Special Conditions: Airbus Model A330-841 and A330-941 (A330 NEO) Airplanes; Interaction of Systems and Structures, 36322-36326 [2017-16416]

Download as PDF 36322 Federal Register / Vol. 82, No. 149 / Friday, August 4, 2017 / Rules and Regulations flight-control system or flight-envelope protections (other than load-factor protection), provided that: i. The required values are readily achievable in turns, and ii. Wings-level pitch-up is satisfactory. d. Maximum achievable negative load factor may be limited by the characteristics of the electronic flightcontrol system or flight-envelope protections (other than load-factor protection), provided that: i. Pitch-down responsiveness is satisfactory, and ii. From level flight, 0g is readily achievable, or alternatively, a satisfactory trajectory change is readily achievable at operational speeds. For the FAA to consider a trajectory change as satisfactory, the applicant should propose and justify a pitch rate that provides sufficient maneuvering capability in the most critical scenarios. e. Compliance demonstration with the above requirements may be performed without ice accretion on the airframe. f. These special conditions do not impose an upper bound for the normal load-factor limit, nor do they require that the limiter exist. If the limit is set at a value beyond the structural design limit maneuvering load factor n of §§ 25.333(b), 25.337(b), and 25.337(c), then there should be a very obvious positive tactile feel built into the controller so that it serves as a deterrent to inadvertently exceeding the structural limit. Issued in Renton, Washington. Victor Wicklund, Manager, Transport Standards Branch, Aircraft Certification Service. [FR Doc. 2017–16414 Filed 8–3–17; 8:45 am] BILLING CODE 4910–13–P DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 25 [Docket No. FAA–2017–0356; Special Conditions No. 25–696–SC] Special Conditions: Airbus Model A330–841 and A330–941 (A330 NEO) Airplanes; Interaction of Systems and Structures Federal Aviation Administration (FAA), DOT. ACTION: Final special conditions; request for comments. AGENCY: These special conditions are issued for the Airbus Model A330 NEO airplanes. This airplane will have novel or unusual design features when SUMMARY: VerDate Sep<11>2014 13:21 Aug 03, 2017 Jkt 241001 compared to the state of technology envisioned in the airworthiness standards for transport-category airplanes. These design features include systems that, directly or as a result of failure or malfunction, affect airplane structural performance. The applicable airworthiness regulations do not contain adequate or appropriate safety standards for this design feature. These special conditions contain the additional safety standards that the Administrator considers necessary to establish a level of safety equivalent to that established by the existing airworthiness standards. DATES: This action is effective on Airbus on August 4, 2017. We must receive your comments by September 18, 2017. ADDRESSES: Send comments identified by docket number FAA–2017–0356 using any of the following methods: • Federal eRegulations Portal: Go to https://www.regulations.gov/ and follow the online instructions for sending your comments electronically. • Mail: Send comments to Docket Operations, M–30, U.S. Department of Transportation (DOT), 1200 New Jersey Avenue SE., Room W12–140, West Building Ground Floor, Washington, DC 20590–0001. • Hand Delivery or Courier: Take comments to Docket Operations in Room W12–140 of the West Building Ground Floor at 1200 New Jersey Avenue SE., Washington, DC, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. • Fax: Fax comments to Docket Operations at 202–493–2251. Privacy: The FAA will post all comments it receives, without change, to https://www.regulations.gov/, including any personal information the commenter provides. Using the search function of the docket Web site, anyone can find and read the electronic form of all comments received into any FAA docket, including the name of the individual sending the comment (or signing the comment for an association, business, labor union, etc.). DOT’s complete Privacy Act Statement can be found in the Federal Register published on April 11, 2000 (65 FR 19477–19478). Docket: Background documents or comments received may be read at https://www.regulations.gov/ at any time. Follow the online instructions for accessing the docket or go to Docket Operations in Room W12–140 of the West Building Ground Floor at 1200 New Jersey Avenue SE., Washington, DC, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. FOR FURTHER INFORMATION CONTACT: Todd Martin, FAA, Airframe and Cabin Safety, ANM–115, Transport Airplane PO 00000 Frm 00004 Fmt 4700 Sfmt 4700 Directorate, Aircraft Certification Service, 1601 Lind Avenue SW., Renton, Washington 98057–3356; telephone 425–227–1178; facsimile 425–227–1320. SUPPLEMENTARY INFORMATION: The FAA has determined that notice of, and opportunity for prior public comment on, these special conditions is impracticable because these procedures would significantly delay issuance of the design approval and thus delivery of the affected airplanes. In addition, the substance of these special conditions has been subject to the public comment process in several prior instances with no substantive comments received. The FAA therefore finds it unnecessary to delay the effective date and finds that good cause exists for making these special conditions effective upon publication in the Federal Register. Comments Invited We invite interested people to take part in this rulemaking by sending written comments, data, or views. The most helpful comments reference a specific portion of the special conditions, explain the reason for any recommended change, and include supporting data. We will consider all comments we receive by the closing date for comments. We may change these special conditions based on the comments we receive. Background On January 20, 2015, Airbus applied for an amendment to Type Certificate no. A46NM to include the new Model A330–841 (A330–800NEO) and A330– 941 (A330–900NEO) airplanes, collectively marketed as Model A330NEO airplanes. These airplanes, which are derivatives of the Model A330–200 and A330–300 airplanes currently approved under Type Certificate no. A46NM, are wide-body, jet-engine airplanes with a maximum takeoff weight of 533,519 pounds, and a passenger capacity of 257 (A330–841); or a maximum takeoff weight of 535,503 pounds, and a passenger capacity of 287 (A330–941). Type Certification Basis Under the provisions of Title 14, Code of Federal Regulations (14 CFR) 21.101, Airbus must show that the Model A330NEO airplanes meet the applicable provisions of the regulations listed in Type Certificate No. A46NM, or the applicable regulations in effect on the date of application for the change except for earlier amendments as agreed upon by the FAA. E:\FR\FM\04AUR1.SGM 04AUR1 Federal Register / Vol. 82, No. 149 / Friday, August 4, 2017 / Rules and Regulations If the Administrator finds that the applicable airworthiness regulations (i.e., 14 CFR part 25) do not contain adequate or appropriate safety standards for Model A330NEO airplanes because of a novel or unusual design feature, special conditions are prescribed under the provisions of § 21.16. Special conditions are initially applicable to the model for which they are issued. Should the type certificate for that model be amended later to include any other model that incorporates the same novel or unusual design feature, or should any other model already included on the same type certificate be modified to incorporate the same novel or unusual design feature, these special conditions would also apply to the other model under § 21.101. In addition to the applicable airworthiness regulations and special conditions, the Airbus Model A330NEO airplanes must comply with the fuelvent and exhaust-emission requirements of 14 CFR part 34 and the noisecertification requirements of 14 CFR part 36. The FAA issues special conditions, as defined in 14 CFR 11.19, in accordance with § 11.38, and they become part of the type certification basis under § 21.101. Novel or Unusual Design Features The Airbus Model A330NEO airplanes will incorporate the following novel or unusual design features: Systems that, directly or as a result of failure or malfunction, affect airplane structural performance. That is, the airplane’s systems affect how it responds in maneuver and gust conditions, and thereby affect its structural capability. These systems may also affect the aeroelastic stability of the airplane. Such systems include flight control systems, autopilots, stability augmentation systems, load alleviation systems, and fuel management systems. These systems represent novel and unusual features when compared to the technology envisioned in the current airworthiness standards. Discussion Special conditions have been applied on past airplane programs to require consideration of the effects of systems on structures. The regulatory authorities and industry developed standardized criteria in the Aviation Rulemaking Advisory Committee (ARAC) forum based on the criteria defined in Advisory Circular (AC) 25.672–1, dated November 15, 1983. The ARAC recommendations have been incorporated in European Aviation VerDate Sep<11>2014 13:21 Aug 03, 2017 Jkt 241001 Safety Agency (EASA) Certification Specifications (CS) 25.302 and CS 25 Appendix K, which are applicable to Airbus. FAA rulemaking on this subject is not complete, thus the need for the special conditions. The special conditions are similar to those previously applied to other airplane models and to the requirements of CS 25.302. The major differences between these special conditions and the current CS 25.302 are as follows: (1) Both the special conditions and CS 25.302 (and by reference Appendix K) specify the design load conditions to be considered. Effects of Systems on Structure, special conditions 2.a. and 3.b.i., clarify that, in some cases, different load conditions are to be considered due to other special conditions or equivalent-level-of-safety findings. (2) Both the special conditions (see special condition 5, below) and CS 25.302 allow consideration of the probability of being in a dispatched configuration when assessing subsequent failures and potential ‘‘continuation of flight’’ loads. The special conditions, however, also allow using probability when assessing failures that induce loads at the ‘‘time of occurrence,’’ whereas CS 25.302 does not. These special conditions contain the additional safety standards that the Administrator considers necessary to establish a level of safety equivalent to that established by the existing airworthiness standards. Applicability As discussed above, these special conditions are applicable to Airbus Model A330NEO airplanes. Should Airbus apply at a later date for a change to the type certificate to include another model incorporating the same novel or unusual design feature, these special conditions would apply to that model as well. Conclusion This action affects only certain novel or unusual design features on one model series of airplanes. It is not a rule of general applicability. The substance of these special conditions has been subject to the notice and comment period in several prior instances and has been derived without substantive change from those previously issued. It is unlikely that prior public comment would result in a significant change from the substance contained herein. Therefore, because a delay would significantly affect the certification of the airplane, which is imminent, the FAA has determined that PO 00000 Frm 00005 Fmt 4700 Sfmt 4700 36323 prior public notice and comment are unnecessary and impracticable, and good cause exists for adopting these special conditions upon publication in the Federal Register. The FAA is requesting comments to allow interested persons to submit views that may not have been submitted in response to the prior opportunities for comment described above. List of Subjects in 14 CFR Part 25 Aircraft, Aviation safety, Reporting and recordkeeping requirements. The authority citation for these special conditions is as follows: Authority: 49 U.S.C. 106(g), 40113, 44701, 44702, 44704. The Special Conditions Accordingly, pursuant to the authority delegated to me by the Administrator, the following special conditions are issued as part of the type certification basis for Airbus Model A330–841 and A330–941 airplanes. For airplanes equipped with systems that affect structural performance, either directly or as a result of a failure or malfunction, the influence of these systems and their failure conditions must be taken into account when showing compliance with the requirements of part 25, subparts C and D. For airplanes equipped with flightcontrol systems, autopilots, stabilityaugmentation systems, load-alleviation systems, fuel-management systems, and other systems that either directly, or as a result of failure or malfunction, affect structural performance, the following criteria must be used for showing compliance. If these special conditions are used for other systems, it may be necessary to adapt the criteria to the specific system. 1. The criteria defined herein only address the direct structural consequences of the system responses and performance. They cannot be considered in isolation, but should be included in the overall safety evaluation of the airplane. These criteria may, in some instances, duplicate standards already established for this evaluation. These criteria are only applicable to structure the failure of which could prevent continued safe flight and landing. Specific criteria that define acceptable limits on handling characteristics or stability requirements, when operating in the system-degraded or inoperative mode, are not provided in these special conditions. 2. Depending upon the specific characteristics of the airplane, additional studies that go beyond the E:\FR\FM\04AUR1.SGM 04AUR1 36324 Federal Register / Vol. 82, No. 149 / Friday, August 4, 2017 / Rules and Regulations airplane (e.g., system-failure conditions that induce loads, change the response of the airplane to inputs such as gusts or pilot actions, or lower flutter margins). Effects of Systems on Structures 1. General. The following criteria will be used in determining the influence of a system and its failure conditions on the airplane structure. 2. System fully operative. With the system fully operative, the following apply: a. Limit loads must be derived in all normal operating configurations of the system from all the limit conditions specified in part 25, subpart C (or defined by special conditions or findings of equivalent level of safety in lieu of those specified in subpart C), taking into account any special behavior of such a system or associated functions, or any effect on the structural performance of the airplane that may occur up to the limit loads. In particular, any significant nonlinearity (rate of displacement of control surface, thresholds, or any other system nonlinearities) must be accounted for in a realistic or conservative way when deriving limit loads from limit conditions. b. The airplane must meet the strength requirements of part 25 (static strength, residual strength), using the specified factors to derive ultimate loads from the limit loads defined above. The effect of nonlinearities must be investigated beyond limit conditions to ensure that the behavior of the system presents no anomaly compared to the behavior below limit conditions. However, conditions beyond limit conditions need not be considered when it can be shown that the airplane has design features that will not allow it to exceed those limit conditions. c. The airplane must meet the aeroelastic stability requirements of § 25.629. 3. System in the failure condition. For any system-failure condition not shown to be extremely improbable, the following apply: a. At the time of occurrence. Starting from 1g level flight conditions, a realistic scenario, including pilot corrective actions, must be established to determine the loads occurring at the time of failure and immediately after the failure. i. For static-strength substantiation, these loads, multiplied by an appropriate factor of safety that is related to the probability of occurrence of the failure, are ultimate loads to be considered for design. The factor of safety is defined in Figure 1, below. ii. For residual-strength substantiation, the airplane must be able to withstand two thirds of the ultimate loads defined in special condition 3.a.i. For pressurized cabins, these loads must be combined with the normal operating differential pressure. iii. Freedom from aeroelastic instability must be shown up to the speeds defined in § 25.629(b)(2). For failure conditions that result in speeds beyond VC/MC, freedom from aeroelastic instability must be shown to increased speeds, so that the margins intended by § 25.629(b)(2) are maintained. iv. Failures of the system that result in forced structural vibrations (oscillatory failures) must not produce loads that could result in detrimental deformation of primary structure. b. For the continuation of the flight. For the airplane in the system-failed state, and considering any appropriate reconfiguration and flight limitations, the following apply: i. The loads derived from the following conditions (or defined by special conditions or findings of equivalent level of safety in lieu of the following conditions) at speeds up to VC/MC (or the speed limitation prescribed for the remainder of the flight) must be determined: 1. The limit symmetrical maneuvering conditions specified in §§ 25.331 and 25.345. 2. the limit gust and turbulence conditions specified in §§ 25.341 and 25.345. 3. the limit rolling conditions specified in § 25.349, and the limit unsymmetrical conditions specified in §§ 25.367, and 25.427(b) and (c). 4. the limit yaw-maneuvering conditions specified in § 25.351. VerDate Sep<11>2014 13:21 Aug 03, 2017 Jkt 241001 PO 00000 Frm 00006 Fmt 4700 Sfmt 4700 E:\FR\FM\04AUR1.SGM 04AUR1 ER04AU17.015</GPH> criteria provided in these special conditions may be required to demonstrate the airplane’s capability to meet other realistic conditions, such as alternative gust or maneuver descriptions for an airplane equipped with a load-alleviation system. 3. The following definitions are applicable to these special conditions. a. Structural performance: Capability of the airplane to meet the structural requirements of part 25. b. Flight limitations: Limitations that can be applied to the airplane flight conditions following an in-flight occurrence, and that are included in the airplane flight manual (e.g., speed limitations, avoidance of severe weather conditions, etc.). c. Operational limitations: Limitations, including flight limitations, that can be applied to the airplane operating conditions before dispatch (e.g., fuel, payload and Master Minimum Equipment List limitations). d. Probabilistic terms: Terms such as probable, improbable, and extremely improbable, as used in these special conditions, are the same as those used in § 25.1309. e. Failure condition: This term is the same as that used in § 25.1309. However, these special conditions apply only to system-failure conditions that affect the structural performance of the Federal Register / Vol. 82, No. 149 / Friday, August 4, 2017 / Rules and Regulations 36325 safety depending on the probability of being in this failure state. The factor of safety is defined in Figure 2, below. Qj = (Tj)(Pj) iii. For residual-strength substantiation, the airplane must be able to withstand two-thirds of the ultimate loads defined in paragraph 3.b.ii. of these special conditions. For pressurized cabins, these loads must be combined with the normal operating differential pressure. iv. If the loads induced by the failure condition have a significant effect on fatigue or damage tolerance, then their effects must be taken into account. v. Freedom from aeroelastic instability must be shown up to a speed determined from Figure 3, below. Flutter clearance speeds V′ and V″ may be based on the speed limitation specified for the remainder of the flight using the margins defined by § 25.629(b). system-failure condition, combined with any damage required or selected for investigation by § 25.571(b). c. Consideration of certain failure conditions may be required by other sections of part 25 regardless of calculated system reliability. Where analysis shows the probability of these failure conditions to be less than 10¥9 per flight hour, criteria other than those specified in this paragraph may be used for structural substantiation to show continued safe flight and landing. 4. Failure indications. For systemfailure detection and indication, the following apply: a. The system must be checked for failure conditions, not extremely improbable, that degrade the structural capability below the level required by part 25, or that significantly reduce the reliability of the remaining system. As far as reasonably practicable, the flightcrew must be made aware of these failures before flight. Certain elements of the control system, such as mechanical and hydraulic components, may use special periodic inspections, and electronic components may use daily checks, in lieu of detection and indication systems, to achieve the objective of this requirement. These certification-maintenance requirements Where: Tj = Average time spent in failure mode j (in hours) Pj = Probability of occurrence of failure mode j (per hour) Note: If Pj is greater than 10¥3 per flight hour, then a 1.5 factor of safety must be applied to all limit load conditions specified in part 25, subpart C. V′ = Clearance speed as defined by § 25.629(b)(2). V″ = Clearance speed as defined by § 25.629(b)(1). Qj = (Tj)(Pj) Where: Tj = Average time spent in failure mode j (in hours) Pj = Probability of occurrence of failure mode j (per hour) Note: If Pj is greater than 10¥3 per flight hour, then the flutter clearance speed must not be less than V″. vi. Freedom from aeroelastic instability must also be shown up to V′ in Figure 3, above, for any probable VerDate Sep<11>2014 13:21 Aug 03, 2017 Jkt 241001 PO 00000 Frm 00007 Fmt 4700 Sfmt 4700 E:\FR\FM\04AUR1.SGM 04AUR1 ER04AU17.017</GPH> ii. For static-strength substantiation, each part of the structure must be able to withstand the loads in special condition 3.b.i., multiplied by a factor of ER04AU17.016</GPH> 5. the limit ground-loading conditions specified in §§ 25.473, 25.491, 25.493(d), and 25.503. 36326 Federal Register / Vol. 82, No. 149 / Friday, August 4, 2017 / Rules and Regulations must be limited to components that are not readily detectable by normal detection-and-indication systems, and where service history shows that inspections will provide an adequate level of safety. b. The existence of any failure condition, not extremely improbable, during flight, that could significantly affect the structural capability of the airplane, and for which the associated reduction in airworthiness can be minimized by suitable flight limitations, must be signaled to the flightcrew. For example, failure conditions that result in a factor of safety between the airplane strength and the loads of part 25, subpart C below 1.25, or flutter margins below V″, must be signaled to the crew during flight. 5. Dispatch with known failure conditions. If the airplane is to be dispatched in a known system-failure condition that affects structural performance, or that affects the reliability of the remaining system to maintain structural performance, then the provisions of these special conditions must be met, including the provisions of special condition 2 for the dispatched condition, and special condition 3 for subsequent failures. Expected operational limitations may be taken into account in establishing Pj as the probability of failure occurrence for determining the safety margin in Figure 1. Flight limitations and expected operational limitations may be taken into account in establishing Qj as the combined probability of being in the dispatched failure condition and the subsequent failure condition for the safety margins in Figures 2 and 3. These limitations must be such that the probability of being in this combined failure state, and then subsequently encountering limit load conditions, is extremely improbable. No reduction in these safety margins is allowed if the subsequent system-failure rate is greater than 10¥3 per flight hour. Issued in Renton, Washington. Victor Wicklund, Manager, Transport Standards Branch, Aircraft Certification Service. [FR Doc. 2017–16416 Filed 8–3–17; 8:45 am] BILLING CODE 4910–13–P VerDate Sep<11>2014 13:21 Aug 03, 2017 Jkt 241001 DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 25 [Docket No. FAA–2017–0732; Special Conditions No. 25–697–SC] Special Conditions: Embraer S.A., Model ERJ 190–300 Series Airplanes; Design Roll Maneuver for Electronic Flight Controls Federal Aviation Administration (FAA), DOT. ACTION: Final special conditions; request for comments. AGENCY: These special conditions are issued for the Embraer S.A. (Embraer) Model ERJ 190–300 series airplanes. These airplanes will have a novel or unusual design feature when compared to the state of technology envisioned in the airworthiness standards for transport category airplanes. This design feature is an electronic flight control system (EFCS) that provides control of the airplane through pilot inputs to the flight computer. The applicable airworthiness regulations do not contain adequate or appropriate safety standards for this design feature. These special conditions contain the additional safety standards that the Administrator considers necessary to establish a level of safety equivalent to that established by the existing airworthiness standards. DATES: This action is effective on Embraer on August 4, 2017. We must receive your comments by September 18, 2017. ADDRESSES: Send comments identified by docket number FAA–2017–0732 using any of the following methods: • Federal eRegulations Portal: Go to https://www.regulations.gov/and follow the online instructions for sending your comments electronically. • Mail: Send comments to Docket Operations, M–30, U.S. Department of Transportation (DOT), 1200 New Jersey Avenue SE., Room W12–140, West Building Ground Floor, Washington, DC 20590–0001. • Hand Delivery or Courier: Take comments to Docket Operations in Room W12–140 of the West Building Ground Floor at 1200 New Jersey Avenue SE., Washington, DC, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. • Fax: Fax comments to Docket Operations at 202–493–2251. Privacy: The FAA will post all comments it receives, without change, to https://www.regulations.gov/, including any personal information the commenter provides. Using the search SUMMARY: PO 00000 Frm 00008 Fmt 4700 Sfmt 4700 function of the docket Web site, anyone can find and read the electronic form of all comments received into any FAA docket, including the name of the individual sending the comment (or signing the comment for an association, business, labor union, etc.). DOT’s complete Privacy Act Statement can be found in the Federal Register published on April 11, 2000 (65 FR 19477–19478). Docket: Background documents or comments received may be read at https://www.regulations.gov/ at any time. Follow the online instructions for accessing the docket or go to Docket Operations in Room W12–140 of the West Building Ground Floor at 1200 New Jersey Avenue SE., Washington, DC, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. FOR FURTHER INFORMATION CONTACT: Greg Schneider, FAA, Airframe and Cabin Safety Branch, ANM–115, Transport Airplane Directorate, Aircraft Certification Service, 1601 Lind Avenue SW., Renton, Washington, 98057–3356; telephone 425–227–2116; facsimile 425–227–1320. SUPPLEMENTARY INFORMATION: The FAA has determined that notice of, and opportunity for prior public comment on, these special conditions is impracticable because these procedures would delay issuance of the design approval and thus delivery of the affected airplane. In addition, the substance of these special conditions has been subject to the public comment process in several prior instances with no substantive comments received. The FAA finds it is unnecessary to delay the effective date and finds that good cause exists for adopting these special conditions upon publication in the Federal Register. Comments Invited The FAA is requesting comments to allow interested persons to submit views that may not have been submitted in response to the prior opportunities for comment described above. We invite interested people to take part in this rulemaking by sending written comments, data, or views. The most helpful comments reference a specific portion of the special conditions, explain the reason for any recommended change, and include supporting data. We will consider all comments we receive by the closing date for comments. We may change these special conditions based on the comments we receive. Background On September 13, 2013, Embraer applied for an amendment to Type E:\FR\FM\04AUR1.SGM 04AUR1

Agencies

[Federal Register Volume 82, Number 149 (Friday, August 4, 2017)]
[Rules and Regulations]
[Pages 36322-36326]
From the Federal Register Online via the Government Publishing Office [www.gpo.gov]
[FR Doc No: 2017-16416]


-----------------------------------------------------------------------

DEPARTMENT OF TRANSPORTATION

Federal Aviation Administration

14 CFR Part 25

[Docket No. FAA-2017-0356; Special Conditions No. 25-696-SC]


Special Conditions: Airbus Model A330-841 and A330-941 (A330 NEO) 
Airplanes; Interaction of Systems and Structures

AGENCY: Federal Aviation Administration (FAA), DOT.

ACTION: Final special conditions; request for comments.

-----------------------------------------------------------------------

SUMMARY: These special conditions are issued for the Airbus Model A330 
NEO airplanes. This airplane will have novel or unusual design features 
when compared to the state of technology envisioned in the 
airworthiness standards for transport-category airplanes. These design 
features include systems that, directly or as a result of failure or 
malfunction, affect airplane structural performance. The applicable 
airworthiness regulations do not contain adequate or appropriate safety 
standards for this design feature. These special conditions contain the 
additional safety standards that the Administrator considers necessary 
to establish a level of safety equivalent to that established by the 
existing airworthiness standards.

DATES: This action is effective on Airbus on August 4, 2017. We must 
receive your comments by September 18, 2017.

ADDRESSES: Send comments identified by docket number FAA-2017-0356 
using any of the following methods:
     Federal eRegulations Portal: Go to https://www.regulations.gov/ and follow the online instructions for sending 
your comments electronically.
     Mail: Send comments to Docket Operations, M-30, U.S. 
Department of Transportation (DOT), 1200 New Jersey Avenue SE., Room 
W12-140, West Building Ground Floor, Washington, DC 20590-0001.
     Hand Delivery or Courier: Take comments to Docket 
Operations in Room W12-140 of the West Building Ground Floor at 1200 
New Jersey Avenue SE., Washington, DC, between 9 a.m. and 5 p.m., 
Monday through Friday, except Federal holidays.
     Fax: Fax comments to Docket Operations at 202-493-2251.
    Privacy: The FAA will post all comments it receives, without 
change, to https://www.regulations.gov/, including any personal 
information the commenter provides. Using the search function of the 
docket Web site, anyone can find and read the electronic form of all 
comments received into any FAA docket, including the name of the 
individual sending the comment (or signing the comment for an 
association, business, labor union, etc.). DOT's complete Privacy Act 
Statement can be found in the Federal Register published on April 11, 
2000 (65 FR 19477-19478).
    Docket: Background documents or comments received may be read at 
https://www.regulations.gov/ at any time. Follow the online instructions 
for accessing the docket or go to Docket Operations in Room W12-140 of 
the West Building Ground Floor at 1200 New Jersey Avenue SE., 
Washington, DC, between 9 a.m. and 5 p.m., Monday through Friday, 
except Federal holidays.

FOR FURTHER INFORMATION CONTACT: Todd Martin, FAA, Airframe and Cabin 
Safety, ANM-115, Transport Airplane Directorate, Aircraft Certification 
Service, 1601 Lind Avenue SW., Renton, Washington 98057-3356; telephone 
425-227-1178; facsimile 425-227-1320.

SUPPLEMENTARY INFORMATION: 
    The FAA has determined that notice of, and opportunity for prior 
public comment on, these special conditions is impracticable because 
these procedures would significantly delay issuance of the design 
approval and thus delivery of the affected airplanes.
    In addition, the substance of these special conditions has been 
subject to the public comment process in several prior instances with 
no substantive comments received. The FAA therefore finds it 
unnecessary to delay the effective date and finds that good cause 
exists for making these special conditions effective upon publication 
in the Federal Register.

Comments Invited

    We invite interested people to take part in this rulemaking by 
sending written comments, data, or views. The most helpful comments 
reference a specific portion of the special conditions, explain the 
reason for any recommended change, and include supporting data.
    We will consider all comments we receive by the closing date for 
comments. We may change these special conditions based on the comments 
we receive.

Background

    On January 20, 2015, Airbus applied for an amendment to Type 
Certificate no. A46NM to include the new Model A330-841 (A330-800NEO) 
and A330-941 (A330-900NEO) airplanes, collectively marketed as Model 
A330NEO airplanes. These airplanes, which are derivatives of the Model 
A330-200 and A330-300 airplanes currently approved under Type 
Certificate no. A46NM, are wide-body, jet-engine airplanes with a 
maximum takeoff weight of 533,519 pounds, and a passenger capacity of 
257 (A330-841); or a maximum takeoff weight of 535,503 pounds, and a 
passenger capacity of 287 (A330-941).

Type Certification Basis

    Under the provisions of Title 14, Code of Federal Regulations (14 
CFR) 21.101, Airbus must show that the Model A330NEO airplanes meet the 
applicable provisions of the regulations listed in Type Certificate No. 
A46NM, or the applicable regulations in effect on the date of 
application for the change except for earlier amendments as agreed upon 
by the FAA.

[[Page 36323]]

    If the Administrator finds that the applicable airworthiness 
regulations (i.e., 14 CFR part 25) do not contain adequate or 
appropriate safety standards for Model A330NEO airplanes because of a 
novel or unusual design feature, special conditions are prescribed 
under the provisions of Sec.  21.16.
    Special conditions are initially applicable to the model for which 
they are issued. Should the type certificate for that model be amended 
later to include any other model that incorporates the same novel or 
unusual design feature, or should any other model already included on 
the same type certificate be modified to incorporate the same novel or 
unusual design feature, these special conditions would also apply to 
the other model under Sec.  21.101.
    In addition to the applicable airworthiness regulations and special 
conditions, the Airbus Model A330NEO airplanes must comply with the 
fuel-vent and exhaust-emission requirements of 14 CFR part 34 and the 
noise-certification requirements of 14 CFR part 36.
    The FAA issues special conditions, as defined in 14 CFR 11.19, in 
accordance with Sec.  11.38, and they become part of the type 
certification basis under Sec.  21.101.

Novel or Unusual Design Features

    The Airbus Model A330NEO airplanes will incorporate the following 
novel or unusual design features:
    Systems that, directly or as a result of failure or malfunction, 
affect airplane structural performance. That is, the airplane's systems 
affect how it responds in maneuver and gust conditions, and thereby 
affect its structural capability. These systems may also affect the 
aeroelastic stability of the airplane. Such systems include flight 
control systems, autopilots, stability augmentation systems, load 
alleviation systems, and fuel management systems. These systems 
represent novel and unusual features when compared to the technology 
envisioned in the current airworthiness standards.

Discussion

    Special conditions have been applied on past airplane programs to 
require consideration of the effects of systems on structures. The 
regulatory authorities and industry developed standardized criteria in 
the Aviation Rulemaking Advisory Committee (ARAC) forum based on the 
criteria defined in Advisory Circular (AC) 25.672-1, dated November 15, 
1983. The ARAC recommendations have been incorporated in European 
Aviation Safety Agency (EASA) Certification Specifications (CS) 25.302 
and CS 25 Appendix K, which are applicable to Airbus. FAA rulemaking on 
this subject is not complete, thus the need for the special conditions.
    The special conditions are similar to those previously applied to 
other airplane models and to the requirements of CS 25.302. The major 
differences between these special conditions and the current CS 25.302 
are as follows:
    (1) Both the special conditions and CS 25.302 (and by reference 
Appendix K) specify the design load conditions to be considered. 
Effects of Systems on Structure, special conditions 2.a. and 3.b.i., 
clarify that, in some cases, different load conditions are to be 
considered due to other special conditions or equivalent-level-of-
safety findings.
    (2) Both the special conditions (see special condition 5, below) 
and CS 25.302 allow consideration of the probability of being in a 
dispatched configuration when assessing subsequent failures and 
potential ``continuation of flight'' loads. The special conditions, 
however, also allow using probability when assessing failures that 
induce loads at the ``time of occurrence,'' whereas CS 25.302 does not.
    These special conditions contain the additional safety standards 
that the Administrator considers necessary to establish a level of 
safety equivalent to that established by the existing airworthiness 
standards.

Applicability

    As discussed above, these special conditions are applicable to 
Airbus Model A330NEO airplanes. Should Airbus apply at a later date for 
a change to the type certificate to include another model incorporating 
the same novel or unusual design feature, these special conditions 
would apply to that model as well.

Conclusion

    This action affects only certain novel or unusual design features 
on one model series of airplanes. It is not a rule of general 
applicability.
    The substance of these special conditions has been subject to the 
notice and comment period in several prior instances and has been 
derived without substantive change from those previously issued. It is 
unlikely that prior public comment would result in a significant change 
from the substance contained herein. Therefore, because a delay would 
significantly affect the certification of the airplane, which is 
imminent, the FAA has determined that prior public notice and comment 
are unnecessary and impracticable, and good cause exists for adopting 
these special conditions upon publication in the Federal Register. The 
FAA is requesting comments to allow interested persons to submit views 
that may not have been submitted in response to the prior opportunities 
for comment described above.

List of Subjects in 14 CFR Part 25

    Aircraft, Aviation safety, Reporting and recordkeeping 
requirements.

    The authority citation for these special conditions is as follows:

    Authority:  49 U.S.C. 106(g), 40113, 44701, 44702, 44704.

The Special Conditions

    Accordingly, pursuant to the authority delegated to me by the 
Administrator, the following special conditions are issued as part of 
the type certification basis for Airbus Model A330-841 and A330-941 
airplanes.
    For airplanes equipped with systems that affect structural 
performance, either directly or as a result of a failure or 
malfunction, the influence of these systems and their failure 
conditions must be taken into account when showing compliance with the 
requirements of part 25, subparts C and D.
    For airplanes equipped with flight-control systems, autopilots, 
stability-augmentation systems, load-alleviation systems, fuel-
management systems, and other systems that either directly, or as a 
result of failure or malfunction, affect structural performance, the 
following criteria must be used for showing compliance. If these 
special conditions are used for other systems, it may be necessary to 
adapt the criteria to the specific system.
    1. The criteria defined herein only address the direct structural 
consequences of the system responses and performance. They cannot be 
considered in isolation, but should be included in the overall safety 
evaluation of the airplane. These criteria may, in some instances, 
duplicate standards already established for this evaluation. These 
criteria are only applicable to structure the failure of which could 
prevent continued safe flight and landing. Specific criteria that 
define acceptable limits on handling characteristics or stability 
requirements, when operating in the system-degraded or inoperative 
mode, are not provided in these special conditions.
    2. Depending upon the specific characteristics of the airplane, 
additional studies that go beyond the

[[Page 36324]]

criteria provided in these special conditions may be required to 
demonstrate the airplane's capability to meet other realistic 
conditions, such as alternative gust or maneuver descriptions for an 
airplane equipped with a load-alleviation system.
    3. The following definitions are applicable to these special 
conditions.
    a. Structural performance: Capability of the airplane to meet the 
structural requirements of part 25.
    b. Flight limitations: Limitations that can be applied to the 
airplane flight conditions following an in-flight occurrence, and that 
are included in the airplane flight manual (e.g., speed limitations, 
avoidance of severe weather conditions, etc.).
    c. Operational limitations: Limitations, including flight 
limitations, that can be applied to the airplane operating conditions 
before dispatch (e.g., fuel, payload and Master Minimum Equipment List 
limitations).
    d. Probabilistic terms: Terms such as probable, improbable, and 
extremely improbable, as used in these special conditions, are the same 
as those used in Sec.  25.1309.
    e. Failure condition: This term is the same as that used in Sec.  
25.1309. However, these special conditions apply only to system-failure 
conditions that affect the structural performance of the airplane 
(e.g., system-failure conditions that induce loads, change the response 
of the airplane to inputs such as gusts or pilot actions, or lower 
flutter margins).

Effects of Systems on Structures

    1. General. The following criteria will be used in determining the 
influence of a system and its failure conditions on the airplane 
structure.
    2. System fully operative. With the system fully operative, the 
following apply:
    a. Limit loads must be derived in all normal operating 
configurations of the system from all the limit conditions specified in 
part 25, subpart C (or defined by special conditions or findings of 
equivalent level of safety in lieu of those specified in subpart C), 
taking into account any special behavior of such a system or associated 
functions, or any effect on the structural performance of the airplane 
that may occur up to the limit loads. In particular, any significant 
nonlinearity (rate of displacement of control surface, thresholds, or 
any other system nonlinearities) must be accounted for in a realistic 
or conservative way when deriving limit loads from limit conditions.
    b. The airplane must meet the strength requirements of part 25 
(static strength, residual strength), using the specified factors to 
derive ultimate loads from the limit loads defined above. The effect of 
nonlinearities must be investigated beyond limit conditions to ensure 
that the behavior of the system presents no anomaly compared to the 
behavior below limit conditions. However, conditions beyond limit 
conditions need not be considered when it can be shown that the 
airplane has design features that will not allow it to exceed those 
limit conditions.
    c. The airplane must meet the aeroelastic stability requirements of 
Sec.  25.629.
    3. System in the failure condition. For any system-failure 
condition not shown to be extremely improbable, the following apply:
    a. At the time of occurrence. Starting from 1g level flight 
conditions, a realistic scenario, including pilot corrective actions, 
must be established to determine the loads occurring at the time of 
failure and immediately after the failure.
    i. For static-strength substantiation, these loads, multiplied by 
an appropriate factor of safety that is related to the probability of 
occurrence of the failure, are ultimate loads to be considered for 
design. The factor of safety is defined in Figure 1, below.
[GRAPHIC] [TIFF OMITTED] TR04AU17.015

    ii. For residual-strength substantiation, the airplane must be able 
to withstand two thirds of the ultimate loads defined in special 
condition 3.a.i. For pressurized cabins, these loads must be combined 
with the normal operating differential pressure.
    iii. Freedom from aeroelastic instability must be shown up to the 
speeds defined in Sec.  25.629(b)(2). For failure conditions that 
result in speeds beyond VC/MC, freedom from 
aeroelastic instability must be shown to increased speeds, so that the 
margins intended by Sec.  25.629(b)(2) are maintained.
    iv. Failures of the system that result in forced structural 
vibrations (oscillatory failures) must not produce loads that could 
result in detrimental deformation of primary structure.
    b. For the continuation of the flight. For the airplane in the 
system-failed state, and considering any appropriate reconfiguration 
and flight limitations, the following apply:
    i. The loads derived from the following conditions (or defined by 
special conditions or findings of equivalent level of safety in lieu of 
the following conditions) at speeds up to VC/MC 
(or the speed limitation prescribed for the remainder of the flight) 
must be determined:
    1. The limit symmetrical maneuvering conditions specified in 
Sec. Sec.  25.331 and 25.345.
    2. the limit gust and turbulence conditions specified in Sec. Sec.  
25.341 and 25.345.
    3. the limit rolling conditions specified in Sec.  25.349, and the 
limit unsymmetrical conditions specified in Sec. Sec.  25.367, and 
25.427(b) and (c).
    4. the limit yaw-maneuvering conditions specified in Sec.  25.351.

[[Page 36325]]

    5. the limit ground-loading conditions specified in Sec. Sec.  
25.473, 25.491, 25.493(d), and 25.503.
    ii. For static-strength substantiation, each part of the structure 
must be able to withstand the loads in special condition 3.b.i., 
multiplied by a factor of safety depending on the probability of being 
in this failure state. The factor of safety is defined in Figure 2, 
below.
[GRAPHIC] [TIFF OMITTED] TR04AU17.016

Qj = (Tj)(Pj)

Where:

Tj = Average time spent in failure mode j (in hours)
Pj = Probability of occurrence of failure mode j (per 
hour)


    Note:  If Pj is greater than 10-\3\ per 
flight hour, then a 1.5 factor of safety must be applied to all 
limit load conditions specified in part 25, subpart C.

    iii. For residual-strength substantiation, the airplane must be 
able to withstand two-thirds of the ultimate loads defined in paragraph 
3.b.ii. of these special conditions. For pressurized cabins, these 
loads must be combined with the normal operating differential pressure.
    iv. If the loads induced by the failure condition have a 
significant effect on fatigue or damage tolerance, then their effects 
must be taken into account.
    v. Freedom from aeroelastic instability must be shown up to a speed 
determined from Figure 3, below. Flutter clearance speeds V' and V'' 
may be based on the speed limitation specified for the remainder of the 
flight using the margins defined by Sec.  25.629(b).
[GRAPHIC] [TIFF OMITTED] TR04AU17.017

V' = Clearance speed as defined by Sec.  25.629(b)(2).
V'' = Clearance speed as defined by Sec.  25.629(b)(1).

Qj = (Tj)(Pj)

Where:

Tj = Average time spent in failure mode j (in hours)
Pj = Probability of occurrence of failure mode j (per 
hour)


    Note:  If Pj is greater than 10-\3\ per 
flight hour, then the flutter clearance speed must not be less than 
V''.

    vi. Freedom from aeroelastic instability must also be shown up to 
V' in Figure 3, above, for any probable system-failure condition, 
combined with any damage required or selected for investigation by 
Sec.  25.571(b).
    c. Consideration of certain failure conditions may be required by 
other sections of part 25 regardless of calculated system reliability. 
Where analysis shows the probability of these failure conditions to be 
less than 10-\9\ per flight hour, criteria other than those 
specified in this paragraph may be used for structural substantiation 
to show continued safe flight and landing.
    4. Failure indications. For system-failure detection and 
indication, the following apply:
    a. The system must be checked for failure conditions, not extremely 
improbable, that degrade the structural capability below the level 
required by part 25, or that significantly reduce the reliability of 
the remaining system. As far as reasonably practicable, the flightcrew 
must be made aware of these failures before flight. Certain elements of 
the control system, such as mechanical and hydraulic components, may 
use special periodic inspections, and electronic components may use 
daily checks, in lieu of detection and indication systems, to achieve 
the objective of this requirement. These certification-maintenance 
requirements

[[Page 36326]]

must be limited to components that are not readily detectable by normal 
detection-and-indication systems, and where service history shows that 
inspections will provide an adequate level of safety.
    b. The existence of any failure condition, not extremely 
improbable, during flight, that could significantly affect the 
structural capability of the airplane, and for which the associated 
reduction in airworthiness can be minimized by suitable flight 
limitations, must be signaled to the flightcrew. For example, failure 
conditions that result in a factor of safety between the airplane 
strength and the loads of part 25, subpart C below 1.25, or flutter 
margins below V'', must be signaled to the crew during flight.
    5. Dispatch with known failure conditions. If the airplane is to be 
dispatched in a known system-failure condition that affects structural 
performance, or that affects the reliability of the remaining system to 
maintain structural performance, then the provisions of these special 
conditions must be met, including the provisions of special condition 2 
for the dispatched condition, and special condition 3 for subsequent 
failures. Expected operational limitations may be taken into account in 
establishing Pj as the probability of failure occurrence for 
determining the safety margin in Figure 1. Flight limitations and 
expected operational limitations may be taken into account in 
establishing Qj as the combined probability of being in the 
dispatched failure condition and the subsequent failure condition for 
the safety margins in Figures 2 and 3. These limitations must be such 
that the probability of being in this combined failure state, and then 
subsequently encountering limit load conditions, is extremely 
improbable. No reduction in these safety margins is allowed if the 
subsequent system-failure rate is greater than 10-\3\ per 
flight hour.

    Issued in Renton, Washington.
Victor Wicklund,
Manager, Transport Standards Branch, Aircraft Certification Service.
[FR Doc. 2017-16416 Filed 8-3-17; 8:45 am]
BILLING CODE 4910-13-P
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.