Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to Site Characterization Surveys Off the Coast of Massachusetts, 22443-22468 [2018-10333]

Download as PDF Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices ´ the government of Quebec, the U.S. Department of Commerce, The Boeing Company, the government of the United Kingdom, and the European Commission requesting the termination of panel review in the 100- to 150-Seat Large Civil Aircraft from Canada: Final Affirmative Countervailing Duty Determination (Civil Aircraft CVD) dispute. Given all the participants have filed motions requesting termination and pursuant to Rule 71(2) of the NAFTA Rules of Procedure for Article 1904 Binational Panel Reviews (Rules), the NAFTA Civil Aircraft CVD dispute has been terminated. As a result, and in accordance with Rule 78(a), notice is hereby given that panel review of the NAFTA Civil Aircraft CVD dispute has been completed effective May 7, 2018. FOR FURTHER INFORMATION CONTACT: Paul E. Morris, United States Secretary, NAFTA Secretariat, Room 2061, 1401 Constitution Avenue NW, Washington, DC 20230, (202) 482–5438. SUPPLEMENTARY INFORMATION: Chapter 19 of Article 1904 of NAFTA provides a dispute settlement mechanism involving trade remedy determinations issued by the government of the United States, the government of Canada, and the government of Mexico. There are established Rules, which were adopted by the three governments and require Notices of Completion of Panel Review to be published in accordance with Rule 78. For the complete Rules, please see https://www.nafta-sec-alena.org/Home/ Texts-of-the-Agreement/Rules-ofProcedure/Article-1904. Dated: May 9, 2018. Paul E. Morris, U.S. Secretary, NAFTA Secretariat. The NAFTA Secretariat has received motions filed on behalf of Bombardier, Inc. and C Series Aircraft Limited Partnership, the government of Canada, the U.S. Department of Commerce, and The Boeing Company, requesting the termination of panel review in the 100- to 150-Seat Large Civil Aircraft from Canada: Affirmative Determination of Sales at Less Than Fair Value (Civil Aircraft AD) dispute. Given all the participants have filed motions requesting termination and pursuant to Rule 71(2) of the NAFTA Rules of Procedure for Article 1904 Binational Panel Reviews (Rules), the NAFTA Civil Aircraft AD dispute has been terminated. As a result, and in accordance with Rule 78(a), notice is hereby given that panel review of the NAFTA Civil Aircraft AD dispute has been completed applicable May 2, 2018. SUMMARY: Paul E. Morris, United States Secretary, NAFTA Secretariat, Room 2061, 1401 Constitution Avenue NW, Washington, DC 20230, (202) 482–5438. FOR FURTHER INFORMATION CONTACT: Chapter 19 of Article 1904 of NAFTA provides a dispute settlement mechanism involving trade remedy determinations issued by the government of the United States, the government of Canada, and the government of Mexico. There are established Rules, which were adopted by the three governments and require Notices of Completion of Panel Review to be published in accordance with Rule 78. For the complete Rules, please see https://www.nafta-sec-alena.org/Home/ Texts-of-the-Agreement/Rules-ofProcedure/Article-1904. SUPPLEMENTARY INFORMATION: [FR Doc. 2018–10229 Filed 5–14–18; 8:45 am] Paul E. Morris, U.S. Secretary, NAFTA Secretariat. BILLING CODE 3510–GT–P [FR Doc. 2018–10228 Filed 5–14–18; 8:45 am] BILLING CODE 3510–GT–P DEPARTMENT OF COMMERCE DEPARTMENT OF COMMERCE International Trade Administration North American Free Trade Agreement (NAFTA), Binational Panel Reviews: Notice of Completion of Panel Review United States Section, NAFTA Secretariat, International Trade Administration, Department of Commerce ACTION: Notice of Completion of Panel Review in the matter of 100- to 150-Seat Large Civil Aircraft from Canada: Final Affirmative Determination of Sales at Less Than Fair Value (Secretariat File Number: USA–CDA–2018–1904–02). National Oceanic and Atmospheric Administration RIN 0648–XF926 daltland on DSKBBV9HB2PROD with NOTICES AGENCY: VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to Site Characterization Surveys Off the Coast of Massachusetts National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. AGENCY: PO 00000 Frm 00003 Fmt 4703 Sfmt 4703 22443 Notice; proposed incidental harassment authorization; request for comments. ACTION: NMFS has received an application from Orsted (U.S.) LLC/Bay State Wind LLC (Bay State Wind) for an Incidental Harassment Authorization (IHA) to take marine mammals, by harassment, incidental to highresolution geophysical (HRG) survey investigations associated with marine site characterization activities off the coast of Massachusetts in the area of the Commercial Lease of Submerged Lands for Renewable Energy Development on the Outer Continental Shelf (OCS–A 0500) (the Lease Area). Pursuant to the Marine Mammal Protection Act (MMPA), NMFS is requesting comments on its proposal to issue an IHA to Bay State Wind to incidentally take, by Level A and Level B harassment, small numbers of marine mammals during the specified activities. NMFS will consider public comments prior to making any final decision on the issuance of the requested MMPA authorizations and agency responses will be summarized in the final notice of our decision. DATES: Comments and information must be received no later than June 14, 2018. ADDRESSES: Comments should be addressed to Jolie Harrison, Chief, Permits and Conservation Division, Office of Protected Resources, National Marine Fisheries Service. Physical comments should be sent to 1315 EastWest Highway, Silver Spring, MD 20910 and electronic comments should be sent to ITP.Youngkin@noaa.gov. Instructions: NMFS is not responsible for comments sent by any other method, to any other address or individual, or received after the end of the comment period. Comments received electronically, including all attachments, must not exceed a 25megabyte file size. Attachments to electronic comments will be accepted in Microsoft Word or Excel or Adobe PDF file formats only. All comments received are a part of the public record and will generally be posted online at www.fisheries.noaa.gov/national/ marine-mammal-protection/incidentaltake-authorizations-constructionactivities without change. All personal identifying information (e.g., name, address) voluntarily submitted by the commenter may be publicly accessible. Do not submit confidential business information or otherwise sensitive or protected information. FOR FURTHER INFORMATION CONTACT: Dale Youngkin, Office of Protected Resources, NMFS, (301) 427–8401. Electronic copies of the application and SUMMARY: E:\FR\FM\15MYN1.SGM 15MYN1 22444 Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices daltland on DSKBBV9HB2PROD with NOTICES supporting documents, as well as a list of the references cited in this document, may be obtained online at: www.fisheries.noaa.gov/national/ marine-mammal-protection/incidentaltake-authorizations-constructionactivities. In case of problems accessing these documents, please call the contact listed above. SUPPLEMENTARY INFORMATION: Background Sections 101(a)(5)(A) and (D) of the MMPA (16 U.S.C. 1361 et seq.) direct the Secretary of Commerce (as delegated to NMFS) to allow, upon request, the incidental, but not intentional, taking of small numbers of marine mammals by U.S. citizens who engage in a specified activity (other than commercial fishing) within a specified geographical region if certain findings are made and either regulations are issued or, if the taking is limited to harassment, a notice of a proposed authorization is provided to the public for review. An authorization for incidental takings shall be granted if NMFS finds that the taking will have a negligible impact on the species or stock(s), will not have an unmitigable adverse impact on the availability of the species or stock(s) for subsistence uses (where relevant), and if the permissible methods of taking and requirements pertaining to the mitigation, monitoring and reporting of such takings are set forth. NMFS has defined ‘‘negligible impact’’ in 50 CFR 216.103 as an impact resulting from the specified activity that cannot be reasonably expected to, and is not reasonably likely to, adversely affect the species or stock through effects on annual rates of recruitment or survival. The MMPA states that the term ‘‘take’’ means to harass, hunt, capture, kill or attempt to harass, hunt, capture, or kill any marine mammal. Except with respect to certain activities not pertinent here, the MMPA defines ‘‘harassment’’ as any act of pursuit, torment, or annoyance which (i) has the potential to injure a marine mammal or marine mammal stock in the wild (Level A harassment); or (ii) has the potential to disturb a marine mammal or marine mammal stock in the wild by causing disruption of behavioral patterns, including, but not limited to, migration, breathing, nursing, breeding, feeding, or sheltering (Level B harassment). National Environmental Policy Act (NEPA) The U.S. Bureau of Ocean Energy Management (BOEM) prepared an Environmental Assessment (EA) in VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 accordance with the National Environmental Policy Act (NEPA), to evaluate the issuance of wind energy leases covering the entirety of the Massachusetts Wind Energy Area (including the OCS–A 0500 Lease Area), and the approval of site assessment activities within those leases (BOEM, 2014). NMFS previously adopted BOEM’s EA and issued a Finding of No Significant Effect (FONSI) for similar work in 2016 (81 FR 56589, August 22, 2016). NMFS has reviewed the BOEM EA and our previous FONSI and has preliminarily determined that this action is consistent with categories of activities identified in CE B4 of the Companion Manual for NOAA Administrative Order 216–6A, which do not individually or cumulatively have the potential for significant impacts on the quality of the human environment and for which we have not identified any extraordinary circumstances that would preclude this categorical exclusion. Accordingly, NMFS has preliminarily determined that the issuance of the proposed IHA qualifies to be categorically excluded from further NEPA review. We will review all comments submitted in response to this notice prior to concluding our NEPA process or making a final decision on the IHA request. Summary of Request On October 20, 2017 NMFS received an application from Bay State Wind for the taking of marine mammals incidental to HRG and geotechnical survey investigations off the coast of Massachusetts in the OCS–A 0500 Lease Area, designated and offered by the BOEM, to support the development of an offshore wind project. Bay State Wind’s request is for take, by Level A and Level B harassment, of a small number of 10 species or stocks of marine mammals. Neither the applicant nor NMFS expects serious injury or mortality to result from this activity and, therefore, an IHA is appropriate. NMFS previously issued an IHA to Bay State Wind (then operating under DONG Energy) for similar work (FR 81 56589, August 22, 2016). Bay State Wind complied with all the requirements (e.g., mitigation, monitoring, and reporting) of the previous IHA and information regarding their monitoring results may be found in the Estimated Take section. Description of the Specified Activity Overview Bay State Wind proposes to conduct HRG surveys in the Lease Area to PO 00000 Frm 00004 Fmt 4703 Sfmt 4703 support the characterization of the existing seabed and subsurface geological conditions in the Lease Area. This information is necessary to support the final siting, design, and installation of offshore project facilities, turbines and subsea cables within the project area as well as to collect the data necessary to support the review requirements associated with Section 106 of the National Historic Preservation Act of 1966, as amended. Underwater sound resulting from Bay State Wind’s proposed site characterization surveys has the potential to result in incidental take of marine mammals. This take of marine mammals is anticipated to be in the form of harassment and no serious injury or mortality is anticipated, nor is any authorized in this IHA. Dates and Duration HRG surveys of the wind turbine generator (WTG) and offshore substation (OSS) areas are anticipated to commence no earlier than June 1, 2018 and will last for approximately 60 days, including estimated weather down time. Likewise, the Export Cable Route HRG surveys are anticipated to commence no earlier than June 1, 2018 and will last approximately 40 days (including estimated weather down time). Offshore and near coastal shallow water regions of the HRG survey will occur within the same 40-day timeframe. Surveys are anticipated to commence upon issuance of the requested IHA, if appropriate. Specified Geographic Region Bay State Wind’s survey activities will occur in the approximately 187,532-acre Lease Area designated and offered by BOEM, located approximately 14 miles (mi) south of Martha’s Vineyard, Massachusetts at its closest point, as well as within 2 potential export cable routes to Somerset, MA and to Falmouth, MA (see Figure 1–1 of the IHA application). The Lease Area falls within the Massachusetts Wind Energy Area (MA WEA). Detailed Description of Specified Activities Marine site characterization surveys will include the following HRG survey activities: • Depth sounding (multibeam depth sounder) to determine water depths and general bottom topography; • Magnetic intensity measurements for detecting local variations in regional magnetic field from geological strata and potential ferrous objects on and below the bottom; E:\FR\FM\15MYN1.SGM 15MYN1 22445 Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices • Seafloor imaging (sidescan sonar survey) for seabed sediment classification purposes, to identify natural and man-made acoustic targets resting on the bottom as well as any anomalous features; • Shallow penetration sub-bottom profiler (pinger/chirp) to map the near surface stratigraphy (top 0–5 meter (m) soils below seabed); and • Medium penetration sub-bottom profiler (sparker) to map deeper survey equipment will be confirmed prior to the start of the HRG survey program. Only the make and model of the HRG equipment may change, not the types of equipment or the addition of equipment with characteristics that might have effects beyond (i.e., resulting in larger ensonified areas) those considered in this proposed IHA. None of the proposed HRG survey activities will result in the disturbance of bottom habitat in the Lease Area. subsurface stratigraphy as needed (soils down to 75–100 m below seabed). Table 1 identifies the representative survey equipment that is being considered in support of the HRG survey activities. The make and model of the listed HRG equipment will vary depending on availability, but will be finalized as part of the survey preparations and contract negotiations with the survey contractor, and therefore the final selection of the TABLE 1—SUMMARY OF REPRESENTATIVE BAY STATE WIND HRG SURVEY EQUIPMENT HRG equipment Source level reported by manufacturer Operating frequencies Beamwidth (degree) Pulse duration (millisec) Pulse repetition rate (Hz) USBL & GAPS Transceiver Sonardyne Ranger 2 USBL HPT 5/7000. Sonardyne Ranger 2 USBL HPT 5/7000. Easytrak Nexus 2 USBL ....... IxSea GAPS System ............. 19–34 kHz ............................ 206 dBpk/200 dBRMS ............ 180 ................ 8–16 ................. 1 19–34 kHz ............................ 194 dBpk/188 dBRMS ............ 180 ................ 8–16 ................. 3 18–32 kHz ............................ 20–30 kHz ............................ 198 dBpk/192 dBRMS ............ 191 dBpk/188 dBRMS ............ 180 ................ 200 ................ 10 ..................... 10 ..................... 1 10 0.5–0.26 × 50 2.8–12 .............. 5–55 0.5 × 1 256 beams. 1 × 1 .............. 0.15–0.5 ........... 60 3 or 12 ............. Up to 50 17 .................. 20 ..................... 10 85–115 kHz .......................... 208–213 dBpk/205–210 dBRMS. 250 dBpk/243 dBRMS ............ 1 .................... 0.07–2 .............. 40 85–115 kHz .......................... 243 dBpk/236 dBRMS ............ 1 .................... 0.07–2 .............. 60 30 .................. 3.8 .................... 2 Sidescan Sonar (SSS) EdgeTech 4200 dual frequency SSS. 300 or 600 kHz .................... 208–213 dBpk/205–210 dBRMS. Multibeam Sonar (MBS) R2 Sonic 2024 Multipbeam Echosounder. Kongsberg EM2040C Dual Head. 200–400 kHz ........................ 229 dBpk/162 dBRMS ............ 200–400 kHz ........................ 210 dBpk/204.5 dBRMS ......... Sub-Bottom Profilers (SBP) Edgetech 3200 XS 216 Shallow SBP. Innomar SES–2000 Medium SBP. Innomar SES–2000 Standard SBP. 2–16 kHz .............................. Sparkers GeoMarine Geo-Source ........ 0.2–5 kHz ............................. 220 dBpk/205 dBRMS ............ Boomers 0.250–8 Hz ........................... 220 dBpk/216 dBRMS ............ 25–35 ............ 0.3–0.5 ............. 3 Applied Acoustics S-Boom Boomer. daltland on DSKBBV9HB2PROD with NOTICES Applied Acoustics S-Boom Triple Plate Boomer. 0.1–5 kHz ............................. 209 dBpk/203 dBpeak ............ 30 .................. 0.3–0.5 ............. 3 The deployment of HRG survey equipment, including the use of intermittent, impulsive soundproducing equipment operating below 200 kilohertz (kHz), has the potential to cause acoustic harassment to marine mammals. Based on the frequency ranges of the equipment to be used in support of the HRG survey activities (Table 1) and the hearing ranges of the marine mammals that have the potential VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 to occur in the Lease Area during survey activities (Table 2), the noise produced by the ultra short baseline (USBL) and global acoustic positioning system (GAPS) transceiver systems; sub-bottom profilers; sparkers; and boomers fall within the established marine mammal hearing ranges and have the potential to result in harassment of marine mammals. PO 00000 Frm 00005 Fmt 4703 Sfmt 4703 The equipment positioning systems use vessel-based underwater acoustic positioning to track equipment in very shallow to very deep water. Using pulsed acoustic signals, the systems calculate the position of a subsea target by measuring the range (distance) and bearing from a vessel-mounted transceiver to a small acoustic transponder (the acoustic beacon, or pinger) fitted to the target. Equipment E:\FR\FM\15MYN1.SGM 15MYN1 daltland on DSKBBV9HB2PROD with NOTICES 22446 Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices positioning systems will be operational at all times during HRG survey data acquisition (i.e, concurrent with the sub-bottom profiler operation). Subbottom profiling systems identify and measure various marine sediment layers that exist below the sediment/water interface. A sound source emits an acoustic signal vertically downwards into the water and a receiver monitors the return signal that has been reflected off the sea floor. Some of the acoustic signal will penetrate the seabed and be reflected when it encounters a boundary between two layers that have different acoustic impedance. The system uses this reflected energy to provide information on sediment layers beneath the sediment-water interface. A shallow penetration sub-bottom profiler will be used to map the near surface stratigraphy of the Lease Area. The shallow penetration sub-bottom profiler is a precisely controlled hull/pole mounted ‘‘chirp’’ system that emits high-energy sounds used to penetrate and profile the shallow (top 0–5 m soils below seabed) sediments of the seafloor. A Geo-Source 600/800, or similar model, medium-penetration sub-bottom profiler (sparker) will be used to map deeper subsurface stratigraphy in the Lease Area as needed (soils down to 75– 100 m below seabed). Given the size of the Lease Area (187,532 acres), to minimize cost, the duration of survey activities, and the period of potential impact on marine species, Bay State Wind has proposed conducting survey operations 24 hours per day in the offshore areas. Based on 24-hour operations, the estimated duration of the survey activities would be approximately 60 days (including estimated weather down time). For the nearshore/landfall area, a small vessel with a draft sufficient to survey shallow waters will be needed. Only daylight operations will be used to survey the nearshore/landfall, and will require an estimated 40 days to complete (including estimated weather down time). Offshore and near coastal shallow water regions of the HRG survey will occur within the same 40-day timeframe. The survey area consists of several sections (Lots) as described below: • Export Cable Route to Somerset, MA—This export cable route will be split into two Lots reflecting the boundary between State and Federal waters, which also coincides with the 3 nautical mile maritime boundary: Æ Lot 1 consists of a 1,640-ft (500 m) wide survey corridor from the 3-nautical mile maritime boundary near coastal shallow water, at which point the corridor splits into three extensions VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 toward potential landfall locations (Extensions 1a, 1b, and 1c; see Figure 1– 1 inset in the application). Each extension is 820 ft (250 m) wide. The total estimated trackline miles are approximately 350 mile (mi) (563 km); and Æ Lot 2 consists of a 3,281-ft (1,000 m) wide survey corridor in the offshore region of the export cable route. The total estimated trackline miles are approximately 678 mi (1,091 km); • Phase I Development Area—This area comprises Lot 3, which consists of the locations for the WTG and OSS as well as inter-array cable segments. The trackline is estimated to be approximately 1,768 mi (2,845 km) and would be comprised of: Æ 656-ft (200 m) radius around the planned locations for OSS; Æ 492-ft (150 m) radius around the planned locations for WTGs; Æ 246-ft (75 m) radius around planned locations for inter-array cable segments; and • Export Cable Route to Falmouth, MA—This area will be split into two Lots reflecting the boundary between State and Federal waters and coinciding with the 3-nautical mile boundary: Æ Lot 4 consists of a 3,281-ft (1,000 m) wide survey corridor in the offshore region of the cable route. The estimated trackline would be approximately 1,400 mi (2.253 km); Æ Lot 5 consists of a 1,640-ft (500 m) wide survey corridor in the near coastal shallow water region of the cable route. The total estimated trackline would be approximately 67 mi (108 km). Multiple vessels will be utilized to conduct site characterization survey activities in the locations of the WTG and OSS, two offshore segments of the export cable route, and nearshore/cable landfall area. For the near coastal shallow water regions of the Export Cable Routes (Lots 1 and 5; Refer to Figure 1 and Pages 3–4 of the application for description of Lots), up to two small vessels with a draft sufficient to survey shallow waters (up to 72 feet (ft) (22 m)) are planned to be used. For the WTG and OSS and offshore regions of the two Export Cable Routes (Lots 3, 2, and 4, respectively), up to three large vessels (approximately 170 ft (52 m) in length) will conduct survey operations. In Lots 3 and 4 (WTG and OSS locations and offshore portion of the Export Cable Route to Falmouth), one large vessel will serve as a ‘‘mother vessel’’ to a smaller (41 ft (12.5 m)) autonomous surface vessel (ASV) that may be used to ‘force multiply’ survey production. Additionally, the ASV will also capture data in water depths shallower than 26 ft (8 m)), increasing PO 00000 Frm 00006 Fmt 4703 Sfmt 4703 the shallow end reach of the larger vessel. The ASV can be used for nearshore operations and shallow work (20 ft (6 m) and less) in a ‘‘manned’’ configuration. The ASV and mother vessel will acquire survey data in tandem and the ASV will be kept within sight of the mother vessel at all times. The ASV will operate autonomously along a parallel track to, and slightly ahead of, the mother vessel at a distance set to prevent crossed signaling of survey equipment (within 2,625 ft (800 m)). During data acquisition surveyors have full control of the data being acquired and have the ability to make changes to settings such as power, gain, range scale etc. in real time. Surveyors will also be able to monitor the data as it is acquired by the ASV utilizing a real time IP radio link. For each 12 hour shift, an ASV technician will be assigned to manage the vessel during his or her shift to ensure the vehicle is operating properly and to take over control of the vehicle should the need arise. The ASV is outfitted with an array of cameras, radars, thermal equipment and AIS, all of which is monitored in real time by the ASV technician. This includes a forward-facing dual thermal/HD camera installed on the mother vessel to provide a field of view ahead of the vessel and around the ASV, forwardfacing thermal camera on the ASV itself with a real-time monitor display installed on the mother vessel bridge, and use of night-vision goggles with thermal clip-ons for monitoring around the mother vessel and ASV. Additionally, there will be 2 survey technicians per shift assigned to acquire the ASV survey data. Proposed mitigation, monitoring, and reporting measures are described in detail later in this document (please see ‘‘Proposed Mitigation’’ and ‘‘Proposed Monitoring and Reporting’’). Description of Marine Mammals in the Area of the Specified Activity Sections 3 and 4 of Bay State Wind’s IHA application summarize available information regarding the status and trends, distribution and habitat preferences, and behavior and life history of the potentially affected species. Additional information regarding population trends and threats may be found in NMFS’s Stock Assessment Reports (SAR; https:// www.nmfs.noaa.gov/pr/sars/ species.htm) and more general information can be found about these species (e.g., physical and behavioral descriptions) may be found on NMFS’ website (https://www.nmfs.noaa.gov/pr/ species/mammals/). E:\FR\FM\15MYN1.SGM 15MYN1 22447 Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices Table 2 lists all marine mammal species with expected occurrence in the Northwest Atlantic Outer Continental Shelf (OCS) and summarizes information related to the population or stock, including regulatory status under the MMPA and Endangered Species Act (ESA) as well as potential biological removal (PBR), where known. For taxonomy, we follow the Committee on Taxonomy (2016). PBR is defined by the MMPA as the maximum number of animals, not including natural mortalities, that may be removed from a marine mammal stock while allowing that stock to reach or maintain its optimum sustainable population (as described in NMFS’ SARs). While no mortality is anticipated or authorized here, PBR and annual serious injury and mortality from anthropogenic sources are included here as gross indicators of the status of the species and other threats. Marine mammal abundance estimates presented in this document represent the total number of individuals that make up a given stock or the total number estimated within a particular study or survey area. NMFS’ stock abundance estimates for most species represent the total estimate of individuals within the geographic area, if known, that comprise that stock. For some species, this geographic area may extend beyond U.S. waters. All managed stocks in this region are assessed in NMFS’ U.S. Atlantic Ocean SARs (e.g., Hayes et al., 2017). All values presented in Table 2 are the most recent available at the time of publication and are available in the 2016 SARs (Hayes et al., 2017) and draft 2017 SARs (available online at: https://www.nmfs.noaa.gov/pr/ sars/draft.htm). TABLE 2—MARINE MAMMALS KNOWN TO OCCUR IN THE WATERS OF SOUTHERN NEW ENGLAND Common name ESA/MMPA status 1 Scientific name Stock abundance (CV; Nmin) 2 Stock Annual M/SI 3 PBR Toothed Whales (Odontoceti) Atlantic white-sided dolphin. Atlantic spotted dolphin .... Bottlenose dolphin ......... Lagenorhynchus acutus N/A .................................. 48,819 (0.61; 30,403) ...... W. North Atlantic ........... 304 74 Stenella frontalis .............. Tursiops truncatus ........ N/A ................................... Northern coastal stock is Strategic. 44,715 (0.43; 31,610) ...... 11,548 (0.36; 8,620) ........ 316 86 0 1–7.5 Clymene dolphin ............... Fraser’s dolphin ................ Pan-tropical spotted dolphin. Risso’s dolphin ................. Rough-toothed dolphin ..... Short-beaked common dolphin. Striped dolphin .................. Spinner dolphin ................. White-beaked dolphin ....... Stenella clymene ............. Lagenodelphis hosei ....... Stenella attenuata ........... N/A ................................... N/A ................................... N/A ................................... Unknown .......................... Unknown .......................... 3,333 (0.91; 1,733) .......... W. North Atlantic ............. W. North Atlantic, Northern Migratory Coastal. W. North Atlantic ............. W. North Atlantic ............. W. North Atlantic ............. Unknown Unknown 17 0 0 0 Grampus griseus ............. Steno bredanensis .......... Delphinus delphis .......... N/A ................................... N/A ................................... N/A .................................. 18,250 (0.46; 12,619) ...... 271 (1.0; 134) .................. 70,184 (0.28; 55,690) ...... W. North Atlantic ............. W. North Atlantic ............. W. North Atlantic ........... 126 1.3 557 53.6 0 409 Stenella coeruleoalba ...... Stenella longirostris ......... Lagenorhynchus albirostris. Phocoena phocoena ..... N/A ................................... N/A ................................... N/A ................................... 54,807 (0.3; 42,804) ........ Unknown .......................... 2,003 (0.94; 1,023) .......... W. North Atlantic ............. W. North Atlantic ............. W. North Atlantic ............. 428 Unknown 10 0 0 0 N/A .................................. 79,833 (0.32; 61,415) ...... 437 N/A ................................... N/A ................................... Strategic .......................... N/A ................................... N/A ................................... Unknown .......................... Unknown .......................... 442 (1.06; 212) ................ 5,636 (0.63; 3,464) .......... 21,515 (0.37; 15,913) ...... Gulf of Maine/Bay of Fundy. W. North Atlantic ............. W. North Atlantic ............. W. North Atlantic ............. W. North Atlantic ............. W. North Atlantic ............. 706 Orcinus orca .................... Feresa attenuata ............. Pseudorca crassidens ..... Globicephala melas ......... Globicephala macrorhynchus. Physeter macrocephalus. Kogia breviceps ............... Kogia sima ....................... Ziphius cavirostris ............ Mesoplodon densirostris .. Mesoplodon europaeus ... Mesoplodon mirus ........... Mesoplodon bidens ......... Hyperoodon ampullatus ... Peponocephala electra .... Unknown Unknown 2.1 35 159 0 0 Unknown 38 192 Endangered .................... 2,288 (0.28; 1,815) .......... North Atlantic ................. 3.6 0.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A 3,785 (0.47; 2,598) 4 ........ 3,785 (0.47; 2,598) 4 ........ 6,532 (0.32; 5,021) .......... 7,092 (0.54; 4,632) 5 ........ 7,092 (0.54; 4,632) 5 ........ 7,092 (0.54; 4,632) 5 ........ 7,092 (0.54; 4,632) 5 ........ Unknown .......................... Unknown .......................... W. W. W. W. W. W. W. W. W. ............. ............. ............. ............. ............. ............. ............. ............. ............. 21 21 50 46 46 46 46 Unknown Unknown 3.5 3.5 0.4 0.2 0 0 0 0 0 Harbor porpoise .............. Killer whale ....................... Pygmy killer whale ............ False killer whale .............. Long-finned pilot whale .... Short-finned pilot whale .... Sperm whale ................... Pigmy sperm whale .......... Dwarf sperm whale ........... Cuvier’s beaked whale ..... Blainville’s beaked whale Gervais’ beaked whale ..... True’s beaked whale ........ Sowerby’s beaked whale .. Northern bottlenose whale Melon-headed whale ........ ................................... ................................... ................................... ................................... ................................... ................................... ................................... ................................... ................................... North North North North North North North North North Atlantic Atlantic Atlantic Atlantic Atlantic Atlantic Atlantic Atlantic Atlantic Baleen Whales (Mysticeti) Minke whale .................... Blue whale ........................ Fin whale ......................... Humpback whale ............ North Atlantic right whale Sei whale .......................... Balaenoptera acutorostrata. Balaenoptera musculus ... Balaenoptera physalus Megaptera novaeangliae Eubalaena glacialis .......... Balaenoptera borealis ...... N/A .................................. 2,591 (0.81; 1,425) .......... Canadian East Coast ..... 14 8.25 Endangered ..................... Endangered .................... N/A .................................. Endangered ..................... Endangered ..................... Unknown (Unknown; 440) 1,618 (0.33; 1,234) .......... 823 (0; 823) ..................... 440 (0; 440) ..................... 357 (0.52; 236) ................ W. North Atlantic ............. W. North Atlantic ........... Gulf of Maine .................. W. North Atlantic ............. Nova Scotia ..................... 0.9 2.5 13 1 0.5 Unknown 3.8 9.05 5.66 0.8 Unknown 2,006 Unknown Unknown 4,937 389 Unknown Unknown daltland on DSKBBV9HB2PROD with NOTICES Earless Seals (Phocidae) Gray seals ....................... Harbor seals .................... Hooded seals .................... Harp seal .......................... Halichoerus grypus ....... Phoca vitulina ................ Cystophora cristata .......... Phoca groenlandica ......... N/A N/A N/A N/A .................................. .................................. ................................... ................................... 424,300 (0.16; 371,444) .. 75,834 (0.15; 66,884) ...... Unknown .......................... 8,300,000 (Unknown) ...... W. W. W. W. North Atlantic ........... North Atlantic ........... North Atlantic ............. North Atlantic ............. Note: Species information in bold italics are species expected to be taken and proposed for authorization; others are not expected or proposed to be taken. 1 A strategic stock is defined as any marine mammal stock: (1) For which the level of direct human-caused mortality exceeds the potential biological removal (PBR) level; (2) which is declining and likely to be listed as threatened under the Endangered Species Act (ESA); or (3) which is listed as threatened or endangered under the ESA or as depleted under the Marine Mammal Protection Act (MMPA). VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 PO 00000 Frm 00007 Fmt 4703 Sfmt 4703 E:\FR\FM\15MYN1.SGM 15MYN1 22448 Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices 2 NMFS daltland on DSKBBV9HB2PROD with NOTICES stock assessment reports online at: www.nmfs.noaa.gov/pr/sars. CV = coefficient of variarion; Nmin = minimum estimate of stock abundance. 3 These values, found in NMFS’ SARs, represent annual levels of human-caused mortality plus serious injury (M/SI) from all sources combined (e.g., commercial fisheries, ship strike, etc.). Annual M/SI often cannot be determined precisely and is in some cases presented as a minimum value or range. A CV associated with estimated mortality due to commercial fisheries is presented in some cases. 4 This estimate may include both the dwarf and pygmy sperm whales. 5 This estimate includes Gervais’ and Blainville’s beaked whales and undifferentiated Mesoplodon spp. beaked whales. Sources: Hayes et al., 2016, Waring et al., 2015; Waring et al., 2013; Waring et al., 2011; Warring et al., 2010; RI SAMP, 2011; Kenney and Vigness-Raposa, 2009; NMFS, 2012. There are 38 species of marine mammals that potentially occur in the Northwest Atlantic OCS region (BOEM, 2014) (Table 2). The majority of these species are pelagic and/or more northern species, or are so rarely sighted that their presence in the Lease Area is unlikely. Five marine mammal species are listed under the ESA and are known to be present, at least seasonally, in the waters of Southern New England: Blue whale, fin whale, right whale, sei whale, and sperm whale. These species are highly migratory and do not spend extended periods of time in a localized area; the waters of Southern New England (including the Lease Area) are primarily used as a stopover point for these species during seasonal movements north or south between important feeding and breeding grounds. While the fin and right whales have the potential to occur within the Lease Area, the sperm, blue, and sei whales are more pelagic and/or northern species, and though their presence within the Lease Area is possible, they are considered less common with regards to sightings. Because the potential for blue whales and sei whales to occur within the Lease Area during the marine survey period is unlikely, these species will not be described further in this analysis. Sperm whales are known to occur occasionally in the region, but their sightings are considered rare and thus their presence in the Lease Area at the time of the proposed activities is considered unlikely. However, based on a recent increase in sightings, they are included in the discussion below. The following species are both common in the waters of the OCS south of Massachusetts and have the highest likelihood of occurring, at least seasonally, in the Lease Area: Humpback whale (Megaptera novaeangliae), minke whale (Balaenoptera acutorostrata), harbor porpoise (Phocoena phocoena), bottlenose dolphin (Tursiops truncatus), short-beaked common dolphin (Delphinus delphis), harbor seal (Phoca vitulina), and gray seal (Halichorus grypus). In general, the remaining nonESA listed marine mammal species listed in Table 2 range outside the survey area, usually in more pelagic waters, or are so rarely sighted that their presence in the survey area is unlikely. VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 For example, while white-beaked dolphins (Lagenorhynchus albirostris) are likely to occur in the nearby waters surrounding the survey area (i.e., within 40 nautical miles (74 kilometers (km)), they are not likely to occur within the survey area, and beaked whales are likely to occur in the region to the south of the survey area, but not within 40 nautical miles (74 km) (Right Whale Consortium, 2014). Therefore, only north Atlantic right whales, humpback whales, fin whales, sperm whales, minke whales, bottlenose dolphins, short-beaked common dolphins, Atlantic white-sided dolphins, harbor porpoises, harbor seals, and gray seals are considered in this analysis. Marine Mammal Hearing Hearing is the most important sensory modality for marine mammals underwater, and exposure to anthropogenic sound can have deleterious effects. To appropriately assess the potential effects of exposure to sound, it is necessary to understand the frequency ranges marine mammals are able to hear. Current data indicate that not all marine mammal species have equal hearing capabilities (e.g., Richardson et al., 1995; Wartzok and Ketten, 1999; Au and Hastings, 2008). To reflect this, Southall et al. (2007) recommended that marine mammals be divided into functional hearing groups based on directly measured or estimated hearing ranges on the basis of available behavioral response data, audiograms derived using auditory evoked potential techniques, anatomical modeling, and other data. Note that no direct measurements of hearing ability have been successfully completed for mysticetes (i.e., low-frequency cetaceans). Subsequently, NMFS (2016) described generalized hearing ranges for these marine mammal hearing groups. Generalized hearing ranges were chosen based on the approximately 65 decibels (dB) threshold from the normalized composite audiograms, with the exception for lower limits for lowfrequency cetaceans where the lower bound was deemed to be biologically implausible and the lower bound from Southall et al. (2007) retained. The functional groups and the associated frequencies are indicated below (note that these frequency ranges correspond to the range for the composite group, PO 00000 Frm 00008 Fmt 4703 Sfmt 4703 with the entire range not necessarily reflecting the capabilities of every species within that group): • Low-frequency cetaceans (mysticetes): generalized hearing is estimated to occur between approximately 7 Hertz (Hz) and 35 kHz; • Mid-frequency cetaceans (larger toothed whales, beaked whales, and most delphinids): generalized hearing is estimated to occur between approximately 150 Hz and 160 kHz; • High-frequency cetaceans (porpoises, river dolphins, and members of the genera Kogia and Cephalorhynchus; including two members of the genus Lagenorhynchus, on the basis of recent echolocation data and genetic data): generalized hearing is estimated to occur between approximately 275 Hz and 160 kHz. • Pinnipeds in water; Phocidae (true seals): generalized hearing is estimated to occur between approximately 50 Hz to 86 kHz; • Pinnipeds in water; Otariidae (eared seals): generalized hearing is estimated to occur between 60 Hz and 39 kHz. The pinniped functional hearing group was modified from Southall et al. (2007) on the basis of data indicating that phocid species have consistently demonstrated an extended frequency range of hearing compared to otariids, especially in the higher frequency range ¨ (Hemila et al., 2006; Kastelein et al., 2009; Reichmuth and Holt, 2013). For more detail concerning these groups and associated frequency ranges, please see NMFS (2016) for a review of available information. Eleven marine mammal species (nine cetacean and two pinniped (both phocid) species) have the reasonable potential to co-occur with the proposed survey activities. Please refer to Table 2. Of the cetacean species that may be present, five are classified as low-frequency cetaceans (i.e., all mysticete species), four are classified as mid-frequency cetaceans (i.e., all delphinid and ziphiid species and the sperm whale), and one is classified as high-frequency cetacean (i.e., harbor porpoise). Potential Effects of the Specified Activity on Marine Mammals and Their Habitat This section includes a summary and discussion of the ways that components of the specified activity may impact E:\FR\FM\15MYN1.SGM 15MYN1 Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices marine mammals and their habitat. The ‘‘Estimated Take by Incidental Harassment’’ section later in this document includes a quantitative analysis of the number of individuals that are expected to be taken by this activity. The ‘‘Negligible Impact Analysis and Determination’’ section considers the content of this section, the ‘‘Estimated Take by Incidental Harassment’’ section, and the ‘‘Proposed Mitigation’’ section, to draw conclusions regarding the likely impacts of these activities on the reproductive success or survivorship of individuals and how those impacts on individuals are likely to impact marine mammal species or stocks. daltland on DSKBBV9HB2PROD with NOTICES Background on Sound Sound is a physical phenomenon consisting of minute vibrations that travel through a medium, such as air or water, and is generally characterized by several variables. Frequency describes the sound’s pitch and is measured in Hz or kHz, while sound level describes the sound’s intensity and is measured in dB. Sound level increases or decreases exponentially with each dB of change. The logarithmic nature of the scale means that each 10-dB increase is a 10fold increase in acoustic power (and a 20-dB increase is then a 100-fold increase in power). A 10-fold increase in acoustic power does not mean that the sound is perceived as being 10 times louder, however. Sound levels are compared to a reference sound pressure (micro-Pascal) to identify the medium. For air and water, these reference pressures are ‘‘re: 20 micro pascals (mPa)’’ and ‘‘re: 1 mPa,’’ respectively. Root mean square (RMS) is the quadratic mean sound pressure over the duration of an impulse. RMS is calculated by squaring all of the sound amplitudes, averaging the squares, and then taking the square root of the average (Urick, 1975). RMS accounts for both positive and negative values; squaring the pressures makes all values positive so that they may be accounted for in the summation of pressure levels. This measurement is often used in the context of discussing behavioral effects, in part because behavioral effects, which often result from auditory cues, may be better expressed through averaged units rather than by peak pressures. Acoustic Impacts HRG survey equipment use during the geophysical surveys may temporarily impact marine mammals in the area due to elevated in-water sound levels. Marine mammals are continually exposed to many sources of sound. VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 Naturally occurring sounds such as lightning, rain, sub-sea earthquakes, and biological sounds (e.g., snapping shrimp, whale songs) are widespread throughout the world’s oceans. Marine mammals produce sounds in various contexts and use sound for various biological functions including, but not limited to: (1) Social interactions; (2) foraging; (3) orientation; and (4) predator detection. Interference with producing or receiving these sounds may result in adverse impacts. Audible distance, or received levels of sound depend on the nature of the sound source, ambient noise conditions, and the sensitivity of the receptor to the sound (Richardson et al., 1995). Type and significance of marine mammal reactions to sound are likely dependent on a variety of factors including, but not limited to, (1) the behavioral state of the animal (e.g., feeding, traveling, etc.); (2) frequency of the sound; (3) distance between the animal and the source; and (4) the level of the sound relative to ambient conditions (Southall et al., 2007). When sound travels (propagates) from its source, its loudness decreases as the distance traveled by the sound increases. Thus, the loudness of a sound at its source is higher than the loudness of that same sound a kilometer away. Acousticians often refer to the loudness of a sound at its source (typically referenced to one meter from the source) as the source level and the loudness of sound elsewhere as the received level (i.e., typically the receiver). For example, a humpback whale 3 km from a device that has a source level of 230 dB may only be exposed to sound that is 160 dB loud, depending on how the sound travels through water (e.g., spherical spreading (6 dB reduction with doubling of distance) was used in this example). As a result, it is important to understand the difference between source levels and received levels when discussing the loudness of sound in the ocean or its impacts on the marine environment. As sound travels from a source, its propagation in water is influenced by various physical characteristics, including water temperature, depth, salinity, and surface and bottom properties that cause refraction, reflection, absorption, and scattering of sound waves. Oceans are not homogeneous and the contribution of each of these individual factors is extremely complex and interrelated. The physical characteristics that determine the sound’s speed through the water will change with depth, season, geographic location, and with time of day (as a result, in actual active PO 00000 Frm 00009 Fmt 4703 Sfmt 4703 22449 sonar operations, crews will measure oceanic conditions, such as sea water temperature and depth, to calibrate models that determine the path the sonar signal will take as it travels through the ocean and how strong the sound signal will be at a given range along a particular transmission path). As sound travels through the ocean, the intensity associated with the wavefront diminishes, or attenuates. This decrease in intensity is referred to as propagation loss, also commonly called transmission loss. Hearing Impairment Marine mammals may experience temporary or permanent hearing impairment when exposed to loud sounds. Hearing impairment is classified by temporary threshold shift (TTS) and permanent threshold shift (PTS). There are no empirical data for onset of PTS in any marine mammal; therefore, PTS-onset must be estimated from TTS-onset measurements and from the rate of TTS growth with increasing exposure levels above the level eliciting TTS-onset. PTS is considered auditory injury (Southall et al., 2007) and occurs in a specific frequency range and amount. Irreparable damage to the inner or outer cochlear hair cells may cause PTS; however, other mechanisms are also involved, such as exceeding the elastic limits of certain tissues and membranes in the middle and inner ears and resultant changes in the chemical composition of the inner ear fluids (Southall et al., 2007). Given the higher level of sound, longer durations of exposure necessary to cause PTS as compared with TTS, and the small zone within which sound levels would exceed criteria for onset of PTS, it is considerably less likely that PTS would occur during the proposed HRG surveys. Temporary Threshold Shift TTS is the mildest form of hearing impairment that can occur during exposure to a loud sound (Kryter, 1985). While experiencing TTS, the hearing threshold rises and a sound must be stronger in order to be heard. At least in terrestrial mammals, TTS can last from minutes or hours to (in cases of strong TTS) days, can be limited to a particular frequency range, and can occur to varying degrees (i.e., a loss of a certain number of dBs of sensitivity). For sound exposures at or somewhat above the TTS threshold, hearing sensitivity in both terrestrial and marine mammals recovers rapidly after exposure to the noise ends. Marine mammal hearing plays a critical role in communication with conspecifics and in interpretation of E:\FR\FM\15MYN1.SGM 15MYN1 daltland on DSKBBV9HB2PROD with NOTICES 22450 Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices environmental cues for purposes such as predator avoidance and prey capture. Depending on the degree (elevation of threshold in dB), duration (i.e., recovery time), and frequency range of TTS and the context in which it is experienced, TTS can have effects on marine mammals ranging from discountable to serious. For example, a marine mammal may be able to readily compensate for a brief, relatively small amount of TTS in a non-critical frequency range that takes place during a time when the animals is traveling through the open ocean, where ambient noise is lower and there are not as many competing sounds present. Alternatively, a larger amount and longer duration of TTS sustained during a time when communication is critical for successful mother/calf interactions could have more serious impacts if it were in the same frequency band as the necessary vocalizations and of a severity that it impeded communication. The fact that animals exposed to levels and durations of sound that would be expected to result in this physiological response would also be expected to have behavioral responses of a comparatively more severe or sustained nature is also notable and potentially of more importance than the simple existence of a TTS. Currently, TTS data only exist for four species of cetaceans (bottlenose dolphin, beluga whale, harbor porpoise, and Yangtze finless porpoise) and three species of pinnipeds (northern elephant seal, harbor seal, and California sea lion) exposed to a limited number of sound sources (i.e., mostly tones and octaveband noise) in laboratory settings (e.g., Finneran et al., 2002 and 2010; Nachtigall et al., 2004; Kastak et al., 2005; Lucke et al., 2009; Mooney et al., 2009; Popov et al., 2011; Finneran and Schlundt, 2010). In general, harbor seals (Kastak et al., 2005; Kastelein et al., 2012a) and harbor porpoises (Lucke et al., 2009; Kastelein et al., 2012b) have a lower TTS onset than other measured pinniped or cetacean species. However, even for these animals, which are better able to hear higher frequencies and may be more sensitive to higher frequencies, exposures on the order of approximately 170 dBRMS or higher for brief transient signals are likely required for even temporary (recoverable) changes in hearing sensitivity that would likely not be categorized as physiologically damaging (Lucke et al., 2009). Additionally, the existing marine mammal TTS data come from a limited number of individuals within these species. There are no data available on noise-induced hearing loss for VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 mysticetes (of note, the source operating characteristics of some of Bay State Wind’s proposed HRG survey equipment—i.e., the equipment positioning systems—are unlikely to be audible to mysticetes). For summaries of data on TTS in marine mammals or for further discussion of TTS onset thresholds, please see NMFS (2016), Southall et al. (2007), Finneran and Jenkins (2012), and Finneran (2015). Scientific literature highlights the inherent complexity of predicting TTS onset in marine mammals, as well as the importance of considering exposure duration when assessing potential impacts (Mooney et al., 2009a, 2009b; Kastak et al., 2007). Generally, with sound exposures of equal energy, quieter sounds (lower sound pressure level (SPL)) of longer duration were found to induce TTS onset more than louder sounds (higher SPL) of shorter duration (more similar to sub-bottom profilers). For intermittent sounds, less threshold shift will occur than from a continuous exposure with the same energy (some recovery will occur between intermittent exposures) (Kryter et al., 1966; Ward, 1997). For sound exposures at or somewhat above the TTS-onset threshold, hearing sensitivity recovers rapidly after exposure to the sound ends; intermittent exposures recover faster in comparison with continuous exposures of the same duration (Finneran et al., 2010). NMFS considers TTS as Level B harassment that is mediated by physiological effects on the auditory system; however, NMFS does not consider TTS-onset to be the lowest level at which Level B harassment may occur. Marine mammals in the Lease Area during the HRG survey are unlikely to incur TTS hearing impairment due to the characteristics of the sound sources, which include low source levels (208 to 221 dB re 1 mPa-m) and generally very short pulses and duration of the sound. Even for high-frequency cetacean species (e.g., harbor porpoises), which may have increased sensitivity to TTS (Lucke et al., 2009; Kastelein et al., 2012b), individuals would have to make a very close approach and also remain very close to vessels operating these sources in order to receive multiple exposures at relatively high levels, as would be necessary to cause TTS. Intermittent exposures—as would occur due to the brief, transient signals produced by these sources—require a higher cumulative SEL to induce TTS than would continuous exposures of the same duration (i.e., intermittent exposure results in lower levels of TTS) (Mooney et al., 2009a; Finneran et al., 2010). Moreover, most marine mammals PO 00000 Frm 00010 Fmt 4703 Sfmt 4703 would more likely avoid a loud sound source rather than swim in such close proximity as to result in TTS. Kremser et al. (2005) noted that the probability of a cetacean swimming through the area of exposure when a sub-bottom profiler emits a pulse is small—because if the animal was in the area, it would have to pass the transducer at close range in order to be subjected to sound levels that could cause temporary threshold shift and would likely exhibit avoidance behavior to the area near the transducer rather than swim through at such a close range. Further, the restricted beam shape of the sub-bottom profiler and other HRG survey equipment makes it unlikely that an animal would be exposed more than briefly during the passage of the vessel. Boebel et al. (2005) concluded similarly for single and multibeam echosounders, and more recently, Lurton (2016) conducted a modeling exercise and concluded similarly that likely potential for acoustic injury from these types of systems is negligible, but that behavioral response cannot be ruled out. Animals may avoid the area around the survey vessels, thereby reducing exposure. Any disturbance to marine mammals is likely to be in the form of temporary avoidance or alteration of opportunistic foraging behavior near the survey location. Masking Masking is the obscuring of sounds of interest to an animal by other sounds, typically at similar frequencies. Marine mammals are highly dependent on sound, and their ability to recognize sound signals amid other sound is important in communication and detection of both predators and prey (Tyack, 2000). Background ambient sound may interfere with or mask the ability of an animal to detect a sound signal even when that signal is above its absolute hearing threshold. Even in the absence of anthropogenic sound, the marine environment is often loud. Natural ambient sound includes contributions from wind, waves, precipitation, other animals, and (at frequencies above 30 kHz) thermal sound resulting from molecular agitation (Richardson et al., 1995). Background sound may also include anthropogenic sound, and masking of natural sounds can result when human activities produce high levels of background sound. Conversely, if the background level of underwater sound is high (e.g., on a day with strong wind and high waves), an anthropogenic sound source would not be detectable as far away as would be possible under quieter conditions and would itself be E:\FR\FM\15MYN1.SGM 15MYN1 Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices daltland on DSKBBV9HB2PROD with NOTICES masked. Ambient sound is highly variable on continental shelves (Thompson, 1965; Myrberg, 1978; Desharnais et al., 1999). This results in a high degree of variability in the range at which marine mammals can detect anthropogenic sounds. Although masking is a phenomenon which may occur naturally, the introduction of loud anthropogenic sounds into the marine environment at frequencies important to marine mammals increases the severity and frequency of occurrence of masking. For example, if a baleen whale is exposed to continuous low-frequency sound from an industrial source, this would reduce the size of the area around that whale within which it can hear the calls of another whale. The components of background noise that are similar in frequency to the signal in question primarily determine the degree of masking of that signal. In general, little is known about the degree to which marine mammals rely upon detection of sounds from conspecifics, predators, prey, or other natural sources. In the absence of specific information about the importance of detecting these natural sounds, it is not possible to predict the impact of masking on marine mammals (Richardson et al., 1995). In general, masking effects are expected to be less severe when sounds are transient than when they are continuous. Masking is typically of greater concern for those marine mammals that utilize low-frequency communications, such as baleen whales, because of how far lowfrequency sounds propagate. Marine mammal communications would not likely be masked appreciably by the sub-profiler or pingers’ signals given the directionality of the signal and the brief period when an individual mammal is likely to be within its beam. Non-Auditory Physical Effects (Stress) Classic stress responses begin when an animal’s central nervous system perceives a potential threat to its homeostasis. That perception triggers stress responses regardless of whether a stimulus actually threatens the animal; the mere perception of a threat is sufficient to trigger a stress response (Moberg, 2000; Seyle, 1950). Once an animal’s central nervous system perceives a threat, it mounts a biological response or defense that consists of a combination of the four general biological defense responses: Behavioral responses, autonomic nervous system responses, neuroendocrine responses, or immune responses. In the case of many stressors, an animal’s first and sometimes most economical (in terms of biotic costs) VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 response is behavioral avoidance of the potential stressor or avoidance of continued exposure to a stressor. An animal’s second line of defense to stressors involves the sympathetic part of the autonomic nervous system and the classical ‘‘fight or flight’’ response which includes the cardiovascular system, the gastrointestinal system, the exocrine glands, and the adrenal medulla to produce changes in heart rate, blood pressure, and gastrointestinal activity that humans commonly associate with ‘‘stress.’’ These responses have a relatively short duration and may or may not have significant long-term effect on an animal’s welfare. An animal’s third line of defense to stressors involves its neuroendocrine systems; the system that has received the most study has been the hypothalamus-pituitary-adrenal system (also known as the HPA axis in mammals or the hypothalamuspituitary-interrenal axis in fish and some reptiles). Unlike stress responses associated with the autonomic nervous system, virtually all neuro-endocrine functions that are affected by stress— including immune competence, reproduction, metabolism, and behavior—are regulated by pituitary hormones. Stress-induced changes in the secretion of pituitary hormones have been implicated in failed reproduction (Moberg, 1987; Rivier, 1995), altered metabolism (Elasser et al., 2000), reduced immune competence (Blecha, 2000), and behavioral disturbance. Increases in the circulation of glucocorticosteroids (cortisol, corticosterone, and aldosterone in marine mammals; see Romano et al., 2004) have been equated with stress for many years. The primary distinction between stress (which is adaptive and does not normally place an animal at risk) and distress is the biotic cost of the response. During a stress response, an animal uses glycogen stores that can be quickly replenished once the stress is alleviated. In such circumstances, the cost of the stress response would not pose a risk to the animal’s welfare. However, when an animal does not have sufficient energy reserves to satisfy the energetic costs of a stress response, energy resources must be diverted from other biotic function, which impairs those functions that experience the diversion. For example, when mounting a stress response diverts energy away from growth in young animals, those animals may experience stunted growth. When mounting a stress response diverts energy from a fetus, an animal’s reproductive success and its fitness will suffer. In these cases, the animals will PO 00000 Frm 00011 Fmt 4703 Sfmt 4703 22451 have entered a pre-pathological or pathological state which is called ‘‘distress’’ (Seyle, 1950) or ‘‘allostatic loading’’ (McEwen and Wingfield, 2003). This pathological state will last until the animal replenishes its biotic reserves sufficient to restore normal function. Note that these examples involved a long-term (days or weeks) stress response exposure to stimuli. Relationships between these physiological mechanisms, animal behavior, and the costs of stress responses have also been documented fairly well through controlled experiments; because this physiology exists in every vertebrate that has been studied, it is not surprising that stress responses and their costs have been documented in both laboratory and freeliving animals (for examples see, Holberton et al., 1996; Hood et al., 1998; Jessop et al., 2003; Krausman et al., 2004; Lankford et al., 2005; Reneerkens et al., 2002; Thompson and Hamer, 2000). Information has also been collected on the physiological responses of marine mammals to exposure to anthropogenic sounds (Fair and Becker, 2000; Romano et al., 2002). For example, Rolland et al. (2012) found that noise reduction from reduced ship traffic in the Bay of Fundy was associated with decreased stress in North Atlantic right whales. In a conceptual model developed by the Population Consequences of Acoustic Disturbance (PCAD) working group, serum hormones were identified as possible indicators of behavioral effects that are translated into altered rates of reproduction and mortality. Studies of other marine animals and terrestrial animals would also lead us to expect some marine mammals to experience physiological stress responses and, perhaps, physiological responses that would be classified as ‘‘distress’’ upon exposure to high frequency, mid-frequency and lowfrequency sounds. For example, Jansen (1998) reported on the relationship between acoustic exposures and physiological responses that are indicative of stress responses in humans (for example, elevated respiration and increased heart rates). Jones (1998) reported on reductions in human performance when faced with acute, repetitive exposures to acoustic disturbance. Trimper et al. (1998) reported on the physiological stress responses of osprey to low-level aircraft noise while Krausman et al. (2004) reported on the auditory and physiology stress responses of endangered Sonoran pronghorn to military overflights. Smith et al. (2004a, 2004b), for example, identified noise-induced physiological E:\FR\FM\15MYN1.SGM 15MYN1 daltland on DSKBBV9HB2PROD with NOTICES 22452 Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices transient stress responses in hearingspecialist fish (i.e., goldfish) that accompanied short- and long-term hearing losses. Welch and Welch (1970) reported physiological and behavioral stress responses that accompanied damage to the inner ears of fish and several mammals. Hearing is one of the primary senses marine mammals use to gather information about their environment and to communicate with conspecifics. Although empirical information on the relationship between sensory impairment (TTS, PTS, and acoustic masking) on marine mammals remains limited, it seems reasonable to assume that reducing an animal’s ability to gather information about its environment and to communicate with other members of its species would be stressful for animals that use hearing as their primary sensory mechanism. Therefore, we assume that acoustic exposures sufficient to trigger onset PTS or TTS would be accompanied by physiological stress responses because terrestrial animals exhibit those responses under similar conditions (NRC, 2003). More importantly, marine mammals might experience stress responses at received levels lower than those necessary to trigger onset TTS. Based on empirical studies of the time required to recover from stress responses (Moberg, 2000), we also assume that stress responses are likely to persist beyond the time interval required for animals to recover from TTS and might result in pathological and pre-pathological states that would be as significant as behavioral responses to TTS. In general, there are few data on the potential for strong, anthropogenic underwater sounds to cause nonauditory physical effects in marine mammals. Such effects, if they occur at all, would presumably be limited to short distances and to activities that extend over a prolonged period. The available data do not allow identification of a specific exposure level above which non-auditory effects can be expected (Southall et al., 2007). There is no definitive evidence that any of these effects occur even for marine mammals in close proximity to an anthropogenic sound source. In addition, marine mammals that show behavioral avoidance of survey vessels and related sound sources, are unlikely to incur non-auditory impairment or other physical effects. NMFS does not expect that the generally short-term, intermittent, and transitory HRG surveys would create conditions of longterm, continuous noise and chronic acoustic exposure leading to long-term VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 physiological stress responses in marine mammals. Behavioral Disturbance Behavioral responses to sound are highly variable and context-specific. An animal’s perception of and response to (in both nature and magnitude) an acoustic event can be influenced by prior experience, perceived proximity, bearing of the sound, familiarity of the sound, etc. (Southall et al., 2007; DeRuiter et al., 2013a and 2013b). If a marine mammal does react briefly to an underwater sound by changing its behavior or moving a small distance, the impacts of the change are unlikely to be significant to the individual, let alone the stock or population. However, if a sound source displaces marine mammals from an important feeding or breeding area for a prolonged period, impacts on individuals and populations could be significant (e.g., Lusseau and Bejder, 2007; Weilgart, 2007). Southall et al. (2007) reports the results of the efforts of a panel of experts in acoustic research from behavioral, physiological, and physical disciplines that convened and reviewed the available literature on marine mammal hearing and physiological and behavioral responses to human-made sound with the goal of proposing exposure criteria for certain effects. This peer-reviewed compilation of literature is very valuable, though Southall et al. (2007) note that not all data are equal, some have poor statistical power, insufficient controls, and/or limited information on received levels, background noise, and other potentially important contextual variables—such data were reviewed and sometimes used for qualitative illustration but were not included in the quantitative analysis for the criteria recommendations. All of the studies considered, however, contain an estimate of the received sound level when the animal exhibited the indicated response. For purposes of analyzing responses of marine mammals to anthropogenic sound and developing criteria, NMFS (2016) differentiates between pulse (impulsive) sounds (single and multiple) and non-pulse sounds. For purposes of evaluating the potential for take of marine mammals resulting from underwater noise due to the conduct of the proposed HRG surveys (operation of USBL positioning system and the subbottom profilers), the criteria for Level A harassment (PTS onset) from impulsive noise was used as prescribed in NMFS (2016) and the threshold level for Level B harassment (160 dBRMS re 1 mPa) was used to evaluate takes from behavioral harassment. PO 00000 Frm 00012 Fmt 4703 Sfmt 4703 Studies that address responses of lowfrequency cetaceans to sounds include data gathered in the field and related to several types of sound sources, including: vessel noise, drilling and machinery playback, low-frequency Msequences (sine wave with multiple phase reversals) playback, tactical lowfrequency active sonar playback, drill ships, and non-pulse playbacks. These studies generally indicate no (or very limited) responses to received levels in the 90 to 120 dB re: 1 mPa range and an increasing likelihood of avoidance and other behavioral effects in the 120 to 160 dB range. As mentioned earlier, though, contextual variables play a very important role in the reported responses and the severity of effects do not increase linearly with received levels. Also, few of the laboratory or field datasets had common conditions, behavioral contexts, or sound sources, so it is not surprising that responses differ. The studies that address responses of mid-frequency cetaceans to sounds include data gathered both in the field and the laboratory and related to several different sound sources, including: Pingers, drilling playbacks, ship and ice-breaking noise, vessel noise, Acoustic harassment devices (AHDs), Acoustic Deterrent Devices (ADDs), mid-frequency active sonar, and nonpulse bands and tones. Southall et al. (2007) were unable to come to a clear conclusion regarding the results of these studies. In some cases animals in the field showed significant responses to received levels between 90 and 120 dB, while in other cases these responses were not seen in the 120 to 150 dB range. The disparity in results was likely due to contextual variation and the differences between the results in the field and laboratory data (animals typically responded at lower levels in the field). The studies that address the responses of mid-frequency cetaceans to impulse sounds include data gathered both in the field and the laboratory and related to several different sound sources, including: Small explosives, airgun arrays, pulse sequences, and natural and artificial pulses. The data show no clear indication of increasing probability and severity of response with increasing received level. Behavioral responses seem to vary depending on species and stimuli. The studies that address responses of high-frequency cetaceans to sounds include data gathered both in the field and the laboratory and related to several different sound sources, including: pingers, AHDs, and various laboratory non-pulse sounds. All of these data were collected from harbor porpoises. E:\FR\FM\15MYN1.SGM 15MYN1 daltland on DSKBBV9HB2PROD with NOTICES Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices Southall et al. (2007) concluded that the existing data indicate that harbor porpoises are likely sensitive to a wide range of anthropogenic sounds at low received levels (around 90 to 120 dB), at least for initial exposures. All recorded exposures above 140 dB induced profound and sustained avoidance behavior in wild harbor porpoises (Southall et al., 2007). Rapid habituation was noted in some but not all studies. The studies that address the responses of pinnipeds in water to sounds include data gathered both in the field and the laboratory and related to several different sound sources, including: AHDs, various non-pulse sounds used in underwater data communication, underwater drilling, and construction noise. Few studies exist with enough information to include them in the analysis. The limited data suggest that exposures to non-pulse sounds between 90 and 140 dB generally do not result in strong behavioral responses of pinnipeds in water, but no data exist at higher received levels (Southall et al., 2007). The studies that address the responses of pinnipeds in water to impulse sounds include data gathered in the field and related to several different sources, including: small explosives, impact pile driving, and airgun arrays. Quantitative data on reactions of pinnipeds to impulse sounds is limited, but a general finding is that exposures in the 150 to 180 dB range generally have limited potential to induce avoidance behavior (Southall et al., 2007). Marine mammals are likely to avoid the HRG survey activity, especially harbor porpoises, while the harbor seals might be attracted to them out of curiosity. However, because the subbottom profilers and other HRG survey equipment operate from a moving vessel, and the field-verified distance to the 160 dBRMS re 1mPa isopleth (Level B harassment criteria) is 247 ft (75.28 m), the area and time that this equipment would be affecting a given location is very small. Further, once an area has been surveyed, it is not likely that it will be surveyed again, therefore reducing the likelihood of repeated HRG-related impacts within the survey area. We have also considered the potential for severe behavioral responses such as stranding and associated indirect injury or mortality from Bay State Wind’s use of HRG survey equipment, on the basis of a 2008 mass stranding of approximately one hundred melonheaded whales in a Madagascar lagoon system. An investigation of the event indicated that use of a high-frequency VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 mapping system (12-kHz multibeam echosounder) was the most plausible and likely initial behavioral trigger of the event, while providing the caveat that there is no unequivocal and easily identifiable single cause (Southall et al., 2013). The investigatory panel’s conclusion was based on (1) very close temporal and spatial association and directed movement of the survey with the stranding event; (2) the unusual nature of such an event coupled with previously documented apparent behavioral sensitivity of the species to other sound types (Southall et al., 2006; Brownell et al., 2009); and (3) the fact that all other possible factors considered were determined to be unlikely causes. Specifically, regarding survey patterns prior to the event and in relation to bathymetry, the vessel transited in a north-south direction on the shelf break parallel to the shore, ensonifying large areas of deep-water habitat prior to operating intermittently in a concentrated area offshore from the stranding site; this may have trapped the animals between the sound source and the shore, thus driving them towards the lagoon system. The investigatory panel systematically excluded or deemed highly unlikely nearly all potential reasons for these animals leaving their typical pelagic habitat for an area extremely atypical for the species (i.e., a shallow lagoon system). Notably, this was the first time that such a system has been associated with a stranding event. The panel also noted several site- and situation-specific secondary factors that may have contributed to the avoidance responses that led to the eventual entrapment and mortality of the whales. Specifically, shoreward-directed surface currents and elevated chlorophyll levels in the area preceding the event may have played a role (Southall et al., 2013). The report also notes that prior use of a similar system in the general area may have sensitized the animals and also concluded that, for odontocete cetaceans that hear well in higher frequency ranges where ambient noise is typically quite low, high-power active sonars operating in this range may be more easily audible and have potential effects over larger areas than low frequency systems that have more typically been considered in terms of anthropogenic noise impacts. It is, however, important to note that the relatively lower output frequency, higher output power, and complex nature of the system implicated in this event, in context of the other factors noted here, likely produced a fairly unusual set of circumstances that PO 00000 Frm 00013 Fmt 4703 Sfmt 4703 22453 indicate that such events would likely remain rare and are not necessarily relevant to use of lower-power, higherfrequency systems more commonly used for HRG survey applications. The risk of similar events recurring may be very low, given the extensive use of active acoustic systems used for scientific and navigational purposes worldwide on a daily basis and the lack of direct evidence of such responses previously reported. Tolerance Numerous studies have shown that underwater sounds from industrial activities are often readily detectable by marine mammals in the water at distances of many kms. However, other studies have shown that marine mammals at distances more than a few kilometers away often show no apparent response to industrial activities of various types (Miller et al., 2005). This is often true even in cases when the sounds must be readily audible to the animals based on measured received levels and the hearing sensitivity of that mammal group. Although various baleen whales, toothed whales, and (less frequently) pinnipeds have been shown to react behaviorally to underwater sound from sources such as airgun pulses or vessels under some conditions, at other times, mammals of all three types have shown no overt reactions (e.g., Malme et al., 1986; Richardson et al., 1995; Madsen and Mohl, 2000; Croll et al., 2001; Jacobs and Terhune, 2002; Madsen et al., 2002; Miller et al., 2005). In general, pinnipeds seem to be more tolerant of exposure to some types of underwater sound than are baleen whales. Richardson et al. (1995) found that vessel sound does not seem to strongly affect pinnipeds that are already in the water. Richardson et al. (1995) went on to explain that seals on haul-outs sometimes respond strongly to the presence of vessels and at other times appear to show considerable tolerance of vessels, and Brueggeman et al. (1992) observed ringed seals (Pusa hispida) hauled out on ice pans displaying shortterm escape reactions when a ship approached within 0.16–0.31 mi (0.25– 0.5 km). Due to the relatively high vessel traffic in the Lease Area it is possible that marine mammals are habituated to noise from project vessels in the area. Vessel Strike Ship strikes of marine mammals can cause major wounds, which may lead to the death of the animal. An animal at the surface could be struck directly by a vessel, a surfacing animal could hit E:\FR\FM\15MYN1.SGM 15MYN1 22454 Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices daltland on DSKBBV9HB2PROD with NOTICES the bottom of a vessel, or a vessel’s propeller could injure an animal just below the surface. The severity of injuries typically depends on the size and speed of the vessel (Knowlton and Kraus, 2001; Laist et al., 2001; Vanderlaan and Taggart, 2007). The most vulnerable marine mammals are those that spend extended periods of time at the surface in order to restore oxygen levels within their tissues after deep dives (e.g., the sperm whale). In addition, some baleen whales, such as the North Atlantic right whale, seem generally unresponsive to vessel sound, making them more susceptible to vessel collisions (Nowacek et al., 2004). These species are primarily large, slow moving whales. Smaller marine mammals (e.g., bottlenose dolphin) move quickly through the water column and are often seen riding the bow wave of large ships. Marine mammal responses to vessels may include avoidance and changes in dive pattern (NRC, 2003). An examination of all known ship strikes from all shipping sources (civilian and military) indicates vessel speed is a principal factor in whether a vessel strike results in death (Knowlton and Kraus, 2001; Laist et al., 2001; Jensen and Silber, 2003; Vanderlaan and Taggart, 2007). In assessing records with known vessel speeds, Laist et al. (2001) found a direct relationship between the occurrence of a whale strike and the speed of the vessel involved in the collision. The authors concluded that most deaths occurred when a vessel was traveling in excess of 24.1 km/h (14.9 mph; 13 knots). Given the slow vessel speeds and predictable course necessary for data acquisition, ship strike is unlikely to occur during the geophysical and geotechnical surveys. Marine mammals would be able to easily avoid vessels and are likely already habituated to the presence of numerous vessels in the area. Further, Bay State Wind shall implement measures (e.g., vessel speed restrictions and separation distances; see Proposed Mitigation Measures) set forth in the BOEM Lease to reduce the risk of a vessel strike to marine mammal species in the Lease Area. Effects on Marine Mammal Habitat There are no feeding areas, rookeries, or mating grounds known to be biologically important to marine mammals within the proposed project area. There is also no designated critical habitat for any ESA-listed marine mammals. NMFS’ regulations at 50 CFR part 224 designated the nearshore waters of the Mid-Atlantic Bight as the Mid-Atlantic U.S. Seasonal Management Area (SMA) for right whales in 2008. Mandatory vessel speed restrictions are VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 in place in that SMA from November 1 through April 30 to reduce the threat of collisions between ships and right whales around their migratory route and calving grounds. Because of the temporary nature of the disturbance, the availability of similar habitat and resources (e.g., prey species) in the surrounding area, and the lack of important or unique marine mammal habitat, the impacts to marine mammals and the food sources that they utilize are not expected to cause significant or long-term consequences for individual marine mammals or their populations. Estimated Take This section provides an estimate of the number of incidental takes proposed for authorization through this IHA, which will inform both NMFS’ consideration of ‘‘small numbers’’ and the negligible impact determination. Harassment is the only type of take expected to result from these activities. Except with respect to certain activities not pertinent here, the MMPA defines ‘‘harassment’’ as any act of pursuit, torment, or annoyance which (i) has the potential to injure a marine mammal or marine mammal stock in the wild (Level A harassment); or (ii) has the potential to disturb a marine mammal or marine mammal stock in the wild by causing disruption of behavioral patterns, including, but not limited to, migration, breathing, nursing, breeding, feeding, or sheltering (Level B harassment). Authorized takes would primarily be by Level B harassment, as use of the HRG equipment (i.e., USBL&GAPS systems, sub-bottom profilers, sparkers, and boomers) has the potential to result in disruption of behavioral patterns for individual marine mammals. However, there is also some potential for auditory injury (Level A harassment) to result, primarily for high frequency species (i.e., harbor porpoise) due to larger predicted auditory injury zones. Auditory injury is unlikely to occur for low or mid-frequency cetaceans or pinnipeds. The proposed mitigation and monitoring measures are expected to avoid, or minimize the severity of such taking, to the extent practicable. Project activities that have the potential to harass marine mammals, as defined by the MMPA, include underwater noise from operation of the HRG survey sub-bottom profilers, boomers, sparkers, and equipment positioning systems. Harassment could take the form of temporary threshold shift, avoidance, or other changes in marine mammal behavior. NMFS anticipates that impacts to marine mammals would be mainly in the form PO 00000 Frm 00014 Fmt 4703 Sfmt 4703 of behavioral harassment (Level B harassment), but we have evaluated a small number of PTS takes (Level A harassment) for high frequency species (harbor porpoise) to be precautionary. No take by serious injury, or mortality is proposed. NMFS does not anticipate take resulting from the movement of vessels associated with construction because there will be a limited number of vessels moving at slow speeds and the BOEM lease agreement requires measures to ensure vessel strike avoidance. Described in the most basic way, we estimate take by estimating: (1) Acoustic thresholds above which NMFS believes the best available science indicates marine mammals will be behaviorally harassed or incur some degree of permanent hearing impairment; (2) the area or volume of water that will be ensonified above these levels in a day; (3) the density or occurrence of marine mammals within these ensonified areas; and, (4) the number of days of activities. Below we describe these components in more detail and present the proposed take estimate. Acoustic Thresholds Using the best available science, NMFS has developed acoustic thresholds that identify the received level of underwater sound above which exposed marine mammals would be reasonably expected to be behaviorally harassed (equated to Level B harassment) or to incur PTS of some degree (equated to Level A harassment). Level B Harassment for non-explosive sources—Though significantly driven by received level, the onset of behavioral disturbance from anthropogenic noise exposure is also informed to varying degrees by other factors related to the source (e.g., frequency, predictability, duty cycle), the environment (e.g., bathymetry), and the receiving animals (hearing, motivation, experience, demography, behavioral context) and can be difficult to predict (Southall et al., 2007, Ellison et al., 2011). Based on what the available science indicates and the practical need to use a threshold based on a factor that is both predictable and measurable for most activities, NMFS uses a generalized acoustic threshold based on received level to estimate the onset of behavioral harassment. NMFS predicts that marine mammals are likely to be behaviorally harassed in a manner we consider Level B harassment when exposed to underwater anthropogenic noise above received levels of 120 dB re 1 mPa (rms) for continuous (e.g. vibratory piledriving, drilling) and above 160 dB re 1 mPa (rms) for non-explosive impulsive E:\FR\FM\15MYN1.SGM 15MYN1 22455 Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices (e.g., seismic airguns) or intermittent (e.g., scientific sonar) sources. Bay State Wind’s proposed activity includes the use of intermittent impulsive (HRG Equipment) sources, and therefore the 160 dB re 1 mPa (rms) threshold is applicable. Level A harassment for non-explosive sources—NMFS’ Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing (Technical Guidance, 2016) identifies dual criteria to assess auditory injury (Level A harassment) to five different marine mammal groups (based on hearing sensitivity) as a result of exposure to noise from two different types of sources (impulsive or nonimpulsive). These thresholds are provided in Table 4 below. The references, analysis, and methodology used in the development of the thresholds are described in NMFS 2016 Technical Guidance, which may be accessed at: https://www.nmfs.noaa.gov/pr/acoustics/ guidelines.htm. TABLE 4—THRESHOLDS IDENTIFYING THE ONSET OF PERMANENT THRESHOLD SHIFT PTS onset acoustic thresholds * (received level) Hearing group Impulsive Low-Frequency (LF) Cetaceans ....................................... Mid-Frequency (MF) Cetaceans ...................................... High-Frequency (HF) Cetaceans ..................................... Phocid Pinnipeds (PW) (Underwater) .............................. Otariid Pinnipeds (OW) (Underwater) .............................. Cell Cell Cell Cell Cell 1: 3: 5: 7: 9: Lpk,flat: Lpk,flat: Lpk,flat: Lpk,flat: Lpk,flat: 219 230 202 218 232 dB; dB; dB; dB; dB; Non-impulsive LE,LF,24h: 183 dB ......................... LE,MF,24h: 185 dB ........................ LE,HF,24h: 155 dB ........................ LE,PW,24h: 185 dB ....................... LE,OW,24h: 203 dB ....................... Cell Cell Cell Cell Cell 2: LE,LF,24h: 199 dB. 4: LE,MF,24h: 198 dB. 6: LE,HF,24h: 173 dB. 8: LE,PW,24h: 201 dB. 10: LE,OW,24h: 219 dB. * Dual metric acoustic thresholds for impulsive sounds: Use whichever results in the largest isopleth for calculating PTS onset. If a non-impulsive sound has the potential of exceeding the peak sound pressure level thresholds associated with impulsive sounds, these thresholds should also be considered. Note: Peak sound pressure (Lpk) has a reference value of 1 μPa, and cumulative sound exposure level (LE) has a reference value of 1μPa2s. In this Table, thresholds are abbreviated to reflect American National Standards Institute standards (ANSI 2013). However, peak sound pressure is defined by ANSI as incorporating frequency weighting, which is not the intent for this Technical Guidance. Hence, the subscript ‘‘flat’’ is being included to indicate peak sound pressure should be flat weighted or unweighted within the generalized hearing range. The subscript associated with cumulative sound exposure level thresholds indicates the designated marine mammal auditory weighting function (LF, MF, and HF cetaceans, and PW and OW pinnipeds) and that the recommended accumulation period is 24 hours. The cumulative sound exposure level thresholds could be exceeded in a multitude of ways (i.e., varying exposure levels and durations, duty cycle). When possible, it is valuable for action proponents to indicate the conditions under which these acoustic thresholds will be exceeded. Ensonified Area Here, we describe operational and environmental parameters of the activity that will feed into identifying the area ensonified above the acoustic thresholds. When NMFS’ Acoustic Technical Guidance (2016) was published, in recognition of the fact that ensonified area/volume could be more technically challenging to predict because of the duration component of the new thresholds, NMFS developed an optional User Spreadsheet that includes tools to help predict takes. We note that because of some of the assumptions included in the methods used for these tools, we anticipate that isopleths produced are typically going to be overestimates of some degree, which will result in some degree of overestimate of Level A take. However, these tools offer the best way to predict appropriate isopleths when more sophisticated 3D modeling methods are not available, and NMFS continues to develop ways to quantitatively refine these tools, and will qualitatively address the output where appropriate. For mobile sources such as the HRG survey equipment proposed for use in Bay State Wind’s activity, the User Spreadsheet predicts the closest distance at which a stationary animal would not incur PTS if the sound source traveled by the animal in a straight line at a constant speed. Inputs used in the User Spreadsheet, and the resulting isopleths for the various HRG equipment types are reported in Appendix A of Bay State Wind’s IHA application, and distances to the acoustic exposure criteria discussed above are shown in Tables 5 and 6. TABLE 5—DISTANCES TO THRESHOLDS FOR LEVEL A HARASSMENT [PTS onset] Marine mammal level A harassment (PTS onset) Generalized hearing group Distance (m) USBL/GAPS Positioning Systems 1 LF cetaceans .............................................................................. MF cetaceans ............................................................................. daltland on DSKBBV9HB2PROD with NOTICES HF cetaceans ............................................................................. Phocid pinnipeds ........................................................................ 219 183 230 185 202 155 218 185 dBpeak/ .................................................................................. dB SELcum ........................................................................... dBpeak/ .................................................................................. dB SELcum ........................................................................... dBpeak/ .................................................................................. dB SELcum ........................................................................... dBpeak/ .................................................................................. dB SELcum ........................................................................... — — — — — — — — Sub-bottom Profiler 1 LF cetaceans .............................................................................. VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 PO 00000 Frm 00015 219 dBpeak/ .................................................................................. 183 dB SELcum ........................................................................... Fmt 4703 Sfmt 4703 E:\FR\FM\15MYN1.SGM 15MYN1 — — 22456 Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices TABLE 5—DISTANCES TO THRESHOLDS FOR LEVEL A HARASSMENT—Continued [PTS onset] Marine mammal level A harassment (PTS onset) Generalized hearing group MF cetaceans ............................................................................. HF cetaceans ............................................................................. Phocid pinnipeds ........................................................................ 230 185 202 155 218 185 Distance (m) dBpeak/ .................................................................................. dB SELcum ........................................................................... dBpeak/ .................................................................................. dB SELcum ........................................................................... dBpeak/ .................................................................................. dB SELcum ........................................................................... — — — <6 — — Innomar SES–2000 Medium Sub-Bottom Profiler LF cetaceans .............................................................................. MF cetaceans ............................................................................. HF cetaceans ............................................................................. Phocid pinnipeds ........................................................................ 219 183 230 185 202 155 218 185 dBpeak/ .................................................................................. dB SELcum ........................................................................... dBpeak/ .................................................................................. dB SELcum ........................................................................... dBpeak/ .................................................................................. dB SELcum ........................................................................... dBpeak/ .................................................................................. dB SELcum ........................................................................... <1 N/A <1 — <5 <75 <1 N/A Sparker 1 LF cetaceans .............................................................................. MF cetaceans ............................................................................. HF cetaceans ............................................................................. Phocid pinnipeds ........................................................................ 219 183 230 185 202 155 218 185 dBpeak/ .................................................................................. dB SELcum ........................................................................... dBpeak/ .................................................................................. dB SELcum ........................................................................... dBpeak/ .................................................................................. dB SELcum ........................................................................... dBpeak/ .................................................................................. dB SELcum ........................................................................... — — — — <3 — — — Boomer LF cetaceans .............................................................................. MF cetaceans ............................................................................. HF cetaceans ............................................................................. Phocid pinnipeds ........................................................................ 219 183 230 185 202 155 218 185 dBpeak/ .................................................................................. dB SELcum ........................................................................... dBpeak/ .................................................................................. dB SELcum ........................................................................... dBpeak/ .................................................................................. dB SELcum ........................................................................... dBpeak/ .................................................................................. dB SELcum ........................................................................... <2 <15 — — <10 <1 <2 <1 Notes: Peak SPL criterion is unweighted, whereas the cumulative SEL criterion is M-weighted for the given marine mammal hearing group; Calculated sound levels and results are based on NMFS Acoustic Technical Guidance companion User Spreadsheet except as indicated (refer to Appendix A of the IHA application, which includes all spreadsheets); 1 Indicates distances for this equipment type have been field verified; —Indicates not expected. TABLE 6—DISTANCES TO LEVEL B HARASSMENT THRESHOLDS [160 dBRMS 90%] Marine mammal level B harassment 160 dBRMS re 1 μPa (m) Survey equipment daltland on DSKBBV9HB2PROD with NOTICES USBL & GAPS Positioning Systems Sonardyne Ranger 2 USBL HPT 5/7000 ...................................................................................................................................... Sonardyne Ranger 2 USBL HPT 3000 ......................................................................................................................................... Easytrak Nexus 2 USBL ................................................................................................................................................................ IxSea GAPS System ..................................................................................................................................................................... 6 1 2 1 Sidescan Sonar EdgeTech 4200 dual frequency Side Scan Sonar ........................................................................................................................ VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 PO 00000 Frm 00016 Fmt 4703 Sfmt 4703 E:\FR\FM\15MYN1.SGM 15MYN1 N/A 22457 Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices TABLE 6—DISTANCES TO LEVEL B HARASSMENT THRESHOLDS—Continued [160 dBRMS 90%] Marine mammal level B harassment 160 dBRMS re 1 μPa (m) Survey equipment Multibeam Sonar R2 Sonic 2024 Multibeam Echosounder ....................................................................................................................................... Kongsberg EM2040C Dual Band Head ........................................................................................................................................ N/A N/A Shallow Sub-Bottom Profilers Edgetech 3200 XS 216 ................................................................................................................................................................. Innomar SES–2000 Sub Bottom Profiler ....................................................................................................................................... 9 1 135 Sparkers GeoMarine Geo-Source 400tip ...................................................................................................................................................... 54 Boomers Applied Acoustics S-Boom Triple Plate Boomer ........................................................................................................................... 1 400 daltland on DSKBBV9HB2PROD with NOTICES Notes: 1 The calculated sound levels and results are based on NMFS Acoustic Technical Guidance (NMFS 2016) except as indicated. The Level B criterion is unweighted. N/A indicates the operating frequencies are above all relevant marine mammal hearing thresholds and these systems were not directly assessed in this IHA. Bay State Wind completed an underwater noise monitoring program for field verification at the project site prior to commencement of the HRG survey that took place in 2016. One of the main objectives of this program was to determine the apparent sound source levels of HRG activities. Results from field verification studies during previously authorized activities were used where applicable and manufacturer source levels were adjusted to reflect the field verified levels. However, not all equipment proposed for use in the 2018 season was used in the 2016 activities. As no field data currently exists for the Innomar sub-bottom profiler or Applied Acoustics boomer, acoustic modeling was completed using a version of the U.S. Naval Research Laboratory’s Rangedependent Acoustic Model (RAM) and BELLHOP Gaussian beam ray-trace propagation model (Porter and Liu 1994). Calculations of the ensonified area are conservative due to the directionality of the sound sources. For the various HRG transducers Bay State Wind proposes to use for these activities, the beamwidth varies from 200° (almost omnidirectional) to 1°. The modeled directional sound levels were then used as the input for the acoustic propagation models, which do not take the directionality of the source into account. Therefore, the volume of area affected would be much lower than VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 modeled in cases with narrow beamwidths such as the Innomar SES– 2000 sub-bottom profiler, which has a 1° beamwidth. Marine Mammal Occurrence In this section we provide the information about the presence, density, or group dynamics of marine mammals that will inform the take calculations. The data used as the basis for estimating species density (‘‘D’’) for the Lease Area are derived from data provided by Duke University’s Marine Geospatial Ecology Lab and the Marine Life Data and Analysis Team. This data set is a compilation of the best available marine mammal data (1994–2014) and was prepared in a collaboration between Duke University, Northeast Regional Planning Body, University of Carolina, the Virginia Aquarium and Marine Science Center, and NOAA (Roberts et al., 2016; MDAT 2016). Northeast Navy Operations Area (OPAREA) Density Estimates (DoN, 2007) were used in support for estimating take for seals, which represents the only available comprehensive data for seal abundance. NODEs utilized vessel-based and aerial survey data collected by NMFS from 1998–2005 during broad-scale abundance studies. Modeling methodology is detailed in DoN (2007). Therefore, for the purposes of the take calculations, NODEs Density Estimates PO 00000 Frm 00017 Fmt 4703 Sfmt 4703 (DoN, 2007) as reported for the summer and fall seasons were used to estimate harbor seal and gray seal densities. Take Calculation and Estimation Here we describe how the information provided above is brought together to produce a quantitative take estimate. In order to estimate the number of marine mammals predicted to be exposed to sound levels that would result in harassment, radial distances to predicted isopleths corresponding to harassment thresholds are calculated, as described above. Those distances are then used to calculate the area(s) around the HRG survey equipment predicted to be ensonified to sound levels that exceed harassment thresholds. The area estimated to be ensonified to relevant thresholds in a single day of the survey is then calculated, based on areas predicted to be ensonified around the HRG survey equipment and the estimated trackline distance traveled per day by the survey vessel. The estimated distance of the daily vessel trackline was determined using the estimated average speed of the vessel and the 24-hour or daylight-only operational period within each of the corresponding survey segments. All noise producing survey equipment are assumed to be operating concurrently. Using the distance of 400 m (1,312 ft) to the Level B isopleth and 75 m (246.1 ft) for the Level A isopleth (for harbor E:\FR\FM\15MYN1.SGM 15MYN1 22458 Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices porpoise), and the estimated daily vessel track of approximately 177.8 km (110.5 miles) for 24-hour operations and 43 km (26.7 miles) for daylight-only operations, areas of ensonification (zone of influence, or ZOI) were calculated and used as a basis for calculating takes of marine mammals. The ZOI is based on the worst case (since it assumes the equipment with the larger ZOI will be operating all the time), and are presented in Table 7. Take calculations were based on the highest seasonal species density as derived from Duke University density data (Roberts et al., 2016) for cetaceans and seasonal OPAREA density estimates (DoN, 2007) for pinnipeds. The resulting take calculations and number of requested takes (rounded to the nearest whole number) are presented in Table 8. TABLE 7—SURVEY SEGMENT DISTANCES AND ZONES OF INFLUENCE Number of active survey days Total track line (km) Survey segment Lot 3 (WSG/OSS Location—Offshore) ................................ 2,845 Estimated distance/day (km) Calculated level A ZOI (km 2)— (harbor porpoise) Calculated level B ZOI (km 2) 60 177.8 26.69 142.74 18 15 177.8 43.0 6.46 26.69 34.88 142.74 37 5 177.8 43.0 26.69 6.46 142.74 34.88 Export Cable Route, Somerset Lot 1 (nearshore) ................................................................. Lot 2 (offshore) .................................................................... 1,091 563 Export Cable Route, Falmouth Lot 4 (offshore) .................................................................... Lot 5 (nearshore) ................................................................. 2,253 108 TABLE 8—ESTIMATED LEVEL B HARASSMENT TAKES FOR HRG SURVEY ACTIVITIES Lot 3 (WSG/OSS location— offshore) Highest seasonal avg. density a (#/100 km2) Species Calc. take Lot 2 (Somerset export— offshore) Highest seasonal avg. density a (#/100 km2) Lot 1 (Somerset export— nearshore) Highest seasonal avg. density a (#/100 km2) Calc. take Calc. take Lot 4 (Falmouth export—offshore) Highest seasonal avg. density a (#/100 km2) Calc. take Lot 5 (Falmouth export— nearshore) Highest seasonal avg. density a (#/100 km2) Calc. take Totals Requested take % of population Level A Harbor porpoise .... 6.67 106.75 4.89 19.56 .............. .............. 1.1 10.95 .............. .............. 137 0.17 .............. .............. b 0.00 0.00 .............. .............. .............. .............. .............. .............. .............. .............. .............. .............. 18 32 c5 c 1,000 2.18 1.98 0.22 0.77 8.66 .............. .............. d 2,000 2.85 .............. .............. 16.99 24.62 c 500 1.02 0.95 2.18 0.56 Level B North Atlantic right whale ................. Humpback whale ... Fin whale ............... Sperm whale ......... Minke whale .......... Bottlenose dolphin Short-beaked common dolphin ....... Atlantic white-sided dolphin ............... Harbor porpoise .... Harbor seal e ......... Gray seal e ............. 0.96 0.15 0.27 0.01 0.08 1.72 82.22 (0.00) 12.44 23.24 0.71 7.00 147.34 6.26 535.71 1.90 6.67 9.74 14.12 162.75 570.94 834.41 1,209.26 1.25 .............. .............. 0.79 0.12 0.19 0.01 0.05 0.46 26.76 (0.00) 2.46 4.15 0.15 1.14 9.85 .............. .............. .............. .............. .............. .............. .............. .............. .............. .............. 0.04 0.07 0.00 0.03 9.00 41.72 (0.00) 2.30 3.64 0.22 1.82 475.06 2.74 58.67 .............. .............. 0.46 24.34 1.07 4.89 9.74 14.12 22.98 104.61 208.60 302.32 .............. .............. 9.74 14.12 .............. .............. 61.15 88.65 0.21 1.11 9.74 14.12 10.85 58.57 514.55 745.71 .............. .............. 9.74 14.12 d 20 755 1,654 2,397 daltland on DSKBBV9HB2PROD with NOTICES Notes: a Density values from Duke University (Roberts et al., 2016) except for pinnipeds. b Exclusion zone exceeds Level B isopleth; take adjusted to 0 given mitigation to prevent take. c Value increased to reflect typical group size. d Adjusted to account for actual take sighting data in the Survey Area to date (Smultea Environmental Sciences, 2016; Gardline, 2016). e Density from NODEs (DoN, 2007). As noted in Table 8, requested take estimates were adjusted to account for typical group size for sperm whales, bottlenose dolphins, and Atlantic whitesided dolphins. Requested take numbers were also adjusted to account for recent sightings data (Smultea Environmental Sciences, 2016; Gardline, 2016) for minke whales and short-beaked common dolphins. In addition, requested Level A take numbers for VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 harbor porpoise were adjusted to account for the fact that a Level A shutdown zone encompassing the Level A harassment zone will be implemented to avoid Level A takes of this species. Finally, requested take numbers were adjusted for north Atlantic right whales due to the implementation of a 500 m shutdown zone, which is greater than the 400 m Level B behavioral PO 00000 Frm 00018 Fmt 4703 Sfmt 4703 harassment zone, to avoid Level B takes of this species. Bay State Wind’s calculations do not take into account whether a single animal is harassed multiple times or whether each exposure is a different animal. Therefore, the numbers in Tables 6 are the maximum number of animals that may be harassed during the HRG surveys (i.e., Bay State Wind assumes that each exposure event is a E:\FR\FM\15MYN1.SGM 15MYN1 daltland on DSKBBV9HB2PROD with NOTICES Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices different animal). With exception of north Atlantic right whales and Level A takes of harbor porpoises, these estimates do not account for prescribed mitigation measures that Bay State Wind would implement during the specified activities and the fact that other mitigation measures may be imposed as part of other agreements that Bay State Wind must adhere to, such as their lease agreement with BOEM. NMFS proposes to authorize a small number of Level A takes of harbor porpoises even though NMFS has also proposed a 75 m shut down zone to avoid Level A take of this species. This is warranted due to the small size of the species in combination with some higher sea states and weather conditions that could make harbor porpoises more cryptic and difficult to observe at the 75 m shut down zone. For reasons discussed above (short pulse duration and highly directional sound pulse transmission of these mobile sources), PTS (Level A take) is unlikely to occur even if harbor porpoises were within the 75 m isopleth. However, out of an abundance of caution, NMFS proposes to authorize Level A take of harbor porpoises. No take of north Atlantic right whale is requested, nor is any take proposed for authorization. The modeled Level B behavioral harassment (400 m) is well within the 500 m mitigation shut down for this species and, based on the described monitoring measures, information from previous monitoring reports, and in consideration of the size of this species, it is reasonable to expect that north Atlantic right whales will be able to be observed such that shut down would occur well beyond the threshold for potential behavioral harassment. Finally, as stated above, calculation of the ensonified area does not take directionality of the sound source into account and results in a conservative estimate for the ZOI. The equipment with the largest radial distance to Level A (for harbor porpoise) and Level B harassment thresholds was used to calculate the ZOI under the assumption that this equipment would be in use for the entirety of the survey activities. The Innomar SES–2000 sub-bottom profiler resulted in the largest isopleth for Level A harassment for HF cetaceans (harbor porpoise), so the ZOI was calculated based on this 75 m isopleth. However, as also described above, this equipment has a 1° beamwidth, so the actual ensonified volume would be much less than the calculated area. Similarly, the Applied Acoustics S-Boom triple plate boomer resulted in the largest isopleth for Level B harassment, so the ZOI was calculated using this 400 m isopleth VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 and, as described above, this equipment has a beamwidth of 25°—35° and is also not omnidirectional so the actual ensonified volume would be less than the calculated area. Therefore, the resulting number of calculated marine mammal incidental takes are very conservative due to the assumption that the equipment with the largest isopleths are in use for the duration of activities and the calculated ZOIs do not take directionality of these sound sources into account. Further, the calculated takes are conservative because these HRG sound sources have very short pulse durations that are also not taken into account in calculations of take, but would lessen the potential for marine mammals to be exposed to the sound source for long enough periods to result in the potential for take as described above. Proposed Mitigation In order to issue an IHA under Section 101(a)(5)(D) of the MMPA, NMFS must set forth the permissible methods of taking pursuant to such activity, and other means of effecting the least practicable impact on such species or stock and its habitat, paying particular attention to rookeries, mating grounds, and areas of similar significance, and on the availability of such species or stock for taking for certain subsistence uses (latter not applicable for this action). NMFS regulations require applicants for incidental take authorizations to include information about the availability and feasibility (economic and technological) of equipment, methods, and manner of conducting such activity or other means of effecting the least practicable adverse impact upon the affected species or stocks and their habitat (50 CFR 216.104(a)(11)). In evaluating how mitigation may or may not be appropriate to ensure the least practicable adverse impact on species or stocks and their habitat, as well as subsistence uses where applicable, we carefully consider two primary factors: (1) The manner in which, and the degree to which, the successful implementation of the measure(s) is expected to reduce impacts to marine mammals, marine mammal species or stocks, and their habitat. This considers the nature of the potential adverse impact being mitigated (likelihood, scope, range). It further considers the likelihood that the measure will be effective if implemented (probability of accomplishing the mitigating result if implemented as planned) and the likelihood of effective implementation PO 00000 Frm 00019 Fmt 4703 Sfmt 4703 22459 (probability implemented as planned); and (2) The practicability of the measures for applicant implementation, which may consider such things as cost, impact on operations, and, in the case of a military readiness activity, personnel safety, practicality of implementation, and impact on the effectiveness of the military readiness activity. With NMFS’ input during the application process, Bay State Wind is proposing the following mitigation measures during site characterization surveys utilizing HRG survey equipment. The mitigation measures outlined in this section are based on protocols and procedures that have been successfully implemented and resulted in no observed take of marine mammals for similar offshore projects and previously approved by NMFS (DONG Energy, 2016, ESS, 2013; Dominion, 2013 and 2014), as well as results of sound source verification (SSV) studies implemented by Bay State Wind during past activities in the proposed project area. Marine Mammal Exclusion and Monitoring Zones Protected species observers (PSOs) will monitor the following exclusion/ monitoring zones for the presence of marine mammals: • A 1,640 ft (500-m) exclusion zone for North Atlantic right whales, which encompasses the largest Level B harassment isopleth of 400 m for the Applied Acoustics S-Boom Triple Plate Boomer; • A 328 ft (100-m) exclusion zone for non-delphinoid large cetacean and ESAlisted marine mammals, which is consistent with vessel strike avoidance measures stipulated in the BOEM lease; • A 1,312 ft (400-m) Level B monitoring zone for all marine mammals except for North Atlantic right whales, which is the extent of the largest Level B harassment isopleth for the Applied Acoustics S-Boom Triple Plate Boomer; and • A 246 ft (75-m) exclusion zone for harbor porpoise, which is the extent of the largest Level A harassment isopleth for the Innomar SES–2000 medium subbottom profiler. The distances from the sound sources for these exclusion/monitoring zones are based on distances to NMFS harassment criteria or requirements of the BOEM lease stipulations for vessel strike avoidance (discussed below). The representative area ensonified to the MMPA Level B threshold for each of the pieces of HRG survey equipment represents the zone within which take E:\FR\FM\15MYN1.SGM 15MYN1 daltland on DSKBBV9HB2PROD with NOTICES 22460 Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices of a marine mammal could occur. The distances to the Level A and Level B harassment criteria were used to support the estimate of take as well as the development of the monitoring and/ or mitigation measures. Radial distance to NMFS’ Level A and Level B harassment thresholds are summarized in Tables 5 and 6 above. Visual monitoring of the established exclusion zone(s) for the HRG surveys will be performed by qualified and NMFS-approved PSOs, the resumes of whom will be provided to NMFS for review and approval prior to the start of survey activities. Observer qualifications will include direct field experience on a marine mammal observation vessel and/or aerial surveys in the Atlantic Ocean/Gulf of Mexico. An observer team comprising a minimum of four NMFS-approved PSOs and two certified Passive Acoustic Monitoring (PAM) operators (PAM operators will not function as PSOs), operating in shifts, will be stationed aboard either the survey vessel or a dedicated PSO-vessel. PSOs and PAM operators will work in shifts such that no one monitor will work more than 4 consecutive hours without a 2-hour break or longer than 12 hours during any 24-hour period. During daylight hours the PSOs will rotate in shifts of 1 on and 3 off, while during nighttime operations PSOs will work in pairs. The PAM operators will also be on call as necessary during daytime operations should visual observations become impaired. Each PSO will monitor 360 degrees of the field of vision. PSOs will be responsible for visually monitoring and identifying marine mammals approaching or within the established exclusion zone(s) during survey activities. It will be the responsibility of the Lead PSO on duty to communicate the presence of marine mammals as well as to communicate and ensure the action(s) that are necessary to ensure mitigation and monitoring requirements are implemented as appropriate. PAM operators will communicate detected vocalizations to the Lead PSO on duty, who will then be responsible for implementing the necessary mitigation procedures. A mitigation and monitoring communications flow diagram has been included as Appendix A in the IHA application. PSOs will be equipped with binoculars and have the ability to estimate distances to marine mammals located in proximity to the vessel and/ or exclusion zone using range finders. Reticulated binoculars will also be available to PSOs for use as appropriate based on conditions and visibility to VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 support the sighting and monitoring of marine species. Digital single-lens reflex camera equipment will be used to record sightings and verify species identification. During night operations, PAM (see Passive Acoustic Monitoring requirements below) and night-vision equipment in combination with infrared video monitoring will be used (Additional details and specifications of the night-vision devices and infrared video monitoring technology will be provided under separate cover by the Bay State Wind Survey Contractor once selected.). Position data will be recorded using hand-held or vessel global positioning system (GPS) units for each sighting. For monitoring around the ASV, a dual thermal/HD camera will be installed on the mother vessel, facing forward, angled in a direction so as to provide a field of view ahead of the vessel and around the ASV. The ASV will be kept in sight of the mother vessel at all times (within 2,625 ft (800 m)). PSOs will be able to monitor the real time output of the camera on hand-held iPads. Images from the cameras can be captured for review and to assist in verifying species identification. A monitor will also be installed on the bridge displaying the real-time picture from the thermal/HD camera installed on the front of the ASV itself, providing a further forward field of view of the craft. In addition, night-vision goggles with thermal clip-ons, as mentioned above, and a hand-held spotlight will be provided such that PSOs can focus observations in any direction, around the mother vessel and/or the ASV. PSOs will also be able to monitor the data as it is acquired by the ASV utilizing a real time IP radio link. For each 12 hour shift, an ASV technician will be assigned to manage the vessel and monitor the array of cameras, radars, and thermal equipment during their shift to ensure the vehicle is operating properly and to take over control of the vessel should the need arise. Additionally, there will be 2 survey technicians per shift assigned to acquire the ASV survey data. The PSOs will begin observation of the exclusion zone(s) at least 60 minutes prior to ramp-up of HRG survey equipment. Use of noise-producing equipment will not begin until the exclusion zone is clear of all marine mammals for at least 60 minutes, as per the requirements of the BOEM Lease. If a marine mammal is detected approaching or entering the exclusion zones during the HRG survey, the vessel operator would adhere to the shutdown procedures described below to minimize noise impacts on the animals. PO 00000 Frm 00020 Fmt 4703 Sfmt 4703 At all times, the vessel operator will maintain a separation distance of 500 m from any sighted North Atlantic right whale as stipulated in the Vessel Strike Avoidance procedures described below. These stated requirements will be included in the site-specific training to be provided to the survey team. Vessel Strike Avoidance The Applicant will ensure that vessel operators and crew maintain a vigilant watch for cetaceans and pinnipeds and slow down or stop their vessels to avoid striking these species. Survey vessel crew members responsible for navigation duties will receive sitespecific training on marine mammal and sea turtle sighting/reporting and vessel strike avoidance measures. Vessel strike avoidance measures will include the following, except under extraordinary circumstances when complying with these requirements would put the safety of the vessel or crew at risk: • All vessel operators will comply with 10 knot (<18.5 km per hour (km/ h)) speed restrictions in any Dynamic Management Area (DMA). In addition, all vessels operating from November 1 through July 31 will operate at speeds of 10 knots (<18.5 km/h) or less; • All vessel operators will reduce vessel speed to 10 knots or less when mother/calf pairs, pods, or larger assemblages of non-delphinoid cetaceans are observed near an underway vessel; • All survey vessels will maintain a separation distance of 1,640 ft (500 m) or greater from any sighted North Atlantic right whale; • If underway, vessels must steer a course away from any sighted North Atlantic right whale at 10 knots (<18.5 km/h) or less until the 1,640 ft (500 m) minimum separation distance has been established. If a North Atlantic right whale is sighted in a vessel’s path, or within 330 ft (100 m) to an underway vessel, the underway vessel must reduce speed and shift the engine to neutral. Engines will not be engaged until the North Atlantic right whale has moved outside of the vessel’s path and beyond 330 ft (100 m). If stationary, the vessel must not engage engines until the North Atlantic right whale has moved beyond 330 ft (100 m); • All vessels will maintain a separation distance of 330 ft (100 m) or greater from any sighted non-delphinoid (i.e., mysticetes and sperm whales) cetaceans. If sighted, the vessel underway must reduce speed and shift the engine to neutral, and must not engage the engines until the nondelphinoid cetacean has moved outside of the vessel’s path and beyond 330 ft E:\FR\FM\15MYN1.SGM 15MYN1 Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices (100 m). If a survey vessel is stationary, the vessel will not engage engines until the non-delphinoid cetacean has moved out of the vessel’s path and beyond 330 ft (100 m); • All underway vessels will avoid excessive speed or abrupt changes in direction to avoid injury to any sighted delphinoid cetacean or pinniped; and • All vessels will maintain a separation distance of 164 ft (50 m) or greater from any sighted pinniped. The training program will be provided to NMFS for review and approval prior to the start of surveys. Confirmation of the training and understanding of the requirements will be documented on a training course log sheet. Signing the log sheet will certify that the crew members understand and will comply with the necessary requirements throughout the survey event. daltland on DSKBBV9HB2PROD with NOTICES Seasonal Operating Requirements Between watch shifts, members of the monitoring team will consult the NMFS North Atlantic right whale reporting systems for the presence of North Atlantic right whales throughout survey operations. However, the proposed survey activities will occur outside of the seasonal management area (SMA) located off the coast of Massachusetts and Rhode Island. The proposed survey activities will occur in June through September, which is outside of the seasonal mandatory speed restriction period for this SMA (November 1 through April 30). Throughout all survey operations, the Applicant will monitor the NMFS North Atlantic right whale reporting systems for the establishment of a DMA. If NMFS should establish a DMA in the Lease Area under survey, within 24 hours of the establishment of the DMA the Applicant will work with NMFS to shut down and/or alter the survey activities to avoid the DMA. Passive Acoustic Monitoring As per the BOEM Lease, alternative monitoring technologies (e.g., active or passive acoustic monitoring) are required if a Lessee intends to conduct geophysical surveys at night or when visual observation is otherwise impaired. To support 24-hour HRG survey operations, Bay State Wind will use certified PAM operators with experience reviewing and identifying recorded marine mammal vocalizations, as part of the project monitoring during nighttime operations to provide for optimal acquisition of species detections at night, or as needed during periods when visual observations may be impaired. In addition, PAM systems shall be employed during daylight hours VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 to support system calibration and PSO and PAM team coordination, as well as in support of efforts to evaluate the effectiveness of the various mitigation techniques (i.e., visual observations during day and night, compared to the PAM detections/operations). Given the range of species that could occur in the Lease Area, the PAM system will consist of an array of hydrophones with both broadband (sampling mid-range frequencies of 2 kHz to 200 kHz) and at least one lowfrequency hydrophone (sampling range frequencies of 10 Hz to 30 kHz). Monitoring of the PAM system will be conducted from a customized processing station aboard the HRG survey vessel. The on-board processing station provides the interface between the PAM system and the operator. The PAM operator(s) will monitor the hydrophone signals in real time both aurally (using headphones) and visually (via the monitor screen displays). Bay State Wind proposes the use of PAMGuard software for ‘target motion analysis’ to support localization in relation to the identified exclusion zone. PAMGuard is an open source software/ hardware interface to enable flexibility in the configuration of in-sea equipment (number of hydrophones, sensitivities, spacing, and geometry). PAM operators will immediately communicate detections/vocalizations to the Lead PSO on duty who will ensure the implementation of the appropriate mitigation measure (e.g., shutdown) even if visual observations by PSOs have not been made. Ramp-Up As per the BOEM Lease, a ramp-up procedure will be used for HRG survey equipment capable of adjusting energy levels at the start or re-start of HRG survey activities. A ramp-up procedure will be used at the beginning of HRG survey activities in order to provide additional protection to marine mammals near the Lease Area by allowing them to vacate the area prior to the commencement of survey equipment use. The ramp-up procedure will not be initiated during daytime, night time, or periods of inclement weather if the exclusion zone cannot be adequately monitored by the PSOs using the appropriate visual technology (e.g., reticulated binoculars, night vision equipment) and/or PAM for a 60-minute period. A ramp-up would begin with the power of the smallest acoustic HRG equipment at its lowest practical power output appropriate for the survey. The power would then be gradually turned up and other acoustic sources added such that the source level would PO 00000 Frm 00021 Fmt 4703 Sfmt 4703 22461 increase in steps not exceeding 6 dB per 5-minute period. If marine mammals are detected within the HRG survey exclusion zone prior to or during the ramp-up, activities will be delayed until the animal(s) has moved outside the monitoring zone and no marine mammals are detected for a period of 60 minutes. Shutdown Procedures The exclusion zone(s) around the noise-producing activities HRG survey equipment will be monitored, as previously described, by PSOs and at night by PAM operators for the presence of marine mammals before, during, and after any noise-producing activity. The vessel operator must comply immediately with any call for shutdown by the Lead PSO. Any disagreement should be discussed only after shutdown. As per the BOEM Lease, if a nondelphinoid (i.e., mysticetes and sperm whales) cetacean is detected at or within the established Level A exclusion zone, an immediate shutdown of the HRG survey equipment is required. Subsequent restart of the electromechanical survey equipment must use the ramp-up procedures described above and may only occur following clearance of the exclusion zone for 60 minutes. Subsequent power up of the survey equipment must use the ramp-up procedures described above and may occur after (1) the exclusion zone is clear of a delphinoid cetacean and/or pinniped for 60 minutes. If the HRG sound source (including the sub-bottom profiler) shuts down for reasons other than encroachment into the exclusion zone by a marine mammal including but not limited to a mechanical or electronic failure, resulting in in the cessation of sound source for a period greater than 20 minutes, a restart for the HRG survey equipment (including the sub-bottom profiler) is required using the full rampup procedures and clearance of the exclusion zone of all cetaceans and pinnipeds for 60 minutes. If the pause is less than 20 minutes, the equipment may be restarted as soon as practicable at its operational level as long as visual surveys were continued diligently throughout the silent period and the exclusion zone remained clear of cetaceans and pinnipeds. If the visual surveys were not continued diligently during the pause of 20 minutes or less, a restart of the HRG survey equipment (including the sub-bottom profiler) is required using the full ramp-up procedures and clearance of the E:\FR\FM\15MYN1.SGM 15MYN1 daltland on DSKBBV9HB2PROD with NOTICES 22462 Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices exclusion zone for all cetaceans and pinnipeds for 60 minutes. The proposed mitigation measures are designed to avoid the already low potential for injury (Level A harassment) in addition to some Level B harassment, and to minimize the potential for vessel strikes. There are no known marine mammal rookeries or mating grounds in the survey area that would otherwise potentially warrant increased mitigation measures for marine mammals or their habitat (or both). The proposed survey would occur in an area that has been identified as a biologically important area (BIA) for migration for North Atlantic right whales. However, given the small spatial extent of the survey area relative to the substantially larger spatial extent of the right whale migratory area, the survey is not expected to appreciably reduce migratory habitat nor to negatively impact the migration of North Atlantic right whales. In addition, the timing of importance for migration in this biologically important area BIA is March-April and NovemberDecember, and Bay State Wind’s proposed activities are anticipated to occur outside of the timing of importance. Thus, mitigation to address the proposed survey’s occurrence in North Atlantic right whale migratory habitat is not warranted. The proposed survey area would partially overlap spatially with a biologically important feeding area for fin whales. However, the fin whale feeding area is sufficiently large (2,933 km2), and the acoustic footprint of the proposed survey is sufficiently small that the survey is not expected to appreciably reduce fin whale feeding habitat nor to negatively impact the feeding of fin whales, thus mitigation to address the proposed survey’s occurrence in fin whale feeding habitat is not warranted. Further, we believe the proposed mitigation measures are practicable for the applicant to implement. Based on our evaluation of the applicant’s proposed measures, as well as other measures considered by NMFS, NMFS has preliminarily determined that the proposed mitigation measures provide the means of effecting the least practicable impact on marine mammals species or stocks and their habitat, paying particular attention to rookeries, mating grounds, and areas of similar significance. Monitoring and Reporting In order to issue an IHA for an activity, section 101(a)(5)(D) of the MMPA states that NMFS must set forth, requirements pertaining to the monitoring and reporting of such taking. VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 The MMPA implementing regulations at 50 CFR 216.104 (a)(13) indicate that requests for ITAs must include the suggested means of accomplishing the necessary monitoring and reporting that will result in increased knowledge of the species and of the level of taking or impacts on populations of marine mammals that are expected to be present in the proposed action area. Monitoring and reporting requirements prescribed by NMFS should contribute to improved understanding of one or more of the following: • Occurrence of marine mammal species or stocks in the area in which take is anticipated (e.g., presence, abundance, distribution, density); • Nature, scope, or context of likely marine mammal exposure to potential stressors/impacts (individual or cumulative, acute or chronic), through better understanding of: (1) Action or environment (e.g., source characterization, propagation, ambient noise); (2) affected species (e.g., life history, dive patterns); (3) co-occurrence of marine mammal species with the action; or (4) biological or behavioral context of exposure (e.g., age, calving or feeding areas); • Individual marine mammal responses (behavioral or physiological) to acoustic stressors (acute, chronic, or cumulative), other stressors, or cumulative impacts from multiple stressors; • How anticipated responses to stressors impact either: (1) Long-term fitness and survival of individual marine mammals; or (2) populations, species, or stocks; • Effects on marine mammal habitat (e.g., marine mammal prey species, acoustic habitat, or other important physical components of marine mammal habitat); and • Mitigation and monitoring effectiveness. Proposed Monitoring Measures Bay State Wind submitted a marine mammal monitoring and reporting plan as part of the IHA application. The plan may be modified or supplemented based on comments or new information received from the public during the public comment period. Visual Monitoring—Visual monitoring of the established Level B harassment zones will be performed by qualified and NMFS-approved PSOs (see discussion of PSO qualifications and requirements in Marine Mammal Exclusion Zones above). The PSOs will begin observation of the monitoring zone during all HRG survey activities and all geotechnical PO 00000 Frm 00022 Fmt 4703 Sfmt 4703 operations where DP thrusters are employed. Observations of the monitoring zone will continue throughout the survey activity. PSOs will be responsible for visually monitoring and identifying marine mammals approaching or entering the established monitoring zone during survey activities. Observations will take place from the highest available vantage point on the survey vessel. General 360-degree scanning will occur during the monitoring periods, and target scanning by the PSO will occur when alerted of a marine mammal presence. Data on all PSO observations will be recorded based on standard PSO collection requirements. This will include dates and locations of construction operations; time of observation, location and weather; details of the sightings (e.g., species, age classification [if known], numbers, behavior); and details of any observed ‘‘taking’’ (behavioral disturbances or injury/mortality). The data sheet will be provided to both NMFS and BOEM for review and approval prior to the start of survey activities. In addition, prior to initiation of survey work, all crew members will undergo environmental training, a component of which will focus on the procedures for sighting and protection of marine mammals. A briefing will also be conducted between the survey supervisors and crews, the PSOs, and the Applicant. The purpose of the briefing will be to establish responsibilities of each party, define the chains of command, discuss communication procedures, provide an overview of monitoring purposes, and review operational procedures. Proposed Reporting Measures The Applicant will provide the following reports as necessary during survey activities: • The Applicant will contact NMFS and BOEM within 24 hours of the commencement of survey activities and again within 24 hours of the completion of the activity. • As per the BOEM Lease: Any observed significant behavioral reactions (e.g., animals departing the area) or injury or mortality to any marine mammals must be reported to NMFS and BOEM within 24 hours of observation. Dead or injured protected species are reported to the NMFS Greater Atlantic Regional Fisheries Office Stranding Hotline (800–900– 3622) within 24 hours of sighting, regardless of whether the injury is caused by a vessel. In addition, if the injury of death was caused by a collision with a project related vessel, E:\FR\FM\15MYN1.SGM 15MYN1 Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices daltland on DSKBBV9HB2PROD with NOTICES the Applicant must ensure that NMFS and BOEM are notified of the strike within 24 hours. The Applicant must use the form included as Appendix A to Addendum C of the Lease to report the sighting or incident. If The Applicant is responsible for the injury or death, the vessel must assist with any salvage effort as requested by NMFS. Additional reporting requirements for injured or dead animals are described below (Notification of Injured or Dead Marine Mammals). Notification of Injured or Dead Marine Mammals In the unanticipated event that the specified HRG and geotechnical activities lead to an unauthorized injury of a marine mammal (Level A harassment) or mortality (e.g., shipstrike, gear interaction, and/or entanglement), Bay State Wind would immediately cease the specified activities and report the incident to the Chief of the Permits and Conservation Division, Office of Protected Resources and the NOAA Greater Atlantic Regional Fisheries Office (GARFO) Stranding Coordinator. The report would include the following information: • Time, date, and location (latitude/ longitude) of the incident; • Name and type of vessel involved; • Vessel’s speed during and leading up to the incident; • Description of the incident; • Status of all sound source use in the 24 hours preceding the incident; • Water depth; • Environmental conditions (e.g., wind speed and direction, Beaufort sea state, cloud cover, and visibility); • Description of all marine mammal observations in the 24 hours preceding the incident; • Species identification or description of the animal(s) involved; • Fate of the animal(s); and • Photographs or video footage of the animal(s) (if equipment is available). Activities would not resume until NMFS is able to review the circumstances of the event. NMFS would work with Bay State Wind to minimize reoccurrence of such an event in the future. Bay State Wind would not resume activities until notified by NMFS. In the event that Bay State Wind discovers an injured or dead marine mammal and determines that the cause of the injury or death is unknown and the death is relatively recent (i.e., in less than a moderate state of decomposition), Bay State Wind would immediately report the incident to the Chief of the Permits and Conservation Division, VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 Office of Protected Resources and the GARFO Stranding Coordinator. The report would include the same information identified in the paragraph above. Activities would be allowed to continue while NMFS reviews the circumstances of the incident. NMFS would work with the Applicant to determine if modifications in the activities are appropriate. In the event that Bay State Wind discovers an injured or dead marine mammal and determines that the injury or death is not associated with or related to the activities authorized in the IHA (e.g., previously wounded animal, carcass with moderate to advanced decomposition, or scavenger damage), Bay State Wind would report the incident to the Chief of the Permits and Conservation Division, Office of Protected Resources, NMFS, and the NMFS Greater Atlantic Regional Fisheries Office Regional Stranding Coordinator, within 24 hours of the discovery. Bay State Wind would provide photographs or video footage (if available) or other documentation of the stranded animal sighting to NMFS. Bay State Wind can continue its operations in such a case. Within 90 days after completion of the marine site characterization survey activities, a technical report will be provided to NMFS and BOEM that fully documents the methods and monitoring protocols, summarizes the data recorded during monitoring, estimates the number of marine mammals that may have been taken during survey activities, and provides an interpretation of the results and effectiveness of all monitoring tasks. Any recommendations made by NMFS must be addressed in the final report prior to acceptance by NMFS. In addition to the Applicant’s reporting requirements outlined above, the Applicant will provide an assessment report of the effectiveness of the various mitigation techniques, i.e. visual observations during day and night, compared to the PAM detections/ operations. This will be submitted as a draft to NMFS and BOEM 30 days after the completion of the HRG surveys and as a final version 60 days after completion of the surveys. Negligible Impact Analysis and Determination Negligible impact is an impact resulting from the specified activity that cannot be reasonably expected to, and is not reasonably likely to, adversely affect the species or stock through effects on annual rates of recruitment or survival (50 CFR 216.103). A negligible impact finding is based on the lack of likely PO 00000 Frm 00023 Fmt 4703 Sfmt 4703 22463 adverse effects on annual rates of recruitment or survival (i.e., populationlevel effects). An estimate of the number of takes, alone, is not enough information on which to base an impact determination, as the severity of harassment may vary greatly depending on the context and duration of the behavioral response, many of which would not be expected to have deleterious impacts on the fitness of any individuals. In determining whether the expected takes will have a negligible impact, in addition to considering estimates of the number of marine mammals that might be ‘‘taken,’’ NMFS must consider other factors, such as the likely nature of any responses (their intensity, duration, etc.), the context of any responses (critical reproductive time or location, migration, etc.), as well as the number and nature of estimated Level A harassment takes, the number of estimated mortalities, and the status of the species. As discussed in the ‘‘Potential Effects of the Specified Activity on Marine Mammals and Their Habitat’’ section, PTS, masking, non-auditory physical effects, and vessel strike are not expected to occur. However, a small number of PTS takes of harbor porpoise are analyzed here out of an abundance of caution even though the potential is low. There is also some potential for limited TTS. Animals in the area would likely incur no more than brief hearing impairment (i.e., TTS) due to generally low SPLs—and in the case of the HRG survey equipment use, directional beam pattern, transient signals, and moving sound sources—and the fact that most marine mammals would more likely avoid a loud sound source rather than swim in such close proximity for an amount of time as to result in TTS or PTS. Further, once an area has been surveyed, it is not likely that it will be surveyed again, therefore reducing the likelihood of repeated impacts within the project area. Potential impacts to marine mammal habitat were discussed previously in this document (see the ‘‘Potential Effects of the Specified Activity on Marine Mammals and their Habitat’’ section). Marine mammal habitat may be impacted by elevated sound levels and some sediment disturbance, but these impacts would be temporary and relatively short term. Feeding behavior is not likely to be significantly impacted, as marine mammals appear to be less likely to exhibit behavioral reactions or avoidance responses while engaged in feeding activities (Richardson et al., 1995). Prey species are mobile, and are broadly distributed throughout the Lease Area; therefore, E:\FR\FM\15MYN1.SGM 15MYN1 daltland on DSKBBV9HB2PROD with NOTICES 22464 Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices marine mammals that may be temporarily displaced during survey activities are expected to be able to resume foraging once they have moved away from areas with disturbing levels of underwater noise. Because of the temporary nature of the disturbance, the availability of similar habitat and resources in the surrounding area, and the lack of important or unique marine mammal habitat, the impacts to marine mammals and the food sources that they utilize are not expected to cause significant or long-term consequences for individual marine mammals or their populations. Furthermore, there are no feeding areas, rookeries, or mating grounds known to be biologically important to marine mammals within the proposed project area. A small portion of a BIA for fin whale feeding is within the survey area and a BIA for North Atlantic right whale migration encompasses the Lease Area. However, there is no temporal overlap between the north Atlantic right whale BIA (effective March-April and NovemberDecember) and the proposed survey activities (April-June; October). The portion of the fin whale feeding BIA within the HRG survey area is a very small portion of the overall BIA, and HRG activities would ensonify such a small area that fin whale foraging is not anticipated to be substantially impacted. ESA-listed species for which takes are proposed are sperm whales and fin whales, and these effects are anticipated to be limited to lower level behavioral effects. Examination of the minimum number alive population index calculated from the individual sightings database for the years 1990–2010 suggested a positive and slowly accelerating trend in North Atlantic right whale population size (Waring et al., 2015); however, since June 7, 2017, an unusual mortality event has been declared for this species due to a high number of mortalities with human interactions (i.e., fishery-related entanglements and vessel strikes) identified as the most likely cause. There are currently insufficient data to determine population trends for fin whale (Waring et al., 2015). There is no designated critical habitat for any ESAlisted marine mammals within the Lease Area, and none of the stocks for nonlisted species proposed to be taken are considered ‘‘depleted’’ or ‘‘strategic’’ by NMFS under the MMPA. The proposed mitigation measures are expected to reduce the number and/or severity of takes by giving animals the opportunity to move away from the sound source before HRG survey equipment reaches full energy and preventing animals from being exposed VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 to sound levels reaching 180 dB during HRG survey activities. Additional vessel strike avoidance requirements will further mitigate potential impacts to marine mammals during vessel transit to and within the Study Area. Bay State Wind did not request, and NMFS is not proposing, take of marine mammals by serious injury, or mortality. NMFS expects that most takes would primarily be in the form of shortterm Level B behavioral harassment in the form of brief startling reaction and/ or temporary vacating of the area, or decreased foraging (if such activity were occurring)—reactions that are considered to be of low severity and with no lasting biological consequences (e.g., Southall et al., 2007). This is largely due to the short time scale of the proposed activities, the low source levels and intermittent nature of many of the technologies proposed to be used, as well as the required mitigation. However, Bay State Wind has requested a small number of Level A takes for harbor porpoises in an abundance of caution. NMFS is proposing to authorize Level A take of harbor porpoises due to the fact that their small size may make it difficult to observe all individuals in certain sea states or weather conditions, so some Level A take may occur even with implementation of the 75 m shut down zone. In summary and as described above, the following factors primarily support our preliminary determination that the impacts resulting from this activity are not expected to adversely affect the species or stock through effects on annual rates of recruitment or survival: • No mortality or serious is anticipated or authorized; • Take is anticipated to be primarily Level B behavioral harassment consisting of brief startling reactions and/or temporary avoidance of the survey area due to the intermittent and short term nature of the activities as well as the directionality of the sound sources; • While the survey area is within areas noted as biologically important for north Atlantic right whale migration, the activities will take place outside of the timeframe of noted importance for migration, and would occur in such a comparatively small area such that any avoidance of the survey area due to activities would not affect migration. In addition, mitigation measures to shut down at 500 m to avoid potential for Level B behavioral harassment due to animals that may occur inside that isopleth (400 m) will avoid any take of the species. Similarly, due to the small footprint of the survey activities in relation to the size of a biologically PO 00000 Frm 00024 Fmt 4703 Sfmt 4703 important area for fin whales foraging, the survey activities would not affect foraging behavior of this species. • For most species, the percentage of stocks affected are less than 3 percent of the stock. This represents the total number of exposures and does not consider that there are likely repeat exposures of the same individuals. In addition, these takes are anticipated to be mainly Level B behavioral takes in the form of short-term startle or avoidance reactions that would not affect the species or stock. NMFS concludes that exposures to marine mammal species and stocks due to Bay State Wind’s HRG survey activities would result in only shortterm (temporary and short in duration) and relatively infrequent effects to individuals exposed, and not of the type or severity that would be expected to be additive for the very small portion of the stocks and species likely to be exposed. NMFS does not anticipate the proposed take estimates to impact annual rates of recruitment or survival. Animals may temporarily avoid the immediate area, but are not expected to permanently abandon the area. Major shifts in habitat use, distribution, or foraging success, are not expected. Based on the analysis contained herein of the likely effects of the specified activity on marine mammals and their habitat, and taking into consideration the implementation of the proposed monitoring and mitigation measures, NMFS preliminarily finds that the total marine mammal take from Bay State Wind’s proposed HRG survey activities will have a negligible impact on the affected marine mammal species or stocks. Small Numbers The requested takes proposed to be authorized for the HRG represent 2.18 percent of the Gulf of Maine stock of humpback whale (West Indies Distinct Population Segment); 1.98 percent of the WNA stock of fin whale; 0.77 percent of the Canadian East Coast stock of minke whale; 0.22 percent of the North Atlantic stock of sperm whales; 8.66 percent of the Western North Atlantic stock of bottlenose dolphins; 2.85 percent of the WNA stock of shortbeaked common dolphin, 1.02 percent of the WNA stock of Atlantic whitesided dolphin, 0.95 percent of the Gulf of Maine/Bay of Fundy stock of harbor porpoise, 2.18 percent of the WNA stock of harbor seal, and 0.56 percent of the North Atlantic stock of gray seal. These take estimates represent the percentage of each species or stock that could be taken and for most stocks are small numbers (less than 3 percent for most E:\FR\FM\15MYN1.SGM 15MYN1 Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices stocks) relative to the affected species or stock sizes. Further, the proposed take numbers are the maximum numbers of animals that are expected to be harassed during the project; it is possible that some of these exposures may occur to the same individual, which would mean the percentage of stock taken would be very conservative as it would not take into account these multiple exposures of the same individual(s). Therefore, NMFS preliminarily finds that small numbers of marine mammals will be taken relative to the populations of the affected species or stocks. Impact on Availability of Affected Species for Taking for Subsistence Uses There are no relevant subsistence uses of marine mammals implicated by this action. Therefore, NMFS has determined that the total taking of affected species or stocks would not have an unmitigable adverse impact on the availability of such species or stocks for taking for subsistence purposes. daltland on DSKBBV9HB2PROD with NOTICES Endangered Species Act Within the project area, fin, humpback, and North Atlantic right whale are listed as endangered under the ESA. Under section 7 of the ESA, BOEM consulted with NMFS on commercial wind lease issuance and site assessment activities on the Atlantic Outer Continental Shelf in Massachusetts, Rhode Island, New York and New Jersey Wind Energy Areas. NOAA’s GARFO issued a Biological Opinion concluding that these activities may adversely affect but are not likely to jeopardize the continued existence of fin whale or North Atlantic right whale. NMFS is also consulting internally on the issuance of an IHA under section 101(a)(5)(D) of the MMPA for this activity and the existing Biological Opinion may be amended to include an incidental take exemption for these marine mammal species, as appropriate. Proposed Authorization As a result of these preliminary determinations, NMFS proposes to issue an IHA to Bay State Wind for HRG survey activities during geophysical survey activities from April 2018 through March 2019, provided the previously mentioned mitigation, monitoring, and reporting requirements are incorporated. The proposed IHA language is provided next. This section contains a draft of the IHA itself. The wording contained in this section is proposed for inclusion in the IHA (if issued). Orsted/US Wind Power/Bay State Wind (Bay State Wind) (One International Place, 100 Oliver Street, VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 Suite 2610, Boston, MA 02110) is hereby authorized under section 101(a)(5)(D) of the Marine Mammal Protection Act (16 U.S.C. 1371(a)(5)(D)) and 50 CFR 216.107, to harass marine mammals incidental to high-resolution geophysical (HRG) and geotechnical survey investigations associated with marine site characterization activities off the coast of Massachusetts in the area of the Commercial Lease of Submerged Lands for Renewable Energy Development on the Outer Continental Shelf (OCS–A 0500) (the Lease Area). 1. This incidental harassment authorization (IHA) is valid for a period of one year from the date of issuance. 2. This IHA is valid only for marine site characterization survey activity, as specified in the IHA application, in the Atlantic Ocean. 3. General Conditions (a) A copy of this IHA must be in the possession of Bay State Wind, the vessel operator and other relevant personnel, the lead protected species observer (PSO), and any other relevant designees of Bay State Wind operating under the authority of this IHA. (b) The species authorized for taking are listed in Table 7. The taking, by harassment only, is limited to the species and numbers listed in Table 7. Any taking of species not listed in Table 7, or exceeding the authorized amounts listed in Table 7, is prohibited and may result in the modification, suspension, or revocation of this IHA. (c) The taking by serious injury or death of any species of marine mammal is prohibited and may result in the modification, suspension, or revocation of this IHA. (d) Bay State Wind shall ensure that the vessel operator and other relevant vessel personnel are briefed on all responsibilities, communication procedures, marine mammal monitoring protocols, operational procedures, and IHA requirements prior to the start of survey activity, and when relevant new personnel join the survey operations. 4. Mitigation Requirements—the holder of this Authorization is required to implement the following mitigation measures: (a) Bay State Wind shall use at least four (4) NMFS-approved PSOs during HRG surveys. The PSOs must have no tasks other than to conduct observational effort, record observational data, and communicate with and instruct relevant vessel crew with regard to the presence of marine mammals and mitigation requirements. (b) Visual monitoring must begin no less than 30 minutes prior to initiation of survey equipment and must continue PO 00000 Frm 00025 Fmt 4703 Sfmt 4703 22465 until 30 minutes after use of survey equipment ceases. (c) Exclusion Zones and Watch Zone—PSOs shall establish and monitor marine mammal Exclusion Zones and Watch Zones. The Watch Zone shall represent the extent of the maximum Level B harassment zone (1,166 m) or, as far as possible if the extent of the Zone is not fully visible. The Exclusion Zones are as follows: (i) a 75 m Exclusion Zone for harbor porpoises; (ii) a 100 m Exclusion Zone for large whales including sperm whales and mysticetes (except North Atlantic right whales); (iii) a 500 m Exclusion Zone for North Atlantic right whales; (iv) a 400 m Level B harassment monitoring zone for all marine mammals. (d) Shutdown requirements—If a marine mammal is observed within, entering, or approaching the relevant Exclusion Zones as described under 4(c) while geophysical survey equipment is operational, the geophysical survey equipment must be immediately shut down. (i) Any PSO on duty has the authority to call for shutdown of survey equipment. When there is certainty regarding the need for mitigation action on the basis of visual detection, the relevant PSO(s) must call for such action immediately. (ii) When a shutdown is called for by a PSO, the shutdown must occur and any dispute resolved only following shutdown. (iii) Shutdown of HRG survey equipment is also required upon confirmed passive acoustic monitoring (PAM) detection of a North Atlantic right whale at night, except in instances when the PAM detection of a North Atlantic right whale can be localized and the whale is confirmed as being beyond the 500 m EZ for right whales. The PAM operator on duty has the authority to call for shutdown of survey equipment based on confirmed acoustic detection of a North Atlantic right whale at night even in the absence of visual confirmation. When shutdown occurs based on confirmed PAM detection of a North Atlantic right whale at night, survey equipment may be re-started no sooner than 30 minutes after the last confirmed acoustic detection. (iv) Upon implementation of a shutdown, survey equipment may be reactivated when all marine mammals have been confirmed by visual observation to have exited the relevant Exclusion Zone or an additional time period has elapsed with no further sighting of the animal that triggered the E:\FR\FM\15MYN1.SGM 15MYN1 daltland on DSKBBV9HB2PROD with NOTICES 22466 Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices shutdown (15 minutes for small delphinoid cetaceans and pinnipeds and 30 minutes for all other species). (v) If geophysical equipment shuts down for reasons other than mitigation (i.e., mechanical or electronic failure) resulting in the cessation of the survey equipment for a period of less than 20 minutes, the equipment may be restarted as soon as practicable if visual surveys were continued diligently throughout the silent period and the relevant Exclusion Zones are confirmed by PSOs to have remained clear of marine mammals during the entire 20 minute period. If visual surveys were not continued diligently during the pause of 20 minutes or less, a 30 minute pre-clearance period shall precede the restart of the geophysical survey equipment as described in 4(e). If the period of shutdown for reasons other than mitigation is greater than 20 minutes, a pre-clearance period shall precede the restart of the geophysical survey equipment as described in 4(e). (e) Pre-clearance observation—30 minutes of pre-clearance observation shall be conducted prior to initiation of geophysical survey equipment. Geophysical survey equipment shall not be initiated if marine mammals are observed within or approaching the relevant Exclusion Zones as described under 4(c) during the pre-clearance period. If a marine mammal is observed within or approaching the relevant Exclusion Zone during the pre-clearance period, geophysical survey equipment shall not be initiated until the animal(s) is confirmed by visual observation to have exited the relevant Exclusion Zone or until an additional time period has elapsed with no further sighting of the animal (15 minutes for small delphinoid cetaceans and pinnipeds and 30 minutes for all other species). (f) Ramp-up—when technically feasible, survey equipment shall be ramped up at the start or re-start of survey activities. Ramp-up will begin with the power of the smallest acoustic equipment at its lowest practical power output appropriate for the survey. When technically feasible the power will then be gradually turned up and other acoustic sources added in a way such that the source level would increase gradually. (g) Vessel Strike Avoidance—Vessel operator and crew must maintain a vigilant watch for all marine mammals and slow down or stop the vessel or alter course, as appropriate, to avoid striking any marine mammal, unless such action represents a human safety concern. Survey vessel crew members responsible for navigation duties shall receive site-specific training on marine VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 mammal sighting/reporting and vessel strike avoidance measures. Vessel strike avoidance measures shall include the following, except under circumstances when complying with these requirements would put the safety of the vessel or crew at risk: (i) The vessel operator and crew shall maintain vigilant watch for cetaceans and pinnipeds, and slow down or stop the vessel to avoid striking marine mammals; (ii) The vessel operator will reduce vessel speed to 10 knots (18.5 km/hr) or less when any large whale, any mother/ calf pairs, whale or dolphin pods, or larger assemblages of non-delphinoid cetaceans are observed near (within 100 m (330 ft)) an underway vessel; (iii) The survey vessel will maintain a separation distance of 500 m (1640 ft) or greater from any sighted North Atlantic right whale; (iv) If underway, the vessel must steer a course away from any sighted North Atlantic right whale at 10 knots (18.5 km/hr) or less until the 500 m (1640 ft) minimum separation distance has been established. If a North Atlantic right whale is sighted in a vessel’s path, or within 500 m (330 ft) to an underway vessel, the underway vessel must reduce speed and shift the engine to neutral. Engines will not be engaged until the North Atlantic right whale has moved outside of the vessel’s path and beyond 500 m. If stationary, the vessel must not engage engines until the North Atlantic right whale has moved beyond 500 m; (v) The vessel will maintain a separation distance of 100 m (330 ft) or greater from any sighted non-delphinoid cetacean. If sighted, the vessel underway must reduce speed and shift the engine to neutral, and must not engage the engines until the nondelphinoid cetacean has moved outside of the vessel’s path and beyond 100 m. If a survey vessel is stationary, the vessel will not engage engines until the non-delphinoid cetacean has moved out of the vessel’s path and beyond 100 m; (vi) The vessel will maintain a separation distance of 50 m (164 ft) or greater from any sighted delphinoid cetacean. Any vessel underway shall remain parallel to a sighted delphinoid cetacean’s course whenever possible, and avoid excessive speed or abrupt changes in direction. Any vessel underway shall reduce vessel speed to 10 knots (18.5 km/hr) or less when pods (including mother/calf pairs) or large assemblages of delphinoid cetaceans are observed. Vessels may not adjust course and speed until the delphinoid cetaceans have moved beyond 50 m and/or the abeam of the underway vessel; PO 00000 Frm 00026 Fmt 4703 Sfmt 4703 (vii) All vessels underway will not divert or alter course in order to approach any whale, delphinoid cetacean, or pinniped. Any vessel underway will avoid excessive speed or abrupt changes in direction to avoid injury to the sighted cetacean or pinniped; and (viii) All vessels will maintain a separation distance of 50 m (164 ft) or greater from any sighted pinniped. (ix) The vessel operator will comply with 10 knot (18.5 km/hr) or less speed restrictions in any Seasonal Management Area per NMFS guidance. (x) If NMFS should establish a Dynamic Management Area (DMA) in the area of the survey, within 24 hours of the establishment of the DMA Bay State Wind shall work with NMFS to shut down and/or alter survey activities to avoid the DMA as appropriate. 5. Monitoring Requirements—The Holder of this Authorization is required to conduct marine mammal visual monitoring and PAM during geophysical survey activity. Monitoring shall be conducted in accordance with the following requirements: (a) A minimum of four NMFSapproved PSOs and a minimum of two certified PAM operator(s), operating in shifts, shall be employed by Bay State Wind during geophysical surveys. (b) Observations shall take place from the highest available vantage point on the survey vessel. General 360-degree scanning shall occur during the monitoring periods, and target scanning by PSOs shall occur when alerted of a marine mammal presence. (c) For monitoring around the autonomous surface vessel (ASV), a dual thermal/HD camera shall be installed on the mother vessel facing forward and angled in a direction so as to provide a field of view ahead of the vessel and around the ASV. PSOs shall be able to monitor the real-time output of the camera on hand-held computer tablets. Images from the cameras shall be able to be captured and reviewed to assist in verifying species identification. A monitor shall also be installed in the bridge displaying the real-time images from the thermal/HD camera installed on the front of the ASV itself, providing a further forward view of the craft. In addition, night-vision goggles with thermal clip-ons and a hand-held spotlight shall be provided and used such that PSOs can focus observations in any direction around the mother vessel and/or the ASV. (d) PSOs shall be equipped with binoculars and have the ability to estimate distances to marine mammals located in proximity to the vessel and/ or Exclusion Zones using range finders. E:\FR\FM\15MYN1.SGM 15MYN1 daltland on DSKBBV9HB2PROD with NOTICES Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices Reticulated binoculars will also be available to PSOs for use as appropriate based on conditions and visibility to support the sighting and monitoring of marine species. (e) PAM shall be used during nighttime geophysical survey operations. The PAM system shall consist of an array of hydrophones with both broadband (sampling mid-range frequencies of 2 kHz to 200 kHz) and at least one low-frequency hydrophone (sampling range frequencies of 75 Hz to 30 kHz). PAM operators shall communicate detections or vocalizations to the Lead PSO on duty who shall ensure the implementation of the appropriate mitigation measure. (f) During night surveys, night-vision equipment and infrared technology (as described in 5 (c) above) shall be used in addition to PAM. (g) PSOs and PAM operators shall work in shifts such that no one monitor will work more than 4 consecutive hours without a 2 hour break or longer than 12 hours during any 24-hour period. During daylight hours the PSOs shall rotate in shifts of 1 on and 3 off, and during nighttime operations PSOs shall work in pairs. (h) PAM operators shall also be on call as necessary during daytime operations should visual observations become impaired. (i) Position data shall be recorded using hand-held or vessel global positioning system (GPS) units for each sighting. (j) A briefing shall be conducted between survey supervisors and crews, PSOs, and Bay State Wind to establish responsibilities of each party, define chains of command, discuss communication procedures, provide an overview of monitoring purposes, and review operational procedures. (k) PSO qualifications shall include direct field experience on a marine mammal observation vessel and/or aerial surveys. (l) Data on all PAM/PSO observations shall be recorded based on standard PSO collection requirements. PSOs must use standardized data forms, whether hard copy or electronic. The following information shall be reported: (i) PSO names and affiliations. (ii) Dates of departures and returns to port with port name. (iii) Dates and times (Greenwich Mean Time) of survey effort and times corresponding with PSO effort. (iv) Vessel location (latitude/ longitude) when survey effort begins and ends; vessel location at beginning and end of visual PSO duty shifts. VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 (v) Vessel heading and speed at beginning and end of visual PSO duty shifts and upon any line change. (vi) Environmental conditions while on visual survey (at beginning and end of PSO shift and whenever conditions change significantly), including wind speed and direction, Beaufort sea state, Beaufort wind force, swell height, weather conditions, cloud cover, sun glare, and overall visibility to the horizon. (vii) Factors that may be contributing to impaired observations during each PSO shift change or as needed as environmental conditions change (e.g., vessel traffic, equipment malfunctions). (viii) Survey activity information, such as type of survey equipment in operation, acoustic source power output while in operation, and any other notes of significance (i.e., pre-clearance survey, ramp-up, shutdown, end of operations, etc.). (ix) If a marine mammal is sighted, the following information should be recorded: (A) Watch status (sighting made by PSO on/off effort, opportunistic, crew, alternate vessel/platform); (B) PSO who sighted the animal; (C) Time of sighting; (D) Vessel location at time of sighting; (E) Water depth; (F) Direction of vessel’s travel (compass direction); (G) Direction of animal’s travel relative to the vessel; (H) Pace of the animal; (I) Estimated distance to the animal and its heading relative to vessel at initial sighting; (J) Identification of the animal (e.g., genus/species, lowest possible taxonomic level, or unidentified); also note the composition of the group if there is a mix of species; (K) Estimated number of animals (high/low/best); (L) Estimated number of animals by cohort (adults, yearlings, juveniles, calves, group composition, etc.); (M) Description (as many distinguishing features as possible of each individual seen, including length, shape, color, pattern, scars or markings, shape and size of dorsal fin, shape of head, and blow characteristics); (N) Detailed behavior observations (e.g., number of blows, number of surfaces, breaching, spyhopping, diving, feeding, traveling; as explicit and detailed as possible; note any observed changes in behavior); (O) Animal’s closest point of approach and/or closest distance from the center point of the acoustic source; (P) Platform activity at time of sighting (e.g., deploying, recovering, testing, data acquisition, other); and PO 00000 Frm 00027 Fmt 4703 Sfmt 4703 22467 (Q) Description of any actions implemented in response to the sighting (e.g., delays, shutdown, ramp-up, speed or course alteration, etc.) and time and location of the action. 6. Reporting—a technical report shall be provided to NMFS within 90 days after completion of survey activities that fully documents the methods and monitoring protocols, summarizes the data recorded during monitoring, estimates the number of marine mammals that may have been taken during survey activities, describes the effectiveness of the various mitigation techniques (i.e., visual observations during day and night compared to PAM detections/operations), provides an interpretation of the results and effectiveness of all monitoring tasks, and includes an assessment of the effectiveness of night vision equipment used during nighttime surveys, including comparisons of relative effectiveness among the different types of night vision equipment used. Any recommendations made by NMFS shall be addressed in the final report prior to acceptance by NMFS. (a) Reporting injured or dead marine mammals: (i) In the event that the specified activity clearly causes the take of a marine mammal in a manner not authorized by this IHA, such as serious injury or mortality, Bay State Wind shall immediately cease the specified activities and immediately report the incident to the NMFS Office of Protected Resources ((301) 427–8400) and the NMFS Northeast Stranding Coordinator ((866) 755–6622). The report must include the following information: (A) Time, date, and location (latitude/ longitude) of the incident; (B) Vessel’s speed during and leading up to the incident; (C) Description of the incident; (D) Status of all sound source use in the 24 hours preceding the incident; (E) Water depth; (F) Environmental conditions (e.g., wind speed and direction, Beaufort sea state, cloud cover, and visibility); (G) Description of all marine mammal observations in the 24 hours preceding the incident; (H) Species identification or description of the animal(s) involved; (I) Fate of the animal(s); and (J) Photographs or video footage of the animal(s). Activities shall not resume until NMFS is able to review the circumstances of the prohibited take. NMFS will work with Bay State Wind to determine what measures are necessary to minimize the likelihood of E:\FR\FM\15MYN1.SGM 15MYN1 22468 Federal Register / Vol. 83, No. 94 / Tuesday, May 15, 2018 / Notices daltland on DSKBBV9HB2PROD with NOTICES further prohibited take and ensure MMPA compliance. Bay State Wind may not resume their activities until notified by NMFS. (ii) In the event that Bay State Wind discovers an injured or dead marine mammal, and the lead PSO determines that the cause of the injury or death is unknown and the death is relatively recent (e.g., in less than a moderate state of decomposition), Bay State Wind shall immediately report the incident to the NMFS Office of Protected Resources ((301) 427–8400) and the NMFS Northeast Stranding Coordinator ((866) 755–6622). The report must include the same information identified in condition 6(b)(i) of this IHA. Activities may continue while NMFS reviews the circumstances of the incident. NMFS will work with Bay State Wind to determine whether additional mitigation measures or modifications to the activities are appropriate. (iii) In the event that Bay State Wind discovers an injured or dead marine mammal, and the lead PSO determines that the injury or death is not associated with or related to the specified activities (e.g., previously wounded animal, carcass with moderate to advanced decomposition, or scavenger damage), Bay State Wind shall report the incident to the NMFS Office of Protected Resources ((301) 427–8400) and the NMFS Northeast Stranding Coordinator ((866) 755–6622), within 24 hours of the discovery. Bay State Wind shall provide photographs or video footage or other documentation of the sighting to NMFS. 7. This Authorization may be modified, suspended or withdrawn if the holder fails to abide by the conditions prescribed herein, or if NMFS determines the authorized taking is having more than a negligible impact on the species or stock of affected marine mammals. Request for Public Comments We request comment on our analyses, the draft authorization, and any other aspect of this Notice of Proposed IHA for the proposed marine site characterization surveys. Please include with your comments any supporting data or literature citations to help inform our final decision on the request for MMPA authorization. On a case-by-case basis, NMFS may issue a one-year renewal IHA without additional notice when (1) another year of identical or nearly identical activities as described in the Specified Activities section is planned, or (2) the activities would not be completed by the time the IHA expires and renewal would allow completion of the activities beyond that described in the Dates and Duration VerDate Sep<11>2014 20:27 May 14, 2018 Jkt 244001 section, provided all of the following conditions are met: • A request for renewal is received no later than 60 days prior to expiration of the current IHA. • The request for renewal must include the following: (1) An explanation that the activities to be conducted beyond the initial dates either are identical to the previously analyzed activities or include changes so minor (e.g., reduction in pile size) that the changes do not affect the previous analyses, take estimates, or mitigation and monitoring requirements; and (2) A preliminary monitoring report showing the results of the required monitoring to date and an explanation showing that the monitoring results do not indicate impacts of a scale or nature not previously analyzed or authorized; • Upon review of the request for renewal, the status of the affected species or stocks, and any other pertinent information, NMFS determines that there are no more than minor changes in the activities, the mitigation and monitoring measures remain the same and appropriate, and the original findings remain valid. Dated: May 10, 2018. Elaine T. Saiz, Acting Deputy Director, Office of Protected Resources, National Marine Fisheries Service. [FR Doc. 2018–10333 Filed 5–14–18; 8:45 am] BILLING CODE 3510–22–P DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Evaluation of State Coastal Management Programs Office for Coastal Management (OCM), National Ocean Service (NOS), National Oceanic and Atmospheric Administration (NOAA), Department of Commerce (DOC). ACTION: Notice of Intent to Evaluate State Coastal Management Program. AGENCY: The National Oceanic and Atmospheric Administration (NOAA), Office for Coastal Management will hold a public meeting to solicit comments on the performance evaluation of the California Coastal Commission, part of the California Coastal Management Program. SUMMARY: California Coastal Commission Evaluation: The public meeting will be held on June 11, 2018, and written comments must be received on or before June 22, 2018. DATES: PO 00000 Frm 00028 Fmt 4703 Sfmt 4703 For specific dates, times, and locations of the public meetings, see SUPPLEMENTARY INFORMATION. You may submit comments on the program or reserve NOAA intends to evaluate by any of the following methods: Public Meeting and Oral Comments: A public meeting will be held in Long Beach, California. For the specific location, see SUPPLEMENTARY INFORMATION. Written Comments: Please direct written comments to Carrie Hall, Evaluator, Planning and Performance Measurement Program, Office for Coastal Management, NOS/NOAA, 1305 East-West Highway, 11th Floor, N/ OCM1, Silver Spring, Maryland 20910, or email comments Carrie.Hall@ noaa.gov. ADDRESSES: FOR FURTHER INFORMATION CONTACT: Carrie Hall, Evaluator, Planning and Performance Measurement Program, Office for Coastal Management, NOS/ NOAA, 1305 East-West Highway, 11th Floor, N/OCM1, Silver Spring, Maryland 20910, or Carrie.Hall@ noaa.gov. Copies of the previous evaluation findings and 2016–2020 Assessment and Strategy may be viewed and downloaded on the internet at https://coast.noaa.gov/czm/evaluations. A copy of the evaluation notification letter and most recent progress report may be obtained upon request by contacting the person identified under FOR FURTHER INFORMATION CONTACT. Section 312 of the Coastal Zone Management Act (CZMA) requires NOAA to conduct periodic evaluations of federally approved state and territorial coastal programs. The process includes one or more public meetings, consideration of written public comments and consultations with interested Federal, state, and local agencies and members of the public. During the evaluation, NOAA will consider the extent to which the state has met the national objectives, adhered to the management program approved by the Secretary of Commerce, and adhered to the terms of financial assistance under the CZMA. When the evaluation is completed, NOAA’s Office for Coastal Management will place a notice in the Federal Register announcing the availability of the Final Evaluation Findings. Specific information on the periodic evaluation of the state and territorial coastal program that is the subject of this notice is detailed below as follows: SUPPLEMENTARY INFORMATION: E:\FR\FM\15MYN1.SGM 15MYN1

Agencies

[Federal Register Volume 83, Number 94 (Tuesday, May 15, 2018)]
[Notices]
[Pages 22443-22468]
From the Federal Register Online via the Government Publishing Office [www.gpo.gov]
[FR Doc No: 2018-10333]


-----------------------------------------------------------------------

DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration

RIN 0648-XF926


Takes of Marine Mammals Incidental to Specified Activities; 
Taking Marine Mammals Incidental to Site Characterization Surveys Off 
the Coast of Massachusetts

AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and 
Atmospheric Administration (NOAA), Commerce.

ACTION: Notice; proposed incidental harassment authorization; request 
for comments.

-----------------------------------------------------------------------

SUMMARY: NMFS has received an application from Orsted (U.S.) LLC/Bay 
State Wind LLC (Bay State Wind) for an Incidental Harassment 
Authorization (IHA) to take marine mammals, by harassment, incidental 
to high-resolution geophysical (HRG) survey investigations associated 
with marine site characterization activities off the coast of 
Massachusetts in the area of the Commercial Lease of Submerged Lands 
for Renewable Energy Development on the Outer Continental Shelf (OCS-A 
0500) (the Lease Area). Pursuant to the Marine Mammal Protection Act 
(MMPA), NMFS is requesting comments on its proposal to issue an IHA to 
Bay State Wind to incidentally take, by Level A and Level B harassment, 
small numbers of marine mammals during the specified activities. NMFS 
will consider public comments prior to making any final decision on the 
issuance of the requested MMPA authorizations and agency responses will 
be summarized in the final notice of our decision.

DATES: Comments and information must be received no later than June 14, 
2018.

ADDRESSES: Comments should be addressed to Jolie Harrison, Chief, 
Permits and Conservation Division, Office of Protected Resources, 
National Marine Fisheries Service. Physical comments should be sent to 
1315 East-West Highway, Silver Spring, MD 20910 and electronic comments 
should be sent to [email protected].
    Instructions: NMFS is not responsible for comments sent by any 
other method, to any other address or individual, or received after the 
end of the comment period. Comments received electronically, including 
all attachments, must not exceed a 25-megabyte file size. Attachments 
to electronic comments will be accepted in Microsoft Word or Excel or 
Adobe PDF file formats only. All comments received are a part of the 
public record and will generally be posted online at 
www.fisheries.noaa.gov/national/marine-mammal-protection/incidental-take-authorizations-construction-activities without change. All 
personal identifying information (e.g., name, address) voluntarily 
submitted by the commenter may be publicly accessible. Do not submit 
confidential business information or otherwise sensitive or protected 
information.

FOR FURTHER INFORMATION CONTACT: Dale Youngkin, Office of Protected 
Resources, NMFS, (301) 427-8401. Electronic copies of the application 
and

[[Page 22444]]

supporting documents, as well as a list of the references cited in this 
document, may be obtained online at: www.fisheries.noaa.gov/national/marine-mammal-protection/incidental-take-authorizations-construction-activities. In case of problems accessing these documents, please call 
the contact listed above.

SUPPLEMENTARY INFORMATION:

Background

    Sections 101(a)(5)(A) and (D) of the MMPA (16 U.S.C. 1361 et seq.) 
direct the Secretary of Commerce (as delegated to NMFS) to allow, upon 
request, the incidental, but not intentional, taking of small numbers 
of marine mammals by U.S. citizens who engage in a specified activity 
(other than commercial fishing) within a specified geographical region 
if certain findings are made and either regulations are issued or, if 
the taking is limited to harassment, a notice of a proposed 
authorization is provided to the public for review.
    An authorization for incidental takings shall be granted if NMFS 
finds that the taking will have a negligible impact on the species or 
stock(s), will not have an unmitigable adverse impact on the 
availability of the species or stock(s) for subsistence uses (where 
relevant), and if the permissible methods of taking and requirements 
pertaining to the mitigation, monitoring and reporting of such takings 
are set forth.
    NMFS has defined ``negligible impact'' in 50 CFR 216.103 as an 
impact resulting from the specified activity that cannot be reasonably 
expected to, and is not reasonably likely to, adversely affect the 
species or stock through effects on annual rates of recruitment or 
survival.
    The MMPA states that the term ``take'' means to harass, hunt, 
capture, kill or attempt to harass, hunt, capture, or kill any marine 
mammal.
    Except with respect to certain activities not pertinent here, the 
MMPA defines ``harassment'' as any act of pursuit, torment, or 
annoyance which (i) has the potential to injure a marine mammal or 
marine mammal stock in the wild (Level A harassment); or (ii) has the 
potential to disturb a marine mammal or marine mammal stock in the wild 
by causing disruption of behavioral patterns, including, but not 
limited to, migration, breathing, nursing, breeding, feeding, or 
sheltering (Level B harassment).

National Environmental Policy Act (NEPA)

    The U.S. Bureau of Ocean Energy Management (BOEM) prepared an 
Environmental Assessment (EA) in accordance with the National 
Environmental Policy Act (NEPA), to evaluate the issuance of wind 
energy leases covering the entirety of the Massachusetts Wind Energy 
Area (including the OCS-A 0500 Lease Area), and the approval of site 
assessment activities within those leases (BOEM, 2014). NMFS previously 
adopted BOEM's EA and issued a Finding of No Significant Effect (FONSI) 
for similar work in 2016 (81 FR 56589, August 22, 2016).
    NMFS has reviewed the BOEM EA and our previous FONSI and has 
preliminarily determined that this action is consistent with categories 
of activities identified in CE B4 of the Companion Manual for NOAA 
Administrative Order 216-6A, which do not individually or cumulatively 
have the potential for significant impacts on the quality of the human 
environment and for which we have not identified any extraordinary 
circumstances that would preclude this categorical exclusion. 
Accordingly, NMFS has preliminarily determined that the issuance of the 
proposed IHA qualifies to be categorically excluded from further NEPA 
review. We will review all comments submitted in response to this 
notice prior to concluding our NEPA process or making a final decision 
on the IHA request.

Summary of Request

    On October 20, 2017 NMFS received an application from Bay State 
Wind for the taking of marine mammals incidental to HRG and 
geotechnical survey investigations off the coast of Massachusetts in 
the OCS-A 0500 Lease Area, designated and offered by the BOEM, to 
support the development of an offshore wind project. Bay State Wind's 
request is for take, by Level A and Level B harassment, of a small 
number of 10 species or stocks of marine mammals. Neither the applicant 
nor NMFS expects serious injury or mortality to result from this 
activity and, therefore, an IHA is appropriate.
    NMFS previously issued an IHA to Bay State Wind (then operating 
under DONG Energy) for similar work (FR 81 56589, August 22, 2016). Bay 
State Wind complied with all the requirements (e.g., mitigation, 
monitoring, and reporting) of the previous IHA and information 
regarding their monitoring results may be found in the Estimated Take 
section.

Description of the Specified Activity

Overview

    Bay State Wind proposes to conduct HRG surveys in the Lease Area to 
support the characterization of the existing seabed and subsurface 
geological conditions in the Lease Area. This information is necessary 
to support the final siting, design, and installation of offshore 
project facilities, turbines and subsea cables within the project area 
as well as to collect the data necessary to support the review 
requirements associated with Section 106 of the National Historic 
Preservation Act of 1966, as amended. Underwater sound resulting from 
Bay State Wind's proposed site characterization surveys has the 
potential to result in incidental take of marine mammals. This take of 
marine mammals is anticipated to be in the form of harassment and no 
serious injury or mortality is anticipated, nor is any authorized in 
this IHA.

Dates and Duration

    HRG surveys of the wind turbine generator (WTG) and offshore 
substation (OSS) areas are anticipated to commence no earlier than June 
1, 2018 and will last for approximately 60 days, including estimated 
weather down time. Likewise, the Export Cable Route HRG surveys are 
anticipated to commence no earlier than June 1, 2018 and will last 
approximately 40 days (including estimated weather down time). Offshore 
and near coastal shallow water regions of the HRG survey will occur 
within the same 40-day timeframe. Surveys are anticipated to commence 
upon issuance of the requested IHA, if appropriate.

Specified Geographic Region

    Bay State Wind's survey activities will occur in the approximately 
187,532-acre Lease Area designated and offered by BOEM, located 
approximately 14 miles (mi) south of Martha's Vineyard, Massachusetts 
at its closest point, as well as within 2 potential export cable routes 
to Somerset, MA and to Falmouth, MA (see Figure 1-1 of the IHA 
application). The Lease Area falls within the Massachusetts Wind Energy 
Area (MA WEA).

Detailed Description of Specified Activities

    Marine site characterization surveys will include the following HRG 
survey activities:
     Depth sounding (multibeam depth sounder) to determine 
water depths and general bottom topography;
     Magnetic intensity measurements for detecting local 
variations in regional magnetic field from geological strata and 
potential ferrous objects on and below the bottom;

[[Page 22445]]

     Seafloor imaging (sidescan sonar survey) for seabed 
sediment classification purposes, to identify natural and man-made 
acoustic targets resting on the bottom as well as any anomalous 
features;
     Shallow penetration sub-bottom profiler (pinger/chirp) to 
map the near surface stratigraphy (top 0-5 meter (m) soils below 
seabed); and
     Medium penetration sub-bottom profiler (sparker) to map 
deeper subsurface stratigraphy as needed (soils down to 75-100 m below 
seabed).
    Table 1 identifies the representative survey equipment that is 
being considered in support of the HRG survey activities. The make and 
model of the listed HRG equipment will vary depending on availability, 
but will be finalized as part of the survey preparations and contract 
negotiations with the survey contractor, and therefore the final 
selection of the survey equipment will be confirmed prior to the start 
of the HRG survey program. Only the make and model of the HRG equipment 
may change, not the types of equipment or the addition of equipment 
with characteristics that might have effects beyond (i.e., resulting in 
larger ensonified areas) those considered in this proposed IHA. None of 
the proposed HRG survey activities will result in the disturbance of 
bottom habitat in the Lease Area.

                                         Table 1--Summary of Representative Bay State Wind HRG Survey Equipment
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                              Source level reported                             Pulse duration     Pulse repetition rate
           HRG equipment              Operating frequencies      by manufacturer       Beamwidth (degree)         (millisec)                (Hz)
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                 USBL & GAPS Transceiver
--------------------------------------------------------------------------------------------------------------------------------------------------------
Sonardyne Ranger 2 USBL HPT 5/7000.  19-34 kHz.............  206 dBpk/200 dBRMS....  180..................  8-16.................  1
Sonardyne Ranger 2 USBL HPT 5/7000.  19-34 kHz.............  194 dBpk/188 dBRMS....  180..................  8-16.................  3
Easytrak Nexus 2 USBL..............  18-32 kHz.............  198 dBpk/192 dBRMS....  180..................  10...................  1
IxSea GAPS System..................  20-30 kHz.............  191 dBpk/188 dBRMS....  200..................  10...................  10
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                  Sidescan Sonar (SSS)
--------------------------------------------------------------------------------------------------------------------------------------------------------
EdgeTech 4200 dual frequency SSS...  300 or 600 kHz........  208-213 dBpk/205-210    0.5-0.26 x 50........  2.8-12...............  5-55
                                                              dBRMS.
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                  Multibeam Sonar (MBS)
--------------------------------------------------------------------------------------------------------------------------------------------------------
R2 Sonic 2024 Multipbeam             200-400 kHz...........  229 dBpk/162 dBRMS....  0.5 x 1 256 beams....  0.15-0.5.............  60
 Echosounder.
Kongsberg EM2040C Dual Head........  200-400 kHz...........  210 dBpk/204.5 dBRMS..  1 x 1................  3 or 12..............  Up to 50
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                               Sub-Bottom Profilers (SBP)
--------------------------------------------------------------------------------------------------------------------------------------------------------
Edgetech 3200 XS 216 Shallow SBP...  2-16 kHz..............  208-213 dBpk/205-210    17...................  20...................  10
                                                              dBRMS.
Innomar SES-2000 Medium SBP........  85-115 kHz............  250 dBpk/243 dBRMS....  1....................  0.07-2...............  40
Innomar SES-2000 Standard SBP......  85-115 kHz............  243 dBpk/236 dBRMS....  1....................  0.07-2...............  60
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                        Sparkers
--------------------------------------------------------------------------------------------------------------------------------------------------------
GeoMarine Geo-Source...............  0.2-5 kHz.............  220 dBpk/205 dBRMS....  30...................  3.8..................  2
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                         Boomers
--------------------------------------------------------------------------------------------------------------------------------------------------------
Applied Acoustics S-Boom Triple      0.250-8 Hz............  220 dBpk/216 dBRMS....  25-35................  0.3-0.5..............  3
 Plate Boomer.
--------------------------------------------------------------------------------------------------------------------------------------------------------
Applied Acoustics S-Boom Boomer....  0.1-5 kHz.............  209 dBpk/203 dBpeak...  30...................  0.3-0.5..............  3
--------------------------------------------------------------------------------------------------------------------------------------------------------

    The deployment of HRG survey equipment, including the use of 
intermittent, impulsive sound-producing equipment operating below 200 
kilohertz (kHz), has the potential to cause acoustic harassment to 
marine mammals. Based on the frequency ranges of the equipment to be 
used in support of the HRG survey activities (Table 1) and the hearing 
ranges of the marine mammals that have the potential to occur in the 
Lease Area during survey activities (Table 2), the noise produced by 
the ultra short baseline (USBL) and global acoustic positioning system 
(GAPS) transceiver systems; sub-bottom profilers; sparkers; and boomers 
fall within the established marine mammal hearing ranges and have the 
potential to result in harassment of marine mammals.
    The equipment positioning systems use vessel-based underwater 
acoustic positioning to track equipment in very shallow to very deep 
water. Using pulsed acoustic signals, the systems calculate the 
position of a subsea target by measuring the range (distance) and 
bearing from a vessel-mounted transceiver to a small acoustic 
transponder (the acoustic beacon, or pinger) fitted to the target. 
Equipment

[[Page 22446]]

positioning systems will be operational at all times during HRG survey 
data acquisition (i.e, concurrent with the sub-bottom profiler 
operation). Sub-bottom profiling systems identify and measure various 
marine sediment layers that exist below the sediment/water interface. A 
sound source emits an acoustic signal vertically downwards into the 
water and a receiver monitors the return signal that has been reflected 
off the sea floor. Some of the acoustic signal will penetrate the 
seabed and be reflected when it encounters a boundary between two 
layers that have different acoustic impedance. The system uses this 
reflected energy to provide information on sediment layers beneath the 
sediment-water interface. A shallow penetration sub-bottom profiler 
will be used to map the near surface stratigraphy of the Lease Area. 
The shallow penetration sub-bottom profiler is a precisely controlled 
hull/pole mounted ``chirp'' system that emits high-energy sounds used 
to penetrate and profile the shallow (top 0-5 m soils below seabed) 
sediments of the seafloor. A Geo-Source 600/800, or similar model, 
medium-penetration sub-bottom profiler (sparker) will be used to map 
deeper subsurface stratigraphy in the Lease Area as needed (soils down 
to 75-100 m below seabed).
    Given the size of the Lease Area (187,532 acres), to minimize cost, 
the duration of survey activities, and the period of potential impact 
on marine species, Bay State Wind has proposed conducting survey 
operations 24 hours per day in the offshore areas. Based on 24-hour 
operations, the estimated duration of the survey activities would be 
approximately 60 days (including estimated weather down time). For the 
nearshore/landfall area, a small vessel with a draft sufficient to 
survey shallow waters will be needed. Only daylight operations will be 
used to survey the nearshore/landfall, and will require an estimated 40 
days to complete (including estimated weather down time). Offshore and 
near coastal shallow water regions of the HRG survey will occur within 
the same 40-day timeframe.
    The survey area consists of several sections (Lots) as described 
below:
     Export Cable Route to Somerset, MA--This export cable 
route will be split into two Lots reflecting the boundary between State 
and Federal waters, which also coincides with the 3 nautical mile 
maritime boundary:
    [cir] Lot 1 consists of a 1,640-ft (500 m) wide survey corridor 
from the 3-nautical mile maritime boundary near coastal shallow water, 
at which point the corridor splits into three extensions toward 
potential landfall locations (Extensions 1a, 1b, and 1c; see Figure 1-1 
inset in the application). Each extension is 820 ft (250 m) wide. The 
total estimated trackline miles are approximately 350 mile (mi) (563 
km); and
    [cir] Lot 2 consists of a 3,281-ft (1,000 m) wide survey corridor 
in the offshore region of the export cable route. The total estimated 
trackline miles are approximately 678 mi (1,091 km);
     Phase I Development Area--This area comprises Lot 3, which 
consists of the locations for the WTG and OSS as well as inter-array 
cable segments. The trackline is estimated to be approximately 1,768 mi 
(2,845 km) and would be comprised of:
    [cir] 656-ft (200 m) radius around the planned locations for OSS;
    [cir] 492-ft (150 m) radius around the planned locations for WTGs;
    [cir] 246-ft (75 m) radius around planned locations for inter-array 
cable segments; and
     Export Cable Route to Falmouth, MA--This area will be 
split into two Lots reflecting the boundary between State and Federal 
waters and coinciding with the 3-nautical mile boundary:
    [cir] Lot 4 consists of a 3,281-ft (1,000 m) wide survey corridor 
in the offshore region of the cable route. The estimated trackline 
would be approximately 1,400 mi (2.253 km);
    [cir] Lot 5 consists of a 1,640-ft (500 m) wide survey corridor in 
the near coastal shallow water region of the cable route. The total 
estimated trackline would be approximately 67 mi (108 km).
    Multiple vessels will be utilized to conduct site characterization 
survey activities in the locations of the WTG and OSS, two offshore 
segments of the export cable route, and nearshore/cable landfall area. 
For the near coastal shallow water regions of the Export Cable Routes 
(Lots 1 and 5; Refer to Figure 1 and Pages 3-4 of the application for 
description of Lots), up to two small vessels with a draft sufficient 
to survey shallow waters (up to 72 feet (ft) (22 m)) are planned to be 
used. For the WTG and OSS and offshore regions of the two Export Cable 
Routes (Lots 3, 2, and 4, respectively), up to three large vessels 
(approximately 170 ft (52 m) in length) will conduct survey operations. 
In Lots 3 and 4 (WTG and OSS locations and offshore portion of the 
Export Cable Route to Falmouth), one large vessel will serve as a 
``mother vessel'' to a smaller (41 ft (12.5 m)) autonomous surface 
vessel (ASV) that may be used to `force multiply' survey production. 
Additionally, the ASV will also capture data in water depths shallower 
than 26 ft (8 m)), increasing the shallow end reach of the larger 
vessel. The ASV can be used for nearshore operations and shallow work 
(20 ft (6 m) and less) in a ``manned'' configuration.
    The ASV and mother vessel will acquire survey data in tandem and 
the ASV will be kept within sight of the mother vessel at all times. 
The ASV will operate autonomously along a parallel track to, and 
slightly ahead of, the mother vessel at a distance set to prevent 
crossed signaling of survey equipment (within 2,625 ft (800 m)). During 
data acquisition surveyors have full control of the data being acquired 
and have the ability to make changes to settings such as power, gain, 
range scale etc. in real time. Surveyors will also be able to monitor 
the data as it is acquired by the ASV utilizing a real time IP radio 
link. For each 12 hour shift, an ASV technician will be assigned to 
manage the vessel during his or her shift to ensure the vehicle is 
operating properly and to take over control of the vehicle should the 
need arise. The ASV is outfitted with an array of cameras, radars, 
thermal equipment and AIS, all of which is monitored in real time by 
the ASV technician. This includes a forward-facing dual thermal/HD 
camera installed on the mother vessel to provide a field of view ahead 
of the vessel and around the ASV, forward-facing thermal camera on the 
ASV itself with a real-time monitor display installed on the mother 
vessel bridge, and use of night-vision goggles with thermal clip-ons 
for monitoring around the mother vessel and ASV. Additionally, there 
will be 2 survey technicians per shift assigned to acquire the ASV 
survey data.
    Proposed mitigation, monitoring, and reporting measures are 
described in detail later in this document (please see ``Proposed 
Mitigation'' and ``Proposed Monitoring and Reporting'').

Description of Marine Mammals in the Area of the Specified Activity

    Sections 3 and 4 of Bay State Wind's IHA application summarize 
available information regarding the status and trends, distribution and 
habitat preferences, and behavior and life history of the potentially 
affected species. Additional information regarding population trends 
and threats may be found in NMFS's Stock Assessment Reports (SAR; 
https://www.nmfs.noaa.gov/pr/sars/species.htm) and more general 
information can be found about these species (e.g., physical and 
behavioral descriptions) may be found on NMFS' website (https://www.nmfs.noaa.gov/pr/species/mammals/).

[[Page 22447]]

    Table 2 lists all marine mammal species with expected occurrence in 
the Northwest Atlantic Outer Continental Shelf (OCS) and summarizes 
information related to the population or stock, including regulatory 
status under the MMPA and Endangered Species Act (ESA) as well as 
potential biological removal (PBR), where known. For taxonomy, we 
follow the Committee on Taxonomy (2016). PBR is defined by the MMPA as 
the maximum number of animals, not including natural mortalities, that 
may be removed from a marine mammal stock while allowing that stock to 
reach or maintain its optimum sustainable population (as described in 
NMFS' SARs). While no mortality is anticipated or authorized here, PBR 
and annual serious injury and mortality from anthropogenic sources are 
included here as gross indicators of the status of the species and 
other threats.
    Marine mammal abundance estimates presented in this document 
represent the total number of individuals that make up a given stock or 
the total number estimated within a particular study or survey area. 
NMFS' stock abundance estimates for most species represent the total 
estimate of individuals within the geographic area, if known, that 
comprise that stock. For some species, this geographic area may extend 
beyond U.S. waters. All managed stocks in this region are assessed in 
NMFS' U.S. Atlantic Ocean SARs (e.g., Hayes et al., 2017). All values 
presented in Table 2 are the most recent available at the time of 
publication and are available in the 2016 SARs (Hayes et al., 2017) and 
draft 2017 SARs (available online at: https://www.nmfs.noaa.gov/pr/sars/draft.htm).

                                      Table 2--Marine Mammals Known To Occur in the Waters of Southern New England
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                      Stock abundance (CV;                                     Annual M/
            Common name                  Scientific name       ESA/MMPA status \1\          Nmin) \2\                Stock             PBR       SI \3\
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                               Toothed Whales (Odontoceti)
--------------------------------------------------------------------------------------------------------------------------------------------------------
Atlantic white-sided dolphin.......  Lagenorhynchus acutus.  N/A...................  48,819 (0.61; 30,403).  W. North Atlantic....        304         74
Atlantic spotted dolphin...........  Stenella frontalis....  N/A...................  44,715 (0.43; 31,610).  W. North Atlantic....        316          0
Bottlenose dolphin.................  Tursiops truncatus....  Northern coastal stock  11,548 (0.36; 8,620)..  W. North Atlantic,            86      1-7.5
                                                              is Strategic.                                   Northern Migratory
                                                                                                              Coastal.
Clymene dolphin....................  Stenella clymene......  N/A...................  Unknown...............  W. North Atlantic....    Unknown          0
Fraser's dolphin...................  Lagenodelphis hosei...  N/A...................  Unknown...............  W. North Atlantic....    Unknown          0
Pan-tropical spotted dolphin.......  Stenella attenuata....  N/A...................  3,333 (0.91; 1,733)...  W. North Atlantic....         17          0
Risso's dolphin....................  Grampus griseus.......  N/A...................  18,250 (0.46; 12,619).  W. North Atlantic....        126       53.6
Rough-toothed dolphin..............  Steno bredanensis.....  N/A...................  271 (1.0; 134)........  W. North Atlantic....        1.3          0
Short-beaked common dolphin........  Delphinus delphis.....  N/A...................  70,184 (0.28; 55,690).  W. North Atlantic....        557        409
Striped dolphin....................  Stenella coeruleoalba.  N/A...................  54,807 (0.3; 42,804)..  W. North Atlantic....        428          0
Spinner dolphin....................  Stenella longirostris.  N/A...................  Unknown...............  W. North Atlantic....    Unknown          0
White-beaked dolphin...............  Lagenorhynchus          N/A...................  2,003 (0.94; 1,023)...  W. North Atlantic....         10          0
                                      albirostris.
Harbor porpoise....................  Phocoena phocoena.....  N/A...................  79,833 (0.32; 61,415).  Gulf of Maine/Bay of         706        437
                                                                                                              Fundy.
Killer whale.......................  Orcinus orca..........  N/A...................  Unknown...............  W. North Atlantic....    Unknown          0
Pygmy killer whale.................  Feresa attenuata......  N/A...................  Unknown...............  W. North Atlantic....    Unknown          0
False killer whale.................  Pseudorca crassidens..  Strategic.............  442 (1.06; 212).......  W. North Atlantic....        2.1    Unknown
Long-finned pilot whale............  Globicephala melas....  N/A...................  5,636 (0.63; 3,464)...  W. North Atlantic....         35         38
Short-finned pilot whale...........  Globicephala            N/A...................  21,515 (0.37; 15,913).  W. North Atlantic....        159        192
                                      macrorhynchus.
Sperm whale........................  Physeter macrocephalus  Endangered............  2,288 (0.28; 1,815)...  North Atlantic.......        3.6        0.8
Pigmy sperm whale..................  Kogia breviceps.......  N/A...................  3,785 (0.47; 2,598)     W. North Atlantic....         21        3.5
                                                                                      \4\.
Dwarf sperm whale..................  Kogia sima............  N/A...................  3,785 (0.47; 2,598)     W. North Atlantic....         21        3.5
                                                                                      \4\.
Cuvier's beaked whale..............  Ziphius cavirostris...  N/A...................  6,532 (0.32; 5,021)...  W. North Atlantic....         50        0.4
Blainville's beaked whale..........  Mesoplodon              N/A...................  7,092 (0.54; 4,632)     W. North Atlantic....         46        0.2
                                      densirostris.                                   \5\.
Gervais' beaked whale..............  Mesoplodon europaeus..  N/A...................  7,092 (0.54; 4,632)     W. North Atlantic....         46          0
                                                                                      \5\.
True's beaked whale................  Mesoplodon mirus......  N/A...................  7,092 (0.54; 4,632)     W. North Atlantic....         46          0
                                                                                      \5\.
Sowerby's beaked whale.............  Mesoplodon bidens.....  N/A...................  7,092 (0.54; 4,632)     W. North Atlantic....         46          0
                                                                                      \5\.
Northern bottlenose whale..........  Hyperoodon ampullatus.  N/A...................  Unknown...............  W. North Atlantic....    Unknown          0
Melon-headed whale.................  Peponocephala electra.  N/A...................  Unknown...............  W. North Atlantic....    Unknown          0
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                Baleen Whales (Mysticeti)
--------------------------------------------------------------------------------------------------------------------------------------------------------
Minke whale........................  Balaenoptera            N/A...................  2,591 (0.81; 1,425)...  Canadian East Coast..         14       8.25
                                      acutorostrata.
Blue whale.........................  Balaenoptera musculus.  Endangered............  Unknown (Unknown; 440)  W. North Atlantic....        0.9    Unknown
Fin whale..........................  Balaenoptera physalus.  Endangered............  1,618 (0.33; 1,234)...  W. North Atlantic....        2.5        3.8
Humpback whale.....................  Megaptera novaeangliae  N/A...................  823 (0; 823)..........  Gulf of Maine........         13       9.05
North Atlantic right whale.........  Eubalaena glacialis...  Endangered............  440 (0; 440)..........  W. North Atlantic....          1       5.66
Sei whale..........................  Balaenoptera borealis.  Endangered............  357 (0.52; 236).......  Nova Scotia..........        0.5        0.8
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                Earless Seals (Phocidae)
--------------------------------------------------------------------------------------------------------------------------------------------------------
Gray seals.........................  Halichoerus grypus....  N/A...................  424,300 (0.16;          W. North Atlantic....    Unknown      4,937
                                                                                      371,444).
Harbor seals.......................  Phoca vitulina........  N/A...................  75,834 (0.15; 66,884).  W. North Atlantic....      2,006        389
Hooded seals.......................  Cystophora cristata...  N/A...................  Unknown...............  W. North Atlantic....    Unknown    Unknown
Harp seal..........................  Phoca groenlandica....  N/A...................  8,300,000 (Unknown)...  W. North Atlantic....    Unknown    Unknown
--------------------------------------------------------------------------------------------------------------------------------------------------------
Note: Species information in bold italics are species expected to be taken and proposed for authorization; others are not expected or proposed to be
  taken.
\1\ A strategic stock is defined as any marine mammal stock: (1) For which the level of direct human-caused mortality exceeds the potential biological
  removal (PBR) level; (2) which is declining and likely to be listed as threatened under the Endangered Species Act (ESA); or (3) which is listed as
  threatened or endangered under the ESA or as depleted under the Marine Mammal Protection Act (MMPA).

[[Page 22448]]

 
\2\ NMFS stock assessment reports online at: www.nmfs.noaa.gov/pr/sars. CV = coefficient of variarion; Nmin = minimum estimate of stock abundance.
\3\ These values, found in NMFS' SARs, represent annual levels of human-caused mortality plus serious injury (M/SI) from all sources combined (e.g.,
  commercial fisheries, ship strike, etc.). Annual M/SI often cannot be determined precisely and is in some cases presented as a minimum value or range.
  A CV associated with estimated mortality due to commercial fisheries is presented in some cases.
\4\ This estimate may include both the dwarf and pygmy sperm whales.
\5\ This estimate includes Gervais' and Blainville's beaked whales and undifferentiated Mesoplodon spp. beaked whales.
Sources: Hayes et al., 2016, Waring et al., 2015; Waring et al., 2013; Waring et al., 2011; Warring et al., 2010; RI SAMP, 2011; Kenney and Vigness-
  Raposa, 2009; NMFS, 2012.

    There are 38 species of marine mammals that potentially occur in 
the Northwest Atlantic OCS region (BOEM, 2014) (Table 2). The majority 
of these species are pelagic and/or more northern species, or are so 
rarely sighted that their presence in the Lease Area is unlikely. Five 
marine mammal species are listed under the ESA and are known to be 
present, at least seasonally, in the waters of Southern New England: 
Blue whale, fin whale, right whale, sei whale, and sperm whale. These 
species are highly migratory and do not spend extended periods of time 
in a localized area; the waters of Southern New England (including the 
Lease Area) are primarily used as a stopover point for these species 
during seasonal movements north or south between important feeding and 
breeding grounds. While the fin and right whales have the potential to 
occur within the Lease Area, the sperm, blue, and sei whales are more 
pelagic and/or northern species, and though their presence within the 
Lease Area is possible, they are considered less common with regards to 
sightings. Because the potential for blue whales and sei whales to 
occur within the Lease Area during the marine survey period is 
unlikely, these species will not be described further in this analysis. 
Sperm whales are known to occur occasionally in the region, but their 
sightings are considered rare and thus their presence in the Lease Area 
at the time of the proposed activities is considered unlikely. However, 
based on a recent increase in sightings, they are included in the 
discussion below.
    The following species are both common in the waters of the OCS 
south of Massachusetts and have the highest likelihood of occurring, at 
least seasonally, in the Lease Area: Humpback whale (Megaptera 
novaeangliae), minke whale (Balaenoptera acutorostrata), harbor 
porpoise (Phocoena phocoena), bottlenose dolphin (Tursiops truncatus), 
short-beaked common dolphin (Delphinus delphis), harbor seal (Phoca 
vitulina), and gray seal (Halichorus grypus). In general, the remaining 
non-ESA listed marine mammal species listed in Table 2 range outside 
the survey area, usually in more pelagic waters, or are so rarely 
sighted that their presence in the survey area is unlikely. For 
example, while white-beaked dolphins (Lagenorhynchus albirostris) are 
likely to occur in the nearby waters surrounding the survey area (i.e., 
within 40 nautical miles (74 kilometers (km)), they are not likely to 
occur within the survey area, and beaked whales are likely to occur in 
the region to the south of the survey area, but not within 40 nautical 
miles (74 km) (Right Whale Consortium, 2014). Therefore, only north 
Atlantic right whales, humpback whales, fin whales, sperm whales, minke 
whales, bottlenose dolphins, short-beaked common dolphins, Atlantic 
white-sided dolphins, harbor porpoises, harbor seals, and gray seals 
are considered in this analysis.

Marine Mammal Hearing

    Hearing is the most important sensory modality for marine mammals 
underwater, and exposure to anthropogenic sound can have deleterious 
effects. To appropriately assess the potential effects of exposure to 
sound, it is necessary to understand the frequency ranges marine 
mammals are able to hear. Current data indicate that not all marine 
mammal species have equal hearing capabilities (e.g., Richardson et 
al., 1995; Wartzok and Ketten, 1999; Au and Hastings, 2008). To reflect 
this, Southall et al. (2007) recommended that marine mammals be divided 
into functional hearing groups based on directly measured or estimated 
hearing ranges on the basis of available behavioral response data, 
audiograms derived using auditory evoked potential techniques, 
anatomical modeling, and other data. Note that no direct measurements 
of hearing ability have been successfully completed for mysticetes 
(i.e., low-frequency cetaceans). Subsequently, NMFS (2016) described 
generalized hearing ranges for these marine mammal hearing groups. 
Generalized hearing ranges were chosen based on the approximately 65 
decibels (dB) threshold from the normalized composite audiograms, with 
the exception for lower limits for low-frequency cetaceans where the 
lower bound was deemed to be biologically implausible and the lower 
bound from Southall et al. (2007) retained. The functional groups and 
the associated frequencies are indicated below (note that these 
frequency ranges correspond to the range for the composite group, with 
the entire range not necessarily reflecting the capabilities of every 
species within that group):
     Low-frequency cetaceans (mysticetes): generalized hearing 
is estimated to occur between approximately 7 Hertz (Hz) and 35 kHz;
     Mid-frequency cetaceans (larger toothed whales, beaked 
whales, and most delphinids): generalized hearing is estimated to occur 
between approximately 150 Hz and 160 kHz;
     High-frequency cetaceans (porpoises, river dolphins, and 
members of the genera Kogia and Cephalorhynchus; including two members 
of the genus Lagenorhynchus, on the basis of recent echolocation data 
and genetic data): generalized hearing is estimated to occur between 
approximately 275 Hz and 160 kHz.
     Pinnipeds in water; Phocidae (true seals): generalized 
hearing is estimated to occur between approximately 50 Hz to 86 kHz;
     Pinnipeds in water; Otariidae (eared seals): generalized 
hearing is estimated to occur between 60 Hz and 39 kHz.
    The pinniped functional hearing group was modified from Southall et 
al. (2007) on the basis of data indicating that phocid species have 
consistently demonstrated an extended frequency range of hearing 
compared to otariids, especially in the higher frequency range 
(Hemil[auml] et al., 2006; Kastelein et al., 2009; Reichmuth and Holt, 
2013).
    For more detail concerning these groups and associated frequency 
ranges, please see NMFS (2016) for a review of available information. 
Eleven marine mammal species (nine cetacean and two pinniped (both 
phocid) species) have the reasonable potential to co-occur with the 
proposed survey activities. Please refer to Table 2. Of the cetacean 
species that may be present, five are classified as low-frequency 
cetaceans (i.e., all mysticete species), four are classified as mid-
frequency cetaceans (i.e., all delphinid and ziphiid species and the 
sperm whale), and one is classified as high-frequency cetacean (i.e., 
harbor porpoise).

Potential Effects of the Specified Activity on Marine Mammals and Their 
Habitat

    This section includes a summary and discussion of the ways that 
components of the specified activity may impact

[[Page 22449]]

marine mammals and their habitat. The ``Estimated Take by Incidental 
Harassment'' section later in this document includes a quantitative 
analysis of the number of individuals that are expected to be taken by 
this activity. The ``Negligible Impact Analysis and Determination'' 
section considers the content of this section, the ``Estimated Take by 
Incidental Harassment'' section, and the ``Proposed Mitigation'' 
section, to draw conclusions regarding the likely impacts of these 
activities on the reproductive success or survivorship of individuals 
and how those impacts on individuals are likely to impact marine mammal 
species or stocks.

Background on Sound

    Sound is a physical phenomenon consisting of minute vibrations that 
travel through a medium, such as air or water, and is generally 
characterized by several variables. Frequency describes the sound's 
pitch and is measured in Hz or kHz, while sound level describes the 
sound's intensity and is measured in dB. Sound level increases or 
decreases exponentially with each dB of change. The logarithmic nature 
of the scale means that each 10-dB increase is a 10-fold increase in 
acoustic power (and a 20-dB increase is then a 100-fold increase in 
power). A 10-fold increase in acoustic power does not mean that the 
sound is perceived as being 10 times louder, however. Sound levels are 
compared to a reference sound pressure (micro-Pascal) to identify the 
medium. For air and water, these reference pressures are ``re: 20 micro 
pascals ([micro]Pa)'' and ``re: 1 [micro]Pa,'' respectively. Root mean 
square (RMS) is the quadratic mean sound pressure over the duration of 
an impulse. RMS is calculated by squaring all of the sound amplitudes, 
averaging the squares, and then taking the square root of the average 
(Urick, 1975). RMS accounts for both positive and negative values; 
squaring the pressures makes all values positive so that they may be 
accounted for in the summation of pressure levels. This measurement is 
often used in the context of discussing behavioral effects, in part 
because behavioral effects, which often result from auditory cues, may 
be better expressed through averaged units rather than by peak 
pressures.

Acoustic Impacts

    HRG survey equipment use during the geophysical surveys may 
temporarily impact marine mammals in the area due to elevated in-water 
sound levels. Marine mammals are continually exposed to many sources of 
sound. Naturally occurring sounds such as lightning, rain, sub-sea 
earthquakes, and biological sounds (e.g., snapping shrimp, whale songs) 
are widespread throughout the world's oceans. Marine mammals produce 
sounds in various contexts and use sound for various biological 
functions including, but not limited to: (1) Social interactions; (2) 
foraging; (3) orientation; and (4) predator detection. Interference 
with producing or receiving these sounds may result in adverse impacts. 
Audible distance, or received levels of sound depend on the nature of 
the sound source, ambient noise conditions, and the sensitivity of the 
receptor to the sound (Richardson et al., 1995). Type and significance 
of marine mammal reactions to sound are likely dependent on a variety 
of factors including, but not limited to, (1) the behavioral state of 
the animal (e.g., feeding, traveling, etc.); (2) frequency of the 
sound; (3) distance between the animal and the source; and (4) the 
level of the sound relative to ambient conditions (Southall et al., 
2007).
    When sound travels (propagates) from its source, its loudness 
decreases as the distance traveled by the sound increases. Thus, the 
loudness of a sound at its source is higher than the loudness of that 
same sound a kilometer away. Acousticians often refer to the loudness 
of a sound at its source (typically referenced to one meter from the 
source) as the source level and the loudness of sound elsewhere as the 
received level (i.e., typically the receiver). For example, a humpback 
whale 3 km from a device that has a source level of 230 dB may only be 
exposed to sound that is 160 dB loud, depending on how the sound 
travels through water (e.g., spherical spreading (6 dB reduction with 
doubling of distance) was used in this example). As a result, it is 
important to understand the difference between source levels and 
received levels when discussing the loudness of sound in the ocean or 
its impacts on the marine environment.
    As sound travels from a source, its propagation in water is 
influenced by various physical characteristics, including water 
temperature, depth, salinity, and surface and bottom properties that 
cause refraction, reflection, absorption, and scattering of sound 
waves. Oceans are not homogeneous and the contribution of each of these 
individual factors is extremely complex and interrelated. The physical 
characteristics that determine the sound's speed through the water will 
change with depth, season, geographic location, and with time of day 
(as a result, in actual active sonar operations, crews will measure 
oceanic conditions, such as sea water temperature and depth, to 
calibrate models that determine the path the sonar signal will take as 
it travels through the ocean and how strong the sound signal will be at 
a given range along a particular transmission path). As sound travels 
through the ocean, the intensity associated with the wavefront 
diminishes, or attenuates. This decrease in intensity is referred to as 
propagation loss, also commonly called transmission loss.

Hearing Impairment

    Marine mammals may experience temporary or permanent hearing 
impairment when exposed to loud sounds. Hearing impairment is 
classified by temporary threshold shift (TTS) and permanent threshold 
shift (PTS). There are no empirical data for onset of PTS in any marine 
mammal; therefore, PTS-onset must be estimated from TTS-onset 
measurements and from the rate of TTS growth with increasing exposure 
levels above the level eliciting TTS-onset. PTS is considered auditory 
injury (Southall et al., 2007) and occurs in a specific frequency range 
and amount. Irreparable damage to the inner or outer cochlear hair 
cells may cause PTS; however, other mechanisms are also involved, such 
as exceeding the elastic limits of certain tissues and membranes in the 
middle and inner ears and resultant changes in the chemical composition 
of the inner ear fluids (Southall et al., 2007). Given the higher level 
of sound, longer durations of exposure necessary to cause PTS as 
compared with TTS, and the small zone within which sound levels would 
exceed criteria for onset of PTS, it is considerably less likely that 
PTS would occur during the proposed HRG surveys.

Temporary Threshold Shift

    TTS is the mildest form of hearing impairment that can occur during 
exposure to a loud sound (Kryter, 1985). While experiencing TTS, the 
hearing threshold rises and a sound must be stronger in order to be 
heard. At least in terrestrial mammals, TTS can last from minutes or 
hours to (in cases of strong TTS) days, can be limited to a particular 
frequency range, and can occur to varying degrees (i.e., a loss of a 
certain number of dBs of sensitivity). For sound exposures at or 
somewhat above the TTS threshold, hearing sensitivity in both 
terrestrial and marine mammals recovers rapidly after exposure to the 
noise ends.
    Marine mammal hearing plays a critical role in communication with 
conspecifics and in interpretation of

[[Page 22450]]

environmental cues for purposes such as predator avoidance and prey 
capture. Depending on the degree (elevation of threshold in dB), 
duration (i.e., recovery time), and frequency range of TTS and the 
context in which it is experienced, TTS can have effects on marine 
mammals ranging from discountable to serious. For example, a marine 
mammal may be able to readily compensate for a brief, relatively small 
amount of TTS in a non-critical frequency range that takes place during 
a time when the animals is traveling through the open ocean, where 
ambient noise is lower and there are not as many competing sounds 
present. Alternatively, a larger amount and longer duration of TTS 
sustained during a time when communication is critical for successful 
mother/calf interactions could have more serious impacts if it were in 
the same frequency band as the necessary vocalizations and of a 
severity that it impeded communication. The fact that animals exposed 
to levels and durations of sound that would be expected to result in 
this physiological response would also be expected to have behavioral 
responses of a comparatively more severe or sustained nature is also 
notable and potentially of more importance than the simple existence of 
a TTS.
    Currently, TTS data only exist for four species of cetaceans 
(bottlenose dolphin, beluga whale, harbor porpoise, and Yangtze finless 
porpoise) and three species of pinnipeds (northern elephant seal, 
harbor seal, and California sea lion) exposed to a limited number of 
sound sources (i.e., mostly tones and octave-band noise) in laboratory 
settings (e.g., Finneran et al., 2002 and 2010; Nachtigall et al., 
2004; Kastak et al., 2005; Lucke et al., 2009; Mooney et al., 2009; 
Popov et al., 2011; Finneran and Schlundt, 2010). In general, harbor 
seals (Kastak et al., 2005; Kastelein et al., 2012a) and harbor 
porpoises (Lucke et al., 2009; Kastelein et al., 2012b) have a lower 
TTS onset than other measured pinniped or cetacean species. However, 
even for these animals, which are better able to hear higher 
frequencies and may be more sensitive to higher frequencies, exposures 
on the order of approximately 170 dBRMS or higher for brief 
transient signals are likely required for even temporary (recoverable) 
changes in hearing sensitivity that would likely not be categorized as 
physiologically damaging (Lucke et al., 2009). Additionally, the 
existing marine mammal TTS data come from a limited number of 
individuals within these species. There are no data available on noise-
induced hearing loss for mysticetes (of note, the source operating 
characteristics of some of Bay State Wind's proposed HRG survey 
equipment--i.e., the equipment positioning systems--are unlikely to be 
audible to mysticetes). For summaries of data on TTS in marine mammals 
or for further discussion of TTS onset thresholds, please see NMFS 
(2016), Southall et al. (2007), Finneran and Jenkins (2012), and 
Finneran (2015).
    Scientific literature highlights the inherent complexity of 
predicting TTS onset in marine mammals, as well as the importance of 
considering exposure duration when assessing potential impacts (Mooney 
et al., 2009a, 2009b; Kastak et al., 2007). Generally, with sound 
exposures of equal energy, quieter sounds (lower sound pressure level 
(SPL)) of longer duration were found to induce TTS onset more than 
louder sounds (higher SPL) of shorter duration (more similar to sub-
bottom profilers). For intermittent sounds, less threshold shift will 
occur than from a continuous exposure with the same energy (some 
recovery will occur between intermittent exposures) (Kryter et al., 
1966; Ward, 1997). For sound exposures at or somewhat above the TTS-
onset threshold, hearing sensitivity recovers rapidly after exposure to 
the sound ends; intermittent exposures recover faster in comparison 
with continuous exposures of the same duration (Finneran et al., 2010). 
NMFS considers TTS as Level B harassment that is mediated by 
physiological effects on the auditory system; however, NMFS does not 
consider TTS-onset to be the lowest level at which Level B harassment 
may occur.
    Marine mammals in the Lease Area during the HRG survey are unlikely 
to incur TTS hearing impairment due to the characteristics of the sound 
sources, which include low source levels (208 to 221 dB re 1 [micro]Pa-
m) and generally very short pulses and duration of the sound. Even for 
high-frequency cetacean species (e.g., harbor porpoises), which may 
have increased sensitivity to TTS (Lucke et al., 2009; Kastelein et 
al., 2012b), individuals would have to make a very close approach and 
also remain very close to vessels operating these sources in order to 
receive multiple exposures at relatively high levels, as would be 
necessary to cause TTS. Intermittent exposures--as would occur due to 
the brief, transient signals produced by these sources--require a 
higher cumulative SEL to induce TTS than would continuous exposures of 
the same duration (i.e., intermittent exposure results in lower levels 
of TTS) (Mooney et al., 2009a; Finneran et al., 2010). Moreover, most 
marine mammals would more likely avoid a loud sound source rather than 
swim in such close proximity as to result in TTS. Kremser et al. (2005) 
noted that the probability of a cetacean swimming through the area of 
exposure when a sub-bottom profiler emits a pulse is small--because if 
the animal was in the area, it would have to pass the transducer at 
close range in order to be subjected to sound levels that could cause 
temporary threshold shift and would likely exhibit avoidance behavior 
to the area near the transducer rather than swim through at such a 
close range. Further, the restricted beam shape of the sub-bottom 
profiler and other HRG survey equipment makes it unlikely that an 
animal would be exposed more than briefly during the passage of the 
vessel. Boebel et al. (2005) concluded similarly for single and 
multibeam echosounders, and more recently, Lurton (2016) conducted a 
modeling exercise and concluded similarly that likely potential for 
acoustic injury from these types of systems is negligible, but that 
behavioral response cannot be ruled out. Animals may avoid the area 
around the survey vessels, thereby reducing exposure. Any disturbance 
to marine mammals is likely to be in the form of temporary avoidance or 
alteration of opportunistic foraging behavior near the survey location.

Masking

    Masking is the obscuring of sounds of interest to an animal by 
other sounds, typically at similar frequencies. Marine mammals are 
highly dependent on sound, and their ability to recognize sound signals 
amid other sound is important in communication and detection of both 
predators and prey (Tyack, 2000). Background ambient sound may 
interfere with or mask the ability of an animal to detect a sound 
signal even when that signal is above its absolute hearing threshold. 
Even in the absence of anthropogenic sound, the marine environment is 
often loud. Natural ambient sound includes contributions from wind, 
waves, precipitation, other animals, and (at frequencies above 30 kHz) 
thermal sound resulting from molecular agitation (Richardson et al., 
1995).
    Background sound may also include anthropogenic sound, and masking 
of natural sounds can result when human activities produce high levels 
of background sound. Conversely, if the background level of underwater 
sound is high (e.g., on a day with strong wind and high waves), an 
anthropogenic sound source would not be detectable as far away as would 
be possible under quieter conditions and would itself be

[[Page 22451]]

masked. Ambient sound is highly variable on continental shelves 
(Thompson, 1965; Myrberg, 1978; Desharnais et al., 1999). This results 
in a high degree of variability in the range at which marine mammals 
can detect anthropogenic sounds.
    Although masking is a phenomenon which may occur naturally, the 
introduction of loud anthropogenic sounds into the marine environment 
at frequencies important to marine mammals increases the severity and 
frequency of occurrence of masking. For example, if a baleen whale is 
exposed to continuous low-frequency sound from an industrial source, 
this would reduce the size of the area around that whale within which 
it can hear the calls of another whale. The components of background 
noise that are similar in frequency to the signal in question primarily 
determine the degree of masking of that signal. In general, little is 
known about the degree to which marine mammals rely upon detection of 
sounds from conspecifics, predators, prey, or other natural sources. In 
the absence of specific information about the importance of detecting 
these natural sounds, it is not possible to predict the impact of 
masking on marine mammals (Richardson et al., 1995). In general, 
masking effects are expected to be less severe when sounds are 
transient than when they are continuous. Masking is typically of 
greater concern for those marine mammals that utilize low-frequency 
communications, such as baleen whales, because of how far low-frequency 
sounds propagate.
    Marine mammal communications would not likely be masked appreciably 
by the sub-profiler or pingers' signals given the directionality of the 
signal and the brief period when an individual mammal is likely to be 
within its beam.

Non-Auditory Physical Effects (Stress)

    Classic stress responses begin when an animal's central nervous 
system perceives a potential threat to its homeostasis. That perception 
triggers stress responses regardless of whether a stimulus actually 
threatens the animal; the mere perception of a threat is sufficient to 
trigger a stress response (Moberg, 2000; Seyle, 1950). Once an animal's 
central nervous system perceives a threat, it mounts a biological 
response or defense that consists of a combination of the four general 
biological defense responses: Behavioral responses, autonomic nervous 
system responses, neuroendocrine responses, or immune responses.
    In the case of many stressors, an animal's first and sometimes most 
economical (in terms of biotic costs) response is behavioral avoidance 
of the potential stressor or avoidance of continued exposure to a 
stressor. An animal's second line of defense to stressors involves the 
sympathetic part of the autonomic nervous system and the classical 
``fight or flight'' response which includes the cardiovascular system, 
the gastrointestinal system, the exocrine glands, and the adrenal 
medulla to produce changes in heart rate, blood pressure, and 
gastrointestinal activity that humans commonly associate with 
``stress.'' These responses have a relatively short duration and may or 
may not have significant long-term effect on an animal's welfare.
    An animal's third line of defense to stressors involves its 
neuroendocrine systems; the system that has received the most study has 
been the hypothalamus-pituitary-adrenal system (also known as the HPA 
axis in mammals or the hypothalamus-pituitary-interrenal axis in fish 
and some reptiles). Unlike stress responses associated with the 
autonomic nervous system, virtually all neuro-endocrine functions that 
are affected by stress--including immune competence, reproduction, 
metabolism, and behavior--are regulated by pituitary hormones. Stress-
induced changes in the secretion of pituitary hormones have been 
implicated in failed reproduction (Moberg, 1987; Rivier, 1995), altered 
metabolism (Elasser et al., 2000), reduced immune competence (Blecha, 
2000), and behavioral disturbance. Increases in the circulation of 
glucocorticosteroids (cortisol, corticosterone, and aldosterone in 
marine mammals; see Romano et al., 2004) have been equated with stress 
for many years.
    The primary distinction between stress (which is adaptive and does 
not normally place an animal at risk) and distress is the biotic cost 
of the response. During a stress response, an animal uses glycogen 
stores that can be quickly replenished once the stress is alleviated. 
In such circumstances, the cost of the stress response would not pose a 
risk to the animal's welfare. However, when an animal does not have 
sufficient energy reserves to satisfy the energetic costs of a stress 
response, energy resources must be diverted from other biotic function, 
which impairs those functions that experience the diversion. For 
example, when mounting a stress response diverts energy away from 
growth in young animals, those animals may experience stunted growth. 
When mounting a stress response diverts energy from a fetus, an 
animal's reproductive success and its fitness will suffer. In these 
cases, the animals will have entered a pre-pathological or pathological 
state which is called ``distress'' (Seyle, 1950) or ``allostatic 
loading'' (McEwen and Wingfield, 2003). This pathological state will 
last until the animal replenishes its biotic reserves sufficient to 
restore normal function. Note that these examples involved a long-term 
(days or weeks) stress response exposure to stimuli.
    Relationships between these physiological mechanisms, animal 
behavior, and the costs of stress responses have also been documented 
fairly well through controlled experiments; because this physiology 
exists in every vertebrate that has been studied, it is not surprising 
that stress responses and their costs have been documented in both 
laboratory and free-living animals (for examples see, Holberton et al., 
1996; Hood et al., 1998; Jessop et al., 2003; Krausman et al., 2004; 
Lankford et al., 2005; Reneerkens et al., 2002; Thompson and Hamer, 
2000). Information has also been collected on the physiological 
responses of marine mammals to exposure to anthropogenic sounds (Fair 
and Becker, 2000; Romano et al., 2002). For example, Rolland et al. 
(2012) found that noise reduction from reduced ship traffic in the Bay 
of Fundy was associated with decreased stress in North Atlantic right 
whales. In a conceptual model developed by the Population Consequences 
of Acoustic Disturbance (PCAD) working group, serum hormones were 
identified as possible indicators of behavioral effects that are 
translated into altered rates of reproduction and mortality.
    Studies of other marine animals and terrestrial animals would also 
lead us to expect some marine mammals to experience physiological 
stress responses and, perhaps, physiological responses that would be 
classified as ``distress'' upon exposure to high frequency, mid-
frequency and low-frequency sounds. For example, Jansen (1998) reported 
on the relationship between acoustic exposures and physiological 
responses that are indicative of stress responses in humans (for 
example, elevated respiration and increased heart rates). Jones (1998) 
reported on reductions in human performance when faced with acute, 
repetitive exposures to acoustic disturbance. Trimper et al. (1998) 
reported on the physiological stress responses of osprey to low-level 
aircraft noise while Krausman et al. (2004) reported on the auditory 
and physiology stress responses of endangered Sonoran pronghorn to 
military overflights. Smith et al. (2004a, 2004b), for example, 
identified noise-induced physiological

[[Page 22452]]

transient stress responses in hearing-specialist fish (i.e., goldfish) 
that accompanied short- and long-term hearing losses. Welch and Welch 
(1970) reported physiological and behavioral stress responses that 
accompanied damage to the inner ears of fish and several mammals.
    Hearing is one of the primary senses marine mammals use to gather 
information about their environment and to communicate with 
conspecifics. Although empirical information on the relationship 
between sensory impairment (TTS, PTS, and acoustic masking) on marine 
mammals remains limited, it seems reasonable to assume that reducing an 
animal's ability to gather information about its environment and to 
communicate with other members of its species would be stressful for 
animals that use hearing as their primary sensory mechanism. Therefore, 
we assume that acoustic exposures sufficient to trigger onset PTS or 
TTS would be accompanied by physiological stress responses because 
terrestrial animals exhibit those responses under similar conditions 
(NRC, 2003). More importantly, marine mammals might experience stress 
responses at received levels lower than those necessary to trigger 
onset TTS. Based on empirical studies of the time required to recover 
from stress responses (Moberg, 2000), we also assume that stress 
responses are likely to persist beyond the time interval required for 
animals to recover from TTS and might result in pathological and pre-
pathological states that would be as significant as behavioral 
responses to TTS.
    In general, there are few data on the potential for strong, 
anthropogenic underwater sounds to cause non-auditory physical effects 
in marine mammals. Such effects, if they occur at all, would presumably 
be limited to short distances and to activities that extend over a 
prolonged period. The available data do not allow identification of a 
specific exposure level above which non-auditory effects can be 
expected (Southall et al., 2007). There is no definitive evidence that 
any of these effects occur even for marine mammals in close proximity 
to an anthropogenic sound source. In addition, marine mammals that show 
behavioral avoidance of survey vessels and related sound sources, are 
unlikely to incur non-auditory impairment or other physical effects. 
NMFS does not expect that the generally short-term, intermittent, and 
transitory HRG surveys would create conditions of long-term, continuous 
noise and chronic acoustic exposure leading to long-term physiological 
stress responses in marine mammals.

Behavioral Disturbance

    Behavioral responses to sound are highly variable and context-
specific. An animal's perception of and response to (in both nature and 
magnitude) an acoustic event can be influenced by prior experience, 
perceived proximity, bearing of the sound, familiarity of the sound, 
etc. (Southall et al., 2007; DeRuiter et al., 2013a and 2013b). If a 
marine mammal does react briefly to an underwater sound by changing its 
behavior or moving a small distance, the impacts of the change are 
unlikely to be significant to the individual, let alone the stock or 
population. However, if a sound source displaces marine mammals from an 
important feeding or breeding area for a prolonged period, impacts on 
individuals and populations could be significant (e.g., Lusseau and 
Bejder, 2007; Weilgart, 2007).
    Southall et al. (2007) reports the results of the efforts of a 
panel of experts in acoustic research from behavioral, physiological, 
and physical disciplines that convened and reviewed the available 
literature on marine mammal hearing and physiological and behavioral 
responses to human-made sound with the goal of proposing exposure 
criteria for certain effects. This peer-reviewed compilation of 
literature is very valuable, though Southall et al. (2007) note that 
not all data are equal, some have poor statistical power, insufficient 
controls, and/or limited information on received levels, background 
noise, and other potentially important contextual variables--such data 
were reviewed and sometimes used for qualitative illustration but were 
not included in the quantitative analysis for the criteria 
recommendations. All of the studies considered, however, contain an 
estimate of the received sound level when the animal exhibited the 
indicated response.
    For purposes of analyzing responses of marine mammals to 
anthropogenic sound and developing criteria, NMFS (2016) differentiates 
between pulse (impulsive) sounds (single and multiple) and non-pulse 
sounds. For purposes of evaluating the potential for take of marine 
mammals resulting from underwater noise due to the conduct of the 
proposed HRG surveys (operation of USBL positioning system and the sub-
bottom profilers), the criteria for Level A harassment (PTS onset) from 
impulsive noise was used as prescribed in NMFS (2016) and the threshold 
level for Level B harassment (160 dBRMS re 1 [micro]Pa) was 
used to evaluate takes from behavioral harassment.
    Studies that address responses of low-frequency cetaceans to sounds 
include data gathered in the field and related to several types of 
sound sources, including: vessel noise, drilling and machinery 
playback, low-frequency M-sequences (sine wave with multiple phase 
reversals) playback, tactical low-frequency active sonar playback, 
drill ships, and non-pulse playbacks. These studies generally indicate 
no (or very limited) responses to received levels in the 90 to 120 dB 
re: 1 [mu]Pa range and an increasing likelihood of avoidance and other 
behavioral effects in the 120 to 160 dB range. As mentioned earlier, 
though, contextual variables play a very important role in the reported 
responses and the severity of effects do not increase linearly with 
received levels. Also, few of the laboratory or field datasets had 
common conditions, behavioral contexts, or sound sources, so it is not 
surprising that responses differ.
    The studies that address responses of mid-frequency cetaceans to 
sounds include data gathered both in the field and the laboratory and 
related to several different sound sources, including: Pingers, 
drilling playbacks, ship and ice-breaking noise, vessel noise, Acoustic 
harassment devices (AHDs), Acoustic Deterrent Devices (ADDs), mid-
frequency active sonar, and non-pulse bands and tones. Southall et al. 
(2007) were unable to come to a clear conclusion regarding the results 
of these studies. In some cases animals in the field showed significant 
responses to received levels between 90 and 120 dB, while in other 
cases these responses were not seen in the 120 to 150 dB range. The 
disparity in results was likely due to contextual variation and the 
differences between the results in the field and laboratory data 
(animals typically responded at lower levels in the field). The studies 
that address the responses of mid-frequency cetaceans to impulse sounds 
include data gathered both in the field and the laboratory and related 
to several different sound sources, including: Small explosives, airgun 
arrays, pulse sequences, and natural and artificial pulses. The data 
show no clear indication of increasing probability and severity of 
response with increasing received level. Behavioral responses seem to 
vary depending on species and stimuli.
    The studies that address responses of high-frequency cetaceans to 
sounds include data gathered both in the field and the laboratory and 
related to several different sound sources, including: pingers, AHDs, 
and various laboratory non-pulse sounds. All of these data were 
collected from harbor porpoises.

[[Page 22453]]

Southall et al. (2007) concluded that the existing data indicate that 
harbor porpoises are likely sensitive to a wide range of anthropogenic 
sounds at low received levels (around 90 to 120 dB), at least for 
initial exposures. All recorded exposures above 140 dB induced profound 
and sustained avoidance behavior in wild harbor porpoises (Southall et 
al., 2007). Rapid habituation was noted in some but not all studies.
    The studies that address the responses of pinnipeds in water to 
sounds include data gathered both in the field and the laboratory and 
related to several different sound sources, including: AHDs, various 
non-pulse sounds used in underwater data communication, underwater 
drilling, and construction noise. Few studies exist with enough 
information to include them in the analysis. The limited data suggest 
that exposures to non-pulse sounds between 90 and 140 dB generally do 
not result in strong behavioral responses of pinnipeds in water, but no 
data exist at higher received levels (Southall et al., 2007). The 
studies that address the responses of pinnipeds in water to impulse 
sounds include data gathered in the field and related to several 
different sources, including: small explosives, impact pile driving, 
and airgun arrays. Quantitative data on reactions of pinnipeds to 
impulse sounds is limited, but a general finding is that exposures in 
the 150 to 180 dB range generally have limited potential to induce 
avoidance behavior (Southall et al., 2007).
    Marine mammals are likely to avoid the HRG survey activity, 
especially harbor porpoises, while the harbor seals might be attracted 
to them out of curiosity. However, because the sub-bottom profilers and 
other HRG survey equipment operate from a moving vessel, and the field-
verified distance to the 160 dBRMS re 1[micro]Pa isopleth 
(Level B harassment criteria) is 247 ft (75.28 m), the area and time 
that this equipment would be affecting a given location is very small. 
Further, once an area has been surveyed, it is not likely that it will 
be surveyed again, therefore reducing the likelihood of repeated HRG-
related impacts within the survey area.
    We have also considered the potential for severe behavioral 
responses such as stranding and associated indirect injury or mortality 
from Bay State Wind's use of HRG survey equipment, on the basis of a 
2008 mass stranding of approximately one hundred melon-headed whales in 
a Madagascar lagoon system. An investigation of the event indicated 
that use of a high-frequency mapping system (12-kHz multibeam 
echosounder) was the most plausible and likely initial behavioral 
trigger of the event, while providing the caveat that there is no 
unequivocal and easily identifiable single cause (Southall et al., 
2013). The investigatory panel's conclusion was based on (1) very close 
temporal and spatial association and directed movement of the survey 
with the stranding event; (2) the unusual nature of such an event 
coupled with previously documented apparent behavioral sensitivity of 
the species to other sound types (Southall et al., 2006; Brownell et 
al., 2009); and (3) the fact that all other possible factors considered 
were determined to be unlikely causes. Specifically, regarding survey 
patterns prior to the event and in relation to bathymetry, the vessel 
transited in a north-south direction on the shelf break parallel to the 
shore, ensonifying large areas of deep-water habitat prior to operating 
intermittently in a concentrated area offshore from the stranding site; 
this may have trapped the animals between the sound source and the 
shore, thus driving them towards the lagoon system. The investigatory 
panel systematically excluded or deemed highly unlikely nearly all 
potential reasons for these animals leaving their typical pelagic 
habitat for an area extremely atypical for the species (i.e., a shallow 
lagoon system). Notably, this was the first time that such a system has 
been associated with a stranding event. The panel also noted several 
site- and situation-specific secondary factors that may have 
contributed to the avoidance responses that led to the eventual 
entrapment and mortality of the whales. Specifically, shoreward-
directed surface currents and elevated chlorophyll levels in the area 
preceding the event may have played a role (Southall et al., 2013).
    The report also notes that prior use of a similar system in the 
general area may have sensitized the animals and also concluded that, 
for odontocete cetaceans that hear well in higher frequency ranges 
where ambient noise is typically quite low, high-power active sonars 
operating in this range may be more easily audible and have potential 
effects over larger areas than low frequency systems that have more 
typically been considered in terms of anthropogenic noise impacts. It 
is, however, important to note that the relatively lower output 
frequency, higher output power, and complex nature of the system 
implicated in this event, in context of the other factors noted here, 
likely produced a fairly unusual set of circumstances that indicate 
that such events would likely remain rare and are not necessarily 
relevant to use of lower-power, higher-frequency systems more commonly 
used for HRG survey applications. The risk of similar events recurring 
may be very low, given the extensive use of active acoustic systems 
used for scientific and navigational purposes worldwide on a daily 
basis and the lack of direct evidence of such responses previously 
reported.

Tolerance

    Numerous studies have shown that underwater sounds from industrial 
activities are often readily detectable by marine mammals in the water 
at distances of many kms. However, other studies have shown that marine 
mammals at distances more than a few kilometers away often show no 
apparent response to industrial activities of various types (Miller et 
al., 2005). This is often true even in cases when the sounds must be 
readily audible to the animals based on measured received levels and 
the hearing sensitivity of that mammal group. Although various baleen 
whales, toothed whales, and (less frequently) pinnipeds have been shown 
to react behaviorally to underwater sound from sources such as airgun 
pulses or vessels under some conditions, at other times, mammals of all 
three types have shown no overt reactions (e.g., Malme et al., 1986; 
Richardson et al., 1995; Madsen and Mohl, 2000; Croll et al., 2001; 
Jacobs and Terhune, 2002; Madsen et al., 2002; Miller et al., 2005). In 
general, pinnipeds seem to be more tolerant of exposure to some types 
of underwater sound than are baleen whales. Richardson et al. (1995) 
found that vessel sound does not seem to strongly affect pinnipeds that 
are already in the water. Richardson et al. (1995) went on to explain 
that seals on haul-outs sometimes respond strongly to the presence of 
vessels and at other times appear to show considerable tolerance of 
vessels, and Brueggeman et al. (1992) observed ringed seals (Pusa 
hispida) hauled out on ice pans displaying short-term escape reactions 
when a ship approached within 0.16-0.31 mi (0.25-0.5 km). Due to the 
relatively high vessel traffic in the Lease Area it is possible that 
marine mammals are habituated to noise from project vessels in the 
area.

Vessel Strike

    Ship strikes of marine mammals can cause major wounds, which may 
lead to the death of the animal. An animal at the surface could be 
struck directly by a vessel, a surfacing animal could hit

[[Page 22454]]

the bottom of a vessel, or a vessel's propeller could injure an animal 
just below the surface. The severity of injuries typically depends on 
the size and speed of the vessel (Knowlton and Kraus, 2001; Laist et 
al., 2001; Vanderlaan and Taggart, 2007).
    The most vulnerable marine mammals are those that spend extended 
periods of time at the surface in order to restore oxygen levels within 
their tissues after deep dives (e.g., the sperm whale). In addition, 
some baleen whales, such as the North Atlantic right whale, seem 
generally unresponsive to vessel sound, making them more susceptible to 
vessel collisions (Nowacek et al., 2004). These species are primarily 
large, slow moving whales. Smaller marine mammals (e.g., bottlenose 
dolphin) move quickly through the water column and are often seen 
riding the bow wave of large ships. Marine mammal responses to vessels 
may include avoidance and changes in dive pattern (NRC, 2003).
    An examination of all known ship strikes from all shipping sources 
(civilian and military) indicates vessel speed is a principal factor in 
whether a vessel strike results in death (Knowlton and Kraus, 2001; 
Laist et al., 2001; Jensen and Silber, 2003; Vanderlaan and Taggart, 
2007). In assessing records with known vessel speeds, Laist et al. 
(2001) found a direct relationship between the occurrence of a whale 
strike and the speed of the vessel involved in the collision. The 
authors concluded that most deaths occurred when a vessel was traveling 
in excess of 24.1 km/h (14.9 mph; 13 knots). Given the slow vessel 
speeds and predictable course necessary for data acquisition, ship 
strike is unlikely to occur during the geophysical and geotechnical 
surveys. Marine mammals would be able to easily avoid vessels and are 
likely already habituated to the presence of numerous vessels in the 
area. Further, Bay State Wind shall implement measures (e.g., vessel 
speed restrictions and separation distances; see Proposed Mitigation 
Measures) set forth in the BOEM Lease to reduce the risk of a vessel 
strike to marine mammal species in the Lease Area.

Effects on Marine Mammal Habitat

    There are no feeding areas, rookeries, or mating grounds known to 
be biologically important to marine mammals within the proposed project 
area. There is also no designated critical habitat for any ESA-listed 
marine mammals. NMFS' regulations at 50 CFR part 224 designated the 
nearshore waters of the Mid-Atlantic Bight as the Mid-Atlantic U.S. 
Seasonal Management Area (SMA) for right whales in 2008. Mandatory 
vessel speed restrictions are in place in that SMA from November 1 
through April 30 to reduce the threat of collisions between ships and 
right whales around their migratory route and calving grounds.
    Because of the temporary nature of the disturbance, the 
availability of similar habitat and resources (e.g., prey species) in 
the surrounding area, and the lack of important or unique marine mammal 
habitat, the impacts to marine mammals and the food sources that they 
utilize are not expected to cause significant or long-term consequences 
for individual marine mammals or their populations.

Estimated Take

    This section provides an estimate of the number of incidental takes 
proposed for authorization through this IHA, which will inform both 
NMFS' consideration of ``small numbers'' and the negligible impact 
determination.
    Harassment is the only type of take expected to result from these 
activities. Except with respect to certain activities not pertinent 
here, the MMPA defines ``harassment'' as any act of pursuit, torment, 
or annoyance which (i) has the potential to injure a marine mammal or 
marine mammal stock in the wild (Level A harassment); or (ii) has the 
potential to disturb a marine mammal or marine mammal stock in the wild 
by causing disruption of behavioral patterns, including, but not 
limited to, migration, breathing, nursing, breeding, feeding, or 
sheltering (Level B harassment).
    Authorized takes would primarily be by Level B harassment, as use 
of the HRG equipment (i.e., USBL&GAPS systems, sub-bottom profilers, 
sparkers, and boomers) has the potential to result in disruption of 
behavioral patterns for individual marine mammals. However, there is 
also some potential for auditory injury (Level A harassment) to result, 
primarily for high frequency species (i.e., harbor porpoise) due to 
larger predicted auditory injury zones. Auditory injury is unlikely to 
occur for low or mid-frequency cetaceans or pinnipeds. The proposed 
mitigation and monitoring measures are expected to avoid, or minimize 
the severity of such taking, to the extent practicable.
    Project activities that have the potential to harass marine 
mammals, as defined by the MMPA, include underwater noise from 
operation of the HRG survey sub-bottom profilers, boomers, sparkers, 
and equipment positioning systems. Harassment could take the form of 
temporary threshold shift, avoidance, or other changes in marine mammal 
behavior. NMFS anticipates that impacts to marine mammals would be 
mainly in the form of behavioral harassment (Level B harassment), but 
we have evaluated a small number of PTS takes (Level A harassment) for 
high frequency species (harbor porpoise) to be precautionary. No take 
by serious injury, or mortality is proposed. NMFS does not anticipate 
take resulting from the movement of vessels associated with 
construction because there will be a limited number of vessels moving 
at slow speeds and the BOEM lease agreement requires measures to ensure 
vessel strike avoidance.
    Described in the most basic way, we estimate take by estimating: 
(1) Acoustic thresholds above which NMFS believes the best available 
science indicates marine mammals will be behaviorally harassed or incur 
some degree of permanent hearing impairment; (2) the area or volume of 
water that will be ensonified above these levels in a day; (3) the 
density or occurrence of marine mammals within these ensonified areas; 
and, (4) the number of days of activities. Below we describe these 
components in more detail and present the proposed take estimate.

Acoustic Thresholds

    Using the best available science, NMFS has developed acoustic 
thresholds that identify the received level of underwater sound above 
which exposed marine mammals would be reasonably expected to be 
behaviorally harassed (equated to Level B harassment) or to incur PTS 
of some degree (equated to Level A harassment).
    Level B Harassment for non-explosive sources--Though significantly 
driven by received level, the onset of behavioral disturbance from 
anthropogenic noise exposure is also informed to varying degrees by 
other factors related to the source (e.g., frequency, predictability, 
duty cycle), the environment (e.g., bathymetry), and the receiving 
animals (hearing, motivation, experience, demography, behavioral 
context) and can be difficult to predict (Southall et al., 2007, 
Ellison et al., 2011). Based on what the available science indicates 
and the practical need to use a threshold based on a factor that is 
both predictable and measurable for most activities, NMFS uses a 
generalized acoustic threshold based on received level to estimate the 
onset of behavioral harassment. NMFS predicts that marine mammals are 
likely to be behaviorally harassed in a manner we consider Level B 
harassment when exposed to underwater anthropogenic noise above 
received levels of 120 dB re 1 [mu]Pa (rms) for continuous (e.g. 
vibratory pile-driving, drilling) and above 160 dB re 1 [mu]Pa (rms) 
for non-explosive impulsive

[[Page 22455]]

(e.g., seismic airguns) or intermittent (e.g., scientific sonar) 
sources. Bay State Wind's proposed activity includes the use of 
intermittent impulsive (HRG Equipment) sources, and therefore the 160 
dB re 1 [mu]Pa (rms) threshold is applicable.
    Level A harassment for non-explosive sources--NMFS' Technical 
Guidance for Assessing the Effects of Anthropogenic Sound on Marine 
Mammal Hearing (Technical Guidance, 2016) identifies dual criteria to 
assess auditory injury (Level A harassment) to five different marine 
mammal groups (based on hearing sensitivity) as a result of exposure to 
noise from two different types of sources (impulsive or non-impulsive).
    These thresholds are provided in Table 4 below. The references, 
analysis, and methodology used in the development of the thresholds are 
described in NMFS 2016 Technical Guidance, which may be accessed at: 
https://www.nmfs.noaa.gov/pr/acoustics/guidelines.htm.

                     Table 4--Thresholds Identifying the Onset of Permanent Threshold Shift
----------------------------------------------------------------------------------------------------------------
                                                     PTS onset acoustic thresholds * (received level)
             Hearing group              ------------------------------------------------------------------------
                                                  Impulsive                         Non-impulsive
----------------------------------------------------------------------------------------------------------------
Low-Frequency (LF) Cetaceans...........  Cell 1: Lpk,flat: 219 dB;   Cell 2: LE,LF,24h: 199 dB.
                                          LE,LF,24h: 183 dB.
Mid-Frequency (MF) Cetaceans...........  Cell 3: Lpk,flat: 230 dB;   Cell 4: LE,MF,24h: 198 dB.
                                          LE,MF,24h: 185 dB.
High-Frequency (HF) Cetaceans..........  Cell 5: Lpk,flat: 202 dB;   Cell 6: LE,HF,24h: 173 dB.
                                          LE,HF,24h: 155 dB.
Phocid Pinnipeds (PW) (Underwater).....  Cell 7: Lpk,flat: 218 dB;   Cell 8: LE,PW,24h: 201 dB.
                                          LE,PW,24h: 185 dB.
Otariid Pinnipeds (OW) (Underwater)....  Cell 9: Lpk,flat: 232 dB;   Cell 10: LE,OW,24h: 219 dB.
                                          LE,OW,24h: 203 dB.
----------------------------------------------------------------------------------------------------------------
* Dual metric acoustic thresholds for impulsive sounds: Use whichever results in the largest isopleth for
  calculating PTS onset. If a non-impulsive sound has the potential of exceeding the peak sound pressure level
  thresholds associated with impulsive sounds, these thresholds should also be considered.
Note: Peak sound pressure (Lpk) has a reference value of 1 [micro]Pa, and cumulative sound exposure level (LE)
  has a reference value of 1[micro]Pa\2\s. In this Table, thresholds are abbreviated to reflect American
  National Standards Institute standards (ANSI 2013). However, peak sound pressure is defined by ANSI as
  incorporating frequency weighting, which is not the intent for this Technical Guidance. Hence, the subscript
  ``flat'' is being included to indicate peak sound pressure should be flat weighted or unweighted within the
  generalized hearing range. The subscript associated with cumulative sound exposure level thresholds indicates
  the designated marine mammal auditory weighting function (LF, MF, and HF cetaceans, and PW and OW pinnipeds)
  and that the recommended accumulation period is 24 hours. The cumulative sound exposure level thresholds could
  be exceeded in a multitude of ways (i.e., varying exposure levels and durations, duty cycle). When possible,
  it is valuable for action proponents to indicate the conditions under which these acoustic thresholds will be
  exceeded.

Ensonified Area

    Here, we describe operational and environmental parameters of the 
activity that will feed into identifying the area ensonified above the 
acoustic thresholds.
    When NMFS' Acoustic Technical Guidance (2016) was published, in 
recognition of the fact that ensonified area/volume could be more 
technically challenging to predict because of the duration component of 
the new thresholds, NMFS developed an optional User Spreadsheet that 
includes tools to help predict takes. We note that because of some of 
the assumptions included in the methods used for these tools, we 
anticipate that isopleths produced are typically going to be 
overestimates of some degree, which will result in some degree of 
overestimate of Level A take. However, these tools offer the best way 
to predict appropriate isopleths when more sophisticated 3D modeling 
methods are not available, and NMFS continues to develop ways to 
quantitatively refine these tools, and will qualitatively address the 
output where appropriate. For mobile sources such as the HRG survey 
equipment proposed for use in Bay State Wind's activity, the User 
Spreadsheet predicts the closest distance at which a stationary animal 
would not incur PTS if the sound source traveled by the animal in a 
straight line at a constant speed. Inputs used in the User Spreadsheet, 
and the resulting isopleths for the various HRG equipment types are 
reported in Appendix A of Bay State Wind's IHA application, and 
distances to the acoustic exposure criteria discussed above are shown 
in Tables 5 and 6.

         Table 5--Distances to Thresholds for Level A Harassment
                               [PTS onset]
------------------------------------------------------------------------
                                     Marine mammal level
     Generalized hearing group        A harassment (PTS    Distance (m)
                                           onset)
------------------------------------------------------------------------
                    USBL/GAPS Positioning Systems \1\
------------------------------------------------------------------------
LF cetaceans......................  219 dBpeak/.........              --
                                    183 dB SELcum.......              --
MF cetaceans......................  230 dBpeak/.........              --
                                    185 dB SELcum.......              --
HF cetaceans......................  202 dBpeak/.........              --
                                    155 dB SELcum.......              --
Phocid pinnipeds..................  218 dBpeak/.........              --
                                    185 dB SELcum.......              --
------------------------------------------------------------------------
                         Sub-bottom Profiler \1\
------------------------------------------------------------------------
LF cetaceans......................  219 dBpeak/.........              --
                                    183 dB SELcum.......              --

[[Page 22456]]

 
MF cetaceans......................  230 dBpeak/.........              --
                                    185 dB SELcum.......              --
HF cetaceans......................  202 dBpeak/.........              --
                                    155 dB SELcum.......              <6
Phocid pinnipeds..................  218 dBpeak/.........              --
                                    185 dB SELcum.......              --
------------------------------------------------------------------------
               Innomar SES-2000 Medium Sub-Bottom Profiler
------------------------------------------------------------------------
LF cetaceans......................  219 dBpeak/.........              <1
                                    183 dB SELcum.......             N/A
MF cetaceans......................  230 dBpeak/.........              <1
                                    185 dB SELcum.......              --
HF cetaceans......................  202 dBpeak/.........              <5
                                    155 dB SELcum.......             <75
Phocid pinnipeds..................  218 dBpeak/.........              <1
                                    185 dB SELcum.......             N/A
------------------------------------------------------------------------
                               Sparker \1\
------------------------------------------------------------------------
LF cetaceans......................  219 dBpeak/.........              --
                                    183 dB SELcum.......              --
MF cetaceans......................  230 dBpeak/.........              --
                                    185 dB SELcum.......              --
HF cetaceans......................  202 dBpeak/.........              <3
                                    155 dB SELcum.......              --
Phocid pinnipeds..................  218 dBpeak/.........              --
                                    185 dB SELcum.......              --
------------------------------------------------------------------------
                                 Boomer
------------------------------------------------------------------------
LF cetaceans......................  219 dBpeak/.........              <2
                                    183 dB SELcum.......             <15
MF cetaceans......................  230 dBpeak/.........              --
                                    185 dB SELcum.......              --
HF cetaceans......................  202 dBpeak/.........             <10
                                    155 dB SELcum.......              <1
Phocid pinnipeds..................  218 dBpeak/.........              <2
                                    185 dB SELcum.......              <1
------------------------------------------------------------------------
Notes:
Peak SPL criterion is unweighted, whereas the cumulative SEL criterion
  is M-weighted for the given marine mammal hearing group;
Calculated sound levels and results are based on NMFS Acoustic Technical
  Guidance companion User Spreadsheet except as indicated (refer to
  Appendix A of the IHA application, which includes all spreadsheets);
\1\ Indicates distances for this equipment type have been field
  verified;
--Indicates not expected.


           Table 6--Distances to Level B Harassment Thresholds
                             [160 dBRMS 90%]
------------------------------------------------------------------------
                                                         Marine mammal
                                                            level B
                   Survey equipment                      harassment 160
                                                           dBRMS re 1
                                                         [micro]Pa (m)
------------------------------------------------------------------------
                     USBL & GAPS Positioning Systems
------------------------------------------------------------------------
Sonardyne Ranger 2 USBL HPT 5/7000...................                  6
Sonardyne Ranger 2 USBL HPT 3000.....................                  1
Easytrak Nexus 2 USBL................................                  2
IxSea GAPS System....................................                  1
------------------------------------------------------------------------
                             Sidescan Sonar
------------------------------------------------------------------------
EdgeTech 4200 dual frequency Side Scan Sonar.........                N/A
------------------------------------------------------------------------

[[Page 22457]]

 
                             Multibeam Sonar
------------------------------------------------------------------------
R2 Sonic 2024 Multibeam Echosounder..................                N/A
Kongsberg EM2040C Dual Band Head.....................                N/A
------------------------------------------------------------------------
                      Shallow Sub-Bottom Profilers
------------------------------------------------------------------------
Edgetech 3200 XS 216.................................                  9
Innomar SES-2000 Sub Bottom Profiler.................            \1\ 135
------------------------------------------------------------------------
                                Sparkers
------------------------------------------------------------------------
GeoMarine Geo-Source 400tip..........................                 54
------------------------------------------------------------------------
                                 Boomers
------------------------------------------------------------------------
Applied Acoustics S-Boom Triple Plate Boomer.........            \1\ 400
------------------------------------------------------------------------
Notes:
\1\ The calculated sound levels and results are based on NMFS Acoustic
  Technical Guidance (NMFS 2016) except as indicated.
The Level B criterion is unweighted.
N/A indicates the operating frequencies are above all relevant marine
  mammal hearing thresholds and these systems were not directly assessed
  in this IHA.

    Bay State Wind completed an underwater noise monitoring program for 
field verification at the project site prior to commencement of the HRG 
survey that took place in 2016. One of the main objectives of this 
program was to determine the apparent sound source levels of HRG 
activities. Results from field verification studies during previously 
authorized activities were used where applicable and manufacturer 
source levels were adjusted to reflect the field verified levels. 
However, not all equipment proposed for use in the 2018 season was used 
in the 2016 activities. As no field data currently exists for the 
Innomar sub-bottom profiler or Applied Acoustics boomer, acoustic 
modeling was completed using a version of the U.S. Naval Research 
Laboratory's Range-dependent Acoustic Model (RAM) and BELLHOP Gaussian 
beam ray-trace propagation model (Porter and Liu 1994). Calculations of 
the ensonified area are conservative due to the directionality of the 
sound sources. For the various HRG transducers Bay State Wind proposes 
to use for these activities, the beamwidth varies from 200[deg] (almost 
omnidirectional) to 1[deg]. The modeled directional sound levels were 
then used as the input for the acoustic propagation models, which do 
not take the directionality of the source into account. Therefore, the 
volume of area affected would be much lower than modeled in cases with 
narrow beamwidths such as the Innomar SES-2000 sub-bottom profiler, 
which has a 1[deg] beamwidth.

Marine Mammal Occurrence

    In this section we provide the information about the presence, 
density, or group dynamics of marine mammals that will inform the take 
calculations.
    The data used as the basis for estimating species density (``D'') 
for the Lease Area are derived from data provided by Duke University's 
Marine Geospatial Ecology Lab and the Marine Life Data and Analysis 
Team. This data set is a compilation of the best available marine 
mammal data (1994-2014) and was prepared in a collaboration between 
Duke University, Northeast Regional Planning Body, University of 
Carolina, the Virginia Aquarium and Marine Science Center, and NOAA 
(Roberts et al., 2016; MDAT 2016).
    Northeast Navy Operations Area (OPAREA) Density Estimates (DoN, 
2007) were used in support for estimating take for seals, which 
represents the only available comprehensive data for seal abundance. 
NODEs utilized vessel-based and aerial survey data collected by NMFS 
from 1998-2005 during broad-scale abundance studies. Modeling 
methodology is detailed in DoN (2007). Therefore, for the purposes of 
the take calculations, NODEs Density Estimates (DoN, 2007) as reported 
for the summer and fall seasons were used to estimate harbor seal and 
gray seal densities.

Take Calculation and Estimation

    Here we describe how the information provided above is brought 
together to produce a quantitative take estimate. In order to estimate 
the number of marine mammals predicted to be exposed to sound levels 
that would result in harassment, radial distances to predicted 
isopleths corresponding to harassment thresholds are calculated, as 
described above. Those distances are then used to calculate the area(s) 
around the HRG survey equipment predicted to be ensonified to sound 
levels that exceed harassment thresholds. The area estimated to be 
ensonified to relevant thresholds in a single day of the survey is then 
calculated, based on areas predicted to be ensonified around the HRG 
survey equipment and the estimated trackline distance traveled per day 
by the survey vessel.
    The estimated distance of the daily vessel trackline was determined 
using the estimated average speed of the vessel and the 24-hour or 
daylight-only operational period within each of the corresponding 
survey segments. All noise producing survey equipment are assumed to be 
operating concurrently. Using the distance of 400 m (1,312 ft) to the 
Level B isopleth and 75 m (246.1 ft) for the Level A isopleth (for 
harbor

[[Page 22458]]

porpoise), and the estimated daily vessel track of approximately 177.8 
km (110.5 miles) for 24-hour operations and 43 km (26.7 miles) for 
daylight-only operations, areas of ensonification (zone of influence, 
or ZOI) were calculated and used as a basis for calculating takes of 
marine mammals. The ZOI is based on the worst case (since it assumes 
the equipment with the larger ZOI will be operating all the time), and 
are presented in Table 7. Take calculations were based on the highest 
seasonal species density as derived from Duke University density data 
(Roberts et al., 2016) for cetaceans and seasonal OPAREA density 
estimates (DoN, 2007) for pinnipeds. The resulting take calculations 
and number of requested takes (rounded to the nearest whole number) are 
presented in Table 8.

                            Table 7--Survey Segment Distances and Zones of Influence
----------------------------------------------------------------------------------------------------------------
                                                                                    Calculated
                                                     Number of       Estimated      level A ZOI     Calculated
         Survey segment             Total track    active survey   distance/day     (km \2\)--      level B ZOI
                                     line (km)         days            (km)           (harbor        (km \2\)
                                                                                     porpoise)
----------------------------------------------------------------------------------------------------------------
Lot 3 (WSG/OSS Location--                  2,845              60           177.8           26.69          142.74
 Offshore)......................
----------------------------------------------------------------------------------------------------------------
                                          Export Cable Route, Somerset
----------------------------------------------------------------------------------------------------------------
Lot 1 (nearshore)...............           1,091              18           177.8            6.46           34.88
Lot 2 (offshore)................             563              15            43.0           26.69          142.74
----------------------------------------------------------------------------------------------------------------
                                          Export Cable Route, Falmouth
----------------------------------------------------------------------------------------------------------------
Lot 4 (offshore)................           2,253              37           177.8           26.69          142.74
Lot 5 (nearshore)...............             108               5            43.0            6.46           34.88
----------------------------------------------------------------------------------------------------------------


                                                              Table 8--Estimated Level B Harassment Takes for HRG Survey Activities
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                   Lot 3 (WSG/OSS        Lot 2 (Somerset      Lot 1 (Somerset      Lot 4 (Falmouth      Lot 5 (Falmouth           Totals
                                                                location-- offshore)   export-- offshore)   export--nearshore)    export--offshore)   export--nearshore) -----------------------
                                                               ----------------------------------------------------------------------------------------------------------
                                                                 Highest               Highest               Highest             Highest               Highest
                                                                seasonal              seasonal              seasonal            seasonal              seasonal
                            Species                               avg.                  avg.                  avg.                avg.                  avg.               Requested     % of
                                                                 density  Calc. take   density  Calc. take   density    Calc.    density  Calc. take   density    Calc.      take     population
                                                                 \a\ (#/               \a\ (#/               \a\ (#/    take     \a\ (#/               \a\ (#/    take
                                                                   100                   100                   100                 100                   100
                                                                 km\2\)                km\2\)                km\2\)              km\2\)                km\2\)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                             Level A
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Harbor porpoise...............................................      6.67      106.75      4.89       19.56  ........  ........       1.1       10.95  ........  ........         137        0.17
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                             Level B
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
North Atlantic right whale....................................      0.96       82.22      1.25       26.76  ........  ........      0.79       41.72  ........  ........    \b\ 0.00        0.00
                                                                              (0.00)                (0.00)                                    (0.00)
Humpback whale................................................      0.15       12.44      0.12        2.46  ........  ........      0.04        2.30  ........  ........          18        2.18
Fin whale.....................................................      0.27       23.24      0.19        4.15  ........  ........      0.07        3.64  ........  ........          32        1.98
Sperm whale...................................................      0.01        0.71      0.01        0.15  ........  ........      0.00        0.22  ........  ........       \c\ 5        0.22
Minke whale...................................................      0.08        7.00      0.05        1.14  ........  ........      0.03        1.82  ........  ........      \d\ 20        0.77
Bottlenose dolphin............................................      1.72      147.34      0.46        9.85  ........  ........      9.00      475.06  ........  ........   \c\ 1,000        8.66
Short-beaked common dolphin...................................      6.26      535.71      2.74       58.67  ........  ........      0.46       24.34  ........  ........   \d\ 2,000        2.85
Atlantic white-sided dolphin..................................      1.90      162.75      1.07       22.98  ........  ........      0.21       10.85  ........  ........     \c\ 500        1.02
Harbor porpoise...............................................      6.67      570.94      4.89      104.61  ........  ........      1.11       58.57  ........  ........         755        0.95
Harbor seal \e\...............................................      9.74      834.41      9.74      208.60      9.74     61.15      9.74      514.55      9.74     16.99       1,654        2.18
Gray seal \e\.................................................     14.12    1,209.26     14.12      302.32     14.12     88.65     14.12      745.71     14.12     24.62       2,397        0.56
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Notes:
\a\ Density values from Duke University (Roberts et al., 2016) except for pinnipeds.
\b\ Exclusion zone exceeds Level B isopleth; take adjusted to 0 given mitigation to prevent take.
\c\ Value increased to reflect typical group size.
\d\ Adjusted to account for actual take sighting data in the Survey Area to date (Smultea Environmental Sciences, 2016; Gardline, 2016).
\e\ Density from NODEs (DoN, 2007).

    As noted in Table 8, requested take estimates were adjusted to 
account for typical group size for sperm whales, bottlenose dolphins, 
and Atlantic white-sided dolphins. Requested take numbers were also 
adjusted to account for recent sightings data (Smultea Environmental 
Sciences, 2016; Gardline, 2016) for minke whales and short-beaked 
common dolphins. In addition, requested Level A take numbers for harbor 
porpoise were adjusted to account for the fact that a Level A shutdown 
zone encompassing the Level A harassment zone will be implemented to 
avoid Level A takes of this species. Finally, requested take numbers 
were adjusted for north Atlantic right whales due to the implementation 
of a 500 m shutdown zone, which is greater than the 400 m Level B 
behavioral harassment zone, to avoid Level B takes of this species.
    Bay State Wind's calculations do not take into account whether a 
single animal is harassed multiple times or whether each exposure is a 
different animal. Therefore, the numbers in Tables 6 are the maximum 
number of animals that may be harassed during the HRG surveys (i.e., 
Bay State Wind assumes that each exposure event is a

[[Page 22459]]

different animal). With exception of north Atlantic right whales and 
Level A takes of harbor porpoises, these estimates do not account for 
prescribed mitigation measures that Bay State Wind would implement 
during the specified activities and the fact that other mitigation 
measures may be imposed as part of other agreements that Bay State Wind 
must adhere to, such as their lease agreement with BOEM.
    NMFS proposes to authorize a small number of Level A takes of 
harbor porpoises even though NMFS has also proposed a 75 m shut down 
zone to avoid Level A take of this species. This is warranted due to 
the small size of the species in combination with some higher sea 
states and weather conditions that could make harbor porpoises more 
cryptic and difficult to observe at the 75 m shut down zone. For 
reasons discussed above (short pulse duration and highly directional 
sound pulse transmission of these mobile sources), PTS (Level A take) 
is unlikely to occur even if harbor porpoises were within the 75 m 
isopleth. However, out of an abundance of caution, NMFS proposes to 
authorize Level A take of harbor porpoises.
    No take of north Atlantic right whale is requested, nor is any take 
proposed for authorization. The modeled Level B behavioral harassment 
(400 m) is well within the 500 m mitigation shut down for this species 
and, based on the described monitoring measures, information from 
previous monitoring reports, and in consideration of the size of this 
species, it is reasonable to expect that north Atlantic right whales 
will be able to be observed such that shut down would occur well beyond 
the threshold for potential behavioral harassment.
    Finally, as stated above, calculation of the ensonified area does 
not take directionality of the sound source into account and results in 
a conservative estimate for the ZOI. The equipment with the largest 
radial distance to Level A (for harbor porpoise) and Level B harassment 
thresholds was used to calculate the ZOI under the assumption that this 
equipment would be in use for the entirety of the survey activities. 
The Innomar SES-2000 sub-bottom profiler resulted in the largest 
isopleth for Level A harassment for HF cetaceans (harbor porpoise), so 
the ZOI was calculated based on this 75 m isopleth. However, as also 
described above, this equipment has a 1[deg] beamwidth, so the actual 
ensonified volume would be much less than the calculated area. 
Similarly, the Applied Acoustics S-Boom triple plate boomer resulted in 
the largest isopleth for Level B harassment, so the ZOI was calculated 
using this 400 m isopleth and, as described above, this equipment has a 
beamwidth of 25[deg]--35[deg] and is also not omnidirectional so the 
actual ensonified volume would be less than the calculated area. 
Therefore, the resulting number of calculated marine mammal incidental 
takes are very conservative due to the assumption that the equipment 
with the largest isopleths are in use for the duration of activities 
and the calculated ZOIs do not take directionality of these sound 
sources into account. Further, the calculated takes are conservative 
because these HRG sound sources have very short pulse durations that 
are also not taken into account in calculations of take, but would 
lessen the potential for marine mammals to be exposed to the sound 
source for long enough periods to result in the potential for take as 
described above.

Proposed Mitigation

    In order to issue an IHA under Section 101(a)(5)(D) of the MMPA, 
NMFS must set forth the permissible methods of taking pursuant to such 
activity, and other means of effecting the least practicable impact on 
such species or stock and its habitat, paying particular attention to 
rookeries, mating grounds, and areas of similar significance, and on 
the availability of such species or stock for taking for certain 
subsistence uses (latter not applicable for this action). NMFS 
regulations require applicants for incidental take authorizations to 
include information about the availability and feasibility (economic 
and technological) of equipment, methods, and manner of conducting such 
activity or other means of effecting the least practicable adverse 
impact upon the affected species or stocks and their habitat (50 CFR 
216.104(a)(11)).
    In evaluating how mitigation may or may not be appropriate to 
ensure the least practicable adverse impact on species or stocks and 
their habitat, as well as subsistence uses where applicable, we 
carefully consider two primary factors:
    (1) The manner in which, and the degree to which, the successful 
implementation of the measure(s) is expected to reduce impacts to 
marine mammals, marine mammal species or stocks, and their habitat. 
This considers the nature of the potential adverse impact being 
mitigated (likelihood, scope, range). It further considers the 
likelihood that the measure will be effective if implemented 
(probability of accomplishing the mitigating result if implemented as 
planned) and the likelihood of effective implementation (probability 
implemented as planned); and
    (2) The practicability of the measures for applicant 
implementation, which may consider such things as cost, impact on 
operations, and, in the case of a military readiness activity, 
personnel safety, practicality of implementation, and impact on the 
effectiveness of the military readiness activity.
    With NMFS' input during the application process, Bay State Wind is 
proposing the following mitigation measures during site 
characterization surveys utilizing HRG survey equipment. The mitigation 
measures outlined in this section are based on protocols and procedures 
that have been successfully implemented and resulted in no observed 
take of marine mammals for similar offshore projects and previously 
approved by NMFS (DONG Energy, 2016, ESS, 2013; Dominion, 2013 and 
2014), as well as results of sound source verification (SSV) studies 
implemented by Bay State Wind during past activities in the proposed 
project area.

Marine Mammal Exclusion and Monitoring Zones

    Protected species observers (PSOs) will monitor the following 
exclusion/monitoring zones for the presence of marine mammals:
     A 1,640 ft (500-m) exclusion zone for North Atlantic right 
whales, which encompasses the largest Level B harassment isopleth of 
400 m for the Applied Acoustics S-Boom Triple Plate Boomer;
     A 328 ft (100-m) exclusion zone for non-delphinoid large 
cetacean and ESA-listed marine mammals, which is consistent with vessel 
strike avoidance measures stipulated in the BOEM lease;
     A 1,312 ft (400-m) Level B monitoring zone for all marine 
mammals except for North Atlantic right whales, which is the extent of 
the largest Level B harassment isopleth for the Applied Acoustics S-
Boom Triple Plate Boomer; and
     A 246 ft (75-m) exclusion zone for harbor porpoise, which 
is the extent of the largest Level A harassment isopleth for the 
Innomar SES-2000 medium sub-bottom profiler.
    The distances from the sound sources for these exclusion/monitoring 
zones are based on distances to NMFS harassment criteria or 
requirements of the BOEM lease stipulations for vessel strike avoidance 
(discussed below). The representative area ensonified to the MMPA Level 
B threshold for each of the pieces of HRG survey equipment represents 
the zone within which take

[[Page 22460]]

of a marine mammal could occur. The distances to the Level A and Level 
B harassment criteria were used to support the estimate of take as well 
as the development of the monitoring and/or mitigation measures. Radial 
distance to NMFS' Level A and Level B harassment thresholds are 
summarized in Tables 5 and 6 above.
    Visual monitoring of the established exclusion zone(s) for the HRG 
surveys will be performed by qualified and NMFS-approved PSOs, the 
resumes of whom will be provided to NMFS for review and approval prior 
to the start of survey activities. Observer qualifications will include 
direct field experience on a marine mammal observation vessel and/or 
aerial surveys in the Atlantic Ocean/Gulf of Mexico. An observer team 
comprising a minimum of four NMFS-approved PSOs and two certified 
Passive Acoustic Monitoring (PAM) operators (PAM operators will not 
function as PSOs), operating in shifts, will be stationed aboard either 
the survey vessel or a dedicated PSO-vessel. PSOs and PAM operators 
will work in shifts such that no one monitor will work more than 4 
consecutive hours without a 2-hour break or longer than 12 hours during 
any 24-hour period. During daylight hours the PSOs will rotate in 
shifts of 1 on and 3 off, while during nighttime operations PSOs will 
work in pairs. The PAM operators will also be on call as necessary 
during daytime operations should visual observations become impaired. 
Each PSO will monitor 360 degrees of the field of vision.
    PSOs will be responsible for visually monitoring and identifying 
marine mammals approaching or within the established exclusion zone(s) 
during survey activities. It will be the responsibility of the Lead PSO 
on duty to communicate the presence of marine mammals as well as to 
communicate and ensure the action(s) that are necessary to ensure 
mitigation and monitoring requirements are implemented as appropriate. 
PAM operators will communicate detected vocalizations to the Lead PSO 
on duty, who will then be responsible for implementing the necessary 
mitigation procedures. A mitigation and monitoring communications flow 
diagram has been included as Appendix A in the IHA application.
    PSOs will be equipped with binoculars and have the ability to 
estimate distances to marine mammals located in proximity to the vessel 
and/or exclusion zone using range finders. Reticulated binoculars will 
also be available to PSOs for use as appropriate based on conditions 
and visibility to support the sighting and monitoring of marine 
species. Digital single-lens reflex camera equipment will be used to 
record sightings and verify species identification. During night 
operations, PAM (see Passive Acoustic Monitoring requirements below) 
and night-vision equipment in combination with infrared video 
monitoring will be used (Additional details and specifications of the 
night-vision devices and infrared video monitoring technology will be 
provided under separate cover by the Bay State Wind Survey Contractor 
once selected.). Position data will be recorded using hand-held or 
vessel global positioning system (GPS) units for each sighting.
    For monitoring around the ASV, a dual thermal/HD camera will be 
installed on the mother vessel, facing forward, angled in a direction 
so as to provide a field of view ahead of the vessel and around the 
ASV. The ASV will be kept in sight of the mother vessel at all times 
(within 2,625 ft (800 m)). PSOs will be able to monitor the real time 
output of the camera on hand-held iPads. Images from the cameras can be 
captured for review and to assist in verifying species identification. 
A monitor will also be installed on the bridge displaying the real-time 
picture from the thermal/HD camera installed on the front of the ASV 
itself, providing a further forward field of view of the craft. In 
addition, night-vision goggles with thermal clip-ons, as mentioned 
above, and a hand-held spotlight will be provided such that PSOs can 
focus observations in any direction, around the mother vessel and/or 
the ASV. PSOs will also be able to monitor the data as it is acquired 
by the ASV utilizing a real time IP radio link. For each 12 hour shift, 
an ASV technician will be assigned to manage the vessel and monitor the 
array of cameras, radars, and thermal equipment during their shift to 
ensure the vehicle is operating properly and to take over control of 
the vessel should the need arise. Additionally, there will be 2 survey 
technicians per shift assigned to acquire the ASV survey data.
    The PSOs will begin observation of the exclusion zone(s) at least 
60 minutes prior to ramp-up of HRG survey equipment. Use of noise-
producing equipment will not begin until the exclusion zone is clear of 
all marine mammals for at least 60 minutes, as per the requirements of 
the BOEM Lease.
    If a marine mammal is detected approaching or entering the 
exclusion zones during the HRG survey, the vessel operator would adhere 
to the shutdown procedures described below to minimize noise impacts on 
the animals.
    At all times, the vessel operator will maintain a separation 
distance of 500 m from any sighted North Atlantic right whale as 
stipulated in the Vessel Strike Avoidance procedures described below. 
These stated requirements will be included in the site-specific 
training to be provided to the survey team.

Vessel Strike Avoidance

    The Applicant will ensure that vessel operators and crew maintain a 
vigilant watch for cetaceans and pinnipeds and slow down or stop their 
vessels to avoid striking these species. Survey vessel crew members 
responsible for navigation duties will receive site-specific training 
on marine mammal and sea turtle sighting/reporting and vessel strike 
avoidance measures. Vessel strike avoidance measures will include the 
following, except under extraordinary circumstances when complying with 
these requirements would put the safety of the vessel or crew at risk:
     All vessel operators will comply with 10 knot (<18.5 km 
per hour (km/h)) speed restrictions in any Dynamic Management Area 
(DMA). In addition, all vessels operating from November 1 through July 
31 will operate at speeds of 10 knots (<18.5 km/h) or less;
     All vessel operators will reduce vessel speed to 10 knots 
or less when mother/calf pairs, pods, or larger assemblages of non-
delphinoid cetaceans are observed near an underway vessel;
     All survey vessels will maintain a separation distance of 
1,640 ft (500 m) or greater from any sighted North Atlantic right 
whale;
     If underway, vessels must steer a course away from any 
sighted North Atlantic right whale at 10 knots (<18.5 km/h) or less 
until the 1,640 ft (500 m) minimum separation distance has been 
established. If a North Atlantic right whale is sighted in a vessel's 
path, or within 330 ft (100 m) to an underway vessel, the underway 
vessel must reduce speed and shift the engine to neutral. Engines will 
not be engaged until the North Atlantic right whale has moved outside 
of the vessel's path and beyond 330 ft (100 m). If stationary, the 
vessel must not engage engines until the North Atlantic right whale has 
moved beyond 330 ft (100 m);
     All vessels will maintain a separation distance of 330 ft 
(100 m) or greater from any sighted non-delphinoid (i.e., mysticetes 
and sperm whales) cetaceans. If sighted, the vessel underway must 
reduce speed and shift the engine to neutral, and must not engage the 
engines until the non-delphinoid cetacean has moved outside of the 
vessel's path and beyond 330 ft

[[Page 22461]]

(100 m). If a survey vessel is stationary, the vessel will not engage 
engines until the non-delphinoid cetacean has moved out of the vessel's 
path and beyond 330 ft (100 m);
     All underway vessels will avoid excessive speed or abrupt 
changes in direction to avoid injury to any sighted delphinoid cetacean 
or pinniped; and
     All vessels will maintain a separation distance of 164 ft 
(50 m) or greater from any sighted pinniped.
    The training program will be provided to NMFS for review and 
approval prior to the start of surveys. Confirmation of the training 
and understanding of the requirements will be documented on a training 
course log sheet. Signing the log sheet will certify that the crew 
members understand and will comply with the necessary requirements 
throughout the survey event.

Seasonal Operating Requirements

    Between watch shifts, members of the monitoring team will consult 
the NMFS North Atlantic right whale reporting systems for the presence 
of North Atlantic right whales throughout survey operations. However, 
the proposed survey activities will occur outside of the seasonal 
management area (SMA) located off the coast of Massachusetts and Rhode 
Island. The proposed survey activities will occur in June through 
September, which is outside of the seasonal mandatory speed restriction 
period for this SMA (November 1 through April 30).
    Throughout all survey operations, the Applicant will monitor the 
NMFS North Atlantic right whale reporting systems for the establishment 
of a DMA. If NMFS should establish a DMA in the Lease Area under 
survey, within 24 hours of the establishment of the DMA the Applicant 
will work with NMFS to shut down and/or alter the survey activities to 
avoid the DMA.

Passive Acoustic Monitoring

    As per the BOEM Lease, alternative monitoring technologies (e.g., 
active or passive acoustic monitoring) are required if a Lessee intends 
to conduct geophysical surveys at night or when visual observation is 
otherwise impaired. To support 24-hour HRG survey operations, Bay State 
Wind will use certified PAM operators with experience reviewing and 
identifying recorded marine mammal vocalizations, as part of the 
project monitoring during nighttime operations to provide for optimal 
acquisition of species detections at night, or as needed during periods 
when visual observations may be impaired. In addition, PAM systems 
shall be employed during daylight hours to support system calibration 
and PSO and PAM team coordination, as well as in support of efforts to 
evaluate the effectiveness of the various mitigation techniques (i.e., 
visual observations during day and night, compared to the PAM 
detections/operations).
    Given the range of species that could occur in the Lease Area, the 
PAM system will consist of an array of hydrophones with both broadband 
(sampling mid-range frequencies of 2 kHz to 200 kHz) and at least one 
low-frequency hydrophone (sampling range frequencies of 10 Hz to 30 
kHz). Monitoring of the PAM system will be conducted from a customized 
processing station aboard the HRG survey vessel. The on-board 
processing station provides the interface between the PAM system and 
the operator. The PAM operator(s) will monitor the hydrophone signals 
in real time both aurally (using headphones) and visually (via the 
monitor screen displays). Bay State Wind proposes the use of PAMGuard 
software for `target motion analysis' to support localization in 
relation to the identified exclusion zone. PAMGuard is an open source 
software/hardware interface to enable flexibility in the configuration 
of in-sea equipment (number of hydrophones, sensitivities, spacing, and 
geometry). PAM operators will immediately communicate detections/
vocalizations to the Lead PSO on duty who will ensure the 
implementation of the appropriate mitigation measure (e.g., shutdown) 
even if visual observations by PSOs have not been made.

Ramp-Up

    As per the BOEM Lease, a ramp-up procedure will be used for HRG 
survey equipment capable of adjusting energy levels at the start or re-
start of HRG survey activities. A ramp-up procedure will be used at the 
beginning of HRG survey activities in order to provide additional 
protection to marine mammals near the Lease Area by allowing them to 
vacate the area prior to the commencement of survey equipment use. The 
ramp-up procedure will not be initiated during daytime, night time, or 
periods of inclement weather if the exclusion zone cannot be adequately 
monitored by the PSOs using the appropriate visual technology (e.g., 
reticulated binoculars, night vision equipment) and/or PAM for a 60-
minute period. A ramp-up would begin with the power of the smallest 
acoustic HRG equipment at its lowest practical power output appropriate 
for the survey. The power would then be gradually turned up and other 
acoustic sources added such that the source level would increase in 
steps not exceeding 6 dB per 5-minute period. If marine mammals are 
detected within the HRG survey exclusion zone prior to or during the 
ramp-up, activities will be delayed until the animal(s) has moved 
outside the monitoring zone and no marine mammals are detected for a 
period of 60 minutes.

Shutdown Procedures

    The exclusion zone(s) around the noise-producing activities HRG 
survey equipment will be monitored, as previously described, by PSOs 
and at night by PAM operators for the presence of marine mammals 
before, during, and after any noise-producing activity. The vessel 
operator must comply immediately with any call for shutdown by the Lead 
PSO. Any disagreement should be discussed only after shutdown.
    As per the BOEM Lease, if a non-delphinoid (i.e., mysticetes and 
sperm whales) cetacean is detected at or within the established Level A 
exclusion zone, an immediate shutdown of the HRG survey equipment is 
required. Subsequent restart of the electromechanical survey equipment 
must use the ramp-up procedures described above and may only occur 
following clearance of the exclusion zone for 60 minutes. Subsequent 
power up of the survey equipment must use the ramp-up procedures 
described above and may occur after (1) the exclusion zone is clear of 
a delphinoid cetacean and/or pinniped for 60 minutes.
    If the HRG sound source (including the sub-bottom profiler) shuts 
down for reasons other than encroachment into the exclusion zone by a 
marine mammal including but not limited to a mechanical or electronic 
failure, resulting in in the cessation of sound source for a period 
greater than 20 minutes, a restart for the HRG survey equipment 
(including the sub-bottom profiler) is required using the full ramp-up 
procedures and clearance of the exclusion zone of all cetaceans and 
pinnipeds for 60 minutes. If the pause is less than 20 minutes, the 
equipment may be restarted as soon as practicable at its operational 
level as long as visual surveys were continued diligently throughout 
the silent period and the exclusion zone remained clear of cetaceans 
and pinnipeds. If the visual surveys were not continued diligently 
during the pause of 20 minutes or less, a restart of the HRG survey 
equipment (including the sub-bottom profiler) is required using the 
full ramp-up procedures and clearance of the

[[Page 22462]]

exclusion zone for all cetaceans and pinnipeds for 60 minutes.
    The proposed mitigation measures are designed to avoid the already 
low potential for injury (Level A harassment) in addition to some Level 
B harassment, and to minimize the potential for vessel strikes. There 
are no known marine mammal rookeries or mating grounds in the survey 
area that would otherwise potentially warrant increased mitigation 
measures for marine mammals or their habitat (or both). The proposed 
survey would occur in an area that has been identified as a 
biologically important area (BIA) for migration for North Atlantic 
right whales. However, given the small spatial extent of the survey 
area relative to the substantially larger spatial extent of the right 
whale migratory area, the survey is not expected to appreciably reduce 
migratory habitat nor to negatively impact the migration of North 
Atlantic right whales. In addition, the timing of importance for 
migration in this biologically important area BIA is March-April and 
November-December, and Bay State Wind's proposed activities are 
anticipated to occur outside of the timing of importance. Thus, 
mitigation to address the proposed survey's occurrence in North 
Atlantic right whale migratory habitat is not warranted. The proposed 
survey area would partially overlap spatially with a biologically 
important feeding area for fin whales. However, the fin whale feeding 
area is sufficiently large (2,933 km\2\), and the acoustic footprint of 
the proposed survey is sufficiently small that the survey is not 
expected to appreciably reduce fin whale feeding habitat nor to 
negatively impact the feeding of fin whales, thus mitigation to address 
the proposed survey's occurrence in fin whale feeding habitat is not 
warranted. Further, we believe the proposed mitigation measures are 
practicable for the applicant to implement.
    Based on our evaluation of the applicant's proposed measures, as 
well as other measures considered by NMFS, NMFS has preliminarily 
determined that the proposed mitigation measures provide the means of 
effecting the least practicable impact on marine mammals species or 
stocks and their habitat, paying particular attention to rookeries, 
mating grounds, and areas of similar significance.

Monitoring and Reporting

    In order to issue an IHA for an activity, section 101(a)(5)(D) of 
the MMPA states that NMFS must set forth, requirements pertaining to 
the monitoring and reporting of such taking. The MMPA implementing 
regulations at 50 CFR 216.104 (a)(13) indicate that requests for ITAs 
must include the suggested means of accomplishing the necessary 
monitoring and reporting that will result in increased knowledge of the 
species and of the level of taking or impacts on populations of marine 
mammals that are expected to be present in the proposed action area.
    Monitoring and reporting requirements prescribed by NMFS should 
contribute to improved understanding of one or more of the following:
     Occurrence of marine mammal species or stocks in the area 
in which take is anticipated (e.g., presence, abundance, distribution, 
density);
     Nature, scope, or context of likely marine mammal exposure 
to potential stressors/impacts (individual or cumulative, acute or 
chronic), through better understanding of: (1) Action or environment 
(e.g., source characterization, propagation, ambient noise); (2) 
affected species (e.g., life history, dive patterns); (3) co-occurrence 
of marine mammal species with the action; or (4) biological or 
behavioral context of exposure (e.g., age, calving or feeding areas);
     Individual marine mammal responses (behavioral or 
physiological) to acoustic stressors (acute, chronic, or cumulative), 
other stressors, or cumulative impacts from multiple stressors;
     How anticipated responses to stressors impact either: (1) 
Long-term fitness and survival of individual marine mammals; or (2) 
populations, species, or stocks;
     Effects on marine mammal habitat (e.g., marine mammal prey 
species, acoustic habitat, or other important physical components of 
marine mammal habitat); and
     Mitigation and monitoring effectiveness.

Proposed Monitoring Measures

    Bay State Wind submitted a marine mammal monitoring and reporting 
plan as part of the IHA application. The plan may be modified or 
supplemented based on comments or new information received from the 
public during the public comment period.
    Visual Monitoring--Visual monitoring of the established Level B 
harassment zones will be performed by qualified and NMFS-approved PSOs 
(see discussion of PSO qualifications and requirements in Marine Mammal 
Exclusion Zones above).
    The PSOs will begin observation of the monitoring zone during all 
HRG survey activities and all geotechnical operations where DP 
thrusters are employed. Observations of the monitoring zone will 
continue throughout the survey activity. PSOs will be responsible for 
visually monitoring and identifying marine mammals approaching or 
entering the established monitoring zone during survey activities.
    Observations will take place from the highest available vantage 
point on the survey vessel. General 360-degree scanning will occur 
during the monitoring periods, and target scanning by the PSO will 
occur when alerted of a marine mammal presence.
    Data on all PSO observations will be recorded based on standard PSO 
collection requirements. This will include dates and locations of 
construction operations; time of observation, location and weather; 
details of the sightings (e.g., species, age classification [if known], 
numbers, behavior); and details of any observed ``taking'' (behavioral 
disturbances or injury/mortality). The data sheet will be provided to 
both NMFS and BOEM for review and approval prior to the start of survey 
activities. In addition, prior to initiation of survey work, all crew 
members will undergo environmental training, a component of which will 
focus on the procedures for sighting and protection of marine mammals. 
A briefing will also be conducted between the survey supervisors and 
crews, the PSOs, and the Applicant. The purpose of the briefing will be 
to establish responsibilities of each party, define the chains of 
command, discuss communication procedures, provide an overview of 
monitoring purposes, and review operational procedures.

Proposed Reporting Measures

    The Applicant will provide the following reports as necessary 
during survey activities:
     The Applicant will contact NMFS and BOEM within 24 hours 
of the commencement of survey activities and again within 24 hours of 
the completion of the activity.
     As per the BOEM Lease: Any observed significant behavioral 
reactions (e.g., animals departing the area) or injury or mortality to 
any marine mammals must be reported to NMFS and BOEM within 24 hours of 
observation. Dead or injured protected species are reported to the NMFS 
Greater Atlantic Regional Fisheries Office Stranding Hotline (800-900-
3622) within 24 hours of sighting, regardless of whether the injury is 
caused by a vessel. In addition, if the injury of death was caused by a 
collision with a project related vessel,

[[Page 22463]]

the Applicant must ensure that NMFS and BOEM are notified of the strike 
within 24 hours. The Applicant must use the form included as Appendix A 
to Addendum C of the Lease to report the sighting or incident. If The 
Applicant is responsible for the injury or death, the vessel must 
assist with any salvage effort as requested by NMFS. Additional 
reporting requirements for injured or dead animals are described below 
(Notification of Injured or Dead Marine Mammals).

Notification of Injured or Dead Marine Mammals

    In the unanticipated event that the specified HRG and geotechnical 
activities lead to an unauthorized injury of a marine mammal (Level A 
harassment) or mortality (e.g., ship-strike, gear interaction, and/or 
entanglement), Bay State Wind would immediately cease the specified 
activities and report the incident to the Chief of the Permits and 
Conservation Division, Office of Protected Resources and the NOAA 
Greater Atlantic Regional Fisheries Office (GARFO) Stranding 
Coordinator. The report would include the following information:
     Time, date, and location (latitude/longitude) of the 
incident;
     Name and type of vessel involved;
     Vessel's speed during and leading up to the incident;
     Description of the incident;
     Status of all sound source use in the 24 hours preceding 
the incident;
     Water depth;
     Environmental conditions (e.g., wind speed and direction, 
Beaufort sea state, cloud cover, and visibility);
     Description of all marine mammal observations in the 24 
hours preceding the incident;
     Species identification or description of the animal(s) 
involved;
     Fate of the animal(s); and
     Photographs or video footage of the animal(s) (if 
equipment is available).
    Activities would not resume until NMFS is able to review the 
circumstances of the event. NMFS would work with Bay State Wind to 
minimize reoccurrence of such an event in the future. Bay State Wind 
would not resume activities until notified by NMFS.
    In the event that Bay State Wind discovers an injured or dead 
marine mammal and determines that the cause of the injury or death is 
unknown and the death is relatively recent (i.e., in less than a 
moderate state of decomposition), Bay State Wind would immediately 
report the incident to the Chief of the Permits and Conservation 
Division, Office of Protected Resources and the GARFO Stranding 
Coordinator. The report would include the same information identified 
in the paragraph above. Activities would be allowed to continue while 
NMFS reviews the circumstances of the incident. NMFS would work with 
the Applicant to determine if modifications in the activities are 
appropriate.
    In the event that Bay State Wind discovers an injured or dead 
marine mammal and determines that the injury or death is not associated 
with or related to the activities authorized in the IHA (e.g., 
previously wounded animal, carcass with moderate to advanced 
decomposition, or scavenger damage), Bay State Wind would report the 
incident to the Chief of the Permits and Conservation Division, Office 
of Protected Resources, NMFS, and the NMFS Greater Atlantic Regional 
Fisheries Office Regional Stranding Coordinator, within 24 hours of the 
discovery. Bay State Wind would provide photographs or video footage 
(if available) or other documentation of the stranded animal sighting 
to NMFS. Bay State Wind can continue its operations in such a case.
    Within 90 days after completion of the marine site characterization 
survey activities, a technical report will be provided to NMFS and BOEM 
that fully documents the methods and monitoring protocols, summarizes 
the data recorded during monitoring, estimates the number of marine 
mammals that may have been taken during survey activities, and provides 
an interpretation of the results and effectiveness of all monitoring 
tasks. Any recommendations made by NMFS must be addressed in the final 
report prior to acceptance by NMFS.
    In addition to the Applicant's reporting requirements outlined 
above, the Applicant will provide an assessment report of the 
effectiveness of the various mitigation techniques, i.e. visual 
observations during day and night, compared to the PAM detections/
operations. This will be submitted as a draft to NMFS and BOEM 30 days 
after the completion of the HRG surveys and as a final version 60 days 
after completion of the surveys.

Negligible Impact Analysis and Determination

    Negligible impact is an impact resulting from the specified 
activity that cannot be reasonably expected to, and is not reasonably 
likely to, adversely affect the species or stock through effects on 
annual rates of recruitment or survival (50 CFR 216.103). A negligible 
impact finding is based on the lack of likely adverse effects on annual 
rates of recruitment or survival (i.e., population-level effects). An 
estimate of the number of takes, alone, is not enough information on 
which to base an impact determination, as the severity of harassment 
may vary greatly depending on the context and duration of the 
behavioral response, many of which would not be expected to have 
deleterious impacts on the fitness of any individuals. In determining 
whether the expected takes will have a negligible impact, in addition 
to considering estimates of the number of marine mammals that might be 
``taken,'' NMFS must consider other factors, such as the likely nature 
of any responses (their intensity, duration, etc.), the context of any 
responses (critical reproductive time or location, migration, etc.), as 
well as the number and nature of estimated Level A harassment takes, 
the number of estimated mortalities, and the status of the species.
    As discussed in the ``Potential Effects of the Specified Activity 
on Marine Mammals and Their Habitat'' section, PTS, masking, non-
auditory physical effects, and vessel strike are not expected to occur. 
However, a small number of PTS takes of harbor porpoise are analyzed 
here out of an abundance of caution even though the potential is low. 
There is also some potential for limited TTS. Animals in the area would 
likely incur no more than brief hearing impairment (i.e., TTS) due to 
generally low SPLs--and in the case of the HRG survey equipment use, 
directional beam pattern, transient signals, and moving sound sources--
and the fact that most marine mammals would more likely avoid a loud 
sound source rather than swim in such close proximity for an amount of 
time as to result in TTS or PTS. Further, once an area has been 
surveyed, it is not likely that it will be surveyed again, therefore 
reducing the likelihood of repeated impacts within the project area.
    Potential impacts to marine mammal habitat were discussed 
previously in this document (see the ``Potential Effects of the 
Specified Activity on Marine Mammals and their Habitat'' section). 
Marine mammal habitat may be impacted by elevated sound levels and some 
sediment disturbance, but these impacts would be temporary and 
relatively short term. Feeding behavior is not likely to be 
significantly impacted, as marine mammals appear to be less likely to 
exhibit behavioral reactions or avoidance responses while engaged in 
feeding activities (Richardson et al., 1995). Prey species are mobile, 
and are broadly distributed throughout the Lease Area; therefore,

[[Page 22464]]

marine mammals that may be temporarily displaced during survey 
activities are expected to be able to resume foraging once they have 
moved away from areas with disturbing levels of underwater noise. 
Because of the temporary nature of the disturbance, the availability of 
similar habitat and resources in the surrounding area, and the lack of 
important or unique marine mammal habitat, the impacts to marine 
mammals and the food sources that they utilize are not expected to 
cause significant or long-term consequences for individual marine 
mammals or their populations. Furthermore, there are no feeding areas, 
rookeries, or mating grounds known to be biologically important to 
marine mammals within the proposed project area. A small portion of a 
BIA for fin whale feeding is within the survey area and a BIA for North 
Atlantic right whale migration encompasses the Lease Area. However, 
there is no temporal overlap between the north Atlantic right whale BIA 
(effective March-April and November-December) and the proposed survey 
activities (April-June; October). The portion of the fin whale feeding 
BIA within the HRG survey area is a very small portion of the overall 
BIA, and HRG activities would ensonify such a small area that fin whale 
foraging is not anticipated to be substantially impacted. ESA-listed 
species for which takes are proposed are sperm whales and fin whales, 
and these effects are anticipated to be limited to lower level 
behavioral effects.
    Examination of the minimum number alive population index calculated 
from the individual sightings database for the years 1990-2010 
suggested a positive and slowly accelerating trend in North Atlantic 
right whale population size (Waring et al., 2015); however, since June 
7, 2017, an unusual mortality event has been declared for this species 
due to a high number of mortalities with human interactions (i.e., 
fishery-related entanglements and vessel strikes) identified as the 
most likely cause. There are currently insufficient data to determine 
population trends for fin whale (Waring et al., 2015). There is no 
designated critical habitat for any ESA-listed marine mammals within 
the Lease Area, and none of the stocks for non-listed species proposed 
to be taken are considered ``depleted'' or ``strategic'' by NMFS under 
the MMPA.
    The proposed mitigation measures are expected to reduce the number 
and/or severity of takes by giving animals the opportunity to move away 
from the sound source before HRG survey equipment reaches full energy 
and preventing animals from being exposed to sound levels reaching 180 
dB during HRG survey activities. Additional vessel strike avoidance 
requirements will further mitigate potential impacts to marine mammals 
during vessel transit to and within the Study Area.
    Bay State Wind did not request, and NMFS is not proposing, take of 
marine mammals by serious injury, or mortality. NMFS expects that most 
takes would primarily be in the form of short-term Level B behavioral 
harassment in the form of brief startling reaction and/or temporary 
vacating of the area, or decreased foraging (if such activity were 
occurring)--reactions that are considered to be of low severity and 
with no lasting biological consequences (e.g., Southall et al., 2007). 
This is largely due to the short time scale of the proposed activities, 
the low source levels and intermittent nature of many of the 
technologies proposed to be used, as well as the required mitigation. 
However, Bay State Wind has requested a small number of Level A takes 
for harbor porpoises in an abundance of caution. NMFS is proposing to 
authorize Level A take of harbor porpoises due to the fact that their 
small size may make it difficult to observe all individuals in certain 
sea states or weather conditions, so some Level A take may occur even 
with implementation of the 75 m shut down zone.
    In summary and as described above, the following factors primarily 
support our preliminary determination that the impacts resulting from 
this activity are not expected to adversely affect the species or stock 
through effects on annual rates of recruitment or survival:
     No mortality or serious is anticipated or authorized;
     Take is anticipated to be primarily Level B behavioral 
harassment consisting of brief startling reactions and/or temporary 
avoidance of the survey area due to the intermittent and short term 
nature of the activities as well as the directionality of the sound 
sources;
     While the survey area is within areas noted as 
biologically important for north Atlantic right whale migration, the 
activities will take place outside of the timeframe of noted importance 
for migration, and would occur in such a comparatively small area such 
that any avoidance of the survey area due to activities would not 
affect migration. In addition, mitigation measures to shut down at 500 
m to avoid potential for Level B behavioral harassment due to animals 
that may occur inside that isopleth (400 m) will avoid any take of the 
species. Similarly, due to the small footprint of the survey activities 
in relation to the size of a biologically important area for fin whales 
foraging, the survey activities would not affect foraging behavior of 
this species.
     For most species, the percentage of stocks affected are 
less than 3 percent of the stock. This represents the total number of 
exposures and does not consider that there are likely repeat exposures 
of the same individuals. In addition, these takes are anticipated to be 
mainly Level B behavioral takes in the form of short-term startle or 
avoidance reactions that would not affect the species or stock.
    NMFS concludes that exposures to marine mammal species and stocks 
due to Bay State Wind's HRG survey activities would result in only 
short-term (temporary and short in duration) and relatively infrequent 
effects to individuals exposed, and not of the type or severity that 
would be expected to be additive for the very small portion of the 
stocks and species likely to be exposed. NMFS does not anticipate the 
proposed take estimates to impact annual rates of recruitment or 
survival. Animals may temporarily avoid the immediate area, but are not 
expected to permanently abandon the area. Major shifts in habitat use, 
distribution, or foraging success, are not expected.
    Based on the analysis contained herein of the likely effects of the 
specified activity on marine mammals and their habitat, and taking into 
consideration the implementation of the proposed monitoring and 
mitigation measures, NMFS preliminarily finds that the total marine 
mammal take from Bay State Wind's proposed HRG survey activities will 
have a negligible impact on the affected marine mammal species or 
stocks.

Small Numbers

    The requested takes proposed to be authorized for the HRG represent 
2.18 percent of the Gulf of Maine stock of humpback whale (West Indies 
Distinct Population Segment); 1.98 percent of the WNA stock of fin 
whale; 0.77 percent of the Canadian East Coast stock of minke whale; 
0.22 percent of the North Atlantic stock of sperm whales; 8.66 percent 
of the Western North Atlantic stock of bottlenose dolphins; 2.85 
percent of the WNA stock of short-beaked common dolphin, 1.02 percent 
of the WNA stock of Atlantic white-sided dolphin, 0.95 percent of the 
Gulf of Maine/Bay of Fundy stock of harbor porpoise, 2.18 percent of 
the WNA stock of harbor seal, and 0.56 percent of the North Atlantic 
stock of gray seal. These take estimates represent the percentage of 
each species or stock that could be taken and for most stocks are small 
numbers (less than 3 percent for most

[[Page 22465]]

stocks) relative to the affected species or stock sizes. Further, the 
proposed take numbers are the maximum numbers of animals that are 
expected to be harassed during the project; it is possible that some of 
these exposures may occur to the same individual, which would mean the 
percentage of stock taken would be very conservative as it would not 
take into account these multiple exposures of the same individual(s). 
Therefore, NMFS preliminarily finds that small numbers of marine 
mammals will be taken relative to the populations of the affected 
species or stocks.

Impact on Availability of Affected Species for Taking for Subsistence 
Uses

    There are no relevant subsistence uses of marine mammals implicated 
by this action. Therefore, NMFS has determined that the total taking of 
affected species or stocks would not have an unmitigable adverse impact 
on the availability of such species or stocks for taking for 
subsistence purposes.

Endangered Species Act

    Within the project area, fin, humpback, and North Atlantic right 
whale are listed as endangered under the ESA. Under section 7 of the 
ESA, BOEM consulted with NMFS on commercial wind lease issuance and 
site assessment activities on the Atlantic Outer Continental Shelf in 
Massachusetts, Rhode Island, New York and New Jersey Wind Energy Areas. 
NOAA's GARFO issued a Biological Opinion concluding that these 
activities may adversely affect but are not likely to jeopardize the 
continued existence of fin whale or North Atlantic right whale. NMFS is 
also consulting internally on the issuance of an IHA under section 
101(a)(5)(D) of the MMPA for this activity and the existing Biological 
Opinion may be amended to include an incidental take exemption for 
these marine mammal species, as appropriate.

Proposed Authorization

    As a result of these preliminary determinations, NMFS proposes to 
issue an IHA to Bay State Wind for HRG survey activities during 
geophysical survey activities from April 2018 through March 2019, 
provided the previously mentioned mitigation, monitoring, and reporting 
requirements are incorporated. The proposed IHA language is provided 
next.
    This section contains a draft of the IHA itself. The wording 
contained in this section is proposed for inclusion in the IHA (if 
issued).
    Orsted/US Wind Power/Bay State Wind (Bay State Wind) (One 
International Place, 100 Oliver Street, Suite 2610, Boston, MA 02110) 
is hereby authorized under section 101(a)(5)(D) of the Marine Mammal 
Protection Act (16 U.S.C. 1371(a)(5)(D)) and 50 CFR 216.107, to harass 
marine mammals incidental to high-resolution geophysical (HRG) and 
geotechnical survey investigations associated with marine site 
characterization activities off the coast of Massachusetts in the area 
of the Commercial Lease of Submerged Lands for Renewable Energy 
Development on the Outer Continental Shelf (OCS-A 0500) (the Lease 
Area).
    1. This incidental harassment authorization (IHA) is valid for a 
period of one year from the date of issuance.
    2. This IHA is valid only for marine site characterization survey 
activity, as specified in the IHA application, in the Atlantic Ocean.
    3. General Conditions
    (a) A copy of this IHA must be in the possession of Bay State Wind, 
the vessel operator and other relevant personnel, the lead protected 
species observer (PSO), and any other relevant designees of Bay State 
Wind operating under the authority of this IHA.
    (b) The species authorized for taking are listed in Table 7. The 
taking, by harassment only, is limited to the species and numbers 
listed in Table 7. Any taking of species not listed in Table 7, or 
exceeding the authorized amounts listed in Table 7, is prohibited and 
may result in the modification, suspension, or revocation of this IHA.
    (c) The taking by serious injury or death of any species of marine 
mammal is prohibited and may result in the modification, suspension, or 
revocation of this IHA.
    (d) Bay State Wind shall ensure that the vessel operator and other 
relevant vessel personnel are briefed on all responsibilities, 
communication procedures, marine mammal monitoring protocols, 
operational procedures, and IHA requirements prior to the start of 
survey activity, and when relevant new personnel join the survey 
operations.
    4. Mitigation Requirements--the holder of this Authorization is 
required to implement the following mitigation measures:
    (a) Bay State Wind shall use at least four (4) NMFS-approved PSOs 
during HRG surveys. The PSOs must have no tasks other than to conduct 
observational effort, record observational data, and communicate with 
and instruct relevant vessel crew with regard to the presence of marine 
mammals and mitigation requirements.
    (b) Visual monitoring must begin no less than 30 minutes prior to 
initiation of survey equipment and must continue until 30 minutes after 
use of survey equipment ceases.
    (c) Exclusion Zones and Watch Zone--PSOs shall establish and 
monitor marine mammal Exclusion Zones and Watch Zones. The Watch Zone 
shall represent the extent of the maximum Level B harassment zone 
(1,166 m) or, as far as possible if the extent of the Zone is not fully 
visible. The Exclusion Zones are as follows:
    (i) a 75 m Exclusion Zone for harbor porpoises;
    (ii) a 100 m Exclusion Zone for large whales including sperm whales 
and mysticetes (except North Atlantic right whales);
    (iii) a 500 m Exclusion Zone for North Atlantic right whales;
    (iv) a 400 m Level B harassment monitoring zone for all marine 
mammals.
    (d) Shutdown requirements--If a marine mammal is observed within, 
entering, or approaching the relevant Exclusion Zones as described 
under 4(c) while geophysical survey equipment is operational, the 
geophysical survey equipment must be immediately shut down.
    (i) Any PSO on duty has the authority to call for shutdown of 
survey equipment. When there is certainty regarding the need for 
mitigation action on the basis of visual detection, the relevant PSO(s) 
must call for such action immediately.
    (ii) When a shutdown is called for by a PSO, the shutdown must 
occur and any dispute resolved only following shutdown.
    (iii) Shutdown of HRG survey equipment is also required upon 
confirmed passive acoustic monitoring (PAM) detection of a North 
Atlantic right whale at night, except in instances when the PAM 
detection of a North Atlantic right whale can be localized and the 
whale is confirmed as being beyond the 500 m EZ for right whales. The 
PAM operator on duty has the authority to call for shutdown of survey 
equipment based on confirmed acoustic detection of a North Atlantic 
right whale at night even in the absence of visual confirmation. When 
shutdown occurs based on confirmed PAM detection of a North Atlantic 
right whale at night, survey equipment may be re-started no sooner than 
30 minutes after the last confirmed acoustic detection.
    (iv) Upon implementation of a shutdown, survey equipment may be 
reactivated when all marine mammals have been confirmed by visual 
observation to have exited the relevant Exclusion Zone or an additional 
time period has elapsed with no further sighting of the animal that 
triggered the

[[Page 22466]]

shutdown (15 minutes for small delphinoid cetaceans and pinnipeds and 
30 minutes for all other species).
    (v) If geophysical equipment shuts down for reasons other than 
mitigation (i.e., mechanical or electronic failure) resulting in the 
cessation of the survey equipment for a period of less than 20 minutes, 
the equipment may be restarted as soon as practicable if visual surveys 
were continued diligently throughout the silent period and the relevant 
Exclusion Zones are confirmed by PSOs to have remained clear of marine 
mammals during the entire 20 minute period. If visual surveys were not 
continued diligently during the pause of 20 minutes or less, a 30 
minute pre-clearance period shall precede the restart of the 
geophysical survey equipment as described in 4(e). If the period of 
shutdown for reasons other than mitigation is greater than 20 minutes, 
a pre-clearance period shall precede the restart of the geophysical 
survey equipment as described in 4(e).
    (e) Pre-clearance observation--30 minutes of pre-clearance 
observation shall be conducted prior to initiation of geophysical 
survey equipment. Geophysical survey equipment shall not be initiated 
if marine mammals are observed within or approaching the relevant 
Exclusion Zones as described under 4(c) during the pre-clearance 
period. If a marine mammal is observed within or approaching the 
relevant Exclusion Zone during the pre-clearance period, geophysical 
survey equipment shall not be initiated until the animal(s) is 
confirmed by visual observation to have exited the relevant Exclusion 
Zone or until an additional time period has elapsed with no further 
sighting of the animal (15 minutes for small delphinoid cetaceans and 
pinnipeds and 30 minutes for all other species).
    (f) Ramp-up--when technically feasible, survey equipment shall be 
ramped up at the start or re-start of survey activities. Ramp-up will 
begin with the power of the smallest acoustic equipment at its lowest 
practical power output appropriate for the survey. When technically 
feasible the power will then be gradually turned up and other acoustic 
sources added in a way such that the source level would increase 
gradually.
    (g) Vessel Strike Avoidance--Vessel operator and crew must maintain 
a vigilant watch for all marine mammals and slow down or stop the 
vessel or alter course, as appropriate, to avoid striking any marine 
mammal, unless such action represents a human safety concern. Survey 
vessel crew members responsible for navigation duties shall receive 
site-specific training on marine mammal sighting/reporting and vessel 
strike avoidance measures. Vessel strike avoidance measures shall 
include the following, except under circumstances when complying with 
these requirements would put the safety of the vessel or crew at risk:
    (i) The vessel operator and crew shall maintain vigilant watch for 
cetaceans and pinnipeds, and slow down or stop the vessel to avoid 
striking marine mammals;
    (ii) The vessel operator will reduce vessel speed to 10 knots (18.5 
km/hr) or less when any large whale, any mother/calf pairs, whale or 
dolphin pods, or larger assemblages of non-delphinoid cetaceans are 
observed near (within 100 m (330 ft)) an underway vessel;
    (iii) The survey vessel will maintain a separation distance of 500 
m (1640 ft) or greater from any sighted North Atlantic right whale;
    (iv) If underway, the vessel must steer a course away from any 
sighted North Atlantic right whale at 10 knots (18.5 km/hr) or less 
until the 500 m (1640 ft) minimum separation distance has been 
established. If a North Atlantic right whale is sighted in a vessel's 
path, or within 500 m (330 ft) to an underway vessel, the underway 
vessel must reduce speed and shift the engine to neutral. Engines will 
not be engaged until the North Atlantic right whale has moved outside 
of the vessel's path and beyond 500 m. If stationary, the vessel must 
not engage engines until the North Atlantic right whale has moved 
beyond 500 m;
    (v) The vessel will maintain a separation distance of 100 m (330 
ft) or greater from any sighted non-delphinoid cetacean. If sighted, 
the vessel underway must reduce speed and shift the engine to neutral, 
and must not engage the engines until the non-delphinoid cetacean has 
moved outside of the vessel's path and beyond 100 m. If a survey vessel 
is stationary, the vessel will not engage engines until the non-
delphinoid cetacean has moved out of the vessel's path and beyond 100 
m;
    (vi) The vessel will maintain a separation distance of 50 m (164 
ft) or greater from any sighted delphinoid cetacean. Any vessel 
underway shall remain parallel to a sighted delphinoid cetacean's 
course whenever possible, and avoid excessive speed or abrupt changes 
in direction. Any vessel underway shall reduce vessel speed to 10 knots 
(18.5 km/hr) or less when pods (including mother/calf pairs) or large 
assemblages of delphinoid cetaceans are observed. Vessels may not 
adjust course and speed until the delphinoid cetaceans have moved 
beyond 50 m and/or the abeam of the underway vessel;
    (vii) All vessels underway will not divert or alter course in order 
to approach any whale, delphinoid cetacean, or pinniped. Any vessel 
underway will avoid excessive speed or abrupt changes in direction to 
avoid injury to the sighted cetacean or pinniped; and
    (viii) All vessels will maintain a separation distance of 50 m (164 
ft) or greater from any sighted pinniped.
    (ix) The vessel operator will comply with 10 knot (18.5 km/hr) or 
less speed restrictions in any Seasonal Management Area per NMFS 
guidance.
    (x) If NMFS should establish a Dynamic Management Area (DMA) in the 
area of the survey, within 24 hours of the establishment of the DMA Bay 
State Wind shall work with NMFS to shut down and/or alter survey 
activities to avoid the DMA as appropriate.
    5. Monitoring Requirements--The Holder of this Authorization is 
required to conduct marine mammal visual monitoring and PAM during 
geophysical survey activity. Monitoring shall be conducted in 
accordance with the following requirements:
    (a) A minimum of four NMFS-approved PSOs and a minimum of two 
certified PAM operator(s), operating in shifts, shall be employed by 
Bay State Wind during geophysical surveys.
    (b) Observations shall take place from the highest available 
vantage point on the survey vessel. General 360-degree scanning shall 
occur during the monitoring periods, and target scanning by PSOs shall 
occur when alerted of a marine mammal presence.
    (c) For monitoring around the autonomous surface vessel (ASV), a 
dual thermal/HD camera shall be installed on the mother vessel facing 
forward and angled in a direction so as to provide a field of view 
ahead of the vessel and around the ASV. PSOs shall be able to monitor 
the real-time output of the camera on hand-held computer tablets. 
Images from the cameras shall be able to be captured and reviewed to 
assist in verifying species identification. A monitor shall also be 
installed in the bridge displaying the real-time images from the 
thermal/HD camera installed on the front of the ASV itself, providing a 
further forward view of the craft. In addition, night-vision goggles 
with thermal clip-ons and a hand-held spotlight shall be provided and 
used such that PSOs can focus observations in any direction around the 
mother vessel and/or the ASV.
    (d) PSOs shall be equipped with binoculars and have the ability to 
estimate distances to marine mammals located in proximity to the vessel 
and/or Exclusion Zones using range finders.

[[Page 22467]]

Reticulated binoculars will also be available to PSOs for use as 
appropriate based on conditions and visibility to support the sighting 
and monitoring of marine species.
    (e) PAM shall be used during nighttime geophysical survey 
operations. The PAM system shall consist of an array of hydrophones 
with both broadband (sampling mid-range frequencies of 2 kHz to 200 
kHz) and at least one low-frequency hydrophone (sampling range 
frequencies of 75 Hz to 30 kHz). PAM operators shall communicate 
detections or vocalizations to the Lead PSO on duty who shall ensure 
the implementation of the appropriate mitigation measure.
    (f) During night surveys, night-vision equipment and infrared 
technology (as described in 5 (c) above) shall be used in addition to 
PAM.
    (g) PSOs and PAM operators shall work in shifts such that no one 
monitor will work more than 4 consecutive hours without a 2 hour break 
or longer than 12 hours during any 24-hour period. During daylight 
hours the PSOs shall rotate in shifts of 1 on and 3 off, and during 
nighttime operations PSOs shall work in pairs.
    (h) PAM operators shall also be on call as necessary during daytime 
operations should visual observations become impaired.
    (i) Position data shall be recorded using hand-held or vessel 
global positioning system (GPS) units for each sighting.
    (j) A briefing shall be conducted between survey supervisors and 
crews, PSOs, and Bay State Wind to establish responsibilities of each 
party, define chains of command, discuss communication procedures, 
provide an overview of monitoring purposes, and review operational 
procedures.
    (k) PSO qualifications shall include direct field experience on a 
marine mammal observation vessel and/or aerial surveys.
    (l) Data on all PAM/PSO observations shall be recorded based on 
standard PSO collection requirements. PSOs must use standardized data 
forms, whether hard copy or electronic. The following information shall 
be reported:
    (i) PSO names and affiliations.
    (ii) Dates of departures and returns to port with port name.
    (iii) Dates and times (Greenwich Mean Time) of survey effort and 
times corresponding with PSO effort.
    (iv) Vessel location (latitude/longitude) when survey effort begins 
and ends; vessel location at beginning and end of visual PSO duty 
shifts.
    (v) Vessel heading and speed at beginning and end of visual PSO 
duty shifts and upon any line change.
    (vi) Environmental conditions while on visual survey (at beginning 
and end of PSO shift and whenever conditions change significantly), 
including wind speed and direction, Beaufort sea state, Beaufort wind 
force, swell height, weather conditions, cloud cover, sun glare, and 
overall visibility to the horizon.
    (vii) Factors that may be contributing to impaired observations 
during each PSO shift change or as needed as environmental conditions 
change (e.g., vessel traffic, equipment malfunctions).
    (viii) Survey activity information, such as type of survey 
equipment in operation, acoustic source power output while in 
operation, and any other notes of significance (i.e., pre-clearance 
survey, ramp-up, shutdown, end of operations, etc.).
    (ix) If a marine mammal is sighted, the following information 
should be recorded:
    (A) Watch status (sighting made by PSO on/off effort, 
opportunistic, crew, alternate vessel/platform);
    (B) PSO who sighted the animal;
    (C) Time of sighting;
    (D) Vessel location at time of sighting;
    (E) Water depth;
    (F) Direction of vessel's travel (compass direction);
    (G) Direction of animal's travel relative to the vessel;
    (H) Pace of the animal;
    (I) Estimated distance to the animal and its heading relative to 
vessel at initial sighting;
    (J) Identification of the animal (e.g., genus/species, lowest 
possible taxonomic level, or unidentified); also note the composition 
of the group if there is a mix of species;
    (K) Estimated number of animals (high/low/best);
    (L) Estimated number of animals by cohort (adults, yearlings, 
juveniles, calves, group composition, etc.);
    (M) Description (as many distinguishing features as possible of 
each individual seen, including length, shape, color, pattern, scars or 
markings, shape and size of dorsal fin, shape of head, and blow 
characteristics);
    (N) Detailed behavior observations (e.g., number of blows, number 
of surfaces, breaching, spyhopping, diving, feeding, traveling; as 
explicit and detailed as possible; note any observed changes in 
behavior);
    (O) Animal's closest point of approach and/or closest distance from 
the center point of the acoustic source;
    (P) Platform activity at time of sighting (e.g., deploying, 
recovering, testing, data acquisition, other); and
    (Q) Description of any actions implemented in response to the 
sighting (e.g., delays, shutdown, ramp-up, speed or course alteration, 
etc.) and time and location of the action.
    6. Reporting--a technical report shall be provided to NMFS within 
90 days after completion of survey activities that fully documents the 
methods and monitoring protocols, summarizes the data recorded during 
monitoring, estimates the number of marine mammals that may have been 
taken during survey activities, describes the effectiveness of the 
various mitigation techniques (i.e., visual observations during day and 
night compared to PAM detections/operations), provides an 
interpretation of the results and effectiveness of all monitoring 
tasks, and includes an assessment of the effectiveness of night vision 
equipment used during nighttime surveys, including comparisons of 
relative effectiveness among the different types of night vision 
equipment used. Any recommendations made by NMFS shall be addressed in 
the final report prior to acceptance by NMFS.
    (a) Reporting injured or dead marine mammals:
    (i) In the event that the specified activity clearly causes the 
take of a marine mammal in a manner not authorized by this IHA, such as 
serious injury or mortality, Bay State Wind shall immediately cease the 
specified activities and immediately report the incident to the NMFS 
Office of Protected Resources ((301) 427-8400) and the NMFS Northeast 
Stranding Coordinator ((866) 755-6622). The report must include the 
following information:
    (A) Time, date, and location (latitude/longitude) of the incident;
    (B) Vessel's speed during and leading up to the incident;
    (C) Description of the incident;
    (D) Status of all sound source use in the 24 hours preceding the 
incident;
    (E) Water depth;
    (F) Environmental conditions (e.g., wind speed and direction, 
Beaufort sea state, cloud cover, and visibility);
    (G) Description of all marine mammal observations in the 24 hours 
preceding the incident;
    (H) Species identification or description of the animal(s) 
involved;
    (I) Fate of the animal(s); and
    (J) Photographs or video footage of the animal(s).
    Activities shall not resume until NMFS is able to review the 
circumstances of the prohibited take. NMFS will work with Bay State 
Wind to determine what measures are necessary to minimize the 
likelihood of

[[Page 22468]]

further prohibited take and ensure MMPA compliance. Bay State Wind may 
not resume their activities until notified by NMFS.
    (ii) In the event that Bay State Wind discovers an injured or dead 
marine mammal, and the lead PSO determines that the cause of the injury 
or death is unknown and the death is relatively recent (e.g., in less 
than a moderate state of decomposition), Bay State Wind shall 
immediately report the incident to the NMFS Office of Protected 
Resources ((301) 427-8400) and the NMFS Northeast Stranding Coordinator 
((866) 755-6622). The report must include the same information 
identified in condition 6(b)(i) of this IHA. Activities may continue 
while NMFS reviews the circumstances of the incident. NMFS will work 
with Bay State Wind to determine whether additional mitigation measures 
or modifications to the activities are appropriate.
    (iii) In the event that Bay State Wind discovers an injured or dead 
marine mammal, and the lead PSO determines that the injury or death is 
not associated with or related to the specified activities (e.g., 
previously wounded animal, carcass with moderate to advanced 
decomposition, or scavenger damage), Bay State Wind shall report the 
incident to the NMFS Office of Protected Resources ((301) 427-8400) and 
the NMFS Northeast Stranding Coordinator ((866) 755-6622), within 24 
hours of the discovery. Bay State Wind shall provide photographs or 
video footage or other documentation of the sighting to NMFS.
    7. This Authorization may be modified, suspended or withdrawn if 
the holder fails to abide by the conditions prescribed herein, or if 
NMFS determines the authorized taking is having more than a negligible 
impact on the species or stock of affected marine mammals.

Request for Public Comments

    We request comment on our analyses, the draft authorization, and 
any other aspect of this Notice of Proposed IHA for the proposed marine 
site characterization surveys. Please include with your comments any 
supporting data or literature citations to help inform our final 
decision on the request for MMPA authorization.
    On a case-by-case basis, NMFS may issue a one-year renewal IHA 
without additional notice when (1) another year of identical or nearly 
identical activities as described in the Specified Activities section 
is planned, or (2) the activities would not be completed by the time 
the IHA expires and renewal would allow completion of the activities 
beyond that described in the Dates and Duration section, provided all 
of the following conditions are met:
     A request for renewal is received no later than 60 days 
prior to expiration of the current IHA.
     The request for renewal must include the following:
    (1) An explanation that the activities to be conducted beyond the 
initial dates either are identical to the previously analyzed 
activities or include changes so minor (e.g., reduction in pile size) 
that the changes do not affect the previous analyses, take estimates, 
or mitigation and monitoring requirements; and
    (2) A preliminary monitoring report showing the results of the 
required monitoring to date and an explanation showing that the 
monitoring results do not indicate impacts of a scale or nature not 
previously analyzed or authorized;
     Upon review of the request for renewal, the status of the 
affected species or stocks, and any other pertinent information, NMFS 
determines that there are no more than minor changes in the activities, 
the mitigation and monitoring measures remain the same and appropriate, 
and the original findings remain valid.

    Dated: May 10, 2018.
Elaine T. Saiz,
Acting Deputy Director, Office of Protected Resources, National Marine 
Fisheries Service.
[FR Doc. 2018-10333 Filed 5-14-18; 8:45 am]
 BILLING CODE 3510-22-P


This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.