012b; Casper et al., 2013).
The action area supports marine
habitat for prey species including large
populations of anadromous fish
including Pacific salmon (five species),
cutthroat and steelhead trout, and Dolly
Varden (NMFS 2018) and other species
of marine fish such as halibut, rock sole,
sculpins, Pacific cod, herring, and
eulachon (NMFS 2018). The most likely
impact to fish from pile driving
activities at the project areas would be
temporary behavioral avoidance of the
area. The duration of fish avoidance of
an area after pile driving stops is
unknown, but a rapid return to normal
recruitment, distribution and behavior
is anticipated. In general, impacts to
marine mammal prey species are
expected to be minor and temporary due
to the expected short daily duration of
VerDate Sep<11>2014
17:56 Jul 17, 2019
Jkt 247001
individual pile driving events and the
relatively small areas being affected.
The area impacted by the project is
relatively small compared to the
available habitat in San Francisco Bay.
Any behavioral avoidance by fish of the
disturbed area would still leave
significantly large areas of fish and
marine mammal foraging habitat in the
nearby vicinity. As described in the
preceding, the potential for the City’s
construction to affect the availability of
prey to marine mammals or to
meaningfully impact the quality of
physical or acoustic habitat is
considered to be insignificant. Effects to
habitat will not be discussed further in
this document.
Estimated Take
This section provides an estimate of
the number of incidental takes proposed
for authorization through this IHA,
which will inform both NMFS’
consideration of ‘‘small numbers’’ and
the negligible impact determination.
Except with respect to certain
activities not pertinent here, section
3(18) of the MMPA defines
‘‘harassment’’ as any act of pursuit,
torment, or annoyance, which (i) has the
potential to injure a marine mammal or
marine mammal stock in the wild (Level
A harassment); or (ii) has the potential
to disturb a marine mammal or marine
mammal stock in the wild by causing
disruption of behavioral patterns,
including, but not limited to, migration,
breathing, nursing, breeding, feeding, or
sheltering (Level B harassment).
Take of marine mammals incidental
to the City’s pile driving and removal
activities could occur as a result of
Level B harassment. Below we describe
how the potential take is estimated. As
described previously, no mortality is
anticipated or proposed to be authorized
for this activity. Below we describe how
the take is estimated.
Generally speaking, we estimate take
by considering: (1) Acoustic thresholds
above which NMFS believes the best
available science indicates marine
mammals will be behaviorally harassed
or incur some degree of permanent
hearing impairment; (2) the area or
volume of water that will be ensonified
above these levels in a day; (3) the
density or occurrence of marine
mammals within these ensonified areas;
and, (4) and the number of days of
activities. We note that while these
basic factors can contribute to a basic
calculation to provide an initial
prediction of takes, additional
information that can qualitatively
inform take estimates is also sometimes
available (e.g., previous monitoring
results or average group size). Below, we
PO 00000
Frm 00030
Fmt 4703
Sfmt 4703
34361
describe the factors considered here in
more detail and present the proposed
take estimate.
Acoustic Thresholds
Using the best available science,
NMFS has developed acoustic
thresholds that identify the received
level of underwater sound above which
exposed marine mammals would be
reasonably expected to be behaviorally
harassed (equated to Level B
harassment) or to incur PTS of some
degree (equated to Level A harassment).
Level B Harassment—Though
significantly driven by received level,
the onset of behavioral disturbance from
anthropogenic noise exposure is also
informed to varying degrees by other
factors related to the source (e.g.,
frequency, predictability, duty cycle),
the environment (e.g., bathymetry), and
the receiving animals (hearing,
motivation, experience, demography,
behavioral context) and can be difficult
to predict (Southall et al., 2007, Ellison
et al., 2012). Based on what the
available science indicates and the
practical need to use a threshold based
on a factor that is both predictable and
measurable for most activities, NMFS
uses a generalized acoustic threshold
based on received level to estimate the
onset of behavioral harassment. NMFS
predicts that marine mammals are likely
to be behaviorally harassed in a manner
we consider Level B harassment when
exposed to underwater anthropogenic
noise above received levels of 120 dB re
1 mPa (rms) for continuous (e.g.,
vibratory pile driving) and above 160 dB
re 1 mPa (rms) for impulsive sources
(e.g., impact pile driving). The City’s
proposed activity includes the use of
continuous (vibratory pile driving) and
impulsive (impact pile driving) sources,
and therefore the 120 and 160 dB re 1
mPa (rms) are applicable.
Level A harassment—NMFS’
Technical Guidance for Assessing the
Effects of Anthropogenic Sound on
Marine Mammal Hearing (Version 2.0)
(Technical Guidance, 2018) identifies
dual criteria to assess auditory injury
(Level A harassment) to five different
marine mammal groups (based on
hearing sensitivity) as a result of
exposure to noise. The technical
guidance identifies the received levels,
or thresholds, above which individual
marine mammals are predicted to
experience changes in their hearing
sensitivity for all underwater
anthropogenic sound sources, and
reflects the best available science on the
potential for noise to affect auditory
sensitivity by:
D Dividing sound sources into two
groups (i.e., impulsive and non-
E:\FR\FM\18JYN1.SGM
18JYN1
34362
Federal Register / Vol. 84, No. 138 / Thursday, July 18, 2019 / Notices
impulsive) based on their potential to
affect hearing sensitivity;
D Choosing metrics that best address
the impacts of noise on hearing
sensitivity, i.e., sound pressure level
(peak SPL) and sound exposure level
(SEL) (also accounts for duration of
exposure); and
D Dividing marine mammals into
hearing groups and developing auditory
weighting functions based on the
science supporting that not all marine
mammals hear and use sound in the
same manner.
These thresholds were developed by
compiling and synthesizing the best
available science, and are provided in
Table 4 below. The references, analysis,
and methodology used in the
development of the thresholds are
described in NMFS 2018 Technical
Guidance, which may be accessed at
https://www.fisheries.noaa.gov/
national/marine-mammal-protection/
marine-mammal-acoustic-technicalguidance.
The City’s pile driving and removal
activity includes the use of impulsive
(impact pile driving) and non-impulsive
(vibratory pile driving and removal)
sources.
TABLE 4—THRESHOLDS IDENTIFYING THE ONSET OF PERMANENT THRESHOLD SHIFT
(Auditory Injury)
PTS Onset Acoustic Thresholds *
(received level)
Hearing group
Impulsive
Low-Frequency (LF) Cetaceans .........................................................
Mid-Frequency (MF) Cetaceans .........................................................
High-Frequency (HF) Cetaceans ........................................................
Phocid Pinnipeds (PW) (Underwater) ................................................
Otariid Pinnipeds (OW) (Underwater) ................................................
Cell 1
Lpk,flat: 219
Cell 3
Lpk,flat: 230
Cell 5
Lpk,flat: 202
Cell 7
Lpk,flat: 218
Cell 9
Lpk,flat: 232
Non-impulsive
Cell 2
LE,LF,24h: 199 dB
Cell 4
LE,MF,24h: 198 dB
Cell 6
LE,HF,24h: 173 dB
Cell 8
LE,PW,24h: 201 dB
Cell 10
LE,OW,24h: 219 dB
dB; LE,LF,24h: 183 dB
dB; LE,MF,24h: 185 dB
dB; LE,HF,24h: 155 dB
dB; LE,PW,24h: 185 dB
dB; LE,OW,24h: 203 dB
* Dual metric acoustic thresholds for impulsive sounds: Use whichever results in the largest isopleth for calculating PTS onset. If a non-impulsive sound has the potential of exceeding the peak sound pressure level thresholds associated with impulsive sounds, these thresholds should
also be considered.
Note: Peak sound pressure (Lpk) has a reference value of 1 μPa, and cumulative sound exposure level (LE) has a reference value of 1μPa2s.
In this Table, thresholds are abbreviated to reflect American National Standards Institute standards (ANSI 2013). However, peak sound pressure
is defined by ANSI as incorporating frequency weighting, which is not the intent for this Technical Guidance. Hence, the subscript ‘‘flat’’ is being
included to indicate peak sound pressure should be flat weighted or unweighted within the generalized hearing range. The subscript associated
with cumulative sound exposure level thresholds indicates the designated marine mammal auditory weighting function (LF, MF, and HF
cetaceans, and PW and OW pinnipeds) and that the recommended accumulation period is 24 hours. The cumulative sound exposure level
thresholds could be exceeded in a multitude of ways (i.e., varying exposure levels and durations, duty cycle). When possible, it is valuable for
action proponents to indicate the conditions under which these acoustic thresholds will be exceeded.
Ensonified Area
Here, we describe operational and
environmental parameters of the activity
that will feed into identifying the area
ensonified above the acoustic
thresholds, which include source levels
and transmission loss coefficient.
Sound Propagation
khammond on DSKBBV9HB2PROD with NOTICES
Transmission loss (TL) is the decrease
in acoustic intensity as an acoustic
pressure wave propagates out from a
source. TL parameters vary with
frequency, temperature, sea conditions,
current, source and receiver depth,
water depth, water chemistry, and
bottom composition and topography.
The general formula for underwater TL
is:
TL = B * log10(R1/R2)
Where:
B = transmission loss coefficient (assumed to
be 15)
R1 = the distance of the modeled SPL from
the driven pile, and
R2 = the distance from the driven pile of the
initial measurement.
VerDate Sep<11>2014
17:56 Jul 17, 2019
Jkt 247001
This formula neglects loss due to
scattering and absorption, which is
assumed to be zero here. The degree to
which underwater sound propagates
away from a sound source is dependent
on a variety of factors, most notably the
water bathymetry and presence or
absence of reflective or absorptive
conditions including in-water structures
and sediments. Spherical spreading
occurs in a perfectly unobstructed (freefield) environment not limited by depth
or water surface, resulting in a 6 dB
reduction in sound level for each
doubling of distance from the source
(20*log(range)). Cylindrical spreading
occurs in an environment in which
sound propagation is bounded by the
water surface and sea bottom, resulting
in a reduction of 3 dB in sound level for
each doubling of distance from the
source (10*log(range)). As is common
practice in coastal waters, here we
assume practical spreading loss (4.5 dB
reduction in sound level for each
doubling of distance). Practical
spreading is a compromise that is often
used under conditions where water
PO 00000
Frm 00031
Fmt 4703
Sfmt 4703
depth increases as the receiver moves
away from the shoreline, resulting in an
expected propagation environment that
would lie between spherical and
cylindrical spreading loss conditions.
Sound Source Levels
The intensity of pile driving sounds is
greatly influenced by factors such as the
type of piles, hammers, and the physical
environment in which the activity takes
place. There are source level
measurements available for certain pile
types and sizes from the similar
environments recorded from underwater
pile driving projects (CALTRANS 2015)
that were evaluated and used as proxy
sound source levels to determine
reasonable sound source levels likely
result from the City’s pile driving and
removal activities (Table 5). Many
source levels used were more
conservation as the values were from
larger pile sizes.
E:\FR\FM\18JYN1.SGM
18JYN1
34363
Federal Register / Vol. 84, No. 138 / Thursday, July 18, 2019 / Notices
TABLE 5—PREDICTED SOUND SOURCE LEVELS
Sound source level
at 10 meters
Activity
Sound source
Vibratory Pile Driving/Removal
14-inch H pile steel pile temporary .........
155 SPL .................
36-inch steel pile permanent ..................
170 SPL .................
CALTRANS 2015 (12-in H piles sound source value used, as no 14-in H pile
sound source level is available)
CALTRANS 2015
Impact Pile Driving
24-inch concrete pile permanent ............
166 SEL/176 SPL ..
CALTRANS 2015
Notes: These are unattentuated values, as the applicant proposes to use a bubble curtain for a 7dB reduction for impact driving.
Level A Harassment
When the NMFS Technical Guidance
(2016) was published, in recognition of
the fact that ensonified area/volume
could be more technically challenging
to predict because of the duration
component in the new thresholds, we
developed a User Spreadsheet that
includes tools to help predict a simple
isopleth that can be used in conjunction
with marine mammal density or
occurrence to help predict takes. We
note that because of some of the
assumptions included in the methods
used for these tools, we anticipate that
isopleths produced are typically going
to be overestimates of some degree,
which may result in some degree of
overestimate of Level A harassment
take. However, these tools offer the best
way to predict appropriate isopleths
when more sophisticated 3D modeling
methods are not available, and NMFS
continues to develop ways to
quantitatively refine these tools, and
will qualitatively address the output
where appropriate. For stationary
sources (such as from impact and
vibratory pile driving), NMFS User
Spreadsheet predicts the closest
distance at which, if a marine mammal
remained at that distance the whole
duration of the activity, it would not
incur PTS. Inputs used in the User
Spreadsheet (Tables 6 and 7), and the
resulting isopleths are reported below
(Table 8).
TABLE 6—NMFS TECHNICAL GUIDANCE (2018) USER SPREADSHEET INPUT TO CALCULATE PTS ISOPLETHS FOR
VIBRATORY PILE DRIVING
User Spreadsheet Input—Vibratory Pile Driving; Spreadsheet Tab A.1 Vibratory Pile Driving Used
14-in H piles
(temporary
install/
removal)
Source Level (RMS SPL) ........................................................................................................................................
Weighting Factor Adjustment (kHz) .........................................................................................................................
Number of piles within 24-hr period ........................................................................................................................
Duration to drive a single pile (min) ........................................................................................................................
Propagation (xLogR) ................................................................................................................................................
Distance of source level measurement (meters) † ..................................................................................................
155
2.5
6
4
15
10
36-in piles
(permanent)
170
2.5
2
30
15
10
TABLE 7—NMFS TECHNICAL GUIDANCE (2018) USER SPREADSHEET INPUT TO CALCULATE PTS ISOPLETHS FOR IMPACT
PILE DRIVING
User Spreadsheet Input—Impact Pile Driving;Spreadsheet Tab E.1 Impact Pile Driving Used.
24-in concrete
piles
(permanent)
khammond on DSKBBV9HB2PROD with NOTICES
Source Level (Single Strike/shot SEL) ................................................................................................................................................
Weighting Factor Adjustment (kHz) .....................................................................................................................................................
Number of strikes per pile ...................................................................................................................................................................
Number of piles per day ......................................................................................................................................................................
Propagation (xLogR) ............................................................................................................................................................................
Distance of source level measurement (meters) * ..............................................................................................................................
* This includes the 7dB reduction from use of a bubble curtain.
VerDate Sep<11>2014
17:56 Jul 17, 2019
Jkt 247001
PO 00000
Frm 00032
Fmt 4703
Sfmt 4703
E:\FR\FM\18JYN1.SGM
18JYN1
* 159
2
3100
1
15
10
34364
Federal Register / Vol. 84, No. 138 / Thursday, July 18, 2019 / Notices
TABLE 8—NMFS TECHNICAL GUIDANCE (2018) USER SPREADSHEET OUTPUTS TO CALCULATE LEVEL A HARASSMENT
PTS ISOPLETHS
User Spreadsheet Output
PTS isopleths (meters)
Level A harassment
Sound source
level at 10 m
Activity
Low-frequency
cetaceans
Mid-frequency
cetaceans
High-frequency
cetaceans
Phocid
Otariid
Vibratory Pile Driving/Removal
14-in H pile steel installation/removal
36-in steel permanent installation ....
155 dB SPL ........
170 dB SPL ........
1.5
13.1
0.1
1.2
2.2
19.3
0.9
7.9
0.1
0.6
1.9
63.5
28.5
2.1
Impact Pile Driving
24-in concrete permanent installation.
166 SEL/176 SPL
(159 dB SEL as
attenuated).
Level B Harassment
Utilizing the practical spreading loss
model, the City determined underwater
noise will fall below the behavioral
effects threshold of 120 dB rms for
53.3
marine mammals at the distances shown
in Table 9 for vibratory pile driving/
removal. For calculating the Level B
Harassment Zone for impact driving, the
practical spreading loss model was used
with a behavioral threshold of 160 dB
rms for marine mammals at the
distances shown in Table 9 for impact
pile driving. Table 9 below provides all
Level B Harassment radial distances (m)
and their corresponding areas (km2)
during the City’s proposed activities.
TABLE 9—RADIAL DISTANCES (meters) TO RELEVANT BEHAVIORAL ISOPLETHS AND ASSOCIATED ENSONIFIED AREAS
(SQUARE KILOMETERS (km2)) USING THE PRACTICAL SPREADING MODEL
Activity
Received level at 10 m
Level B
harassment
zone
(m) *
Level B
harassment
zone
(km2)
Vibratory Pile Driving/Removal
14-inch H piles installation/removal .........................................................................
36-inch steel permanent installation ........................................................................
155 dB SPL .......................
170 dB SPL .......................
2,154
21,544
2.190
21.49
166 dB ...............................
SEL/176 dB .......................
SPL (169 dB .....................
SPL attenuated) ................
39.8
0.004
Impact Pile Driving
24-inch concrete permanent installation ..................................................................
khammond on DSKBBV9HB2PROD with NOTICES
Marine Mammal Occurrence and Take
Calculation and Estimation
In this section we provide the
information about the presence, density,
or group dynamics of marine mammals
that will inform the take calculations.
Potential exposures to impact pile
driving and vibratory pile driving/
removal for each acoustic threshold
were estimated using group size
estimates and local observational data to
create a density estimate. As previously
stated, take by Level B harassment only
will be considered for this action.
Distances to Level A harassment
thresholds are relatively small and
mitigation is expected to avoid Level A
harassment from these activities.
VerDate Sep<11>2014
17:56 Jul 17, 2019
Jkt 247001
Gray Whales
There are no density estimates of gray
whales available in the project area.
Gray whales travel alone or in small,
unstable groups, although large
aggregations may be seen in feeding and
breeding grounds (NMFS 2018). Gray
whales are uncommon in the San
Francisco Bay. It is estimated that
approximately 2–6 individuals enter the
bay in a typical year (CALTRANS 2018).
However nine gray whales have
stranded in the San Francisco Bay in
2019 (Katz 2019). To be conservative,
NMFS proposes to authorize seven
instances of take by Level B harassment
of gray whales. Because the required
shutdown measures are larger than the
associated Level A harassment zones,
and those zones are relatively small
(53.3 m at the largest during impact pile
PO 00000
Frm 00033
Fmt 4703
Sfmt 4703
driving), and activities will occur over
a small number of days, we believe the
PSO will be able to effectively monitor
the Level A harassment zones and we
do not anticipate take by Level A
harassment of gray whales.
Bottlenose Dolphin
There are no density estimates of
Bottlenose dolphin available in the
project area. Individuals in the San
Francisco Bay are typically sighted near
the Golden Gate Bridge, where an
average of five dolphins enter the bay
approximately three times annually.
Two individuals are sighted regularly
near Alameda Point, outside of the
Seaplane Lagoon (CALTRANS 2018).
Low numbers (ranging from 1 to 5) of
individually identified coastal
bottlenose dolphins have been seen
E:\FR\FM\18JYN1.SGM
18JYN1
34365
Federal Register / Vol. 84, No. 138 / Thursday, July 18, 2019 / Notices
along the southwest side of Alameda
Island since July 2016. Much of the
time, the dolphins were close to the
south side of the main outer breakwater
that separates the bay from the lagoon
areas. The last reliable sighting there
was April 7, 2019 of a single individual
(TMMC, B. Keener pers. comm. 2019).
For the purpose of this assessment it is
predicted that two bottlenose dolphins
may occur in the San Francisco Bay in
the Project vicinity on all pile driving
days (i.e., up to 48 individuals in 24
days. Therefore, NMFS proposes to
authorize 48 instances of take of
bottlenose dolphin by Level B
harassment. The Level A harassment
zones are all under 2 m for midfrequency cetaceans; therefore, no take
by Level A harassment is anticipated.
Harbor Porpoise, Harbor Seals, and
California Sea Lions
In-water densities of harbor porpoises,
harbor seals, California sea lions were
calculated based on 17 years of
observations during monitoring for the
San Francisco Bay-Oakland Bay Bridge
(SFOBB) construction and demolition
project (Caltrans 2018). Care was taken
to eliminate multiple observations of the
same animal, although this can be
difficult and is likely that the same
individual may have been counted
multiple times on the same day. The
amount of monitoring performed per
year varied, depending on the frequency
and duration of construction activities
with the potential to affect marine
mammals. During the 257 days of
monitoring from 2000 through 2017
(including 15 days of baseline
monitoring in 2003), 1,029 harbor seals,
83 California sea lions, and 24 harbor
porpoises were observed in waters in
the project vicinity in total. In 2015,
2016, and 2017, the number of harbor
seals in the project area increased
significantly. A California sea lion
density estimate of 0.161 animals/km2
was calculated using the data from
2000–2017. In 2017, the number of
harbor porpoise in the project area also
increased significantly. Therefore, a
harbor seal density estimate of 3.957
animals/km2 was calculated using the
2015–2017 data. A harbor porpoise
density estimate of 0.167 animals/km2
was calculated using the 2017 data,
which may better reflect the current use
of the project area by these animals.
These observations included data from
baseline, pre-, during, and post-pile
driving, mechanical dismantling, onshore blasting, and off-shore implosion
activities.
In addition to the information
provided above regarding harbor seal
density estimates, harbor seals are
known to use the tip of Breakwater
Island, which is located approximately
1.0 mi southwest of the project area, as
a haul-out site. These seals forage in the
project area as well (WETA 2011). In
recent years, up to 32 harbor seals have
been observed making irregular use of
the Breakwater Island haul-out (AECOM
2017). The City of Alameda has also
recently installed a haul-out platform
approximately 0.5 mi southeast of the
site. Although these locations are not
considered primary haul-outs for harbor
seals due to the relatively low numbers
of individuals that are present,
Breakwater Island and the City haul-out
platform are reportedly the only haulout sites in the central Bay that are
accessible to seals throughout the full
tidal range.
A local group of Alameda Point
Harbor Seal Monitors regularly counts
the number of harbor seals at Alameda
Point, and based on count data from
2014 to 2019 an average of 11.7 harbor
seals is present at Alameda Point yearround (Bangert pers. comm. 2019 in the
application). However, the numbers of
harbor seals present in the area varies
considerably with season, with higher
numbers in the winter due to the
presence of spawning Pacific herring
(Clupea pallasii) in the San Francisco
Bay. Project pile driving activities will
occur during the months of August and
September, and therefore we estimated
the average number of harbor seals
based on count data these months only.
The data summary indicated that the
numbers of harbor seals present at
Alameda increased in 2017 and 2018
compared to 2015 and 2016, and
therefore only count data from 2017 and
2018 was used to ensure that the density
estimate reflects current conditions. The
average number of harbor seals counted
at Alameda Point in August and
September of 2017 and 2018 was 6.5
individuals. These densities described
above for harbor porpoise, harbor seals,
and California sea lions are then used to
calculate estimated take and described
in the sub-sections below for these
species.
Harbor Porpoise
A predicted density of 0.167 animals/
km2 based for harbor porpoise was used
to estimate take (Table 10). The
estimated take was calculated using this
density multiplied by the area
ensonified above the threshold
multiplied by the number of days per
activity (e.g., 6 days of impact pile
driving) (Table 10). Therefore, a total of
26 instances of take by Level B
harassment are proposed for harbor
porpoise. Because the required
shutdown measures are larger than the
associated Level A harassment zones,
and the harassment zones ar not very
larger (63.5 m at the largest during
impact pile driving), and will only
occur over a small number of days, we
believe the PSO can effectively monitor
the Level A harassment zones and
therefore we do not anticipate take by
Level A harassment of harbor porpoise.
TABLE 10—PROPOSED ESTIMATED TAKE BY LEVEL B HARASSMENT OF HARBOR PORPOISE
Density
(animals/km2)
khammond on DSKBBV9HB2PROD with NOTICES
Source
Area
(km2)
Proposed
Level B
take by
harassment
Days of
activity
Vibratory Installation and Removal 14-in H piles ............................................
Vibratory 36-in piles .........................................................................................
Impact 24-in piles ............................................................................................
0.167
0.167
0.167
2.190
21.490
0.004
12
6
6
4.389
21.533
0.004
Total Take by Level B harassment ..........................................................
........................
........................
........................
25.926
(rounded to
26)
Harbor Seal
A predicted a density of 3.957
animals/km2 for harbor seals was used
VerDate Sep<11>2014
17:56 Jul 17, 2019
Jkt 247001
to estimate take by Level B harassment
(Table 11). This density should account
for harbor seals exposed in the water
PO 00000
Frm 00034
Fmt 4703
Sfmt 4703
while moving to and from the
breakwater haul out since those animals
would be in the bay and accounted for
E:\FR\FM\18JYN1.SGM
18JYN1
34366
Federal Register / Vol. 84, No. 138 / Thursday, July 18, 2019 / Notices
by the density estimate. The estimated
take was calculated using this density
multiplied by the area ensonified above
the threshold multiplied by the number
of days per activity (e.g., 6 days of
impact pile driving) (Table 11).
small (28.5 m at the largest during
impact pile driving), we believe the PSO
can effectively monitor the Level A
harassment zones and therefore we do
not anticipate any take by Level A
harassment of harbor seals.
Therefore, a total of 615 instances of
take by Level B harassment are
proposed for harbor seals. Because the
required shutdown measures are larger
than the associated Level A harassment
zones, and those zones are relatively
TABLE 11—PROPOSED ESTIMATED TAKE BY LEVEL B HARASSMENT OF HARBOR SEAL
Area
(km2)
Density
(animals/km2)
Source
Proposed
Level B
take by
harassment
Days of
activity
Vibratory Installation and Removal 14-in H piles ............................................
Vibratory 36-in piles .........................................................................................
Impact 24-in piles ............................................................................................
3.957
3.957
3.957
2.190
21.490
0.004
12
6
6
103.999
510.216
0.095
Total Take by Level B harassment ..........................................................
........................
........................
........................
614.31
(rounded to
615)
California Sea Lions
A predicted a density of 0.161
animals/km2 based for California sea
lions was used to estimate take by Level
B harassment (Table 12). The estimated
by Level B harassment are proposed for
California sea lions. The Level A
harassment zones are all under 2.1 m for
otariids; therefore, no take by Level A
harassment of California sea lions is
anticipated.
take was calculated using this density
multiplied by the area ensonified above
the threshold multiplied by the number
of days per activity (e.g., 6 days of
impact pile driving) (Table 12).
Therefore, a total of 25 instances of take
TABLE 12—PROPOSED ESTIMATED TAKE BY LEVEL B HARASSMENT OF CALIFORNIA SEA LIONS
Density
(animals/km2)
Source
Proposed
Level B
take by
harassment
Days of
activity
Vibratory Installation and Removal 14-in H piles ............................................
Vibratory 36-in piles .........................................................................................
Impact 24-in piles ............................................................................................
0.161
0.161
0.161
2.190
21.490
0.004
12
6
6
4.231
20.759
0.004
Total Take by Level B harassment ..........................................................
........................
........................
........................
24.994
(rounded to
25)
Northern Elephant Seal
khammond on DSKBBV9HB2PROD with NOTICES
Area
(km2)
There are no density estimates of
northern elephant seals available in the
project area. Elephant seals breed
between December and March and have
been rarely cited in San Francisco Bay.
It is anticipated that if an elephant seal
is encountered at all during pile driving
or drilling it would be a juvenile. For
the purpose of this assessment, we
predict that up to one northern elephant
seal may occur in the San Francisco Bay
in the Project vicinity on up to 20
percent of pile driving days (i.e., up to
4.8 individuals in 24 days). This
assumption is consistent with the recent
IHA for the demolition and reuse of the
marine foundations of the original east
span of the San Francisco-Oakland Bay
Bridge (CALTRANS 2018). Therefore,
NMFS proposes to authorize five takes
(0.2 seals/day multiplied by 24 project
days) by Level B harassment of elephant
seals. Because the required shutdown
measures are larger than the associated
Level A harassment zones, and those
zones are relatively small (28.5 m at the
largest during impact pile driving), we
believe the PSO can effectively monitor
the Level A harassment zones and
therefore we do not anticipate any take
by Level A harassment of northern
elephant seals.
Northern Fur Seals
There are no density estimates of
northern fur seals available in the
project area. The Marine Mammal
Center (TMMC) reported only two to
four northern fur seal strandings in the
Bay in 2015 and 2016 (in Marin, San
Francisco, and Santa Clara counties)
(TMMC 2017). To account for the
possible rare presence of the species in
the action area, NMFS proposes to
authorize three takes by Level B
harassment of northern fur seals. The
Level A harassment zones are all under
2.1 m for otariids; therefore, no take by
Level A harassment of Northern fur
seals is anticipated.
Table 13 below summarizes the
proposed estimated take for all the
species described above as a percentage
of stock abundance.
TABLE 13—PROPOSED TAKE ESTIMATES AS A PERCENTAGE OF STOCK ABUNDANCE
Species
Stock
(NEST)
Level A
harassment
Level B
harassment
Gray Whale ...........................................
Eastern North Pacific (26,960) ..............
0 .....................
7 .....................
VerDate Sep<11>2014
17:56 Jul 17, 2019
Jkt 247001
PO 00000
Frm 00035
Fmt 4703
Sfmt 4703
E:\FR\FM\18JYN1.SGM
18JYN1
Percent
of stock
Less than 1 percent.
34367
Federal Register / Vol. 84, No. 138 / Thursday, July 18, 2019 / Notices
TABLE 13—PROPOSED TAKE ESTIMATES AS A PERCENTAGE OF STOCK ABUNDANCE—Continued
Species
Stock
(NEST)
Bottlenose Dolphin ................................
Harbor Porpoise ....................................
Harbor Seal ...........................................
Northern Elephant Seal .........................
California Sea Lion ................................
Northern fur seal ...................................
California Coastal (453) ........................
San Francisco-Russian River (9,886) ...
California (30,968) .................................
California Breeding (179,000) ...............
U.S. (257,606) .......................................
Eastern DPS, California (20,000 ) ........
Proposed Mitigation
In order to issue an IHA under
Section 101(a)(5)(D) of the MMPA,
NMFS must set forth the permissible
methods of taking pursuant to such
activity, and other means of effecting
the least practicable impact on such
species or stock and its habitat, paying
particular attention to rookeries, mating
grounds, and areas of similar
significance, and on the availability of
such species or stock for taking for
certain subsistence uses (latter not
applicable for this action). NMFS
regulations require applicants for
incidental take authorizations to include
information about the availability and
feasibility (economic and technological)
of equipment, methods, and manner of
conducting such activity or other means
of effecting the least practicable adverse
impact upon the affected species or
stocks and their habitat (50 CFR
216.104(a)(11)).
In evaluating how mitigation may or
may not be appropriate to ensure the
least practicable adverse impact on
species or stocks and their habitat, as
well as subsistence uses where
applicable, we carefully consider two
primary factors:
(1) The manner in which, and the
degree to which, the successful
implementation of the measure(s) is
expected to reduce impacts to marine
mammals, marine mammal species or
stocks, and their habitat. This considers
the nature of the potential adverse
impact being mitigated (likelihood,
scope, range). It further considers the
likelihood that the measure will be
effective if implemented (probability of
accomplishing the mitigating result if
Level A
harassment
0
0
0
0
0
0
Level B
harassment
.....................
.....................
.....................
.....................
.....................
.....................
implemented as planned) the likelihood
of effective implementation (probability
implemented as planned); and
(2) the practicability of the measures
for applicant implementation, which
may consider such things as cost,
impact on operations, and, in the case
of a military readiness activity,
personnel safety, practicality of
implementation, and impact on the
effectiveness of the military readiness
activity.
The following mitigation measures are
proposed in the IHA:
Timing Restrictions
All work will be conducted during
daylight hours. If poor environmental
conditions restrict visibility full
visibility of the shutdown zone, pile
installation would be delayed.
Sound Attenuation
To minimize noise during impact pile
driving, a 12-inch thick wood cushion
block will be used. Bubble curtains will
be also used during any impact pile
driving of piles located in the water.
The bubble curtain will be operated in
a manner consistent with the following
performance standards:
a. The bubble curtain will distribute
air bubbles around 100 percent of the
piling perimeter for the full depth of the
water column;
b. The lowest bubble ring will be in
contact with the mudline for the full
circumference of the ring, and the
weights attached to the bottom ring
shall ensure 100 percent mudline
contact. No parts of the ring or other
objects shall prevent full mudline
contact; and
48 ...................
27 ...................
615 .................
5 .....................
25 ...................
3 .....................
Percent
of stock
10.596 percent.
Less than one percent.
Less than 2 percent.
Less than one percent.
Less than one percent.
Less than one percent.
c. Air flow to the bubblers must be
balanced around the circumference of
the pile.
Soft Start
Soft start requires contractors to
provide an initial set of strikes at
reduced energy, followed by a thirtysecond waiting period, then two
subsequent reduced energy strike sets. A
soft start must be implemented at the
start of each day’s impact pile driving
and at any time following cessation of
impact pile driving for a period of thirty
minutes or longer.
Shutdown Zone for In-Water Heavy
Machinery Work
For in-water heavy machinery work
other than pile driving, if a marine
mammal comes within 10 m of such
operations, operations shall cease and
vessels shall reduce speed to the
minimum level required to maintain
steerage and safe working conditions.
Shutdown Zones
For all pile driving/removal and
drilling activities, the City will establish
shutdown zones for a marine mammal
species that is greater than its
corresponding Level A harassment zone.
The calculated PTS isopleths were
rounded up to a whole number to
determine the actual shutdown zones
that the applicant will operate under
(Table 14). The purpose of a shutdown
zone is generally to define an area
within which shutdown of the activity
would occur upon sighting of a marine
mammal (or in anticipation of an animal
entering the defined area).
TABLE 14—PILE DRIVING SHUTDOWN ZONES DURING PROJECT ACTIVITIES
Shutdown Zones (radial distance in meters, area in km 2*)
khammond on DSKBBV9HB2PROD with NOTICES
Activity
Low-frequency
cetaceans
Mid-frequency
cetaceans
High-frequency
cetaceans
Phocid
Otariid
In-Water Construction Activities
Heavy machinery work (other than pile
driving).
10 (0.00015
km2)
10 (0.00015
km2
......
10 (0.00015 km2) ......
10 (0.00015 km2) ......
10 (0.00015 km2) ......
10 (0.00015 km2)
10 (0.00015 km2 ........
10 (0.00015 km2
Vibratory Pile Driving/Removal
14-in H pile steel installation/removal .....
VerDate Sep<11>2014
17:56 Jul 17, 2019
Jkt 247001
PO 00000
........
10 (0.00015 km2 ........
Frm 00036
Fmt 4703
10 (0.00015 km2 ........
Sfmt 4703
E:\FR\FM\18JYN1.SGM
18JYN1
34368
Federal Register / Vol. 84, No. 138 / Thursday, July 18, 2019 / Notices
TABLE 14—PILE DRIVING SHUTDOWN ZONES DURING PROJECT ACTIVITIES—Continued
Shutdown Zones (radial distance in meters, area in km 2*)
Activity
Low-frequency
cetaceans
Mid-frequency
cetaceans
High-frequency
cetaceans
Phocid
36-in steel permanent installation ...........
15 (0.00035 km2) ......
10 (0.00015 km2) ......
20 (0.00063 km2) ......
10 (0.00015 km2) ......
10 (0.00015 km2)
24-in concrete permanent installation ....
55 (0.00475 km2) ......
10 (0.00015 km2) ......
30 (0.00141 km2) ......
10 (0.00015 km2)
Otariid
Impact Pile Driving
* Note:
km2
were divided by two to account for land.
Non-Authorized Take Prohibited
If a species enters or approaches the
Level B zone and that species is either
not authorized for take or its authorized
takes are met, pile driving and removal
activities must shut down immediately
using delay and shut-down procedures.
Activities must not resume until the
animal has been confirmed to have left
the area or an observation time period
of 15 minutes has elapsed for pinnipeds
and small cetaceans and 30 minutes for
large whales.
Based on our evaluation of the
applicant’s proposed measures, as well
as other measures considered by NMFS,
NMFS has preliminarily determined
that the proposed mitigation measures
provide the means of effecting the least
practicable impact on the affected
species or stocks and their habitat,
paying particular attention to rookeries,
mating grounds, and areas of similar
significance.
khammond on DSKBBV9HB2PROD with NOTICES
65 (0.00663 km2) ......
Proposed Monitoring and Reporting
In order to issue an IHA for an
activity, Section 101(a)(5)(D) of the
MMPA states that NMFS must set forth,
requirements pertaining to the
monitoring and reporting of such taking.
The MMPA implementing regulations at
50 CFR 216.104 (a)(13) indicate that
requests for authorizations must include
the suggested means of accomplishing
the necessary monitoring and reporting
that will result in increased knowledge
of the species and of the level of taking
or impacts on populations of marine
mammals that are expected to be
present in the proposed action area.
Effective reporting is critical both to
compliance as well as ensuring that the
most value is obtained from the required
monitoring.
Monitoring and reporting
requirements prescribed by NMFS
should contribute to improved
understanding of one or more of the
following:
D Occurrence of marine mammal
species or stocks in the area in which
take is anticipated (e.g., presence,
abundance, distribution, density);
D Nature, scope, or context of likely
marine mammal exposure to potential
VerDate Sep<11>2014
17:56 Jul 17, 2019
Jkt 247001
stressors/impacts (individual or
cumulative, acute or chronic), through
better understanding of: (1) Action or
environment (e.g., source
characterization, propagation, ambient
noise); (2) affected species (e.g., life
history, dive patterns); (3) co-occurrence
of marine mammal species with the
action; or (4) biological or behavioral
context of exposure (e.g., age, calving or
feeding areas);
D Individual marine mammal
responses (behavioral or physiological)
to acoustic stressors (acute, chronic, or
cumulative), other stressors, or
cumulative impacts from multiple
stressors;
D How anticipated responses to
stressors impact either: (1) Long-term
fitness and survival of individual
marine mammals; or (2) populations,
species, or stocks;
D Effects on marine mammal habitat
(e.g., marine mammal prey species,
acoustic habitat, or other important
physical components of marine
mammal habitat); and
D Mitigation and monitoring
effectiveness.
Pre-Activity Monitoring
Prior to the start of daily in-water
construction activity, or whenever a
break in pile driving of 30 min or longer
occurs, PSOs will observe the shutdown
and monitoring zones for a period of 30
min. The shutdown zone will be cleared
when a marine mammal has not been
observed within the zone for that 30min period. If a marine mammal is
observed within the shutdown zone,
pile driving activities will not begin
until the animal has left the shutdown
zone or has not been observed for 15
min. If the Level B Harassment
Monitoring Zone has been observed for
30 min and no marine mammals (for
which take has not been authorized) are
present within the zone, work can
continue even if visibility becomes
impaired within the Monitoring Zone.
When a marine mammal permitted for
Level B harassment take has been
permitted is present in the Monitoring
zone, piling activities may begin and
PO 00000
Frm 00037
Fmt 4703
Sfmt 4703
Level B harassment take will be
recorded.
Monitoring Zones
The City will establish and observe
monitoring zones for Level B
harassment as presented in Table 9. The
monitoring zones for this project are
areas where SPLs are equal to or exceed
120 dB rms (for vibratory pile driving/
removal) and 160 dB rms (for impact
pile driving). These zones provide
utility for monitoring conducted for
mitigation purposes (i.e., shutdown
zone monitoring) by establishing
monitoring protocols for areas adjacent
to the shutdown zones. Monitoring of
the Level B harassment zones enables
observers to be aware of and
communicate the presence of marine
mammals in the project area, but
outside the shutdown zone, and thus
prepare for potential shutdowns of
activity.
Visual Monitoring
Monitoring would be conducted 30
minutes before, during, and 30 minutes
after all pile driving/removal and
socking/rock anchoring activities. In
addition, PSO shall record all incidents
of marine mammal occurrence,
regardless of distance from activity, and
shall document any behavioral reactions
in concert with distance from piles
being driven/removed. Pile driving/
removal activities include the time to
install, remove a single pile or series of
piles, as long as the time elapsed
between uses of the pile driving
equipment is no more than thirty
minutes.
Monitoring will be conducted by
PSOs from on land. The number of
PSOs will vary from one to two,
depending on the type of pile driving,
method of pile driving and size of pile,
all of which determines the size of the
harassment zones. Monitoring locations
will be selected to provide an
unobstructed view of all water within
the shutdown zone and as much of the
Level B harassment zone as possible for
pile driving activities. A single monitor
will be present during impact pile
driving, when impacts of the project
E:\FR\FM\18JYN1.SGM
18JYN1
khammond on DSKBBV9HB2PROD with NOTICES
Federal Register / Vol. 84, No. 138 / Thursday, July 18, 2019 / Notices
will be limited to the area within the
Alameda Lagoon, and two monitors will
be present during vibratory pile driving
when project impacts will extend into
the waters of the San Francisco Bay.
In addition, PSOs will work in shifts
lasting no longer than 4 hours with at
least a 1-hour break between shifts, and
will not perform duties as a PSO for
more than 12 hours in a 24-hour period
(to reduce PSO fatigue).
Monitoring of pile driving shall be
conducted by qualified, NMFSapproved PSOs, who shall have no other
assigned tasks during monitoring
periods. The City shall adhere to the
following conditions when selecting
PSOs:
D Independent PSOs shall be used
(i.e., not construction personnel);
D At least one PSO must have prior
experience working as a marine
mammal observer during construction
activities;
D Other PSOs may substitute
education (degree in biological science
or related field) or training for
experience;
D Where a team of three or more PSOs
are required, a lead observer or
monitoring coordinator shall be
designated. The lead observer must have
prior experience working as a marine
mammal observer during construction;
and
D The City shall submit PSO CVs for
approval by NMFS for all observers
prior to monitoring.
The City shall ensure that the PSOs
have the following additional
qualifications:
D Visual acuity in both eyes
(correction is permissible) sufficient for
discernment of moving targets at the
water’s surface with ability to estimate
target size and distance; use of
binoculars may be necessary to correctly
identify the target;
D Experience and ability to conduct
field observations and collect data
according to assigned protocols;
D Experience or training in the field
identification of marine mammals,
including the identification of
behaviors;
D Sufficient training, orientation, or
experience with the construction
operation to provide for personal safety
during observations;
D Writing skills sufficient to prepare a
report of observations including but not
limited to the number and species of
marine mammals observed; dates and
times when in-water construction
activities were conducted; dates, times,
and reason for implementation of
mitigation (or why mitigation was not
implemented when required); and
marine mammal behavior;
VerDate Sep<11>2014
17:56 Jul 17, 2019
Jkt 247001
D Ability to communicate orally, by
radio or in person, with project
personnel to provide real-time
information on marine mammals
observed in the area as necessary; and
D Sufficient training, orientation, or
experience with the construction
operations to provide for personal safety
during observations.
34369
Acoustic Monitoring
The City has developed a sound
attenuation monitoring plan to protect
fish and marine mammals during pile
driving activities (see Appendix B of the
application for further details). The
acoustic monitoring will include
documentation of the following, at a
minimum:
D Hydrophone equipment and
methods: recording device, sampling
rate, distance from the pile where
recordings were made; and depth of
recording device(s);
D Type of pile being driven and
method of driving during recordings;
and
D Mean, medium, and maximum
sound levels (dB re: 1mPa): cumulative
sound exposure level, peak sound
pressure level, rms sound pressure
level, and single-strike sound exposure
level.
In the event the City discovers an
injured or dead marine mammal, and
the lead observer determines that the
cause of the injury or death is unknown
and the death is relatively recent (e.g.,
in less than a moderate state of
decomposition), the City must
immediately report the incident to the
Office of Protected Resources, NMFS,
and the West Coast Region Stranding
Coordinator, NMFS. The report must
include the same information as the
bullets described above. Activities may
continue while NMFS reviews the
circumstances of the incident. NMFS
will work with the City to determine
whether additional mitigation measures
or modifications to the activities are
appropriate.
In the event that the City discovers an
injured or dead marine mammal, and
the lead observer determines that the
injury or death is not associated with or
related to the specified activities (e.g.,
previously wounded animal, carcass
with moderate to advanced
decomposition, or scavenger damage),
the City must report the incident to the
Office of Protected Resources, NMFS,
and the West Coast Region Stranding
Coordinator, NMFS, within 24 hours of
the discovery.
Reporting of Injured or Dead Marine
Mammals
In the unanticipated event that the
planned activity clearly causes the take
of a marine mammal in a manner
prohibited by the IHA, such as serious
injury, or mortality, the City must
immediately cease the specified
activities and report the incident to the
NMFS Office of Protected Resources and
the West Coast Region Stranding
Coordinator. The report must include
the following information:
D Time and date of the incident;
D Description of the incident;
D Environmental conditions (e.g.,
wind speed and direction, Beaufort sea
state, cloud cover, and visibility);
D Description of all marine mammal
observations and active sound source
use in the 24 hours preceding the
incident;
D Species identification or description
of the animal(s) involved;
D Fate of the animal(s); and
D Photographs or video footage of the
animal(s).
Activities must not resume until
NMFS is able to review the
circumstances of the prohibited take.
NMFS will work with the City to
determine what measures are necessary
to minimize the likelihood of further
prohibited take and ensure MMPA
compliance. The City may not resume
their activities until notified by NMFS.
Final Report
The City shall submit a draft report to
NMFS no later than 90 days following
the end of construction activities or 60
days prior to the issuance of any
subsequent IHA for the project. The City
shall provide a final report within 30
days following resolution of NMFS’
comments on the draft report. Reports
shall contain, at minimum, the
following:
D Date and time that monitored
activity begins and ends for each day
conducted (monitoring period);
D Construction activities occurring
during each daily observation period,
including how many and what type of
piles driven;
D Deviation from initial proposal in
pile numbers, pile types, average
driving times, etc.;
D Weather parameters in each
monitoring period (e.g., wind speed,
percent cloud cover, visibility);
D Water conditions in each
monitoring period (e.g., sea state, tide
state);
D For each marine mammal sighting:
Æ Species, numbers, and, if possible,
sex and age class of marine mammals;
Æ Description of any observable
marine mammal behavior patterns,
including bearing and direction of travel
and distance from pile driving activity;
Æ Type of construction activity that
was taking place at the time of sighting;
PO 00000
Frm 00038
Fmt 4703
Sfmt 4703
E:\FR\FM\18JYN1.SGM
18JYN1
34370
Federal Register / Vol. 84, No. 138 / Thursday, July 18, 2019 / Notices
khammond on DSKBBV9HB2PROD with NOTICES
Æ Location and distance from pile
driving activities to marine mammals
and distance from the marine mammals
to the observation point;
Æ If shutdown was implemented,
behavioral reactions noted and if they
occurred before or after shutdown.
Æ Estimated amount of time that the
animals remained in the Level A or B
Harassment Zone.
D Description of implementation of
mitigation measures within each
monitoring period (e.g., shutdown or
delay);
D Other human activity in the area
within each monitoring period;
D A summary of the following:
Æ Total number of individuals of each
species detected within the Level B
Harassment Zone, and estimated as
taken if correction factor appropriate;
Æ Total number of individuals of each
species detected within the Level A
Harassment Zone and the average
amount of time that they remained in
that zone; and
Æ Daily average number of
individuals of each species
(differentiated by month as appropriate)
detected within the Level B Harassment
Zone, and estimated as taken, if
appropriate.
Negligible Impact Analysis and
Determination
NMFS has defined negligible impact
as an impact resulting from the
specified activity that cannot be
reasonably expected to, and is not
reasonably likely to, adversely affect the
species or stock through effects on
annual rates of recruitment or survival
(50 CFR 216.103). A negligible impact
finding is based on the lack of likely
adverse effects on annual rates of
recruitment or survival (i.e., populationlevel effects). An estimate of the number
of takes alone is not enough information
on which to base an impact
determination. In addition to
considering estimates of the number of
marine mammals that might be ‘‘taken’’
through harassment, NMFS considers
other factors, such as the likely nature
of any responses (e.g., intensity,
duration), the context of any responses
(e.g., critical reproductive time or
location, migration), as well as effects
on habitat, and the likely effectiveness
of the mitigation. We also assess the
number, intensity, and context of
estimated takes by evaluating this
information relative to population
status. Consistent with the 1989
preamble for NMFS’s implementing
regulations (54 FR 40338; September 29,
1989), the impacts from other past and
ongoing anthropogenic activities are
incorporated into this analysis via their
VerDate Sep<11>2014
17:56 Jul 17, 2019
Jkt 247001
impacts on the environmental baseline
(e.g., as reflected in the regulatory status
of the species, population size and
growth rate where known, ongoing
sources of human-caused mortality, or
ambient noise levels).
As stated in the proposed mitigation
section, shutdown zones that are larger
than the Level A harassment zones and
are expected avoid the likelihood of
Level A harassment for all seven
species.
Exposures to elevated sound levels
produced during pile driving activities
may cause behavioral disturbance of
marine mammals, but they are expected
to be mild and temporary. Effects on
individuals that are taken by Level B
harassment, on the basis of reports in
the literature as well as monitoring from
other similar activities, will likely be
limited to reactions such as increased
swimming speeds, increased surfacing
time, or decreased foraging (if such
activity were occurring) (e.g., Thorson
and Reyff, 2006; Lerma, 2014). Most
likely, individuals will simply move
away from the sound source and be
temporarily displaced from the areas of
pile driving, although even this reaction
has been observed primarily only in
association with impact pile driving.
These reactions and behavioral changes
are expected to subside quickly when
the exposures cease.
To minimize noise during pile
driving, and thereby both the scale and
potential severity of the anticipated
effects, the City will use pile cushions
and a bubble curtain during impact pile
driving.
During all impact driving,
implementation of soft start procedures
and monitoring of established shutdown
zones will be required, significantly
reducing the possibility of injury. Given
sufficient notice through use of soft start
(for impact driving), marine mammals
are expected to move away from an
irritating sound source prior to it
becoming potentially injurious. In
addition, PSOs will be stationed within
the action area whenever pile driving/
removal activities are underway.
Depending on the activity, the City will
employ one to two PSOs to ensure all
monitoring and shutdown zones are
properly observed.
Two known pinniped haul-out sites
(non-pupping sites) are located in the
vicinity of the project area. One is an
existing haul out platform
approximately 0.5 mi southeast of the
project area (separated from project
activities by approximately 0.3 mi of
developed areas on-land). The second
haul out is the western end of
Breakwater Island, approximately 1.0 mi
southwest of the location of pile driving
PO 00000
Frm 00039
Fmt 4703
Sfmt 4703
activities (Figure 4 of the application).
They are both well outside the PTS
isopleths for pinnipeds and no Level A
harassment is expected. Exposures to
elevated sound levels produced during
pile driving activities once the animals
enter the water from the haul outs may
cause behavioral responses by an
animal, but they are expected to be mild
and temporary and limited to Level B
harassment,
The proposed activities would not
result in permanent impacts to habitats
used directly by marine mammals
except the actual footprint of the
project. The footprint of the project is
small, and equal to the area the ferry
associated pile placement. The
installation of piles for the new pier will
result in permanent impacts on 61 ft2 of
aquatic habitat. At best, the impact area,
which is located in Seaplane Lagoon,
provides marginal foraging habitat for
marine mammals and fish. In addition,
impacts to marine mammal prey species
are expected to be minor and temporary.
Overall, the area impacted by the project
is very small compared to the available
habitat in the bay. The most likely
impact to prey will be temporary
behavioral avoidance of the immediate
area. During pile driving/removal
activities, it is expected that fish and
marine mammals would temporarily
move to nearby locations and return to
the area following cessation of in-water
construction activities. Therefore,
indirect effects on marine mammal prey
during the construction are not expected
to be substantial.
In summary and as described above,
the following factors primarily support
our preliminary determination that the
impacts resulting from this activity are
not expected to adversely affect the
species or stock through effects on
annual rates of recruitment or survival:
D No serious injury or mortality is
anticipated;
D No Level A Harassment is
anticipated or proposed for
authorization;
D Minimal impacts to marine
mammal habitat are expected;
D The action area is located and
within an active marine commercial
area;
D There are no rookeries, or other
known areas or features of special
significance for foraging or reproduction
in the project area;
D Anticipated incidents of Level B
harassment consist of, at worst,
temporary modifications in behavior;
and
D The required mitigation measures
(i.e. shutdown zones and pile cushion,
and bubble curtain) are expected to be
E:\FR\FM\18JYN1.SGM
18JYN1
Federal Register / Vol. 84, No. 138 / Thursday, July 18, 2019 / Notices
effective in reducing the effects of the
specified activity.
Based on the analysis contained
herein of the likely effects of the
specified activity on marine mammals
and their habitat, and taking into
consideration the implementation of the
proposed monitoring and mitigation
measures, NMFS preliminarily finds
that the total marine mammal take from
the proposed activity will have a
negligible impact on all affected marine
mammal species or stocks.
Small Numbers
As noted above, only small numbers
of incidental take may be authorized
under Section 101(a)(5)(D) of the MMPA
for specified activities other than
military readiness activities. The MMPA
does not define small numbers and so,
in practice, where estimated numbers
are available, NMFS compares the
number of individuals taken to the most
appropriate estimation of abundance of
the relevant species or stock in our
determination of whether an
authorization is limited to small
numbers of marine mammals.
Additionally, other qualitative factors
may be considered in the analysis, such
as the temporal or spatial scale of the
activities.
The take of six marine mammal stocks
proposed for authorization comprises
less than two percent of the stock
abundance, and less than 11 percent for
bottlenose dolphins (California coastal).
Based on the analysis contained
herein of the proposed activity
(including the proposed mitigation and
monitoring measures) and the
anticipated take of marine mammals,
NMFS preliminarily finds that small
numbers of marine mammals will be
taken relative to the population size of
the affected species or stocks.
khammond on DSKBBV9HB2PROD with NOTICES
Unmitigable Adverse Impact Analysis
and Determination
There are no relevant subsistence uses
of the affected marine mammal stocks or
species implicated by this action.
Endangered Species Act (ESA)
Section 7(a)(2) of the Endangered
Species Act of 1973 (ESA: 16 U.S.C.
1531 et seq.) requires that each Federal
agency insure that any action it
authorizes, funds, or carries out is not
likely to jeopardize the continued
existence of any endangered or
threatened species or result in the
destruction or adverse modification of
designated critical habitat. No ESA
listed species are proposed for take.
Therefore, NMFS has determined
consultation under the ESA is not
required.
VerDate Sep<11>2014
17:56 Jul 17, 2019
Jkt 247001
Proposed Authorization
As a result of these preliminary
determinations, NMFS proposes to issue
an IHA to the City for conducting for the
proposed pile driving and removal
activities for construction of the
Alameda Seaplane Lagoon ferry
terminal for one year, beginning August
2019, provided the previously
mentioned mitigation, monitoring, and
reporting requirements are incorporated.
A draft of the proposed IHA can be
found at https://
www.fisheries.noaa.gov/permit/
incidental-take-authorizations-undermarine-mammal-protection-act.
Request for Public Comments
We request comment on our analyses,
the proposed authorization, and any
other aspect of this Notice of Proposed
IHA for the proposed pile driving and
removal activities for construction of the
ferry terminal. We also request comment
on the potential for renewal of this
proposed IHA as described in the
paragraph below. Please include with
your comments any supporting data or
literature citations to help inform our
final decision on the request for MMPA
authorization.
D On a case-by-case basis, NMFS may
issue a one-year IHA renewal with an
additional 15 days for public comments
when (1) another year of identical or
nearly identical activities as described
in the Specified Activities section of
this notice is planned or (2) the
activities as described in the Specified
Activities section of this notice would
not be completed by the time the IHA
expires and a second IHA would allow
for completion of the activities beyond
that described in the Dates and Duration
section of this notice, provided all of the
following conditions are met. A request
for renewal is received no later than 60
days prior to expiration of the current
IHA.
D The request for renewal must
include the following:
(1) An explanation that the activities
to be conducted under the requested
Renewal are identical to the activities
analyzed under the initial IHA, are a
subset of the activities, or include
changes so minor (e.g., reduction in pile
size) that the changes do not affect the
previous analyses, mitigation and
monitoring requirements, or take
estimates (with the exception of
reducing the type or amount of take
because only a subset of the initially
analyzed activities remain to be
completed under the Renewal); and
(2) A preliminary monitoring report
showing the results of the required
monitoring to date and an explanation
PO 00000
Frm 00040
Fmt 4703
Sfmt 4703
34371
showing that the monitoring results do
not indicate impacts of a scale or nature
not previously analyzed or authorized;
D Upon review of the request for
Renewal, the status of the affected
species or stocks, and any other
pertinent information, NMFS
determines that there are no more than
minor changes in the activities, the
mitigation and monitoring measures
will remain the same and appropriate,
and the findings in the initial IHA
remain valid.
Dated: July 15, 2019.
Donna S. Wieting,
Director, Office of Protected Resources,
National Marine Fisheries Service.
[FR Doc. 2019–15299 Filed 7–17–19; 8:45 am]
BILLING CODE 3510–22–P
DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric
Administration
Marine Mammals and Endangered
Species
National Marine Fisheries
Service (NMFS), National Oceanic and
Atmospheric Administration (NOAA),
Commerce.
AGENCY:
Notice; issuance of permits and
permit modifications.
ACTION:
Notice is hereby given that
permits or permit amendments have
been issued to the following entities
under the Marine Mammal Protection
Act (MMPA) and the Endangered
Species Act (ESA), as applicable.
SUMMARY:
The permits and related
documents are available for review
upon written request or by appointment
in the Permits and Conservation
Division, Office of Protected Resources,
NMFS, 1315 East-West Highway, Room
13705, Silver Spring, MD 20910; phone:
(301) 427–8401; fax: (301) 713–0376.
ADDRESSES:
Erin
Markin (Permit No. 21858–01), Jennifer
Skidmore (Permit No. 20610–01), and
Sara Young (Permit Nos. 22289, 22293,
and 22298); at (301) 427–8401.
SUPPLEMENTARY INFORMATION: Notices
were published in the Federal Register
on the dates listed below that requests
for a permit or permit amendment had
been submitted by the below-named
applicants. To locate the Federal
Register notice that announced our
receipt of the application and a
complete description of the research, go
to www.federalregister.gov and search
on the permit number provided in the
table below.
FOR FURTHER INFORMATION CONTACT:
E:\FR\FM\18JYN1.SGM
18JYN1
Agencies
[Federal Register Volume 84, Number 138 (Thursday, July 18, 2019)]
[Notices]
[Pages 34347-34371]
From the Federal Register Online via the Government Publishing Office [www.gpo.gov]
[FR Doc No: 2019-15299]
-----------------------------------------------------------------------
DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric Administration
RIN 0648-XR009
Taking of Marine Mammals Incidental to Specific Activities;
Taking of Marine Mammals Incidental To Pile Driving Activities During
Construction of a Ferry Terminal at Seaplane Lagoon, Alameda Point, San
Francisco, California
AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and
Atmospheric Administration (NOAA), Commerce.
ACTION: Notice; proposed incidental harassment authorization; request
for comments on proposed authorization and possible renewal.
-----------------------------------------------------------------------
[[Page 34348]]
SUMMARY: NMFS has received a request from the City of Alameda (City)
for authorization to take marine mammals incidental to pile driving
activities during construction of a ferry terminal at Seaplane Lagoon,
Alameda Point, San Francisco, California. Pursuant to the Marine Mammal
Protection Act (MMPA), NMFS is requesting comments on its proposal to
issue an incidental harassment authorization (IHA) to incidentally take
marine mammals during the specified activities. NMFS is also requesting
comments on a possible one-year renewal that could be issued under
certain circumstances and if all requirements are met, as described in
Request for Public Comments at the end of this notice. NMFS will
consider public comments prior to making any final decision on the
issuance of the requested MMPA authorizations and agency responses will
be summarized in the final notice of our decision.
DATES: Comments and information must be received no later than August
19, 2019.
ADDRESSES: Comments should be addressed to Jolie Harrison, Chief,
Permits and Conservation Division, Office of Protected Resources,
National Marine Fisheries Service. Physical comments should be sent to
1315 East-West Highway, Silver Spring, MD 20910 and electronic comments
should be sent to [email protected].
Instructions: NMFS is not responsible for comments sent by any
other method, to any other address or individual, or received after the
end of the comment period. Comments received electronically, including
all attachments, must not exceed a 25-megabyte file size. Attachments
to electronic comments will be accepted in Microsoft Word or Excel or
Adobe PDF file formats only. All comments received are a part of the
public record and will generally be posted online at https://www.fisheries.noaa.gov/permit/incidental-take-authorizations-under-marine-mammal-protection-act without change. All personal identifying
information (e.g., name, address) voluntarily submitted by the
commenter may be publicly accessible. Do not submit confidential
business information or otherwise sensitive or protected information.
FOR FURTHER INFORMATION CONTACT: Stephanie Egger, Office of Protected
Resources, NMFS, (301) 427-8401. Electronic copies of the application
and supporting documents, as well as a list of the references cited in
this document, may be obtained online at: https://www.fisheries.noaa.gov/permit/incidental-take-authorizations-under-marine-mammal-protection-act. In case of problems accessing these
documents, please call the contact listed above.
SUPPLEMENTARY INFORMATION:
Background
The MMPA prohibits the ``take'' of marine mammals, with certain
exceptions. Sections 101(a)(5)(A) and (D) of the MMPA (16 U.S.C. 1361
et seq.) direct the Secretary of Commerce (as delegated to NMFS) to
allow, upon request, the incidental, but not intentional, taking of
small numbers of marine mammals by U.S. citizens who engage in a
specified activity (other than commercial fishing) within a specified
geographical region if certain findings are made and either regulations
are issued or, if the taking is limited to harassment, a notice of a
proposed incidental take authorization may be provided to the public
for review.
Authorization for incidental takings shall be granted if NMFS finds
that the taking will have a negligible impact on the species or
stock(s) and will not have an unmitigable adverse impact on the
availability of the species or stock(s) for taking for subsistence uses
(where relevant). Further, NMFS must prescribe the permissible methods
of taking and other ``means of effecting the least practicable adverse
impact'' on the affected species or stocks and their habitat, paying
particular attention to rookeries, mating grounds, and areas of similar
significance, and on the availability of such species or stocks for
taking for certain subsistence uses (referred to in shorthand as
``mitigation''); and requirements pertaining to the mitigation,
monitoring and reporting of such takings are set forth.
National Environmental Policy Act
To comply with the National Environmental Policy Act of 1969 (NEPA;
42 U.S.C. 4321 et seq.) and NOAA Administrative Order (NAO) 216-6A,
NMFS must review our proposed action (i.e., the issuance of an
incidental harassment authorization) with respect to potential impacts
on the human environment. This action is consistent with categories of
activities identified in Categorical Exclusion B4 (incidental
harassment authorizations with no anticipated serious injury or
mortality) of the Companion Manual for NOAA Administrative Order 216-
6A, which do not individually or cumulatively have the potential for
significant impacts on the quality of the human environment and for
which we have not identified any extraordinary circumstances that would
preclude this categorical exclusion. Accordingly, NMFS has
preliminarily determined that the issuance of the proposed IHA
qualifies to be categorically excluded from further NEPA review.
We will review all comments submitted in response to this notice
prior to concluding our NEPA process or making a final decision on the
IHA request.
Summary of Request
On February 22, 2019, NMFS received a request from the City for an
IHA to take marine mammals incidental to pile driving activities during
construction of a ferry terminal in Seaplane Lagoon, Alameda,
California. The application was deemed adequate and complete on June
28, 2019. The applicant's request is for take seven species of marine
mammals by Level B harassment only. Neither the City nor NMFS expects
serious injury or mortality to result from this activity and,
therefore, an IHA is appropriate.
Description of Proposed Activity
Overview
The purpose of this project is to provide facilities to expand the
existing ferry service from Alameda and Oakland to San Francisco in
order to address the limited capacity at the existing Main Street Ferry
Terminal, accommodate the anticipated increase in demand for ferry
service from Alameda to San Francisco due to planned development of the
Alameda Point Project, and to provide enhanced emergency response
services to Alameda in the event of transbay service disruptions.
Currently, the nearest operational ferry terminal to Alameda Point
is the Alameda Main Street Terminal along the Oakland Alameda Estuary.
There is also a ferry terminal that serves Oakland's Jack London
Square. Both of these terminals are owned and operated by the San
Francisco Bay Area Water Emergency Transportation Authority (WETA).
Peak time ferry service demand is at capacity. It is not unusual for
passengers to be left behind at Alameda during the morning commutes,
and parking demand at the facility currently outstrips available
spaces. Ferry ridership at the Alameda Main Street WETA terminal is
currently at 94 percent capacity and rose 12 percent in the last
calendar year. WETA and the City intend to establish a commute-oriented
ferry service between Seaplane Lagoon and San Francisco once operating
funds and terminal and vessel assets are secured to operate the
expansion service.
The Project encompasses both landside and waterside components;
[[Page 34349]]
however, the in-water work components are discussed in this document.
Please refer to the application for more information on landside
components.
The in-water sound from the pile driving and removal activities,
may incidentally take seven species of marine mammals by Level B
harassment only.
Dates and Duration
Project construction is proposed to begin in during early August
2019 and will be completed within approximately one year of initiation.
All of the in-water work (float installation with piles and gangway) is
expected to be completed within one environmental work season (August 1
to November 30). Construction will occur during weekdays and on
weekends if needed. Site preparation and ground improvements will occur
over one month, and could overlap with in-water work. Construction of
landside improvements will require approximately 4 to 6 months.
Approximately 24 total days of pile driving activities are estimated to
occur, with 12 days of vibratory hammering installation and removal for
template piles, 6 days of vibratory hammering for permanent piles, and
6 days of impact hammering for permanent piles. These are discussed in
further detail below.
Specific Geographic Region
Seaplane Lagoon is located at the western end of Alameda Island
within the 150-acre Waterfront Town Center area of Alameda Point and on
the former Alameda Point Naval Air Station in Alameda, California. The
project area is located along the eastern shoreline of Seaplane Lagoon,
west of Ferry Point, south of West Atlantic Avenue, and north of West
Oriskany Avenue (Figure 1).
Seaplane Lagoon is a rectangular basin approximately 3,000 feet
(ft) by 1,600 ft. Breakwaters protect the basin from wind-generated
waves, providing typically calm conditions. Seaplane Lagoon is bordered
by an existing concrete and steel sheet pile bulkhead to the north,
rock slope revetments to the east and west, and a breakwater with a
600-ft opening to the south. The proposed location of the ferry
terminal is on the eastern shoreline of the lagoon.
[[Page 34350]]
[GRAPHIC] [TIFF OMITTED] TN18JY19.085
Detailed Description of Specific Activity
The Project encompasses both landside and waterside components,
including the construction and operation of a new ferry terminal along
the eastern edge of Seaplane Lagoon (see Figure 3 of the application).
Only waterside components are discussed below. Please see the
application for information on landside components.
A pier and abutment are required at the entrance to the ferry
terminal to provide secure and safe entry from the land to the
passenger access gangway (see Figure 3 of the application). The pier
will extend out from the abutment to provide sufficient depth for the
ferry vessels and float. The abutment will be located on the shoreline
and will consist of a concrete abutment (24 feet (ft) long by 3 ft
wide) supported on steel piles. The pier will be placed in the water
and consist of a cast-in-place concrete structure (83.1 ft long by 20
ft wide) supported on piles with a perimeter guardrail. Approximately
six 24-inch (in) diameter octagonal concrete piles offshore of the
revetment and four 24-in diameter steel piles inshore of the revetment
will be used for the pier. The abutment and pier deck will be installed
above the high tide line.
The pier will be covered by a canopy similar to those on other San
Francisco Bay Area WETA terminals in the San Francisco Bay Area.
Dimensions would be longer than the pier by 16 ft (100 ft long by 20 ft
wide), with an approximate height of 8.5 ft to 20 ft above the pier
deck. The additional length would overhang the pier landside and shade
the stairs up to the pier.
A gangway will connect the pier to the boarding float. The aluminum
gangway (90 ft long by 10 ft wide) will
[[Page 34351]]
be supported on the landside end of the pier by cantilevered seat
supports, and the waterside end of the gangway will be supported by a
boarding float. The finished walking surface, which will consist of
fiberglass micromesh decking, will range in elevation from 8.4 ft at
the pier to approximately 4.4 ft above the water surface on the
boarding float.
The Seaplane Lagoon Ferry Terminal will include a boarding float
where passengers will board and disembark from the ferry (see Figure 3
of the application). The float structure will be a steel pontoon barge
(135 ft long by 42 ft wide by 8 ft deep) with internal compartments.
Fenders and mooring cleats will be located around the perimeter of the
float to accommodate vessel berthing scenarios. The float will be held
in position with an arrangement of four 36-in diameter steel guide
piles and two 36-in diameter steel fender piles, totaling six piles.
Piles will be installed for the abutment, pier, and float. The 36-
in steel piles will be installed with a vibratory hammer, 24-in
concrete piles will be installed with an impact hammer, and 14-in steel
template piles will be installed with a vibratory hammer (see Table 1
below). The abutment piles will be installed from the landside, and are
expected to require an impact hammer to penetrate the underlying
material. Four steel piles (the abutment piles) will be installed above
the high tide line and therefore are not discussed further.
Template piles will be used to support the in-water piles. These
will consist of 12 to 18 14-inch steel H-type piles (see Table 1
below). One template typically includes four piles, but up to six
template piles would be used at one time (see Table 1 below).
Table 1--Pile Driving and Removal Activities for Seaplane Lagoon Ferry Terminal
----------------------------------------------------------------------------------------------------------------
Project component
---------------------------------------------------------------
Description Temporary Temporary
template pile template pile Permanent pile Permanent pile
installation removal installation installation
----------------------------------------------------------------------------------------------------------------
Diameter of Steel Pile (inches)................. 14 14 24 36
# of Piles...................................... 18 18 6 6
----------------------------------------------------------------------------------------------------------------
Vibratory Pile Driving
----------------------------------------------------------------------------------------------------------------
Total Quantity.................................. 18 18 0 6
Max # Piles Vibrated per Day.................... 6 6 0 1
----------------------------------------------------------------------------------------------------------------
Impact Pile Driving
----------------------------------------------------------------------------------------------------------------
Total Quantity.................................. 0 0 6 0
Max # Piles Impacted per Day.................... 0 0 1 0
----------------------------------------------------------------------------------------------------------------
For further details on the proposed action and project components,
please refer to the application.
Proposed mitigation, monitoring, and reporting measures are
described in detail later in this document (please see Proposed
Mitigation and Proposed Monitoring and Reporting).
Description of Marine Mammals in the Area of Specified Activities
Sections 3 and 4 of the application summarize available information
regarding status and trends, distribution and habitat preferences, and
behavior and life history, of the potentially affected species.
Additional information regarding population trends and threats may be
found in NMFS's Stock Assessment Reports (SARs; https://www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-stock-assessments) and more general information about these species
(e.g., physical and behavioral descriptions) may be found on NMFS's
website (https://www.fisheries.noaa.gov/find-species).
Table 2 lists all species with expected potential for occurrence in
the project area and summarizes information related to the population
or stock, including regulatory status under the MMPA and ESA and
potential biological removal (PBR), where known. For taxonomy, we
follow Committee on Taxonomy (2016). PBR is defined by the MMPA as the
maximum number of animals, not including natural mortalities, that may
be removed from a marine mammal stock while allowing that stock to
reach or maintain its optimum sustainable population (as described in
NMFS's SARs). While no mortality is anticipated or authorized here, PBR
and annual serious injury and mortality from anthropogenic sources are
included here as gross indicators of the status of the species and
other threats.
Marine mammal abundance estimates presented in this document
represent the total number of individuals that make up a given stock or
the total number estimated within a particular study or survey area.
NMFS's stock abundance estimates for most species represent the total
estimate of individuals within the geographic area, if known, that
comprises that stock. For some species, this geographic area may extend
beyond U.S. waters. All managed stocks in this region are assessed in
NMFS's U.S. Pacific and SARs (Carretta et al., 2018). All values
presented in Table 2 are the most recent available at the time of
publication (draft SARS available online at: https://www.fisheries.noaa.gov/national/marine-mammal-protection/draft-marine-mammal-stock-assessment-reports).
[[Page 34352]]
Table 2--Marine Mammals Occurrence in the Project Area
--------------------------------------------------------------------------------------------------------------------------------------------------------
ESA/MMPA Stock abundance
status; (CV, Nmin, most Annual M/
Common name Scientific name Stock strategic (Y/ recent abundance PBR SI \3\
N) \1\ survey) \2\
--------------------------------------------------------------------------------------------------------------------------------------------------------
Order Cetartiodactyla--Cetacea--Superfamily Mysticeti (baleen whales)
--------------------------------------------------------------------------------------------------------------------------------------------------------
Family Eschrichtiidae:
Gray whale................... Eschrichtius Eastern North -/- ; N 26,960 (0.05, 801....................... 138
robustus. Pacific. 25,849, 2016).
Family Balaenopteridae
(rorquals):
Humpback whale............... Megaptera California/Oregon/ E/D ; Y 2,900 (0.048, 16.7 (U.S. waters)........ 18.8
novaeangliae. Washington. 2,784, 2014).
--------------------------------------------------------------------------------------------------------------------------------------------------------
Superfamily Odontoceti (toothed whales, dolphins, and porpoises)
--------------------------------------------------------------------------------------------------------------------------------------------------------
Family Delphinidae:
Bottlenose dolphin........... Tursiops truncatus.. California Coastal. -/- ; N 453 (0.06, 346, 2.7....................... >2
2011).
Family Phocoenidae (porpoises):
Harbor porpoise.............. Phocoena phocoena... San Francisco- -/- ; N 9,886 (0.51, 6,625, 66........................ 0
Russian River. 2011).
--------------------------------------------------------------------------------------------------------------------------------------------------------
Order Carnivora--Superfamily Pinnipedia
--------------------------------------------------------------------------------------------------------------------------------------------------------
Family Otariidae (eared seals and
sea lions):
California sea lion.......... Zalophus U.S................ -/- ; N 257,606 (n/a, 14,011.................... >=319
californianus. 233,515, 2014).
Northern fur seal............ Callorhinus ursinus. California......... -/- ; N 14,050 (n/a, 7,524, 451....................... 1.8
Eastern North -/- ; N 2013). 11,405.................... 1.1
Pacific. 626,734 (n/a,
530,474, 2014).
Guadalupe fur seal........... Arctocephalus Mexico to T/D ; Y 20,000 (n/a, 542....................... >3.2
townsendi. California. 15,830, 2010).
Family Phocidae (earless seals):
Pacific harbor seal.......... Phoca vitulina California......... -/- ; N 30,968 (n/a, 1,641..................... 43
richardii. 27,348, 2012).
Northern elephant seal....... Mirounga California Breeding -/- ; N 179,000 (n/a, 4,882..................... 8.8
angustirostris. 81,368, 2010).
--------------------------------------------------------------------------------------------------------------------------------------------------------
\1\ Endangered Species Act (ESA) status: Endangered (E), Threatened (T)/MMPA status: Depleted (D). A dash (-) indicates that the species is not listed
under the ESA or designated as depleted under the MMPA. Under the MMPA, a strategic stock is one for which the level of direct human-caused mortality
exceeds PBR or which is determined to be declining and likely to be listed under the ESA within the foreseeable future. Any species or stock listed
under the ESA is automatically designated under the MMPA as depleted and as a strategic stock.
\2\ NMFS marine mammal stock assessment reports online at: www.nmfs.noaa.gov/pr/sars/. CV is coefficient of variation; Nmin is the minimum estimate of
stock abundance. In some cases, CV is not applicable [explain if this is the case].
\3\ These values, found in NMFS's SARs, represent annual levels of human-caused mortality plus serious injury from all sources combined (e.g.,
commercial fisheries, ship strike). Annual M/SI often cannot be determined precisely and is in some cases presented as a minimum value or range. A CV
associated with estimated mortality due to commercial fisheries is presented in some cases.
NOTE--Italicized species are not expected to be taken or proposed for authorization.
All species that could potentially occur in the proposed survey
areas are included in Table 2. However, the temporal and/or spatial
occurrence of humpback whales and Guadalupe fur seals is such that take
is not expected to occur, and they are not discussed further beyond the
explanation provided here.
Humpback whales do enter San Francisco Bay to feed on schooling
fish from late April through October, but are rarer visitors to the
interior of San Francisco Bay. A recent, seasonal influx of humpback
whales inside San Francisco Bay near the Golden Gate was recorded from
April to November in 2016 and 2017 (Keener 2017). In May and June 2019,
a lone humpback was observed in the waters off Alameda; however, this
is a rare occurrence and the whale was thought to be in poor health.
The whale was observed on May 27, 2019 in the Alameda Seaplane Lagoon,
where it remained until June 5, 2019. It was determined to be an adult,
and malnourished, based on the thin blubber layer. On June 6, 2019, the
whale re-located to an area outside the Seaplane Lagoon, but still
within the breakwater protecting the Alameda ferry docks and the USS
Hornet. It remained there for 8 days, exhibiting the same suite of
behaviors seen in the Seaplane Lagoon. On June 14, 2019, it left
Alameda and moved farther out towards the main opening of the
breakwater, near the open bay (The Marine Mammal Center (TMMC), B.
Keener, pers. comm. 2019) and has not been observed since. It is
unlikely that this humpback whale will be in the waters off Alameda
when the project begins. NMFS does expect take to occur.
Guadalupe fur seals occasionally range into the waters of northern
California and the Pacific Northwest. The Farallon Islands (off central
California) and Channel Islands (off southern California) are used as
haul outs during these movements (Simon 2016). Juvenile Guadalupe fur
seals occasionally strand in the vicinity of San Francisco, especially
during El Ni[ntilde]o events. Most strandings along the California
coast are animals younger than two years old, with evidence of
malnutrition (NMFS 2017a). Because Guadalupe fur seals are highly rare
in the area, and sightings are associated with abnormal weather
conditions, such as El Ni[ntilde]o events, NMFS has determined that no
Guadalupe fur seals are likely to occur in the project vicinity and,
therefore, no take is expected to occur.
Gray Whale
Gray whales are large baleen whales. They grow to approximately 50
ft in length and weigh up to 40 tons. They are one of the most
frequently seen whales along the California coast, easily recognized by
their mottled gray color and lack of dorsal fin. Adult whales carry
heavy loads of attached barnacles,
[[Page 34353]]
which add to their mottled appearance. Gray whales are divided into the
Eastern North Pacific and Western North Pacific stocks. Both stocks
migrate each year along the west coast of continental North America and
Alaska. The Eastern North Pacific stock is much larger and is more
likely to occur in the San Francisco Bay area. Western North Pacific
Gray whales have summer and fall feeding grounds in the Okhotsk Sea off
northeast Sakhalin Island, Russia, and off southeastern Kamchatka in
the Bering Sea (NMFS 2017).
Gray whales are the only baleen whale known to feed on the sea
floor, where they scoop up bottom sediments to filter out benthic
crustaceans, mollusks, and worms (NMFS 2015). They feed in northern
waters primarily off the Bering, Chukchi, and western Beaufort Seas
during the summer. Between December and January, late-stage pregnant
females, adult males, and immature females and males migrate southward
to breeding areas around Mexico. The northward migration occurs between
February and March. Coastal waters just outside San Francisco Bay are
considered a migratory Biologically Important Area for the northward
progression of gray whales (Calambokidis et al., 2015). During this
time, recently pregnant females, adult males, immature females, and
females with calves move north to the feeding grounds (Calambokidis et
al., 2014). A few individuals enter into the San Francisco Bay during
their northward migration. Foraging individuals in the San Francisco
Bay may occur in small numbers in waters adjacent to Alameda Point,
outside of the breakwaters, typically from December to May.
Since January 1, 2019, elevated gray whale strandings have occurred
along the west coast of North America from Mexico through Alaska. This
event has been declared an Unusual Mortality Event. As of June 21,
2019, 37 gray whales have stranded in California. Full or partial
necropsy examinations were conducted on a subset of the whales.
Preliminary findings in several of the whales have shown evidence of
emaciation. These findings are not consistent across all of the whales
examined, so more research is needed.
Bottlenose Dolphins
Bottlenose dolphins are distributed world-wide in tropical and
warm-temperate waters. In many regions, including California, separate
coastal and offshore populations are known (Walker 1981; Ross and
Cockcroft 1990; Van Waerebeek et al. 1990). The California coastal
stock of bottlenose dolphins is distinct from the offshore stock, based
on significant differences in genetics and cranial morphology (Perrin
et al. 2011, Lowther-Thielking et al. 2015). California coastal
bottlenose dolphins are found within about one kilometer (km) of shore
(Hansen, 1990; Carretta et al. 1998; Defran and Weller 1999) with the
range extending north over the last several decades related to El
Ni[ntilde]o events and increased ocean temperatures. As the range of
bottlenose dolphins extended north, dolphins began entering the Bay in
2010 (Szczepaniak 2013). Until 2016, most bottlenose dolphins in San
Francisco Bay were observed in the western Bay, from the Golden Gate
Bridge to Oyster Point and Redwood City (Perlman 2017). Members of the
California Coastal stock are transient and make movements up and down
the coast into some estuaries, throughout the year.
Harbor Porpoise
Harbor porpoise are seldom found in waters warmer than 62.6 degrees
Fahrenheit (17 degrees Celsius) (Read 1990) or south of Point
Conception, and occurs as far north as the Bering Sea (Barlow and Hanan
1995; Carretta et al., 2017). The San Francisco-Russian River stock is
found from Pescadero, 18 mi (30 km) south of the Bay, to 99 mi (160 km)
north of the Bay at Point Arena (Carretta et al., 2017). In most areas,
harbor porpoise occurs in small groups, consisting of just a few
individuals.
Occasional sightings of harbor porpoises in the Bay, including near
the Yerba Buena Island harbor seal haul[hyphen]out site, were reported
by the Caltrans marine mammal monitoring program beginning in 2008
(Caltrans 2018). Continued sightings from Caltrans and the Golden Gate
Cetacean Research (GGCR) Organization suggests that the species is
returning to San Francisco Bay after an absence of approximately 65
years (GGCR 2010). This re[hyphen]immergence is not unique to San
Francisco Bay, but rather indicative of the harbor porpoise in general
along the west coast. GGCR has been issued a scientific research permit
from NMFS for a multi[hyphen]year assessment to document the population
abundance and distribution in the Bay (82 FR 60374). Recent
observations of harbor porpoises have been reported by GGCR researchers
off Cavallo Point, outside Raccoon Strait between Tiburon and Angel
Island, off Fort Point and as far into the Bay as Carquinez Strait
(Perlman 2010). Based on the Caltrans and GGCR monitoring, over 100
porpoises were seen at one time entering San Francisco Bay; and over
600 individual animals have been documented in a photo[hyphen]ID
database. Reported sightings are concentrated in the vicinity of the
Golden Gate Bridge and Angel Island, with lesser numbers sighted south
of Alcatraz and west of Treasure Island (AECOM 2017).
Harbor Seal
Harbor seals are found from Baja California to the eastern Aleutian
Islands of Alaska. The species primarily hauls out on remote mainland
and island beaches and reefs, and estuary areas. Harbor seals tend to
forage locally within 53 miles (mi) (85 km) of haul-out sites (Harvey
and Goley 2011). Harbor seal is the most common marine mammal species
observed in the Bay and individuals are commonly seen near the San
Francisco-Oakland Bay Bridge east span (CalTrans 2013b, 2013c). Tagging
studies have shown that most seals tagged in the Bay remain in the Bay
(Harvey and Goley 2011; Manugian 2013). Foraging often occurs in the
Bay, as noted by observations of seals exhibiting foraging behavior
(short dives less than five minutes, moving back and forth in an area,
and sometimes tearing up prey at the surface). Moderate to small
numbers are known to forage in Seaplane Lagoon.
Although solitary in the water, harbor seals come ashore at haul
outs to rest, socialize, breed, nurse, molt, and thermoregulate.
Habitats used as haul out sites include tidal rocks, bayflats,
sandbars, and sandy beaches (Zeiner et al., 1990). Haul out sites are
relatively consistent from year to year (Kopec and Harvey 1995) and
females have been recorded returning to their own natal haul out to
breed (Cunningham et al., 2009). Although harbor seals haul out at
approximately 20 locations around San Francisco Bay, there are three
primary sites: Mowry Slough in the South Bay, Corte Madera Marsh and
Castro Rocks in the North Bay, and Yerba Buena Island in the Central
Bay (Grigg 2008; Gibble 2011). Yerba Buena Island haul out is located
approximately five mi north project area. Harbor seals use Yerba Buena
Island year-round, with the largest numbers seen during winter months,
when Pacific herring spawn (Grigg 2008). Two known pinniped haul-out
sites in the vicinity of the project area are located on an existing
haul out platform approximately 0.5 mi southeast of the project area
(separated from project activities by approximately 0.3 mi of developed
areas on-land), and at the western end of Breakwater Island,
approximately 1.0 mi southwest of the pile driving activities (see
Figure 4 of the application).
[[Page 34354]]
California Sea Lion
California sea lions breed on the offshore islands of California
from May through July (Heath and Perrin 2009). During the non-breeding
season, adult and sub-adult males and juveniles migrate northward along
the coast, to central and northern California, Oregon, Washington, and
Vancouver Island (Jefferson et al., 1993). They return south the
following spring (Lowry and Forney 2005; Heath and Perrin 2009).
Females and some juveniles tend to remain closer to rookeries
(Antonelis et al., 1990; Melin et al., 2008).
In San Francisco Bay, California sea lions have been observed at
Angel Island and occupying the docks near Pier 39 which is the largest
California sea lion haul[hyphen]out in San Francisco Bay. A maximum of
1,706 sea lions were counted at Pier 39 in 2009. However, since then
the population has averaged at about 50-300 depending upon the season
(TMMC 2017). This group of sea lions has decreased in size in recent
years, coincident with a fluctuating decrease in the herring population
in the Bay. There are no known breeding sites within San Francisco Bay.
Their primary breeding site is in the Channel Islands (USACE 2011). The
sea lions appear at Pier 39 after returning from the Channel Islands at
the beginning of August (Bauer 1999). No other sea lion haul out sites
have been identified in the Bay and no pupping has been observed at the
Pier 39 site or any other site in San Francisco Bay under normal
conditions (USACE 2011). Although there has been documentation of
pupping on docks in the Bay, this event was during a domoic acid event.
There is no reason to anticipate that any domoic events will occur
during the project construction activities.
The project site is approximately 4 mi away from Pier 39. Although
there is little information regarding the foraging behavior of the
California sea lion in southern San Francisco Bay, they have been
observed foraging on a regular basis in the shipping channel south of
Yerba Buena Island.
Foraging grounds have also been identified for pinnipeds, including
sea lions, between Yerba Buena Island and Treasure Island, as well as
off the Tiburon Peninsula (Caltrans, 2006). The California sea lions
that use the Pier 39 haul[hyphen]out site may be feeding on Pacific
herring (Clupea harengus), northern anchovy, and other prey in the
waters of San Francisco Bay (Caltrans, 2013a). In addition to the Pier
39 haul[hyphen]out, California sea lions haul out on buoys and similar
structures throughout San Francisco Bay. They mainly are seen swimming
off the San Francisco and Marin shorelines within San Francisco Bay,
but may occasionally enter the project area to forage and could
possibly haul-out on nearby breakwater islands or platforms.
Northern Elephant Seal
The northern elephant seal is common on California coastal mainland
and island sites, where the species pups, breeds, rests, and molts. The
largest rookeries are on San Nicolas and San Miguel islands in the
northern Channel Islands. Near the Bay, elephant seals breed, molt, and
haul out at A[ntilde]o Nuevo Island, the Farallon Islands, and Point
Reyes National Seashore.
Northern elephant seals haul out to give birth and breed from
December through March. Pups remain onshore or in adjacent shallow
water through May. Both sexes make two foraging migrations each year:
One after breeding and the second after molting (Stewart 1989; Stewart
and DeLong 1995). Adult females migrate to the central North Pacific to
forage, and males migrate to the Gulf of Alaska to forage (Robinson et
al. 2012). Pup mortality is high when they make the first trip to sea
in May, and this period correlates with the time of most strandings.
Pups of the year return in the late summer and fall, to haul out at
breeding rookery and small haul out sites, but occasionally they may
make brief stops in the Bay.
Generally, only juvenile elephant seals enter the Bay and do not
remain long. The most recent sighting near the project area was in
2012, on the beach at Clipper Cove on Treasure Island (5 mi north of
the project area), when a healthy yearling elephant seal hauled out for
approximately 1 day. Approximately 100 juvenile northern elephant seals
strand in or near the Bay each year, including individual strandings at
Yerba Buena Island and Treasure Island (less than 10 strandings per
year).
Northern Fur Seal
Northern fur seal breeds on the offshore islands of California and
in the Bering Sea from May through July. Two stocks of Northern fur
seals may occur near the Bay, the California and Eastern Pacific
stocks. The California stock breeds, pups, and forages off the
California coast. The Eastern Pacific stock breeds and pups on islands
in the Bering Sea, but females and juveniles move south to California
waters to forage in the fall and winter months.
Both the California and Eastern Pacific stocks forage in the
offshore waters of California, but only sick, emaciated, or injured fur
seals enter the Bay. The Marine Mammal Center (TMMC) occasionally picks
up stranded fur seals around Yerba Buena Island and Treasure Island.
Marine Mammal Hearing
Hearing is the most important sensory modality for marine mammals
underwater, and exposure to anthropogenic sound can have deleterious
effects. To appropriately assess the potential effects of exposure to
sound, it is necessary to understand the frequency ranges marine
mammals are able to hear. Current data indicate that not all marine
mammal species have equal hearing capabilities (e.g., Richardson et
al., 1995; Wartzok and Ketten, 1999; Au and Hastings, 2008). To reflect
this, Southall et al. (2007) recommended that marine mammals be divided
into functional hearing groups based on directly measured or estimated
hearing ranges on the basis of available behavioral response data,
audiograms derived using auditory evoked potential techniques,
anatomical modeling, and other data. Note that no direct measurements
of hearing ability have been successfully completed for mysticetes
(i.e., low-frequency cetaceans). Subsequently, NMFS (2018) described
generalized hearing ranges for these marine mammal hearing groups.
Generalized hearing ranges were chosen based on the approximately 65
decibel (dB) threshold from the normalized composite audiograms, with
the exception for lower limits for low-frequency cetaceans where the
lower bound was deemed to be biologically implausible and the lower
bound from Southall et al. (2007) retained. Marine mammal hearing
groups and their associated hearing ranges are provided in Table 3.
[[Page 34355]]
Table 3--Marine Mammal Hearing Groups
[NMFS 2018]
------------------------------------------------------------------------
Hearing group Generalized hearing range *
------------------------------------------------------------------------
Low-frequency (LF) cetaceans (baleen 7 Hz to 35 kHz.
whales).
Mid-frequency (MF) cetaceans 150 Hz to 160 kHz.
(dolphins, toothed whales, beaked
whales, bottlenose whales).
High-frequency (HF) cetaceans (true 275 Hz to 160 kHz.
porpoises, Kogia, river dolphins,
cephalorhynchid, Lagenorhynchus
cruciger & L. australis).
Phocid pinnipeds (PW) (underwater) 50 Hz to 86 kHz.
(true seals).
Otariid pinnipeds (OW) (underwater) 60 Hz to 39 kHz.
(sea lions and fur seals).
------------------------------------------------------------------------
* Represents the generalized hearing range for the entire group as a
composite (i.e., all species within the group), where individual
species' hearing ranges are typically not as broad. Generalized
hearing range chosen based on ~65 dB threshold from normalized
composite audiogram, with the exception for lower limits for LF
cetaceans (Southall et al. 2007) and PW pinniped (approximation).
The pinniped functional hearing group was modified from Southall et
al. (2007) on the basis of data indicating that phocid species have
consistently demonstrated an extended frequency range of hearing
compared to otariids, especially in the higher frequency range
(Hemil[auml] et al., 2006; Kastelein et al., 2009; Reichmuth and Holt,
2013).
For more detail concerning these groups and associated frequency
ranges, please see NMFS (2018) for a review of available information.
Seven marine mammal species (3 cetacean and 4 pinniped (2 otariid and 2
phocid) species) have the reasonable potential to occur during the
proposed activities. Please refer to Table 2. Of the cetacean species
that may be present, one is classified as low-frequency cetacean (i.e.,
all mysticete species), one is classified as mid-frequency cetacean
(i.e., all delphinid species), and one is classified as high-frequency
cetacean (i.e., harbor porpoise).
Potential Effects of Specified Activities on Marine Mammals and Their
Habitat
This section includes a summary and discussion of the ways that
components of the specified activity may impact marine mammals and
their habitat. The Estimated Take by Incidental Harassment section
later in this document includes a quantitative analysis of the number
of individuals that are expected to be taken by this activity. The
Negligible Impact Analysis and Determination section considers the
content of this section, the Estimated Take by Incidental Harassment
section, and the Proposed Mitigation section, to draw conclusions
regarding the likely impacts of these activities on the reproductive
success or survivorship of individuals and how those impacts on
individuals are likely to impact marine mammal species or stocks.
Acoustic effects on marine mammals during the specified activity
can occur from vibratory and impact pile driving. The effects of
underwater noise from the City's proposed activities have the potential
to result in Level B harassment of marine mammals in the vicinity of
the action area.
Description of Sound Sources
This section contains a brief technical background on sound, on the
characteristics of certain sound types, and on metrics used in this
proposal inasmuch as the information is relevant to the specified
activity and to a discussion of the potential effects of the specified
activity on marine mammals found later in this document. For general
information on sound and its interaction with the marine environment,
please see, e.g., Au and Hastings (2008); Richardson et al. (1995);
Urick (1983).
Sound travels in waves, the basic components of which are
frequency, wavelength, velocity, and amplitude. Frequency is the number
of pressure waves that pass by a reference point per unit of time and
is measured in hertz (Hz) or cycles per second. Wavelength is the
distance between two peaks or corresponding points of a sound wave
(length of one cycle). Higher frequency sounds have shorter wavelengths
than lower frequency sounds, and typically attenuate (decrease) more
rapidly, except in certain cases in shallower water. Amplitude is the
height of the sound pressure wave or the ``loudness'' of a sound and is
typically described using the relative unit of the decibel (dB). A
sound pressure level (SPL) in dB is described as the ratio between a
measured pressure and a reference pressure (for underwater sound, this
is 1 microPascal ([mu]Pa)), and is a logarithmic unit that accounts for
large variations in amplitude; therefore, a relatively small change in
dB corresponds to large changes in sound pressure. The source level
(SL) represents the SPL referenced at a distance of 1 m from the source
(referenced to 1 [mu]Pa), while the received level is the SPL at the
listener's position (referenced to 1 [mu]Pa).
Root mean square (rms) is the quadratic mean sound pressure over
the duration of an impulse. Rms is calculated by squaring all of the
sound amplitudes, averaging the squares, and then taking the square
root of the average (Urick, 1983). Rms accounts for both positive and
negative values; squaring the pressures makes all values positive so
that they may be accounted for in the summation of pressure levels
(Hastings and Popper, 2005). This measurement is often used in the
context of discussing behavioral effects, in part because behavioral
effects, which often result from auditory cues, may be better expressed
through averaged units than by peak pressures.
Sound exposure level (SEL; represented as dB re 1 [mu]Pa\2\-s)
represents the total energy in a stated frequency band over a stated
time interval or event, and considers both intensity and duration of
exposure. The per-pulse SEL is calculated over the time window
containing the entire pulse (i.e., 100 percent of the acoustic energy).
SEL is a cumulative metric; it can be accumulated over a single pulse,
or calculated over periods containing multiple pulses. Cumulative SEL
represents the total energy accumulated by a receiver over a defined
time window or during an event. Peak sound pressure (also referred to
as zero-to-peak sound pressure or 0-pk) is the maximum instantaneous
sound pressure measurable in the water at a specified distance from the
source, and is represented in the same units as the rms sound pressure.
When underwater objects vibrate or activity occurs, sound-pressure
waves are created. These waves alternately compress and decompress the
water as the sound wave travels. Underwater sound waves radiate in a
manner similar to ripples on the surface of a pond and may be either
directed in a beam or beams or may radiate in all directions
[[Page 34356]]
(omnidirectional sources), as is the case for sound produced by the
pile driving activity considered here. The compressions and
decompressions associated with sound waves are detected as changes in
pressure by aquatic life and man-made sound receptors such as
hydrophones.
Even in the absence of sound from the specified activity, the
underwater environment is typically loud due to ambient sound, which is
defined as environmental background sound levels lacking a single
source or point (Richardson et al., 1995). The sound level of a region
is defined by the total acoustical energy being generated by known and
unknown sources. These sources may include physical (e.g., wind and
waves, earthquakes, ice, atmospheric sound), biological (e.g., sounds
produced by marine mammals, fish, and invertebrates), and anthropogenic
(e.g., vessels, dredging, construction) sound. A number of sources
contribute to ambient sound, including wind and waves, which are a main
source of naturally occurring ambient sound for frequencies between 200
hertz (Hz) and 50 kilohertz (kHz) (Mitson, 1995). In general, ambient
sound levels tend to increase with increasing wind speed and wave
height. Precipitation can become an important component of total sound
at frequencies above 500 Hz, and possibly down to 100 Hz during quiet
times. Marine mammals can contribute significantly to ambient sound
levels, as can some fish and snapping shrimp. The frequency band for
biological contributions is from approximately 12 Hz to over 100 kHz.
Sources of ambient sound related to human activity include
transportation (surface vessels), dredging and construction, oil and
gas drilling and production, geophysical surveys, sonar, and
explosions. Vessel noise typically dominates the total ambient sound
for frequencies between 20 and 300 Hz. In general, the frequencies of
anthropogenic sounds are below 1 kHz and, if higher frequency sound
levels are created, they attenuate rapidly.
The sum of the various natural and anthropogenic sound sources that
comprise ambient sound at any given location and time depends not only
on the source levels (as determined by current weather conditions and
levels of biological and human activity) but also on the ability of
sound to propagate through the environment. In turn, sound propagation
is dependent on the spatially and temporally varying properties of the
water column and sea floor, and is frequency-dependent. As a result of
the dependence on a large number of varying factors, ambient sound
levels can be expected to vary widely over both coarse and fine spatial
and temporal scales. Sound levels at a given frequency and location can
vary by 10-20 decibels (dB) from day to day (Richardson et al., 1995).
The result is that, depending on the source type and its intensity,
sound from the specified activity may be a negligible addition to the
local environment or could form a distinctive signal that may affect
marine mammals.
Sounds are often considered to fall into one of two general types:
Pulsed and non-pulsed (defined in the following). The distinction
between these two sound types is important because they have differing
potential to cause physical effects, particularly with regard to
hearing (e.g., Ward, 1997 in Southall et al., 2007). Please see
Southall et al. (2007) for an in-depth discussion of these concepts.
The distinction between these two sound types is not always obvious, as
certain signals share properties of both pulsed and non-pulsed sounds.
A signal near a source could be categorized as a pulse, but due to
propagation effects as it moves farther from the source, the signal
duration becomes longer (e.g., Greene and Richardson, 1988).
Pulsed sound sources (e.g., airguns, explosions, gunshots, sonic
booms, impact pile driving) produce signals that are brief (typically
considered to be less than one second), broadband, atonal transients
(ANSI, 1986, 2005; Harris, 1998; NIOSH, 1998; ISO, 2003) and occur
either as isolated events or repeated in some succession. Pulsed sounds
are all characterized by a relatively rapid rise from ambient pressure
to a maximal pressure value followed by a rapid decay period that may
include a period of diminishing, oscillating maximal and minimal
pressures, and generally have an increased capacity to induce physical
injury as compared with sounds that lack these features.
Non-pulsed sounds can be tonal, narrowband, or broadband, brief or
prolonged, and may be either continuous or intermittent (ANSI, 1995;
NIOSH, 1998). Some of these non-pulsed sounds can be transient signals
of short duration but without the essential properties of pulses (e.g.,
rapid rise time). Examples of non-pulsed sounds include those produced
by vessels, aircraft, machinery operations such as drilling or
dredging, vibratory pile driving, and active sonar systems. The
duration of such sounds, as received at a distance, can be greatly
extended in a highly reverberant environment.
The impulsive sound generated by impact hammers is characterized by
rapid rise times and high peak levels. Vibratory hammers produce non-
impulsive, continuous noise at levels significantly lower than those
produced by impact hammers. Rise time is slower, reducing the
probability and severity of injury, and sound energy is distributed
over a greater amount of time (e.g., Nedwell and Edwards, 2002; Carlson
et al., 2005).
Acoustic Effects on Marine Mammals
We previously provided general background information on marine
mammal hearing (see Description of Marine Mammals in the Area of the
Specified Activity). Here, we discuss the potential effects of sound on
marine mammals.
Note that, in the following discussion, we refer in many cases to a
review article concerning studies of noise-induced hearing loss
conducted from 1996-2015 (i.e., Finneran, 2015). For study-specific
citations, please see that work. Anthropogenic sounds cover a broad
range of frequencies and sound levels and can have a range of highly
variable impacts on marine life, from none or minor to potentially
severe responses, depending on received levels, duration of exposure,
behavioral context, and various other factors. The potential effects of
underwater sound from active acoustic sources can potentially result in
one or more of the following: Temporary or permanent hearing
impairment, non-auditory physical or physiological effects, behavioral
disturbance, stress, and masking (Richardson et al., 1995; Gordon et
al., 2004; Nowacek et al., 2007; Southall et al., 2007; G[ouml]tz et
al., 2009). The degree of effect is intrinsically related to the signal
characteristics, received level, distance from the source, and duration
of the sound exposure. In general, sudden, high level sounds can cause
hearing loss, as can longer exposures to lower level sounds. Temporary
or permanent loss of hearing will occur almost exclusively for noise
within an animal's hearing range. We first describe specific
manifestations of acoustic effects before providing discussion specific
to pile driving and removal activities.
Richardson et al. (1995) described zones of increasing intensity of
effect that might be expected to occur, in relation to distance from a
source and assuming that the signal is within an animal's hearing
range. First is the area within which the acoustic signal would be
audible (potentially perceived) to the animal but not strong enough to
elicit any overt behavioral or physiological
[[Page 34357]]
response. The next zone corresponds with the area where the signal is
audible to the animal and of sufficient intensity to elicit behavioral
or physiological responsiveness. Third is a zone within which, for
signals of high intensity, the received level is sufficient to
potentially cause discomfort or tissue damage to auditory or other
systems. Overlaying these zones to a certain extent is the area within
which masking (i.e., when a sound interferes with or masks the ability
of an animal to detect a signal of interest that is above the absolute
hearing threshold) may occur; the masking zone may be highly variable
in size.
We describe the more severe effects (i.e., certain non-auditory
physical or physiological effects) only briefly as we do not expect
that there is a reasonable likelihood that pile driving may result in
such effects (see below for further discussion). Potential effects from
explosive impulsive sound sources can range in severity from effects
such as behavioral disturbance or tactile perception to physical
discomfort, slight injury of the internal organs and the auditory
system, or mortality (Yelverton et al., 1973). Non-auditory
physiological effects or injuries that theoretically might occur in
marine mammals exposed to high level underwater sound or as a secondary
effect of extreme behavioral reactions (e.g., change in dive profile as
a result of an avoidance reaction) caused by exposure to sound include
neurological effects, bubble formation, resonance effects, and other
types of organ or tissue damage (Cox et al., 2006; Southall et al.,
2007; Zimmer and Tyack, 2007; Tal et al., 2015). The construction
activities considered here do not involve the use of devices such as
explosives or mid-frequency tactical sonar that are associated with
these types of effects.
Threshold Shift--Marine mammals exposed to high-intensity sound, or
to lower-intensity sound for prolonged periods, can experience hearing
threshold shift (TS), which is the loss of hearing sensitivity at
certain frequency ranges (Finneran, 2015). TS can be permanent (PTS),
in which case the loss of hearing sensitivity is not fully recoverable,
or temporary (TTS), in which case the animal's hearing threshold would
recover over time (Southall et al., 2007). Repeated sound exposure that
leads to TTS could cause PTS. In severe cases of PTS, there can be
total or partial deafness, while in most cases the animal has an
impaired ability to hear sounds in specific frequency ranges (Kryter,
1985).
When PTS occurs, there is physical damage to the sound receptors in
the ear (i.e., tissue damage), whereas TTS represents primarily tissue
fatigue and is reversible (Southall et al., 2007). In addition, other
investigators have suggested that TTS is within the normal bounds of
physiological variability and tolerance and does not represent physical
injury (e.g., Ward, 1997). Therefore, NMFS does not consider TTS to
constitute auditory injury.
Relationships between TTS and PTS thresholds have not been studied
in marine mammals, and there is no PTS data for cetaceans, but such
relationships are assumed to be similar to those in humans and other
terrestrial mammals. PTS typically occurs at exposure levels at least
several decibels above (a 40-dB threshold shift approximates PTS onset;
e.g., Kryter et al., 1966; Miller, 1974) that inducing mild TTS (a 6-dB
threshold shift approximates TTS onset; e.g., Southall et al. 2007).
Based on data from terrestrial mammals, a precautionary assumption is
that the PTS thresholds for impulse sounds (such as impact pile driving
pulses as received close to the source) are at least 6 dB higher than
the TTS threshold on a peak-pressure basis and PTS cumulative sound
exposure level thresholds are 15 to 20 dB higher than TTS cumulative
sound exposure level thresholds (Southall et al., 2007). Given the
higher level of sound or longer exposure duration necessary to cause
PTS as compared with TTS, it is considerably less likely that PTS could
occur.
TTS is the mildest form of hearing impairment that can occur during
exposure to sound (Kryter, 1985). While experiencing TTS, the hearing
threshold rises, and a sound must be at a higher level in order to be
heard. In terrestrial and marine mammals, TTS can last from minutes or
hours to days (in cases of strong TTS). In many cases, hearing
sensitivity recovers rapidly after exposure to the sound ends. Few data
on sound levels and durations necessary to elicit mild TTS have been
obtained for marine mammals.
Marine mammal hearing plays a critical role in communication with
conspecifics, and interpretation of environmental cues for purposes
such as predator avoidance and prey capture. Depending on the degree
(elevation of threshold in dB), duration (i.e., recovery time), and
frequency range of TTS, and the context in which it is experienced, TTS
can have effects on marine mammals ranging from discountable to
serious. For example, a marine mammal may be able to readily compensate
for a brief, relatively small amount of TTS in a non-critical frequency
range that occurs during a time where ambient noise is lower and there
are not as many competing sounds present. Alternatively, a larger
amount and longer duration of TTS sustained during time when
communication is critical for successful mother/calf interactions could
have more serious impacts.
Currently, TTS data only exist for four species of cetaceans
(bottlenose dolphin (Tursiops truncatus), beluga whale (Delphinapterus
leucas), harbor porpoise, and Yangtze finless porpoise (Neophocoena
asiaeorientalis)) and three species of pinnipeds (northern elephant
seal, harbor seal, and California sea lion) exposed to a limited number
of sound sources (i.e., mostly tones and octave-band noise) in
laboratory settings (Finneran, 2015). TTS was not observed in trained
spotted (Phoca largha) and ringed (Pusa hispida) seals exposed to
impulsive noise at levels matching previous predictions of TTS onset
(Reichmuth et al., 2016). In general, harbor seals and harbor porpoises
have a lower TTS onset than other measured pinniped or cetacean species
(Finneran, 2015). Additionally, the existing marine mammal TTS data
come from a limited number of individuals within these species. There
are no data available on noise-induced hearing loss for mysticetes. For
summaries of data on TTS in marine mammals or for further discussion of
TTS onset thresholds, please see Southall et al. (2007), Finneran and
Jenkins (2012), Finneran (2015), and NMFS (2018).
Behavioral Effects--Behavioral disturbance may include a variety of
effects, including subtle changes in behavior (e.g., minor or brief
avoidance of an area or changes in vocalizations), more conspicuous
changes in similar behavioral activities, and more sustained and/or
potentially severe reactions, such as displacement from or abandonment
of high-quality habitat. Behavioral responses to sound are highly
variable and context-specific and any reactions depend on numerous
intrinsic and extrinsic factors (e.g., species, state of maturity,
experience, current activity, reproductive state, auditory sensitivity,
time of day), as well as the interplay between factors (e.g.,
Richardson et al., 1995; Wartzok et al., 2003; Southall et al., 2007;
Weilgart, 2007; Archer et al., 2010). Behavioral reactions can vary not
only among individuals but also within an individual, depending on
previous experience with a sound source, context, and numerous other
factors (Ellison et al., 2012), and can vary depending on
characteristics associated with the sound source (e.g., whether it is
moving or stationary, number of
[[Page 34358]]
sources, distance from the source). Please see Appendices B-C of
Southall et al. (2007) for a review of studies involving marine mammal
behavioral responses to sound.
Habituation can occur when an animal's response to a stimulus wanes
with repeated exposure, usually in the absence of unpleasant associated
events (Wartzok et al., 2003). Animals are most likely to habituate to
sounds that are predictable and unvarying. It is important to note that
habituation is appropriately considered as a ``progressive reduction in
response to stimuli that are perceived as neither aversive nor
beneficial,'' rather than as, more generally, moderation in response to
human disturbance (Bejder et al., 2009). The opposite process is
sensitization, when an unpleasant experience leads to subsequent
responses, often in the form of avoidance, at a lower level of
exposure. As noted, behavioral state may affect the type of response.
For example, animals that are resting may show greater behavioral
change in response to disturbing sound levels than animals that are
highly motivated to remain in an area for feeding (Richardson et al.,
1995; NRC, 2003; Wartzok et al., 2003). Controlled experiments with
captive marine mammals have showed pronounced behavioral reactions,
including avoidance of loud sound sources (Ridgway et al., 1997;
Finneran et al., 2003). Observed responses of wild marine mammals to
loud pulsed sound sources (typically airguns or acoustic harassment
devices) have been varied but often consist of avoidance behavior or
other behavioral changes suggesting discomfort (Morton and Symonds,
2002; see also Richardson et al., 1995; Nowacek et al., 2007). However,
many delphinids approach low-frequency airgun source vessels with no
apparent discomfort or obvious behavioral change (e.g., Barkaszi et
al., 2012), indicating the importance of frequency output in relation
to the species' hearing sensitivity.
Available studies show wide variation in response to underwater
sound; therefore, it is difficult to predict specifically how any given
sound in a particular instance might affect marine mammals perceiving
the signal. If a marine mammal does react briefly to an underwater
sound by changing its behavior or moving a small distance, the impacts
of the change are unlikely to be significant to the individual, let
alone the stock or population. However, if a sound source displaces
marine mammals from an important feeding or breeding area for a
prolonged period, impacts on individuals and populations could be
significant (e.g., Lusseau and Bejder, 2007; Weilgart, 2007; NRC,
2005). However, there are broad categories of potential response, which
we describe in greater detail here, that include alteration of dive
behavior, alteration of foraging behavior, effects to breathing,
interference with or alteration of vocalization, avoidance, and flight.
Changes in dive behavior can vary widely and may consist of
increased or decreased dive times and surface intervals as well as
changes in the rates of ascent and descent during a dive (e.g., Frankel
and Clark, 2000; Costa et al., 2003; Ng and Leung, 2003; Nowacek et
al.; 2004; Goldbogen et al., 2013a, 2013b). Variations in dive behavior
may reflect interruptions in biologically significant activities (e.g.,
foraging) or they may be of little biological significance. The impact
of an alteration to dive behavior resulting from an acoustic exposure
depends on what the animal is doing at the time of the exposure and the
type and magnitude of the response.
Disruption of feeding behavior can be difficult to correlate with
anthropogenic sound exposure, so it is usually inferred by observed
displacement from known foraging areas, the appearance of secondary
indicators (e.g., bubble nets or sediment plumes), or changes in dive
behavior. As for other types of behavioral response, the frequency,
duration, and temporal pattern of signal presentation, as well as
differences in species sensitivity, are likely contributing factors to
differences in response in any given circumstance (e.g., Croll et al.,
2001; Nowacek et al.; 2004; Madsen et al., 2006; Yazvenko et al.,
2007). A determination of whether foraging disruptions incur fitness
consequences would require information on or estimates of the energetic
requirements of the affected individuals and the relationship between
prey availability, foraging effort and success, and the life history
stage of the animal.
Variations in respiration naturally vary with different behaviors
and alterations to breathing rate as a function of acoustic exposure
can be expected to co-occur with other behavioral reactions, such as a
flight response or an alteration in diving. However, respiration rates
in and of themselves may be representative of annoyance or an acute
stress response. Various studies have shown that respiration rates may
either be unaffected or could increase, depending on the species and
signal characteristics, again highlighting the importance in
understanding species differences in the tolerance of underwater noise
when determining the potential for impacts resulting from anthropogenic
sound exposure (e.g., Kastelein et al., 2001, 2005, 2006; Gailey et
al., 2007; Gailey et al., 2016).
Marine mammals vocalize for different purposes and across multiple
modes, such as whistling, echolocation click production, calling, and
singing. Changes in vocalization behavior in response to anthropogenic
noise can occur for any of these modes and may result from a need to
compete with an increase in background noise or may reflect increased
vigilance or a startle response. For example, in the presence of
potentially masking signals, humpback whales and killer whales have
been observed to increase the length of their songs (Miller et al.,
2000; Fristrup et al., 2003; Foote et al., 2004), while right whales
have been observed to shift the frequency content of their calls upward
while reducing the rate of calling in areas of increased anthropogenic
noise (Parks et al., 2007). In some cases, animals may cease sound
production during production of aversive signals (Bowles et al., 1994).
Avoidance is the displacement of an individual from an area or
migration path as a result of the presence of a sound or other
stressors, and is one of the most obvious manifestations of disturbance
in marine mammals (Richardson et al., 1995). For example, gray whales
are known to change direction--deflecting from customary migratory
paths--in order to avoid noise from airgun surveys (Malme et al.,
1984). Avoidance may be short-term, with animals returning to the area
once the noise has ceased (e.g., Bowles et al., 1994; Goold, 1996;
Stone et al., 2000; Morton and Symonds, 2002; Gailey et al., 2007).
Longer-term displacement is possible, however, which may lead to
changes in abundance or distribution patterns of the affected species
in the affected region if habituation to the presence of the sound does
not occur (e.g., Blackwell et al., 2004; Bejder et al., 2006; Teilmann
et al., 2006).
A flight response is a dramatic change in normal movement to a
directed and rapid movement away from the perceived location of a sound
source. The flight response differs from other avoidance responses in
the intensity of the response (e.g., directed movement, rate of
travel). Relatively little information on flight responses of marine
mammals to anthropogenic signals exist, although observations of flight
responses to the presence of predators have occurred (Connor and
Heithaus, 1996). The result of a flight response could range from
brief, temporary exertion and displacement
[[Page 34359]]
from the area where the signal provokes flight to, in extreme cases,
marine mammal strandings (Evans and England, 2001). However, it should
be noted that response to a perceived predator does not necessarily
invoke flight (Ford and Reeves, 2008), and whether individuals are
solitary or in groups may influence the response.
Behavioral disturbance can also impact marine mammals in more
subtle ways. Increased vigilance may result in costs related to
diversion of focus and attention (i.e., when a response consists of
increased vigilance, it may come at the cost of decreased attention to
other critical behaviors such as foraging or resting). These effects
have generally not been demonstrated for marine mammals, but studies
involving fish and terrestrial animals have shown that increased
vigilance may substantially reduce feeding rates (e.g., Beauchamp and
Livoreil, 1997; Fritz et al., 2002; Purser and Radford, 2011). In
addition, chronic disturbance can cause population declines through
reduction of fitness (e.g., decline in body condition) and subsequent
reduction in reproductive success, survival, or both (e.g., Harrington
and Veitch, 1992; Daan et al., 1996; Bradshaw et al., 1998). However,
Ridgway et al. (2006) reported that increased vigilance in bottlenose
dolphins exposed to sound over a five-day period did not cause any
sleep deprivation or stress effects.
Many animals perform vital functions, such as feeding, resting,
traveling, and socializing, on a diel cycle (24-hour cycle). Disruption
of such functions resulting from reactions to stressors such as sound
exposure are more likely to be significant if they last more than one
diel cycle or recur on subsequent days (Southall et al., 2007).
Consequently, a behavioral response lasting less than one day and not
recurring on subsequent days is not considered particularly severe
unless it could directly affect reproduction or survival (Southall et
al., 2007). Note that there is a difference between multi-day
substantive behavioral reactions and multi-day anthropogenic
activities. For example, just because an activity lasts for multiple
days does not necessarily mean that individual animals are either
exposed to activity-related stressors for multiple days or, further,
exposed in a manner resulting in sustained multi-day substantive
behavioral responses.
Stress Responses--An animal's perception of a threat may be
sufficient to trigger stress responses consisting of some combination
of behavioral responses, autonomic nervous system responses,
neuroendocrine responses, or immune responses (e.g., Seyle, 1950;
Moberg, 2000). In many cases, an animal's first and sometimes most
economical (in terms of energetic costs) response is behavioral
avoidance of the potential stressor. Autonomic nervous system responses
to stress typically involve changes in heart rate, blood pressure, and
gastrointestinal activity. These responses have a relatively short
duration and may or may not have a significant long-term effect on an
animal's fitness.
Neuroendocrine stress responses often involve the hypothalamus-
pituitary-adrenal system. Virtually all neuroendocrine functions that
are affected by stress--including immune competence, reproduction,
metabolism, and behavior--are regulated by pituitary hormones. Stress-
induced changes in the secretion of pituitary hormones have been
implicated in failed reproduction, altered metabolism, reduced immune
competence, and behavioral disturbance (e.g., Moberg, 1987; Blecha,
2000). Increases in the circulation of glucocorticoids are also equated
with stress (Romano et al., 2004).
The primary distinction between stress (which is adaptive and does
not normally place an animal at risk) and ``distress'' is the cost of
the response. During a stress response, an animal uses glycogen stores
that can be quickly replenished once the stress is alleviated. In such
circumstances, the cost of the stress response would not pose serious
fitness consequences. However, when an animal does not have sufficient
energy reserves to satisfy the energetic costs of a stress response,
energy resources must be diverted from other functions. This state of
distress will last until the animal replenishes its energetic reserves
sufficient to restore normal function.
Relationships between these physiological mechanisms, animal
behavior, and the costs of stress responses are well-studied through
controlled experiments and for both laboratory and free-ranging animals
(e.g., Holberton et al., 1996; Hood et al., 1998; Jessop et al., 2003;
Krausman et al., 2004; Lankford et al., 2005). Stress responses due to
exposure to anthropogenic sounds or other stressors and their effects
on marine mammals have also been reviewed (Fair and Becker, 2000;
Romano et al., 2002b) and, more rarely, studied in wild populations
(e.g., Romano et al., 2002a). For example, Rolland et al. (2012) found
that noise reduction from reduced ship traffic in the Bay of Fundy was
associated with decreased stress in North Atlantic right whales. These
and other studies lead to a reasonable expectation that some marine
mammals will experience physiological stress responses upon exposure to
acoustic stressors and that it is possible that some of these would be
classified as ``distress.'' In addition, any animal experiencing TTS
would likely also experience stress responses (NRC, 2003).
Auditory Masking--Sound can disrupt behavior through masking, or
interfering with, an animal's ability to detect, recognize, or
discriminate between acoustic signals of interest (e.g., those used for
intraspecific communication and social interactions, prey detection,
predator avoidance, navigation) (Richardson et al., 1995; Erbe et al.,
2016). Masking occurs when the receipt of a sound is interfered with by
another coincident sound at similar frequencies and at similar or
higher intensity, and may occur whether the sound is natural (e.g.,
snapping shrimp, wind, waves, precipitation) or anthropogenic (e.g.,
shipping, sonar, seismic exploration) in origin. The ability of a noise
source to mask biologically important sounds depends on the
characteristics of both the noise source and the signal of interest
(e.g., signal-to-noise ratio, temporal variability, direction), in
relation to each other and to an animal's hearing abilities (e.g.,
sensitivity, frequency range, critical ratios, frequency
discrimination, directional discrimination, age or TTS hearing loss),
and existing ambient noise and propagation conditions.
Under certain circumstances, marine mammals experiencing
significant masking could also be impaired from maximizing their
performance fitness in survival and reproduction. Therefore, when the
coincident (masking) sound is man-made, it may be considered harassment
when disrupting or altering critical behaviors. It is important to
distinguish TTS and PTS, which persist after the sound exposure, from
masking, which occurs during the sound exposure. Because masking
(without resulting in TS) is not associated with abnormal physiological
function, it is not considered a physiological effect, but rather a
potential behavioral effect.
The frequency range of the potentially masking sound is important
in determining any potential behavioral impacts. For example, low-
frequency signals may have less effect on high-frequency echolocation
sounds produced by odontocetes but are more likely to affect detection
of mysticete communication calls and other potentially important
natural sounds such as those produced by surf and some prey species.
The masking of communication signals by
[[Page 34360]]
anthropogenic noise may be considered as a reduction in the
communication space of animals (e.g., Clark et al., 2009) and may
result in energetic or other costs as animals change their vocalization
behavior (e.g., Miller et al., 2000; Foote et al., 2004; Parks et al.,
2007; Di Iorio and Clark, 2009; Holt et al., 2009). Masking can be
reduced in situations where the signal and noise come from different
directions (Richardson et al., 1995), through amplitude modulation of
the signal, or through other compensatory behaviors (Houser and Moore,
2014). Masking can be tested directly in captive species (e.g., Erbe,
2008), but in wild populations it must be either modeled or inferred
from evidence of masking compensation. There are few studies addressing
real-world masking sounds likely to be experienced by marine mammals in
the wild (e.g., Branstetter et al., 2013).
Masking affects both senders and receivers of acoustic signals and
can potentially have long-term chronic effects on marine mammals at the
population level as well as at the individual level. Low-frequency
ambient sound levels have increased by as much as 20 dB (more than
three times in terms of SPL) in the world's ocean from pre-industrial
periods, with most of the increase from distant commercial shipping
(Hildebrand, 2009). All anthropogenic sound sources, but especially
chronic and lower-frequency signals (e.g., from vessel traffic),
contribute to elevated ambient sound levels, thus intensifying masking.
Potential Effects of the City's Activity--As described previously
(see Description of Active Acoustic Sound Sources), the City proposes
to conduct pile driving, including impact and vibratory driving. The
effects of pile driving on marine mammals are dependent on several
factors, including the size, type, and depth of the animal; the depth,
intensity, and duration of the pile driving sound; the depth of the
water column; the substrate of the habitat; the standoff distance
between the pile and the animal; and the sound propagation properties
of the environment. With both types, it is likely that the pile driving
could result in temporary, short term changes in an animal's typical
behavioral patterns and/or avoidance of the affected area. These
behavioral changes may include (Richardson et al., 1995): Changing
durations of surfacing and dives, number of blows per surfacing, or
moving direction and/or speed; reduced/increased vocal activities;
changing/cessation of certain behavioral activities (such as
socializing or feeding); visible startle response or aggressive
behavior (such as tail/fluke slapping or jaw clapping); avoidance of
areas where sound sources are located; and/or flight responses.
The biological significance of many of these behavioral
disturbances is difficult to predict, especially if the detected
disturbances appear minor. However, the consequences of behavioral
modification could be expected to be biologically significant if the
change affects growth, survival, or reproduction. Significant
behavioral modifications that could lead to effects on growth,
survival, or reproduction, such as drastic changes in diving/surfacing
patterns or significant habitat abandonment are extremely unlikely in
this area (i.e., shallow waters in modified industrial areas).
Whether impact or vibratory driving, sound sources would be active
for relatively short durations, with relation to potential for masking.
The frequencies output by pile driving activity are lower than those
used by most species expected to be regularly present for communication
or foraging. We expect insignificant impacts from masking, and any
masking event that could possibly rise to Level B harassment under the
MMPA would occur concurrently within the zones of behavioral harassment
already estimated for vibratory and impact pile driving, and which have
already been taken into account in the exposure analysis.
Anticipated Effects on Marine Mammal Habitat
The proposed activities would not result in permanent impacts to
habitats used directly by marine mammals except the actual footprint of
the project. The footprint of the project is small, and equal to the
area the ferry associated pile placement. The installation of piles for
the new pier will result in permanent impacts on 61 square feet (ft\2\)
of aquatic habitat. At best, the impact area, which is located in
Seaplane Lagoon, provides marginal foraging habitat for marine mammals
and fish. The net loss of such a small area (25 ft\2\) of benthic
habitat is not expected to impair the health of these species or affect
their populations. Project construction and long-term operation are not
expected to disturb nearby harbor seal haul-outs, which are located 1.0
mi to the southwest on Breakwater Island and 0.5 mi to the southeast on
a platform installed by the City.
The proposed activities may have potential short-term impacts to
food sources such as forage fish. The proposed activities could also
affect acoustic habitat (see masking discussion above), but meaningful
impacts are unlikely. There are no known foraging hotspots, or other
ocean bottom structures of significant biological importance to marine
mammals present in the marine waters in the vicinity of the project
areas. Therefore, the main impact issue associated with the proposed
activity would be temporarily elevated sound levels and the associated
direct effects on marine mammals, as discussed previously. The most
likely impact to marine mammal habitat occurs from pile driving effects
on likely marine mammal prey (i.e., fish) near where the piles are
installed. Impacts to the immediate substrate during installation and
removal of piles are anticipated, but these would be limited to minor,
temporary suspension of sediments, which could impact water quality and
visibility for a short amount of time, but which would not be expected
to have any effects on individual marine mammals. Impacts to substrate
are therefore not discussed further.
Effects to Prey--Sound may affect marine mammals through impacts on
the abundance, behavior, or distribution of prey species (e.g.,
crustaceans, cephalopods, fish, zooplankton). Marine mammal prey varies
by species, season, and location and, for some, is not well documented.
Here, we describe studies regarding the effects of noise on known
marine mammal prey.
Fish utilize the soundscape and components of sound in their
environment to perform important functions such as foraging, predator
avoidance, mating, and spawning (e.g., Zelick et al., 1999; Fay, 2009).
Depending on their hearing anatomy and peripheral sensory structures,
which vary among species, fishes hear sounds using pressure and
particle motion sensitivity capabilities and detect the motion of
surrounding water (Fay et al., 2008). The potential effects of noise on
fishes depends on the overlapping frequency range, distance from the
sound source, water depth of exposure, and species-specific hearing
sensitivity, anatomy, and physiology. Key impacts to fishes may include
behavioral responses, hearing damage, barotrauma (pressure-related
injuries), and mortality.
Fish react to sounds which are especially strong and/or
intermittent low-frequency sounds, and behavioral responses such as
flight or avoidance are the most likely effects. Short duration, sharp
sounds can cause overt or subtle changes in fish behavior and local
distribution. The reaction of fish to
[[Page 34361]]
noise depends on the physiological state of the fish, past exposures,
motivation (e.g., feeding, spawning, migration), and other
environmental factors. Hastings and Popper (2005) identified several
studies that suggest fish may relocate to avoid certain areas of sound
energy. Additional studies have documented effects of pile driving on
fish, although several are based on studies in support of large,
multiyear bridge construction projects (e.g., Scholik and Yan, 2001,
2002; Popper and Hastings, 2009). Several studies have demonstrated
that impulse sounds might affect the distribution and behavior of some
fishes, potentially impacting foraging opportunities or increasing
energetic costs (e.g., Fewtrell and McCauley, 2012; Pearson et al.,
1992; Skalski et al., 1992; Santulli et al., 1999; Paxton et al.,
2017). However, some studies have shown no or slight reaction to
impulse sounds (e.g., Pena et al., 2013; Wardle et al., 2001; Jorgenson
and Gyselman, 2009; Cott et al., 2012). More commonly, though, the
impacts of noise on fish are temporary.
SPLs of sufficient strength have been known to cause injury to fish
and fish mortality. However, in most fish species, hair cells in the
ear continuously regenerate and loss of auditory function likely is
restored when damaged cells are replaced with new cells. Halvorsen et
al. (2012a) showed that a TTS of 4-6 dB was recoverable within 24 hours
for one species. Impacts would be most severe when the individual fish
is close to the source and when the duration of exposure is long.
Injury caused by barotrauma can range from slight to severe and can
cause death, and is most likely for fish with swim bladders. Barotrauma
injuries have been documented during controlled exposure to impact pile
driving (Halvorsen et al., 2012b; Casper et al., 2013).
The action area supports marine habitat for prey species including
large populations of anadromous fish including Pacific salmon (five
species), cutthroat and steelhead trout, and Dolly Varden (NMFS 2018)
and other species of marine fish such as halibut, rock sole, sculpins,
Pacific cod, herring, and eulachon (NMFS 2018). The most likely impact
to fish from pile driving activities at the project areas would be
temporary behavioral avoidance of the area. The duration of fish
avoidance of an area after pile driving stops is unknown, but a rapid
return to normal recruitment, distribution and behavior is anticipated.
In general, impacts to marine mammal prey species are expected to be
minor and temporary due to the expected short daily duration of
individual pile driving events and the relatively small areas being
affected.
The area impacted by the project is relatively small compared to
the available habitat in San Francisco Bay. Any behavioral avoidance by
fish of the disturbed area would still leave significantly large areas
of fish and marine mammal foraging habitat in the nearby vicinity. As
described in the preceding, the potential for the City's construction
to affect the availability of prey to marine mammals or to meaningfully
impact the quality of physical or acoustic habitat is considered to be
insignificant. Effects to habitat will not be discussed further in this
document.
Estimated Take
This section provides an estimate of the number of incidental takes
proposed for authorization through this IHA, which will inform both
NMFS' consideration of ``small numbers'' and the negligible impact
determination.
Except with respect to certain activities not pertinent here,
section 3(18) of the MMPA defines ``harassment'' as any act of pursuit,
torment, or annoyance, which (i) has the potential to injure a marine
mammal or marine mammal stock in the wild (Level A harassment); or (ii)
has the potential to disturb a marine mammal or marine mammal stock in
the wild by causing disruption of behavioral patterns, including, but
not limited to, migration, breathing, nursing, breeding, feeding, or
sheltering (Level B harassment).
Take of marine mammals incidental to the City's pile driving and
removal activities could occur as a result of Level B harassment. Below
we describe how the potential take is estimated. As described
previously, no mortality is anticipated or proposed to be authorized
for this activity. Below we describe how the take is estimated.
Generally speaking, we estimate take by considering: (1) Acoustic
thresholds above which NMFS believes the best available science
indicates marine mammals will be behaviorally harassed or incur some
degree of permanent hearing impairment; (2) the area or volume of water
that will be ensonified above these levels in a day; (3) the density or
occurrence of marine mammals within these ensonified areas; and, (4)
and the number of days of activities. We note that while these basic
factors can contribute to a basic calculation to provide an initial
prediction of takes, additional information that can qualitatively
inform take estimates is also sometimes available (e.g., previous
monitoring results or average group size). Below, we describe the
factors considered here in more detail and present the proposed take
estimate.
Acoustic Thresholds
Using the best available science, NMFS has developed acoustic
thresholds that identify the received level of underwater sound above
which exposed marine mammals would be reasonably expected to be
behaviorally harassed (equated to Level B harassment) or to incur PTS
of some degree (equated to Level A harassment).
Level B Harassment--Though significantly driven by received level,
the onset of behavioral disturbance from anthropogenic noise exposure
is also informed to varying degrees by other factors related to the
source (e.g., frequency, predictability, duty cycle), the environment
(e.g., bathymetry), and the receiving animals (hearing, motivation,
experience, demography, behavioral context) and can be difficult to
predict (Southall et al., 2007, Ellison et al., 2012). Based on what
the available science indicates and the practical need to use a
threshold based on a factor that is both predictable and measurable for
most activities, NMFS uses a generalized acoustic threshold based on
received level to estimate the onset of behavioral harassment. NMFS
predicts that marine mammals are likely to be behaviorally harassed in
a manner we consider Level B harassment when exposed to underwater
anthropogenic noise above received levels of 120 dB re 1 [mu]Pa (rms)
for continuous (e.g., vibratory pile driving) and above 160 dB re 1
[mu]Pa (rms) for impulsive sources (e.g., impact pile driving). The
City's proposed activity includes the use of continuous (vibratory pile
driving) and impulsive (impact pile driving) sources, and therefore the
120 and 160 dB re 1 [mu]Pa (rms) are applicable.
Level A harassment--NMFS' Technical Guidance for Assessing the
Effects of Anthropogenic Sound on Marine Mammal Hearing (Version 2.0)
(Technical Guidance, 2018) identifies dual criteria to assess auditory
injury (Level A harassment) to five different marine mammal groups
(based on hearing sensitivity) as a result of exposure to noise. The
technical guidance identifies the received levels, or thresholds, above
which individual marine mammals are predicted to experience changes in
their hearing sensitivity for all underwater anthropogenic sound
sources, and reflects the best available science on the potential for
noise to affect auditory sensitivity by:
[ssquf] Dividing sound sources into two groups (i.e., impulsive and
non-
[[Page 34362]]
impulsive) based on their potential to affect hearing sensitivity;
[ssquf] Choosing metrics that best address the impacts of noise on
hearing sensitivity, i.e., sound pressure level (peak SPL) and sound
exposure level (SEL) (also accounts for duration of exposure); and
[ssquf] Dividing marine mammals into hearing groups and developing
auditory weighting functions based on the science supporting that not
all marine mammals hear and use sound in the same manner.
These thresholds were developed by compiling and synthesizing the
best available science, and are provided in Table 4 below. The
references, analysis, and methodology used in the development of the
thresholds are described in NMFS 2018 Technical Guidance, which may be
accessed at https://www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-acoustic-technical-guidance.
The City's pile driving and removal activity includes the use of
impulsive (impact pile driving) and non-impulsive (vibratory pile
driving and removal) sources.
Table 4--Thresholds Identifying the Onset of Permanent Threshold Shift
(Auditory Injury)
--------------------------------------------------------------------------------------------------------------------------------------------------------
PTS Onset Acoustic Thresholds * (received level)
--------------------------------------------------------------------------------------------------------------------------------------------------------
Hearing group Impulsive Non-impulsive
--------------------------------------------------------------------------------------------------------------------------------------------------------
Low-Frequency (LF) Cetaceans............ Cell 1 Cell 2
Lpk,flat: 219 dB; LE,LF,24h: 183 dB LE,LF,24h: 199 dB
Mid-Frequency (MF) Cetaceans............ Cell 3 Cell 4
Lpk,flat: 230 dB; LE,MF,24h: 185 dB LE,MF,24h: 198 dB
High-Frequency (HF) Cetaceans........... Cell 5 Cell 6
Lpk,flat: 202 dB; LE,HF,24h: 155 dB LE,HF,24h: 173 dB
Phocid Pinnipeds (PW) (Underwater)...... Cell 7 Cell 8
Lpk,flat: 218 dB; LE,PW,24h: 185 dB LE,PW,24h: 201 dB
Otariid Pinnipeds (OW) (Underwater)..... Cell 9 Cell 10
Lpk,flat: 232 dB; LE,OW,24h: 203 dB LE,OW,24h: 219 dB
--------------------------------------------------------------------------------------------------------------------------------------------------------
* Dual metric acoustic thresholds for impulsive sounds: Use whichever results in the largest isopleth for calculating PTS onset. If a non-impulsive
sound has the potential of exceeding the peak sound pressure level thresholds associated with impulsive sounds, these thresholds should also be
considered.
Note: Peak sound pressure (Lpk) has a reference value of 1 [mu]Pa, and cumulative sound exposure level (LE) has a reference value of 1[mu]Pa\2\s. In
this Table, thresholds are abbreviated to reflect American National Standards Institute standards (ANSI 2013). However, peak sound pressure is defined
by ANSI as incorporating frequency weighting, which is not the intent for this Technical Guidance. Hence, the subscript ``flat'' is being included to
indicate peak sound pressure should be flat weighted or unweighted within the generalized hearing range. The subscript associated with cumulative
sound exposure level thresholds indicates the designated marine mammal auditory weighting function (LF, MF, and HF cetaceans, and PW and OW pinnipeds)
and that the recommended accumulation period is 24 hours. The cumulative sound exposure level thresholds could be exceeded in a multitude of ways
(i.e., varying exposure levels and durations, duty cycle). When possible, it is valuable for action proponents to indicate the conditions under which
these acoustic thresholds will be exceeded.
Ensonified Area
Here, we describe operational and environmental parameters of the
activity that will feed into identifying the area ensonified above the
acoustic thresholds, which include source levels and transmission loss
coefficient.
Sound Propagation
Transmission loss (TL) is the decrease in acoustic intensity as an
acoustic pressure wave propagates out from a source. TL parameters vary
with frequency, temperature, sea conditions, current, source and
receiver depth, water depth, water chemistry, and bottom composition
and topography. The general formula for underwater TL is:
TL = B * log10(R1/R2)
Where:
B = transmission loss coefficient (assumed to be 15)
R1 = the distance of the modeled SPL from the driven
pile, and
R2 = the distance from the driven pile of the initial
measurement.
This formula neglects loss due to scattering and absorption, which
is assumed to be zero here. The degree to which underwater sound
propagates away from a sound source is dependent on a variety of
factors, most notably the water bathymetry and presence or absence of
reflective or absorptive conditions including in-water structures and
sediments. Spherical spreading occurs in a perfectly unobstructed
(free-field) environment not limited by depth or water surface,
resulting in a 6 dB reduction in sound level for each doubling of
distance from the source (20*log(range)). Cylindrical spreading occurs
in an environment in which sound propagation is bounded by the water
surface and sea bottom, resulting in a reduction of 3 dB in sound level
for each doubling of distance from the source (10*log(range)). As is
common practice in coastal waters, here we assume practical spreading
loss (4.5 dB reduction in sound level for each doubling of distance).
Practical spreading is a compromise that is often used under conditions
where water depth increases as the receiver moves away from the
shoreline, resulting in an expected propagation environment that would
lie between spherical and cylindrical spreading loss conditions.
Sound Source Levels
The intensity of pile driving sounds is greatly influenced by
factors such as the type of piles, hammers, and the physical
environment in which the activity takes place. There are source level
measurements available for certain pile types and sizes from the
similar environments recorded from underwater pile driving projects
(CALTRANS 2015) that were evaluated and used as proxy sound source
levels to determine reasonable sound source levels likely result from
the City's pile driving and removal activities (Table 5). Many source
levels used were more conservation as the values were from larger pile
sizes.
[[Page 34363]]
Table 5--Predicted Sound Source Levels
------------------------------------------------------------------------
Sound source
Activity level at 10 Sound source
meters
------------------------------------------------------------------------
Vibratory Pile Driving/Removal
------------------------------------------------------------------------
14-inch H pile steel pile 155 SPL.......... CALTRANS 2015 (12-in
temporary. H piles sound source
value used, as no 14-
in H pile sound
source level is
available)
36-inch steel pile permanent.. 170 SPL.......... CALTRANS 2015
------------------------------------------------------------------------
Impact Pile Driving
------------------------------------------------------------------------
24-inch concrete pile 166 SEL/176 SPL.. CALTRANS 2015
permanent.
------------------------------------------------------------------------
Notes: These are unattentuated values, as the applicant proposes to use
a bubble curtain for a 7dB reduction for impact driving.
Level A Harassment
When the NMFS Technical Guidance (2016) was published, in
recognition of the fact that ensonified area/volume could be more
technically challenging to predict because of the duration component in
the new thresholds, we developed a User Spreadsheet that includes tools
to help predict a simple isopleth that can be used in conjunction with
marine mammal density or occurrence to help predict takes. We note that
because of some of the assumptions included in the methods used for
these tools, we anticipate that isopleths produced are typically going
to be overestimates of some degree, which may result in some degree of
overestimate of Level A harassment take. However, these tools offer the
best way to predict appropriate isopleths when more sophisticated 3D
modeling methods are not available, and NMFS continues to develop ways
to quantitatively refine these tools, and will qualitatively address
the output where appropriate. For stationary sources (such as from
impact and vibratory pile driving), NMFS User Spreadsheet predicts the
closest distance at which, if a marine mammal remained at that distance
the whole duration of the activity, it would not incur PTS. Inputs used
in the User Spreadsheet (Tables 6 and 7), and the resulting isopleths
are reported below (Table 8).
Table 6--NMFS Technical Guidance (2018) User Spreadsheet Input to
Calculate PTS Isopleths for Vibratory Pile Driving
------------------------------------------------------------------------
User Spreadsheet Input--Vibratory Pile Driving; Spreadsheet Tab A.1
Vibratory Pile Driving Used
-------------------------------------------------------------------------
14-in H piles
(temporary 36-in piles
install/ (permanent)
removal)
------------------------------------------------------------------------
Source Level (RMS SPL).................. 155 170
Weighting Factor Adjustment (kHz)....... 2.5 2.5
Number of piles within 24-hr period..... 6 2
Duration to drive a single pile (min)... 4 30
Propagation (xLogR)..................... 15 15
Distance of source level measurement 10 10
(meters) [dagger]......................
------------------------------------------------------------------------
Table 7--NMFS Technical Guidance (2018) User Spreadsheet Input To
Calculate PTS Isopleths for Impact Pile Driving
------------------------------------------------------------------------
User Spreadsheet Input--Impact Pile Driving;Spreadsheet Tab E.1 Impact
Pile Driving Used.
-------------------------------------------------------------------------
24-in concrete
piles
(permanent)
------------------------------------------------------------------------
Source Level (Single Strike/shot SEL)................... * 159
Weighting Factor Adjustment (kHz)....................... 2
Number of strikes per pile.............................. 3100
Number of piles per day................................. 1
Propagation (xLogR)..................................... 15
Distance of source level measurement (meters) *......... 10
------------------------------------------------------------------------
* This includes the 7dB reduction from use of a bubble curtain.
[[Page 34364]]
Table 8--NMFS Technical Guidance (2018) User Spreadsheet Outputs to Calculate Level A Harassment PTS Isopleths
--------------------------------------------------------------------------------------------------------------------------------------------------------
User Spreadsheet Output PTS isopleths (meters)
--------------------------------------------------------------------------------------------------------------------------------------------------------
Level A harassment
--------------------------------------------------------------------------------
Activity Sound source level at 10 m Low-frequency Mid-frequency High-frequency
cetaceans cetaceans cetaceans Phocid Otariid
--------------------------------------------------------------------------------------------------------------------------------------------------------
Vibratory Pile Driving/Removal
--------------------------------------------------------------------------------------------------------------------------------------------------------
14-in H pile steel installation/removal.. 155 dB SPL.................. 1.5 0.1 2.2 0.9 0.1
36-in steel permanent installation....... 170 dB SPL.................. 13.1 1.2 19.3 7.9 0.6
--------------------------------------------------------------------------------------------------------------------------------------------------------
Impact Pile Driving
--------------------------------------------------------------------------------------------------------------------------------------------------------
24-in concrete permanent installation.... 166 SEL/176 SPL (159 dB SEL 53.3 1.9 63.5 28.5 2.1
as attenuated).
--------------------------------------------------------------------------------------------------------------------------------------------------------
Level B Harassment
Utilizing the practical spreading loss model, the City determined
underwater noise will fall below the behavioral effects threshold of
120 dB rms for marine mammals at the distances shown in Table 9 for
vibratory pile driving/removal. For calculating the Level B Harassment
Zone for impact driving, the practical spreading loss model was used
with a behavioral threshold of 160 dB rms for marine mammals at the
distances shown in Table 9 for impact pile driving. Table 9 below
provides all Level B Harassment radial distances (m) and their
corresponding areas (km\2\) during the City's proposed activities.
Table 9--Radial Distances (meters) to Relevant Behavioral Isopleths and Associated Ensonified Areas (square
kilometers (km\2\)) Using the Practical Spreading Model
----------------------------------------------------------------------------------------------------------------
Level B Level B
Activity Received level at 10 m harassment harassment
zone (m) * zone (km\2\)
----------------------------------------------------------------------------------------------------------------
Vibratory Pile Driving/Removal
----------------------------------------------------------------------------------------------------------------
14-inch H piles installation/removal.......... 155 dB SPL...................... 2,154 2.190
36-inch steel permanent installation.......... 170 dB SPL...................... 21,544 21.49
----------------------------------------------------------------------------------------------------------------
Impact Pile Driving
----------------------------------------------------------------------------------------------------------------
24-inch concrete permanent installation....... 166 dB.......................... 39.8 0.004
SEL/176 dB......................
SPL (169 dB.....................
SPL attenuated).................
----------------------------------------------------------------------------------------------------------------
Marine Mammal Occurrence and Take Calculation and Estimation
In this section we provide the information about the presence,
density, or group dynamics of marine mammals that will inform the take
calculations. Potential exposures to impact pile driving and vibratory
pile driving/removal for each acoustic threshold were estimated using
group size estimates and local observational data to create a density
estimate. As previously stated, take by Level B harassment only will be
considered for this action. Distances to Level A harassment thresholds
are relatively small and mitigation is expected to avoid Level A
harassment from these activities.
Gray Whales
There are no density estimates of gray whales available in the
project area. Gray whales travel alone or in small, unstable groups,
although large aggregations may be seen in feeding and breeding grounds
(NMFS 2018). Gray whales are uncommon in the San Francisco Bay. It is
estimated that approximately 2-6 individuals enter the bay in a typical
year (CALTRANS 2018). However nine gray whales have stranded in the San
Francisco Bay in 2019 (Katz 2019). To be conservative, NMFS proposes to
authorize seven instances of take by Level B harassment of gray whales.
Because the required shutdown measures are larger than the associated
Level A harassment zones, and those zones are relatively small (53.3 m
at the largest during impact pile driving), and activities will occur
over a small number of days, we believe the PSO will be able to
effectively monitor the Level A harassment zones and we do not
anticipate take by Level A harassment of gray whales.
Bottlenose Dolphin
There are no density estimates of Bottlenose dolphin available in
the project area. Individuals in the San Francisco Bay are typically
sighted near the Golden Gate Bridge, where an average of five dolphins
enter the bay approximately three times annually. Two individuals are
sighted regularly near Alameda Point, outside of the Seaplane Lagoon
(CALTRANS 2018). Low numbers (ranging from 1 to 5) of individually
identified coastal bottlenose dolphins have been seen
[[Page 34365]]
along the southwest side of Alameda Island since July 2016. Much of the
time, the dolphins were close to the south side of the main outer
breakwater that separates the bay from the lagoon areas. The last
reliable sighting there was April 7, 2019 of a single individual (TMMC,
B. Keener pers. comm. 2019). For the purpose of this assessment it is
predicted that two bottlenose dolphins may occur in the San Francisco
Bay in the Project vicinity on all pile driving days (i.e., up to 48
individuals in 24 days. Therefore, NMFS proposes to authorize 48
instances of take of bottlenose dolphin by Level B harassment. The
Level A harassment zones are all under 2 m for mid-frequency cetaceans;
therefore, no take by Level A harassment is anticipated.
Harbor Porpoise, Harbor Seals, and California Sea Lions
In-water densities of harbor porpoises, harbor seals, California
sea lions were calculated based on 17 years of observations during
monitoring for the San Francisco Bay-Oakland Bay Bridge (SFOBB)
construction and demolition project (Caltrans 2018). Care was taken to
eliminate multiple observations of the same animal, although this can
be difficult and is likely that the same individual may have been
counted multiple times on the same day. The amount of monitoring
performed per year varied, depending on the frequency and duration of
construction activities with the potential to affect marine mammals.
During the 257 days of monitoring from 2000 through 2017 (including 15
days of baseline monitoring in 2003), 1,029 harbor seals, 83 California
sea lions, and 24 harbor porpoises were observed in waters in the
project vicinity in total. In 2015, 2016, and 2017, the number of
harbor seals in the project area increased significantly. A California
sea lion density estimate of 0.161 animals/km\2\ was calculated using
the data from 2000-2017. In 2017, the number of harbor porpoise in the
project area also increased significantly. Therefore, a harbor seal
density estimate of 3.957 animals/km\2\ was calculated using the 2015-
2017 data. A harbor porpoise density estimate of 0.167 animals/km\2\
was calculated using the 2017 data, which may better reflect the
current use of the project area by these animals. These observations
included data from baseline, pre-, during, and post-pile driving,
mechanical dismantling, on-shore blasting, and off-shore implosion
activities.
In addition to the information provided above regarding harbor seal
density estimates, harbor seals are known to use the tip of Breakwater
Island, which is located approximately 1.0 mi southwest of the project
area, as a haul-out site. These seals forage in the project area as
well (WETA 2011). In recent years, up to 32 harbor seals have been
observed making irregular use of the Breakwater Island haul-out (AECOM
2017). The City of Alameda has also recently installed a haul-out
platform approximately 0.5 mi southeast of the site. Although these
locations are not considered primary haul-outs for harbor seals due to
the relatively low numbers of individuals that are present, Breakwater
Island and the City haul-out platform are reportedly the only haul-out
sites in the central Bay that are accessible to seals throughout the
full tidal range.
A local group of Alameda Point Harbor Seal Monitors regularly
counts the number of harbor seals at Alameda Point, and based on count
data from 2014 to 2019 an average of 11.7 harbor seals is present at
Alameda Point year-round (Bangert pers. comm. 2019 in the application).
However, the numbers of harbor seals present in the area varies
considerably with season, with higher numbers in the winter due to the
presence of spawning Pacific herring (Clupea pallasii) in the San
Francisco Bay. Project pile driving activities will occur during the
months of August and September, and therefore we estimated the average
number of harbor seals based on count data these months only. The data
summary indicated that the numbers of harbor seals present at Alameda
increased in 2017 and 2018 compared to 2015 and 2016, and therefore
only count data from 2017 and 2018 was used to ensure that the density
estimate reflects current conditions. The average number of harbor
seals counted at Alameda Point in August and September of 2017 and 2018
was 6.5 individuals. These densities described above for harbor
porpoise, harbor seals, and California sea lions are then used to
calculate estimated take and described in the sub-sections below for
these species.
Harbor Porpoise
A predicted density of 0.167 animals/km\2\ based for harbor
porpoise was used to estimate take (Table 10). The estimated take was
calculated using this density multiplied by the area ensonified above
the threshold multiplied by the number of days per activity (e.g., 6
days of impact pile driving) (Table 10). Therefore, a total of 26
instances of take by Level B harassment are proposed for harbor
porpoise. Because the required shutdown measures are larger than the
associated Level A harassment zones, and the harassment zones ar not
very larger (63.5 m at the largest during impact pile driving), and
will only occur over a small number of days, we believe the PSO can
effectively monitor the Level A harassment zones and therefore we do
not anticipate take by Level A harassment of harbor porpoise.
Table 10--Proposed Estimated Take by Level B Harassment of Harbor Porpoise
----------------------------------------------------------------------------------------------------------------
Density Proposed
Source (animals/ Area (km\2\) Days of Level B take
km\2\) activity by harassment
----------------------------------------------------------------------------------------------------------------
Vibratory Installation and Removal 14-in H piles 0.167 2.190 12 4.389
Vibratory 36-in piles........................... 0.167 21.490 6 21.533
Impact 24-in piles.............................. 0.167 0.004 6 0.004
---------------------------------------------------------------
Total Take by Level B harassment............ .............. .............. .............. 25.926
(rounded to
26)
----------------------------------------------------------------------------------------------------------------
Harbor Seal
A predicted a density of 3.957 animals/km\2\ for harbor seals was
used to estimate take by Level B harassment (Table 11). This density
should account for harbor seals exposed in the water while moving to
and from the breakwater haul out since those animals would be in the
bay and accounted for
[[Page 34366]]
by the density estimate. The estimated take was calculated using this
density multiplied by the area ensonified above the threshold
multiplied by the number of days per activity (e.g., 6 days of impact
pile driving) (Table 11). Therefore, a total of 615 instances of take
by Level B harassment are proposed for harbor seals. Because the
required shutdown measures are larger than the associated Level A
harassment zones, and those zones are relatively small (28.5 m at the
largest during impact pile driving), we believe the PSO can effectively
monitor the Level A harassment zones and therefore we do not anticipate
any take by Level A harassment of harbor seals.
Table 11--Proposed Estimated Take by Level B Harassment of Harbor Seal
----------------------------------------------------------------------------------------------------------------
Density Proposed
Source (animals/ Area (km\2\) Days of Level B take
km\2\) activity by harassment
----------------------------------------------------------------------------------------------------------------
Vibratory Installation and Removal 14-in H piles 3.957 2.190 12 103.999
Vibratory 36-in piles........................... 3.957 21.490 6 510.216
Impact 24-in piles.............................. 3.957 0.004 6 0.095
---------------------------------------------------------------
Total Take by Level B harassment............ .............. .............. .............. 614.31
(rounded to
615)
----------------------------------------------------------------------------------------------------------------
California Sea Lions
A predicted a density of 0.161 animals/km\2\ based for California
sea lions was used to estimate take by Level B harassment (Table 12).
The estimated take was calculated using this density multiplied by the
area ensonified above the threshold multiplied by the number of days
per activity (e.g., 6 days of impact pile driving) (Table 12).
Therefore, a total of 25 instances of take by Level B harassment are
proposed for California sea lions. The Level A harassment zones are all
under 2.1 m for otariids; therefore, no take by Level A harassment of
California sea lions is anticipated.
Table 12--Proposed Estimated Take by Level B Harassment of California Sea Lions
----------------------------------------------------------------------------------------------------------------
Density Proposed
Source (animals/ Area (km\2\) Days of Level B take
km\2\) activity by harassment
----------------------------------------------------------------------------------------------------------------
Vibratory Installation and Removal 14-in H piles 0.161 2.190 12 4.231
Vibratory 36-in piles........................... 0.161 21.490 6 20.759
Impact 24-in piles.............................. 0.161 0.004 6 0.004
---------------------------------------------------------------
Total Take by Level B harassment............ .............. .............. .............. 24.994
(rounded to
25)
----------------------------------------------------------------------------------------------------------------
Northern Elephant Seal
There are no density estimates of northern elephant seals available
in the project area. Elephant seals breed between December and March
and have been rarely cited in San Francisco Bay. It is anticipated that
if an elephant seal is encountered at all during pile driving or
drilling it would be a juvenile. For the purpose of this assessment, we
predict that up to one northern elephant seal may occur in the San
Francisco Bay in the Project vicinity on up to 20 percent of pile
driving days (i.e., up to 4.8 individuals in 24 days). This assumption
is consistent with the recent IHA for the demolition and reuse of the
marine foundations of the original east span of the San Francisco-
Oakland Bay Bridge (CALTRANS 2018). Therefore, NMFS proposes to
authorize five takes (0.2 seals/day multiplied by 24 project days) by
Level B harassment of elephant seals. Because the required shutdown
measures are larger than the associated Level A harassment zones, and
those zones are relatively small (28.5 m at the largest during impact
pile driving), we believe the PSO can effectively monitor the Level A
harassment zones and therefore we do not anticipate any take by Level A
harassment of northern elephant seals.
Northern Fur Seals
There are no density estimates of northern fur seals available in
the project area. The Marine Mammal Center (TMMC) reported only two to
four northern fur seal strandings in the Bay in 2015 and 2016 (in
Marin, San Francisco, and Santa Clara counties) (TMMC 2017). To account
for the possible rare presence of the species in the action area, NMFS
proposes to authorize three takes by Level B harassment of northern fur
seals. The Level A harassment zones are all under 2.1 m for otariids;
therefore, no take by Level A harassment of Northern fur seals is
anticipated.
Table 13 below summarizes the proposed estimated take for all the
species described above as a percentage of stock abundance.
Table 13--Proposed Take Estimates as a Percentage of Stock Abundance
--------------------------------------------------------------------------------------------------------------------------------------------------------
Species Stock (NEST) Level A harassment Level B harassment Percent of stock
--------------------------------------------------------------------------------------------------------------------------------------------------------
Gray Whale........................ Eastern North Pacific 0....................... 7....................... Less than 1 percent.
(26,960).
[[Page 34367]]
Bottlenose Dolphin................ California Coastal (453).. 0....................... 48...................... 10.596 percent.
Harbor Porpoise................... San Francisco-Russian 0....................... 27...................... Less than one percent.
River (9,886).
Harbor Seal....................... California (30,968)....... 0....................... 615..................... Less than 2 percent.
Northern Elephant Seal............ California Breeding 0....................... 5....................... Less than one percent.
(179,000).
California Sea Lion............... U.S. (257,606)............ 0....................... 25...................... Less than one percent.
Northern fur seal................. Eastern DPS, California 0....................... 3....................... Less than one percent.
(20,000 ).
--------------------------------------------------------------------------------------------------------------------------------------------------------
Proposed Mitigation
In order to issue an IHA under Section 101(a)(5)(D) of the MMPA,
NMFS must set forth the permissible methods of taking pursuant to such
activity, and other means of effecting the least practicable impact on
such species or stock and its habitat, paying particular attention to
rookeries, mating grounds, and areas of similar significance, and on
the availability of such species or stock for taking for certain
subsistence uses (latter not applicable for this action). NMFS
regulations require applicants for incidental take authorizations to
include information about the availability and feasibility (economic
and technological) of equipment, methods, and manner of conducting such
activity or other means of effecting the least practicable adverse
impact upon the affected species or stocks and their habitat (50 CFR
216.104(a)(11)).
In evaluating how mitigation may or may not be appropriate to
ensure the least practicable adverse impact on species or stocks and
their habitat, as well as subsistence uses where applicable, we
carefully consider two primary factors:
(1) The manner in which, and the degree to which, the successful
implementation of the measure(s) is expected to reduce impacts to
marine mammals, marine mammal species or stocks, and their habitat.
This considers the nature of the potential adverse impact being
mitigated (likelihood, scope, range). It further considers the
likelihood that the measure will be effective if implemented
(probability of accomplishing the mitigating result if implemented as
planned) the likelihood of effective implementation (probability
implemented as planned); and
(2) the practicability of the measures for applicant
implementation, which may consider such things as cost, impact on
operations, and, in the case of a military readiness activity,
personnel safety, practicality of implementation, and impact on the
effectiveness of the military readiness activity.
The following mitigation measures are proposed in the IHA:
Timing Restrictions
All work will be conducted during daylight hours. If poor
environmental conditions restrict visibility full visibility of the
shutdown zone, pile installation would be delayed.
Sound Attenuation
To minimize noise during impact pile driving, a 12-inch thick wood
cushion block will be used. Bubble curtains will be also used during
any impact pile driving of piles located in the water. The bubble
curtain will be operated in a manner consistent with the following
performance standards:
a. The bubble curtain will distribute air bubbles around 100
percent of the piling perimeter for the full depth of the water column;
b. The lowest bubble ring will be in contact with the mudline for
the full circumference of the ring, and the weights attached to the
bottom ring shall ensure 100 percent mudline contact. No parts of the
ring or other objects shall prevent full mudline contact; and
c. Air flow to the bubblers must be balanced around the
circumference of the pile.
Soft Start
Soft start requires contractors to provide an initial set of
strikes at reduced energy, followed by a thirty-second waiting period,
then two subsequent reduced energy strike sets. A soft start must be
implemented at the start of each day's impact pile driving and at any
time following cessation of impact pile driving for a period of thirty
minutes or longer.
Shutdown Zone for In-Water Heavy Machinery Work
For in-water heavy machinery work other than pile driving, if a
marine mammal comes within 10 m of such operations, operations shall
cease and vessels shall reduce speed to the minimum level required to
maintain steerage and safe working conditions.
Shutdown Zones
For all pile driving/removal and drilling activities, the City will
establish shutdown zones for a marine mammal species that is greater
than its corresponding Level A harassment zone. The calculated PTS
isopleths were rounded up to a whole number to determine the actual
shutdown zones that the applicant will operate under (Table 14). The
purpose of a shutdown zone is generally to define an area within which
shutdown of the activity would occur upon sighting of a marine mammal
(or in anticipation of an animal entering the defined area).
Table 14--Pile Driving Shutdown Zones During Project Activities
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Shutdown Zones (radial distance in meters, area in km \2\*)
Activity ------------------------------------------------------------------------------------------------------------------------------------------------------------
Low-frequency cetaceans Mid-frequency cetaceans High-frequency cetaceans Phocid Otariid
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
In-Water Construction Activities
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Heavy machinery work (other than 10 (0.00015 km\2\)........... 10 (0.00015 km\2\)........... 10 (0.00015 km\2\)........... 10 (0.00015 km\2\)........... 10 (0.00015 km\2\)
pile driving).
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Vibratory Pile Driving/Removal
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
14-in H pile steel installation/ 10 (0.00015 km\2\............ 10 (0.00015 km\2\............ 10 (0.00015 km\2\............ 10 (0.00015 km\2\............ 10 (0.00015 km\2\
removal.
[[Page 34368]]
36-in steel permanent installation. 15 (0.00035 km\2\)........... 10 (0.00015 km\2\)........... 20 (0.00063 km\2\)........... 10 (0.00015 km\2\)........... 10 (0.00015 km\2\)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Impact Pile Driving
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
24-in concrete permanent 55 (0.00475 km\2\)........... 10 (0.00015 km\2\)........... 65 (0.00663 km\2\)........... 30 (0.00141 km\2\)........... 10 (0.00015 km\2\)
installation.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
* Note: km\2\ were divided by two to account for land.
Non-Authorized Take Prohibited
If a species enters or approaches the Level B zone and that species
is either not authorized for take or its authorized takes are met, pile
driving and removal activities must shut down immediately using delay
and shut-down procedures. Activities must not resume until the animal
has been confirmed to have left the area or an observation time period
of 15 minutes has elapsed for pinnipeds and small cetaceans and 30
minutes for large whales.
Based on our evaluation of the applicant's proposed measures, as
well as other measures considered by NMFS, NMFS has preliminarily
determined that the proposed mitigation measures provide the means of
effecting the least practicable impact on the affected species or
stocks and their habitat, paying particular attention to rookeries,
mating grounds, and areas of similar significance.
Proposed Monitoring and Reporting
In order to issue an IHA for an activity, Section 101(a)(5)(D) of
the MMPA states that NMFS must set forth, requirements pertaining to
the monitoring and reporting of such taking. The MMPA implementing
regulations at 50 CFR 216.104 (a)(13) indicate that requests for
authorizations must include the suggested means of accomplishing the
necessary monitoring and reporting that will result in increased
knowledge of the species and of the level of taking or impacts on
populations of marine mammals that are expected to be present in the
proposed action area. Effective reporting is critical both to
compliance as well as ensuring that the most value is obtained from the
required monitoring.
Monitoring and reporting requirements prescribed by NMFS should
contribute to improved understanding of one or more of the following:
[ssquf] Occurrence of marine mammal species or stocks in the area
in which take is anticipated (e.g., presence, abundance, distribution,
density);
[ssquf] Nature, scope, or context of likely marine mammal exposure
to potential stressors/impacts (individual or cumulative, acute or
chronic), through better understanding of: (1) Action or environment
(e.g., source characterization, propagation, ambient noise); (2)
affected species (e.g., life history, dive patterns); (3) co-occurrence
of marine mammal species with the action; or (4) biological or
behavioral context of exposure (e.g., age, calving or feeding areas);
[ssquf] Individual marine mammal responses (behavioral or
physiological) to acoustic stressors (acute, chronic, or cumulative),
other stressors, or cumulative impacts from multiple stressors;
[ssquf] How anticipated responses to stressors impact either: (1)
Long-term fitness and survival of individual marine mammals; or (2)
populations, species, or stocks;
[ssquf] Effects on marine mammal habitat (e.g., marine mammal prey
species, acoustic habitat, or other important physical components of
marine mammal habitat); and
[ssquf] Mitigation and monitoring effectiveness.
Pre-Activity Monitoring
Prior to the start of daily in-water construction activity, or
whenever a break in pile driving of 30 min or longer occurs, PSOs will
observe the shutdown and monitoring zones for a period of 30 min. The
shutdown zone will be cleared when a marine mammal has not been
observed within the zone for that 30-min period. If a marine mammal is
observed within the shutdown zone, pile driving activities will not
begin until the animal has left the shutdown zone or has not been
observed for 15 min. If the Level B Harassment Monitoring Zone has been
observed for 30 min and no marine mammals (for which take has not been
authorized) are present within the zone, work can continue even if
visibility becomes impaired within the Monitoring Zone. When a marine
mammal permitted for Level B harassment take has been permitted is
present in the Monitoring zone, piling activities may begin and Level B
harassment take will be recorded.
Monitoring Zones
The City will establish and observe monitoring zones for Level B
harassment as presented in Table 9. The monitoring zones for this
project are areas where SPLs are equal to or exceed 120 dB rms (for
vibratory pile driving/removal) and 160 dB rms (for impact pile
driving). These zones provide utility for monitoring conducted for
mitigation purposes (i.e., shutdown zone monitoring) by establishing
monitoring protocols for areas adjacent to the shutdown zones.
Monitoring of the Level B harassment zones enables observers to be
aware of and communicate the presence of marine mammals in the project
area, but outside the shutdown zone, and thus prepare for potential
shutdowns of activity.
Visual Monitoring
Monitoring would be conducted 30 minutes before, during, and 30
minutes after all pile driving/removal and socking/rock anchoring
activities. In addition, PSO shall record all incidents of marine
mammal occurrence, regardless of distance from activity, and shall
document any behavioral reactions in concert with distance from piles
being driven/removed. Pile driving/removal activities include the time
to install, remove a single pile or series of piles, as long as the
time elapsed between uses of the pile driving equipment is no more than
thirty minutes.
Monitoring will be conducted by PSOs from on land. The number of
PSOs will vary from one to two, depending on the type of pile driving,
method of pile driving and size of pile, all of which determines the
size of the harassment zones. Monitoring locations will be selected to
provide an unobstructed view of all water within the shutdown zone and
as much of the Level B harassment zone as possible for pile driving
activities. A single monitor will be present during impact pile
driving, when impacts of the project
[[Page 34369]]
will be limited to the area within the Alameda Lagoon, and two monitors
will be present during vibratory pile driving when project impacts will
extend into the waters of the San Francisco Bay.
In addition, PSOs will work in shifts lasting no longer than 4
hours with at least a 1-hour break between shifts, and will not perform
duties as a PSO for more than 12 hours in a 24[hyphen]hour period (to
reduce PSO fatigue).
Monitoring of pile driving shall be conducted by qualified, NMFS-
approved PSOs, who shall have no other assigned tasks during monitoring
periods. The City shall adhere to the following conditions when
selecting PSOs:
[ssquf] Independent PSOs shall be used (i.e., not construction
personnel);
[ssquf] At least one PSO must have prior experience working as a
marine mammal observer during construction activities;
[ssquf] Other PSOs may substitute education (degree in biological
science or related field) or training for experience;
[ssquf] Where a team of three or more PSOs are required, a lead
observer or monitoring coordinator shall be designated. The lead
observer must have prior experience working as a marine mammal observer
during construction; and
[ssquf] The City shall submit PSO CVs for approval by NMFS for all
observers prior to monitoring.
The City shall ensure that the PSOs have the following additional
qualifications:
[ssquf] Visual acuity in both eyes (correction is permissible)
sufficient for discernment of moving targets at the water's surface
with ability to estimate target size and distance; use of binoculars
may be necessary to correctly identify the target;
[ssquf] Experience and ability to conduct field observations and
collect data according to assigned protocols;
[ssquf] Experience or training in the field identification of
marine mammals, including the identification of behaviors;
[ssquf] Sufficient training, orientation, or experience with the
construction operation to provide for personal safety during
observations;
[ssquf] Writing skills sufficient to prepare a report of
observations including but not limited to the number and species of
marine mammals observed; dates and times when in-water construction
activities were conducted; dates, times, and reason for implementation
of mitigation (or why mitigation was not implemented when required);
and marine mammal behavior;
[ssquf] Ability to communicate orally, by radio or in person, with
project personnel to provide real-time information on marine mammals
observed in the area as necessary; and
[ssquf] Sufficient training, orientation, or experience with the
construction operations to provide for personal safety during
observations.
Acoustic Monitoring
The City has developed a sound attenuation monitoring plan to
protect fish and marine mammals during pile driving activities (see
Appendix B of the application for further details). The acoustic
monitoring will include documentation of the following, at a minimum:
[ssquf] Hydrophone equipment and methods: recording device,
sampling rate, distance from the pile where recordings were made; and
depth of recording device(s);
[ssquf] Type of pile being driven and method of driving during
recordings; and
[ssquf] Mean, medium, and maximum sound levels (dB re: 1[micro]Pa):
cumulative sound exposure level, peak sound pressure level, rms sound
pressure level, and single-strike sound exposure level.
Reporting of Injured or Dead Marine Mammals
In the unanticipated event that the planned activity clearly causes
the take of a marine mammal in a manner prohibited by the IHA, such as
serious injury, or mortality, the City must immediately cease the
specified activities and report the incident to the NMFS Office of
Protected Resources and the West Coast Region Stranding Coordinator.
The report must include the following information:
[ssquf] Time and date of the incident;
[ssquf] Description of the incident;
[ssquf] Environmental conditions (e.g., wind speed and direction,
Beaufort sea state, cloud cover, and visibility);
[ssquf] Description of all marine mammal observations and active
sound source use in the 24 hours preceding the incident;
[ssquf] Species identification or description of the animal(s)
involved;
[ssquf] Fate of the animal(s); and
[ssquf] Photographs or video footage of the animal(s).
Activities must not resume until NMFS is able to review the
circumstances of the prohibited take. NMFS will work with the City to
determine what measures are necessary to minimize the likelihood of
further prohibited take and ensure MMPA compliance. The City may not
resume their activities until notified by NMFS.
In the event the City discovers an injured or dead marine mammal,
and the lead observer determines that the cause of the injury or death
is unknown and the death is relatively recent (e.g., in less than a
moderate state of decomposition), the City must immediately report the
incident to the Office of Protected Resources, NMFS, and the West Coast
Region Stranding Coordinator, NMFS. The report must include the same
information as the bullets described above. Activities may continue
while NMFS reviews the circumstances of the incident. NMFS will work
with the City to determine whether additional mitigation measures or
modifications to the activities are appropriate.
In the event that the City discovers an injured or dead marine
mammal, and the lead observer determines that the injury or death is
not associated with or related to the specified activities (e.g.,
previously wounded animal, carcass with moderate to advanced
decomposition, or scavenger damage), the City must report the incident
to the Office of Protected Resources, NMFS, and the West Coast Region
Stranding Coordinator, NMFS, within 24 hours of the discovery.
Final Report
The City shall submit a draft report to NMFS no later than 90 days
following the end of construction activities or 60 days prior to the
issuance of any subsequent IHA for the project. The City shall provide
a final report within 30 days following resolution of NMFS' comments on
the draft report. Reports shall contain, at minimum, the following:
[ssquf] Date and time that monitored activity begins and ends for
each day conducted (monitoring period);
[ssquf] Construction activities occurring during each daily
observation period, including how many and what type of piles driven;
[ssquf] Deviation from initial proposal in pile numbers, pile
types, average driving times, etc.;
[ssquf] Weather parameters in each monitoring period (e.g., wind
speed, percent cloud cover, visibility);
[ssquf] Water conditions in each monitoring period (e.g., sea
state, tide state);
[ssquf] For each marine mammal sighting:
[cir] Species, numbers, and, if possible, sex and age class of
marine mammals;
[cir] Description of any observable marine mammal behavior
patterns, including bearing and direction of travel and distance from
pile driving activity;
[cir] Type of construction activity that was taking place at the
time of sighting;
[[Page 34370]]
[cir] Location and distance from pile driving activities to marine
mammals and distance from the marine mammals to the observation point;
[cir] If shutdown was implemented, behavioral reactions noted and
if they occurred before or after shutdown.
[cir] Estimated amount of time that the animals remained in the
Level A or B Harassment Zone.
[ssquf] Description of implementation of mitigation measures within
each monitoring period (e.g., shutdown or delay);
[ssquf] Other human activity in the area within each monitoring
period;
[ssquf] A summary of the following:
[cir] Total number of individuals of each species detected within
the Level B Harassment Zone, and estimated as taken if correction
factor appropriate;
[cir] Total number of individuals of each species detected within
the Level A Harassment Zone and the average amount of time that they
remained in that zone; and
[cir] Daily average number of individuals of each species
(differentiated by month as appropriate) detected within the Level B
Harassment Zone, and estimated as taken, if appropriate.
Negligible Impact Analysis and Determination
NMFS has defined negligible impact as an impact resulting from the
specified activity that cannot be reasonably expected to, and is not
reasonably likely to, adversely affect the species or stock through
effects on annual rates of recruitment or survival (50 CFR 216.103). A
negligible impact finding is based on the lack of likely adverse
effects on annual rates of recruitment or survival (i.e., population-
level effects). An estimate of the number of takes alone is not enough
information on which to base an impact determination. In addition to
considering estimates of the number of marine mammals that might be
``taken'' through harassment, NMFS considers other factors, such as the
likely nature of any responses (e.g., intensity, duration), the context
of any responses (e.g., critical reproductive time or location,
migration), as well as effects on habitat, and the likely effectiveness
of the mitigation. We also assess the number, intensity, and context of
estimated takes by evaluating this information relative to population
status. Consistent with the 1989 preamble for NMFS's implementing
regulations (54 FR 40338; September 29, 1989), the impacts from other
past and ongoing anthropogenic activities are incorporated into this
analysis via their impacts on the environmental baseline (e.g., as
reflected in the regulatory status of the species, population size and
growth rate where known, ongoing sources of human-caused mortality, or
ambient noise levels).
As stated in the proposed mitigation section, shutdown zones that
are larger than the Level A harassment zones and are expected avoid the
likelihood of Level A harassment for all seven species.
Exposures to elevated sound levels produced during pile driving
activities may cause behavioral disturbance of marine mammals, but they
are expected to be mild and temporary. Effects on individuals that are
taken by Level B harassment, on the basis of reports in the literature
as well as monitoring from other similar activities, will likely be
limited to reactions such as increased swimming speeds, increased
surfacing time, or decreased foraging (if such activity were occurring)
(e.g., Thorson and Reyff, 2006; Lerma, 2014). Most likely, individuals
will simply move away from the sound source and be temporarily
displaced from the areas of pile driving, although even this reaction
has been observed primarily only in association with impact pile
driving. These reactions and behavioral changes are expected to subside
quickly when the exposures cease.
To minimize noise during pile driving, and thereby both the scale
and potential severity of the anticipated effects, the City will use
pile cushions and a bubble curtain during impact pile driving.
During all impact driving, implementation of soft start procedures
and monitoring of established shutdown zones will be required,
significantly reducing the possibility of injury. Given sufficient
notice through use of soft start (for impact driving), marine mammals
are expected to move away from an irritating sound source prior to it
becoming potentially injurious. In addition, PSOs will be stationed
within the action area whenever pile driving/removal activities are
underway. Depending on the activity, the City will employ one to two
PSOs to ensure all monitoring and shutdown zones are properly observed.
Two known pinniped haul-out sites (non-pupping sites) are located
in the vicinity of the project area. One is an existing haul out
platform approximately 0.5 mi southeast of the project area (separated
from project activities by approximately 0.3 mi of developed areas on-
land). The second haul out is the western end of Breakwater Island,
approximately 1.0 mi southwest of the location of pile driving
activities (Figure 4 of the application). They are both well outside
the PTS isopleths for pinnipeds and no Level A harassment is expected.
Exposures to elevated sound levels produced during pile driving
activities once the animals enter the water from the haul outs may
cause behavioral responses by an animal, but they are expected to be
mild and temporary and limited to Level B harassment,
The proposed activities would not result in permanent impacts to
habitats used directly by marine mammals except the actual footprint of
the project. The footprint of the project is small, and equal to the
area the ferry associated pile placement. The installation of piles for
the new pier will result in permanent impacts on 61 ft\2\ of aquatic
habitat. At best, the impact area, which is located in Seaplane Lagoon,
provides marginal foraging habitat for marine mammals and fish. In
addition, impacts to marine mammal prey species are expected to be
minor and temporary. Overall, the area impacted by the project is very
small compared to the available habitat in the bay. The most likely
impact to prey will be temporary behavioral avoidance of the immediate
area. During pile driving/removal activities, it is expected that fish
and marine mammals would temporarily move to nearby locations and
return to the area following cessation of in-water construction
activities. Therefore, indirect effects on marine mammal prey during
the construction are not expected to be substantial.
In summary and as described above, the following factors primarily
support our preliminary determination that the impacts resulting from
this activity are not expected to adversely affect the species or stock
through effects on annual rates of recruitment or survival:
[ssquf] No serious injury or mortality is anticipated;
[ssquf] No Level A Harassment is anticipated or proposed for
authorization;
[ssquf] Minimal impacts to marine mammal habitat are expected;
[ssquf] The action area is located and within an active marine
commercial area;
[ssquf] There are no rookeries, or other known areas or features of
special significance for foraging or reproduction in the project area;
[ssquf] Anticipated incidents of Level B harassment consist of, at
worst, temporary modifications in behavior; and
[ssquf] The required mitigation measures (i.e. shutdown zones and
pile cushion, and bubble curtain) are expected to be
[[Page 34371]]
effective in reducing the effects of the specified activity.
Based on the analysis contained herein of the likely effects of the
specified activity on marine mammals and their habitat, and taking into
consideration the implementation of the proposed monitoring and
mitigation measures, NMFS preliminarily finds that the total marine
mammal take from the proposed activity will have a negligible impact on
all affected marine mammal species or stocks.
Small Numbers
As noted above, only small numbers of incidental take may be
authorized under Section 101(a)(5)(D) of the MMPA for specified
activities other than military readiness activities. The MMPA does not
define small numbers and so, in practice, where estimated numbers are
available, NMFS compares the number of individuals taken to the most
appropriate estimation of abundance of the relevant species or stock in
our determination of whether an authorization is limited to small
numbers of marine mammals. Additionally, other qualitative factors may
be considered in the analysis, such as the temporal or spatial scale of
the activities.
The take of six marine mammal stocks proposed for authorization
comprises less than two percent of the stock abundance, and less than
11 percent for bottlenose dolphins (California coastal).
Based on the analysis contained herein of the proposed activity
(including the proposed mitigation and monitoring measures) and the
anticipated take of marine mammals, NMFS preliminarily finds that small
numbers of marine mammals will be taken relative to the population size
of the affected species or stocks.
Unmitigable Adverse Impact Analysis and Determination
There are no relevant subsistence uses of the affected marine
mammal stocks or species implicated by this action.
Endangered Species Act (ESA)
Section 7(a)(2) of the Endangered Species Act of 1973 (ESA: 16
U.S.C. 1531 et seq.) requires that each Federal agency insure that any
action it authorizes, funds, or carries out is not likely to jeopardize
the continued existence of any endangered or threatened species or
result in the destruction or adverse modification of designated
critical habitat. No ESA listed species are proposed for take.
Therefore, NMFS has determined consultation under the ESA is not
required.
Proposed Authorization
As a result of these preliminary determinations, NMFS proposes to
issue an IHA to the City for conducting for the proposed pile driving
and removal activities for construction of the Alameda Seaplane Lagoon
ferry terminal for one year, beginning August 2019, provided the
previously mentioned mitigation, monitoring, and reporting requirements
are incorporated. A draft of the proposed IHA can be found at https://www.fisheries.noaa.gov/permit/incidental-take-authorizations-under-marine-mammal-protection-act.
Request for Public Comments
We request comment on our analyses, the proposed authorization, and
any other aspect of this Notice of Proposed IHA for the proposed pile
driving and removal activities for construction of the ferry terminal.
We also request comment on the potential for renewal of this proposed
IHA as described in the paragraph below. Please include with your
comments any supporting data or literature citations to help inform our
final decision on the request for MMPA authorization.
[ssquf] On a case-by-case basis, NMFS may issue a one-year IHA
renewal with an additional 15 days for public comments when (1) another
year of identical or nearly identical activities as described in the
Specified Activities section of this notice is planned or (2) the
activities as described in the Specified Activities section of this
notice would not be completed by the time the IHA expires and a second
IHA would allow for completion of the activities beyond that described
in the Dates and Duration section of this notice, provided all of the
following conditions are met. A request for renewal is received no
later than 60 days prior to expiration of the current IHA.
[ssquf] The request for renewal must include the following:
(1) An explanation that the activities to be conducted under the
requested Renewal are identical to the activities analyzed under the
initial IHA, are a subset of the activities, or include changes so
minor (e.g., reduction in pile size) that the changes do not affect the
previous analyses, mitigation and monitoring requirements, or take
estimates (with the exception of reducing the type or amount of take
because only a subset of the initially analyzed activities remain to be
completed under the Renewal); and
(2) A preliminary monitoring report showing the results of the
required monitoring to date and an explanation showing that the
monitoring results do not indicate impacts of a scale or nature not
previously analyzed or authorized;
[ssquf] Upon review of the request for Renewal, the status of the
affected species or stocks, and any other pertinent information, NMFS
determines that there are no more than minor changes in the activities,
the mitigation and monitoring measures will remain the same and
appropriate, and the findings in the initial IHA remain valid.
Dated: July 15, 2019.
Donna S. Wieting,
Director, Office of Protected Resources, National Marine Fisheries
Service.
[FR Doc. 2019-15299 Filed 7-17-19; 8:45 am]
BILLING CODE 3510-22-P