Occupational Exposure to Beryllium, 2470-2757 [2016-30409]

Download as PDF 2470 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Register announcing the Office of Management and Budget has approved them under the Paperwork Reduction Act. DEPARTMENT OF LABOR Occupational Safety and Health Administration [Docket No. OSHA–H005C–2006–0870] RIN 1218–AB76 Occupational Exposure to Beryllium Occupational Safety and Health Administration (OSHA), Department of Labor. ACTION: Final rule. AGENCY: The Occupational Safety and Health Administration (OSHA) is amending its existing standards for occupational exposure to beryllium and beryllium compounds. OSHA has determined that employees exposed to beryllium at the previous permissible exposure limits face a significant risk of material impairment to their health. The evidence in the record for this rulemaking indicates that workers exposed to beryllium are at increased risk of developing chronic beryllium disease and lung cancer. This final rule establishes new permissible exposure limits of 0.2 micrograms of beryllium per cubic meter of air (0.2 mg/m3) as an 8-hour time-weighted average and 2.0 mg/m3 as a short-term exposure limit determined over a sampling period of 15 minutes. It also includes other provisions to protect employees, such as requirements for exposure assessment, methods for controlling exposure, respiratory protection, personal protective clothing and equipment, housekeeping, medical surveillance, hazard communication, and recordkeeping. OSHA is issuing three separate standards—for general industry, for shipyards, and for construction—in order to tailor requirements to the circumstances found in these sectors. DATES: Effective date: The final rule becomes effective on March 10, 2017. Compliance dates: Compliance dates for specific provisions are set in § 1910.1024(o) for general industry, § 1915.1024(o) for shipyards, and § 1926.1124(o) for construction. There are a number of collections of information contained in this final rule (see Section IX, OMB Review under the Paperwork Reduction Act of 1995). Notwithstanding the general date of applicability that applies to all other requirements contained in the final rule, affected parties do not have to comply with the collections of information until the Department of Labor publishes a separate document in the Federal asabaliauskas on DSK3SPTVN1PROD with PROPOSALS SUMMARY: VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 In accordance with 28 U.S.C. 2112(a), the Agency designates Ann Rosenthal, Associate Solicitor of Labor for Occupational Safety and Health, Office of the Solicitor of Labor, Room S–4004, U.S. Department of Labor, 200 Constitution Avenue NW., Washington, DC 20210, to receive petitions for review of the final rule. FOR FURTHER INFORMATION CONTACT: For general information and press inquiries, contact Frank Meilinger, Director, Office of Communications, Room N–3647, OSHA, U.S. Department of Labor, 200 Constitution Avenue NW., Washington, DC 20210; telephone (202) 693–1999; email meilinger.francis2@dol.gov. For technical inquiries, contact William Perry or Maureen Ruskin, Directorate of Standards and Guidance, Room N–3718, OSHA, U.S. Department of Labor, 200 Constitution Avenue NW., Washington, DC 20210; telephone (202) 693–1950. SUPPLEMENTARY INFORMATION: The preamble to the rule on occupational exposure to beryllium follows this outline: ADDRESSES: 29 CFR Parts 1910, 1915, and 1926 I. Executive Summary II. Pertinent Legal Authority III. Events Leading to the Final Standards IV. Chemical Properties and Industrial Uses V. Health Effects VI. Risk Assessment VII. Significance of Risk VIII. Summary of the Final Economic Analysis and Final Regulatory Flexibility Analysis IX. OMB Review Under the Paperwork Reduction Act of 1995 X. Federalism XI. State-Plan States XII. Unfunded Mandates Reform Act XIII. Protecting Children From Environmental Health and Safety Risks XIV. Environmental Impacts XV. Consultation and Coordination With Indian Tribal Governments XVI. Summary and Explanation of the Standards Introduction (a) Scope and Application (b) Definitions (c) Permissible Exposure Limits (PELs) (d) Exposure Assessment (e) Beryllium Work Areas and Regulated Areas (General Industry); Regulated Areas (Maritime); and Competent Person (Construction) (f) Methods of Compliance (g) Respiratory Protection (h) Personal Protective Clothing and Equipment (i) Hygiene Areas and Practices (j) Housekeeping (k) Medical Surveillance (l) Medical Removal PO 00000 Frm 00002 Fmt 4701 Sfmt 4700 (m) Communication of Hazards (n) Recordkeeping (o) Dates (p) Appendix A (General Industry) Authority and Signature Amendments to Standards Citation Method In the docket for the beryllium rulemaking, found at https:// www.regulations.gov, every submission was assigned a document identification (ID) number that consists of the docket number (OSHA–H005C–2006–0870) followed by an additional four-digit number. For example, the document ID number for OSHA’s Preliminary Economic Analysis and Initial Regulatory Flexibility Analysis is OSHA–H005C–2006–0870–0426. Some document ID numbers include one or more attachments, such as the National Institute for Occupational Safety and Health (NIOSH) prehearing submission (see Document ID OSHA–H005C–2006– 0870–1671). When citing exhibits in the docket, OSHA includes the term ‘‘Document ID’’ followed by the last four digits of the document ID number, the attachment number or other attachment identifier, if applicable, page numbers (designated ‘‘p.’’ or ‘‘Tr.’’ for pages from a hearing transcript). In a citation that contains two or more document ID numbers, the document ID numbers are separated by semi-colons. In some sections, such as Section V, Health Effects, author names and year of study publication are included before the document ID number in a citation, for example: (Deubner et al., 2011, Document ID 0527). Where multiple exhibits are listed with author names and year of study publication, document ID numbers after the first are in parentheses, for example: (Elder et al., 2005, Document ID 1537; Carter et al., 2006 (1556); Refsnes et al., 2006 (1428)). I. Executive Summary This final rule establishes new permissible exposure limits (PELs) for beryllium of 0.2 micrograms of beryllium per cubic meter of air (0.2 mg/ m3) as an 8-hour time-weighted average (TWA) and 2.0 mg/m3 as a short-term exposure limit (STEL) determined over a sampling period of 15 minutes. In addition to the PELs, the rule includes provisions to protect employees such as requirements for exposure assessment, methods for controlling exposure, respiratory protection, personal protective clothing and equipment, housekeeping, medical surveillance, hazard communication, and recordkeeping. OSHA is issuing three separate standards—for general E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations industry, for shipyards, and for construction—in order to tailor requirements to the circumstances found in these sectors. There are, however, numerous common elements in the three standards. The final rule is based on the requirements of the Occupational Safety and Health Act (OSH Act) and court interpretations of the Act. For health standards issued under section 6(b)(5) of the OSH Act, OSHA is required to promulgate a standard that reduces significant risk to the extent that it is technologically and economically feasible to do so. See Section II, Pertinent Legal Authority, for a full discussion of OSH Act legal requirements. OSHA has conducted an extensive review of the literature on adverse health effects associated with exposure to beryllium. OSHA has also developed estimates of the risk of beryllium-related diseases, assuming exposure over a working lifetime, at the preceding PELs as well as at the revised PELs and action level. Comments received on OSHA’s preliminary analysis, and the Agency’s final findings, are discussed in Section V, Health Effects, Section VI, Risk Assessment, and Section VII, Significance of Risk. OSHA finds that employees exposed to beryllium at the preceding PELs are at an increased risk of developing chronic beryllium disease (CBD) and lung cancer. As discussed in Section VII, OSHA concludes that exposure to beryllium constitutes a significant risk of material impairment to health and that the final rule will substantially lower that risk. The Agency considers the level of risk remaining at the new TWA PEL to still be significant. However, OSHA did not adopt a lower TWA PEL because the Agency could not demonstrate technological feasibility of a lower TWA PEL. The Agency has adopted the STEL and ancillary provisions of the rule to further reduce the remaining significant risk. OSHA’s examination of the technological and economic feasibility of the rule is presented in the Final Economic Analysis and Regulatory Flexibility Analysis (FEA), and is summarized in Section VIII of this preamble. OSHA concludes that the final PELs are technologically feasible for all affected industries and application groups. Thus, OSHA concludes that engineering and work practice controls will be sufficient to reduce and maintain beryllium exposures to the new PELs or below in most operations most of the time in the affected industries. For those few operations within an industry or VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 application group where compliance with the PELs cannot be achieved even when employers implement all feasible engineering and work practice controls, use of respirators will be required. OSHA developed quantitative estimates of the compliance costs of the rule for each of the affected industry sectors. The estimated compliance costs were compared with industry revenues and profits to provide a screening analysis of the economic feasibility of complying with the rule and an evaluation of the economic impacts. Industries with unusually high costs as a percentage of revenues or profits were further analyzed for possible economic feasibility issues. After performing these analyses, OSHA finds that compliance with the requirements of the rule is economically feasible in every affected industry sector. The final rule includes several major changes from the proposed rule as a result of OSHA’s analysis of comments and evidence received during the comment periods and public hearings. The major changes are summarized below and are fully discussed in Section XVI, Summary and Explanation of the Standards. OSHA also presented a number of regulatory alternatives in the Notice of Proposed Rulemaking (80 FR 47566, 47729–47748 (8/7/2015). Where the Agency received substantive comments on a regulatory alternative, those comments are also discussed in Section XVI. A full discussion of all regulatory alternatives can be found in Chapter VIII of the Final Economic Analysis (FEA). Scope. OSHA proposed to cover occupational exposures to beryllium in general industry, with an exemption for articles and an exemption for materials containing less than 0.1% beryllium by weight. OSHA has made a final determination to cover exposures to beryllium in general industry, shipyards, and construction under the final rule, and to issue separate standards for each sector. The final rule also provides an exemption for materials containing less than 0.1% beryllium by weight only where the employer has objective data demonstrating that employee exposure to beryllium will remain below the action level of 0.1 mg/m3 as an 8-hour TWA under any foreseeable conditions. Exposure Assessment. The proposed rule would have required periodic exposure monitoring annually where employee exposures are at or above the action level but at or below the TWA PEL; no periodic monitoring would have been required where employee exposures exceeded the TWA PEL. The final rule specifies that exposure PO 00000 Frm 00003 Fmt 4701 Sfmt 4700 2471 monitoring must be repeated within six months where employee exposures are at or above the action level but at or below the TWA PEL, and within three months where employee exposures are above the TWA PEL or STEL. The final rule also includes provisions allowing the employer to discontinue exposure monitoring where employee exposures fall below the action level and STEL. In addition, the final rule includes a new provision that allows employers to assess employee exposures using any combination of air monitoring data and objective data sufficient to accurately characterize airborne exposure to beryllium (i.e., the ‘‘performance option’’). Beryllium Work Areas. The proposed rule would have required the employer to establish and maintain a beryllium work area wherever employees are, or can reasonably be expected to be, exposed to airborne beryllium, regardless of the level of exposure. As discussed in the Summary and Explanation section of this preamble, OSHA has narrowed the definition of beryllium work area in the final rule from the proposal. The final rule now limits the requirement to work areas containing a process or operation that can release beryllium where employees are, or can reasonably be expected to be, exposed to airborne beryllium at any level. The final rule expands the exposure requirement to include work areas containing a process or operation where there is potential dermal contact with beryllium based on comments from public health experts that relying solely on airborne exposure omits the potential contribution of dermal exposure to total exposure. See the Summary and Explanation section of this preamble for a full discussion of the relevant comments and reasons for changes from the proposed standard. Beryllium work areas are not required under the standards for shipyards and construction. Respiratory Protection. OSHA has added a provision in the final rule requiring the employer to provide a powered air-purifying respirator (PAPR) instead of a negative pressure respirator where respiratory protection is required by the rule and the employee requests a PAPR, provided that the PAPR provides adequate protection. Personal Protective Clothing and Equipment. The proposed rule would have required use of protective clothing and equipment where employee exposure exceeds, or can reasonably be expected to exceed the TWA PEL or STEL; where employees’ clothing or skin may become visibly contaminated with beryllium; and where employees’ E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2472 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations skin can reasonably be expected to be exposed to soluble beryllium compounds. The final rule requires use of protective clothing and equipment where employee exposure exceeds, or can reasonably be expected to exceed the TWA PEL or STEL; or where there is a reasonable expectation of dermal contact with beryllium. Medical Surveillance. The exposure trigger for medical examinations has been revised from the proposal. The proposed rule would have required that medical examinations be offered to each employee who has worked in a regulated area (i.e., an area where an employee’s exposure exceeds, or can reasonably be expected to exceed, the TWA PEL or STEL) for more than 30 days in the last 12 months. The final rule requires that medical examinations be offered to each employee who is or is reasonably expected to be exposed at or above the action level for more than 30 days per year. A trigger to offer periodic medical surveillance when recommended by the most recent written medical opinion was also added the final rule. Under the final rule, the licensed physician recommends continued periodic medical surveillance for employees who are confirmed positive for sensitization or diagnosed with CBD. The proposed rule also would have required that medical examinations be offered annually; the final rule requires that medical examinations be offered at least every two years. The final medical surveillance provisions have been revised to provide enhanced privacy for employees. The rule requires the employer to obtain a written medical opinion from a licensed physician for medical examinations provided under the rule but limits the information provided to the employer to the date of the examination, a statement that the examination has met the requirements of the standard, any recommended limitations on the employee’s use of respirators, protective clothing, and equipment, and a statement that the results of the exam have been explained to the employee. The proposed rule would have required that such opinions contain additional information, without requiring employee authorization, such as the physician’s opinion as to whether the employee has any detected medical condition that would place the employee at increased risk of CBD from further exposure, and any recommended limitations upon the employee’s exposure to beryllium. In the final rule, the written opinion provided to the employer will only include recommended limitations on the VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 employee’s exposure to beryllium, referral to a CBD diagnostic center, a recommendation for continued periodic medical surveillance, or a recommendation for medical removal if the employee provides written authorization. The final rule requires a separate written medical report provided to the employee to include this additional information, as well as detailed information related to the employee’s health. The proposed rule would have required that the licensed physician provide the employer with a written medical opinion within 30 days of the examination. The final rule requires that the licensed physician provide the employee with a written medical report and the employer with a written medical opinion within 45 days of the examination, including any follow-up beryllium lymphocyte proliferation test (BeLPTs). The final rule also adds requirements for the employer to provide the CBD diagnostic center with the same information provided to the physician or other licensed health care professional who administers the medical examination, and for the CBD diagnostic center to provide the employee with a written medical report and the employer with a written medical opinion. Under the final standard, employees referred to a CBD diagnostic center can choose to have future evaluations performed there. A requirement that laboratories performing BeLPTs be certified was also added to the final rule. The proposed rule would have required that employers provide low dose computed tomography (LDCT) scans to employees who met certain exposure criteria. The final rule requires LDCT scans when recommended by the physician or other licensed healthcare professional administering the medical exam, after considering the employee’s history of exposure to beryllium along with other risk factors. Dates. OSHA proposed an effective date 60 days after publication of the rule; a date for compliance with all provisions except change rooms and engineering controls of 90 days after the effective date; a date for compliance with change room requirements, which was one year after the effective date; and a date for compliance with engineering control requirements of two years after the effective date. OSHA has revised the proposed compliance dates. The final rule is effective 60 days after publication. All obligations for compliance commence one year after the effective date, with two exceptions: The obligation for PO 00000 Frm 00004 Fmt 4701 Sfmt 4700 change rooms and showers commences two years after the effective date; and the obligation for engineering controls commences three years after the effective date.1 Under the OSH Act’s legal standard directing OSHA to set health standards based on findings of significant risk of material impairment and technological and economic feasibility, OSHA does not use cost-benefit analysis to determine the PEL or other aspects of the rule. It does, however, determine and analyze costs and benefits for its own informational purposes and to meet certain Executive Order requirements, as discussed in Section VIII, Summary of the Final Economic Analysis and Final Regulatory Flexibility Analysis and in the FEA. Table I–1—which is derived from material presented in Section VIII of this preamble—provides a summary of OSHA’s best estimate of the costs and benefits of the rule using a discount rate of 3 percent. As shown, the rule is estimated to prevent 90 fatalities and 46 new cases of CBD annually once the full effects are realized, and the estimated cost of the rule is $73.9 million annually. Also as shown in Table I–1, the discounted monetized benefits of the rule are estimated to be $560.9 annually, and the rule is estimated to generate net benefits of approximately $487 annually; however, there is a great deal of uncertainty in those benefits due to assumptions made about dental workers’ exposures and reductions; see Section VIII of this preamble. As that section shows, benefits significantly exceed costs regardless of how dental workers’ exposures are treated. TABLE I–1—ANNUALIZED BENEFITS, COSTS AND NET BENEFITS OF OSHA’S FINAL BERYLLIUM STANDARD [3 Percent discount rate, 2015 dollars] Annualized Costs: Control Costs ............................... Rule Familiarization ..................... Exposure Assessment ................. Regulated Areas .......................... $12,269,190 180,158 13,748,676 884,106 1 Note that the main analysis of costs and benefits presented in this FEA does not take into account the lag in effective dates but, instead, assumes that the rule takes effect in Year 1. To account for the lag in effective dates, OSHA has provided in the sensitivity analysis in Chapter VII of the FEA an estimate of its separate effects on costs and benefits relative to the main analysis. This analysis, which appears in Table VII–16 of the FEA, indicates that if employers delayed implementation of all provisions until legally required, and no benefits occurred until all provisions went into effect, this would decrease the estimated costs by 3.9 percent; the estimated benefits by 8.5 percent, and the estimated net benefits of the standard by 9.2 percent (to $442 million). E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations TABLE I–1—ANNUALIZED BENEFITS, COSTS AND NET BENEFITS OF OSHA’S FINAL BERYLLIUM STANDARD—Continued [3 Percent discount rate, 2015 dollars] Beryllium Work Areas .................. Medical Surveillance .................... Medical Removal ......................... Written Exposure Control Plan .... Protective Work Clothing & Equipment ................................ Hygiene Areas and Practices ...... Housekeeping .............................. Training ........................................ Respirators .................................. 129,648 7,390,958 1,151,058 2,339,058 1,985,782 2,420,584 22,763,595 8,284,531 320,885 Total Annualized Costs (Point Estimate) ................ Annual Benefits: Number of Cases Prevented: Fatal Lung Cancers (Midpoint Estimate) ...................................... Fatal Chronic Beryllium Disease Beryllium-Related Mortality .......... Beryllium Morbidity ...................... Monetized Annual Benefits (Midpoint Estimate) ......................... Net Benefits: Net Benefits ................................. $73,868,230 4 86 90 46 $560,873,424 $487,005,194 Sources: US DOL, OSHA, Directorate of Standards and Guidance, Office of Regulatory Analysis. asabaliauskas on DSK3SPTVN1PROD with PROPOSALS II. Pertinent Legal Authority The purpose of the Occupational Safety and Health Act (29 U.S.C. 651 et seq.) (‘‘the Act’’ or ‘‘the OSH Act’’), is ‘‘to assure so far as possible every working man and woman in the Nation safe and healthful working conditions and to preserve our human resources’’ (29 U.S.C. 651(b)). To achieve this goal Congress authorized the Secretary of Labor (‘‘the Secretary’’) ‘‘to set mandatory occupational safety and health standards applicable to businesses affecting interstate commerce’’ (29 U.S.C. 651(b)(3); see 29 U.S.C. 654(a) (requiring employers to comply with OSHA standards), 655(a) (authorizing summary adoption of existing consensus and federal standards within two years of the Act’s enactment), and 655(b) (authorizing promulgation, modification or revocation of standards pursuant to notice and comment)). The primary statutory provision relied upon by the Agency in promulgating health standards is section 6(b)(5) of the Act; other sections of the OSH Act, however, authorize the Occupational Safety and Health Administration (‘‘OSHA’’) to require labeling and other appropriate forms of warning, exposure assessment, medical examinations, and recordkeeping in its standards (29 U.S.C. 655(b)(5), 655(b)(7), 657(c)). The Act provides that in promulgating standards dealing with toxic materials or harmful physical agents, such as beryllium, the Secretary ‘‘shall set the VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 standard which most adequately assures, to the extent feasible, on the basis of the best available evidence, that no employee will suffer material impairment of health or functional capacity even if such employee has regular exposure to the hazard dealt with by such standard for the period of his working life’’ (29 U.S.C. 655(b)(5)). Thus, ‘‘[w]hen Congress passed the Occupational Safety and Health Act in 1970, it chose to place pre-eminent value on assuring employees a safe and healthful working environment, limited only by the feasibility of achieving such an environment’’ (American Textile Mfrs. Institute, Inc. v. Donovan, 452 US 490, 541 (1981) (‘‘Cotton Dust’’)). OSHA proposed this new standard for beryllium and beryllium compounds and conducted its rulemaking pursuant to section 6(b)(5) of the Act ((29 U.S.C. 655(b)(5)). The preceding beryllium standard, however, was adopted under the Secretary’s authority in section 6(a) of the OSH Act (29 U.S.C. 655(a)), to adopt national consensus and established Federal standards within two years of the Act’s enactment (see 29 CFR 1910.1000 Table Z–1). Any rule that ‘‘differs substantially from an existing national consensus standard’’ must ‘‘better effectuate the purposes of this Act than the national consensus standard’’ (29 U.S.C. 655(b)(8)). Several additional legal requirements arise from the statutory language in sections 3(8) and 6(b)(5) of the Act (29 U.S.C. 652(8), 655(b)(5)). The remainder of this section discusses these requirements, which OSHA must consider and meet before it may promulgate this occupational health standard regulating exposure to beryllium and beryllium compounds. Material Impairment of Health Subject to the limitations discussed below, when setting standards regulating exposure to toxic materials or harmful physical agents, the Secretary is required to set health standards that ensure that ‘‘no employee will suffer material impairment of health or functional capacity. . .’’ (29 U.S.C. 655(b)(5)). ‘‘OSHA is not required to state with scientific certainty or precision the exact point at which each type of [harm] becomes a material impairment’’ (AFL–CIO v. OSHA, 965 F.2d 962, 975 (11th Cir. 1992)). Courts have also noted that OSHA should consider all forms and degrees of material impairment—not just death or serious physical harm (AFL–CIO, 965 F.2d at 975). Thus the Agency has taken the position that ‘‘subclinical’’ health effects, which may be precursors to more serious disease, can be material impairments of health that OSHA PO 00000 Frm 00005 Fmt 4701 Sfmt 4700 2473 should address when feasible (43 FR 52952, 52954 (11/14/78) (Lead Preamble)). Significant Risk Section 3(8) of the Act requires that workplace safety and health standards be ‘‘reasonably necessary or appropriate to provide safe or healthful employment’’ (29 U.S.C. 652(8)). The Supreme Court, in its decision on OSHA’s benzene standard, interpreted section 3(8) to mean that before promulgating any standard, the Secretary must evaluate whether ‘‘significant risk[ ]’’ exists under current conditions and to then determine whether that risk can be ‘‘eliminated or lessened’’ through regulation (Indus. Union Dep’t, AFL–CIO v. Am. Petroleum Inst., 448 U.S. 607, 642 (1980) (plurality opinion) (‘‘Benzene’’)). The Court’s holding is consistent with evidence in the legislative record, with regard to section 6(b)(5) of the Act (29 U.S.C. 655(b)(5)), that Congress intended the Agency to regulate unacceptably severe occupational hazards, and not ‘‘to establish a utopia free from any hazards’’ or to address risks comparable to those that exist in virtually any occupation or workplace (116 Cong. Rec. 37614 (1970), Leg. Hist. 480–82). It is also consistent with Section 6(g) of the OSH Act, which states that, in determining regulatory priorities, ‘‘the Secretary shall give due regard to the urgency of the need for mandatory safety and health standards for particular industries, trades, crafts, occupations, businesses, workplaces or work environments’’ (29 U.S.C. 655(g)). The Supreme Court in Benzene clarified that ‘‘[i]t is the Agency’s responsibility to determine, in the first instance, what it considers to be a ‘significant’ risk’’ (Benzene, 448 U.S. at 655), and that it was not the Court’s responsibility to ‘‘express any opinion on the . . . difficult question of what factual determinations would warrant a conclusion that significant risks are present which make promulgation of a new standard reasonably necessary or appropriate’’ (Benzene, 448 U.S. at 659). The Court stated, however, that the section 6(f) (29 U.S.C. 655(b)(f)) substantial evidence standard applicable to OSHA’s significant risk determination does not require the Agency ‘‘to support its finding that a significant risk exists with anything approaching scientific certainty’’ (Benzene, 448 U.S. at 656). Rather, OSHA may rely on ‘‘a body of reputable scientific thought’’ to which ‘‘conservative assumptions in interpreting the data . . . ’’ may be applied, ‘‘risking error on the side of E:\FR\FM\09JAR2.SGM 09JAR2 2474 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations overprotection’’ (Benzene, 448 U.S. at 656; see also United Steelworkers of Am., AFL–CIO–CLC v. Marshall, 647 F.2d 1189, 1248 (D.C. Cir. 1980) (‘‘Lead I’’) (noting the Benzene court’s application of this principle to carcinogens and applying it to the lead standard, which was not based on carcinogenic effects)). OSHA may thus act with a ‘‘pronounced bias towards worker safety’’ in making its risk determinations (Bldg & Constr. Trades Dep’t v. Brock, 838 F.2d 1258, 1266 (D.C. Cir. 1988) (‘‘Asbestos II’’). The Supreme Court further recognized that what constitutes ‘‘significant risk’’ is ‘‘not a mathematical straitjacket’’ (Benzene, 448 U.S. at 655) and will be ‘‘based largely on policy considerations’’ (Benzene, 448 U.S. at 655 n. 62). The Court gave the following example: asabaliauskas on DSK3SPTVN1PROD with PROPOSALS If . . . the odds are one in a billion that a person will die from cancer by taking a drink of chlorinated water, the risk clearly could not be considered significant. On the other hand, if the odds are one in a thousand that regular inhalation of gasoline vapors that are 2% benzene will be fatal, a reasonable person might well consider the risk significant . . . (Benzene, 448 U.S. at 655). Following Benzene, OSHA has, in many of its health standards, considered the one-in-a-thousand metric when determining whether a significant risk exists. Moreover, as ‘‘a prerequisite to more stringent regulation’’ in all subsequent health standards, OSHA has, consistent with the Benzene plurality decision, based each standard on a finding of significant risk at the ‘‘then prevailing standard’’ of exposure to the relevant hazardous substance (Asbestos II, 838 F.2d at 1263). The Agency’s final risk assessment is derived from existing scientific and enforcement data and its final conclusions are made only after considering all evidence in the rulemaking record. Courts reviewing the validity of these standards have uniformly held the Secretary to the significant risk standard first articulated by the Benzene plurality and have generally upheld the Secretary’s significant risk determinations as supported by substantial evidence and ‘‘a reasoned explanation for his policy assumptions and conclusions’’ (Asbestos II, 838 F.2d at 1266). Once OSHA makes its significant risk finding, the ‘‘more stringent regulation’’ (Asbestos II, 838 F.2d at 1263) it promulgates must be ‘‘reasonably necessary or appropriate’’ to reduce or eliminate that risk, within the meaning of section 3(8) of the Act (29 U.S.C. 652(8)) and Benzene (448 U.S. at 642) (see Asbestos II, 838 F.2d at 1269). The courts have interpreted section 6(b)(5) of VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 the OSH Act as requiring OSHA to set the standard that eliminates or reduces risk to the lowest feasible level; as discussed below, the limits of technological and economic feasibility usually determine where the new standard is set (see UAW v. Pendergrass, 878 F.2d 389, 390 (D.C. Cir. 1989)). In choosing among regulatory alternatives, however, ‘‘[t]he determination that [one standard] is appropriate, as opposed to a marginally [more or less protective] standard, is a technical decision entrusted to the expertise of the agency . . . ’’ (Nat’l Mining Ass’n v. Mine Safety and Health Admin., 116 F.3d 520, 528 (D.C. Cir. 1997)) (analyzing a Mine Safety and Health Administration standard under the Benzene significant risk standard). In making its choice, OSHA may incorporate a margin of safety even if it theoretically regulates below the lower limit of significant risk (Nat’l Mining Ass’n, 116 F.3d at 528 (citing American Petroleum Inst. v. Costle, 665 F.2d 1176, 1186 (D.C. Cir. 1982))). Working Life Assumption The OSH Act requires OSHA to set the standard that most adequately protects employees against harmful workplace exposures for the period of their ‘‘working life’’ (29 U.S.C. 655(b)(5)). OSHA’s longstanding policy is to define ‘‘working life’’ as constituting 45 years; thus, it assumes 45 years of exposure when evaluating the risk of material impairment to health caused by a toxic or hazardous substance. This policy is not based on empirical data that most employees are exposed to a particular hazard for 45 years. Instead, OSHA has adopted the practice to be consistent with the statutory directive that ‘‘no employee’’ suffer material impairment of health ‘‘even if’’ such employee is exposed to the hazard for the period of his or her working life (see 74 FR 44796 (8/31/ 09)). OSHA’s policy was given judicial approval in a challenge to an OSHA standard that lowered the permissible exposure limit (PEL) for asbestos (Asbestos II, 838 F.2d at 1264–1265). In that case, the petitioners claimed that the median duration of employment in the affected industry sectors was only five years. Therefore, according to petitioners, OSHA erred in assuming a 45-year working life in calculating the risk of health effects caused by asbestos exposure. The D.C. Circuit disagreed, stating ‘‘[e]ven if it is only the rare worker who stays with asbestos-related tasks for 45 years, that worker would face a 64/1000 excess risk of contracting cancer; Congress clearly authorized OSHA to protect such a worker’’ PO 00000 Frm 00006 Fmt 4701 Sfmt 4700 (Asbestos II, 838 F.2d at 1264–1265). OSHA might calculate the health risks of exposure, and the related benefits of lowering the exposure limit, based on an assumption of a shorter working life, such as 25 years, but such estimates are for informational purposes only. Best Available Evidence Section 6(b)(5) of the Act requires OSHA to set standards ‘‘on the basis of the best available evidence’’ and to consider the ‘‘latest available scientific data in the field’’ (29 U.S.C. 655(b)(5)). As noted above, the Supreme Court, in its Benzene decision, explained that OSHA must look to ‘‘a body of reputable scientific thought’’ in making its material harm and significant risk determinations, while noting that a reviewing court must ‘‘give OSHA some leeway where its findings must be made on the frontiers of scientific knowledge’’ (Benzene, 448 U.S. at 656). The courts of appeals have afforded OSHA similar latitude to issue health standards in the face of scientific uncertainty. The Second Circuit, in upholding the vinyl chloride standard, stated: ‘‘[T]he ultimate facts here in dispute are ‘on the frontiers of scientific knowledge’, and, though the factual finger points, it does not conclude. Under the command of OSHA, it remains the duty of the Secretary to act to protect the workingman, and to act even in circumstances where existing methodology or research is deficient’’ (Society of the Plastics Industry, Inc. v. OSHA, 509 F.2d 1301, 1308 (2d Cir. 1975) (quoting Indus. Union Dep’t, AFL– CIO v. Hodgson, 499 F.2d 467, 474 (D.C. Cir. 1974) (‘‘Asbestos I’’))). The D.C. Circuit, in upholding the cotton dust standard, stated: ‘‘OSHA’s mandate necessarily requires it to act even if information is incomplete when the best available evidence indicates a serious threat to the health of workers’’ (Am. Fed’n of Labor & Cong. of Indus. Orgs. v. Marshall, 617 F.2d 636, 651 (D.C. Cir. 1979), aff’d in part and vacated in part on other grounds, American Textile Mfrs. Inst., Inc. v. Donovan, 452 U.S. 490 (1981)). When there is disputed scientific evidence in the record, OSHA must review the evidence on both sides and ‘‘reasonably resolve’’ the dispute (Pub. Citizen Health Research Grp. v. Tyson, 796 F.2d 1479, 1500 (D.C. Cir. 1986)). The Court in Public Citizen further noted that, where ‘‘OSHA has the expertise we lack and it has exercised that expertise by carefully reviewing the scientific data,’’ a dispute within the scientific community is not occasion for the reviewing court to take sides about which view is correct (Pub. Citizen Health Research Grp., 796 F.2d E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS at 1500) or for OSHA or the courts to ‘‘ ‘be paralyzed by debate surrounding diverse medical opinions’ ’’ (Pub. Citizen Health Research Grp., 796 F.2d at 1497 (quoting H.R. Rep. No. 91–1291, 91st Cong., 2d Sess. 18 (1970), reprinted in Legislative History of the Occupational Safety and Health Act of 1970 at 848 (1971))). Provided the Agency gave adequate notice in the proposal’s preamble discussion of potential regulatory alternatives that the Secretary would be considering one or more stated options for regulation, OSHA is not required to prefer the option in the text of the proposal over a given regulatory alternative that was addressed in the rulemaking if substantial evidence in the record supports inclusion of the alternative in the final standard. See Owner-Operator Independent Drivers Ass’n, Inc. v. Federal Motor Carrier Safety Admin., 494 F.3d 188, 209 (D.C. Cir. 2007) (notice by agency concerning modification of sleeper-berth requirements for truck drivers was sufficient because proposal listed several options and asked a question regarding the details of the one option that ultimately appeared in final rule); Kooritzky v. Reich, 17 F.3d 1509, 1513 (D.C. Cir. 1994) (noting that a final rule need not match a proposed rule, as long as ‘‘the agency has alerted interested parties to the possibility of the agency’s adopting a rule different than the one proposed’’ and holding that agency failed to comply with notice and comment requirements when ‘‘preamble in July offered no clues of what was to come in October’’). Feasibility The OSH Act requires that, in setting a standard, OSHA must eliminate the risk of material health impairment ‘‘to the extent feasible’’ (29 U.S.C. 655(b)(5)). The statutory mandate to consider the feasibility of the standard encompasses both technological and economic feasibility; these analyses have been done primarily on an industry-by-industry basis (Lead I, 647 F.2d at 1264, 1301). The Agency has also used application groups, defined by common tasks, as the structure for its feasibility analyses (Pub. Citizen Health Research Grp. v. OSHA, 557 F.3d 165, 177–179 (3d Cir. 2009)). The Supreme Court has broadly defined feasible as ‘‘capable of being done’’ (Cotton Dust, 452 U.S. at 509–510). Although OSHA must set the most protective PEL that the Agency finds to be technologically and economically feasible, it retains discretion to set a uniform PEL even when the evidence demonstrates that certain industries or VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 operations could reasonably be expected to meet a lower PEL. OSHA health standards generally set a single PEL for all affected employers; OSHA exercised this discretion most recently in its final rules on occupational exposure to Chromium (VI) (71 FR 10100, 10337– 10338 (2/28/2006) and Respirable Crystalline Silica (81 FR 16285, 16576– 16575 (3/25/2016); see also 62 FR 1494, 1575 (1/10/97) (methylene chloride)). In its decision upholding the chromium (VI) standard, including the uniform PEL, the Court of Appeals for the Third Circuit addressed this issue as one of deference, stating ‘‘OSHA’s decision to select a uniform exposure limit is a legislative policy decision that we will uphold as long as it was reasonably drawn from the record’’ (Chromium (VI), 557 F.3d at 183 (3d Cir. 2009)); see also Am. Iron & Steel Inst. v. OSHA, 577 F.2d 825, 833 (3d Cir. 1978)). OSHA’s reasons for choosing one chromium (VI) PEL, rather than imposing different PELs on different application groups or industries, included: Multiple PELs would create enforcement and compliance problems because many workplaces, and even workers, were affected by multiple categories of chromium (VI) exposure; discerning individual PELs for different groups of establishments would impose a huge evidentiary burden on the Agency and unnecessarily delay implementation of the standard; and a uniform PEL would, by eliminating confusion and simplifying compliance, enhance worker protection (Chromium (VI), 557 F.3d at 173, 183–184). The Court held that OSHA’s rationale for choosing a uniform PEL, despite evidence that some application groups or industries could meet a lower PEL, was reasonably drawn from the record and that the Agency’s decision was within its discretion and supported by past practice (Chromium (VI), 557 F.3d at 183–184). Technological Feasibility A standard is technologically feasible if the protective measures it requires already exist, can be brought into existence with available technology, or can be created with technology that can reasonably be expected to be developed (Lead I, 647 F.2d at 1272; Amer. Iron & Steel Inst. v. OSHA, 939 F.2d 975, 980 (D.C. Cir. 1991) (‘‘Lead II’’)). OSHA’s standards may be ‘‘technology forcing,’’ i.e., where the Agency gives an industry a reasonable amount of time to develop new technologies, OSHA is not bound by the ‘‘technological status quo’’ (Lead I, 647 F.2d at 1264). While the test for technological feasibility is normally articulated in terms of the ability of PO 00000 Frm 00007 Fmt 4701 Sfmt 4700 2475 employers to decrease exposures to the PEL, provisions such as exposure measurement requirements must also be technologically feasible (see Forging Indus. Ass’n v. Sec’y of Labor, 773 F.2d 1436, 1453 (4th Cir. 1985)). In its Lead decisions, the D.C. Circuit described OSHA’s obligation to demonstrate the technological feasibility of reducing occupational exposure to a hazardous substance. [W]ithin the limits of the best available evidence . . . OSHA must prove a reasonable possibility that the typical firm will be able to develop and install engineering and work practice controls that can meet the PEL in most of its operations . . . The effect of such proof is to establish a presumption that industry can meet the PEL without relying on respirators . . . Insufficient proof of technological feasibility for a few isolated operations within an industry, or even OSHA’s concession that respirators will be necessary in a few such operations, will not undermine this general presumption in favor of feasibility. Rather, in such operations firms will remain responsible for installing engineering and work practice controls to the extent feasible, and for using them to reduce . . . exposure as far as these controls can do so (Lead I, 647 F.2d at 1272). Additionally, the D.C. Circuit explained that ‘‘[f]easibility of compliance turns on whether exposure levels at or below [the PEL] can be met in most operations most of the time . . .’’ (Lead II, 939 F.2d at 990). Courts have given OSHA significant deference in reviewing its technological feasibility findings. ‘‘So long as we require OSHA to show that any required means of compliance, even if it carries no guarantee of meeting the PEL, will substantially lower . . . exposure, we can uphold OSHA’s determination that every firm must exploit all possible means to meet the standard’’ (Lead I, 647 F.2d at 1273). Even in the face of significant uncertainty about technological feasibility in a given industry, OSHA has been granted broad discretion in making its findings (Lead I, 647 F.2d at 1285). ‘‘OSHA cannot let workers suffer while it awaits . . . scientific certainty. It can and must make reasonable [technological feasibility] predictions on the basis of ‘credible sources of information,’ whether data from existing plants or expert testimony’’ (Lead I, 647 F.2d at 1266 (quoting Am. Fed’n of Labor & Cong. of Indus. Orgs., 617 F.2d at 658)). For example, in Lead I, the D.C. Circuit allowed OSHA to use, as best available evidence, information about new and expensive industrial smelting processes that had not yet been adopted in the U.S. and would require the rebuilding of plants (Lead I, 647 F.2d at 1283–1284). Even under circumstances where E:\FR\FM\09JAR2.SGM 09JAR2 2476 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS OSHA’s feasibility findings were less certain and the Agency was relying on its ‘‘legitimate policy of technology forcing,’’ the D.C. Circuit approved of OSHA’s feasibility findings when the Agency granted lengthy phase-in periods to allow particular industries time to comply (Lead I, 647 F.2d at 1279–1281, 1285). OSHA is permitted to adopt a standard that some employers will not be able to meet some of the time, with employers limited to challenging feasibility at the enforcement stage (Lead I, 647 F.2d at 1273 & n. 125; Asbestos II, 838 F.2d at 1268). Even when the Agency recognized that it might have to balance its general feasibility findings with flexible enforcement of the standard in individual cases, the courts of appeals have generally upheld OSHA’s technological feasibility findings (Lead II, 939 F.2d at 980; see Lead I, 647 F.2d at 1266–1273; Asbestos II, 838 F.2d at 1268). Flexible enforcement policies have been approved where there is variability in measurement of the regulated hazardous substance or where exposures can fluctuate uncontrollably (Asbestos II, 838 F.2d at 1267–1268; Lead II, 939 F.2d at 991). A common means of dealing with the measurement variability inherent in sampling and analysis is for the Agency to add the standard sampling error to its exposure measurements before determining whether to issue a citation (e.g., 51 FR 22612, 22654 (06/20/86) (Asbestos Preamble)). Economic Feasibility In addition to technological feasibility, OSHA is required to demonstrate that its standards are economically feasible. A reviewing court will examine the cost of compliance with an OSHA standard ‘‘in relation to the financial health and profitability of the industry and the likely effect of such costs on unit consumer prices . . .’’ (Lead I, 647 F.2d at 1265 (omitting citation)). As articulated by the D.C. Circuit in Lead I, ‘‘OSHA must construct a reasonable estimate of compliance costs and demonstrate a reasonable likelihood that these costs will not threaten the existence or competitive structure of an industry, even if it does portend disaster for some marginal firms’’ (Lead I, 647 F.2d at 1272). A reasonable estimate entails assessing ‘‘the likely range of costs and the likely effects of those costs on the industry’’ (Lead I, 647 F.2d at 1266). As with OSHA’s consideration of scientific data and control technology, however, the estimates need not be precise (Cotton Dust, 452 U.S. at 528– VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 29 & n. 54) as long as they are adequately explained. Thus, as the D.C. Circuit further explained: Standards may be economically feasible even though, from the standpoint of employers, they are financially burdensome and affect profit margins adversely. Nor does the concept of economic feasibility necessarily guarantee the continued existence of individual employers. It would appear to be consistent with the purposes of the Act to envisage the economic demise of an employer who has lagged behind the rest of the industry in protecting the health and safety of employees and is consequently financially unable to comply with new standards as quickly as other employers. As the effect becomes more widespread within an industry, the problem of economic feasibility becomes more pressing (Asbestos I, 499 F.2d. at 478). OSHA standards therefore satisfy the economic feasibility criterion even if they impose significant costs on regulated industries so long as they do not cause massive economic dislocations within a particular industry or imperil the very existence of the industry (Lead II, 939 F.2d at 980; Lead I, 647 F.2d at 1272; Asbestos I, 499 F.2d. at 478). As with its other legal findings, OSHA ‘‘is not required to prove economic feasibility with certainty, but is required to use the best available evidence and to support its conclusions with substantial evidence’’ ((Lead II, 939 F.2d at 980–981) (citing Lead I, 647 F.2d at 1267)). Because section 6(b)(5) of the Act explicitly imposes the ‘‘to the extent feasible’’ limitation on the setting of health standards, OSHA is not permitted to use cost-benefit analysis to make its standards-setting decisions (29 U.S.C. 655(b)(5)). Congress itself defined the basic relationship between costs and benefits, by placing the ‘‘benefit’’ of worker health above all other considerations save those making attainment of this ‘‘benefit’’ unachievable. Any standard based on a balancing of costs and benefits by the Secretary that strikes a different balance than that struck by Congress would be inconsistent with the command set forth in § 6(b)(5) (Cotton Dust, 452 U.S. at 509). Thus, while OSHA estimates the costs and benefits of its proposed and final rules, these calculations do not form the basis for the Agency’s regulatory decisions; rather, they are performed to ensure compliance with requirements such as those in Executive Orders 12866 and 13563. Structure of OSHA Health Standards OSHA’s health standards traditionally incorporate a comprehensive approach to reducing occupational disease. OSHA substance-specific health standards PO 00000 Frm 00008 Fmt 4701 Sfmt 4700 generally include the ‘‘hierarchy of controls,’’ which, as a matter of OSHA’s preferred policy, mandates that employers install and implement all feasible engineering and work practice controls before respirators may be used. The Agency’s adherence to the hierarchy of controls has been upheld by the courts (ASARCO, Inc. v. OSHA, 746 F.2d 483, 496–498 (9th Cir. 1984); Am. Iron & Steel Inst. v. OSHA, 182 F.3d 1261, 1271 (11th Cir. 1999)). In fact, courts view the legal standard for proving technological feasibility as incorporating the hierarchy: ‘‘OSHA must prove a reasonable possibility that the typical firm will be able to develop and install engineering and work practice controls that can meet the PEL in most of its operations. . . . The effect of such proof is to establish a presumption that industry can meet the PEL without relying on respirators’’ (Lead I, 647 F.2d at 1272). The reasons supporting OSHA’s continued reliance on the hierarchy of controls, as well as its reasons for limiting the use of respirators, are numerous and grounded in good industrial hygiene principles (see discussion in Section XVI. Summary and Explanation of the Standards, Methods of Compliance). The hierarchy of controls focuses on removing harmful airborne materials at their source ‘‘to prevent atmospheric contamination’’ to which the employee would be exposed, rather than relying on the proper functioning of a respirator as the primary means of protecting the employee (see 29 CFR 1910.134, 1910.1000(e), 1926.55(b)). In health standards such as this one, the hierarchy of controls is augmented by ancillary provisions. These provisions work with the hierarchy of controls and personal protective equipment requirements to provide comprehensive protection to employees in affected workplaces. Such provisions typically include exposure assessment, medical surveillance, hazard communication, and recordkeeping. The OSH Act compels OSHA to require all feasible measures for reducing significant health risks (29 U.S.C. 655(b)(5); Pub. Citizen Health Research Grp., 796 F.2d at 1505 (‘‘if in fact a STEL [short-term exposure limit] would further reduce a significant health risk and is feasible to implement, then the OSH Act compels the agency to adopt it (barring alternative avenues to the same result)’’). When there is significant risk below the PEL, the D.C. Circuit indicated that OSHA should use its regulatory authority to impose additional requirements on employers when those requirements will result in E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS a greater than de minimis incremental benefit to workers’ health (Asbestos II, 838 F.2d at 1274). The Supreme Court alluded to a similar issue in Benzene, pointing out that ‘‘in setting a permissible exposure level in reliance on less-than-perfect methods, OSHA would have the benefit of a backstop in the form of monitoring and medical testing’’ (Benzene, 448 U.S. at 657). OSHA concludes that the ancillary provisions in this final standard provide significant benefits to worker health by providing additional layers and types of protection to employees exposed to beryllium and beryllium compounds. III. Events Leading to the Final Standards The first occupational exposure limit for beryllium was set in 1949 by the Atomic Energy Commission (AEC), which required that beryllium exposure in the workplaces under its jurisdiction be limited to 2 mg/m3 as an 8-hour timeweighted average (TWA), and 25 mg/m3 as a peak exposure never to be exceeded (Document ID 1323). These exposure limits were adopted by all AEC installations handling beryllium, and were binding on all AEC contractors involved in the handling of beryllium. In 1956, the American Industrial Hygiene Association (AIHA) published a Hygienic Guide which supported the AEC exposure limits. In 1959, the American Conference of Governmental Industrial Hygienists (ACGIH®) also adopted a Threshold Limit Value (TLV®) of 2 mg/m3 as an 8-hour TWA (Borak, 2006). In 1970, ANSI issued a national consensus standard for beryllium and beryllium compounds (ANSI Z37.29–1970). The standard set a permissible exposure limit (PEL) for beryllium and beryllium compounds at 2 mg/m3 as an 8-hour TWA; 5 mg/m3 as an acceptable ceiling concentration; and 25 mg/m3 as an acceptable maximum peak above the acceptable ceiling concentration for a maximum duration of 30 minutes in an 8-hour shift (Document ID 1303). In 1971, OSHA adopted, under Section 6(a) of the Occupational Safety and Health Act of 1970, and made applicable to general industry, the ANSI standard (Document ID 1303). Section 6(a) provided that in the first two years after the effective date of the Act, OSHA was to promulgate ‘‘start-up’’ standards, on an expedited basis and without public hearing or comment, based on national consensus or established Federal standards that improved employee safety or health. Pursuant to that authority, in 1971, OSHA promulgated approximately 425 PELs for air contaminants, including VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 beryllium, derived principally from Federal standards applicable to government contractors under the Walsh-Healey Public Contracts Act, 41 U.S.C. 35, and the Contract Work Hours and Safety Standards Act (commonly known as the Construction Safety Act), 40 U.S.C. 333. The Walsh-Healey Act and Construction Safety Act standards, in turn, had been adopted primarily from ACGIH®’s TLV®s as well as several from United States of America Standards Institute (USASI) [later the American National Standards Institute (ANSI)]. The National Institute for Occupational Safety and Health (NIOSH) issued a document entitled Criteria for a Recommended Standard: Occupational Exposure to Beryllium (Criteria Document) in June 1972 with Recommended Exposure Limits (RELs) of 2 mg/m3 as an 8-hour TWA and 25 mg/ m3 as an acceptable maximum peak above the acceptable ceiling concentration for a maximum duration of 30 minutes in an 8-hour shift. OSHA reviewed the findings and recommendations contained in the Criteria Document along with the AEC control requirements for beryllium exposure. OSHA also considered existing data from animal and epidemiological studies, and studies of industrial processes of beryllium extraction, refinement, fabrication, and machining. In 1975, OSHA asked NIOSH to update the evaluation of the existing data pertaining to the carcinogenic potential of beryllium. In response to OSHA’s request, the Director of NIOSH stated that, based on animal data and through all possible routes of exposure including inhalation, ‘‘beryllium in all likelihood represents a carcinogenic risk to man.’’ In October 1975, OSHA proposed a new beryllium standard for all industries based on information from studies finding that beryllium caused cancer in animals (40 FR 48814 (10/17/ 75)). Adoption of this proposal would have lowered the 8-hour TWA exposure limit from 2 mg/m3 to 1 mg/m3. In addition, the proposal included ancillary provisions for such topics as exposure monitoring, hygiene facilities, medical surveillance, and training related to the health hazards from beryllium exposure. The rulemaking was never completed. In 1977, NIOSH recommended an exposure limit of 0.5 mg/m3 and identified beryllium as a potential occupational carcinogen. In December 1998, ACGIH published a Notice of Intended Change for its beryllium exposure limit. The notice proposed a lower TLV of 0.2 mg/m3 over an 8-hour PO 00000 Frm 00009 Fmt 4701 Sfmt 4700 2477 TWA based on evidence of CBD and sensitization in exposed workers. Then in 2009, ACGIH adopted a revised TLV for beryllium that lowered the TWA to 0.05 mg/m3 (inhalable) (see Document ID 1755, Tr. 136). In 1999, the Department of Energy (DOE) issued a Chronic Beryllium Disease Prevention Program (CBDPP) Final Rule for employees exposed to beryllium in its facilities (Document ID 1323). The DOE rule set an action level of 0.2 mg/m3, and adopted OSHA’s PEL of 2 mg/m3 or any more stringent PEL OSHA might adopt in the future (10 CFR 850.22; 64 FR 68873 and 68906, Dec. 8, 1999). Also in 1999, OSHA was petitioned by the Paper, Allied-Industrial, Chemical and Energy Workers International Union (PACE) (Document ID 0069) and by Dr. Lee Newman and Ms. Margaret Mroz, from the National Jewish Health (NJH) (Document ID 0069), to promulgate an Emergency Temporary Standard (ETS) for beryllium in the workplace. In 2001, OSHA was petitioned for an ETS by Public Citizen Health Research Group and again by PACE (Document ID 0069). In order to promulgate an ETS, the Secretary of Labor must prove (1) that employees are exposed to grave danger from exposure to a hazard, and (2) that such an emergency standard is necessary to protect employees from such danger (29 U.S.C. 655(c) [6(c)]). The burden of proof is on the Department and because of the difficulty of meeting this burden, the Department usually proceeds when appropriate with ordinary notice and comment [section 6(b)] rulemaking rather than a 6(c) ETS. Thus, instead of granting the ETS requests, OSHA instructed staff to further collect and analyze research regarding the harmful effects of beryllium in preparation for possible section 6(b) rulemaking. On November 26, 2002, OSHA published a Request for Information (RFI) for ‘‘Occupational Exposure to Beryllium’’ (Document ID 1242). The RFI contained questions on employee exposure, health effects, risk assessment, exposure assessment and monitoring methods, control measures and technological feasibility, training, medical surveillance, and impact on small business entities. In the RFI, OSHA expressed concerns about health effects such as chronic beryllium disease (CBD), lung cancer, and beryllium sensitization. OSHA pointed to studies indicating that even shortterm exposures below OSHA’s PEL of 2 mg/m3 could lead to CBD. The RFI also cited studies describing the relationship between beryllium sensitization and CBD (67 FR at 70708). In addition, E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2478 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations OSHA stated that beryllium had been identified as a carcinogen by organizations such as NIOSH, the International Agency for Research on Cancer (IARC), and the Environmental Protection Agency (EPA); and cancer had been evidenced in animal studies (67 FR at 70709). On November 15, 2007, OSHA convened a Small Business Advocacy Review Panel for a draft proposed standard for occupational exposure to beryllium. OSHA convened this panel under Section 609(b) of the Regulatory Flexibility Act (RFA), as amended by the Small Business Regulatory Enforcement Fairness Act of 1996 (SBREFA) (5 U.S.C. 601 et seq.). The Panel included representatives from OSHA, the Solicitor’s Office of the Department of Labor, the Office of Advocacy within the Small Business Administration, and the Office of Information and Regulatory Affairs of the Office of Management and Budget. Small Entity Representatives (SERs) made oral and written comments on the draft rule and submitted them to the panel. The SBREFA Panel issued a report on January 15, 2008 which included the SERs’ comments. SERs expressed concerns about the impact of the ancillary requirements such as exposure monitoring and medical surveillance. Their comments addressed potential costs associated with compliance with the draft standard, and possible impacts of the standard on market conditions, among other issues. In addition, many SERs sought clarification of some of the ancillary requirements such as the meaning of ‘‘routine’’ contact or ‘‘contaminated surfaces.’’ OSHA then developed a draft preliminary beryllium health effects evaluation (Document ID 1271) and a draft preliminary beryllium risk assessment (Document ID 1272), and in 2010, OSHA hired a contractor to oversee an independent scientific peer review of these documents. The contractor identified experts familiar with beryllium health effects research and ensured that these experts had no conflict of interest or apparent bias in performing the review. The contractor selected five experts with expertise in such areas as pulmonary and occupational medicine, CBD, beryllium sensitization, the Beryllium Lymphocyte Proliferation Test (BeLPT), beryllium toxicity and carcinogenicity, and medical surveillance. Other areas of expertise included animal modeling, occupational epidemiology, biostatistics, risk and exposure assessment, exposure-response modeling, beryllium exposure VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 assessment, industrial hygiene, and occupational/environmental health engineering. Regarding the preliminary health effects evaluation, the peer reviewers concluded that the health effect studies were described accurately and in sufficient detail, and OSHA’s conclusions based on the studies were reasonable (Document ID 1210). The reviewers agreed that the OSHA document covered the significant health endpoints related to occupational beryllium exposure. Peer reviewers considered the preliminary conclusions regarding beryllium sensitization and CBD to be reasonable and well presented in the draft health evaluation section. All reviewers agreed that the scientific evidence supports sensitization as a necessary condition in the development of CBD. In response to reviewers’ comments, OSHA made revisions to more clearly describe certain sections of the health effects evaluation. In addition, OSHA expanded its discussion regarding the BeLPT. Regarding the preliminary risk assessment, the peer reviewers were highly supportive of the Agency’s approach and major conclusions (Document ID 1210). The peer reviewers stated that the key studies were appropriate and their selection clearly explained in the document. They regarded the preliminary analysis of these studies to be reasonable and scientifically sound. The reviewers supported OSHA’s conclusion that substantial risk of sensitization and CBD were observed in facilities where the highest exposure generating processes had median full-shift exposures around 0.2 mg/m3 or higher, and that the greatest reduction in risk was achieved when exposures for all processes were lowered to 0.1 mg/m3 or below. In February 2012, the Agency received for consideration a draft recommended standard for beryllium (Materion and USW, 2012, Document ID 0754). This draft standard was the product of a joint effort between two stakeholders: Materion Corporation, a leading producer of beryllium and beryllium products in the United States, and the United Steelworkers, an international labor union representing workers who manufacture beryllium alloys and beryllium-containing products in a number of industries. They sought to craft an OSHA-like model beryllium standard that would have support from both labor and industry. OSHA has considered this proposal along with other information submitted during the development of the Notice of Proposed Rulemaking PO 00000 Frm 00010 Fmt 4701 Sfmt 4700 (NPRM) for beryllium. As described in greater detail in the Introduction to the Summary and Explanation of the final rule, there was substantial agreement between the submitted joint standard and the OSHA proposed standard. On August 7, 2015, OSHA published its NPRM in the Federal Register (80 FR 47565 (8/7/15)). In the NPRM, the Agency made a preliminary determination that employees exposed to beryllium and beryllium compounds at the preceding PEL face a significant risk to their health and that promulgating the proposed standard would substantially reduce that risk. The NPRM (Section XVIII) also responded to the SBREFA Panel recommendations, which OSHA carefully considered, and clarified the requirements about which SERs expressed confusion. OSHA also discussed the regulatory alternatives recommended by the SBREFA Panel in NPRM, Section XVIII, and in the PEA (Document ID 0426). The NPRM invited interested stakeholders to submit comments on a variety of issues and indicated that OSHA would schedule a public hearing upon request. Commenters submitted information and suggestions on a variety of topics. In addition, in response to a request from the Non-Ferrous Founders’ Society, OSHA scheduled an informal public hearing on the proposed rule. The Agency invited interested persons to participate by providing oral testimony and documentary evidence at the hearing. OSHA also welcomed presentation of data and documentary evidence that would provide the Agency with the best available evidence to use in determining whether to develop a final rule. The public hearing was held in Washington, DC on March 21 and 22, 2016. Administrative Law Judge William Colwell presided over the hearing. The Agency heard testimony from several organizations, such as public health groups, the Non-Ferrous Founders’ Society, other industry representatives, and labor unions. Following the hearing, participants who had filed notices of intent to appear were allowed 30 days—until April 21, 2016—to submit additional evidence and data, and an additional 15 days— until May 6, 2016—to submit final briefs, arguments, and summations (Document ID 1756, Tr. 326). In 2016, in an action parallel to OSHA’s rulemaking, DOE proposed to update its action level to 0.05 mg/m3 (81 FR 36704–36759, June 7, 2016). The DOE action level triggers workplace precautions and control measures such as periodic monitoring, exposure E:\FR\FM\09JAR2.SGM 09JAR2 2479 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations reduction or minimization, regulated areas, hygiene facilities and practices, respiratory protection, protective clothing and equipment, and warning signs (Document ID 1323; 10 CFR 850.23(b)). Unlike OSHA’s PEL, however, DOE’s selection of an action level is not required to meet statutory requirements of technological and economic feasibility. In all, the OSHA rulemaking record contains over 1,900 documents, including all the studies OSHA relied on in its preliminary health effects and risk assessment analyses, the hearing transcript and submitted testimonies, the joint Materion-USW draft proposed standard, and the pre- and post-hearing comments and briefs. The final rule on occupational exposure to beryllium and beryllium compounds is thus based on consideration of the entire record of this rulemaking proceeding, including materials discussed or relied upon in the proposal, the record of the hearing, and all written comments and exhibits timely received. Based on this comprehensive record, OSHA concludes that employees exposed to beryllium and beryllium compounds are at significant risk of material impairment of health, including chronic beryllium disease and lung cancer. The Agency concludes that the PEL of 0.2 mg/m3 reduces the significant risks of material impairments of health posed to workers by occupational exposure to beryllium and beryllium compounds to the maximum extent that is technologically and economically feasible. OSHA’s substantive determinations with regard to the comments, testimony, and other information in the record, the legal standards governing the decisionmaking process, and the Agency’s analysis of the data resulting in its assessments of risks, benefits, technological and economic feasibility, and compliance costs are discussed elsewhere in this preamble. More technical or complex issues are discussed in greater detail in the background documents referenced in this preamble. IV. Chemical Properties and Industrial Uses Chemical and Physical Properties Beryllium (Be; CAS Number 7440– 41–7) is a silver-grey to greyish-white, strong, lightweight, and brittle metal. It is a Group IIA element with an atomic weight of 9.01, atomic number of 4, melting point of 1,287 °C, boiling point of 2,970 °C, and a density of 1.85 at 20 °C (Document ID 0389, p. 1). It occurs naturally in rocks, soil, coal, and volcanic dust (Document ID 1567, p. 1). Beryllium is insoluble in water and soluble in acids and alkalis. It has two common oxidation states, Be(0) and Be(+2). There are several beryllium compounds with unique CAS numbers and chemical and physical properties. Table IV–1 describes the most common beryllium compounds. TABLE IV–1—PROPERTIES OF BERYLLIUM AND BERYLLIUM COMPOUNDS Chemical name CAS No. Synonyms and trade names Molecular weight Melting point (°C) Description Density (g/cm3) Solubility 1.85 (20 °C) Soluble in most dilute acids and alkali; decomposes in hot water; insoluble in mercury and cold water. Soluble in water, ethanol, diethyl ether and pyridine; slightly soluble in benzene, carbon disulfide and chloroform; insoluble in acetone, ammonia, and toluene. Soluble in water, sulfuric acid, mixture of ethanol and diethyl ether; slightly soluble in ethanol; insoluble in hydrofluoric acid. Soluble in hot concentrated acids and alkali; slightly soluble in dilute alkali; insoluble in water. Forms soluble tetrahydrate in hot water; insoluble in cold water. Soluble in water; slightly soluble in concentrated sulfuric acid; insoluble in ethanol. Soluble in concentrated acids and alkali; insoluble in water. 7440–41–7 Beryllium; beryllium-9, beryllium element; beryllium metallic. 9.0122 1287 ..................... Grey, close-packed, hexagonal, brittle metal. Beryllium chloride. 7787–47–5 Beryllium dichloride .... 79.92 399.2 .................... Colorless to slightly 1.899 (25 yellow; °C). orthorhombic, deliques-cent crystal. Beryllium fluoride. 7787–49–7 (12323–05–6) Beryllium difluoride ..... 47.01 555 ....................... Colorless or white, amorphous, hygroscopic solid. 1.986 .......... Beryllium hydroxide. 13327–32–7 (1304–49–0) Beryllium dihydroxide 138 (decomposes to beryllium oxide). White, amorphous, amphoteric powder. 1.92 ............ Beryllium sulfate 13510–49–1 Sulfuric acid, beryllium salt (1:1). 105.07 2.443 .......... 7787–56–6 Sulfuric acid; beryllium salt (1:1), tetrahydrate. 177.14 550–600 °C (decomposes to beryllium oxide). 100 °C .................. Colorless crystal ......... Beryllium sulfate tetrhydrate. Colorless, tetragonal crystal. 1.713 .......... Beryllium Oxide 1304–56–9 Beryllia; beryllium monoxide thermalox TM. 25.01 2508–2547 °C ...... 1319–43–3 112.05 No data ................. Beryllium nitrate trihydrate. 7787–55–5 Carbonic acid, beryllium salt, mixture with beryllium hydroxide. Nitric acid, beryllium salt, trihydrate. Colorless to white, hexagonal crystal or amorphous, amphoteric powder. White powder ............. 3.01 (20 °C) Beryllium carbonate. asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Beryllium metal 187.97 60 ......................... Beryllium phosphate. 13598–15–7 104.99 No data ................. Phosphoric acid, beryllium salt (1:1). 43.3 White to faintly yellowish, deliquescent mass. Not reported ............... No data ...... Soluble in acids and alkali; insoluble in cold water; decomposes in hot water. 1.56 ............ Very soluble in water and ethanol. Not reported Slightly soluble in water. ATSDR, 2002. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00011 Fmt 4701 Sfmt 4700 E:\FR\FM\09JAR2.SGM 09JAR2 2480 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS The physical and chemical properties of beryllium were realized early in the 20th century, and it has since gained commercial importance in a wide range of industries. Beryllium is lightweight, hard, spark resistant, non-magnetic, and has a high melting point. It lends strength, electrical and thermal conductivity, and fatigue resistance to alloys (Document ID 0389, p. 1). Beryllium also has a high affinity for oxygen in air and water, which can cause a thin surface film of beryllium oxide to form on the bare metal, making it extremely resistant to corrosion. These properties make beryllium alloys highly suitable for defense, nuclear, and aerospace applications (Document ID 1342, pp. 45, 48). There are approximately 45 mineralized forms of beryllium. In the United States, the predominant mineral form mined commercially and refined into pure beryllium and beryllium alloys is bertrandite. Bertrandite, while containing less than 1% beryllium compared to 4% in beryl, is easily and efficiently processed into beryllium hydroxide (Document ID 1342, p. 48). Imported beryl is also converted into beryllium hydroxide as the United States has very little beryl that can be economically mined (Document ID 0616, p. 28). Industrial Uses Materion Corporation (Materion), formerly called Brush Wellman, is the only producer of primary beryllium in the United States. Beryllium is used in a variety of industries, including aerospace, defense, telecommunications, automotive, electronic, and medical specialty industries. Pure beryllium metal is used in a range of products such as X-ray transmission windows, nuclear reactor neutron reflectors, nuclear weapons, precision instruments, rocket propellants, mirrors, and computers (Document ID 0389, p. 1). Beryllium oxide is used in components such as ceramics, electrical insulators, microwave oven components, military vehicle armor, laser structural components, and automotive ignition systems (Document ID 1567, p. 147). Beryllium oxide ceramics are used to produce sensitive electronic items such as lasers and satellite heat sinks. Beryllium alloys, typically beryllium/ copper or beryllium/aluminum, are manufactured as high beryllium content or low beryllium content alloys. High content alloys contain greater than 30% beryllium. Low content alloys are typically less than 3% beryllium. Beryllium alloys are used in automotive electronics (e.g., electrical connectors VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 and relays and audio components), computer components, home appliance parts, dental appliances (e.g., crowns), bicycle frames, golf clubs, and other articles (Document ID 0389, p. 2; 1278, p. 182; 1280, pp. 1–2; 1281, pp. 816, 818). Electrical components and conductors are stamped and formed from beryllium alloys. Beryllium-copper alloys are used to make switches in automobiles (Document ID 1280, p. 2; 1281, p. 818) and connectors, relays, and switches in computers, radar, satellite, and telecommunications equipment (Document ID 1278, p. 183). Beryllium-aluminum alloys are used in the construction of aircraft, high resolution medical and industrial X-ray equipment, and mirrors to measure weather patterns (Document ID 1278, p. 183). High content and low content beryllium alloys are precision machined for military and aerospace applications. Some welding consumables are also manufactured using beryllium. Beryllium is also found as a trace metal in materials such as aluminum ore, abrasive blasting grit, and coal fly ash. Abrasive blasting grits such as coal slag and copper slag contain varying concentrations of beryllium, usually less than 0.1% by weight. The burning of bituminous and sub-bituminous coal for power generation causes the naturally occurring beryllium in coal to accumulate in the coal fly ash byproduct. Scrap and waste metal for smelting and refining may also contain beryllium. A detailed discussion of the industries and job tasks using beryllium is included in the Preliminary Economic Analysis (Document ID 0385, 0426). Occupational exposure to beryllium can occur from inhalation of dusts, fume, and mist. Beryllium dusts are created during operations where beryllium is cut, machined, crushed, ground, or otherwise mechanically sheared. Mists can also form during operations that use machining fluids. Beryllium fume can form while welding with or on beryllium components, and from hot processes such as those found in metal foundries. Occupational exposure to beryllium can also occur from skin, eye, and mucous membrane contact with beryllium particulate or solutions. V. Health Effects Overview of Findings and Supportive Comments As discussed in detail throughout this section (section V, Final Health Effects) and in Section VI, Final Quantitative Risk Assessment and Significance of Risk, OSHA finds, based upon the best available evidence in the record, that PO 00000 Frm 00012 Fmt 4701 Sfmt 4700 exposure to soluble and poorly soluble forms of beryllium are associated with several adverse health outcomes including sensitization, chronic beryllium disease, acute beryllium disease and lung cancer. The findings and conclusions in this section are consistent with those of the National Academies of Sciences (NAS), the World Health Organization’s International Agency for Research on Cancer (IARC), the U.S. Department of Health and Human Services’ (HHS) National Toxicology Program (NTP), the National Institute for Occupational Safety and Health (NIOSH), the Agency for Toxic Substance and Disease Registry (ATSDR), the European Commission on Health, Safety and Hygiene at Work, and many other organizations and individuals, as evidenced in the rulemaking record and further discussed below. Other scientific organizations and governments have recognized the strong body of scientific evidence pointing to the health risks of exposure to beryllium and have deemed it necessary to take action to reduce those risks. In 1999, the Department of Energy (DOE) updated its airborne beryllium concentration action level to 0.2 mg/m3 (Document ID 1323). In 2009, the American Conference of Governmental Industrial Hygienists (ACGIH), a professional society that has been recommending workplace exposure limits for six decades, revised its Threshold Limit Value (TLV) for beryllium and beryllium-containing compounds to 0.05 mg/m3 (Document ID 1304). In finalizing this Health Effects preamble section for the final rule, OSHA updated the preliminary Health Effects section published in the NPRM based on the stakeholder response received by the Agency during the public comment period and public hearing. OSHA also corrected several non-substantive errors that were published in the NPRM as well as those identified by NIOSH and Materion including several minor organizational changes made to sections V.D.3 and V.E.2.b (Document ID 1671, pp. 10–11; 1662, pp. 3–5). A section titled ‘‘Dermal Effects’’ was added to V.F.5 based on comments received by the American Thoracic Society (ATS), National Jewish Health, and the National Supplemental Screening Program (Document ID 1688, p. 2; 1664, p. 5; 1677, p. 3). Additionally, the Agency responded to relevant stakeholder comments contained in specific sections. In developing its review of the preliminary health effects from beryllium exposure and assessment of risk for the NPRM, OSHA prepared a E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations pair of draft documents, entitled ‘‘Occupation Exposure to Beryllium: Preliminary Health Effects Evaluation’’ (OSHA, 2010, Document ID 1271) and ‘‘Preliminary Beryllium Risk Assessment’’ (OSHA, 2010, Document ID 1272), that underwent independent scientific peer review in accordance with the Office of Management and Budget’s (OMB) Information Quality Bulletin for Peer Review. Eastern Research Group, Inc. (ERG), under contract with OSHA, selected five highly qualified experts with collective expertise in occupational epidemiology, occupational medicine, toxicology, immunology, industrial hygiene, and risk assessment methodology.2 The peer reviewers responded to 27 questions that covered the accuracy, completeness, and understandability of key studies and adverse health endpoints as well as questions regarding the adequacy, clarity and reasonableness of the risk analysis (ERG, 2010; Document ID 1270). Overall, the peer reviewers found that the OSHA draft health effects evaluation described the studies in sufficient detail, appropriately addressed their strengths and limitations, and drew scientifically sound conclusions. The peer reviewers were also supportive of the Agency’s preliminary risk assessment approach and the major conclusions. OSHA provided detailed responses to reviewer comments in its publication of the NPRM (80 FR 47646– 47652, 8/7/2015). Revisions to the draft health effects evaluation and preliminary risk assessment in response to the peer review comments were reflected in sections V and VI of the same publication (80 FR 47581–47646, 8/7/2015). OSHA received public comment and testimony on the Health Effects and Preliminary Risk Assessment sections published in the NPRM, which are discussed in this preamble. The Agency received a wide variety of stakeholder comments and testimony for this rulemaking on issues related to the health effects and risk of beryllium exposure. Statements supportive of OSHA’s Health Effects section include comments from NIOSH, the National Safety Council, the American Thoracic Society (ATS), Representative Robert C. ‘‘Bobby’’ Scott, Ranking Member of Committee on Education and the 2 The five selected peer reviewers were John Balmes, MD, University of California-San Francisco; Patrick Breysse, Ph.D., Johns Hopkins University, Bloomberg School of Public Health; Terry Gordon, Ph.D., New York University School of Medicine; Milton Rossman, MD, University of Pennsylvania School of Medicine; Kyle Steenland, Ph.D., Emory University, Rollins School of Public Health. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 Workforce, the U.S. House of Representatives, national labor organizations (American Federation of Labor—Congress of Industrial Organizations (AFL–CIO), North American Building Trades Unions (NABTU), United Steelworkers (USW), Public Citizen, ORCHSE, experts from National Jewish Health (Lisa Maier, MD and Margaret Mroz, MSPH), the American Association for Justice, and the National Council for Occupational Safety and Health. For example, NIOSH commented in its prepared written hearing testimony: OSHA has appropriately identified and documented all critical health effects associated with occupational exposure to beryllium and has appropriately focused its greatest attention on beryllium sensitization (BeS), chronic beryllium disease (CBD) and lung cancer . . . NIOSH went on to say that sensitization was more than a test result with little meaning. It relates to a condition in which the immune system is able to recognize and adversely react to beryllium in a way that increases the risk of developing CBD. NIOSH agrees with OSHA that sensitization is a functional change that is necessary in order to proceed along the pathogenesis to serious lung disease. The National Safety Council, a congressionally chartered nonprofit safety organization, also stated that ‘‘beryllium represents a serious health threat resulting from acute or chronic exposures.’’ (Document ID 1612, p. 5). Representative Robert C. ‘‘Bobby’’ Scott, Ranking Member of Committee on Education and the Workforce, the U.S. House of Representatives, submitted a statement recognizing that the evidence strongly supports the conclusion that sensitization can occur from exposure to soluble and poorly soluble forms of beryllium (Document ID 1672, p. 3). OSHA also received supporting statements from ATS and ORCHSE on the inclusion of beryllium sensitization, CBD, skin disease, and lung cancer as major adverse health effects associated with beryllium exposure (Document ID 1688, p. 7; 1691, p. 14). ATS specifically stated: . . . the ATS supports the inclusion of beryllium sensitization, CBD, and skin disease as the major adverse health effects associated with exposure to beryllium at or below 0.1 mg/m3 and acute beryllium disease at higher exposures based on the currently available epidemiologic and experimental studies. (Document ID 1688, p. 2) In addition, OSHA received supporting comments from labor organizations representing workers exposed to beryllium. The AFL–CIO, NABTU, and USW submitted comments supporting PO 00000 Frm 00013 Fmt 4701 Sfmt 4700 2481 the inclusion of beryllium sensitization, CBD and lung cancer as health effects from beryllium exposure (Document ID 1689, pp. 1, 3; 1679, p. 6; 1681, p. 19). AFL–CIO commented that ‘‘[t]he proposal is based on extensive scientific and medical evidence . . .’’ and ‘‘[b]eryllium exposure causes immunological sensitivity, CBD and lung cancer. These health effects are debilitating, progressive and irreversible. Workers are exposed to beryllium through respiratory, dermal and gastrointestinal routes.’’ (Document ID 1689, pp. 1, 3). Comments submitted by USW state that ‘‘OSHA has correctly identified, and comprehensively documented the material impairments of health resulting from beryllium exposure.’’ (Document ID 1681, p. 19). Dr. Lisa Maier and Ms. Margaret Mroz of National Jewish Health testified about the health effects of beryllium in support of the beryllium standard: We know that chronic beryllium disease often will not manifest clinically until irreversible lung scarring has occurred, often years after exposure, with a latency of 20 to 30 years as discussed yesterday. Much too late to make changes in the work place. We need to look for early markers of health effects, cast the net widely to identify cases of sensitization and disease, and use screening results in concert with exposure sampling to identify areas of increased risk that can be modified in the work place. (Document ID 1756, Tr. 102; 1806). American Association for Justice noted that: Unlike many toxins, there is no threshold below which no worker will become sensitized to beryllium. Worker sensitization to beryllium is a precursor to CBD, but not cancer. The symptoms of chronic beryllium disease (CBD) are part of a continuum of disease that is progressive in nature. Early recognition of and treatment for CBD may lead to a lessening of symptoms and may prevent the disease from progressing further. Symptoms of CBD may occur at exposure levels well below the proposed permissible exposure limit of .2 mg/m3 and even below the action level of .1 mg/m3. OSHA has clear authority to regulate health effects across the entire continuum of disease to protect workers. We applaud OSHA for proposing to do so. (Document ID 1683, pp. 1–2). National Committee for Occupational Safety and Health support OSHA findings of health effects due to beryllium exposure (1690, p. 1). Comments from Public Citizen also support OSHA findings: ‘‘Beryllium is toxic at extremely low levels and exposure can result in BeS, an immune response that eventually can lead to an autoimmune granulomatous lung disease known as CBD. BeS is a necessary prerequisite to the development of CBD, with OSHA’s E:\FR\FM\09JAR2.SGM 09JAR2 2482 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations NPRM citing studies showing that 31– 49 percent of all sensitized workers were diagnosed with CBD after clinical evaluations. Beryllium also is a recognized carcinogen that can cause lung cancer.’’ (Document ID 1670, p.2). In addition to the comments above and those noted throughout this Health Effects section, Materion submitted their correspondence to the National Academies (NAS) regarding the company’s assessment of the NAS beryllium studies and their correspondence to NIOSH regarding the Cummings 2009 study (Document 1662, Attachments) to OSHA. For the NAS study, Materion included a series of comments regarding studies included in the NAS report. OSHA has reviewed these comments and found that the comments submitted to the NAS critiquing their review of the health effects of beryllium were considered and incorporated where appropriate. For the NIOSH study Materion included comments regarding 2 cases of acute beryllium disease evaluated in a study published by Cummings et al., 2009. NIOSH also dealt with the comments from Materion as they found appropriate. However, none of the changes recommended by Materion to the NAS or NIOSH altered the overall findings or conclusions from either study. OSHA has taken the Materion comments into account in the review of these documents. OSHA found them not to be sufficient to discount either the findings of the NAS or NIOSH. Introduction Beryllium-associated health effects, including acute beryllium disease (ABD), beryllium sensitization (also referred to in this preamble as ‘‘sensitization’’), chronic beryllium disease (CBD), and lung cancer, can lead to a number of highly debilitating and life-altering conditions including pneumonitis, loss of lung capacity (reduction in pulmonary function leading to pulmonary dysfunction), loss of physical capacity associated with reduced lung capacity, systemic effects related to pulmonary dysfunction, and decreased life expectancy (NIOSH, 1972, Document ID 1324, 1325, 1326, 1327, 1328; NIOSH, 2011 (0544)). This Health Effects section presents information on beryllium and its compounds, the fate of beryllium in the body, research that relates to its toxic mechanisms of action, and the scientific literature on the adverse health effects associated with beryllium exposure, including ABD, sensitization, CBD, and lung cancer. OSHA considers CBD to be a progressive illness with a continuous spectrum of symptoms ranging from no symptomatology at its earliest stage following sensitization to mild symptoms such as a slight almost imperceptible shortness of breath, to loss of pulmonary function, debilitating lung disease, and, in many cases, death. This section also discusses the nature of these illnesses, the scientific evidence that they are causally associated with occupational exposure to beryllium, and the probable mechanisms of action with a more thorough review of the supporting studies. A. Beryllium and Beryllium Compounds—Particle Characterization 1. Particle Physical/Chemical Properties Beryllium has two oxidative states: Be(0) and Be(2+) (Agency for Toxic Substance and Disease Registry (ATSDR) 2002, Document ID 1371). It is likely that the Be(2+) state is the most biologically reactive and able to form a bond with peptides leading to it becoming antigenic (Snyder et al., 2003) as discussed in more detail in the Beryllium Sensitization section below. Beryllium has a high charge-to-radius ratio, forming various types of ionic bonds. In addition, beryllium has a strong tendency for covalent bond formation (e.g., it can form organometallic compounds such as Be(CH3)2 and many other complexes) (ATSDR, 2002, Document ID 1371; Greene et al., 1998 (1519)). However, it appears that few, if any, toxicity studies exist for the organometallic compounds. Additional physical/chemical properties, such as solubility, for beryllium compounds that may be important in their biological response are summarized in Table 1 below. Solubility (as discussed in biological fluids in Section V.A.2.A below) is an important factor in evaluating the biological response to beryllium. For comparative purposes, water solubility is used in Table 1. The International Chemical Safety Cards lists water solubility as a way to standardize solubility values among particles and fibers. The information contained within Table 1 was obtained from the International Chemical Safety Cards (ICSC) for beryllium metal (ICSC 0226, Document ID 0438), beryllium oxide (ICSC 1325, Document ID 0444), beryllium sulfate (ICSC 1351, Document ID 0443), beryllium nitrate (ICSC 1352, Document ID 0442), beryllium carbonate (ICSC 1353, Document ID 0441), beryllium chloride (ICSC 1354, Document ID 0440), beryllium fluoride (ICSC 1355, Document ID 0439) and from the hazardous substance data bank (HSDB) for beryllium hydroxide (CASRN: 13327–32–7), and beryllium phosphate (CASRN: 13598–15–7, Document ID 0533). Additional information on chemical and physical properties as well as industrial uses for beryllium can be found in this preamble at Section IV, Chemical Properties and Industrial Uses. TABLE 1—BERYLLIUM CHARACTERISTICS AND PROPERTIES Molecular mass Solubility in water at 20 °C Chemical formula Beryllium Metal ............. asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Compound name Be ................................... 9.0 Beryllium Beryllium Beryllium Beryllium Oxide ............. Carbonate ..... Sulfate ........... Nitrate ............ BeO ................................ Be2CO3(OH)/Be2CO5 H2 BeSO4 ............................ BeN2O6/Be(NO3)2 .......... 25.0 181.07 105.1 133.0 Combustible; Finely dispersed particles—Explosive. Not combustible or explosive ........................... Not combustible or explosive ........................... Not combustible or explosive ........................... Enhances combustion of other substances ..... Beryllium Hydroxide ...... Be(OH)2 ......................... 43.0 Not reported ..................................................... Beryllium Chloride ......... Beryllium Fluoride ......... Beryllium Phosphate ..... BeCl2 .............................. BeF2 ............................... Be3(PO4)2 ....................... 79.9 47.0 271.0 Not combustible or explosive ........................... Not combustible or explosive ........................... Not reported ..................................................... VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00014 Acute physical hazards Fmt 4701 Sfmt 4700 E:\FR\FM\09JAR2.SGM 09JAR2 None. Very sparingly soluble. None. Slightly soluble. Very soluble (1.66 × 106 mg/L). Slightly soluble 0.8 × 10 minus;4 mol/L (3.44 mg/L). Soluble. Very soluble. Soluble. Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Beryllium shows a high affinity for oxygen in air and water, resulting in a thin surface film of beryllium oxide on the bare metal. If the surface film is disturbed, it may become airborne and cause respiratory tract exposure or dermal exposure (also referred to as dermal contact). The physical properties of solubility, particle surface area, and particle size of some beryllium compounds are examined in more detail below. These properties have been evaluated in many toxicological studies. In particular, the properties related to the calcination (firing temperatures) and differences in crystal size and solubility are important aspects in their toxicological profile. asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2. Factors Affecting Potency and Effect of Beryllium Exposure The effect and potency of beryllium and its compounds, as for any toxicant, immunogen, or immunotoxicant, may be dependent upon the physical state in which they are presented to a host. For occupational airborne materials and surface contaminants, it is especially critical to understand those physical parameters in order to determine the extent of exposure to the respiratory tract and skin since these are generally the initial target organs for either route of exposure. For example, solubility has an important part in determining the toxicity and bioavailability of airborne materials as well. Respiratory tract retention and skin penetration are directly influenced by the solubility and reactivity of airborne material. Large particles may have less of an effect in the lung than smaller particles due to reduced potential to stay airborne, to be inhaled, or be deposited along the respiratory tract. In addition, once inhalation occurs particle size is critical in determining where the particle will deposit along the respiratory tract. These factors may be responsible, at least in part, for the process by which beryllium sensitization progresses to CBD in exposed workers. Other factors influencing beryllium-induced toxicity include the surface area of beryllium particles and their persistence in the lung. With respect to dermal contact or exposure, the physical characteristics of the particle are also important since they can influence skin absorption and bioavailability. This section addresses certain physical characteristics (i.e., solubility, particle size, particle surface area) that influence the toxicity of beryllium materials in occupational settings. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 a. Solubility Solubility has been shown to be an important determinant of the toxicity of airborne materials, influencing the deposition and persistence of inhaled particles in the respiratory tract, their bioavailability, and the likelihood of presentation to the immune system. A number of chemical agents, including metals that contact and penetrate the skin, are able to induce an immune response, such as sensitization (Boeniger, 2003, Document ID 1560; Mandervelt et al., 1997 (1451)). Similar to inhaled agents, the ability of materials to penetrate the skin is also influenced by solubility because dermal absorption may occur at a greater rate for soluble materials than poorly soluble materials (Kimber et al., 2011, Document ID 0534). In post-hearing comments, NIOSH explained: In biological systems, solubility is used to describe the rate at which a material will undergo chemical clearance and dissolve in a fluid (airway lining, inside phagolysomes) relative to the rate of mechanical clearance. For example, in the lung a ‘‘poorly soluble’’ material is one that dissolves at a rate slower than the rate of mechanical removal via the mucociliary escalator. Examples of poorly soluble forms of beryllium are beryllium silicates, beryllium oxide, and beryllium metal and alloys (Deubner et al. 2011; Huang et al. 2011; Duling et al. 2012; Stefaniak et al. 2006, 201la, 2012). A highly soluble material is one that dissolves at a rate faster than mechanical clearance. Examples of highly soluble forms of beryllium are beryllium fluoride, beryllium sulfate, and beryllium chloride. (Document ID 1660–A2, p. 9). This section reviews the relevant information regarding solubility, its importance in a biological matrix and its relevance to sensitization and beryllium lung disease. The weight of evidence presented below suggests that both soluble and poorly soluble forms of beryllium can induce a sensitization response and result in progression of lung disease. Beryllium salts, including the chloride (BeCl2), fluoride (BeF2), nitrate (Be(NO3)2), phosphate (Be3 (PO4)2), and sulfate (tetrahydrate) (BeSO4 · 4H2O) salts, are all water soluble. However, soluble beryllium salts can be converted to less soluble forms in the lung (Reeves and Vorwald, 1967, Document ID 1309). According to an EPA report, aqueous solutions of the soluble beryllium salts are acidic as a result of the formation of Be(OH2)4 2+, the tetrahydrate, which will react to form poorly soluble hydroxides or hydrated complexes within the general physiological range of pH values (between 5 and 8) (EPA, 1998, Document ID 1322). This may be PO 00000 Frm 00015 Fmt 4701 Sfmt 4700 2483 an important factor in the development of CBD since lower-soluble forms of beryllium have been shown to persist in the lung for longer periods of time and persistence in the lung may be needed in order for this disease to occur (NAS, 2008, Document ID 1355). Beryllium oxide (BeO), hydroxide (Be(OH)2), carbonate (Be2 CO3 (OH)2), and sulfate (anhydrous) (BeSO4) are either insoluble, slightly soluble, or considered to be sparingly or poorly soluble (almost insoluble or having an extremely slow rate of dissolution and most often referred to as poorly soluble in more recent literature). The solubility of beryllium oxide, which is prepared from beryllium hydroxide by calcining (heating to a high temperature without fusing in order to drive off volatile chemicals) at temperatures between 500 and 1,750 °C, has an inverse relationship with calcination temperature. Although the solubility of the low-fired crystals can be as much as 10 times that of the high-fired crystals, low-fired beryllium oxide is still only sparingly soluble (Delic, 1992, Document 1547). In a study that measured the dissolution kinetics (rate to dissolve) of beryllium compounds calcined at different temperatures, Hoover et al., compared beryllium metal to beryllium oxide particles and found them to have similar solubilities. This was attributed to a fine layer of beryllium oxide that coats the metal particles (Hoover et al., 1989, Document ID 1510). A study conducted by Deubner et al. (2011) determined ore materials to be more soluble than beryllium oxide at pH 7.2 but similar in solubility at pH 4.5. Beryllium hydroxide was more soluble than beryllium oxide at both pHs (Deubner et al., 2011, Document ID 0527). Investigators have also attempted to determine how biological fluids can dissolve beryllium materials. In two studies, poorly soluble beryllium, taken up by activated phagocytes, was shown to be ionized by myeloperoxidases (Leonard and Lauwerys, 1987, Document ID 1293; Lansdown, 1995 (1469)). The positive charge resulting from ionization enabled the beryllium to bind to receptors on the surface of cells such as lymphocytes or antigenpresenting cells which could make it more biologically active (NAS, 2008, Document ID 1355). In a study utilizing phagolysosomal-simulating fluid (PSF) with a pH of 4.5, both beryllium metal and beryllium oxide dissolved at a greater rate than that previously reported in water or SUF (simulant fluid) (Stefaniak et al., 2006, Document ID 1398), and the rate of dissolution of the multi-constituent (mixed) particles E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2484 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations was greater than that of the singleconstituent beryllium oxide powder. The authors speculated that copper in the particles rapidly dissolves, exposing the small inclusions of beryllium oxide, which have higher specific surface areas (SSA) and therefore dissolve at a higher rate. A follow-up study by the same investigational team (Duling et al., 2012, Document ID 0539) confirmed dissolution of beryllium oxide by PSF and determined the release rate was biphasic (initial rapid diffusion followed by a latter slower surface reaction-driven release). During the latter phase, dissolution half-times were 1,400 to 2,000 days. The authors speculated this indicated bertrandite was persistent in the lung (Duling et al., 2012, Document ID 0539). In a recent study investigating the dissolution and release of beryllium ions for 17 beryllium-containing materials (ore, hydroxide, metal, oxide, alloys, and processing intermediates) using artificial human airway epithelial lining fluid, Stefaniak et al. (2011) found release of beryllium ions within 7 days (beryl ore smelter dust). The authors calculated dissolution halftimes ranging from 30 days (reduction furnace material) to 74,000 days (hydroxide). Stefaniak et al. (2011) speculated that despite the rapid mechanical clearance, billions of beryllium ions could be released in the respiratory tract via dissolution in airway lining fluid (ALF). Under this scenario, beryllium-containing particles depositing in the respiratory tract dissolving in ALF could provide beryllium ions for absorption in the lung and interact with immune cells in the respiratory tract (Stefaniak et al., 2011, Document ID 0537). Huang et al. (2011) investigated the effect of simulated lung fluid (SLF) on dissolution and nanoparticle generation and beryllium-containing materials. Bertrandite-containing ore, berylcontaining ore, frit (a processing intermediate), beryllium hydroxide (a processing intermediate) and silica (used as a control), were equilibrated in SLF at two pH values (4.5 and 7.2) to reflect inter- and intra-cellular environments in the lung tissue. Concentrations of beryllium, aluminum, and silica ions increased linearly during the first 20 days in SLF, and rose more slowly thereafter, reaching equilibrium over time. The study also found nanoparticle formation (in the size range of 10–100 nm) for all materials (Huang et al., 2011, Document ID 0531). In an in vitro skin model, Sutton et al. (2003) demonstrated the dissolution of beryllium compounds (poorly soluble beryllium hydroxide, soluble beryllium VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 phosphate) in a simulated sweat fluid (Document ID 1393). This model showed beryllium can be dissolved in biological fluids and be available for cellular uptake in the skin. Duling et al. (2012) confirmed dissolution and release of ions from bertrandite ore in an artificial sweat model (pH 5.3 and pH 6.5) (Document ID 0539). In summary, studies have shown that soluble forms of beryllium readily dissolve into ionic components making them biologically available for dermal penetration and activation of immune cells (Stefaniak et al., 2011; Document ID 0537). Soluble forms can also be converted to less soluble forms in the lung (Reeves and Vorwald, 1967, Document ID 1309) making persistence in the lung a possibility and increasing the potential for development of CBD (see section V.D.2). Studies by Stefaniak et al. (2003, 2006, 2011, 2012) (Document ID 1347; 1398; 0537; 0469), Huang et al. (2011), Duling et al. (2012), and Deubner et al. (2011) have demonstrated poorly soluble forms can be readily dissolved in biological fluids such as sweat, lung fluid, and cellular fluids. The dissolution of beryllium ions into biological fluids increases the likelihood of beryllium presentation to immune cells, thus increasing the potential for sensitization through dermal contact or lung exposure (Document ID 0531; 0539; 0527) (see section V.D.1). OSHA received comments from the Non-Ferrous Founders’ Society (NFFS) contending that the scientific evidence does not support insoluble beryllium as a causative agent for sensitization and CBD (Document ID 1678, p. 6). The NFFS contends that insoluble beryllium is not carcinogenic or a sensitizer to humans, and argues that based on this information, OSHA should consider a bifurcated standard with separate PELs for soluble and poorly soluble beryllium and beryllium compounds and insoluble beryllium metallics (Document ID 1678, p. 7). As evidence supporting its conclusion, the NFFS cited a 2010 statement written by Dr. Christian Strupp commissioned by the beryllium industry (Document ID 1785, 1814), which reviewed selected studies to evaluate the toxic potential of beryllium metal and alloys (Document ID 1678, pp. 7). The Strupp and Furnes statement (2010) cited by the NFFS is the background material and basis of the Strupp (2011a and 2011b) studies in the docket (Document ID 1794; 1795). In response to Strupp 2011 (a and b), Aleks Stefaniak of NIOSH published a letter to the editor refuting some of the evidence presented by Strupp (2011a and b, Document ID 1794; 1795). The first PO 00000 Frm 00016 Fmt 4701 Sfmt 4700 study by Strupp (2011a) evaluated selected animal studies and concluded that beryllium metal was not a sensitizer. Stefaniak (2011) evaluated the validity of the Strupp (2011a) study of beryllium toxicity and noted numerous deficiencies, including deficiencies in the study design, improper administration of beryllium test compounds, and lack of proper controls (Document ID 1793). In addition, Strupp (2011a) omitted numerous key animal and epidemiological studies demonstrating the potential of poorly soluble beryllium and beryllium metal as a sensitizing agent. One such study, Tinkle et al. (2003), demonstrated that topical application of poorly soluble beryllium induced skin sensitization in mice (Document ID 1483). Comments from NIOSH and National Jewish Medical Center state that poorly soluble beryllium materials are capable of dissolving in sweat (Document ID 1755; 1756). After evaluating the scientific evidence from epidemiological and animal studies, OSHA finds, based on the best available evidence, that soluble and poorly soluble forms of beryllium and beryllium compounds are causative agents of sensitization and CBD. b. Particle Size The toxicity of beryllium as exemplified by beryllium oxide is dependent, in part, on the particle size, with smaller particles (less than 10 mm in diameter) able to penetrate beyond the larynx (Stefaniak et al., 2008, Document ID 1397). Most inhalation studies and occupational exposures involve quite small (less than 1–2 mm in diameter) beryllium oxide particles that can penetrate to the pulmonary regions of the lung (Stefaniak et al., 2008, Document ID 1397). In inhalation studies with beryllium ores, particle sizes are generally much larger, with deposition occurring in several areas throughout the respiratory tract for particles less than 10 mm in diameter. The temperature at which beryllium oxide is calcined influences its particle size, surface area, solubility, and ultimately its toxicity (Delic, 1992, Document ID 1547). Low-fired (500 °C) beryllium oxide is predominantly made up of poorly crystallized small particles, while higher firing temperatures (1000– 1750 °C) result in larger particle sizes (Delic, 1992, Document ID 1547). In order to determine the extent to which particle size plays a role in the toxicity of beryllium in occupational settings, several key studies are reviewed and detailed below. The findings on particle size have been related, where possible, to work process E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations and biologically relevant toxicity endpoints of either sensitization or CBD. Numerous studies have been conducted evaluating the particle size generated during basic industrial and machining operations. In a study by Cohen et al. (1983), a multi-cyclone sampler was utilized to measure the size mass distribution of the beryllium aerosol at a beryllium-copper alloy casting operation (Document ID 0540). Briefly, Cohen et al. (1983) found variable particle size generation based on the operations being sampled with particle size ranging from 3 to 16 mm. Hoover et al. (1990) also found variable particle sizes being generated across different operations (Document ID 1314). In general, Hoover et al. (1990) found that milling operations generated smaller particle sizes than sawing operations. Hoover et al. (1990) also found that beryllium metal generated higher concentrations than metal alloys. Martyny et al. (2000) characterized generation of particle size during precision beryllium machining processes (Document ID 1053). The study found that more than 50 percent of the beryllium machining particles collected in the breathing zone of machinists were less than 10 mm in aerodynamic diameter with 30 percent of those smaller particles being less than 0.6 mm. A study by Thorat et al. (2003) found similar results with ore mixing, crushing, powder production and machining ranging from 5.0 to 9.5 mm (Document ID 1389). Kent et al. (2001) measured airborne beryllium using sizeselective samplers in five furnace areas at a beryllium processing facility (Document ID 1361). A statistically significant linear trend was reported between the alveolar-deposited particle mass concentration and prevalence of CBD and sensitization in the furnace production areas. The study authors suggested that the concentration of alveolar-deposited particles (e.g., <3.5 mm) may be a better predictor of sensitization and CBD than the total mass concentration of airborne beryllium. A recent study by Virji et al. (2011) evaluated particle size distribution, chemistry, and solubility in areas with historically elevated risk of sensitization and CBD at a beryllium metal powder, beryllium oxide, and alloy production facility (Document ID 0465). The investigators observed that historically, exposure-response relationships have been inconsistent when using mass concentration to identify process-related risk, possibly due to incomplete particle characterization. Two separate exposure surveys were conducted in March 1999 and June–August 1999 using multi-stage VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 personal impactor samplers (to determine particle size distribution) and personal 37 mm closed face cassette (CFC) samplers, both located in workers’ breathing zones. One hundred and ninety eight time-weighted-average (TWA) personal impactor samples were analyzed for representative jobs and processes. A total of 4,026 CFC samples were collected over the collection period and analyzed for mass concentration, particle size, chemical content and solubility and compared to process areas with high risk of sensitization and CBD. The investigators found that total beryllium concentration varied greatly between workers and among process areas. Analysis of chemical form and solubility also revealed wide variability among process areas, but high risk process areas had exposures to both soluble and poorly soluble forms of beryllium. Analysis of particle size revealed most process areas had particles ranging from 5 to 14 mm mass median aerodynamic diameter (MMAD). Rank order correlating jobs to particle size showed high overall consistency (Spearman r = 0.84) but moderate correlation (Pearson r = 0.43). The investigators concluded that by considering more relevant aspects of exposure such as particle size distribution, chemical form, and solubility could potentially improve exposure assessments (Virji et al., 2011, Document ID 0465). To summarize, particle size influences deposition of beryllium particles in the lung, thereby influencing toxicity. Studies by Stefaniak et al. (2008) demonstrated that the majority of particles generated by beryllium processing operations were in the respirable range (less than 1–2 mm) (Document ID 1397). However, studies by Virji et al. (2011) (Document ID 0465), Cohen et al. (1983) (Document ID 0540) and Hoover et al. (1990) (Document ID 1314) showed that some operations could generate particle sizes ranging from 3 to 16 mm. c. Particle Surface Area Particle surface area has been postulated as an important metric for beryllium exposure. Several studies have demonstrated a relationship between the inflammatory and tumorigenic potential of ultrafine particles and their increased surface area (Driscoll, 1996, Document ID 1539; Miller, 1995 (0523); Oberdorster et al., 1996 (1434)). While the exact mechanism explaining how particle surface area influences its biological activity is not known, a greater particle surface area has been shown to increase inflammation, cytokine production, pro- PO 00000 Frm 00017 Fmt 4701 Sfmt 4700 2485 and anti-oxidant defenses and apoptosis, which has been shown to increase the tumorigenic potential of poorly-soluble particles (Elder et al., 2005, Document ID 1537; Carter et al., 2006 (1556); Refsnes et al., 2006 (1428)). Finch et al. (1988) found that beryllium oxide calcined at 500°C had 3.3 times greater specific surface area (SSA) than beryllium oxide calcined at 1000 °C, although there was no difference in size or structure of the particles as a function of calcining temperature (Document ID 1317). The beryllium-metal aerosol (airborne beryllium particles), although similar to the beryllium oxide aerosols in aerodynamic size, had an SSA about 30 percent that of the beryllium oxide calcined at 1000 °C. As discussed above, a later study by Delic (1992) found calcining temperatures had an effect on SSA as well as particle size (Document ID 1547). Several studies have investigated the lung toxicity of beryllium oxide calcined at different temperatures and generally have found that those calcined at lower temperatures have greater toxicity and effect than materials calcined at higher temperatures. This may be because beryllium oxide fired at the lower temperature has a loosely formed crystalline structure with greater specific surface area than the fused crystal structure of beryllium oxide fired at the higher temperature. For example, beryllium oxide calcined at 500 °C has been found to have stronger pathogenic effects than material calcined at 1,000 °C, as shown in several of the beagle dog, rat, mouse and guinea pig studies discussed in the section on CBD pathogenesis that follows (Finch et al., ´ 1988, Document ID 1495; Polak et al., 1968 (1431); Haley et al., 1989 (1366); Haley et al., 1992 (1365); Hall et al., 1950 (1494)). Finch et al. have also observed higher toxicity of beryllium oxide calcined at 500 °C, an observation they attribute to the greater surface area of beryllium particles calcined at the lower temperature (Finch et al., 1988, Document ID 1495). These authors found that the in vitro cytotoxicity to Chinese hamster ovary (CHO) cells and cultured lung epithelial cells of 500 °C beryllium oxide was greater than that of 1,000 °C beryllium oxide, which in turn was greater than that of beryllium metal. However, when toxicity was expressed in terms of particle surface area, the cytotoxicity of all three forms was similar. Similar results were observed in a study comparing the cytotoxicity of beryllium metal particles of various sizes to cultured rat alveolar macrophages, although specific surface E:\FR\FM\09JAR2.SGM 09JAR2 2486 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations in the rate of beryllium sensitization and CBD observed in some epidemiological studies. However, these properties have not been consistently characterized in most studies. 1. Exposure Via the Respiratory System The respiratory tract, especially the lung, is the primary target of inhalation exposure in workers. Disposition (deposition and clearance) of the particle or droplet along the respiratory tract influences the biological response to the toxicant (Schlesinger et al., 1997, Document ID 1290). Inhaled beryllium particles are deposited along the respiratory tract in a size dependent manner as described by the International Commission for radiological Protection (ICRP) model (Figure 1). In general, particles larger than 10 mm tend to deposit in the upper respiratory tract or nasal region and do not appreciably penetrate lower in the tracheobronchial or pulmonary regions (Figure 1). Particles less than 10 mm increasingly penetrate and deposit in the tracheobronchial and pulmonary regions with peak deposition in the pulmonary region occurring below 5 mm in particle diameter. The CBD pathology of concern is found in the pulmonary region. For particles below 1 mm in particle diameter, regional deposition changes dramatically. Ultrafine particles (generally considered to be 100 nm or lower) have a higher rate of deposition along the entire respiratory system (ICRP model, 1994). However, due to the hygroscopic nature of soluble particles, deposition patterns may be slightly different with an enhanced preference for the tracheobronchial or bronchial region of the lung. Nonetheless, soluble particles are still capable of depositing in the pulmonary region (Schlesinger et al., 1997, Document ID 1290). Particles depositing in the lung and along the entire respiratory tract may encounter immunologic cells or may move into the vascular system where they are free to leave the lung and can contribute to systemic beryllium concentrations. Beryllium is removed from the respiratory tract by various clearance mechanisms. Soluble beryllium is removed from the respiratory tract via absorption or chemical clearance (Schlesinger, 1997, Document ID 1290). Sparingly soluble or poorly soluble beryllium is removed via mechanical mechanisms and may remain in the VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 B. Kinetics and Metabolism of Beryllium Beryllium enters the body by inhalation, absorption through the skin, or ingestion. For occupational exposure, the airways and the skin are the primary routes of uptake. PO 00000 Frm 00018 Fmt 4701 Sfmt 4700 E:\FR\FM\09JAR2.SGM 09JAR2 ER09JA17.000</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS area did not entirely predict cytotoxicity (Finch et al., 1991, Document ID 1535). Stefaniak et al. (2003) investigated the particle structure and surface area of beryllium metal, beryllium oxide, and copper-beryllium alloy particles (Document ID 1347). Each of these samples was separated by aerodynamic size, and their chemical compositions and structures were determined with xray diffraction and transmission electron microscopy, respectively. In summary, beryllium-metal powder varied remarkably from beryllium oxide powder and alloy particles. The metal powder consisted of compact particles, in which SSA decreases with increasing surface diameter. In contrast, the alloys and oxides consisted of small primary particles in clusters, in which the SSA remains fairly constant with particle size. SSA for the metal powders varied based on production and manufacturing process with variations among samples as high as a factor of 37. Stefaniak et al. (2003) found lesser variation in SSA for the alloys or oxides (Document ID 1347). This is consistent with data from other studies summarized above showing that process may affect particle size and surface area. Particle size and/ or surface area may explain differences asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations lungs for many years after exposure, as has been observed in workers (Schepers, 1962, Document ID 1414). Clearance mechanisms for sparingly soluble or poorly soluble beryllium particles include: In the nasal passage, sneezing, mucociliary transport to the throat, or dissolution; in the tracheobronchial region, mucociliary transport, coughing, phagocytosis, or dissolution; in the pulmonary or alveolar region, phagocytosis, movement through the interstitium (translocation), or dissolution (Schlesinger, 1997, Document ID 1290). Mechanical clearance mechanisms may occur slowly in humans, which is consistent with some animal and human studies. For example, subjects in the Beryllium Case Registry (BCR), which identifies and tracks cases of acute and chronic beryllium diseases, had elevated concentrations of beryllium in lung tissue (e.g., 3.1 mg/g of dried lung tissue and 8.5 mg/g in a mediastinal node) more than 20 years after termination of short-term (generally between 2 and 5 years) occupational exposure to beryllium (Sprince et al., 1976, Document ID 1405). Due to physiological differences, clearance rates can vary between humans and animal species (Schlesinger, 1997, Document ID 1290; Miller, 2000 (1831)). However, clearance rates are also dependent upon the solubility, dose, and size of the inhaled beryllium compound. As reviewed in a WHO Report (2001) (Document ID 1282), more soluble beryllium compounds generally tend to be cleared from the respiratory system and absorbed into the bloodstream more rapidly than less soluble compounds (Van Cleave and Kaylor, 1955, Document ID 1287; Hart et al., 1980 (1493); Finch et al., 1990 (1318)). Animal inhalation or intratracheal instillation studies administering soluble beryllium salts demonstrated significant absorption of approximately 20 percent of the initial lung burden with rapid dissolution of soluble compounds from the lung (Delic, 1992, Document ID 1547). Absorption of poorly soluble compounds such as beryllium oxide administered via inhalation or intratracheal instillation was slower and less significant (Delic, 1992, Document ID 1547). Additional animal studies have demonstrated that clearance of poorly soluble beryllium compounds was biphasic: A more rapid initial mucociliary transport phase of particles from the tracheobronchial tree to the gastrointestinal tract, followed by a slower phase via translocation to tracheobronchial lymph nodes, alveolar VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 macrophages uptake, and beryllium particles dissolution (Camner et al., 1977, Document ID 1558; Sanders et al., 1978 (1485); Delic, 1992 (1547); WHO, 2001 (1282)). Confirmatory studies in rats have shown the half-time for the rapid phase to be between 1 and 60 days, while the slow phase ranged from 0.6 to 2.3 years. Studies have also shown that this process was influenced by the solubility of the beryllium compounds: Weeks/months for soluble compounds, months/years for poorly soluble compounds (Reeves and Vorwald, 1967; Reeves et al., 1967; Rhoads and Sanders, 1985). Studies in guinea pigs and rats indicate that 40–50 percent of the inhaled soluble beryllium salts are retained in the respiratory tract. Similar data could not be found for the poorly soluble beryllium compounds or metal administered by this exposure route. (WHO, 2001, Document ID 1282; ATSDR, 2002 (1371).) Evidence from animal studies suggests that greater amounts of beryllium deposited in the lung may result in slower clearance times. Acute inhalation studies performed in rats and mice using a single dose of inhaled aerosolized beryllium metal showed that exposure to beryllium metal can slow particle clearance and induce lung damage in rats and mice (Finch et al., 1998, Document ID 1317; Haley et al., 1990 (1314)). In another study, Finch et al. (1994) exposed male F344/N rats to beryllium metal at concentrations resulting in beryllium lung burdens of 1.8, 10, and 100 mg. These exposure levels resulted in an estimated clearance half-life ranging from 250 to 380 days for the three concentrations. For mice (Finch et al., 1998, Document ID 1317), lung clearance half-lives were 91–150 days (for 1.7– and 2.6–mg lung burden groups) or 360–400 days (for 12- and 34–mg lung burden groups). While the lower exposure groups were quite different for rats and mice, the highest groups were similar in clearance halflives for both species. Beryllium absorbed from the respiratory system was shown to distribute primarily to the tracheobronchial lymph nodes via the lymph system, bloodstream, and skeleton (Stokinger et al., 1953, Document ID 1277; Clary et al., 1975 (1320); Sanders et al., 1975 (1486); Finch et al., 1990 (1318)). Studies in rats demonstrated accumulation of beryllium chloride in the skeletal system following intraperitoneal injection (Crowley et al., 1949, Document ID 1551; Scott et al., 1950 (1413)) and accumulation of beryllium phosphate and beryllium sulfate in both non-parenchymal and parenchymal PO 00000 Frm 00019 Fmt 4701 Sfmt 4700 2487 cells of the liver after intravenous administration in rats (Skilleter and Price, 1978, Document ID 1408). Studies have also demonstrated intracellular accumulation of beryllium oxide in bone marrow throughout the skeletal system after intravenous administration to rabbits (Fodor, 1977, Document ID 1532; WHO, 2001 (1282)). Trace amounts of beryllium have also been shown to be distributed throughout the body (WHO, 2001, Document ID 1282). Systemic distribution of the more soluble compounds was shown to be greater than that of the poorly soluble compounds (Stokinger et al., 1953, Document ID 1277). Distribution has also been shown to be dose dependent in research using intravenous administration of beryllium in rats; small doses were preferentially taken up in the skeleton, while higher doses were initially distributed preferentially to the liver. Beryllium was later mobilized from the liver and transferred to the skeleton (IARC, 1993, Document ID 1342). A half-life of 450 days has been estimated for beryllium in the human skeleton (ICRP, 1960, Document ID 0248). This indicates the skeleton may serve as a repository for beryllium that may later be reabsorbed by the circulatory system, making beryllium available to the immunological system (WHO, 2001, Document ID 1282). In a recent review of the information, the American Conference of Governmental Industrial Hygienists (ACGIH, 2010) was not able to confirm the association between occupational inhalation and urinary excretion (Document ID 1662, p. 4). However, IARC (2012) noted that an accidental exposure of 25 people to beryllium dust reported in a study by Zorn et al. (1986) resulted in a mean serum concentration of 3.5 mg/L one day after the exposure, which decreased to 2.4 mg/L by day six. The IARC report concluded that beryllium from beryllium metal was biologically available for systemic distribution from the lung (IARC, 2012, Document ID 0650). Based on these studies, OSHA finds that the respiratory tract is a primary pathway for beryllium exposure. While particle size and surface area may contribute to the toxicity of beryllium, there is not sufficient evidence for OSHA to regulate based on size and surface area. However, the Agency finds that both soluble and poorly soluble forms of beryllium and beryllium compounds can contribute to exposure via the respiratory system and therefore can be causative agents of sensitization and CBD. E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2488 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 2. Dermal Exposure Beryllium compounds have been shown to cause skin irritation and sensitization in humans and certain animal models (Van Ordstrand et al., 1945, Document ID 1383; de Nardi et al., 1953 (1545); Nishimura, 1966 (1435); Epstein, 1991 (0526); Belman, 1969 (1562); Tinkle et al., 2003 (1483); Delic, 1992 (1547)). The Agency for Toxic Substances and Disease Registry (ATSDR) estimated that less than 0.1 percent of beryllium compounds are absorbed through the skin (ATSDR, 2002, Document ID 1371). However, even minute contact and absorption across the skin may directly elicit an immunological response resulting in sensitization (Deubner et al., 2001, Document ID 1543; Toledo et al., 2011 (0522)). Studies by Tinkle et al. (2003) showed that penetration of beryllium oxide particles was possible ex vivo for human intact skin at particle sizes of less than or equal to 1mm in diameter, as confirmed by scanning electron microscopy (Document ID 1483). Using confocal microscopy, Tinkle et al. demonstrated that surrogate fluorescent particles up to 1 mm in size could penetrate the mouse epidermis and dermis layers in a model designed to mimic the flexing and stretching of human skin in motion. Other poorly soluble particles, such as titanium dioxide, have been shown to penetrate normal human skin (Tan et al., 1996, Document ID 1391) suggesting the flexing and stretching motion as a plausible mechanism for dermal penetration of beryllium as well. As earlier summarized, poorly soluble forms of beryllium can be solubilized in biological fluids (e.g., sweat) making them available for absorption through intact skin (Sutton et al., 2003, Document ID 1393; Stefaniak et al., 2011 (0537) and 2014 (0517); Duling et al., 2012 (0539)). Although its precise role remains to be elucidated, there is evidence that dermal exposure can contribute to beryllium sensitization. As early as the 1940s it was recognized that dermatitis experienced by workers in primary beryllium production facilities was linked to exposures to the soluble beryllium salts. Except in cases of wound contamination, dermatitis was rare in workers whose exposures were restricted to exposure to poorly soluble beryllium-containing particles (Van Ordstrand et al., 1945, Document ID 1383). Further investigation by McCord in 1951 (Document ID 1448) indicated that direct skin contact with soluble beryllium compounds, but not beryllium hydroxide or beryllium metal, VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 caused dermal lesions (reddened, elevated, or fluid-filled lesions on exposed body surfaces) in susceptible persons. Curtis, in 1951, demonstrated skin sensitization to beryllium with patch testing using soluble and poorly soluble forms of beryllium in beryllium¨ naıve subjects. These subjects later developed granulomatous skin lesions with the classical delayed-type contact dermatitis following repeat challenge (Curtis, 1951, Document ID 1273). These lesions appeared after a latent period of 1–2 weeks, suggesting a delayed allergic reaction. The dermal reaction occurred more rapidly and in response to smaller amounts of beryllium in those individuals previously sensitized (Van Ordstrand et al., 1945, Document ID 1383). Contamination of cuts and scrapes with beryllium can result in the beryllium becoming embedded within the skin causing an ulcerating granuloma to develop in the skin (Epstein, 1991, Document ID 0526). Soluble and poorly soluble berylliumcompounds that penetrate the skin as a result of abrasions or cuts have been shown to result in chronic ulcerations and skin granulomas (Van Ordstrand et al., 1945, Document ID 1383; Lederer and Savage, 1954 (1467)). Beryllium absorption through bruises and cuts has been demonstrated as well (Rossman et al., 1991, Document ID 1332). In a study by Ivannikov et al. (1982) (as cited in Deubner et al., 2001, Document ID 0023), beryllium chloride was applied directly to three different types of wounded skin: abrasions (superficial skin trauma), cuts (skin and superficial muscle trauma), and penetration wounds (deep muscle trauma). According to Deubner et al. (2001) the percentage of the applied dose systemically absorbed during a 24hour exposure was significant, ranging from 7.8 percent to 11.4 percent for abrasions, from 18.3 percent to 22.9 percent for cuts, and from 34 percent to 38.8 percent for penetration wounds (Deubner et al., 2001, Document ID 0023). A study by Deubner et al. (2001) concluded that exposure across damaged skin can contribute as much systemic loading of beryllium as inhalation (Deubner et al., 2001, Document ID 1543). Deubner et al. (2001) estimated dermal loading (amount of particles penetrating into the skin) in workers as compared to inhalation exposure. Deubner’s calculations assumed a dermal loading rate for beryllium on skin of 0.43 mg/ cm2, based on the studies of loading on skin after workers cleaned up (Sanderson et al.., 1999, Document ID 0474), multiplied by a factor of 10 to PO 00000 Frm 00020 Fmt 4701 Sfmt 4700 approximate the workplace concentrations and the very low absorption rate of beryllium into skin of 0.001 percent (taken from EPA estimates). As cited by Deubner et al. (2001), the EPA noted that these calculations did not take into account absorption of soluble beryllium salts that might occur across nasal mucus membranes, which may result from contact between contaminated skin and the nose (Deubner et al., 2001, Document ID 1543). A study conducted by Day et al. (2007) evaluated the effectiveness of a dermal protection program implemented in a beryllium alloy facility in 2002 (Document ID 1548). The investigators evaluated levels of beryllium in air, on workplace surfaces, on cotton gloves worn over nitrile gloves, and on the necks and faces of workers over a six day period. The investigators found a strong correlation between air concentrations determined from sampling data and work surface contamination at this facility. The investigators also found measurable levels of beryllium on the skin of workers as a result of work processes even from workplace areas promoted as ‘‘visually clean’’ by the company housekeeping policy. Importantly, the investigators found that the beryllium contamination could be transferred from body region to body region (e.g., hand to face, neck to face) demonstrating the importance of dermal protection measures since sensitization can occur via dermal exposure as well as respiratory exposure. The investigators demonstrated multiple pathways of exposure which could lead to sensitization, increasing risk for developing CBD (Day et al., 2007, Document ID 1548). The same group of investigators extended their work on investigating multiple exposure pathways contributing to sensitization and CBD (Armstrong et al., 2014, Document ID 0502). The investigators evaluated four different beryllium manufacturing and processing facilities to assess the contribution of various exposure pathways on worker exposure. Airborne, work surface and cotton glove beryllium concentrations were evaluated. The investigators found strong correlations between air and surface concentrations; glove and surface concentrations; and air and glove concentrations at this facility. This work supports findings from Day et al. (2007) (Document ID 1548) demonstrating the importance of airborne beryllium concentrations to surface contamination and dermal exposure even at exposures below the E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations preceding OSHA PEL (Armstrong et al., 2014, Document ID 0502). OSHA received comments regarding the potential for dermal penetration of poorly soluble particles. Materion contended there is no supporting evidence to suggest that insoluble or poorly soluble particles penetrate skin and stated: asabaliauskas on DSK3SPTVN1PROD with PROPOSALS . . . we were aware that, a hypothesis has been put forth which suggests that being sensitized to beryllium either through a skin wound or via penetration of small beryllium particles through intact skin could result in sensitization to beryllium which upon receiving a subsequent inhalation dose of airborne beryllium could result in CBD. However, there are no studies that skin absorption of insoluble beryllium results in a systemic effect. The study by Curtis, the only human study looking for evidence of a beryllium sensitization reaction occurring through intact human skin, found no sensitization reaction using insoluble forms of beryllium. (Document ID 1661, p. 12). OSHA disagrees with the assertion that no studies are available indicating skin absorption of poorly soluble (insoluble) beryllium. In addition to the study cited by Materion (Curtis, 1951, Document ID 1273), OSHA reviewed numerous studies on the effects of beryllium solubility and dermal penetration (see section V. B. 2) including the Tinkle et al. (2003) (Document ID 1483) study which demonstrated the potential for poorly soluble beryllium particles to penetration skin using an ex vivo human skin model. While OSHA believes that these studies demonstrate poorly soluble beryllium can in fact penetrate intact skin, penetration through intact skin is not the only means for a person to become sensitized through skin contact with poorly soluble beryllium. During the informal hearing proceedings, NIOSH was asked about the role of poorly soluble beryllium in sensitizing workers to beryllium. Aleks Stefaniak, Ph.D., NIOSH, stated that ‘‘intact skin naturally has a barrier that prevents moisture from seeping out of the body and things from getting into the body. Very few people actually have fully intact skin, especially in an industrial environment. So the skin barrier is often compromised, which would make penetration of particles much easier.’’ (Document ID 1755, Tr. 36). As summarized above, poorly soluble beryllium particles have been shown to solubilize in biological fluids (e.g., sweat) releasing beryllium ions and making them available for absorption through intact skin (Sutton et al., 2003, Document ID 1393; Stefaniak et al. 2014 (0517); Duling et al., 2012 (0539)). Epidemiological studies evaluating the VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 effectiveness of PPE in facilities working with beryllium (with special emphasis on skin protection) have demonstrated a reduced rate of beryllium sensitization after implementation of this type of control (Day et al., 2007, Document ID 1548; Armstrong et al., 2014 (0502)). Dr. Stefaniak confirmed these findings: [T]he particles can actually dissolve when they’re in contact with liquids on the skin, like sweat. So we’ve actually done a series of studies, using a simulant of sweat, but it had characteristics that very closely matched human sweat. We see in those studies that, in fact, beryllium particles, beryllium oxide, beryllium metal, beryllium alloys, all these sort of what we call insoluble forms actually do in fact dissolve very readily in analog of human sweat. And once beryllium is in an ionic form on the skin, it’s actually very easy for it to cross the skin barrier. And that’s been shown many, many times in studies that beryllium ions can cross the skin and induce sensitization. (Document ID 1755, Tr. 36–37). Based on information from various studies demonstrating that poorly soluble particles have the potential to penetrate skin, that skin as a barrier is rarely intact (especially in industrial settings), and that beryllium particles can readily dissolve in sweat and other biological fluids, OSHA finds that dermal exposure to poorly soluble beryllium can cause sensitization (Rossman, et al., 1991, Document ID 1332; Deubner et al., 2001 (1542); Tinkle et al., 2003 (1483); Sutton et al., 2003 (1393); Stefaniak et al., 2011 (0537) and 2014 (0517); Duling et al., 2012 (0539); Document ID 1755, Tr. 36– 37). 3. Oral and Gastrointestinal Exposure According to the WHO Report (2001), gastrointestinal absorption of beryllium can occur by both the inhalation and oral routes of exposure (Document ID 1282). In the case of inhalation, a portion of the inhaled material is transported to the gastrointestinal tract by the mucociliary escalator or by the swallowing of the poorly soluble material deposited in the upper respiratory tract (Schlesinger, 1997, Document ID 1290). Animal studies have shown oral administration of beryllium compounds to result in very limited absorption and storage (as reviewed by U.S. EPA, 1998, Document ID 0661). Oral studies utilizing radiolabeled beryllium chloride in rats, mice, dogs, and monkeys, found the majority of the beryllium was unabsorbed by the gastrointestinal tract and was eliminated in the feces. In most studies, less than 1 percent of the administered radioactivity was absorbed into the bloodstream and subsequently excreted PO 00000 Frm 00021 Fmt 4701 Sfmt 4700 2489 in the urine (Crowley et al., 1949, Document ID 1551; Furchner et al., 1973 (1523); LeFevre and Joel, 1986 (1464)). Research using soluble beryllium sulfate has shown that as the compound passes into the intestine, which has a higher pH than the stomach (approximate pH of 6 to 8 for the intestine, pH of 1 or 2 for the stomach), the beryllium is precipitated as the poorly soluble phosphate and is not absorbed (Reeves, 1965, Document ID 1430; WHO, 2001 (1282)). Further studies suggested that beryllium absorbed into the bloodstream is primarily excreted via urine (Crowley et al., 1949, Document ID 1551; Furchner et al., 1973 (1523); Scott et al., 1950 (1413); Stiefel et al., 1980 (1288)). Unabsorbed beryllium is primarily excreted via the fecal route (Finch et al., 1990, Document ID 1318; Hart et al., 1980 (1493)). Parenteral administration in a variety of animal species demonstrated that beryllium was eliminated at much higher percentages in the urine than in the feces (Crowley et al., 1949, Document ID 1551; Furchner et al., 1973 (1523); Scott et al., 1950 (1413)). A study using percutaneous administration of soluble beryllium nitrate in rats demonstrated that more than 90 percent of the beryllium in the bloodstream was eliminated via urine (WHO, 2001, Document ID 1282). Greater than 99 percent of ingested beryllium chloride was excreted in the feces (Mullen et al., 1972, Document ID 1442). A study of mice, rats, monkeys, and dogs given intravenously dosed with beryllium chloride determined elimination halftimes to be between 890 to 1,770 days (2.4 to 4.8 years) (Furchner et al., 1973, Document ID 1523). In a comparison study, baboons and rats were instilled intratracheally with beryllium metal. Mean daily excretion rates were calculated as 4.6 × 10¥5 percent of the dose administered in baboons and 3.1 × 10¥5 percent in rats (Andre et al., 1987, Document ID 0351). In summary, animal studies evaluating the absorption, distribution and excretion of beryllium compounds found that, in general, poorly soluble beryllium compounds were not readily absorbed in the gastrointestinal tract and was mostly excreted via feces (Hart et al., 1980, Document ID 1493; Finch et al., 1990 (1318); Mullen et al., 1972 (1442)). Soluble beryllium compounds orally administered were partially cleared via urine; however, some soluble forms are precipitated in the gastrointestinal tract due to different pH values between the intestine and the stomach (Reeves, 1965, Document ID 1430). Intravenous administration of E:\FR\FM\09JAR2.SGM 09JAR2 2490 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations poorly soluble beryllium compounds were distributed systemically through the lymphatics and stored in the skeleton for potential later release (Furchner et al., 1973, Document ID 1523). Therefore, while intravenous administration can lead to uptake, OSHA does not consider oral and gastrointestinal exposure to be a major route for the uptake of beryllium because poorly soluble beryllium is not readily absorbed in the gastrointestinal tract. asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 4. Metabolism Beryllium and its compounds may not be metabolized or biotransformed, but soluble beryllium salts may be converted to less soluble forms in the lung (Reeves and Vorwald, 1967, Document ID 1309). As stated earlier, solubility is an important factor for persistence of beryllium in the lung. Poorly soluble phagocytized beryllium particles can be dissolved into an ionic form by an acidic cellular environment and by myeloperoxidases or macrophage phagolysomal fluids (Leonard and Lauwerys, 1987, Document ID 1293; Lansdown, 1995 (1469); WHO, 2001 (1282); Stefaniak et al., 2006 (1398)). The positive charge of the beryllium ion could potentially make it more biologically reactive because it may allow the beryllium to bind to a peptide or protein and be presented to the T cell receptor or antigen-presenting cell (Fontenot, 2000, Document ID 1531). 5. Conclusion For Particle Characterization and Kinetics and Metabolism of Beryllium The forms and concentrations of beryllium across the workplace vary substantially based upon location, process, production and work task. Many factors may influence the potency of beryllium including concentration, composition, structure, size, solubility and surface area of the particle. Studies have demonstrated that beryllium sensitization can occur via the skin or inhalation from soluble or poorly soluble beryllium particles. Beryllium must be presented to a cell in a soluble form for activation of the immune system (NAS, 2008, Document ID 1355), and this will be discussed in more detail in the section to follow. Poorly soluble beryllium can be solubilized via intracellular fluid, lung fluid and sweat to release beryllium ions (Sutton et al., 2003, Document ID 1393; Stefaniak et al., 2011(0537) and 2014(0517)). For beryllium to persist in the lung it needs to be poorly soluble. However, soluble beryllium has been shown to precipitate in the lung to form VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 poorly soluble beryllium (Reeves and Vorwald, 1967, Document ID 1309). Some animal and epidemiological studies suggest that the form of beryllium may affect the rate of development of BeS and CBD. Beryllium in an inhalable form (either as soluble or poorly soluble particles or mist) can deposit in the respiratory tract and interact with immune cells located along the entire respiratory tract (Scheslinger, 1997, Document ID 1290). Interaction and presentation of beryllium (either in ionic or particulate form) is discussed further in Section V.D.1. C. Acute Beryllium Diseases Acute beryllium disease (ABD) is a relatively rapid onset inflammatory reaction resulting from breathing high airborne concentrations of beryllium. It was first reported in workers extracting beryllium oxide (Van Ordstrand et al., 1943, Document ID 1383) and later reported by Eisenbud (1948) and Aub (1949) (as cited in Document ID 1662, p. 2). Since the Atomic Energy Commission’s adoption of a maximum permissible peak occupational exposure limit of 25 mg/m3 for beryllium beginning in 1949, cases of ABD have been much rarer. According to the World Health Organization (2001), ABD is generally associated with exposure to beryllium levels at or above 100 mg/m3 and may be fatal in 10 percent of cases (Document ID 1282). However, cases of ABD have been reported with beryllium exposures below 100 mg/m3 (Cummings et al., 2009, Document ID 1550). The Cummings et al. (2009) study examined two cases of workers exposed to soluble and poorly soluble beryllium below 100 mg/m3 using data obtained from company records. Cummings et al. (2009) also examined the possibility that an immune-mediated mechanism may exist for ABD as well as CBD and that ABD and CBD are on a pathological continuum since some patients would later develop CBD after recovering from ABD (ACCP, 1965, Document ID 1286; Hall, 1950 (1494); Cummings et al., 2009 (1550)). ABD involves an inflammatory or immune-mediated reaction that may include the entire respiratory tract, involving the nasal passages, pharynx, bronchial airways and alveoli. Other tissues including skin and conjunctivae may be affected as well. The clinical features of ABD include a nonproductive cough, chest pain, cyanosis, shortness of breath, low-grade fever and a sharp drop in functional parameters of the lungs. Pathological features of ABD include edematous distension, round cell infiltration of the PO 00000 Frm 00022 Fmt 4701 Sfmt 4700 septa, proteinaceous materials, and desquamated alveolar cells in the lung. Monocytes, lymphocytes and plasma cells within the alveoli are also characteristic of the acute disease process (Freiman and Hardy, 1970, Document ID 1527). Two types of acute beryllium disease have been characterized in the literature: A rapid and severe course of acute fulminating pneumonitis generally developing within 48 to 72 hours of a massive exposure, and a second form that takes several days to develop from exposure to lower concentrations of beryllium (still above the levels set by regulatory and guidance agencies) (Hall, 1950, Document ID 1494; DeNardi et al., 1953 (1545); Newman and Kreiss, 1992 (1440)). Evidence of a dose-response relationship to the concentration of beryllium is limited (Eisenbud et al., 1948, Document ID 0490; Stokinger, 1950 (1484); Sterner and Eisenbud, 1951 (1396)). Recovery from either type of ABD is generally complete after a period of several weeks or months (DeNardi et al., 1953, Document ID 1545). However, deaths have been reported in more severe cases (Freiman and Hardy, 1970, Document ID 1527). According to the BCR, in the United States, approximately 17 percent of ABD patients developed CBD (BCR, 2010). The majority of ABD cases occurred between 1932 and 1970 (Eisenbud, 1982, Document ID 1254; Middleton, 1998 (1445)). ABD is extremely rare in the workplace today due to more stringent exposure controls implemented following occupational and environmental standards set in 1970–1971 (ACGIH, 1971, Document ID 0543; ANSI, 1970 (1303); OSHA, 1971, see 39 FR 23513; EPA, 1973 (38 FR 8820)). Materion submitted post-hearing comments regarding ABD (Document ID 1662, p. 2; Attachment A, p. 1). Materion contended that only soluble forms of beryllium have been demonstrated to produce ABD at exposures above 100 mg/m3 because cases of ABD were only found in workers exposed to beryllium during beryllium extraction processes which always contain soluble beryllium (Document ID 1662, pp. 2, 3). Citing communications between Marc Kolanz (Materion) and Dr. Eisenbud, Materion noted that when Mr. Kolanz asked Dr. Eisenbud if he ever ‘‘observed an acute reaction to beryllium that did not involve the beryllium extraction process and exposure to soluble salts of beryllium,’’ Dr. Eisenbud responded that ‘‘he did not know of a case that was not either directly associated with E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations exposure to soluble compounds or where the work task or operation would have been free from exposure to soluble beryllium compounds from adjacent operations.’’ (Document ID 1662, p. 3). OSHA acknowledges that workers with ABD may have been exposed to a combination of soluble and poorly soluble beryllium. This alone, however, cannot completely exclude poorly soluble beryllium as a causative or contributing agent of ABD. The WHO (2001) has concluded that both ABD and CBD results from exposure to both soluble and insoluble forms of beryllium. In addition, the European Commission has classified poorly soluble beryllium and beryllium oxide as acute toxicity categories 2 and 3 (Document ID 1669, p. 2). Additional comments from Materion regarding ABD criticized the study by Cummings et al. (2009), stating that it ‘‘incompletely explained the source of the workers exposures, which resulted in the use of a misleading statement that, ‘None of the measured air samples exceeded 100 mg/m3 and most were less than 10 mg/m3.’ ’’ (Document ID 1662, p. 3). Materion argues that the Cummings et al. study is not valid because workers in that study ‘‘had been involved with high exposures to soluble beryllium salts caused by upsets during the chemical extraction of beryllium.’’ (Document ID 1662, pp. 3–4). In response, NIOSH written testimony explained that the measurements in the study ‘‘were collected in areas most likely to be sources of high beryllium exposures in processes, but were not personal breathing zone measurements in the usual sense.’’ (Document ID 1725, p. 3). ‘‘Cummings et al. (2009) made every effort to overestimate (rather than underestimate) exposure,’’ including ‘‘select[ing] the highest time weighted average (TWA) value from the work areas or activities associated with a worker’s job and tenure’’ and not adjusting for ‘‘potential protective effects of respirators, which were reportedly used for some tasks and during workplace events potentially associated with uncontrolled higher exposures.’’ Even so, ‘‘the available TWA data did not exceed 100 mg/m3 even on days with evacuations.’’ (Document ID 1725, p. 3). Furthermore, OSHA notes that, the discussion in Cummings et al. (2009) stated, ‘‘we cannot rule out the possibility of unusually elevated airborne concentrations of beryllium that went unmeasured.’’ (Document ID 1550, p. 5). In response to Materion’s contention that OSHA should eliminate the section on ABD because this disease is no longer a concern today (Document ID VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 1661, p. 2), OSHA notes that the discussion on ABD is included for thoroughness in review of the health effects caused by exposure to beryllium. As indicated above, the Agency acknowledges that ABD is extremely rare, but not non-existent, in workplaces today due to the more stringent exposure controls implemented since OSHA’s inception (OSHA, 1971, see 39 FR 23513). D. Beryllium Sensitization and Chronic Beryllium Disease This section provides an overview of the immunology and pathogenesis of BeS and CBD, with particular attention to the role of skin sensitization, particle size, beryllium compound solubility, and genetic variability in individuals’ susceptibility to beryllium sensitization and CBD. Chronic beryllium disease (CBD), formerly known as ‘‘berylliosis’’ or ‘‘chronic berylliosis,’’ is a granulomatous disorder primarily affecting the lungs. CBD was first described in the literature by Hardy and Tabershaw (1946) as a chronic granulomatous pneumonitis (Document ID 1516). It was proposed as early as 1951 that CBD could be a chronic disease resulting from sensitization to beryllium (Sterner and Eisenbud, 1951, Document ID 1396; Curtis, 1959 (1273); Nishimura, 1966 (1435)). However, for a time, there remained some controversy as to whether CBD was a delayed-onset hypersensitivity disease or a toxicantinduced disease (NAS, 2008, Document ID 1355). Wide acceptance of CBD as a hypersensitivity lung disease did not occur until bronchoscopy studies and bronchoalveolar lavage (BAL) studies were performed demonstrating that BAL cells from CBD patients responded to beryllium challenge (Epstein et al., 1982, Document ID 0436; Rossman et al., 1988 (0476); Saltini et al., 1989 (1351)). CBD shares many clinical and histopathological features with pulmonary sarcoidosis, a granulomatous lung disease of unknown etiology. These similarities include such debilitating effects as airway obstruction, diminishment of physical capacity associated with reduced lung function, possible depression associated with decreased physical capacity, and decreased life expectancy. Without appropriate information, CBD may be difficult to distinguish from sarcoidosis. It is estimated that up to 6 percent of all patients diagnosed with sarcoidosis may actually have CBD (Fireman et al., 2003, Document ID 1533; Rossman and Kreider, 2003 (1423)). Among patients diagnosed with sarcoidosis in which PO 00000 Frm 00023 Fmt 4701 Sfmt 4700 2491 beryllium exposure can be confirmed, as many as 40 percent may actually have CBD (Muller-Quernheim et al., 2005, Document ID 1262; Cherry et al., 2015 (0463)). Clinical signs and symptoms of CBD may include, but are not limited to, a simple cough, shortness of breath or dypsnea, fever, weight loss or anorexia, skin lesions, clubbing of fingers, cyanosis, night sweats, cor pulmonale, tachycardia, edema, chest pain and arthralgia. Changes or loss of pulmonary function also occur with CBD such as decrease in vital capacity, reduced diffusing capacity, and restrictive breathing patterns. The signs and symptoms of CBD constitute a continuum of symptoms that are progressive in nature with no clear demarcation between any stages in the disease (Pappas and Newman, 1993, Document ID 1433; Rossman, 1996 (1283); NAS, 2008 (1355)). These symptoms are consistent with the CBD symptoms described during the public hearing by Dr. Kristin Cummings of NIOSH and Dr. Lisa Maier of National Jewish Health (Document ID 1755, Tr. 70–71; 1756, Tr. 105–107). Besides these listed symptoms from CBD patients, there have been reported cases of CBD that remained asymptomatic (Pappas and Newman, 1993, Document ID 1433; MullerQuerheim, 2005 (1262); NAS, 2008 (1355); NIOSH, 2011 (0544)). Asymptomatic CBD refers to those patients that have physiological changes upon clinical evaluation yet exhibit no outward signs or symptoms (also referred to as subclinical CBD). Unlike ABD, CBD can result from inhalation exposure to beryllium at levels below the preceding OSHA PEL, can take months to years after initial beryllium exposure before signs and symptoms of CBD occur (Newman 1996, Document ID 1283, 2005 (1437) and 2007 (1335); Henneberger, 2001 (1313); Seidler et al., 2012 (0457); Schuler et al., 2012 (0473)), and may continue to progress following removal from beryllium exposure (Newman, 2005, Document ID 1437; Sawyer et al., 2005 (1415); Seidler et al., 2012 (0457)). Patients with CBD can progress to a chronic obstructive lung disorder resulting in loss of quality of life and the potential for decreased life expectancy (Rossman, et al., 1996, Document ID 1425; Newman et al., 2005 (1437)). The National Academy of Sciences (NAS) report (2008) noted the general lack of published studies on progression of CBD from an early asymptomatic stage to functionally significant lung disease (NAS, 2008, Document ID 1355). The report emphasized that risk factors and E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2492 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations time course for clinical disease have not been fully delineated. However, for people now under surveillance, clinical progression from sensitization and early pathological lesions (i.e., granulomatous inflammation) prior to onset of symptoms to symptomatic disease appears to be slow, although more follow-up is needed (NAS, 2008, Document ID 1355). A study by Newman (1996) emphasized the need for prospective studies to determine the natural history and time course from beryllium sensitization and asymptomatic CBD to full-blown disease (Newman, 1996, Document ID 1283). Drawing from his own clinical experience, Dr. Newman was able to identify the sequence of events for those with symptomatic disease as follows: Initial determination of beryllium sensitization; gradual emergence of chronic inflammation of the lung; pathologic alterations with measurable physiologic changes (e.g., pulmonary function and gas exchange); progression to a more severe lung disease (with extrapulmonary effects such as clubbing and cor pulmonale in some cases); and finally death in some cases (reported between 5.8 to 38 percent) (NAS, 2008, Document ID 1355; Newman, 1996 (1283)). In contrast to some occupationally related lung diseases, the early detection of chronic beryllium disease may be useful since treatment of this condition can lead not only to regression of the signs and symptoms, but also may prevent further progression of the disease in certain individuals (Marchand-Adam et al., 2008, Document ID 0370; NAS, 2008 (1355)). The management of CBD is based on the hypothesis that suppression of the hypersensitivity reaction (i.e., granulomatous process) will prevent the development of fibrosis. However, once fibrosis has developed, therapy cannot reverse the damage. A study by Pappas and Newman (1993) observed that patients with known prior beryllium exposure and identified as confirmed positive for beryllium sensitization through the beryllium lymphocyte proliferation test (BeLPT) screening were evaluated for physiological changes in the lung. Pappas and Newman categorized the patients as being either ‘‘clinically identified,’’ meaning they had known physiological abnormalities (e.g., abnormal chest radiogram, respiratory symptoms) or ‘‘surveillance-identified,’’ meaning they had BeLPT positive results with no reported symptoms, to differentiate state of disease progression. Physiological changes were identified by three factors: (1) Reduced tolerance VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 to exercise; (2) abnormal pulmonary function test during exercise; (3) abnormal arterial blood gases during exercise. Of the patients identified as ‘‘surveillance identified,’’ 52 percent had abnormal exercise physiologies while 87 percent of the ‘‘clinically identified’’ patients had abnormal physiologies (Pappas and Newman, 1993, Document ID 1433). During the public hearing, Dr. Newman noted that: . . . one of the sometimes overlooked points is that in that study . . . the majority of people who were found to have early stage disease already had physiologic impairment. So before the x-ray or the CAT scan could find it the BeLPT had picked it up, we had made a diagnosis of pathology in those people, and their lung function tests—their measures of gas exchange, were already abnormal. Which put them on our watch list for early and more frequent monitoring so that we could observe their worsening and then jump in with treatment at the earliest appropriate time. So there is advantage of having that early diagnosis in terms of the appropriate tracking and appropriate timing of treatment. (Document ID 1756, p. 112). OSHA was unable to find any controlled studies to determine the optimal treatment for CBD (see Rossman, 1996, Document ID 1425; NAS 2008 (1355); Sood, 2009 (0456)), and none were added to the record during the public comment period. Management of CBD is generally modeled after sarcoidosis treatment. Oral corticosteroid treatment can be initiated in patients with evidence of disease (either by bronchoscopy or other diagnostic measures before progression of disease or after clinical signs of pulmonary deterioration occur). This includes treatment with other antiinflammatory agents (NAS, 2008. Document ID 1355; Maier et al., 2012 (0461); Salvator et al., 2013 (0459)) as well. It should be noted, however, that treatment with corticosteroids has sideeffects of their own that need to be measured against the possibility of progression of disease (Gibson et al., 1996, Document ID 1521; Zaki et al., 1987 (1374)). Alternative treatments such as azathioprine and infliximab, while successful at treating symptoms of CBD, have been demonstrated to have side effects as well (Pallavicino et al., 2013, Document ID 0630; Freeman, 2012 (0655)). 1. Development of Beryllium Sensitization Sensitization to beryllium is an essential step for worker development of CBD. Sensitization to beryllium can result from inhalation exposure to beryllium (Newman et al., 2005, Document ID 1437; NAS, 2008 (1355)), as well as from skin exposure to PO 00000 Frm 00024 Fmt 4701 Sfmt 4700 beryllium (Curtis, 1951, Document ID 1273; Newman et al., 1996 (1439); Tinkle et al., 2003 (1483); Rossman, et al., 1991, (1332); Deubner et al., 2001 (1542); Tinkle et al., 2003 (1483); Sutton et al., 2003 (1393); Stefaniak et al., 2011 (0537) and 2014 (0517); Duling et al., 2012 (0539); Document ID 1755, Tr. 36– 37). Representative Robert C. ‘‘Bobby’’ Scott, Ranking Member of Committee on Education and the Workforce, the U.S. House of Representatives, provided comments to the record stating that ‘‘studies have demonstrated that beryllium sensitization, an indicator of immune response to beryllium, can occur from both soluble and poorly soluble beryllium particles.’’ (Document ID 1672, p. 3). Sensitization is currently detected using the BeLPT (a laboratory blood test) described in section V.D.5. Although there may be no clinical symptoms associated with beryllium sensitization, a sensitized worker’s immune system has been activated to react to beryllium exposures such that subsequent exposure to beryllium can progress to serious lung disease (Kreiss et al., 1996, Document ID 1477; Newman et al., 1996 (1439); Kreiss et al., 1997 (1360); Kelleher et al., 2001 (1363); Rossman, 2001 (1424); Newman et al., 2005 (1437)). Since the pathogenesis of CBD involves a beryllium-specific, cell-mediated immune response, CBD cannot occur in the absence of sensitization (NAS, 2008, Document ID 1355). The expert peer reviewers agreed that the scientific evidence supported sensitization as a necessary condition and an early endpoint in the development of CBD (ERG, 2010, Document ID 1270, pp. 19– 21). Dr. John Balmes remarked that the ‘‘scientific evidence reviewed in the [Health Effects] document supports consideration of beryllium sensitization as an early endpoint and as a necessary condition in the development of CBD.’’ Dr. Patrick Breysee stated that ‘‘there is strong scientific consensus that sensitization is a key first step in the progression of CBD.’’ Dr. Terry Gordon stated that ‘‘[a]s discussed in the draft [Health Effects] document, beryllium sensitization should be considered as an early endpoint in the development of CBD.’’ Finally, Dr. Milton Rossman agreed ‘‘that sensitization is necessary for someone to develop CBD and should be considered a condition/risk factor for the development of CBD.’’ Various factors, including genetic susceptibility, have been shown to influence risk of developing sensitization and CBD (NAS 2008, Document ID 1355) and will be discussed later in this section. E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 2493 This suggests the possibility that relatively brief, short-term beryllium exposures may be sufficient to trigger the immune hypersensitivity reaction. Several studies (Newman et al., 2001, Document ID 1354; Henneberger et al., 2001 (1313); Rossman, 2001 (1424); Schuler et al., 2005 (0919); Donovan et al., 2007 (0491), Schuler et al., 2012 (0473)) have detected a higher prevalence of sensitization among workers with less than one year of employment compared to some crosssectional studies which, due to lack of information regarding initial exposure, cannot determine time of sensitization (Kreiss et al., 1996, Document ID 1477; Kreiss et al., 1997 (1360)). While only very limited evidence has described humoral changes in certain patients with CBD (Cianciara et al., 1980, Document ID 1553), clear evidence exists for an immune cell-mediated response, specifically the T-cell (NAS, 2008, Document ID 1355). Figure 2 delineates the major steps required for progression from beryllium contact to sensitization to CBD. Beryllium presentation to the immune system is believed to occur either by direct presentation or by antigen processing. It has been postulated that beryllium must be presented to the immune system in an ionic form for cell-mediated immune activation to occur (Kreiss et al., 2007, Document ID 1475). Some soluble forms of beryllium are readily presented, since the soluble beryllium form disassociates into its ionic components. However, for poorly soluble forms, dissolution may need to occur. A study by Harmsen et al. (1986) suggested that a sufficient rate of dissolution of small amounts of poorly soluble beryllium compounds might occur in the lungs to allow persistent VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00025 Fmt 4701 Sfmt 4700 E:\FR\FM\09JAR2.SGM 09JAR2 ER09JA17.001</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS While various mechanisms or pathways may exist for beryllium sensitization, the most plausible mechanisms supported by the best available and most current science are discussed below. Sensitization occurs via the formation of a beryllium-protein complex (an antigen) that causes an immunological response. In some instances, onset of sensitization has been observed in individuals exposed to beryllium for only a few months (Kelleher et al., 2001, Document ID 1363; Henneberger et al., 2001 (1313)). 2494 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS low-level beryllium presentation to the immune system (Document ID 1257). Stefaniak et al. (2006 and 2012) reported that poorly soluble beryllium particles phagocytized by macrophages were dissolved in phagolysomal fluid (Stefaniak et al., 2006, Document ID 1398; Stefaniak et al., 2012 (0469)) and that the dissolution rate stimulated by phagolysomal fluid was different for various forms of beryllium (Stefaniak et al., 2006, Document ID 1398; Duling et al., 2012 (0539)). Several studies have demonstrated that macrophage uptake of beryllium can induce aberrant apoptotic processes leading to the continued release of beryllium ions which will continually stimulate T-cell activation (Sawyer et al., 2000, Document ID 1417; Sawyer et al., 2004 (1416); Kittle et al., 2002 (0485)). Antigen processing can be mediated by antigen-presenting cells (APC). These may include macrophages, dendritic cells, or other antigen-presenting cells, although this has not been well defined in most studies (NAS, 2008, Document ID 1355). Because of their strong positive charge, beryllium ions have the ability to haptenate and alter the structure of peptides occupying the antigen-binding cleft of major histocompatibility complex (MHC) class II on antigen- VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 presenting cells (APC). The MHC class II antigen-binding molecule for beryllium is the human leukocyte antigen (HLA) with specific alleles (e.g., HLA–DP, HLA–DR, HLA–DQ) associated with the progression to CBD (NAS, 2008, Document ID 1355; Yucesoy and Johnson, 2011 (0464); Petukh et al., 2014 (0397)). Several studies have also demonstrated that the electrostatic charge of HLA may be a factor in binding beryllium (Snyder et al., 2003, Document ID 0524; Bill et al., 2005 (0499); Dai et al., 2010 (0494)). The strong positive ionic charge of the beryllium ion would have a strong attraction for the negatively charged patches of certain HLA alleles (Snyder et al., 2008, Document ID 0471; Dai et al., 2010 (0494); Petukh et al., 2014 (0397)). Alternatively, beryllium oxide has been demonstrated to bind to the MHC class II receptor in a neutral pH. The six carboxylates in the amino acid sequence of the binding pocket provide a stable bond with the Be-O-Be molecule when the pH of the substrate is neutral (Keizer et al., 2005, Document ID 0455). The direct binding of BeO may eliminate the biological requirement for antigen processing or dissolution of beryllium oxide to activate an immune response. PO 00000 Frm 00026 Fmt 4701 Sfmt 4700 Once the beryllium-MHC-APC complex is established, the complex binds to a T-cell receptor (TCR) on a ¨ naıve T-cell which stimulates the proliferation and accumulation of beryllium-specific CD4+ (cluster of differentiation 4+) T-cells (Saltini et al., 1989, Document ID 1351 and 1990 (1420); Martin et al., 2011 (0483)) as depicted in Figure 3. Fontenot et al. (1999) demonstrated that diversely different variants of TCR were expressed by CD4+ T-cells in peripheral blood cells of CBD patients. However, the CD4+ T-cells from the lung were more homologous in expression of TCR variants in CBD patients, suggesting clonal expansion of a subset of T-cells in the lung (Fontenot et al., 1999, Document ID 0489). This may also indicate a pathogenic potential for subsets of T-cell clones expressing this homologous TCR (NAS, 2008, Document ID 1355). Fontenot et al. (2006) (Document ID 0487) reported beryllium self-presentation by HLA–DP expressing BAL CD4+ T-cells. According the NAS report, BAL T-cell selfpresentation in the lung granuloma may result in cell death, leading to oligoclonality (only a few clones) of the T-cell population characteristic of CBD (NAS, 2008, Document ID 1355). E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS As CD4+ T-cells proliferate, clonal expansion of various subsets of the CD4+ beryllium specific T-cells occurs (Figure 3). In the peripheral blood, the beryllium-specific CD4+ T cells require co-stimulation with a co-stimulant CD28 (cluster of differentiation 28). During the proliferation and differentiation process CD4+ T-cells secrete pro-inflammatory cytokines that may influence this process (Sawyer et al., 2004, Document ID 1416; Kimber et al., 2011 (0534)). In summary, OSHA concludes that sensitization is a necessary and early functional change in the immune system that leads to the development of CBD. 2. Development of CBD The continued presence of residual beryllium in the lung leads to a T-cell maturation process. A large portion of beryllium-specific CD4+ T cells were shown to cease expression of CD28 mRNA and protein, indicating these cells no longer required co-stimulation with the CD28 ligand (Fontenot et al., 2003, Document ID 1529). This change in phenotype correlated with lung inflammation (Fontenot et al., 2003, Document ID 1529). While these CD4+ independent cells continued to secrete cytokines necessary for additional VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 recruitment of inflammatory and immunological cells, they were less proliferative and less susceptible to cell death compared to the CD28 dependent cells (Fontenot et al., 2005, Document ID 1528; Mack et al., 2008 (1460)). These beryllium-specific CD4+ independent cells are considered to be mature memory effector cells (Ndejembi et al., 2006, Document ID 0479; Bian et al., 2005 (0500)). Repeat exposure to beryllium in the lung resulting in a mature population of T cell development independent of costimulation by CD28 and development of a population of T effector memory cells (Tem cells) may be one of the mechanisms that lead to the more severe reactions observed specifically in the lung (Fontenot et al., 2005, Document ID 1528). CD4+ T cells created in the sensitization process recognize the beryllium antigen, and respond by proliferating and secreting cytokines and inflammatory mediators, including IL–2, IFN-g, and TNF-a (Tinkle et al., 1997, Document ID 1387; Tinkle et al., 1997 (1388); Fontenot et al., 2002 (1530)) and MIP–1a and GRO–1 (HongGeller, 2006, Document ID 1511). This also results in the accumulation of various types of inflammatory cells PO 00000 Frm 00027 Fmt 4701 Sfmt 4700 2495 including mononuclear cells (mostly CD4+ T cells) in the BAL fluid (Saltini et al., 1989, Document ID 1351, 1990 (1420)). The development of granulomatous inflammation in the lung of CBD patients has been associated with the accumulation of beryllium responsive CD4+ Tem cells in BAL fluid (NAS, 2008, Document ID 1355). The subsequent release of pro-inflammatory cytokines, chemokines and reactive oxygen species by these cells may lead to migration of additional inflammatory/immune cells and the development of a microenvironment that contributes to the development of CBD (Sawyer et al., 2005, Document ID 1415; Tinkle et al., 1996 (0468); Hong-Geller et al., 2006 (1511); NAS, 2008 (1355)). The cascade of events described above results in the formation of a noncaseating granulomatous lesion. Release of cytokines by the accumulating T cells leads to the formation of granulomatous lesions that are characterized by an outer ring of histiocytes surrounding non-necrotic tissue with embedded multi-nucleated giant cells (Saltini et al., 1989, Document ID 1351, 1990 (1420)). Over time, the granulomas spread and can lead to lung fibrosis and abnormal E:\FR\FM\09JAR2.SGM 09JAR2 ER09JA17.002</GPH> Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2496 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations pulmonary function, with symptoms including a persistent dry cough and shortness of breath (Saber and Dweik, 2000, Document ID 1421). Fatigue, night sweats, chest and joint pain, clubbing of fingers (due to impaired oxygen exchange), loss of appetite or unexplained weight loss, and cor pulmonale have been experienced in certain patients as the disease progresses (Conradi et al., 1971, Document ID 1319; ACCP, 1965 (1286); Kriebel et al., 1988, Document ID 1292; Kriebel et al., 1988 (1473)). While CBD primarily affects the lungs, it can also involve other organs such as the liver, skin, spleen, and kidneys (ATSDR, 2002, Document ID 1371). As previously mentioned, the uptake of beryllium may lead to an aberrant apoptotic process with rerelease of beryllium ions and continual stimulation of beryllium-responsive CD4+ cells in the lung (Sawyer et al., 2000, Document ID 1417; Kittle et al., 2002 (0485); Sawyer et al., 2004 (1416)). Several research studies suggest apoptosis may be one mechanism that enhances inflammatory cell recruitment, cytokine production and inflammation, thus creating a scenario for progressive granulomatous inflammation (Palmer et al., 2008, Document ID 0478; Rana, 2008 (0477)). Macrophages and neutrophils can phagocytize beryllium particles in an attempt to remove the beryllium from the lung (Ding, et al., 2009, Document ID 0492)). Multiple studies (Sawyer et al., 2004, Document ID 1416; Kittle et al., 2002 (0485)) using BAL cells (mostly macrophages and neutrophils) from patients with CBD found that in vitro stimulation with beryllium sulfate induced the production of TNF-a (one of many cytokines produced in response to beryllium), and that production of TNF-a might induce apoptosis in CBD and sarcoidosis patients (Bost et al., 1994, Document ID 1299; Dai et al., 1999 (0495)). The stimulation of CBDderived macrophages by beryllium sulfate resulted in cells becoming apoptotic, as measured by propidium iodide. These results were confirmed in a mouse macrophage cell-line (p388D1) (Sawyer et al., 2000, Document ID 1417). However, other factors, such as genetic factors and duration or level of exposure leading to a continued presence of beryllium in the lung, may influence the development of CBD and are outlined in the following sections V.D.3 and V.D.4. In summary, the persistent presence of beryllium in the lung of a sensitized individual creates a progressive inflammatory response that can culminate in the granulomatous lung disease, CBD. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 3. Genetic and Other Susceptibility Factors Evidence from a variety of sources indicates genetic susceptibility may play an important role in the development of CBD in certain individuals, especially at levels low enough not to invoke a response in other individuals. Early occupational studies proposed that CBD was an immune reaction based on the high susceptibility of some individuals to become sensitized and progress to CBD and the lack of CBD in others who were exposed to levels several orders of magnitude higher (Sterner and Eisenbud, 1951, Document ID 1396). Recent studies have confirmed genetic susceptibility to CBD involves either, HLA variants, T-cell receptor clonality, tumor necrosis factor (TNF-a) polymorphisms and/or transforming growth factor-beta (TGF-b) polymorphisms (Fontenot et al., 2000, Document ID 1531; Amicosante et al., 2005 (1564); Tinkle et al., 1996 (0468); Gaede et al., 2005 (0486); Van Dyke et al., 2011 (1696); Silveira et al., 2012 (0472)). Potential sources of variation associated with genetic susceptibility have been investigated. Single Nucleotide Polymorphisms (SNPs) have been studied with regard to genetic variations associated with increased risk of developing CBD. SNPs are the most abundant type of human genetic variation. Polymorphisms in MHC class II and pro-inflammatory genes have been shown to contribute to variations in immune responses contributing to the susceptibility and resistance in many diseases including auto-immunity, beryllium sensitization, and CBD (McClesky et al., 2009, as cited in Document ID 1808, p. 3). Specific SNPs have been evaluated as a factor in the Glu69 variant from the HLA–DPB1 locus (Richeldi et al., 1993, Document ID 1353; Cai et al., 2000 (0445); Saltini et al., 2001 (0448); Silviera et al., 2012 (0472); Dai et al., 2013 (0493)). Other SNPs lacking the Glu69 variant, such as HLA–DRPheb47, have also been evaluated for an association with CBD (Amicosante et al., 2005, Document ID 1564). HLA–DPB1 (one of 2 subtypes of HLA–DP) with a glutamic acid at amino position 69 (Glu69) has been shown to confer increased risk of beryllium sensitization and CBD (Richeldi et al., 1993, Document ID 1353; Saltini et al., 2001 (0448); Amicosante et al., 2005 (1564); Van Dyke et al., 2011 (1696); Silveira et al., 2012 (0472)). In vitro human research has identified genes coding for specific protein molecules on PO 00000 Frm 00028 Fmt 4701 Sfmt 4700 the surface of the immune cells of sensitized individuals from a cohort of beryllium workers (McCanlies et al., 2004, Document ID 1449). The research identified the HLA–DPB1 (Glu69) allele that place carriers at greater risk of becoming sensitized to beryllium and developing CBD than those not carrying this allele (McCanlies et al., 2004, Document ID 1449). Fontenot et al. (2000) demonstrated that beryllium presentation by certain alleles of the class II human leukocyte antigen-DP (HLA–DP 3) to CD4+ T cells is the mechanism underlying the development of CBD (Document ID 1531). Richeldi et al. (1993) reported a strong association between the MHC class II allele HLA– DPB 1 and the development of CBD in beryllium-exposed workers from a Tucson, AZ facility (Document ID 1353). This marker was found in 32 of the 33 workers who developed CBD, but in only 14 of 44 similarly exposed workers without CBD. The more common alleles of the HLA–DPB 1 containing a variant of Glu69 are negatively charged at this site and could directly interact with the positively charged beryllium ion. Additional studies by Amicosante et al. (2005) (Document ID 1564) using blood lymphocytes derived from berylliumexposed workers found a high frequency of this gene in those sensitized to beryllium. In a study of 82 CBD patients (beryllium-exposed workers), Stubbs et al. (1996) (Document ID 1394) also found a relationship between the HLA– DP 1 allele and beryllium sensitization. The glutamate-69 allele was present in 86 percent of sensitized subjects, but in only 48 percent of beryllium-exposed, non-sensitized subjects. Some variants of the HLA–DPB1 allele convey higher risk of sensitization and CBD than others. For example, HLA–DPB1*0201 yielded an approximately 3-fold increase in disease outcome relative to controls; HLA–DPB1*1901 yielded an approximately 5-fold increase, and HLA–DPB1*1701 yielded an approximately 10-fold increase (Weston et al., 2005, Document ID 1345; Snyder et al., 2008 (0471)). Specifically, Snyder et al. (2008) found that variants of the Glu69 allele with the greatest negative charge may confer greater risk for developing CBD (Document ID 0471). The study by Weston et al. (2005) assigned odds ratios for specific alleles on the basis of previous studies discussed above (Document ID 1345). The researchers found a strong 3 HLA–DP and HLA DPB1 alleles have been associated with genetic susceptibility for developing CBD. HLA–DP has 2 subtypes, HLA– DPA and HLA–DPB. HLA–DBP1 is involved with the Glu69 allele most associated with genetic susceptibility. E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations correlation (88 percent) between the reported risk of CBD and the predicted surface electrostatic potential and charge of the isotypes of the genes. They were able to conclude that the alleles associated with the most negatively charged proteins carry the greatest risk of developing beryllium sensitization and CBD (Weston et al., 2005, Document ID 1345). This confirms the importance of beryllium charge as a key factor in its ability to induce an immune response. In contrast, the HLA–DRB1 allele, which lacks Glu69, has also been shown to increase the risk of developing sensitization and CBD (Amicosante et al., 2005, Document ID 1564; Maier et al., 2003 (0484)). Bill et al. (2005) found that HLA–DR has a glutamic acid at position 71 of the b chain, functionally equivalent to the Glu69 of HLA–DP (Bill et al., 2005, Document ID 0499). Associations with BeS and CBD have also been reported with the HLA–DQ markers (Amicosante et al., 2005, Document ID 1564; Maier et al., 2003 (0484)). Stubbs et al. also found a biased distribution of the MHC class II HLA– DR gene between sensitized and nonsensitized subjects. Neither of these markers was completely specific for CBD, as each study found beryllium sensitization or CBD among individuals without the genetic risk factor. While there remains uncertainty as to which of the MHC class II genes interact directly with the beryllium ion, antibody inhibition data suggest that the HLA–DR gene product may be involved in the presentation of beryllium to T lymphocytes (Amicosante et al., 2002, Document ID 1370). In addition, antibody blocking experiments revealed that anti-HLA–DP strongly reduced proliferation responses and cytokine secretion by BAL CD4 T cells (Chou et al., 2005, Document ID 0497). In the study by Chou (2005), anti-HLA–DR ligand antibodies mainly affected beryllium-induced proliferation responses with little impact on cytokines other than IL–2, thus implying that non-proliferating BAL CD4 T cells may still contribute to inflammation leading to the progression of CBD (Chou et al., 2005, Document ID 0497). TNF alpha (TNF-a) polymorphisms and TGF beta (TGF-b) polymorphisms have also been shown to confer a genetic susceptibility for developing CBD in certain individuals. TNF-a is a pro-inflammatory cytokine that may be associated with a more progressive form of CBD (NAS, 2008). Beryllium exposure has been shown to upregulate transcription factors AP–1 and NF-kB (Sawyer et al., 2007, as cited in VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 Document ID 1355) inducing an inflammatory response by stimulating production of pro-inflammatory cytokines such as TNF-a by inflammatory cells. Polymorphisms in the 308 position of the TNF-a gene have been demonstrated to increase production of the cytokine and increase severity of disease (Maier et al., 2001, Document ID 1456; Saltini et al., 2001 (0448); Dotti et al., 2004 (1540)). While a study by McCanlies et al. (2007) (Document ID 0482) of 886 beryllium workers (including 64 sensitized for beryllium and 92 with CBD) found no relationship between TNF-a polymorphism and sensitization or CBD, the National Academies of Sciences noted that ‘‘discrepancies between past studies showing associations and the more recent studies may be due to misclassification, exposure differences, linkage disequilibrium between HLA–DRB1 and TNF-a genes, or statistical power.’’ (NAS, 2008, Document ID 1355). Other genetic variations have been shown to be associated with increased risk of beryllium sensitization and CBD (NAS, 2008, Document ID 1355). These include TGF-b (Gaede et al., 2005, Document ID 0486), angiotensin-1 converting enzyme (ACE) (Newman et al., 1992, Document ID 1440; Maier et al., 1999 (1458)) and an enzyme involved in glutathione synthesis (glutamate cysteine ligase) (Bekris et al., 2006, as cited in Document ID 1355). McCanlies et al. (2010) evaluated the association between polymorphisms in a select group of interleukin genes (IL– 1A; IL–1B, IL–1RN, IL–2, IL–9, IL–9R) due to their role in immune and inflammatory processes (Document ID 0481). The study evaluated SNPs in three groups of workers from large beryllium manufacturing facilities in OH and AZ. The investigators found a significant association between variants IL–1A–1142, IL–1A–3769 and IL–1A– 4697 and CBD but not between those variants and beryllium sensitization. In addition to the genetic factors which may contribute to the susceptibility and severity of disease, other factors such as smoking and sex may play a role in the development of CBD (NAS, 2008, Document ID 1355). A recent longitudinal cohort study by Mroz et al. (2009) of 229 individuals identified with beryllium sensitization or CBD through workplace medical surveillance found that the prevalence of CBD among ever smokers was significantly lower than among never smokers (38.1 percent versus 49.4 percent, p = 0.025). BeS subjects that never smoked were found to be more likely to develop CBD over the course of PO 00000 Frm 00029 Fmt 4701 Sfmt 4700 2497 the study compared to current smokers (12.6 percent versus 6.4 percent, p = 0.10). The authors suggested smoking may confer a protective effect against development of lung granulomas as has been demonstrated with hypersensitivity pneumonitis (Mroz et al., 2009, Document ID 1356). 4. Beryllium Sensitization and CBD in the Workforce Sensitization to beryllium is currently detected in the workforce with the beryllium lymphocyte proliferation test (BeLPT), a laboratory blood test developed in the 1980s, also referred to as the LTT (Lymphocyte Transformation Test) or BeLTT (Beryllium Lymphocyte Transformation Test). In this test, lymphocytes obtained from either bronchoalveolar lavage fluid (the BAL BeLPT) or from peripheral blood (the blood BeLPT) are cultured in vitro and exposed to beryllium sulfate to stimulate lymphocyte proliferation. The observation of beryllium-specific proliferation indicates beryllium sensitization. Hereafter, ‘‘BeLPT’’ generally refers to the blood BeLPT, which is typically used in screening for beryllium sensitization. This test is described in more detail in subsection D.5.b. CBD can be detected at an asymptomatic stage by a number of techniques including bronchoalveolar lavage and biopsy (Cordeiro et al., 2007, Document ID 1552; Maier, 2001 (1456)). Bronchoalveolar lavage is a method of ‘‘washing’’ the lungs with fluid inserted via a flexible fiberoptic instrument known as a bronchoscope, removing the fluid and analyzing the content for the inclusion of immune cells reactive to beryllium exposure, as described earlier in this section. Fiberoptic bronchoscopy can be used to detect granulomatous lung inflammation prior to the onset of CBD symptoms as well, and has been used in combination with the BeLPT to diagnose pre-symptomatic CBD in a number of recent screening studies of beryllium-exposed workers, which are discussed in the following section detailing diagnostic procedures. Of workers who were found to be sensitized and underwent clinical evaluation, 31 to 49 percent of them were diagnosed with CBD (Kreiss et al., 1993, Document ID 1479; Newman et al., 1996 (1283), 2005 (1437), 2007 (1335); Mroz, 2009 (1356)), although some estimate that with increased surveillance that percentage could be much higher (Newman, 2005, Document ID 1437; Mroz, 2009 (1356)). It has been estimated from ongoing surveillance studies of sensitized individuals with an average follow-up time of 4.5 years that E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2498 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 31 percent of beryllium-sensitized employees were estimated to progress to CBD (Newman et al., 2005, Document ID 1437). The study by Newman et al. (2005) was the first longitudinal study to assess the progression from beryllium sensitization to CBD in individuals undergoing clinical evaluation at National Jewish Medical and Research Center from 1988 through 1998. Approximately 50 percent of sensitized individuals (as identified by BeLPT) had CBD at their initial clinical evaluation. The remaining 50 percent, or 76 individuals, without evidence of CBD were monitored at approximately two year intervals for indication of disease progression by pulmonary function testing, chest radiography (with International Labour Organization B reading), fiberoptic bronchoscopy with bronchoalveolar lavage, and transbronchial lung biopsy. Fifty-five of the 76 individuals were monitored with a range of two to five clinical evaluations each. The Newman et al. (2005) study found that CBD developed in 31 percent of individuals (17 of the 55) in a period ranging from 1.0 to 9.5 years (average 3.8 years). After an average of 4.8 years (range 1.7 to 11.6 years) the remaining individuals showed no signs of progression to CBD. A study of nuclear weapons facility employees enrolled in an ongoing medical surveillance program found that the sensitization rate in exposed workers increased rapidly over the first 10 years of beryllium exposure and then more gradually in succeeding years. On the other hand, the rate of CBD pathology increased slowly over the first 15 years of exposure and then climbed more steeply following 15 to 30 years of beryllium exposure (Stange et al., 2001, Document ID 1403). The findings from these longitudinal studies of sensitized workers provide evidence of CBD progression over time from asymptomatic to symptomatic disease. One limitation for all these studies is lack of long-term follow-up. Newman suggested that it may be necessary to continue to monitor these workers in order to determine whether all sensitized workers will develop CBD (Newman et al., 2005, Document ID 1437). CBD has a clinical spectrum ranging from evidence of beryllium sensitization and granulomas in the lung with little symptomatology to loss of lung function and end stage disease, which may result in the need for lung transplantation and decreased life expectancy. Unfortunately, there are very few published clinical studies describing the full range and progression of CBD from VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 the beginning to the end stages and very few of the risk factors for progression of disease have been delineated (NAS, 2008, Document ID 1355). OSHA requested additional information in the NPRM, but no additional studies were added during the public comment period. Clinical management of CBD is modeled after sarcoidosis where oral corticosteroid treatment is initiated in patients who have evidence of progressive lung disease, although progressive lung disease has not been well defined (NAS, 2008, Document ID 1355). In advanced cases of CBD, corticosteroids are the standard treatment (NAS, 2008, Document ID 1355). No comprehensive studies have been published measuring the overall effect of removal of workers from beryllium exposure on sensitization and CBD (NAS, 2008, Document ID 1355) although this has been suggested as part of an overall treatment regime for CBD (Mapel et al., 2002, as cited in Document ID 1850; Sood et al., 2004 (1331); Sood, 2009 (0456); Maier et al., 2012 (0461)). Expert testimony from Dr. Lee Newman and Dr. Lisa Maier agreed that while no studies exist on the efficacy of removal from beryllium exposure, it is medically prudent to reduce beryllium exposure once someone is sensitized (Document ID 1756, Tr. 142). Sood et al. reported that cessation of exposure can sometimes have beneficial effects on lung function (Sood et al., 2004, Document ID 1331). However, this was based on anecdotal evidence from six patients with CBD, while this indicates a benefit of removal of patients from exposure, more research is needed to better determine the relationship between exposure duration and disease progression. Materion commented that sensitization should be defined as a test result indicating an immunological sensitivity to beryllium without identifiable adverse health effects or other signs of illness or disability. It went on to say that, for these reasons, sensitization is not on a pathological continuum with CBD (Document ID 1661, pp. 4–7). Other commenters disagreed. NIOSH addressed whether sensitization should be considered an adverse health effect and said the following in their written hearing testimony: Some have questioned whether BeS should be considered an adverse health effect. NIOSH views it as such, since it is a biological change in people exposed to beryllium that is associated with increased risk for developing CBD. BeS refers to the immune system’s ability to recognize and react to beryllium. BeS is an antigen-specific cell mediated immunity to beryllium, in PO 00000 Frm 00030 Fmt 4701 Sfmt 4700 which CD4+ T cells recognize a complex composed of beryllium ion, self-peptide, and major histocompatibility complex (MHC) Class II molecule on an antigen-presenting cell [Falta et al. (2013); Fontenot et al. (2016)]. BeS necessarily precedes CBD. Pathogenesis depends on the immune system’s recognition of and reaction to beryllium in the lung, resulting in granulomatous lung disease. BeS can be detected with tests that assess the immune response, such as the beryllium lymphocyte proliferation test (BeLPT), which measures T cell activity in the presence of beryllium salts [Balmes et al. (2014)]. Furthermore, after the presence of BeS has been confirmed, periodic medical evaluation at 1–3 year intervals thereafter is required to assess whether BeS has progressed to CBD [Balmes et al. (2014)]. Thus, BeS is not just a test result, but an adverse health effect that poses risk of the irreversible lung disease CBD. (Document ID 1725, p. 2) The American College of Occupational and Environmental Medicine (ACOEM) also commented that the term pathological ‘‘continuum’’ should only refer to signs and symptoms associated with CBD because some sensitized workers never develop CBD (Document ID 1685, p. 6). However, Dr. Newman, testifying on behalf of ACOEM, clarified that not all members of the ACOEM task force agreed: So I hope I’m reflecting to you the range and variety of outcomes relating to this. My own view is that it’s on a continuum. I do want to reflect back that the divided opinion among people on the ACOEM task force was that we should call it a spectrum because not everybody is necessarily lock step into a continuum that goes from sensitization to fatality. (Document ID 1756, Tr. 133). Lisa Maier, MD of National Jewish Health agreed with Dr. Newman (Document ID 1756, Tr. 133–134). Additionally, Dr. Weissman of NIOSH testified that sensitization is ‘‘a biological change in people exposed to beryllium that is associated with increased risk for developing CBD’’ and should be considered an adverse health effect (Document ID 1755, Tr. 13). OSHA agrees that not every sensitized worker develops CBD, and that other factors such as extent of exposure, particulate characteristics, and genetic susceptibility influence the development and progression of disease. The mechanisms by which beryllium sensitization leads to CBD are described in earlier sections and are supported by numerous studies (Newman et al., 1996a, Document ID 1439; Newman et al., 2005 (1437); Saltini et al., 1989 (1351); Amicosante et al., 2005a (1564); Amicosante et al., 2006 (1465); Fontenot et al., 1999 (0489); Fontenot et al., 2005 (1528)). OSHA concludes that sensitization is an immunological condition that increases one’s likelihood E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS of developing CBD. As such, sensitization is a necessary step along a continuum to clinical lung disease. 5. Human Epidemiological Studies This section describes the human epidemiological data supporting the mechanistic overview of berylliuminduced disease in workers. It has been divided into reviews of epidemiological studies performed prior to development and implementation of the BeLPT in the late 1980s and after wide use of the BeLPT for screening purposes. Use of the BeLPT has allowed investigators to screen for beryllium sensitization and CBD prior to the onset of clinical symptoms, providing a more sensitive and thorough analysis of the worker population. The discussion of the studies has been further divided by manufacturing processes that may have similar exposure profiles. Table A.1 in the Supplemental Information for the Beryllium Health Effects Section summarizes the prevalence of beryllium sensitization and CBD, range of exposure measurements, and other salient information from the key epidemiological studies (Document ID 1965). It has been well-established that beryllium exposure, either via inhalation or skin, may lead to beryllium sensitization, or, with inhalation exposure, may lead to the onset and progression of CBD. The available published epidemiological literature discussed below provides strong evidence of beryllium sensitization and CBD in workers exposed to airborne beryllium well below the preceding OSHA PEL of 2 mg/ m3. Several studies demonstrate the prevalence of sensitization and CBD is related to the level of airborne exposure, including a cross-sectional survey of employees at a beryllium ceramics plant in Tucson, AZ (Henneberger et al., 2001, Document ID 1313), case-control studies of workers at the Rocky Flats nuclear weapons facility (Viet et al., 2000, Document ID 1344), and workers from a beryllium machining plant in Cullman, AL (Kelleher et al., 2001, Document ID 1363). The prevalence of beryllium sensitization also may be related to dermal exposure. An increased risk of CBD has been reported in workers with skin lesions, potentially increasing the uptake of beryllium (Curtis, 1951, Document ID 1368; Johnson et al., 2001 (1505); Schuler et al., 2005 (0919)). Three studies describe comprehensive preventive programs, which included expanded respiratory protection, dermal protection, and improved control of beryllium dust migration, that substantially reduced the rate of VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 beryllium sensitization among new hires (Cummings et al., 2007; Thomas et al., 2009 (0590); Bailey et al., 2010 (0676); Schuler et al., 2012(0473)). Some of the epidemiological studies presented in this section suffer from challenges common to many published epidemiological studies: Limitations in study design (particularly crosssectional); small sample size; lack of personal and/or short-term exposure data, particularly those published before the late 1990s; and incomplete information regarding specific chemical form and/or particle characterization. Challenges that are specific to beryllium epidemiological studies include: uncertainty regarding the contribution of dermal exposure; use of various BeLPT protocols; a variety of case definitions for determining CBD; and use of various exposure sampling/ assessment methods (e.g., daily weighted average (DWA), lapel sampling). Even with these limitations, the epidemiological evidence presented in this section clearly demonstrates that beryllium sensitization and CBD are continuing to occur from present-day exposures below OSHA’s preceding PEL of 2 mg/m3. The available literature also indicates that the rate of beryllium sensitization can be substantially lowered by reducing inhalation exposure and minimizing dermal contact. a. Studies Conducted Prior to the BeLPT First reports of CBD came from studies performed by Hardy and Tabershaw (1946) (Document ID 1516). Cases were observed in industrial plants that were refining and manufacturing beryllium metal and beryllium alloys and in plants manufacturing fluorescent light bulbs (NAS, 2008, Document ID 1355). From the late 1940s through the 1960s, clusters of non-occupational CBD cases were identified around beryllium refineries in Ohio and Pennsylvania, and outbreaks in family members of beryllium factory workers were assumed to be from exposure to contaminated clothes (Hardy, 1980, Document ID 1514). It had been established that the risk of disease among beryllium workers was variable and generally rose with the levels of airborne concentrations (Machle et al., 1948, Document ID 1461). And while there was a relationship between air concentrations of beryllium and risk of developing disease both in and surrounding these plants, the disease rates outside the plants were higher than expected and not very different from the rate of CBD within the plants (Eisenbud et al., 1949, Document ID 1284; Lieben and Metzner, 1959 (1343)). There remained PO 00000 Frm 00031 Fmt 4701 Sfmt 4700 2499 considerable uncertainty regarding diagnosis due to lack of well-defined cohorts, modern diagnostic methods, or inadequate follow-up. In fact, many patients with CBD may have been misdiagnosed with sarcoidosis (NAS, 2008, Document ID 1355). The difficulties in distinguishing lung disease caused by beryllium from other lung diseases led to the establishment of the BCR in 1952 to identify and track cases of ABD and CBD. A uniform diagnostic criterion was introduced in 1959 as a way to delineate CBD from sarcoidosis. Patient entry into the BCR required either: Documented past exposure to beryllium or the presence of beryllium in lung tissue as well as clinical evidence of beryllium disease (Hardy et al., 1967, Document ID 1515); or any three of the six criteria listed below (Hasan and Kazemi, 1974, Document ID 0451). Patients identified using the above criteria were registered and added to the BCR from 1952 through 1983 (Eisenbud and Lisson, 1983, Document ID 1296). The BCR listed the following criteria for diagnosing CBD (Eisenbud and Lisson, 1983, Document ID 1296): (1) Establishment of significant beryllium exposure based on sound epidemiologic history; (2) Objective evidence of lower respiratory tract disease and clinical course consistent with beryllium disease; (3) Chest X-ray films with radiologic evidence of interstitial fibronodular disease; (4) Evidence of restrictive or obstructive defect with diminished carbon monoxide diffusing capacity (DL CO) by physiologic studies of lung function; (5) Pathologic changes consistent with beryllium disease on examination of lung tissue; and (6) Presence of beryllium in lung tissue or thoracic lymph nodes. Prevalence of CBD in workers during the time period between the 1940s and 1950s was estimated to be between 1– 10% (Eisenbud and Lisson, 1983, Document ID 1296). In a 1969 study, Stoeckle et al. presented 60 case histories with a selective literature review utilizing the above criteria except that urinary beryllium was substituted for lung beryllium to demonstrate beryllium exposure. Stoeckle et al. (1969) were able to demonstrate corticosteroids as a successful treatment option in one case of confirmed CBD (Document ID 0447). This study also presented a 28 percent mortality rate from complications of CBD at the time of publication. However, even with the improved E:\FR\FM\09JAR2.SGM 09JAR2 2500 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations methodology for determining CBD based on the BCR criteria, these studies suffered from lack of well-defined cohorts, modern diagnostic techniques or adequate follow-up. b. Criteria for Beryllium Sensitization and CBD Case Definition Following the Development of the BeLPT The criteria for diagnosis of CBD have evolved over time as more advanced diagnostic technology, such as the blood BeLPT and BAL BeLPT, has become available. More recent diagnostic criteria have both higher specificity than earlier methods and higher sensitivity, identifying subclinical effects. Recent studies typically use the following criteria (Newman et al., 1989, Document ID 0196; Pappas and Newman, 1993 (1433); Maier et al., 1999 (1458)): (1) History of beryllium exposure; (2) Histopathological evidence of noncaseating granulomas or mononuclear cell infiltrates in the absence of infection; and (3) Positive blood or BAL BeLPT (Newman et al., 1989, Document ID 0196). The availability of transbronchial lung biopsy facilitates the evaluation of the second criterion, by making histopathological confirmation possible in almost all cases. A significant component for the identification of CBD is the demonstration of a confirmed abnormal BeLPT result in a blood or BAL sample (Newman, 1996, Document ID 1283). Since the development of the BeLPT in the 1980s, it has been used to screen beryllium-exposed workers for sensitization in a number of studies to be discussed below. The BeLPT is a non-invasive in vitro blood test that measures the beryllium antigen-specific T-cell mediated immune response and is the most commonly available diagnostic tool for identifying beryllium sensitization. The BeLPT measures the degree to which beryllium stimulates lymphocyte proliferation under a specific set of conditions, and is interpreted based upon the number of stimulation indices that exceed the normal value. The ‘‘cut-off’’ is based on the mean value of the peak stimulation index among controls plus 2 or 3 standard deviations. This methodology was modeled into a statistical method known as the ‘‘least absolute values’’ or ‘‘statistical-biological positive’’ method and relies on natural log modeling of the median stimulation index values (DOE, 2001, Document ID 0068; Frome, 2003 (0462)). In most applications, two or more stimulation indices that exceed the cut-off constitute an abnormal test. Early versions of the BeLPT test had high variability, but the use of tritiated thymidine to identify proliferating cells has led to a more reliable test (Mroz et al., 1991, 0435; Rossman et al., 2001 (1424)). In recent years, the peripheral blood test has been found to be as sensitive as the BAL assay, although larger abnormal responses have been observed with the BAL assay (Kreiss et al., 1993, Document ID 1478; Pappas and Newman, 1993 (1433)). False negative results have also been observed with the BAL BeLPT in cigarette smokers who have marked excess of alveolar macrophages in lavage fluid (Kreiss et al., 1993, Document ID 1478). The BeLPT has also been a useful tool in animal studies to identify those species with a beryllium-specific immune response (Haley et al., 1994, Document ID 1364). Screenings for beryllium sensitization have been conducted using the BeLPT in several occupational surveys and surveillance programs, including nuclear weapons facilities operated by the Department of Energy (Viet et al., 2000, Document ID 1344; Stange et al., 2001 (1403); DOE/HSS Report, 2006 (0664)), a beryllium ceramics plant in Arizona (Kreiss et al., 1996, Document ID 1477; Henneberger et al., 2001 (1313); Cummings et al., 2007 (1369)), a beryllium production plant in Ohio (Kreiss et al., 1997, Document ID 1476; Kent et al., 2001 (1112)), a beryllium machining facility in Alabama (Kelleher et al., 2001, Document ID 1363; Madl et al., 2007 (1056)), a beryllium alloy plant (Schuler et al., 2005, Document ID 0473; Thomas et al., 2009 (0590)), and another beryllium processing plant (Rosenman et al., 2005, Document ID 1352) in Pennsylvania. In most of these studies, individuals with an abnormal BeLPT result were retested and were identified as sensitized (i.e., confirmed positive) if the abnormal result was repeated. In order to investigate the reliability and laboratory variability of the BeLPT, Stange et al. (2004, Document ID 1402) studied the BeLPT by splitting blood samples and sending samples to two laboratories simultaneously for BeLPT analysis. Stange et al. found the range of agreement on abnormal (positive BeLPT) results was 26.2—61.8 percent depending upon the labs tested (Stange et al., 2004, Document ID 1402). Borak et al. (2006) contended that the positive predictive value (PPV) 4 is not high enough to meet the criteria of a good screening tool (Document ID 0498). Middleton et al. (2008) used the data from the Stange et al. (2004) study to estimate the PPV and determined that the PPV of the BeLPT could be improved from 0.383 to 0.968 when an abnormal BeLPT result is confirmed with a second abnormal result (Middleton et al., 2008, Document ID 0480). In April 2006, the Agency for Toxic Substances and Disease Registry (ATSDR) convened an expert panel of seven physicians and scientists to discuss the BeLPT and to consider what algorithm should be used to interpret BeLPT results to establish beryllium sensitization (Middleton et al., 2008, Document ID 0480). The three criteria proposed by panel members were Criterion A (one abnormal BeLPT result establishes sensitization); Criterion B (one abnormal and one borderline result establish sensitization); and Criterion C (two abnormal results establish sensitization). Using the single-test outcome probabilities developed by Stange et al., the panel convened by ATSDR calculated and compared the sensitivity, specificity, and positive predictive values (PPVs) for each algorithm. The characteristics for each algorithm were as follows: TABLE 2—CHARACTERISTICS OF BELPT ALGORITHMS (ADAPTED FROM MIDDLETON et al., (2008) asabaliauskas on DSK3SPTVN1PROD with PROPOSALS [Adapted from Middleton et al., 2008, Document ID 0480] Criterion A (1 abnormal) Sensitivity ..................................................................................................................................... Specificity ..................................................................................................................................... PPV at 1% prevalence ................................................................................................................ PPV at 10% prevalence .............................................................................................................. 68.2% 98.89% 38.3% 87.2% 4 PPV is the portion of patients with positive test result correctly diagnosed. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00032 Fmt 4701 Sfmt 4700 E:\FR\FM\09JAR2.SGM 09JAR2 Criterion B (1 abnormal + 1 borderline) 65.7% 99.92% 89.3% 98.9% Criterion C (2 abnormal) 61.2% 99.98% 96.8% 99.7% 2501 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations TABLE 2—CHARACTERISTICS OF BELPT ALGORITHMS (ADAPTED FROM MIDDLETON et al., (2008)—Continued [Adapted from Middleton et al., 2008, Document ID 0480] Criterion A (1 abnormal) asabaliauskas on DSK3SPTVN1PROD with PROPOSALS False positives per 10,000 .......................................................................................................... The Middleton et al. (2008) study demonstrated that confirmation of BeLPT results, whether as one abnormal and one borderline abnormal or as two abnormals, enhances the test’s PPV and protects the persons tested from unnecessary and invasive medical procedures. In populations with a high prevalence of beryllium sensitization (i.e., 10 percent or more), however, a single test may be adequate to predict sensitization (Middleton et al., 2008, Document ID 0480). Still, there has been criticism regarding the reliability and specificity of the BeLPT as a screening tool and that the BeLPT has not been validated appropriately (Cher et al., 2006, as cited in Document ID 1678; Borak et al., 2006 (0498); Donovan et al., 2007 (0491); Document ID 1678, Attachment 1, p. 6). Even when a confirmational second test is performed, an apparent false positive can occur in people not occupationally exposed to beryllium (NAS, 2008, Document ID 1355). An analysis of survey data from the general workforce and new employees at a beryllium manufacturer was performed to assess the reliability of the BeLPT (Donovan et al. 2007, Document ID 0491). Donovan et al. analyzed more than 10,000 test results from nearly 2400 participants over a 12-year period. Donovan et al. found that approximately 2 percent of new employees had at least one positive BeLPT at the time of hire and 1 percent of new hires with no known occupational exposure were confirmed positive at the time of hire with two BeLPTs. However, this should not be considered unusual because there have been reported incidences of nonoccupational and community-based beryllium sensitization (Eisenbud et al., 1949, Document ID 1284; Leiben and Metzner, 1959 (1343); Newman and Kreiss, 1992 (1440); Maier and Rossman, 2008 (0598); NAS, 2008 (1355); Harber et al., 2014 (0415), Harber et al., 2014 (0421)). Materion objected to OSHA treating ‘‘two or three uninterpretable or borderline abnormal BeLPT test results as confirmation of BeS for the purposes of the standard’’ (Document ID 1808, p. 4). In order to address some criticism regarding the PPV of the BeLPT, Middleton et al. (2011) conducted VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 another study to evaluate borderline results from BeLPT testing (Document ID 0399). Utilizing the common clinical algorithm with a criterion that accepted one abnormal result and one borderline result as establishing beryllium sensitization resulted in a PPV of 94.4 percent. This study also found that three borderline results resulted in a PPV of 91 percent. Both of these PPVs were based on a population prevalence of 2 percent. This study further demonstrates the value of borderline results in predicting beryllium sensitization using the BeLPT. OSHA finds that multiple, consistent borderline BeLPT results (as found with three borderline results) recognize a change in a person’s immune system to beryllium exposure. In addition, a study by Harber et al. (2014) reexamined the algorithms to determine sensitization and CBD data using the BioBank data.5 The study suggested that changing the algorithm could potentially help distinguish sensitization from progression to CBD (Harber et al., 2014, Document ID 0363). Materion further contended that ‘‘[w]hile some refer to BeLPT testing as a ‘gold’ standard for BeS, it is hardly ‘golden,’ as numerous commentators have noted.’’ (Document ID 1808, p. 4). NIOSH submitted testimony to OSHA comparing the use of the BeLPT for determining beryllium sensitization to other common medical screening tools such as mammography for breast cancer, tuberculin skin test for latent tuberculosis infection, prostate-specific antigen (PSA) for prostate cancer, and fecal occult blood testing for colon cancer. NIOSH stated that ‘‘[a]lthough there is no gold standard test to identify beryllium sensitization, BeLPT has been estimated to have a sensitivity of 66– 86% and a specificity of >99% for sensitization [Middleton et al. (2006)]. These values are comparable or superior to those of other common medical screening tests.’’ (Document ID 1725, pp. 32–33). In addition, Dr. Maier of National Jewish Health stated during the public hearing that ‘‘medical surveillance should rely on the BeLPT 5 BioBank is a repository of biological specimens and clinical data collected from beryllium-exposed Department of Energy workers and contractors. PO 00000 Frm 00033 Fmt 4701 Sfmt 4700 111 Criterion B (1 abnormal + 1 borderline) 8 Criterion C (2 abnormal) 2 or a similar test if validated in the future, as it detects early and late beryllium health effects. It has been validated in many population-based studies.’’ (Document ID 1756, Tr. 103). Since there are currently no alternatives to the BeLPT in a beryllium sensitization screening program, many programs rely on a second test to confirm a positive result (NAS, 2008). Various expert organizations support the use of the BeLPT (with a second confirmational test) as a screening tool for beryllium sensitization and CBD. The American Thoracic Society (ATS), based on a systematic review of the literature, noted that ‘‘the BeLPT is the cornerstone of medical surveillance’’ (Balmes et al., 2014; Document ID 0364, pp. 1–2). The use of the BeLPT in medical surveillance has been endorsed by the National Academies in their review of beryllium-related diseases and disease prevention programs for the U. S. Air Force (NAS, 2008, Document ID 1355). In 2011, NIOSH issued an alert ‘‘Preventing Sensitization and Disease from Beryllium Exposure’’ where the BeLPT is recommended as part of a medical screening and surveillance program (NIOSH, 2011, Document ID 0544). OSHA finds that the BeLPT is a useful and reliable test method that has been utilized in numerous studies and validated and improved through multiple studies. The epidemiological studies presented in this section utilized the BeLPT as either a surveillance tool or a screening tool for determining sensitization status and/or sensitization/ CBD prevalence in workers for inclusion in the published studies. Most epidemiological studies have reported rates of sensitization and disease based on a single screening of a working population (‘‘cross-sectional’’ or ‘‘population prevalence’’ rates). Studies of workers in a beryllium machining plant and a nuclear weapons facility have included follow-up of the population originally screened, resulting in the detection of additional cases of sensitization over several years (Newman et al., 2001, Document ID 1354; Stange et al., 2001 (1403)). Based on the studies above, as well as comments from NIOSH, ATS, and National Jewish Health, OSHA regards E:\FR\FM\09JAR2.SGM 09JAR2 2502 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations discussed animal studies examining solubility and particle size. c. Beryllium Mining and Extraction asabaliauskas on DSK3SPTVN1PROD with PROPOSALS the BeLPT as a reliable medical surveillance tool. d. Beryllium Metal Processing and Alloy Production Kreiss et al. (1997) conducted a study of workers at a beryllium production facility in Elmore, OH (Document ID 1360). The plant, which opened in 1953 and initially specialized in production of beryllium-copper alloy, later expanded its operations to include beryllium metal, beryllium oxide, and beryllium-aluminum alloy production; beryllium and beryllium alloy machining; and beryllium ceramics production, which was moved to a different factory in the early 1980s. Production operations included a wide variety of jobs and processes, such as work in arc furnaces and furnace rebuilding, alloy melting and casting, beryllium powder processing, and work in the pebble plant. Non-production work included jobs in the analytical laboratory, engineering research and development, maintenance, laundry, production-area management, and office-area administration. While the publication refers to the use of respiratory protection in some areas, such as the pebble plant, the extent of its use across all jobs or time periods was not reported. Use of dermal PPE was not reported. The authors characterized exposures at the plant using industrial hygiene (IH) samples collected between 1980 and 1993. The exposure samples and the plant’s formulas for estimating workers’ DWA exposures were used, together with study participants’ work histories, to estimate their cumulative and average beryllium exposure levels. Exposure concentrations reflected the high exposures found historically in beryllium production and processing. Short-term BZ measurements had a median of 1.4 mg/m3, with 18.5 percent of samples exceeding OSHA’s preceding permissible ceiling concentration of 5.0 mg/m3. Particularly high beryllium concentrations were reported in the areas of beryllium powder production, laundry, alloy arc furnace (approximately 40 percent of DWA estimates over 2.0 mg/m3) and furnace rebuild (28.6 percent of short-term BZ samples over the preceding OSHA permissible ceiling concentration of 5 mg/m3). LP samples (n = 179), which were available from 1990 to 1992, had a median value of 1 mg/m3. Of 655 workers employed at the time of the study, 627 underwent BeLPT screening. Blood samples were divided and split between two labs for analysis, with repeat testing for results that were abnormal or indeterminate. Thirty-one Mining and extraction of beryllium usually involves the two major beryllium minerals, beryl (an aluminosilicate containing up to 4 percent beryllium) and bertrandite (a beryllium silicate hydrate containing generally less than 1 percent beryllium) (WHO, 2001, Document ID 1282). The United States is the world leader in beryllium extraction and also leads the world in production and use of beryllium and its alloys (WHO, 2001, Document ID 1282). Most exposures from mining and extraction come in the form of beryllium ore, beryllium salts, beryllium hydroxide (NAS, 2008, Document ID 1355) or beryllium oxide (Stefaniak et al., 2008, Document ID 1397). Deubner et al. published a study of 75 workers employed at a beryllium mining and extraction facility in Delta, UT (Deubner et al., 2001b, Document ID 1543). Of the 75 workers surveyed for sensitization with the BeLPT, three were identified as sensitized by an abnormal BeLPT result. One of those found to be sensitized was diagnosed with CBD. Exposures at the facility included primarily beryllium ore and salts. General area (GA), breathing zone (BZ), and personal lapel (LP) exposure samples were collected from 1970 to 1999. Jobs involving beryllium hydrolysis and wet-grinding activities had the highest air concentrations, with an annual median GA concentration ranging from 0.1 to 0.4 mg/m3. Median BZ concentrations were higher than either LP or GA concentrations. The average duration of exposure for beryllium sensitized workers was 21.3 years (27.7 years for the worker with CBD), compared to an average duration for all workers of 14.9 years. However, these exposures were less than either the Elmore, OH, or Tucson, AZ, facilities described below, which also had higher reported rates of BeS and CBD. A study by Stefaniak et al. (2008) demonstrated that beryllium was present at the mill in three forms: Mineral, poorly crystalline oxide, and hydroxide (Document ID 1397). There was no sensitization or CBD among those who worked only at the mine where exposure to beryllium resulted solely from working with bertrandite ore. The authors concluded that the results of this study indicated that beryllium ore and salts may pose less of a hazard than beryllium metal and beryllium hydroxide. These results are consistent with the previously VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00034 Fmt 4701 Sfmt 4700 workers had an abnormal blood test result upon initial testing and at least one of two subsequent test results for each of those workers confirmed the worker as sensitized. These workers, together with 19 workers who had an initial abnormal result and one subsequent indeterminate result, were offered clinical evaluation for CBD including the BAL-BeLPT and transbronchial lung biopsy. Nine workers with an initial abnormal test followed by two subsequent normal tests were not clinically evaluated, although four were found to be sensitized upon retesting in 1995. Of 47 workers who proceeded with evaluation for CBD (3 of the 50 initial workers with abnormal results declined to participate), 24 workers were diagnosed with CBD based on evidence of granulomas on lung biopsy (20 workers) or on other findings consistent with CBD (4 workers) (Kreiss et al., 1997, Document ID 1360). After including five workers who had been diagnosed prior to the study, a total of 29 (4.6 percent of the 627 workers who underwent BeLPT screening) workers still employed at the time of the study were found to have CBD. In addition, the plant medical department identified 24 former workers diagnosed with CBD before the study. Kreiss et al. reported that the highest prevalence of sensitization and CBD occurred among workers employed in beryllium metal production, even though the highest airborne total mass concentrations of beryllium were generally among employees operating the beryllium alloy furnaces in a different area of the plant (Kreiss et al., 1997, Document ID 1360). Preliminary follow-up investigations of particle sizespecific sampling at five furnace sites within the plant determined that the highest respirable (i.e., particles <10 mm in diameter as defined by the authors) and alveolar-deposited (i.e., particles <1 mm in diameter as defined by the authors) beryllium mass and particle number concentrations, as collected by a general area impactor device, were measured at the beryllium metal production furnaces rather than the beryllium alloy furnaces (Kent et al., 2001, Document ID 1361; McCawley et al., 2001 (1357)). A statistically significant linear trend was reported between the above alveolar-deposited particle mass concentration and prevalence of CBD and sensitization in the furnace production areas. The authors concluded that alveolardeposited particles may be a more relevant exposure metric for predicting the incidence of CBD or sensitization E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations than the total mass concentration of airborne beryllium. Bailey et al. (2010) (Document ID 0610) evaluated the effectiveness of a workplace preventive program in lowering incidences of sensitization at the beryllium metal, oxide, and alloy production plant studied by Kreiss et al. (1997) (Document ID 1360). The preventive program included use of administrative and PPE controls (e.g., improved training, skin protection and other PPE, half-mask or air-purified respirators, medical surveillance, improved housekeeping standards, clean uniforms) as well as engineering and administrative controls (e.g., migration controls, physical separation of administrative offices from production facilities) implemented over the course of five years. In a cross-sectional/longitudinal hybrid study, Bailey et al. compared rates of sensitization in pre-program workers to those hired after the preventive program began. Pre-program workers were surveyed cross-sectionally in 1993–1994, and again in 1999 using the BeLPT to determine sensitization and CBD prevalence rates. The 1999 cross-sectional survey was conducted to determine if improvements in engineering and administrative controls were successful. However, results indicated no improvement in reducing rates of sensitization or CBD. An enhanced preventive program including particle migration control, respiratory and dermal protection, and process enclosure was implemented in 2000, with continuing improvements made to the program in 2001, 2002– 2004, and 2005. Workers hired during this period were longitudinally surveyed for sensitization using the BeLPT. Both the pre-program and program survey of worker sensitization status utilized split-sample testing to verify positive test results using the BeLPT. Of the total 660 workers employed at the production plant, 258 workers participated from the preprogram group while 290 participated from the program group (206 partial program, 84 full program). Prevalence comparisons of the pre-program and program groups (partial and full) were performed by calculating prevalence ratios. A 95 percent confidence interval (95 percent CI) was derived using a cohort study method that accounted for the variance in survey techniques (cross-sectional versus longitudinal) (Bailey et al., 2010). The sensitization prevalence of the pre-program group was 3.8 times higher (95 percent CI, 1.5– 9.3) than the program group, 4.0 times higher (95 percent CI, 1.4–11.6) than the partial program subgroup, and 3.3 times VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 higher (95 percent CI, 0.8–13.7) than the full program subgroup indicating that a comprehensive preventive program can reduce, but not eliminate, occurrence of sensitization among non-sensitized workers (Bailey et al., 2010, Document ID 0610). Rosenman et al. (2005) studied a group of several hundred workers who had been employed at a beryllium production and processing facility that operated in eastern Pennsylvania between 1957 and 1978 (Document ID 1352). Of 715 former workers located, 577 were screened for beryllium sensitization with the BLPT and 544 underwent chest radiography to identify cases of beryllium sensitization and CBD. Workers were reported to have exposure to beryllium dust and fume in a variety of chemical forms including beryl ore, beryllium metal, beryllium fluoride, beryllium hydroxide, and beryllium oxide. Rosenman et al. used the plant’s DWA formulas to assess workers’ full-shift exposure levels, based on IH data collected between 1957–1962 and 1971– 1976, to calculate exposure metrics including cumulative, average, and peak for each worker in the study (Document ID 1352). The DWA was calculated based on air monitoring that consisted of GA and short-term task-based BZ samples. Workers’ exposures to specific chemical and physical forms of beryllium were assessed, including poorly soluble beryllium (metal and oxide), soluble beryllium (fluoride and hydroxide), mixed soluble and poorly soluble beryllium, beryllium dust (metal, hydroxide, or oxide), fume (fluoride), and mixed dust and fume. Use of respiratory or dermal protection by workers was not reported. Exposures in the plant were high overall. Representative task-based IH samples ranged from 0.9 mg/m3 to 84 mg/m3 in the 1960s, falling to a range of 0.5–16.7 mg/m3 in the 1970s. A large number of workers’ mean DWA estimates (25 percent) were above the preceding OSHA PEL of 2.0 mg/m3, while most workers had mean DWA exposures between 0.2 and 2.0 mg/m3 (74 percent) or below 0.02 mg/m3 (1 percent) (Rosenman et al., Table 11; revised erratum April, 2006, Document ID 1352). Blood samples for the BeLPT were collected from the former workers between 1996 and 2001 and were evaluated at a single laboratory. Individuals with an abnormal test result were offered repeat testing, and were classified as sensitized if the second test was also abnormal. Sixty workers with two positive BeLPTs and 50 additional workers with chest radiography PO 00000 Frm 00035 Fmt 4701 Sfmt 4700 2503 suggestive of disease were offered clinical evaluation, including bronchoscopy with bronchial biopsy and BAL-BeLPT. Seven workers met both criteria. Only 56 (51 percent) of these workers proceeded with clinical evaluation, including 57 percent of those referred on the basis of confirmed abnormal BeLPT and 47 percent of those with abnormal radiographs (Document ID 1352). Of the 577 workers who were evaluated for CBD, 32 (5.5 percent) with evidence of granulomas were classified as ‘‘definite’’ CBD cases (as identified by bronchoscopy). Twelve (2.1 percent) additional workers with positive BALBeLPT or confirmed positive BeLPT and radiographic evidence of upper lobe fibrosis were classified as ‘‘probable’’ CBD cases. Forty workers (6.9 percent) without upper lobe fibrosis who had confirmed abnormal BeLPT, but who were not biopsied or who underwent biopsy with no evidence of granuloma, were classified as sensitized without disease. It is not clear how many of those 40 workers underwent biopsy. Another 12 (2.1 percent) workers with upper lobe fibrosis and negative or unconfirmed positive BeLPT were classified as ‘‘possible’’ CBD cases. Nine additional workers who were diagnosed with CBD before the screening were included in some parts of the authors’ analysis (Document ID 1352). The authors reported a total prevalence of 14.5 percent for CBD (definite and probable) and sensitization. This rate, considerably higher than the overall prevalence of sensitization and disease in several other worker cohorts as described earlier in this section, reflects in part the very high exposures experienced by many workers during the plant’s operation in the 1950s, 1960s and 1970s. A total of 115 workers had mean DWAs above the preceding OSHA PEL of 2 mg/m3. Of those, seven (6.0 percent) had definite or probable CBD and another 13 (11 percent) were classified as sensitized without disease. The true prevalence of CBD in the group may be higher than reported, due to the low rate of clinical evaluation among sensitized workers (Document ID 1352). Although most of the workers in this study had high exposures, sensitization and CBD also were observed within the small subgroup of participants believed to have relatively low beryllium exposures. Thirty-three cases of CBD and 24 additional cases of sensitization occurred among 339 workers with mean DWA exposures below OSHA’s PEL of 2.0 mg/m3 (Rosenman et al., Table 11, erratum 2006, Document ID 1352). Ten cases of sensitization and five cases of E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2504 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations CBD were found among office and clerical workers, who were believed to have low exposures (levels not reported). Follow-up time for sensitization screening of workers in this study who became sensitized during their employment had a minimum of 20 years to develop CBD prior to screening. In this sense the cohort is especially well suited to compare the exposure patterns of workers with CBD and those sensitized without disease, in contrast to several other studies of workers with only recent beryllium exposures. Rosenman et al. characterized and compared the exposures of workers with definite and probable CBD, sensitization only, and no disease or sensitization using chi-squared tests for discrete outcomes and analysis of variance (ANOVA) for continuous variables (cumulative, mean, and peak exposure levels). Exposure-response relationships were further examined with logistic regression analysis, adjusting for potential confounders including smoking, age, and beryllium exposure from outside of the plant. The authors found that cumulative, peak, and duration of exposure were significantly higher for workers with CBD than for sensitized workers without disease (p <0.05), suggesting that the risk of progressing from sensitization to CBD is related to the level or extent of exposure a worker experiences. The risk of developing CBD following sensitization appeared strongly related to exposure to poorly soluble forms of beryllium, which are cleared slowly from the lung and increase beryllium lung burden more rapidly than quickly mobilized soluble forms. Individuals with CBD had higher exposures to poorly soluble beryllium than those classified as sensitized without disease, while exposure to soluble beryllium was higher among sensitized individuals than those with CBD (Document ID 1352). Cumulative, mean, peak, and duration of exposure were found to be comparable for workers with CBD and workers without sensitization or CBD (‘‘normal’’ workers). Cumulative, peak, and duration of exposure were significantly lower for sensitized workers without disease than for normal workers. Rosenman et al. suggested that genetic predisposition to sensitization and CBD may have obscured an exposure-response relationship in this study, and plan to control for genetic risk factors in future studies. Exposure misclassification from the 1950s and 1960s may have been another limitation in this study, introducing bias that could have influenced the lack of VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 exposure response. It is also unknown if the 25 percent who died from CBDrelated conditions may have had higher exposures (Document ID 1352). A follow-up was conducted of the cross-sectional study of a population of workers first evaluated by Kreiss et al. (1997) (Document ID 1360) and Rosenman et al. (2005) (Document ID 1352) by Schuler et al. (2012) (Document ID 0473), and in a companion study by Virji et al. (2012) (Document ID 0466). Schuler et al. evaluated the worker population employed in 1999 with six years or less work tenure in a cross-sectional study. The investigators evaluated the worker population by administering a work history questionnaire with a follow-up examination for sensitization and CBD. A job-exposure matrix (JEM) was combined with work histories to create individual estimates of average, cumulative, and highest-job-related exposure for total, respirable, and submicron beryllium mass concentration. Of the 291 eligible workers, 90.7 percent (264) participated in the study. Sensitization prevalence was 9.8 percent (26/264) with CBD prevalence of 2.3 percent (6/264). The investigators found a general pattern of increasing sensitization prevalence as the exposure quartile increased indicating an exposure-response relationship. The investigators found positive associations with both total and respirable mass concentration with sensitization (average and highest job) and CBD (cumulative). Increased sensitization prevalence was observed with metal oxide production alloy melting and casting, and maintenance. CBD was associated with melting and casting. The investigators summarized that both total and respirable mass concentration were relevant predictors of risk (Schuler et al., 2012, Document ID 0473). In the companion study by Virji et al. (2012), the investigators reconstructed historical exposure from 1994 to 1999 utilizing the personal sampling data collected in 1999 as baseline exposure estimates (BEE) (Document ID 0466). The study evaluated techniques for reconstructing historical data to evaluate exposure-response relationships for epidemiological studies. The investigators constructed JEMs using the BEE and estimates of annual changes in exposure for 25 different process areas. The investigators concluded these reconstructed JEMs could be used to evaluate a range of exposure parameters from total, respirable and submicron mass concentration including cumulative, average, and highest exposure. PO 00000 Frm 00036 Fmt 4701 Sfmt 4700 e. Beryllium Machining Operations Newman et al. (2001) (Document ID 1354) and Kelleher et al. (2001) (Document ID 1363) studied a group of 235 workers at a beryllium metal machining plant. Since the plant opened in 1969, its primary operations have been machining and polishing beryllium metal and high-beryllium content composite materials, with occasional machining of beryllium oxide/metal matrix (‘E-metal’), and beryllium alloys. Other functions include machining of metals other than beryllium; receipt and inspection of materials; acid etching; final inspection, quality control, and shipping of finished materials; tool making; and engineering, maintenance, administrative, and supervisory functions (Newman et al., 2001, Document ID 1354; Madl et al., 2007 (1056)). Machining operations, including milling, grinding, lapping, deburring, lathing, and electrical discharge machining (EDM) were performed in an open-floor plan production area. Most non-machining jobs were located in a separate, adjacent area; however, non-production employees had access to the machining area. Engineering and administrative controls, rather than PPE, were primarily used to control beryllium exposures at the plant (Madl et al., 2007, Document ID 1056). Based on interviews with long-standing employees of the plant, Kelleher et al. reported that work practices were relatively stable until 1994, when a worker was diagnosed with CBD and a new exposure control program was initiated. Between 1995 and 1999, new engineering and work practice controls were implemented, including removal of pressurized air hoses and discouragement of dry sweeping (1995), enclosure of deburring processes (1996), mandatory uniforms (1997), and installation or updating of local exhaust ventilation (LEV) in EDM, lapping, deburring, and grinding processes (1998) (Madl et al., 2007, Document ID 1056). Throughout the plant’s history, respiratory protection was used mainly for ‘‘unusually large, anticipated exposures’’ to beryllium (Kelleher et al., 2001, Document ID 1363), and was not routinely used otherwise (Newman et al., 2001, Document ID 1354). All workers at the plant participated in a beryllium disease surveillance program initiated in 1994, and were screened for beryllium sensitization with the BeLPT beginning in 1995. A BeLPT result was considered abnormal if two or more of six stimulation indices exceeded the normal range (see section E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations on BeLPT testing above), and was considered borderline if one of the indices exceeded the normal range. A repeat BeLPT was conducted for workers with abnormal or borderline initial results. Workers were identified as beryllium sensitized and referred for a clinical evaluation, including BAL and transbronchial lung biopsy, if the repeat test was abnormal. CBD was diagnosed upon evidence of sensitization with granulomas or mononuclear cell infiltrates in the lung tissue (Newman et al., 2001, Document ID 1354). Following the initial plant-wide screening, plant employees were offered BeLPT testing at two-year intervals. Workers hired after the initial screening were offered a BeLPT within 3 months of their hire date, and at 2-year intervals thereafter (Madl et al., 2007, Document ID 1056). Kelleher et al. performed a nested case-control study of the 235 workers evaluated in Newman et al. (2001) to evaluate the relationship between beryllium exposure levels and risk of sensitization and CBD (Kelleher et al., 2001, Document ID 1363). The authors evaluated exposures at the plant using IH samples they had collected between 1996 and 1999, using personal cascade impactors designed to measure the mass of beryllium particles less than 6 mm in diameter, particles less than 1 mm in diameter, and total mass. The great majority of workers’ exposures were below the preceding OSHA PEL of 2 mg/ m3. However, a few higher exposure levels were observed in machining jobs including deburring, lathing, lapping, and grinding. Based on a statistical comparison between their samples and historical data provided by the plant, the authors concluded that worker beryllium exposures across all time periods included in the study parameters (1981 to 1984, 1995 to 1997, and 1998 to 1999) could be approximated using the 1996–1999 data. They estimated workers’ cumulative and ‘‘lifetime weighted’’ (LTW) beryllium exposure based on the exposure samples they collected for each job in 1996–1999 and company records of each worker’s job history. Twenty workers with beryllium sensitization or CBD (cases) were compared to 206 workers (controls) for the case-control analysis from the study evaluating workers originally conducted by Newman et al. Of the 20 workers composing the case group, thirteen workers were diagnosed with CBD based on lung biopsy evidence of granulomas and/or mononuclear cell infiltrates (11) or positive BAL results with evidence of lymphocytosis (2). The other seven were evaluated for CBD and found to be sensitized only. Nine of the VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 remaining 215 workers first identified in original study (Newman et al., 2001, Document ID 1354) were excluded due to incomplete job history information, leaving 206 workers in the control group. Kelleher et al.’s analysis included comparisons of the case and control groups’ median exposure levels; calculation of odds ratios for workers in high, medium, and low exposure groups; and logistic regression testing of the association of sensitization or CBD with exposure level and other variables. Median cumulative exposures for total mass, particles less than 6 mm in diameter, and particles less than 1 mm in diameter were approximately three times higher among the cases than controls, although the relationships observed were not statistically significant (p values ∼ 0.2). No clear difference between cases and controls was observed for the median LTW exposures. Odds ratios with sensitization and CBD as outcomes were elevated in high (upper third) and intermediate exposure groups relative to low (lowest third) exposure groups for both cumulative and LTW exposure, though the results were not statistically significant (p >0.1). In the logistic regression analysis, only machinist work history was a significant predictor of case status in the final model. Quantitative exposure measures were not significant predictors of sensitization or disease risk. Citing an 11.5 percent prevalence of beryllium sensitization or CBD among machinists as compared with 2.9 percent prevalence among workers with no machinist work history, the authors concluded that the risk of sensitization and CBD is increased among workers who machine beryllium. Although differences between cases and controls in median cumulative exposure did not achieve conventional thresholds for statistical significance, the authors noted that cumulative exposures were consistently higher among cases than controls for all categories of exposure estimates and for all particle sizes, suggesting an effect of cumulative exposure on risk. The levels at which workers developed CBD and sensitization were predominantly below OSHA’s preceding PEL of 2 mg/m3, and no cases of sensitization or CBD were observed among workers with LTW exposure less than 0.02 mg/m3. Twelve (60 percent) of the 20 sensitized workers had LTW exposures >0.20 mg/m3. In 2007, Madl et al. published an additional study of 27 workers at the machining plant who were found to be sensitized or diagnosed with CBD between the start of medical PO 00000 Frm 00037 Fmt 4701 Sfmt 4700 2505 surveillance in 1995 and 2005 (Madl et al., 2007, Document ID 1056). As previously described, workers were offered a BeLPT in the initial 1995 screening (or within 3 months of their hire date if hired after 1995) and at 2year intervals after their first screening. Workers with two positive BeLPTs were identified as sensitized and offered clinical evaluation for CBD, including bronchoscopy with BAL and transbronchial lung biopsy. The criteria for CBD in this study were somewhat stricter than those used in the Newman et al. study, requiring evidence of granulomas on lung biopsy or detection of X-ray or pulmonary function changes associated with CBD, in combination with two positive BeLPTs or one positive BAL-BeLPT. Based on the history of the plant’s control efforts and their analysis of historical IH data, Madl et al. identified three ‘‘exposure control eras’’: A relatively uncontrolled period from 1980–1995; a transitional period from 1996 to 1999; and a relatively wellcontrolled ‘‘modern’’ period from 2000– 2005. They found that the engineering and work practice controls instituted in the mid-1990s reduced workers’ exposures substantially, with nearly a 15-fold difference in reported exposure levels between the pre-control and the modern period (Madl et al., 2007, Document ID 1056). Madl et al. estimated workers’ exposures using LP samples collected between 1980 and 2005, including those collected by Kelleher et al., and work histories provided by the plant. As described more fully in the study, they used a variety of approaches to describe individual workers’ exposures, including approaches designed to characterize the highest exposures workers were likely to have experienced. Their exposure-response analysis was based primarily on an exposure metric they derived by identifying the year and job of each worker’s pre-diagnosis work history with the highest reported exposures. They used the upper 95th percentile of the LP samples collected in that job and year (in some cases supplemented with data from other years) to characterize the worker’s upper-level exposures. Based on their estimates of workers’ upper level exposures, Madl et al. concluded that sensitized workers or workers with CBD were likely to have been exposed to airborne beryllium levels greater than 0.2 mg/m3 as an 8hour TWA at some point in their history of employment in the plant. Madl et al. also concluded that most sensitization and CBD cases were likely to have been exposed to levels greater than 0.4 mg/m3 E:\FR\FM\09JAR2.SGM 09JAR2 2506 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS at some point in their work at the plant. Madl et al. did not reconstruct exposures for workers at the plant who were not sensitized and did not develop CBD and therefore could not determine whether non-cases had upper-bound exposures lower than these levels. They found that upper-bound exposure estimates were generally higher for workers with CBD than for those who were sensitized but not diagnosed with CBD at the conclusion of the study (Madl et al., 2007, Document ID 1056). Because CBD is an immunological disease and beryllium sensitization has been shown to occur within a year of exposure for some workers, Madl et al. argued that their estimates of workers’ short-term upper-bound exposures may better capture the exposure levels that led to sensitization and disease than estimates of long-term cumulative or average exposures such as the LTW exposure measure constructed by Kelleher et al. (Madl et al., 2007, Document ID 1056). f. Beryllium Oxide Ceramics Kreiss et al. (1993) conducted a screening of current and former workers at a plant that manufactured beryllium ceramics from beryllium oxide between 1958 and 1975, and then transitioned to metalizing circuitry onto beryllium ceramics produced elsewhere (Document ID 1478). Of the plant’s 1,316 current and 350 retired workers, 505 participated who had not previously been diagnosed with CBD or sarcoidosis, including 377 current and 128 former workers. Although beryllium exposure was not estimated quantitatively in this survey, the authors conducted a questionnaire to assess study participants’ exposures qualitatively. Results showed that 55 percent of participants reported working in jobs with exposure to beryllium dust. Close to 25 percent of participants did not know if they had exposure to beryllium, and just over 20 percent believed they had not been exposed. BeLPT tests were administered to all 505 participants in the 1989–1990 screening period and evaluated at a single lab. Seven workers had confirmed abnormal BeLPT results and were identified as sensitized; these workers were also diagnosed with CBD based on findings of granulomas upon clinical evaluation. Radiograph screening led to clinical evaluation and diagnosis of two additional CBD cases, who were among three participants with initially abnormal BeLPT results that could not be confirmed on repeat testing. In addition, nine workers had been previously diagnosed with CBD, and another five were diagnosed shortly VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 after the screening period, in 1991– 1992. Eight of the 9 CBD cases identified in the screening population were hired before the plant stopped producing beryllium ceramics in 1975, and were among the 216 participants who had reported having been near or exposed to beryllium dust. Particularly high CBD rates of 11.1 to 15.8 percent were found among screening participants who had worked in process development/ engineering, dry pressing, and ventilation maintenance jobs believed to have high or uncontrolled dust exposure. One case (0.6 percent) of CBD was diagnosed among the 171 study participants who had been hired after the plant stopped producing beryllium ceramics. Although this worker was hired eight years after the end of ceramics production, he had worked in an area later found to be contaminated with beryllium dust. The authors concluded that the study results suggested an exposure-response relationship between beryllium exposure and CBD, and recommended beryllium exposure control to reduce workers’ risk of CBD. Kreiss et al. later published a study of workers at a second ceramics plant located in Tucson, AZ (Kreiss et al., 1996, Document ID 1477), which since 1980 had produced beryllium ceramics from beryllium oxide powder manufactured elsewhere. IH measurements collected between 1981 and 1992, primarily GA or short-term BZ samples and a few (<100) LP samples, were available from the plant. Airborne beryllium exposures were generally low. The majority of area samples were below the analytical detection limit of 0.1 mg/m3, while LP and short-term BZ samples had medians of 0.3 mg/m3. However, 3.6 percent of short-term BZ samples and 0.7 percent of GA samples exceeded 5.0 mg/m3, while LP samples ranged from 0.1 to 1.8 mg/m3. Machining jobs had the highest beryllium exposure levels among job tasks, with short-term BZ samples significantly higher for machining jobs than for non-machining jobs (median 0.6 mg/m3 vs. 0.3 mg/m3, p = 0.0001). The authors used DWA formulas provided by the plant to estimate workers’ full-shift exposure levels, and to calculate cumulative and average beryllium exposures for each worker in the study. The median cumulative exposure was 591.7 mg-days/m3 and the median average exposure was 0.35 mg/ m3 as a DWA. One hundred thirty-six of the 139 workers employed at the plant at the time of the Kreiss et al. (1996) study underwent BeLPT screening and chest PO 00000 Frm 00038 Fmt 4701 Sfmt 4700 radiographs in 1992 (Document ID 1477). Blood samples were split between two laboratories. If one or both test results were abnormal, an additional sample was collected and split between the labs. Seven workers with an abnormal result on two draws were initially identified as sensitized. Those with confirmed abnormal BeLPTs or abnormal chest X-rays were offered clinical evaluation for CBD, including transbronchial lung biopsy and BAL BeLPT. CBD was diagnosed based on observation of granulomas on lung biopsy, in five of the six sensitized workers who accepted evaluation. An eighth case of sensitization and sixth case of CBD were diagnosed in one worker hired in October 1991 whose initial BeLPT was normal, but who was confirmed as sensitized and found to have lung granulomas less than two years later, after sustaining a berylliumcontaminated skin wound. The plant medical department reported 11 additional cases of CBD among former workers (Kreiss et al., 1996, Document ID 1477). The overall prevalence of sensitization in the plant was 5.9 percent, with a 4.4 percent prevalence of CBD. Kreiss et al. (1996) (Document ID 1477) reported that six (75 percent) of the eight sensitized workers were exposed as machinists during or before the period October 1985–March 1988, when measurements were first available for machining jobs. The authors reported that 14.3 percent of machinists were sensitized, compared to 1.2 percent of workers who had never been machinists (p <0.01). Workers’ estimated cumulative and average beryllium exposures did not differ significantly for machinists and nonmachinists, or for cases and non-cases. As in the previous study of the same ceramics plant published by Kreiss et al. in 1993 (Document ID 1478), one case of CBD was diagnosed in a worker who had never been employed in a production job. This worker was employed in office administration, a job with a median DWA of 0.1 mg/m3 (range 0.1–0.3 mg/m3). In 1998, Henneberger et al. conducted a follow-up cross-sectional survey of 151 employees employed at the beryllium ceramics plant studied by Kreiss et al. (1996) (Henneberger et al., 2001, Document ID 1313). All current plant employees were eligible for the study unless they had previously been diagnosed with CBD. The study tracked two sets of workers in presenting prevalence outcomes and exposure characterization. ‘‘Short-term workers’’ were those hired since the last plant survey in 1992. ‘‘Long-term workers’’ E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations were those hired before 1992 and had a longer history of beryllium exposures. There were 74 short-term and 77 longterm workers in the survey (Henneberger et al., 2001, Document ID 1313). The authors estimated workers’ cumulative, average, and peak beryllium exposures based on the plant’s formulas for estimating job-specific DWA exposures, participants’ work histories, and area and short-term task-specific BZ samples collected from the start of full production at the plant in 1981 to 1998. The long-term workers, who were hired before the 1992 study was conducted, had generally higher estimated exposures (median—0.39 mg/m3; mean—14.9 mg/m3) than the short-term workers, who were hired after 1992 (median—0.28 mg/m3, mean—6.1 mg/ m3). Fifteen cases of sensitization were found in the 151 study participants (15/ 151; 9.9%), including seven among short-term (7/74; 9.5%) and eight among long-term workers (8/77; 10.4%). There were eight cases of CBD (8/151; 5.3%) identified in the study. One sensitized short-term worker developed CBD (1/74; 1.4%). Seven of the eight sensitized long-term workers developed CBD (7/ 77; 9.1%). The other sensitized longterm worker declined to participate in the clinical evaluation. Henneberger et al. (2001) reported a higher prevalence of sensitization among long-term workers with ‘‘high’’ (greater than median) peak exposures compared to long-term workers with ‘‘low’’ exposures; however, this relationship was not statistically significant (Document ID 1313). No association was observed for average or cumulative exposures. The authors reported higher (but not statistically significant) prevalence of sensitization among short-term workers with ‘‘high’’ (greater than median) average, cumulative, and peak exposures compared to short-term workers with ‘‘low’’ exposures of each type. The cumulative incidence of sensitization and CBD was investigated in a cohort of 136 workers at the beryllium ceramics plant previously studied by the Kreiss and Henneberger groups (Schuler et al., 2008. Document ID 1291). The study cohort consisted of those who participated in the plantwide BeLPT screening in 1992. Both current and former workers from this group were invited to participate in follow-up BeLPT screenings in 1998, 2000, and 2002–2003. A total of 106 of the 128 non-sensitized individuals in 1992 participated in the 11-year followup. Sensitization was defined as a confirmed abnormal BeLPT based on VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 the split blood sample-dual laboratory protocol described earlier. CBD was diagnosed in sensitized individuals based on pathological findings from transbronchial biopsy and BAL fluid analysis. The 11-year crude cumulative incidence of sensitization and CBD was 13 percent (14 of 106) and 8 percent (9 of 106) respectively. The cumulative prevalence was about triple the point prevalences determined in the initial 1992 cross-sectional survey. The corrected cumulative prevalences for those that ever worked in machining were nearly twice that for nonmachinists. The data illustrate the value of longitudinal medical screening over time to obtain a more accurate estimate of the occurrence of sensitization and CBD among an exposed working population. Following the 1998 survey, the company continued efforts to reduce exposures and risk of sensitization and CBD by implementing additional engineering, administrative, and PPE measures (Cummings et al., 2007, Document ID 1369). Respirator use was required in production areas beginning in 1999, and latex gloves were required beginning in 2000. The lapping area was enclosed in 2000, and enclosures were installed for all mechanical presses in 2001. Between 2000 and 2003, waterresistant or water-proof garments, shoe covers, and taped gloves were incorporated to keep berylliumcontaining fluids from wet machining processes off the skin. The new engineering measures did not appear to substantially reduce airborne beryllium levels in the plant. LP samples collected between 2000 and 2003 had a median of 0.18 mg/m3 in production, similar to the 1994–1999 samples. However, respiratory protection requirements to control workers’ airborne beryllium exposures were instituted prior to the 2000 sample collections, so actual exposure to the production workers may have been lower than the airborne beryllium levels indicate. To test the efficacy of the new measures instituted after 1998, in January 2000 the company began screening new workers for sensitization at the time of hire and at 3, 6, 12, 24, and 48 months of employment. These more stringent measures appear to have substantially reduced the risk of sensitization among new employees. Of 126 workers hired between 2000 and 2004, 93 completed BeLPT testing at hire and at least one additional test at 3 months of employment. One case of sensitization was identified at 24 months of employment (1 percent of 126 workers). This worker had experienced a rash after an incident of dermal PO 00000 Frm 00039 Fmt 4701 Sfmt 4700 2507 exposure to lapping fluid through a gap between his glove and uniform sleeve, indicating that he may have become sensitized via the skin. He was tested again at 48 months of employment, with an abnormal result. A second worker in the 2000–2004 group had two abnormal BeLPT tests at the time of hire, and a third had one abnormal test at hire and a second abnormal test at 3 months. Both had normal BeLPTs at 6 months, and were not tested thereafter. A fourth worker had one abnormal BeLPT result at the time of hire, a normal result at 3 months, an abnormal result at 6 months, and a normal result at 12 months. Four additional workers had one abnormal result during surveillance, which could not be confirmed upon repeat testing. Cummings et al. (2007) calculated two sensitization rates based on these screening results: (1) A rate using only the sensitized worker identified at 24 months, and (2) a rate including all four workers who had repeated abnormal results (Document ID 1369). They reported a sensitization incidence rate (IR) of 0.7 per 1,000 person-months to 2.7 per 1,000 person-months for the workers hired between 2000 and 2004, using the sum of sensitization-free months of employment among all 93 workers as the denominator. The authors also estimated an incidence rate (IR) of 5.6 per 1,000 person-months for workers hired between 1993 and the 1998 survey. This estimated IR was based on one BeLPT screening, rather than BeLPTs conducted throughout the workers’ employment. The denominator in this case was the total months of employment until the 1998 screening. Because sensitized workers may have been sensitized prior to the screening, the denominator may overestimate sensitization-free time in the legacy group, and the actual sensitization IR for legacy workers may be somewhat higher than 5.6 per 1,000 person-months. Based on comparison of the IRs, the authors concluded that the addition of respirator use, dermal protection, and particle migration control (housekeeping) improvements appeared to have reduced the risk of sensitization among workers at the plant, even though airborne beryllium levels in some areas of the plant had not changed significantly since the 1998 survey. g. Copper-Beryllium Alloy Processing and Distribution Schuler et al. (2005) studied a group of 152 workers at a facility who processed copper-beryllium alloys and small quantities of nickel-beryllium alloys and converted semi-finished alloy E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2508 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations strip and wire into finished strip, wire, and rod. Production activities included annealing, drawing, straightening, point and chamfer, rod and wire packing, die grinding, pickling, slitting, and degreasing. Periodically in the plant’s history, it also performed salt baths, cadmium plating, welding and deburring. Since the late 1980s, rod and wire production processes have been physically segregated from strip metal production. Production support jobs included mechanical maintenance, quality assurance, shipping and receiving, inspection, and wastewater treatment. Administration was divided into staff primarily working within the plant and personnel who mostly worked in office areas (Schuler, et al., 2005, Document ID 0919). Workers’ respirator use was limited, mostly to occasional tasks where high exposures were anticipated. Following the 1999 diagnosis of a worker with CBD, the company surveyed the workforce, offering all current employees BeLPT testing in 2000 and offering sensitized workers clinical evaluation for CBD, including BAL and transbronchial biopsy. Of the facility’s 185 employees, 152 participated in the BeLPT screening. Samples were split between two laboratories, with additional draws and testing for confirmation if conflicting tests resulted in the initial draw. Ten participants (7 percent) had at least two abnormal BeLPT results. The results of nine workers who had abnormal BeLPT results from only one laboratory were not included because the authors believed the laboratory was experiencing technical problems with the test (Schuler et al., 2005, Document ID 0919). CBD was diagnosed in six workers (4 percent) on evidence of pathogenic abnormalities (e.g., granulomas) or evidence of clinical abnormalities consistent with CBD based on pulmonary function testing, pulmonary exercise testing, and/or chest radiography. One worker diagnosed with CBD had been exposed to beryllium during previous work at another copper-beryllium processing facility. Schuler et al. (2005) evaluated airborne beryllium levels at the plant using IH samples collected between 1969 and 2000, including 4,524 GA samples, 650 LP samples and 815 shortduration (3–5 min) high volume (SD– HV) BZ task-specific samples (Document ID 0919). Occupational exposures to airborne beryllium were generally low. Ninety-nine percent of all LP measurements were below the preceding OSHA PEL of 2.0 mg/m3 (8-hr TWA); 93 percent were below the new VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 final OSHA PEL of 0.2 mg/m3 and the median value was 0.02 mg/m3. The SD– HV BZ samples had a median value of 0.44 mg/m3, with 90 percent below the preceding OSHA ceiling limit of 5.0 mg/ m3. The highest levels of beryllium exposure were found in rod and wire production, particularly in wire annealing and pickling, the only production job with a median personal sample measurement greater than 0.1 mg/m3 (median 0.12 mg/m3; range 0.01– 7.8 mg/m3) (Schuler et al., Table 4). These concentrations were significantly higher than the exposure levels in the strip metal area (median 0.02 mg/m3, range 0.01–0.72 mg/m3), in production support jobs (median 0.02 mg/m3, range <0.01–0.33 mg/m3), plant administration (median 0.02 mg/m3, range <0.01–0.11 mg/m3), and office administration jobs (median 0.01 mg/m3, range <0.01–0.06 mg/m3). The authors reported that eight of the ten sensitized employees, including all six CBD cases, had worked in both major production areas during their tenure with the plant. The 7 percent prevalence (6 of 81 workers) of CBD among employees who had ever worked in rod and wire was statistically significantly elevated compared with employees who had never worked in rod and wire (p <0.05), while the 6 percent prevalence (6 of 94 workers) among those who had worked in strip metal was not significantly elevated compared to workers who had never worked in strip metal (p > 0.1). Based on these results, together with the higher exposure levels reported for the rod and wire production area, Schuler et al. (2005) concluded that work in rod and wire was a key risk factor for CBD in this population. Schuler et al. also found a high prevalence (13 percent) of sensitization among workers who had been exposed to beryllium for less than a year at the time of the screening, a rate similar to that found by Henneberger et al. (2001) among beryllium ceramics workers exposed for one year or less (16 percent) (Henneberger et al., 2001, Document ID 1313). All four workers who were sensitized without disease had been exposed for 5 years or less; conversely, all six of the workers with CBD had first been exposed to beryllium at least five years prior to the screening (Schuler et al., 2005, Table 2, Document ID 0919). As has been seen in other studies, beryllium sensitization and CBD were found among workers who were typically exposed to low time-weighted average airborne concentrations of beryllium. While jobs in the rod and wire area had the highest exposure levels in the plant, the median personal PO 00000 Frm 00040 Fmt 4701 Sfmt 4700 sample value was only 0.12 mg/m3 as a DWA. However, workers may have occasionally been exposed to higher beryllium levels for short periods during specific tasks. A small fraction of personal samples recorded in rod and wire were above the preceding OSHA PEL of 2.0 mg/m3, and half of workers with sensitization or CBD reported that they had experienced a ‘‘high-exposure incident’’ at some point in their work history (Schuler et al., 2005, Document ID 0919). The only group of workers with no cases of sensitization or CBD, a group of 26 office administration workers, was the group with the lowest recorded exposures (median personal sample 0.01 mg/m3, range <0.01–0.06 mg/ m3). After the BeLPT screening was conducted in 2000, the company began implementing new measures to further reduce workers’ exposure to beryllium (Thomas et al., 2009, Document ID 1061). Measures designed to minimize dermal contact with beryllium, including long-sleeve facility uniforms and polymer gloves, were instituted in production areas in 2000. In 2001, the company installed LEV in die grinding and polishing. LP samples collected between June 2000 and December 2001 show reduced exposures plant-wide. Of 2,211 exposure samples collected, 98 percent were below 0.2 mg/m3, and 59 percent below the limit of detection (LOD), which was either 0.02 mg/m3 or 0.2 mg/m3 depending on the method of sample analysis (Thomas et al., 2009). Median values below 0.03 mg/m3 were reported for all processes except the wire annealing and pickling process. Samples for this process remained somewhat elevated, with a median of 0.1 mg/m3. In January 2002, the plant enclosed the wire annealing and pickling process in a restricted access zone (RAZ), requiring respiratory protection in the RAZ and implementing stringent measures to minimize the potential for skin contact and beryllium transfer out of the zone. While exposure samples collected by the facility were sparse following the enclosure, they suggest exposure levels comparable to the 2000–2001 samples in areas other than the RAZ. Within the RAZ, required use of powered airpurifying respirators indicates that actual respiratory exposure was negligible (Thomas et al., 2009, Document ID 1061). To test the efficacy of the new measures in preventing sensitization and CBD, in June 2000 the facility began an intensive BeLPT screening program for all new workers. The company screened workers at the time of hire; at intervals of 3, 6, 12, 24, and 48 months; E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations and at 3-year intervals thereafter. Among 82 workers hired after 1999, three (3.7 percent) cases of sensitization were found. Two (5.4 percent) of 37 workers hired prior to enclosure of the wire annealing and pickling process were found to be sensitized within 6 months of beginning work at the plant. One (2.2 percent) of 45 workers hired after the enclosure was confirmed as sensitized (Thomas et al., 2009, Document ID 1061). Thomas et al. (2009) calculated a sensitization IR of 1.9 per 1,000 personmonths for the workers hired after the exposure control program was initiated in 2000 (‘‘program workers’’), using the sum of sensitization-free months of employment among all 82 workers as the denominator (Thomas et al., 2009, Document ID 1061). They calculated an estimated IR of 3.8 per 1,000 personmonths for 43 workers hired between 1993 and 2000 who had participated in the 2000 BeLPT screening (‘‘legacy workers’’). This estimated IR was based on one BeLPT screening, rather than BeLPTs conducted throughout the legacy workers’ employment. The denominator in this case is the total months of employment until the 2000 screening. Because sensitized workers may have been sensitized prior to the screening, the denominator may overestimate sensitization-free time in the legacy group, and the actual sensitization IR for legacy workers may be somewhat higher than 3.8 per 1,000 person-months. Based on comparison of the IRs and the prevalence rates discussed previously, the authors concluded that the combination of dermal protection, respiratory protection, housekeeping improvements and engineering controls implemented beginning in 2000 appeared to have reduced the risk of sensitization among workers at the plant. However, they noted that the small size of the study population and the short follow-up time for the program workers suggested that further research is needed to confirm the program’s efficacy (Thomas et al., 2009, Document ID 1061). Stanton et al. (2006) (Document ID 1070) conducted a study of workers in three different copper-beryllium alloy distribution centers in the United States. The distribution centers, consisting of one bulk products center established in 1963 and strip metal centers established in 1968 and 1972, sell products received from beryllium production and finishing facilities and small quantities of copper-beryllium, aluminumberyllium, and nickel-beryllium alloy materials. Work at distribution centers does not require large-scale heat treatment or manipulation of material VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 typical of beryllium processing and machining plants, but involves final processing steps that can generate airborne beryllium. Slitting, the main production activity at the two strip product distribution centers, generates low levels of airborne beryllium particles, while operations such as tensioning and welding used more frequently at the bulk products center can generate somewhat higher levels. Non-production jobs at all three centers included shipping and receiving, palletizing and wrapping, productionarea administrative work, and officearea administrative work. Stanton et al. (2006) estimated workers’ beryllium exposures using IH data from company records and job history information collected through interviews conducted by a company occupational health nurse (Document ID 1090). Stanton et al. evaluated airborne beryllium levels in various jobs based on 393 full-shift LP samples collected from 1996 to 2004. Airborne beryllium levels at the plant were generally very low, with 54 percent of all samples at or below the LOD, which ranged from 0.02 to 0.1 mg/m3. The authors reported a median of 0.03 mg/m3 and an arithmetic mean of 0.05 mg/m3 for the 393 full-shift LP samples, where samples below the LOD were assigned a value of half the applicable LOD. Median values for specific jobs ranged from 0.01–0.07 mg/m3 while geometric mean values for specific jobs ranged from 0.02–0.07 mg/m3. All measurements were below the preceding OSHA PEL of 2.0 mg/m3 and 97 percent were below the new final OSHA PEL of 0.2 mg/m3. The study does not report use of respiratory or skin protection. Eighty-eight of the 100 workers (88 percent) employed at the three centers at the time of the study participated in screening for beryllium sensitization. Blood samples were collected between November 2000 and March 2001 by the company’s medical staff. Samples collected from employees of the strip metal centers were split and evaluated at two laboratories, while samples from the bulk product center workers were evaluated at a single laboratory. Participants were considered to be ‘‘sensitized’’ to beryllium if two or more BeLPT results, from two laboratories or from repeat testing at the same laboratory, were found to be abnormal. One individual was found to be sensitized and was offered clinical evaluation, including BAL and fiberoptic bronchoscopy. He was found to have lung granulomas and was diagnosed with CBD. PO 00000 Frm 00041 Fmt 4701 Sfmt 4700 2509 The worker diagnosed with CBD had been employed at a strip metal distribution center from 1978 to 2000 as a shipper and receiver, loading and unloading trucks delivering materials from a beryllium production facility and to the distribution center’s customers. Although the LP samples collected for his job between 1996 and 2000 were generally low (n = 35, median 0.01 mg/ m3, range <0.02–0.13 mg/m3), it is not clear whether these samples adequately characterize his exposure conditions over the course of his work history. He reported that early in his work history, containers of beryllium oxide powder were transported on the trucks he entered. While he did not recall seeing any breaks or leaks in the beryllium oxide containers, some containers were known to have been punctured by forklifts on trailers used by the company during the period of his employment, and could have contaminated trucks he entered. With 22 years of employment at the facility, this worker had begun beryllium-related work earlier and performed it longer than about 90 percent of the study population (Stanton et al., 2006, Document ID 1090). h. Nuclear Weapons Production Facilities and Cleanup of Former Facilities Primary exposure from nuclear weapons production facilities comes from beryllium metal and beryllium alloys. A study conducted by Kreiss et al. (1989) (Document ID 1480) documented sensitization and CBD among beryllium-exposed workers in the nuclear industry. A company medical department identified 58 workers with beryllium exposure among a work force of 500, of whom 51 (88 percent) participated in the study. Twenty-four workers were involved in research and development (R&D), while the remaining 27 were production workers. The R&D workers had a longer tenure with a mean time from first exposure of 21.2 years, compared to a mean time since first exposure of 5 years among the production workers. Six workers had abnormal BeLPT readings, and four were diagnosed with CBD. This study classified workers as sensitized after one abnormal BeLPT reading, so this resulted in an estimated 11.8 percent prevalence of sensitization. Kreiss et al. (1993) expanded the work of Kreiss et al. (1989) (Document ID 1480) by performing a cross-sectional study of 895 current and former beryllium workers in the same nuclear weapons plant (Document ID 1479). Participants were placed in qualitative exposure groups (‘‘no exposure,’’ ‘‘minimal exposure,’’ ‘‘intermittent E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2510 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations exposure,’’ and ‘‘consistent exposure’’) based on questionnaire responses. Eighteen workers had abnormal BeLPT test results, with 12 being diagnosed with CBD. Three additional sensitized workers (those with abnormal BeLPT results) developed CBD over the next 2 years. Sensitization occurred in all of the qualitatively defined exposure groups. Individuals who had worked as machinists were statistically overrepresented among berylliumsensitized cases, compared with noncases. Cases were more likely than noncases to report having had a measured overexposure to beryllium (p = 0.009), a factor which proved to be a significant predictor of sensitization in logistic regression analyses, as was exposure to beryllium prior to 1970. Beryllium sensitized cases were also significantly more likely to report having had cuts that were delayed in healing (p = 0.02). The authors concluded that both individual susceptibility to sensitization and exposure circumstance affect the development of beryllium sensitization and CBD. In 1991, the Beryllium Health Surveillance Program (BHSP) was established at the Rocky Flats Nuclear Weapons Facility to offer BeLPT screening to current and former employees who may have been exposed to beryllium (Stange et al., 1996, Document ID 0206). Participants received an initial BeLPT and followups at one and three years. Based on histologic evidence of pulmonary granulomas and a positive BAL-BeLPT, Stange et al. published a study of 4,397 BHSP participants tested from June 1991 to March 1995, including current employees (42.8 percent) and former employees (57.2 percent). Twenty-nine cases of CBD and 76 cases of sensitization were identified. The sensitization rate for the population was 2.43 percent. Available exposure data included fixed airhead exposure samples collected between 1970 and 1988 (mean concentration 0.016 mg/m3) and personal samples collected between 1984 and 1987 (mean concentration 1.04 mg/m3). Cases of CBD and sensitization were noted in individuals in all jobs classifications, including those believed to involve minimal exposure to beryllium. The authors recommended ongoing surveillance for workers in all jobs with potential for beryllium exposure. Stange et al. (2001) extended the previous study, evaluating 5,173 participants in the Rocky Flats BHSP who were tested between June 1991 and December 1997 (Document ID 1403). Three-year serial testing was offered to employees who had not been tested for VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 three years or more and did not show beryllium sensitization during the previous study. This resulted in 2,891 employees being tested. Of the 5,173 workers participating in the study, 172 were found to have abnormal BeLPT test results. Ninety-eight (3.33 percent) of the workers were found to be sensitized (confirmed abnormal BeLPT results) in the initial screening, conducted in 1991. Of these workers 74 were diagnosed with CBD, based on a history of beryllium exposure, evidence of noncaseating granulomas or mononuclear cell infiltrates on lung biopsy, and a positive BeLPT or BAL-BeLPT. A follow-up survey of 2,891 workers three years later identified an additional 56 sensitized workers and an additional seven cases of CBD. Sensitization and CBD rates were analyzed with respect to gender, building work locations, and length of employment. Historical employee data included hire date, termination date, leave of absences, and job title changes. Exposure to beryllium was determined by job categories and building or work area codes. In order to determine beryllium exposure for all participants in the study, personal beryllium air monitoring results were used, when available, from employees with the same job title or similar job. However, no quantitative exposure information was presented in the study. The authors conclude that for some individuals, exposure to beryllium at levels below the preceding OSHA PEL appears to cause sensitization and CBD. Viet et al. (2000) conducted a casecontrol study of the Rocky Flats worker population studied by Stange et al. (1996 and 2001, Document ID 0206 and 1403) to examine the relationship between estimated beryllium exposure level and risk of sensitization or CBD. The worker population included 74 beryllium-sensitized workers and 50 workers diagnosed with CBD. Beryllium exposure levels were estimated based on fixed airhead samples from Building 444, the beryllium machine shop, where machine operators were considered to have the highest exposures at the Rocky Flats facility. These fixed air samples were collected away from the breathing zone of the machine operator and likely underestimated exposure. To estimate levels in other locations, these air sample concentrations were used to construct a job exposure matrix that included the determination of the Building 444 exposure estimates for a 30-year period; each subject’s work history by job location, task, and time period; and assignment of exposure estimates to each combination of job location, task, and time period as PO 00000 Frm 00042 Fmt 4701 Sfmt 4700 compared to Building 444 machinists. The authors adjusted the levels observed in the machine shop by factors based on interviews with former workers. Workers’ estimated mean exposure concentrations ranged from 0.083 mg/m3 to 0.622 mg/m3. Estimated maximum air concentrations ranged from 0.54 mg/m3 to 36.8 mg/m3. Cases were matched to controls of the same age, race, gender, and smoking status (Viet et al., 2000, Document ID 1344). Estimated mean and cumulative exposure levels and duration of employment were found to be significantly higher for CBD cases than for controls. Estimated mean exposure levels were significantly higher for sensitization cases than for controls but no significant difference was observed for estimated cumulative exposure or duration of exposure. Similar results were found using logistic regression analysis, which identified statistically significant relationships between CBD and both cumulative and mean estimated exposure, but did not find significant relationships between estimated exposure levels and sensitization without CBD. Comparing CBD with sensitization cases, Viet et al. found that workers with CBD had significantly higher estimated cumulative and mean beryllium exposure levels than workers who were sensitized but did not have CBD. Johnson et al. (2001) conducted a review of personal sampling records and medical surveillance reports at an atomic weapons establishment in Cardiff, United Kingdom (Document ID 1505). The study evaluated airborne samples collected over the 36-year period of operation for the plant. Data included 367,757 area samples and 217,681 personal lapel samples from 194 workers from 1981–1997. The authors estimated that over the 17 years of measurement data analyzed, airborne beryllium concentrations did exceed 2.0 mg/m3, but due to the limitations with regard to collection times, it is difficult to assess the full reliability of this estimate. The authors noted that in the entire plant’s history, only one case of CBD had been diagnosed. It was also noted that BeLPT had not been routinely conducted among any of the workers at this facility. Arjomandi et al. (2010) (Document ID 1275) conducted a cross-sectional study of workers at a nuclear weapons research and development (R&D) facility to determine the risk of developing CBD in sensitized workers at facilities with exposures much lower than production plants (Document ID 1275). Of the 1,875 current or former workers at the R&D facility, 59 were determined to be E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations sensitized based on at least two positive BeLPTs (i.e., samples drawn on two separate occasions or on split samples tested in two separate DOE-approved laboratories) for a sensitization rate of 3.1 percent. Workers found to have positive BeLPTs were further evaluated in an Occupational Medicine Clinic between 1999 and 2005. Arjomandi et al. (2010) evaluated 50 of the sensitized workers who also had medical and occupational histories, physical examination, chest imaging with highresolution computed tomography (HRCT) (N = 49), and pulmonary function testing (nine of the 59 workers refused physical examinations so were not included in this study). Forty of the 50 workers chosen for this study underwent bronchoscopy for bronchoalveolar lavage and transbronchial biopsies in additional to the other testing. Five of the 49 workers had CBD at the time of evaluation (based on histology or high-resolution computed tomography); three others had evidence of probable CBD; however, none of these cases were classified as severe at the time of evaluation. The rate of CBD at the time of study among sensitized individuals was 12.5 percent (5/40) for those using pathologic review of lung tissue, and 10.2 percent (5/49) for those using HRCT as a criteria for diagnosis. The rate of CBD among the entire population (5/1875) was 0.3 percent. The mean duration of employment at the facility was 18 years, and the mean latency period (from first possible exposure) to time of evaluation and diagnosis was 32 years. There was no available exposure monitoring in the breathing zone of workers at the facility, but the authors believed beryllium levels were relatively low (possibly less than 0.1 mg/m3 for most jobs). There was not an apparent exposure-response relationship for sensitization or CBD. The sensitization prevalence was similar across exposure categories and the CBD prevalence higher among workers with the lower-exposure jobs. The authors concluded that these sensitized workers, who were subjected to an extended duration of low potential beryllium exposures over a long latency period, had a low prevalence of CBD (Arjomandi et al., 2010, Document ID 1275). i. Aluminum Smelting Bauxite ore, the primary source of aluminum, contains naturally occurring beryllium. Worker exposure to beryllium can occur at aluminum smelting facilities where aluminum extraction occurs via electrolytic reduction of aluminum oxide into VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 aluminum metal. Characterization of beryllium exposures and sensitization prevalence rates were examined by Taiwo et al. (2010) in a study of nine aluminum smelting facilities from four different companies in the U.S., Canada, Italy, and Norway (Document ID 0621). Of the 3,185 workers determined to be potentially exposed to beryllium, 1,932 (60 percent) agreed to participate in a medical surveillance program between 2000 and 2006. The medical surveillance program included BeLPT analysis, confirmation of an abnormal BeLPT with a second BeLPT, and follow-up of all confirmed positive BeLPT results by a pulmonary physician to evaluate for progression to CBD. Eight-hour TWA exposures were assessed utilizing 1,345 personal samples collected from the 9 smelters. The personal beryllium samples obtained showed a range of 0.01–13.00 mg/m3 TWA with an arithmetic mean of 0.25 mg/m3 and geometric mean of 0.06 mg/m3. Based on a survey of published studies, the investigators concluded that exposure levels to beryllium observed in aluminum smelters were similar to those seen in other industries that utilize beryllium. Of the 1,932 workers surveyed by BeLPT, nine workers were diagnosed with sensitization (prevalence rate of 0.47 percent, 95% confidence interval = 0.21–0.88 percent) with 2 of these workers diagnosed with probable CBD after additional medical evaluations. The authors concluded that compared with beryllium-exposed workers in other industries, the rate of sensitization among aluminum smelter workers appears lower. The authors speculated that this lower observed rate could be related to a more soluble form of beryllium found in the aluminum smelting work environment as well as the consistent use of respiratory protection. However, the authors also speculated that the low participation rate of 60 percent may have underestimated the sensitization rate in this worker population. A study by Nilsen et al. (2010) also found a low rate of sensitization among aluminum workers in Norway. Threehundred sixty-two workers and thirtyone control individuals were tested for beryllium sensitization based on the BeLPT. The results found that one (0.28%) of the smelter workers had been sensitized. No borderline results were reported. The exposures estimated in this plant were 0.1 mg/m3 to 0.31 mg/m3 (Nilsen et al., 2010, Document ID 0460). 6. Animal Models of CBD This section reviews the relevant animal studies supporting the biological PO 00000 Frm 00043 Fmt 4701 Sfmt 4700 2511 mechanisms outlined above. In order for an animal model to be useful for investigating the mechanisms underlying the development of CBD, the model should include: The demonstration of a beryllium-specific immune response; the formation of immune granulomas following inhalation exposure to beryllium; and progression of disease as observed in human disease. While exposure to beryllium has been shown to cause chronic granulomatous inflammation of the lung in animal studies using a variety of species, most of the granulomatous lesions were not immune-induced reactions (which would predominantly consist of T-cells or lymphocytes), but were foreign-bodyinduced reactions, which predominantly consist of macrophages and monocytes, with only a small numbers of lymphocytes. Although no single model has completely mimicked the disease process as it progresses in humans, animal studies have been useful in providing biological plausibility for the role of immunological alterations and lung inflammation and in clarifying certain specific mechanistic aspects of beryllium disease, such as sensitization and CBD. However, there is no dependable animal model that mimics all facets of the human response, and studies thus far have been limited by single dose experiments, too few animals, or abbreviated observation periods. Therefore, the utility of this data is limited. The following is a discussion of the most relevant animal studies regarding the mechanisms of sensitization and CBD development in humans. Table A.2 in the Supplemental Information for the Beryllium Health Effects Section summarizes species, route, chemical form of beryllium, dose levels, and pathological findings of the key studies (Document ID 1965). Harmsen et al. performed a study to assess whether the beagle dog could provide an adequate model for the study of beryllium-induced lung diseases (Harmsen et al., 1986, Document ID 1257). One group of dogs served as an air inhalation control group and four other groups received high (approximately 50 mg/kg) and low (approximately 20 mg/kg) doses of beryllium oxide calcined at 500 °C or 1,000 °C, administered as aerosols in a single exposure.6 6 As discussed above, calcining temperature affects the solubility and SSA of beryllium particles. Those particles calcined at higher temperatures (e.g., 1,000 °C) are less soluble and have lower SSA than particles calcined at lower temperatures (e.g., 500 °C). Solubility and SSA are E:\FR\FM\09JAR2.SGM Continued 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2512 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations BAL content was collected at 30, 60, 90, 180, and 210 days after exposure, and lavage fluid and cellular content was evaluated for neutrophilic and lymphocytic infiltration. In addition, BAL cells were evaluated at the 210 day period to determine activation potential by phytohemagglutinin (PHA) or beryllium sulfate as mitogen. BAL neutrophils were significantly elevated only at 30 days with exposure to either dose of 500 °C beryllium oxide. BAL lymphocytes were significantly elevated at all time points of the high dose of beryllium oxide. No significant effect of 1,000 °C beryllium oxide exposure on mitogenic response of any lymphocytes was seen. In contrast, peripheral blood lymphocytes from the 500 °C beryllium oxide exposed groups were significantly stimulated by beryllium sulfate compared with the phytohemagglutinin exposed cells. Only the BAL lymphocytes from animals exposed to the 500 °C beryllium oxide responded to stimulation by either PHA or beryllium sulfate. In a series of studies, Haley et al. also found that the beagle dog models certain aspects of human CBD (Haley et al., 1989, 1991 and 1992; Document ID 1366, 1315, 1365. Briefly, dogs were exposed by inhalation to a single exposure to beryllium aerosol generated from beryllium oxide calcined at 500 °C or 1,000 °C for initial lung burdens of 17 or 50 mg beryllium/kg body weight (Haley et al., 1989, Document ID 1366; 1991 (1315)). The dogs were monitored for lung pathologic effects, particle clearance, and immune sensitization of peripheral blood leukocytes. Lung retention was higher in the 1,000 °C treated beryllium oxide group (Haley et al., 1989, Document ID 1366). Haley et al. (1989) described the bronchoalveolar lavage (BAL) and histopathological changes in dogs exposed as described above. One group of dogs underwent BAL for lung lymphocyte analysis at 3, 6, 7, 11, 15, 18, and 22 months post exposure. The investigators found an increase in the percentage and numbers of lymphocytes in BAL fluid at 3 months post-exposure in dogs exposed to either dose of beryllium oxide calcined at 500 °C and 1,000 °C. Positive BeLPT results were observed with BAL lymphocytes only in the group with a high initial lung burden of the material calcined at 500 °C at 3 and 6 month post exposure. Another group underwent histopathological examination at days 8, 32, 64, 180, and 365 (Haley et al., 1989, Document ID 1366; 1991 (1315)). factors in determining the toxic potential of beryllium compounds or materials. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 Histopathologic examination revealed peribronchiolar and perivascular lymphocytic histiocytic inflammation, peaking at 64 days after beryllium oxide exposure. Lymphocytes were initially well differentiated, but progressed to lymphoblastic cells and aggregated in lymphofollicular nodules or microgranulomas over time. Although there was considerable inter-animal variation, lesions were generally more severe in the dogs exposed to material calcined at 500 °C. The investigators observed granulomatous lesions and lung lymphocyte responses consistent with those observed in humans with CBD, including perivascular and peribronchiolar infiltrates of lymphocytes and macrophages, progressing to microgranulomas with areas of granulomatous pneumonia and interstitial fibrosis. However, lesions declined in severity after 64 days postexposure. The lesions found in dog lungs closely resembled those found in humans with CBD: Severe granulomas, lymphoblast transformation, increased pulmonary lymphocyte concentrations and variation in beryllium sensitivity. It was concluded that the canine model for CBD may provide insight into this disease. In a follow-up experiment, control dogs and those exposed to beryllium oxide calcined at 500 °C were allowed to rest for 2.5 years, and then re-exposed to filtered air (controls) or beryllium oxide calcined at 500 °C (cases) for an initial lung burden target of 50 mg beryllium oxide/kg body weight (Haley et al., 1992, Document ID 1365). Immune responses of blood and BAL lymphocytes, as well as lung lesions in dogs sacrificed 210 days post-exposure, were compared with results following the initial exposure. The severity of lung lesions was comparable under both conditions, suggesting that a 2.5-year interval was sufficient to prevent cumulative pathologic effects in beagle dogs. In a comparison study of dogs and monkeys, Conradi et al. (1971) exposed animals via inhalation to an average aerosol to either 0, 3,300 or 4,380 mg/m3 of beryllium as beryllium oxide calcined at 1,400 °C for 30 minutes, once per month for 3 months (Document ID 1319). Conradi et al. found no changes in the histological or ultrastructure of the lung of animals exposed to beryllium versus control animals. This was in contrast to previous findings reported in other studies cited by Conradi et al. The investigators speculated that the differences may be due in part to calcination temperature or follow-up time after initial exposure. The findings from Haley et al. (1989, PO 00000 Frm 00044 Fmt 4701 Sfmt 4700 Document ID 1366; 1991 (1915); and 1992 (1365)) as well as Harmsen et al. (1986, Document ID 1257) suggest that the beagle model for sensitization of CBD is more closely related to the human response that other species such as the monkey (and those reviewed in Table A2 of the Supplemental Information for the Beryllium Health Effects Section). A 1994 study by Haley et al. comparing the potential toxicity of beryllium oxide versus beryllium metal showed that instillation of both beryllium oxide and beryllium metal induced an immune response in monkeys. Briefly, male cynomolgus monkeys were exposed to either beryllium metal or beryllium oxide calcined at 500 °C via intrabronchiolar instillation as a saline suspension. Lymphocyte counts in BAL fluid were observed through bronchoalveolar lavage at 14, 30, 60, 90, and 120 days post exposure, and were found to be significantly increased in monkeys exposed to beryllium metal on postexposure days 14, 30, 60, and 90, and in monkeys exposed to beryllium oxide on post-exposure day 30 and 60. Histological examination of lung tissue revealed that monkeys exposed to beryllium metal developed interstitial fibrosis, Type II cell hyperplasia with increased lymphocytes infiltration, and lymphocytic mantles accumulating around alveolar macrophages. Similar but much less severe lesions were observed in beryllium-oxide-exposed monkeys. Only monkeys exposed to beryllium metal had positive BAL BeLPT results (Haley et al., 1994, Document ID 1364). As discussed earlier in this Health Effects section, at the cellular level, beryllium dissolution may be necessary in order for either a dendritic cell or a macrophage to present beryllium as an antigen to induce the cell-mediated CBD immune reactions (NAS, 2008, Document ID 1355). Several studies have shown that low-fired beryllium oxide, which is predominantly made up of poorly crystallized small particles, is more immunologically reactive than beryllium oxide calcined at higher firing temperatures that result in less reactivity due to increasing crystal size (Stefaniak et al., 2006, Document ID 1398). As discussed previously, Haley et al. (1989, Document ID 1366) found more severe lung lesions and a stronger immune response in beagle dogs receiving a single inhalation exposure to beryllium oxide calcined at 500 °C than in dogs receiving an equivalent initial lung burden of beryllium oxide calcined at 1,000 °C. Haley et al. found that beryllium oxide calcined at 1,000 °C E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations elicited little local pulmonary immune response, whereas the much more soluble beryllium oxide calcined at 500 °C produced a beryllium-specific, cellmediated immune response in dogs (Haley et al., 1989, Document ID 1366 and 1991 (1315)). In a later study, beryllium metal appeared to induce a greater toxic response than beryllium oxide following intrabronchiolar instillation in cynomolgus monkeys, as evidenced by more severe lung lesions, a larger effect on BAL lymphocyte counts, and a positive response in the BeLPT with BAL lymphocytes only after exposure to beryllium metal (Haley et al., 1994, Document ID 1364). A study by Mueller and Adolphson (1979) observed that an oxide layer can develop on berylliummetal surfaces after exposure to air (Mueller and Adolphson, 1979, Document ID 1260). According to the NAS report, Harmesen et al (1994) suggested that the presence of beryllium metal could lead to persistent exposures of small amounts beryllium oxide sufficient for presentation to the immune system (NAS, 2008, Document ID 1355). Genetic studies in humans led to the creation of an animal model containing different human HLA–DP alleles inserted into FVB/N mice for mechanistic studies of CBD. Three strains of genetically engineered mice (transgenic mice) were created that conferred different risks for developing CBD based on human studies (Weston et al., 2005, Document ID 1345; Snyder et al., 2008 (0471)): (1) The HLA– DPB1*0401 transgenic strain, where the transgene codes for lysine residue at the 69th position of the B-chain conferred low risk of CBD; (2) the HLA– DPB1*0201 mice, where the transgene codes for glutamic acid residue at the 69th position of the B-chain conferred medium risk of CBD; and (3) the HLA– DPB1*1701 mice, where the transgene codes for glutamic acid at the 69th position of the B-chain but coded for a more negatively charged protein to confer higher risk of CBD (TarantinoHutchinson et al., 2009, Document ID 0536). In order to validate the transgenic model, Tarantino-Hutchison et al. challenged the transgenic mice along with seven different inbred mouse strains to determine the susceptibility and sensitivity to beryllium exposure. Mice were dermally exposed with either saline or beryllium, then challenged with either saline or beryllium (as beryllium sulfate) using the MEST protocol (mouse ear-swelling test). The authors determined that the high risk HLA–DPB1*1701 transgenic strain VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 responded 4 times greater (as measured via ear swelling) than control mice and at least 2 times greater than other strains of mice. The findings correspond to epidemiological study results reporting an enhanced CBD odds ratio for the HLA–DPB1*1701 in humans (Weston et al., 2005, Document ID 1345; Snyder et al., 2008 (0471)). Transgenic mice with the genes corresponding to the low and medium odds ratio study did not respond significantly over the control group. The authors concluded that while HLA–DPB1*1701 is important to beryllium sensitization and progression to CBD, other genetic and environmental factors contribute to the disease process as well. 7. Beryllium Sensitization and CBD Conclusions There is substantial evidence that skin and inhalation exposure to beryllium may lead to sensitization (section V.D.1) and that inhalation exposure, or skin exposure coupled with inhalation exposure, may lead to the onset and progression of CBD (section V.D.2). These conclusions are supported by extensive human studies (section V.D.5). While all facets of the biological mechanism for this complex disease have yet to be fully elucidated, many of the key events in the disease sequence have been identified and described in the earlier sections (sections V.D.1–5). Sensitization is considered to be a necessary first step to the onset of CBD (NAS, 2008, Document ID 1355; ERG, 2010 (1270)). Sensitization is the process by which the immune system recognizes beryllium as a foreign substance and responds in a manner that may lead to development of CBD. It has been documented that a substantial proportion of sensitized workers exposed to airborne beryllium can progress to CBD (Rosenman et al., 2005, Document ID 1352; NAS, 2008 (1355); Mroz et al., 2009 (1356)). Animal studies, particularly in dogs and monkeys, have provided supporting evidence for T cell lymphocyte proliferation in the development of granulomatous lung lesions after exposure to beryllium (Harmsen et al., 1986, Document ID 1257; Haley et al., 1989 (1366), 1992 (1365), 1994 (1364)). The animal studies have also provided important insights into the roles of chemical form, genetic susceptibility, and residual lung burden in the development of beryllium lung disease (Harmsen et al., 1986, Document ID 1257; Haley et al., 1992 (1365); Tarantino-Hutchison et al., 2009 (0536)). The evidence supports sensitization as an early functional change that allows the immune system PO 00000 Frm 00045 Fmt 4701 Sfmt 4700 2513 to recognize and adversely react to beryllium. As such, OSHA regards beryllium sensitization as a necessary first step along a continuum that can culminate in clinical lung disease. The epidemiological evidence presented in section V.D.5 demonstrates that sensitization and CBD are continuing to occur from exposures below OSHA’s preceding PEL. The prevalence of sensitization among beryllium-exposed workers, as measured by the BeLPT and reported in 16 surveys of occupationally exposed cohorts reviewed by the Agency, ranged from 0.3 to 14.5 percent (Deubner et al., 2001, Document ID 1543; Kreiss et al., 1997 (1360); Rosenman et al., 2005 (1352); Schuler et al., 2012 (0473); Bailey et al., 2010 (0676); Newman et al., 2001 (1354); OSHA, 2014 (1589); Kreiss et al., 1996 (1477); Henneberger et al., 2001 (0589); Cummings et al., 2007 (1369); Schuler et al., 2005 (0919); Thomas et al., 2009 (1061); Kreiss et al., 1989 (1480); Arjomandi et al., 2010 (1275); Taiwo et al., 2011 (0621); Nilson et al., 2010 (0460)). The lower prevalence estimates (0.3 to 3.7 percent) were from facilities known to have implemented respiratory protection programs and have lower personal exposures (Cummings et al., 2007, Document ID 1369; Thomas et al., 2009 (1061); Bailey et al., 2010 (0676); Taiwo et al, 2011 (0621), Nilson et al., 2010 (0460); Arjomandi et al., 2010 (1275)). Thirteen of the surveys also evaluated workers for CBD and reported prevalences of CBD ranging from 0.1 to 7.8 percent. The cohort studies cover workers across many different industries and processes as discussed in section V.D.5. Several studies show that incidence of sensitization among workers can be reduced by reducing inhalation exposure and that minimizing skin exposure may serve to further reduce sensitization (Cummings et al., 2007, Document ID 1369; Thomas et al., 2009 (1061); Bailey et al., 2010 (0676)). The risk assessment further discusses the effectiveness of interventions to reduce beryllium exposures and the risk of sensitization and CBD (see section VI of this preamble, Risk Assessment). Longitudinal studies of sensitized workers found early signs of asymptomatic CBD that can progress to clinical disease in some individuals. One study found that 31 percent of beryllium-exposed sensitized employees progressed to CBD with an average follow-up time of 3.8 years (Newman, 2005, Document ID 1437). However, Newman (2005) went on to suggest that if follow-up times were much longer, the rate of progression from E:\FR\FM\09JAR2.SGM 09JAR2 2514 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS sensitization to CBD could be much higher. Mroz et al. (2009) (Document ID 1356) conducted a longitudinal study between 1982 and 2002 in which they followed 171 cases of CBD and 229 cases of sensitization initially evaluated through workforce medical surveillance by National Jewish Health. All study subjects had abnormal BeLPTs upon study entry and were then clinically evaluated and treated for CBD. Over the 20-year study period, 22 sensitized individuals went on to develop CBD which was an incidence of 8.8 percent (i.e., 22 cases out of 251 sensitized, calculated by adding those 22 cases to the 229 initially classified as sensitized). The findings from this study indicated that the average span of time from initial beryllium exposure to CBD diagnosis for those 22 workers was 24 years (Mroz et al., 2009, Document ID 1356). A study of sensitized workers believed to have been exposed to low levels of airborne beryllium metal (e.g., 0.01 mg/m3 or less) at a nuclear weapons research and development facility were clinically evaluated between 1999 and 2005 (Arjomandi et al., 2010, Document ID 1275). Five of 49 sensitized workers (10.2 percent incidence) were found to have pathology consistent with CBD. The CBD was asymptomatic and had not progressed to clinical disease. The mean duration of employment among workers in the study was 18 years with mean latency of 32 years to time of CBD diagnosis (Arjomandi et al., 2010, Document ID 1275). This suggests that some sensitized individuals can develop CBD even from low levels of beryllium exposure. Another study of nuclear weapons facility employees enrolled in an ongoing medical surveillance program found that sensitization rate among exposed workers was highest over the first 10 years of beryllium exposure while onset of CBD pathology was greatest following 15 to 30 years of exposure (Stange et al., 2001, Document ID 1403). This indicates length of exposure may play a role in further development of the disease. OSHA concludes from the study evidence that the persistent presence of beryllium in the lungs of sensitized workers can lead to a progression of CBD over time from an asymptomatic stage to serious clinical disease. E. Beryllium Lung Cancer Section Beryllium exposure is associated with a variety of adverse health effects, including lung cancer. The potential for beryllium and its compounds to cause cancer has been previously assessed by various other agencies (EPA, ATSDR, NAS, NIEHS, and NIOSH), with each agency identifying beryllium as a VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 potential carcinogen. In addition, IARC did an extensive evaluation in 1993 (Document ID 1342) and reevaluation in April 2009 (IARC, 2012, Document ID 0650). In brief, IARC determined beryllium and its compounds to be carcinogenic to humans (Group 1 category), while EPA considers beryllium to be a probable human carcinogen (EPA, 1998, Document ID 0661), and the National Toxicology Program (NTP) classifies beryllium and its compounds as known carcinogens (NTP, 2014, Document ID 0389). OSHA has conducted an independent evaluation of the carcinogenic potential of beryllium and these compounds. The following is a summary of the studies used to support the Agency’s finding that beryllium and its compounds are human carcinogens. 1. Genotoxicity Studies Genotoxicity can be an important indicator for screening the potential of a material to induce cancer and an important mechanism leading to tumor formation and carcinogenesis. In a review conducted by the National Academy of Science, beryllium and its compounds have tested positively in nearly 50 percent of the genotoxicity studies conducted without exogenous metabolic activity. However, they were found to be non-genotoxic in most bacterial assays (NAS, 2008, Document ID 1355). Non-mammalian test systems (generally bacterial assays) are often used to identify genotoxicity of a compound. In bacteria studies evaluating beryllium sulfate for mutagenicity, all studies performed utilizing the Ames assay (Simmon, 1979, Document ID 0434; Dunkel et al., 1981 (0432); Arlauskas et al., 1985 (0454); Ashby et al., 1990 (0437)) and other bacterial assays (E. coli pol A (Rosenkranz and Poirer, 1979, Document ID 1426); E. coli WP2 uvrA (Dunkel et al., 1981, Document ID 0432), as well as those utilizing Saccharomyces cerevisiae (Simmon, 1979, Document ID 0434)) were reported as negative, with the exception of results reported for Bacillus subtilis rec assay (Kada et al., 1980, Document ID 0433; Kanematsu et al., 1980 (1503)). Beryllium nitrate was also reported as negative in the Ames assay (Tso and Fung, 1981, Document ID 0446; Kuroda et al., 1991 (1471)) but positive in a Bacillus subtilis rec assay (Kuroda et al., 1991, Document ID 1471). In addition, beryllium chloride was reported as negative using the Ames assay (Ogawa et al., 1987, as cited in Document ID 1341, p. 112; Kuroda et al., 1991 (1471)) and other bacterial assays (E. coli WP2 PO 00000 Frm 00046 Fmt 4701 Sfmt 4700 uvrA (Rossman et al., 1984, Document ID 0431), as well as the Bacillus subtilis rec assay (Nishioka, 1975, Document ID 0449)) and failed to induce SOS DNA repair in E. coli (Rossman et al., 1984, Document ID 0431). Positive results for beryllium chloride were reported for Bacillus subtilis rec assay using spores (Kuroda et al., 1991, Document ID 1471) as well as increased mutations in the lacI gene of E. coli KMBL 3835 (Zakour and Glickman, 1984, Document ID 1373). Beryllium oxide was reported to be negative in the Ames assay and Bacillus subtilis rec assays (Kuroda et al., 1991, Document ID 1471; EPA, 1998 (0661)). Mutations using in vitro mammalian systems were also evaluated. Beryllium chloride induced mutations in V79 and CHO cultured cells (Miyaki et al., 1979, Document ID 0450; Hsie et al., 1978 (0427); Vegni-Talluri and Guiggiani, 1967 (1382)), and beryllium sulfate induced clastogenic alterations, producing breakage or disrupting chromosomes in mammalian cells (Brooks et al., 1989, Document ID 0233; Larramendy et al., 1981 (1468); Gordon and Bowser, 2003 (1520)). However, beryllium sulfate did not induce unscheduled DNA synthesis in primary rat hepatocytes and was not mutagenic when injected intraperitoneally in adult mice in a host-mediated assay using Salmonella typhimurium (Williams et al., 1982). Positive results were found for beryllium chloride when evaluating the hprt gene in Chinese hamster lung V79 cells (Miyaki et al., 1979, Document ID 0450). Data from in vivo genotoxicity testing of beryllium are limited. Beryllium metal was found to induce methylation of the p16 gene in the lung tumors of rats exposed to beryllium metal (Swafford et al., 1997, Document ID 1392) (described in more detail in section V.E.3). A study by Nickell-Brady et al., (1994) found that beryllium sulfate (1.4 and 2.3 g/kg, 50 percent and 80 percent of median lethal dose) administered by gavage did not induce micronuclei in the bone marrow of CBA mice. However, a marked depression of red blood cell production was suggestive of bone marrow toxicity, which was evident 24 hours after dosing. No mutations were seen in p53 or c-raf-1 and only weak mutations were detected in K-ras in lung carcinomas from F344/N rats given a single noseonly exposure to beryllium metal (described in more detail in section V. E. 3) (Nickell-Brady et al., 1994, Document ID 1312). On the other hand, beryllium chloride evaluated in a mouse model indicated increased DNA strand breaks and the formation of micronuclei E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations in bone marrow (Attia et al., 2013, Document ID 0501). In summary, genetic mutations have been observed in mammalian systems (in vitro and in vivo) with beryllium chloride, beryllium sulfate, and beryllium metal in a number of studies (Miyaki et al., 1979, Document ID 0450; Hsie et al., 1978 (0427); Vegni-Talluri and Guiggiani, 1967 (1382); Brooks et al., 1989 (0233); Larramendy et al., 1981 (1468); Miyaki et al., 1979 (0450); Swafford et al., 1997 (1392); Attia et al., 2013 (0501); EPA, 1998 (0661); Gordon and Bowser, 2003 (1520)). However, most studies utilizing non-mammalian test systems (either with or without metabolic activity) have found that beryllium chloride, beryllium nitrate, beryllium sulfate, and beryllium oxide did not induce gene mutations, with the exception of Kada et al. (1980, Document ID 0433) (Kanematsu et al.,1980, Document ID 1503; Kuroda et al., 1991 (1471)). asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2. Human Epidemiological Studies This section describes the human epidemiological data supporting the mechanistic overview of berylliuminduced lung cancer in workers. It has been divided into reviews of epidemiological studies by industry and beryllium form. The epidemiological studies utilizing data from the BCR, in general, focus on workers mainly exposed to soluble forms of beryllium. Those studies evaluating the epidemiological evidence by industry or process are, in general, focused on exposures to poorly soluble or mixed (soluble and poorly soluble) compounds. Table A.3 in the Supplemental Information for the Beryllium Health Effects Section summarizes the important features and characteristics of each study discussed herein (Document ID 1965). a. Beryllium Case Registry (BCR) Two studies evaluated participants in the BCR (Infante et al., 1980, Document ID 1507; Steenland and Ward, 1991 (1400)). Infante et al. (1980) evaluated the mortality patterns of white male participants in the BCR diagnosed with non-neoplastic respiratory symptoms of beryllium disease. Of the 421 cases evaluated, 7 of the participants had died of lung cancer. Six of the deaths occurred more than 15 years after initial beryllium exposure. The duration of exposure for 5 of the 7 participants with lung cancer was less than 1 year, with the time since initial exposure ranging from 12 to 29 years. One of the participants was exposed for 4 years with a 26-year interval since the initial exposure. Exposure duration for one VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 participant diagnosed with pulmonary fibrosis could not be determined; however, it had been 32 years since the initial exposure. Based on BCR records, the participants were classified as being in the acute respiratory group (i.e., those diagnosed with acute respiratory illness at the time of entry in the registry) or the chronic respiratory group (i.e., those diagnosed with pulmonary fibrosis or some other chronic lung condition at the time of entry into the BCR). The 7 participants with lung cancer were in the BCR because of diagnoses of acute respiratory illness. For only one of those individuals was initial beryllium exposure less than 15 years prior. Only 1 of the 6 (with greater than 15 years since initial exposure to beryllium) had been diagnosed with chronic respiratory disease. The study did not report exposure concentrations or smoking habits. The authors concluded that the results from this cohort agreed with previous animal studies and with epidemiological studies demonstrating an increased risk of lung cancer in workers exposed to beryllium. Steenland and Ward (1991) (Document ID 1400) extended the work of Infante et al. (1980) (Document ID 1507) to include females and to include 13 additional years of follow-up. At the time of entry in the BCR, 93 percent of the women in the study, but only 50 percent of the men, had been diagnosed with CBD. In addition, 61 percent of the women had worked in the fluorescent tube industry and 50 percent of the men had worked in the basic manufacturing industry with confirmed beryllium exposure. A total of 22 males and 6 females died of lung cancer. Of the 28 total deaths from lung cancer, 17 had been exposed to beryllium for less than 4 years and 11 had been exposed for greater than 4 years. The study did not report exposure concentrations. Survey data collected in 1965 provided information on smoking habits for 223 cohort members (32 percent), on the basis of which the authors suggested that the rate of smoking among workers in the cohort may have been lower than U.S. rates. The authors concluded that there was evidence of increased risk of lung cancer in workers exposed to beryllium and then diagnosed with beryllium disease (ABD and CBD). b. Beryllium Manufacturing and/or Processing Plants (Extraction, Fabrication, and Processing) Several epidemiological cohort studies have reported excess lung cancer mortality among workers employed in U.S. beryllium production and processing plants during the 1930s to 1960s. PO 00000 Frm 00047 Fmt 4701 Sfmt 4700 2515 Bayliss et al. (1971) (Document ID 1285) performed a nested cohort study of 7,948 former workers from the beryllium processing industry who were employed from 1942–1967. Information for the workers was collected from the personnel files of participating companies. Of the 7,948 employees, a cause of death was known for 753 male workers. The number of observed lung cancer deaths was 36 compared to 34.06 expected for a standardized mortality ratio (SMR) of 1.06. When evaluated by the number of years of employment, 24 of the 36 men were employed for less than 1 year in the industry (SMR = 1.24), 8 were employed for 1 to 5 years (SMR 1.40), and 4 were employed for more than 5 years (SMR = 0.54). Half of the workers who died from lung cancer began employment in the beryllium production industry prior to 1947. When grouped by job classification, over two thirds of the workers with lung cancer were in production-related jobs while the rest were classified as office workers. The authors concluded that while the lung cancer mortality rates were the highest of all other mortality rates, the SMR for lung cancer was still within range of the expected based on death rates in the United States. The limitations of this study included the lack of information regarding exposure concentrations, smoking habits, and the age and race of the participants. Mancuso (1970, Document ID 1453; 1979, (0529); 1980 (1452)) and Mancuso and El-Attar (1969) (Document ID 1455) performed a series of occupational cohort studies on a group of workers (primarily white males) employed in the beryllium manufacturing industry during 1937–1948. The cohort identified in Mancuso and El-Attar (1969) was a study of 3,685 workers (primarily white males) while Mancuso (1970, 1976, 1980) continued the study follow-up with 3266 workers due to several limitations in identifying specific causes for mortality as identified in Mancuso and El-Attar (1969). The beryllium production facilities were located in Ohio and Pennsylvania and the records for the employees, including periods of employment, were obtained from the Social Security Administration. These studies did not include analyses of mortality by job title or exposure category (exposure data was taken from a study by Zielinsky et al., 1961 (as cited in Mancuso, 1970)). In addition, there were no exposure concentrations estimated or adjustments for smoking. The estimated duration of employment ranged from less than 1 year to greater than 5 years. In the most recent study (Mancuso, 1980), employees from the E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2516 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations viscose rayon industry served as a comparison population. There was a significant excess of lung cancer deaths based on the total number of 80 observed lung cancer mortalities at the end of 1976 compared to an expected number of 57.06 based on the comparison population resulting in an SMR of 1.40 (p <0.01) (Mancuso, 1980). There was a statistically significant excess in lung cancer deaths for the shortest duration of employment (<12 months, p <0.05) and the longest duration of employment (>49 months, p <0.01). Based on the results of this study, the author concluded that the ability of beryllium to induce cancer in workers does not require continuous exposure and that it is reasonable to assume that the amount of exposure required to produce lung cancer can occur within a few months of initial exposure regardless of the length of employment. Wagoner et al. (1980) (Document ID 1379) expanded the work of Mancuso (1970, Document ID 1453; 1979 (0529); 1980 (1452)) using a cohort of 3,055 white males from the beryllium extraction, processing, and fabrication facility located in Reading, Pennsylvania. The men included in the study worked at the facility sometime between 1942 and 1968, and were followed through 1976. The study accounted for length of employment. Other factors accounted for included age, smoking history, and regional lung cancer mortality. Forty-seven members of the cohort died of lung cancer compared to an expected 34.29 based on U.S. white male lung cancer mortality rates (p <.05). The results of this cohort showed an excess risk of lung cancer in beryllium-exposed workers at each duration of employment (<5 years and ≥5 years), with a statistically significant excess noted at <5 years of employment and a ≥25-year interval since the beginning of employment (p <0.05). The study was criticized by two epidemiologists (MacMahon, 1978, Document ID 0107; Roth, 1983 (0538)), by a CDC Review Committee appointed to evaluate the study (as cited in Document ID 0067), and by one of the study’s coauthors (Bayliss, 1980, Document ID 0105) for inadequate discussion of possible alternative explanations of excess lung cancer in the cohort. The specific issues identified include the use of 1965–1967 U.S. white male lung cancer mortality rates to generate expected numbers of lung cancers in the period 1968–1975 (which may underestimate the expected number of lung cancer deaths for the VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 cohort) and inadequate adjustment for smoking. One occupational nested case-control study evaluated lung cancer mortality in a cohort of 3,569 male workers employed at a beryllium alloy production plant in Reading, PA, from 1940 to 1969 and followed through 1992 (Sanderson et al., 2001, Document ID 1250). There were a total of 142 known lung cancer cases and 710 controls. For each lung cancer death, 5 age- and racematched controls were selected by incidence density sampling. Confounding effects of smoking were evaluated. Job history and historical air measurements at the plant were used to estimate job-specific beryllium exposures from the 1930s to 1990s. Calendar-time-specific beryllium exposure estimates were made for every job and used to estimate workers’ cumulative, average, and maximum exposures. Because of the long period of time required for the onset of lung cancer, an ‘‘exposure lag’’ was employed to discount recent exposures less likely to contribute to the disease. The largest and most comprehensive study investigated the mortality experience of 9,225 workers employed in 7 different beryllium processing plants over a 30-year period (Ward et al., 1992, Document ID 1378). The workers at the two oldest facilities (i.e., Lorain, OH, and Reading, PA) were found to have significant excess lung cancer mortality relative to the U.S. population. The workers at these two plants were believed to have the highest exposure levels to beryllium. Ward et al. (1992) performed a retrospective mortality cohort study of 9,225 male workers employed at seven beryllium processing facilities, including the Ohio and Pennsylvania facilities studied by Mancuso and El-Attar (1969) (Document ID 1455), Mancuso (1970, Document ID 1453; 1979 (0529); 1980 (1452)), and Wagoner et al. (1980) (Document ID 1379). The men were employed for no less than 2 days between January 1940 and December 1969. Medical records were followed through 1988. At the end of the study 61.1 percent of the cohort was known to be living and 35.1 percent was known to be deceased. The duration of employment ranged from 1 year or less to greater than 10 years with the largest percentage of the cohort (49.7 percent) employed for less than one year, followed by 1 to 5 years of employment (23.4 percent), greater than 10 years (19.1 percent), and 5 to 10 years (7.9 percent). Of the 3,240 deaths, 280 observed deaths were caused by lung cancer compared to 221.5 expected deaths, yielding a statistically significant SMR of 1.26 (p <0.01). PO 00000 Frm 00048 Fmt 4701 Sfmt 4700 Information on the smoking habits of 15.9 percent of the cohort members, obtained from a 1968 Public Health Service survey conducted at four of the plants, was used to calculate a smokingadjusted SMR of 1.12, which was not statistically significant. The number of deaths from lung cancer was also examined by decade of hire. The authors reported a relationship between earlier decades of hire and increased lung cancer risk. A different analysis of the lung cancer mortality in this cohort using various local reference populations and alternate adjustments for smoking generally found smaller, non-significant rates of excess mortality among the beryllium-exposed employees (Levy et al., 2002, Document ID 1463). Both cohort studies (Levy et al., 2002, Document ID 1463; Ward et al., 1992 (1378)) are limited by a lack of job history and air monitoring data that would allow investigation of mortality trends with different levels and durations of beryllium exposure. The majority of employees at the Lorain, OH, and Reading, PA, facilities were employed for a relatively short period of less than one year. Levy et al. (2002) (Document ID 1463) questioned the results of Ward et al. (1992) (Document ID 1378) and performed a reanalysis of the Ward et al. data. The Levy et al. reanalysis differed from the Ward et al. analysis in the following significant ways. First, Levy et al. (2002) (Document ID 1463) examined two alternative adjustments for smoking, which were based on (1) a different analysis of the American Cancer Society (ACS) data used by Ward et al. (1992) (Document ID 1378) for their smoking adjustment, or (2) results from a smoking/lung cancer study of veterans. Second, Levy et al. (2002) also examined the impact of computing different reference rates derived from information about the lung cancer rates in the cities in which most of the workers at two of the plants lived (Document ID 1463). Finally, Levy et al. (2002) considered a meta-analytical approach to combining the results across beryllium facilities (Document ID 1463). For all of the alternatives Levy et al. (2002) (Document ID 1463) considered, except the meta-analysis, the facility-specific and combined SMRs derived were lower than those reported by Ward et al. (1992) (Document ID 1378). Only the SMR for the Lorain, OH, facility remained statistically significantly elevated in some reanalyses. The SMR obtained when combining over the plants was not statistically significant in eight of the nine approaches they examined, leading E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Levy et al. (2002) (Document ID 1463) to conclude that there was little evidence of statistically significant elevated SMRs in those plants. This study was not included in the synthesis of epidemiological studies assessed by IARC due to several methodological limitations (IARC, 2012, Document ID 0650). The EPA Integrated Risk Information System (IRIS), IARC, and California EPA Office of Environmental Health Hazard Assessment (OEHHA) all based their cancer assessments on the Ward et al. 1992 study, with supporting data concerning exposure concentrations from Eisenbud and Lisson (1983) (Document ID 1296) and NIOSH (1972) (Document ID 0560), who estimated that the lower-bound estimate of the median exposure concentration exceeded 100 mg/m3 and found that concentrations in excess of 1,000 mg/m3 were common. The IRIS cancer risk assessment recalculated expected lung cancers based on U.S. white male lung cancer rates (including the period 1968–1975) and used an alternative adjustment for smoking. In addition, one individual with lung cancer, who had not worked at the plant, was removed from the cohort. After these adjustments were made, an elevated rate of lung cancer was still observed in the overall cohort (46 cases vs. 41.9 expected cases). However, based on duration of employment or interval since beginning of employment, neither the total cohort nor any of the subgroups had a statistically significant increase in lung cancer deaths (EPA, 1987, Document ID 1295). Based on its evaluation of this and other epidemiological studies, the EPA characterized the human carcinogenicity data then available as ‘‘limited’’ but ‘‘suggestive of a causal relationship between beryllium exposure and an increased risk of lung cancer’’ (EPA, 1998, Document ID 0237). The EPA report includes quantitative estimates of risk that were derived using the information presented in Wagoner et al. (1980), the expected lung cancers recalculated by the EPA, and bounds on presumed exposure levels. Sanderson et al. (2001) (Document ID 1419) estimated the cumulative, average, and maximum beryllium exposure concentration for the 142 known lung cancer cases to be 46.06 ± 9.3mg/m3-days, 22.8 ± 3.4 mg/m3, and 32.4 ± 13.8 mg/m3, respectively. The lung cancer mortality rate was 1.22 (95 percent CI = 1.03 ¥ 1.43). Exposure estimates were lagged by 10 and 20 years in order to account for exposures that did not contribute to lung cancer because they occurred after the induction of cancer. In the 10- and 20- VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 year lagged exposures the geometric mean tenures and cumulative exposures of the lung cancer mortality cases were higher than the controls. In addition, the geometric mean and maximum exposures of the workers were significantly higher than controls when the exposure estimates were lagged 10 and 20 years (p <0.01). Results of a conditional logistic regression analysis indicated that there was an increased risk of lung cancer in workers with higher exposures when dose estimates were lagged by 10 and 20 years (Sanderson et al., 2001, Document ID 1419). There was also a lack of evidence that confounding factors such as smoking affected the results of the regression analysis. The authors noted that there was considerable uncertainty in the estimation of exposure in the 1940s and 1950s and the shape of the dose-response curve for lung cancer (Sanderson et al., 2001, Document ID 1419). Another analysis of the study data using a different statistical method did not find a significantly greater relative risk of lung cancer with increasing beryllium exposures (Levy et al., 2007). The average beryllium air levels for the lung cancer cases were estimated to be an order of magnitude above the preceding 8-hour OSHA TWA PEL (2 mg/m3) and roughly two orders of magnitude higher than the typical air levels in workplaces where beryllium sensitization and pathological evidence of CBD have been observed. IARC evaluated this reanalysis in 2012 and found the study introduced a downward bias into risk estimates (IARC, 2012, Document ID 0650). NIOSH comments in the rulemaking docket support IARC’s finding (citing SchubauerBerigan et al., 2007; Hein et al., 2009, 2011; Langholz and Richardson 2009; Wacholder 2009) (Document ID 1671, Attachment 1, p. 10). Schubauer-Berigan et al. (2008) (Document ID 1350) reanalyzed data from the Sanderson et al. (2001) nested case-control study of 142 lung cancer cases in the Reading, PA, beryllium processing plant. This dataset was reanalyzed using conditional (stratified by case age) logistic regression. Independent adjustments were made for potential confounders of birth year and hire age. Average and cumulative exposures were analyzed using the values reported in the original study. The objective of the reanalysis was to correct for the known differences in smoking rates by birth year. In addition, the authors evaluated the effects of age at hire to determine differences observed by Sanderson et al. in 2001 (Document ID 1419). The effect of birth cohort adjustment on lung cancer rates PO 00000 Frm 00049 Fmt 4701 Sfmt 4700 2517 in beryllium-exposed workers was evaluated by adjusting in a multivariable model for indicator variables for the birth cohort quartiles. Unadjusted analyses showed little evidence of lung cancer risk associated with beryllium occupational exposure using cumulative exposure until a 20year lag was used. Adjusting for either birth cohort or hire age attenuated the risk for lung cancer associated with cumulative exposure. Using a 10- or 20year lag in workers born after 1900 also showed little evidence of lung cancer risk, while those born prior to 1900 did show a slight elevation in risk. Unlagged and lagged analysis for average exposure showed an increase in lung cancer risk associated with occupational exposure to beryllium. The finding was consistent for either workers adjusted or unadjusted for birth cohort or hire age. Using a 10-year lag for average exposure showed a significant effect by birth cohort. Schubauer-Berigan et al. stated that the reanalysis indicated that differences in the hire ages among cases and controls, first noted by Deubner et al. (2001) (Document ID 0109) and Levy et al. (2007) (Document ID 1462), were primarily due to the fact that birth years were earlier among controls than among cases, resulting from much lower baseline risk of lung cancer for men born prior to 1900 (Schubauer-Berigan et al., 2008, Document ID 1350). The authors went on to state that the reanalysis of the previous NIOSH casecontrol study suggested the relationship observed previously between cumulative beryllium exposure and lung cancer was greatly attenuated by birth cohort adjustment. Hollins et al. (2009) (Document ID 1512) re-examined the weight of evidence of beryllium as a lung carcinogen in a recent publication. Citing more than 50 relevant papers, the authors noted the methodological shortcomings examined above, including lack of well-characterized historical occupational exposures and inadequacy of the availability of smoking history for workers. They concluded that the increase in potential risk of lung cancer was observed among those exposed to very high levels of beryllium and that beryllium’s carcinogenic potential in humans at these very high exposure levels was not relevant to today’s industrial settings. IARC performed a similar re-evaluation in 2009 (IARC, 2012, Document ID 0650) and found that the weight of evidence for beryllium lung carcinogenicity, including the animal studies described below, still warranted a Group I classification, and that E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2518 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations beryllium should be considered carcinogenic to humans. Schubauer-Berigan et al. (2011) (Document ID 1266) extended their analysis from a previous study estimating associations between mortality risk and beryllium exposure to include workers at 7 beryllium processing plants. The study followed the mortality incidences of 9,199 workers from 1940 through 2005 at the 7 beryllium plants. JEMs were developed for three plants in the cohort: The Reading plant, the Hazleton plant, and the Elmore plant. The last is described in Couch et al. 2010. Including these JEMs substantially improved the evidence base for evaluating the carcinogenicity of beryllium, and this change represents more than an update of the beryllium cohort. Standardized mortality ratios (SMRs) were estimated based on U.S. population comparisons for lung, nervous system and urinary tract cancers, chronic obstructive pulmonary disease (COPD), chronic kidney disease, and categories containing chronic beryllium disease (CBD) and cor pulmonale. Associations with maximum and cumulative exposure were calculated for a subset of the workers. Overall mortality in the cohort compared with the U.S. population was elevated for lung cancer (SMR 1.17; 95% CI 1.08 to 1.28), COPD (SMR 1.23; 95% CI 1.13 to 1.32), and the categories containing CBD (SMR 7.80; 95% CI 6.26 to 9.60) and cor pulmonale (SMR 1.17; 95% CI 1.08 to 1.26) (Schubauer-Berigan et al., 2011, Document ID 1266). Mortality rates for most diseases of interest increased with time since hire. For the category including CBD, rates were substantially elevated compared to the U.S. population across all exposure groups. Workers whose maximum beryllium exposure was ≥10 mg/m3 had higher rates of lung cancer, urinary tract cancer, COPD and the category containing cor pulmonale than workers with lower exposure. These studies showed strong associations for cumulative exposure (when short-term workers were excluded), maximum exposure, or both. Significant positive trends with cumulative exposure were observed for nervous system cancers (p = 0.0006) and, when short-term workers were excluded, lung cancer (p = 0.01), urinary tract cancer (p = 0.003), and COPD (p <0.0001). The authors concluded that the findings from this reanalysis reaffirmed that lung cancer and CBD are related to beryllium exposure. The authors went on to suggest that beryllium exposures may be associated with nervous system and urinary tract cancers and that VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 cigarette smoking and other lung carcinogens were unlikely to explain the increased incidences in these cancers. The study corrected an error that was discovered in the indirect smoking adjustment initially conducted by Ward et al., concluding that cigarette smoking rates did not differ between the cohort and the general U.S. population. No association was found between cigarette smoking and either cumulative or maximum beryllium exposure, making it very unlikely that smoking was a substantial confounder in this study (Schubauer-Berigan et al., 2011, Document ID 1266). A study by Boffetta et al. (2014, Document ID 0403) and an abstract by Boffetta et al., (2015, Document ID 1661, Attachment 1) were submitted by Materion for Agency consideration (Document ID 1661, p. 3). Briefly, Boffetta et al. investigated lung cancer and other diseases in a cohort of 4,950 workers in four beryllium manufacturing facilities. Based on available process information from the facilities, the cohort of workers included only those working with poorly soluble beryllium. Workers having potential for soluble beryllium exposure were excluded from the study. Boffetta et al. reported a slight increase in lung cancer rates among workers hired prior to 1960, but the increase was reported as not statistically significant. Bofetta et al. (2014) indicated that ‘‘[t]his study confirmed the lack of an increase in mortality from lung cancer and nonmalignant respiratory diseases related to [poorly] soluble beryllium compounds’’ (Document ID 0403, p. 587). OSHA disagrees, and a more detailed analysis of the Boffetta et al. (2014, Document ID 0403) study is provided in the Risk Assessment section (VI) of this preamble. The Boffetta et al. (2015, Document ID 1661, Attachment 1) study cited by Materion was an abstract to the 48th annual Society of Epidemiological Research conference and does not provide sufficient information for OSHA to consider. To summarize, most of the epidemiological studies reviewed in this section show an elevated lung cancer rate in beryllium-exposed workers compared to control groups. While exposure data was incomplete in many studies inferences can be made based on industry profiles. Specifically, studies reviewing excess lung cancer in workers registered in the BCR found an elevated lung cancer rate in those patients identified as having acute beryllium disease (ABD). ABD patients are most closely associated with exposure to soluble forms of beryllium (Infante et al., 1980, Document ID 1507; Steenland PO 00000 Frm 00050 Fmt 4701 Sfmt 4700 and Ward, 1991 (1348)). Industry profiles in processing and extraction indicate that most exposures would be due to poorly soluble forms of beryllium. Excess lung cancer rates were observed in workers in industries associated with extraction and processing (Schubauer-Berigan et al., 2008, Document ID 1350; SchubauerBerigan et al. 2011 (1266, 1815 Attachment 105); Ward et al., 1992 (1378); Hollins et al., 2009 (1512); Sanderson et al., 2001 (1419); Mancuso et al., 1980 (1452); Wagoner et al., 1980 (1379)). During the public comment period NIOSH noted that: . . . in Table 1 of Ward et al. (1992), all three of these beryllium plants were engaged in operations associated with both soluble and [poorly soluble] forms of beryllium. Industrial hygienists from NIOSH [Sanderson et al. (2001); Couch et al. (2011)] and elsewhere [Chen (2001); Rosenman et al. (2005)] created job-exposure matrices (JEMs), which estimated the form of beryllium exposure (soluble, consisting of beryllium salts; [poorly soluble], consisting of beryllium metal, alloys, or beryllium oxide; and mixed forms) associated with each job, department and year combination at each plant. Unpublished evaluations of these JEM estimates linked to the employee work histories in the NIOSH risk assessment study [Schubauer-Berigan et al., 2011b, Document ID 0521] show that the vast majority of beryllium work-time at all three of these facilities was due to either [poorly] soluble or mixed chemical forms. In fact, [poorly] soluble beryllium was the largest single contributor to work-time (for beryllium exposure of known solubility class) at the three facilities across most time periods . . . . Therefore, the strong and consistent exposure-response pattern that was observed in the published NIOSH studies was very likely associated with exposure to [poorly] soluble as well as soluble forms of beryllium. (Document ID 1725, p. 9) Taken collectively, the Agency finds that the epidemiological data presented in the reviewed studies provides sufficient evidence to demonstrate carcinogenicity in humans of both soluble and poorly soluble forms of beryllium. 3. Animal Cancer Studies This section reviews the animal literature used to support the findings for beryllium-induced lung cancer. Early animal studies revealed that some beryllium compounds are carcinogenic when inhaled (ATSDR, 2002, Document ID 1371). Lung tumors have been induced via inhalation and intratracheal administration of beryllium to rats and monkeys, and osteosarcomas have been induced via intravenous and intramedullary (inside the bone) injection of beryllium in rabbits and mice. In addition to lung cancer, E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS osteosarcomas have been produced in mice and rabbits exposed to various beryllium salts by intravenous injection or implantation into the bone (NTP, 1999, Document ID 1341: IARC, 2012 (0650)). While not completely understood, experimental studies in animals (in vitro and in vivo) have found that a number of mechanisms are likely involved in beryllium-induced carcinogenicity, including chronic inflammation, genotoxicity, mitogenicity, oxidative stress, and epigenetic changes. In an inhalation study assessing the potential tumorigenicity of beryllium, Schepers et al. (1957) (Document ID 0458) exposed 115 albino Sherman and Wistar rats (male and female) via inhalation to 0.0357 mg beryllium/m3 (1 g beryllium/ft3) 7 as an aqueous aerosol of beryllium sulfate for 44 hours/week for 6 months, and observed the rats for 18 months after exposure. Three to four control rats were killed every two months for comparison purposes. Seventy-six lung neoplasms,8 including adenomas, squamous-cell carcinomas, acinous adenocarcinomas, papillary adenocarcinomas, and alveolar-cell adenocarcinomas, were observed in 52 of the rats exposed to the beryllium sulfate aerosol. Adenocarcinomas were the most numerous. Pulmonary metastases tended to localize in areas with foam cell clustering and granulomatosis. No neoplasia was observed in any of the control rats. The incidence of lung tumors in exposed rats is presented in the following Table 3: 2519 survived until their scheduled TABLE 3—NEOPLASM ANALYSIS, BASED ON SCHEPERS ET AL. sacrifices. Average lung weight towards the end (1957)—Continued of exposure was 4.25 times normal with progressively increasing differences Neoplasm Number Metastases between control and exposed animals. Total ............. 76 8 The increase in lung weight was accompanied by notable changes in tissue texture with two distinct Schepers (1962) (Document ID 1414) pathological processes—inflammatory reviewed 38 existing beryllium studies and proliferative. The inflammatory that evaluated seven beryllium response was characterized by marked compounds and seven mammalian accumulation of histiocytic elements species. Beryllium sulfate, beryllium forming clusters of macrophages in the fluoride, beryllium phosphate, alveolar spaces. The proliferative beryllium alloy (BeZnMnSiO4), and response progressed from early beryllium oxide were proven to be epithelial hyperplasia of the alveolar carcinogenic. Ten varieties of tumors surfaces, through metaplasia (after 20– were observed, with adenocarcinoma 22 weeks of exposure), anaplasia being the most common variety. In another study, Vorwald and Reeves (cellular dedifferentiation) (after 32–40 weeks of exposure), and finally to lung (1959) (Document ID 1482) exposed tumors. Sherman albino rats via the inhalation Although the initial proliferative route to aerosols of 0.006 mg beryllium/ response occurred early in the exposure 3 as beryllium oxide and 0.0547 mg m period, tumor development required beryllium/m3 as beryllium sulfate for 6 considerable time. Tumors were first hours/day, 5 days/week for an identified after nine months of unspecified duration. Lung tumors beryllium sulfate exposure, with rapidly (single or multifocal) were observed in increasing rates of incidence until the animals sacrificed following 9 tumors were observed in 100 percent of months of daily inhalation exposure. exposed animals by 13 months. The 9The histologic pattern of the cancer was to-13-month interval is consistent with primarily adenomatous; however, earlier studies. The tumors showed a epidermoid and squamous cell cancers high degree of local invasiveness. No were also observed. Infiltrative, tumors were observed in control rats. vascular, and lymphogenous extensions All 56 tumors studied appeared to be often developed with secondary alveolar adenocarcinomas and 3 were metastatic growth in the ‘‘fast-growing’’ tumors that reached a tracheobronchial lymph nodes, the very large size comparatively early. mediastinal connective tissue, the About one-third of the tumors showed parietal pleura, and the diaphragm. small foci where the histologic pattern In the first of two articles, Reeves et differed. Most of the early tumor foci al. (1967) investigated the carcinogenic appeared to be alveolar rather than TABLE 3—NEOPLASM ANALYSIS, process in lungs resulting from chronic bronchiolar, which is consistent with BASED ON SCHEPERS ET AL. (1957) (up to 72 weeks) beryllium sulfate the expected pathogenesis, since inhalation (Document ID 1310). One permanent deposition of beryllium was Neoplasm Number Metastases hundred fifty male and female Sprague more likely on the alveolar epithelium rather than on the bronchiolar Adenoma ............ 18 0 Dawley C.D. strain rats were exposed to beryllium sulfate aerosol at a mean Squamous carepithelium. Female rats appeared to cinoma ............. 5 1 atmospheric concentration of 34.25 mg have an increased susceptibility to 3 (with an average particle Acinous adenoberyllium/m beryllium exposure. Not only did they carcinoma ........ 24 2 diameter of 0.12 mm). Prior to initial have a higher mortality (control males Papillary adenoexposure and again during the 67–68 [n = 8], exposed males [n = 9] versus carcinoma ........ 11 1 and 75–76 weeks of life, the animals control females [n = 4], exposed females Alveolar-cell adereceived prophylactic treatments of [n = 17]) and body weight loss than male nocarcinoma .... 7 0 tetracycline-HCl to combat recurrent rats, but the three ‘‘fast-growing’’ tumors Mucigenous occurred in females. tumor ............... 7 1 pulmonary infections. The animals entered the exposure Endothelioma ...... 1 0 In the second article, Reeves et al. Retesarcoma ...... 3 3 chamber at 6 weeks of age and were (1967) (Document ID 1309) described exposed 7 hours per day/5 days per the rate of accumulation and clearance week for up to 2,400 hours of total of beryllium sulfate aerosol from the 7 Schepers et al. (1957) reported concentrations in exposure time. An equal number of same experiment (Reeves et al., 1967) g Be/ft3; however, g/ft3 is no longer a common unit. unexposed controls were held in a (Document ID 1310). At the time of the Therefore, the concentration was converted to mg/ separate chamber. Three male and three monthly sacrifice, beryllium assays m3. 8 While a total of 89 tumors were observed or female rats were sacrificed monthly were performed on the lungs, palpated at the time of autopsy in the BeSO4during the 72-week exposure period. tracheobronchial lymph nodes, and exposed animals, only 76 tumors are listed as Mortality due to respiratory or other blood of the exposed rats. The histologically neoplastic. Only the new growths infections did not appear until 55 weeks pulmonary beryllium levels of rats identified in single midcoronal sections of both of age, and 87 percent of all animals lungs were recorded. showed a rate of accumulation which VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00051 Fmt 4701 Sfmt 4700 E:\FR\FM\09JAR2.SGM 09JAR2 2520 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations decreased during continuing exposure and reached a plateau (defined as equilibrium between deposition and clearance) of about 13.5 mg beryllium for males and 9 mg beryllium for females in whole lungs after approximately 36 weeks. Females were notably less efficient than males in utilizing the lymphatic route as a method of clearance, resulting in slower removal of pulmonary beryllium deposits, lower accumulation of the inhaled material in the tracheobronchial lymph nodes, and higher morbidity and mortality. There was no apparent correlation between the extent and severity of pulmonary pathology and total lung load. However, when the beryllium content of the excised tumors was compared with that of surrounding nonmalignant pulmonary tissues, the former showed a notable decrease (0.50 ± 0.35 mg beryllium/gram versus 1.50 ± 0.55 mg beryllium/gram). This was believed to be largely a result of the dilution factor operating in the rapidly growing tumor tissue. However, other factors, such as lack of continued local deposition due to impaired respiratory function and enhanced clearance due to high vascularity of the tumor, may also have played a role. The portion of inhaled beryllium retained in the lungs for a longer duration, which is in the range of one-half of the original pulmonary load, may have significance for pulmonary carcinogenesis. This pulmonary beryllium burden becomes localized in the cell nuclei and may be an important factor in eliciting the carcinogenic response associated with beryllium inhalation. Groth et al. (1980) (Document ID 1316) conducted a series of experiments to assess the carcinogenic effects of beryllium, beryllium hydroxide, and various beryllium alloys. For the beryllium metal/alloys experiment, 12 groups of 3-month-old female Wistar rats (35 rats/group) were used. All rats in each group received a single intratracheal injection of either 2.5 or 0.5 mg of one of the beryllium metals or beryllium alloys as described in Table 3 below. These materials were suspended in 0.4 cc of isotonic saline followed by 0.2 cc of saline. Forty control rats were injected with 0.6 cc of saline. The geometric mean particle sizes varied from 1 to 2 mm. Rats were sacrificed and autopsied at various intervals ranging from 1 to 18 months post-injection. TABLE 4—SUMMARY OF BERYLLIUM DOSE, BASED ON GROTH ET AL. (1980) [Document ID 1316] Percent Be Percent other compounds Be metal ............................................ 100 ............... 99 ................. 0.26% Chromium .............................. BeAl alloy ........................................... 62 ................. 38% Aluminum .................................. BeCu alloy ......................................... 4 ................... 96% Copper ...................................... BeCuCo alloy ..................................... 2.4 ................ BeNi alloy .......................................... 2.2 ................ Total Number rats autopsied None .................................................. Passivated Be metal .......................... asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Form of Be 0.4% Cobalt ....................................... 96% Copper ...................................... 97.8% Nickel ..................................... Lung tumors were observed only in rats exposed to beryllium metal, passivated beryllium metal, and berylliumaluminum alloy. Passivation refers to the process of removing iron contamination from the surface of beryllium metal. As discussed, metal alloys may have a different toxicity than beryllium alone. Rats exposed to 100 percent beryllium exhibited relatively high mortality rates, especially in the groups where lung tumors were observed. Nodules varying from 1 to 10 mm in diameter were also observed in the lungs of rats exposed to beryllium metal, passivated beryllium metal, and beryllium-aluminum alloy. These nodules were suspected of being malignant. To test this hypothesis, transplantation experiments involving the suspicious nodules were conducted in nine rats. Seven of the nine suspected tumors grew upon transplantation. All transplanted tumor types metastasized to the lungs of their hosts. Lung tumors were observed in rats injected with both the high and low doses of beryllium VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 metal, passivated beryllium metal, and beryllium-aluminum alloy. No lung tumors were observed in rats injected with the other compounds. Of a total of 32 lung tumors detected, most were adenocarcinomas and adenomas; however, two epidermoid carcinomas and at least one poorly differentiated carcinoma were observed. Bronchiolar alveolar cell tumors were frequently observed in rats injected with beryllium metal, passivated beryllium metal, and beryllium-aluminum alloy. All stages of cuboidal, columnar, and squamous cell metaplasia were observed on the alveolar walls in the lungs of rats injected with beryllium metal, passivated beryllium metal, and beryllium-aluminum alloy. These lesions were generally reduced in size and number or absent from the lungs of animals injected with the other alloys (BeCu, BeCuCo, BeNi). The extent of alveolar metaplasia could be correlated with the incidence of lung cancer. The incidences of lung tumors in the rats that received 2.5 mg of beryllium metal, and 2.5 and 0.5 mg PO 00000 Frm 00052 Fmt 4701 Sfmt 4700 16 21 26 20 24 21 28 24 33 30 28 27 Compound dose(mg) 2.5 0.5 2.5 0.5 2.5 0.5 2.5 0.5 2.5 0.5 2.5 0.5 Be dose(mg) 2.5 0.5 2.5 0.5 1.55 0.3 0.1 0.02 0.06 0.012 0.056 0.011 of passivated beryllium metal, were significantly different (p ≤0.008) from controls. When autopsies were performed at the 16-to-19-month interval, the incidence (2/6) of lung tumors in rats exposed to 2.5 mg of beryllium-aluminum alloy was statistically significant (p = 0.004) when compared to the lung tumor incidence (0/84) in rats exposed to BeCu, BeNi, and BeCuCo alloys, which contained much lower concentrations of Be (Groth et al., 1980, Document ID 1316). Finch et al. (1998b) (Document ID 1367) investigated the carcinogenic effects of inhaled beryllium on heterozygous TSG-p53 knockout (p53 ∂/¥) mice and wild-type (p53+/+) mice. Knockout mice can be valuable tools in determining the role played by specific genes in the toxicity of a material of interest, in this case beryllium. Equal numbers of approximately 10-week-old male and female mice were used for this study. Two exposure groups were used to provide dose-response information on lung carcinogenicity. The maximum initial lung burden (ILB) target of 60 mg E:\FR\FM\09JAR2.SGM 09JAR2 2521 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations beryllium was based on previous acute inhalation exposure studies in mice. The lower exposure target level of 15 mg was selected to provide a lung burden significantly less than the high-level group, but high enough to yield carcinogenic responses. Mice were exposed in groups to beryllium metal or to filtered air (controls) via nose-only inhalation. The specific exposure parameters are presented in Table 4 below. Mice were sacrificed 7 days post exposure for ILB analysis, and either at 6 months post exposure (n = 4–5 mice per group per gender) or when 10 percent or less of the original population remained (19 months post exposure for p53 ∂/¥ knockout and 22.5 months post exposure for p53+/+ wildtype mice). The sacrifice time was extended in the study because a significant number of lung tumors were not observed at 6 months post exposure. TABLE 5—SUMMARY OF ANIMAL DATA, BASED ON FINCH ET AL. (1998) [Document ID 1367] Mouse strain Knockout (p53 ∂/¥) Wild-type (p53 +⁄+) asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Knockout (p53 ∂/¥) Mean exposure concentration (μg Be/L) 34 36 34 36 NA (air) Target beryllium lung burden (μg) 15 60 15 60 Control Lung burdens of beryllium measured in wild-type mice at 7 days post exposure were approximately 70–90 percent of target levels. No exposurerelated effects on body weight were observed in mice; however, lung weights and lung-to-body-weight ratios were somewhat elevated in 60 mg target ILB p53 ∂/¥ knockout mice compared to controls (0.05 <p<0.10). In general, p53+/+ wild-type mice survived longer than p53 ∂/¥ knockout mice and beryllium exposure tended to decrease survival time in both groups. The incidence of beryllium-induced lung tumors was marginally higher in the 60 mg target ILB p53 ∂/¥ knockout mice compared to 60 mg target ILB p53+/+ wild-type mice (p= 0.056). The incidence of lung tumors in the 60 mg target ILB p53 ∂/¥ knockout mice was also significantly higher than controls (p = 0.048). No tumors developed in the control mice, 15 mg target ILB p53 ∂/¥ knockout mice, or 60 mg target ILB p53+/+ wild-type mice throughout the length of the study. Most lung tumors in beryllium-exposed mice were squamous cell carcinomas, three of four of which were poorly circumscribed and all of which were associated with at least some degree of granulomatous pneumonia. The study results suggest that having an inactivated p53 allele is associated with lung tumor progression in p53 ∂/¥ knockout mice. This is based on the significant difference seen in the incidence of beryllium-induced lung neoplasms for the p53 ∂/¥ knockout mice compared with the p53 +⁄+ wildtype mice. The authors conclude that since there was a relatively late onset of tumors in the beryllium-exposed p53 ∂/¥ knockout mice, a 6-month bioassay VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 Number of mice 30 30 6 36 30 Mean daily exposure duration (minutes) 112 (single) 139 112 (single) 139 60–180 (single) in this mouse strain might not be an appropriate model for lung carcinogenesis (Finch et al., 1998, Document ID 1367). During the public comment period Materion submitted correspondence from Dr. Finch speculating on the reason for the less-robust lung cancer response observed in mice (versus that observed in rats) (Document ID 1807, Attachment 11, p. 1). Materion contended that this was support for their assertion of evidence that ‘‘directly contradicts the claims that beryllium metal causes cancer in animals’’ (Document ID 1807, p. 6). OSHA reviewed this correspondence and disagrees with Materion’s assertion. While Dr. Finch did suggest that the mouse lung cancer response was less robust, it was still present. Dr. Finch went on to suggest that while the rat has a more profound neutrophilic response (typical of a ‘‘foreign body response), the mouse has a lung response more typical of humans (neutrophilic and lymphocytic) (Document ID 1807, Attachment 11, p. 1). Nickell-Brady et al. (1994) investigated the development of lung tumors in 12-week-old F344/N rats after a single nose-only inhalation exposure to beryllium aerosol, and evaluated whether beryllium lung tumor induction involves alterations in the Kras, p53, and c-raf-1 genes (Document ID 1312). Four groups of rats (30 males and 30 females per group) were exposed to different mass concentrations of beryllium (Group 1: 500 mg/m3 for 8 min; Group 2: 410 mg/m3 for 30 min; Group 3: 830 mg/m3 for 48 min; Group 4: 980 mg/m3 for 39 min). The beryllium mass median aerodynamic diameter was 1.4 mm (sg= 1.9). The mean beryllium PO 00000 Frm 00053 Fmt 4701 Sfmt 4700 Mean ILB (μg) NA NA 12 ± 4 54 ± 6 NA Number of mice with 1 or more lung tumors/total number examined 0/29 4/28 NA 0/28 0/30 lung burdens for each exposure group were 40, 110, 360, and 430 mg, respectively. To examine genetic alterations, DNA isolation and sequencing techniques (PCR amplification and direct DNA sequence analysis) were performed on wild-type rat lung tissue (i.e., control samples) along with two mouse lung tumor cell lines containing known K-ras mutations, 12 carcinomas induced by beryllium (i.e., experimental samples), and 12 other formalin-fixed specimens. Tumors appeared in beryllium-exposed rats by 14 months, and 64 percent of exposed rats developed lung tumors during their lifetime. Lungs frequently contained multiple tumor sites, with some of the tumors greater than 1 cm. A total of 24 tumors were observed. Most of the tumors (n = 22) were adenocarcinomas exhibiting a papillary pattern characterized by cuboidal or columnar cells, although a few had a tubular or solid pattern. Fewer than 10 percent of the tumors were adenosquamous (n = 1) or squamous cell (n = 1) carcinomas. No transforming mutations of the Kras gene (codons 12, 13, or 61) were detected by direct sequence analysis in any of the lung tumors induced by beryllium. However, using a more sensitive sequencing technique (PCR enrichment restriction fragment length polymorphism (RFLP) analysis) resulted in the detection of K-ras codon 12 GGT to GTT transversions in 2 of 12 beryllium-induced adenocarcinomas. No p53 or c-raf-1 alterations were observed in any of the tumors induced by beryllium exposure (i.e., no differences observed between berylliumexposed and control rat tissues). The authors note that the results suggest that E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2522 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations activation of the K-ras proto-oncogene is both a rare and late event, possibly caused by genomic instability during the progression of beryllium-induced rat pulmonary adenocarcinomas. It is unlikely that the K-ras gene plays a role in the carcinogenicity of beryllium. The results also indicate that p53 mutation is unlikely to play a role in tumor development in rats exposed to beryllium. Belinsky et al. (1997) reviewed the findings by Nickell-Brady et al. (1994) (Document ID 1312) to further examine the role of the K-ras and p53 genes in lung tumors induced in the F344 rat by non-mutagenic (non-genotoxic) exposures to beryllium. Their findings are discussed along with the results of other genomic studies that look at carcinogenic agents that are either similarly non-mutagenic or, in other cases, mutagenic. The authors concluded that the identification of nonras transforming genes in rat lung tumors induced by non-mutagenic exposures, such as beryllium, as well as mutagenic exposures will help define some of the mechanisms underlying cancer induction by different types of DNA damage. The inactivation of the p16 INK4a(p16) gene is a contributing factor in disrupting control of the normal cell cycle and may be an important mechanism of action in berylliuminduced lung tumors. Swafford et al. (1997) investigated the aberrant methylation and subsequent inactivation of the p16 gene in primary lung tumors induced in F344/N rats exposed to known carcinogens via inhalation (Document ID 1392). The research involved a total of 18 primary lung tumors that developed after exposing rats to five agents, one of which was beryllium. In this study, only one of the 18 lung tumors was induced by beryllium exposure; the majority of the other tumors were induced by radiation (x-rays or plutonium-239 oxide). The authors hypothesized that if p16 inactivation plays a central role in development of non-small-cell lung cancer, then the frequency of gene inactivation in primary tumors should parallel that observed in the corresponding cell lines. To test the hypothesis, a rat model for lung cancer was used to determine the frequency and mechanism for inactivation of p16 in matched primary lung tumors and derived cell lines. The methylationspecific PCR (MSP) method was used to detect methylation of p16 alleles. The results showed that the presence of aberrant p16 methylation in cell lines was strongly correlated with absent or low expression of the gene. The findings VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 also demonstrated that aberrant p16 CpG island methylation, an important mechanism in gene silencing leading to the loss of p16 expression, originates in primary tumors. Building on the rat model for lung cancer and associated findings from Swafford et al. (1997) (Document ID 1392), Belinsky et al. (2002) (Document ID 1300) conducted experiments in 12week-old F344/N rats (male and female) to determine whether berylliuminduced lung tumors involve inactivation of the p16 gene and estrogen receptor a (ER) gene. Rats received a single nose-only inhalation exposure to beryllium aerosol at four different exposure levels. The mean lung burdens measured in each exposure group were 40, 110, 360, and 430 mg. The methylation status of the p16 and ER genes was determined by MSP. A total of 20 tumors detected in beryllium-exposed rats were available for analysis of gene-specific promoter methylation. Three tumors were classified as squamous cell carcinomas and the others were determined to be adenocarcinomas. Methylated p16 was present in 80 percent (16/20), and methylated ER was present in one-half (10/20), of the lung tumors induced by exposure to beryllium. Additionally, both genes were methylated in 40 percent of the tumors. The authors noted that four tumors from berylliumexposed rats appeared to be partially methylated at the p16 locus. Bisulfite sequencing of exon 1 of the ER gene was conducted on normal lung DNA and DNA from three methylated, berylliuminduced tumors to determine the density of methylation within amplified regions of exon 1 (referred to as CpG sites). Two of the three methylated, beryllium-induced lung tumors showed extensive methylation, with more than 80 percent of all CpG sites methylated. The overall findings of this study suggest that inactivation of the p16 and ER genes by promoter hypermethylation are likely to contribute to the development of lung tumors in beryllium-exposed rats. The results showed a correlation between changes in p16 methylation and loss of gene transcription. The authors hypothesize that the mechanism of action for beryllium-induced p16 gene inactivation in lung tumors may be inflammatory mediators that result in oxidative stress. The oxidative stress damages DNA directly through free radicals or indirectly through the formation of 8-hydroxyguanosine DNA adducts, resulting primarily in a singlestrand DNA break. Wagner et al. (1969) (Document ID 1481) studied the development of PO 00000 Frm 00054 Fmt 4701 Sfmt 4700 pulmonary tumors after intermittent daily chronic inhalation exposure to beryllium ores in three groups of male squirrel monkeys. One group was exposed to bertrandite ore, a second to beryl ore, and the third served as unexposed controls. Each of these three exposure groups contained 12 monkeys. Monkeys from each group were sacrificed after 6, 12, or 23 months of exposure. The 12-month sacrificed monkeys (n = 4 for bertrandite and control groups; n = 2 for beryl group) were replaced by a separate replacement group to maintain a total animal population approximating the original numbers and to provide a source of confirming data for biologic responses that might arise following the ore exposures. Animals were exposed to bertrandite and beryl ore concentrations of 15 mg/m3, corresponding to 210 mg beryllium/m3 and 620 mg beryllium/m3 in each exposure chamber, respectively. The parent ores were reduced to particles with geometric mean diameters of 0.27 mm (± 2.4) for bertrandite and 0.64 mm (± 2.5) for beryl. Animals were exposed for approximately 6 hours/day, 5 days/week. The histological changes in the lungs of monkeys exposed to bertrandite and beryl ore exhibited a similar pattern. The changes generally consisted of aggregates of dust-laden macrophages, lymphocytes, and plasma cells near respiratory bronchioles and small blood vessels. There were, however, no consistent or significant pulmonary lesions or tumors observed in monkeys exposed to either of the beryllium ores. This is in contrast to the findings in rats exposed to beryl ore and to a lesser extent bertrandite, where atypical cell proliferation and tumors were frequently observed in the lungs. The authors hypothesized that the rats’ greater susceptibility may be attributed to the spontaneous lung disease characteristic of rats, which might have interfered with lung clearance. As previously described, Conradi et al. (1971) investigated changes in the lungs of monkeys and dogs two years after intermittent inhalation exposure to beryllium oxide calcined at 1,400 °C (Document ID 1319). Five adult male and female monkeys (Macaca irus) weighing between 3 and 5.75 kg were used in the study. The study included two control monkeys. Beryllium concentrations in the atmosphere of whole-body exposed monkeys varied between 3.30 and 4.38 mg/m3. Thirtyminute exposures occurred once a month for three months, with beryllium oxide concentrations increasing at each exposure interval. Lung tissue was investigated using electron microscopy E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS and morphometric methods. Beryllium content in portions of the lungs of five monkeys was measured two years following exposure by emission spectrography. The reported concentrations in monkeys (82.5, 143.0, and 112.7 mg beryllium per 100 gm of wet tissue in the upper lobe, lower lobe, and combined lobes, respectively) were higher than those in dogs. No neoplastic or granulomatous lesions were observed in the lungs of any exposed animals and there was no evidence of chronic proliferative lung changes after two years. To summarize, animal studies show that multiple forms of beryllium, when inhaled or instilled in the respiratory tract of rats, mice, and monkeys, lead to increased incidence of lung tumors. Animal studies have demonstrated a consistent scenario of beryllium exposure resulting in chronic pulmonary inflammation and tumor formation at levels below overload conditions (Groth et al., 1980, Document ID 1316; Finch et al., 1998 (1367); Nickel-Brady et al., 1994 (1312)). The animal studies support the human epidemiological evidence and contributed to the findings of the NTP, IARC, and others that beryllium and beryllium-containing material should be regarded as known human carcinogens. The beryllium compounds found to be carcinogenic in animals include both soluble beryllium compounds, such as beryllium sulfate and beryllium hydroxide, as well as poorly soluble beryllium compounds, such as beryllium oxide and beryllium metal. The doses that produce tumors in experimental animal are fairly large and also lead to chronic pulmonary inflammation. The exact tumorigenic mechanism for beryllium is unclear and a number of mechanisms are likely involved, including chronic inflammation, genotoxicity, mitogenicity, oxidative stress, and epigenetic changes. 4. In Vitro Studies The exact mechanism by which beryllium induces pulmonary neoplasms in animals remains unknown (NAS 2008, Document ID 1355). Keshava et al. (2001) performed studies to determine the carcinogenic potential of beryllium sulfate in cultured mammalian cells (Document ID 1362). Joseph et al. (2001) investigated differential gene expression to understand the possible mechanisms of beryllium-induced cell transformation and tumorigenesis (Document ID 1490). Both investigations used cell transformation assays to study the cellular/molecular mechanisms of VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 beryllium carcinogenesis and assess carcinogenicity. Cell lines were derived from tumors developed in nude mice injected subcutaneously with nontransformed BALB/c-3T3 cells that were morphologically transformed in vitro with 50–200 mg beryllium sulfate/ml for 72 hours. The non-transformed cells were used as controls. Keshava et al. (2001) found that beryllium sulfate is capable of inducing morphological cell transformation in mammalian cells and that transformed cells are potentially tumorigenic (Document ID 1362). A dose-dependent increase (9–41 fold) in transformation frequency was noted. Using differential polymerase chain reaction (PCR), gene amplification was investigated in six proto-oncogenes (K-ras, c-myc, c-fos, cjun, c-sis, erb-B2) and one tumor suppressor gene (p53). Gene amplification was found in c-jun and Kras. None of the other genes tested showed amplification. Additionally, Western blot analysis showed no change in gene expression or protein level in any of the genes examined. Genomic instability in both the non-transformed and transformed cell lines was evaluated using random amplified polymorphic DNA fingerprinting (RAPD analysis). Using different primers, 5 of the 10 transformed cell lines showed genomic instability when compared to the non-transformed BALB/c-3T3 cells. The results indicate that beryllium sulfate-induced cell transformation might, in part, involve gene amplification of K-ras and c-jun and that some transformed cells possess neoplastic potential resulting from genomic instability. Using the Atlas mouse 1.2 cDNA expression microarrays, Joseph et al. (2001) studied the expression profiles of 1,176 genes belonging to several different functional categories after beryllium sulfate exposure in a mouse cell line (Document ID 1490). Compared to the control cells, expression of 18 genes belonging to two functional groups (nine cancer-related genes and nine DNA synthesis, repair, and recombination genes) was found to be consistently and reproducibly different (at least 2-fold) in the tumor cells. Differential gene expression profile was confirmed using reverse transcriptionPCR with primers specific to the differentially expressed genes. Two of the differentially expressed genes (c-fos and c-jun) were used as model genes to demonstrate that the beryllium-induced transcriptional activation of these genes was dependent on pathways of protein kinase C and mitogen-activated protein kinase and independent of reactive oxygen species in the control cells. PO 00000 Frm 00055 Fmt 4701 Sfmt 4700 2523 These results indicate that berylliuminduced cell transformation and tumorigenesis are associated with upregulated expression of the cancerrelated genes (such as c-fos, c-jun, cmyc, and R-ras) and down-regulated expression of genes involved in DNA synthesis, repair, and recombination (such as MCM4, MCM5, PMS2, Rad23, and DNA ligase I). In summary, in vitro studies have been used to evaluate the neoplastic potential of beryllium compounds and the possible underlying mechanisms. Both Keshava et al. (2001) (Document ID 1362) and Joseph et al. (2001) (Document ID 1490) have found that beryllium sulfate induced a number of onco-genes (c-fos, c-jun, c-myc, and Rras) and down-regulated genes responses for normal cellular function and repair (including those involved in DNA synthesis, repair, and recombination). 5. Lung Cancer Conclusions OSHA has determined that substantial evidence in the record indicates that beryllium compounds should be regarded as occupational lung carcinogens. Many well-respected scientific organizations, including IARC, NTP, EPA, NIOSH, and ACGIH, have reached similar conclusions with respect to the carcinogenicity of beryllium. While some evidence exists for directacting genotoxicity as a possible mechanism for beryllium carcinogenesis, the weight of evidence suggests that an indirect mechanism, such as inflammation or other epigenetic changes, may be responsible for most tumorigenic activity of beryllium in animals and humans (IARC, 2012, Document ID 0650). Inflammation has been postulated to be a key contributor to many different forms of cancer (Jackson et al., 2006; Pikarsky et al., 2004; Greten et al., 2004; Leek, 2002). In fact, chronic inflammation may be a primary factor in the development of up to one-third of all cancers (Ames et al., 1990; NCI, 2010). In addition to a T-cell-mediated immunological response, beryllium has been demonstrated to produce an inflammatory response in animal models similar to the response produced by other particles (Reeves et al., 1967, Document ID 1309; Swafford et al., 1997 (1392); Wagner et al., 1969 (1481)), possibly contributing to its carcinogenic potential. Studies conducted in rats have demonstrated that chronic inhalation of materials similar in solubility to beryllium results in increased pulmonary inflammation, E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2524 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations fibrosis, epithelial hyperplasia, and, in some cases, pulmonary adenomas and carcinomas (Heinrich et al., 1995, Document ID 1513; NTP, 1993 (1333); Lee et al., 1985 (1466); Warheit et al., 1996 (1377)). This response is generally referred to as an ‘‘overload’’ response and is specific to particles of low solubility with a low order of toxicity, which are non-mutagenic and nongenotoxic (i.e., poorly soluble particles like titanium dioxide and nonasbestiform talc); this response is observed only in rats (Carter et al., 2006, Document ID 1556). ‘‘Overload’’ is described in ECETOC (2013) as inhalation of high concentrations of low solubility particles resulting in lung burdens that impair particle clearance mechanisms (ECETOC, 2013 as cited in Document ID 1807, Attachment 10, p. 3 (pdf p. 87)). Substantial data indicate that tumor formation in rats after exposure to some poorly soluble particles at doses causing marked, chronic inflammation is due to a secondary mechanism unrelated to the genotoxicity (or lack thereof) of the particle itself. Because these specific particles (i.e., titanium dioxide and nonasbestiform talc) exhibit no cytotoxicity or genotoxicity, they are considered to be biologically inert (ECETOC, 2013; see Document ID 1807, Attachment 10, p. 3 (pdf p. 87)). Animal studies, as summarized above, have demonstrated a consistent scenario of beryllium exposure resulting in chronic pulmonary inflammation below an overload scenario. NIOSH submitted comments describing the findings from a low-dose study of beryllium metal among male and female F344 rats (Document ID 1960, p. 11). The study by Finch et al. (2000) indicated lung tumor rates of 4, 4, 12, 50, 61, and 91 percent in animals with beryllium metal lung burdens of 0, 0.3, 1, 3, 10, and 50 mg respectively (Finch et al., 2000 as cited in Document ID 1960, p. 11). NIOSH noted the lung burden levels were much lower than those from previous studies, such as a 1998 Finch et al. study with initial lung burdens of 15 and 60 mg (Document ID 1960, p. 11). Based on evidence from mammalian studies of the mutagenicity and genotoxicity of beryllium (as described in above in section V.E.1) and the evidence of tumorigenicity at lung burden levels well below overload, OSHA concludes that beryllium particles are not poorly soluble particles like titanium dioxide and non-asbestiform talc. It has been hypothesized that the recruitment of neutrophils during the inflammatory response and subsequent release of oxidants from these cells play VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 an important role in the pathogenesis of rat lung tumors (Borm et al., 2004, Document ID 1559; Carter and Driscoll, 2001 (1557); Carter et al., 2006 (1556); Johnston et al., 2000 (1504); Knaapen et al., 2004 (1499); Mossman, 2000 (1444)). This is one potential carcinogenic pathway for beryllium particles. Inflammatory mediators, acting at levels below overload doses as characterized in many of the studies summarized above, have been shown to play a significant role in the recruitment of cells responsible for the release of reactive oxygen and hydrogen species. These species have been determined to be highly mutagenic as well as mitogenic, inducing a proliferative response (Ferriola and Nettesheim, 1994, Document ID 0452; Coussens and Werb, 2002 (0496)). The resultant effect is an environment rich for neoplastic transformations and the progression of fibrosis and tumor formation. This is consistent with findings from the National Cancer Institute, which has estimated that one-third of all cancers may be due to chronic inflammation (NCI, 2010, Document ID 0532). However, an inflammation-driven contribution to the neoplastic transformation does not imply no risk at levels below inflammatory response; rather, the overall weight of evidence suggests a mechanism of an indirect carcinogen at levels where inflammation is seen. While tumorigenesis secondary to inflammation is one reasonable mode of action, other plausible modes of action independent of inflammation (e.g., epigenetic, mitogenic, reactive oxygen mediated, indirect genotoxicity, etc.) may also contribute to the lung cancer associated with beryllium exposure. As summarized above, animal studies have consistently demonstrated beryllium exposure resulting in chronic pulmonary inflammation below overload conditions in multiple species (Groth et al., 1980, Document ID 1316; Finch et al., 1998 (1367); Nickel-Brady et al., 1994 (1312)). While OSHA recognizes chronic inflammation as one potential pathway to carcinogencity the Agency finds that other carcinogenic pathways such as genotoxicity and epigenetic changes may also contribute to beryllium-induced carcinogenesis. During the public comment period OSHA received several comments on the carcinogenicity of beryllium. The NFFS agreed with OSHA that ‘‘the science is quite clear in linking these soluble Beryllium compounds’’ to lung cancer (Document ID 1678, p. 6). It also, however, contended that there is considerable scientific dispute regarding the carcinogenicity of beryllium metal PO 00000 Frm 00056 Fmt 4701 Sfmt 4700 (i.e., poorly soluble beryllium), citing findings by the EU’s REACH Beryllium Commission (later clarified as the EU Beryllium Science and Technology Association) (Document ID 1785, p. 1; Document ID 1814) and a study by Strupp and Furnes (2010) (Document ID 1678, pp. 6–7, and Attachment 1). Materion, similarly, commented that ‘‘[a] report conclusion during the recent review of the European Cancer Directive for the European Commission stated regarding beryllium: ‘There was little evidence for any important health impact from current or recent past exposures in the EU’ ’’ (Document ID 1958, p. 4). The contentions of both Materion and NFFS regarding scientific findings from the EU is directly contradicted by the document submitted to the docket by the European Commission on Health, Safety and Hygiene at Work, discussed above. This document states that the European Chemicals Agency (ECHA) has determined that all forms of beryllium (soluble and poorly soluble) are carcinogenic (Category 1B) with the exception of aluminum beryllium silicates (which have not been allocated a classification) (Document ID 1692, pp. 2–3). OSHA also disagrees with NFFS’s other contention that there is a scientific dispute regarding the carcinogenicity of poorly soluble forms of beryllium. In coming to the conclusion that all forms of beryllium and beryllium compounds are carcinogenic, OSHA independently evaluated the scientific literature, including the findings of authoritative entities such as NIOSH, NTP, EPA, and IARC (see section V.E). The evidence from human, animal, and mechanistic studies together demonstrates that both soluble and poorly soluble beryllium compounds are carcinogenic (see sections V.E.2, V.E.3, V.E.4). The wellrespected scientific bodies mentioned above came to the same conclusion: That both soluble and poorly soluble beryllium compounds are carcinogenic to humans. As supporting documentation the NFFS submitted an ‘‘expert statement’’ by Strupp and Furnes (2010), which reviews the toxicological and epidemiological information regarding beryllium carcinogenicity. Based on select information in the scientific literature on lung cancer, the Strupp and Furnes (2010) study concluded that there was insufficient evidence in humans and animals to conclude that insoluble (poorly soluble) beryllium was carcinogenic (Document ID 1678, Attachment 1, pp. 21–23). Strupp and Furnes (2010) asserted that this was based on criteria established under E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Annex VI of Directive 67/548/EEC which establishes criteria for classification and labelling of hazardous substances under the UN Globally Harmonized System of Classification and Labelling of Chemicals (GHS). OSHA reviewed the Strupp and Furnes (2010) ‘‘expert statement’’ submitted by NFFS and found it to be unpersuasive. Its review of the epidemiological evidence mischaracterized the findings from the NIOSH cohort and the nested case-control studies (Ward et al., 1992; Sanderson et al., 2001; SchubauerBerigan et al., 2008) and misunderstood the methods commonly used to analyze occupational cohort studies (Document ID 1725, pp. 27–28). The Strupp and Furnes statement also did not include the more recent studies by Schubauer-Berigan et al. (2011, Document ID 1815, Attachment 105, 2011 (0626)), which demonstrated elevated rates for lung cancer (SMR 1.17; 95% CI 1.08 to 1.28) in a study of 7 beryllium processing plants. In addition, Strupp and Furnes did not consider expert criticism from IARC on the studies by Levy et al. (2007) and Deubner et al., (2007), which formed the basis of their findings. NIOSH submitted comments that stated: The Strupp (2011b) review of the epidemiological evidence for lung carcinogenicity of beryllium contained fundamental mischaracterizations of the findings of the NIOSH cohort and nested case-control studies (Ward et al. 1992; Sanderson et al. 2001; Schubauer-Berigan et al. 2008), as well as an apparent misunderstanding of the methods commonly used to analyze occupational cohort studies (Document ID 1960, Attachment 2, p. 10). As further noted by NIOSH: asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Strupp’s epidemiology summary mentions two papers that were critical of the Sanderson et al. (2001) nested case-control study. The first of these, Levy et al. (2007a), was a re-analysis that incorporated a nonstandard method of selecting control subjects and the second, Deubner et al. (2007), was a simulation study designed to evaluate Sanderson’s study design. Both of these papers have themselves been criticized for using faulty methods (Schubauer-Berigan et al. 2007; Kriebel, 2008; Langholz and Richardson, 2008); however, Strupp’s coverage of this is incomplete. (Document ID 1960, Attachment 2, Appendix, p. 19). NIOSH went on to state that while the Sanderson et al. (2001) used standard accepted methods for selecting the control group, the Deubner et al. (2007) study limited control group eligibility and failed to adequately match control and case groups (Document ID 1960, Attachment 2, Appendix, pp. 19–20). NIOSH noted that an independent analysis published by Langholz and Richardson (2009) and Hein et al., VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 (2009) (as cited in Document ID 1960, Attachment 2, Appendix, p. 20) found that Levy et al.’s method of eliminating controls from the study had the effect of ‘‘always produc[ing] downwardly biased effect estimates and for many scenarios the bias was substantial.’’ (Document ID 1960, Attachment 2, Appendix, p. 20). NIOSH went on to cite numerous errors in the studies cited by Strupp (2011) (Document ID 1794, 1795).9 OSHA finds NIOSH’s criticisms of the Strupp (2011) studies as well as their criticism of studies by Levy et al., 2007 and Deubner et al., 2007 to be reliable and credible. The Strupp and Furnes (2010) statement provided insufficient information on the extraction of beryllium metal for OSHA to fully evaluate the merit of the studies regarding potential genotoxicity of poorly soluble beryllium (Document ID 1678, Attachment 1, pp. 18–20). In addition, Strupp and Furnes did not consider the peer-reviewed published studies evaluating the genotoxicity of beryllium metal (see section V.E.1 and V.E.2). In coming to the conclusion that the evidence is insufficient for classification under GHS, Strupp and Furnes failed to consider the full weight of evidence in their evaluation using the criteria set forth under Annex VI of Directive 67/ 548/EEC which establishes criteria for classification and labelling of hazardous substances under the UN Globally Harmonized System of Classification and Labelling of Chemicals (GHS) (Document ID 1678, attachment 1, pp. 21–23). Thus, the Agency concludes that the Strupp and Furnes statement does not constitute the best available scientific evidence for the evaluation of whether poorly soluble forms of beryllium cause cancer. Materion also submitted comments indicating there is an ongoing scientific debate regarding the relevance of the rat lung tumor response to humans with respect to poorly soluble beryllium compounds (Document ID 1807, Attachment 10, pp. 1–3 (pdf pp. 85– 87)), Materion contended that the increased lung cancer risk in berylliumexposed animals is due to a particle overload phenomenon, in which lung clearance of beryllium particles initiates a non-specific neutrophilic response that results in intrapulmonary lung tumors. The materials cited by Materion as supportive of its argument— Obedorster (1995), a 2009 working paper to the UN Subcommittee on the 9 Strupp and Furnes was the background information for the Strupp (2011) publications (Document ID, Attachment 2, Appendix, p. 20). PO 00000 Frm 00057 Fmt 4701 Sfmt 4700 2525 Globally Harmonized System of Classification and Labelling of Chemicals (citing ILSI (2000) as supporting evidence for poorly soluble particles), Snipes (1996), the Health Risk Assessment Guidance for Metals, ICMM (2007), and ECETOC (2013)— discuss the inhalation of high exposure levels of poorly soluble particles in rats and the relevance of these studies to the human carcinogenic response (Document ID 1807, Attachment 10, pp. 1–3 (pdf pp. 85–87)). Using particles such as titanium dioxide, carbon black, non-asbestiform talc, coal dust, and diesel soot as models, ILSI (2000) and ECETOC (2013) describe studies that have demonstrated that chronic inhalation of poorly soluble particles can result in pulmonary inflammation, fibrosis, epithelial cell hyperplasia, and adenomas and carcinomas in rats at exposure levels that exceed lung clearance mechanisms (the ‘‘overload’’ phenomenon) (ILSI (2000) 10, p. 2, as cited in Document ID 1807, Attachment 10, pp. 1–3 (pdf pp. 85–87)). However, these expert reports indicate that the ‘‘overload’’ phenomenon caused by biologically inert particles (poorly soluble particles of low cytotoxicity for which there is no evidence of genotoxicity) is relevant only to the rat species. (Document ID 1807, Attachment 10, pp. 1–3 (pdf pp. 85–87)). OSHA finds that this model is not in keeping with the data presented for beryllium for several reasons. First, beryllium has been shown to be a ‘‘biologically active’’ particle due to its ability to induce an immune response in multiple species including humans, has been shown to be genotoxic in certain mammalian test systems, and induces epigenetic changes (e.g. DNA methylation) (as described in detail in sections V. D. 6, V.E.1, V.E.3 and V.E.4). Second, beryllium has been shown to produce lung tumors after inhalation or instillation in several animal species, including rats, mice, and monkeys (Finch et al., 1998, Document ID 1367; Schepers et al., 1957 (0458) and 1962 (1414); Wagner et al., 1969 (1481); Belinsky et al., 2002 (1300); Groth et al., 10 It is important to note that the ILSI report states that in interpreting data from rat studies alone, ‘‘in the absence of mechanistic data to the contrary it must be assumed that the rat model can identify potential hazards to humans’’ (ILSI, 2000, p. 2, as cited in Document ID 1807, Attachment 10, p. 1 (pdf p. 85)). The report by Oberdorster has similar language to the ILSI report (see Document ID 1807, Attachment 10, pp. 1, 3 (pdf pp. 85, 87). It should also be noted that the working paper to the UN Subcommittee on the Globally Harmonized System of Classification and Labelling of Chemicals, which cited ILSI (2000), was not adopted and has not been included in any revision to the GHS (https:// www.unece.org/fileadmin/DAM/trans/doc/2009/ ac10c4/ST-SG-AC10-C4-34e.pdf). E:\FR\FM\09JAR2.SGM 09JAR2 2526 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 1980 (1316); Vorwald and Reeves, 1957 (1482); Nickell-Brady et al., 1994 (1312); Swafford et al., 1997 (1392); IARC, 2012 (1355)). In addition, poorly soluble beryllium has been demonstrated to produce chronic inflammation at levels below overload (Groth et al., 1980, Document ID 1316; Nickell-Brady et al., 1994 (1312); Finch et al., 1998 (1367); Finch et al., 2000 (as cited in Document ID 1960, p. 11)). In addition, IARC and NAS performed an extensive review of the available animal studies and their findings were supportive of the OSHA findings of carcinogenicity (IARC, 2012, Document ID 0650; NAS, 2008 (1355)). OSHA performed an independent evaluation as outlined in section V.E.3 and found sufficient evidence of tumor formation in multiple species (rats, mice, and monkeys) after inhalation at levels below overload conditions. The Agency has found evidence supporting the hypothesis that multiple mechanisms may be at work in the development of cancer in experimental animals and humans and cannot dismiss the roles of inflammation (neutrophilic and T-cell mediated), genotoxicity, and epigenetic factors (see section V.E.1, V.E. 3, V.E.4). After evaluating the best scientific evidence available from epidemiological and animal studies (see section V.E) OSHA concludes the weight of evidence supports a mechanistic finding that both soluble and poorly soluble forms of beryllium and beryllium-containing compounds are carcinogenic. F. Other Health Effects Past studies on other health effects have been thoroughly reviewed by several scientific organizations (NTP, 1999, Document ID 1341; EPA, 1998 (0661); ATSDR, 2002 (1371); WHO, 2001 (1282); HSDB, 2010 (0533)). These studies include summaries of animal studies, in vitro studies, and human epidemiological studies associated with cardiovascular, hematological, hepatic, renal, endocrine, reproductive, ocular and mucosal, and developmental effects. High-dose exposures to beryllium have been shown to have an adverse effect upon a variety of organs and tissues in the body, particularly the liver. The adverse systemic effects on humans mostly occurred prior to the introduction of occupational and environmental standards set in 1970– 1972 OSHA, 1971, see 39 FR 23513; EPA, 1973 (38 FR 8820)). (OSHA, 1971, see 39 FR 23513; ACGIH, 1971 (0543); ANSI, 1970 (1303)) and EPA, 1973 (38 FR 8820) and therefore are less relevant today than in the past. The available data is fairly limited. The hepatic, cardiovascular, renal, and ocular and VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 mucosal effects are briefly summarized below. Health effects in other organ systems listed above were only observed in animal studies at very high exposure levels and are, therefore, not discussed here. During the public comment period OSHA received comments suggesting that OSHA add dermal effects to this section. Therefore, dermal effects have been added, below, and are also discussed in the section on kinetics and metabolism (section V.B.2). 1. Hepatic Effects Beryllium has been shown to accumulate in the liver and a correlation has been demonstrated between beryllium content and hepatic damage. Different compounds have been shown to distribute differently within the hepatic tissues. For example, in one study, beryllium phosphate accumulated almost exclusively within sinusoidal (Kupffer) cells of the liver, while beryllium sulfate was found mainly in parenchymal cells. Conversely, beryllium sulphosalicylic acid complexes were rapidly excreted (Skilleter and Paine, 1979, Document ID 1410). According to a few autopsies, beryllium-laden livers had central necrosis, mild focal necrosis and inflammation, as well as, occasionally, beryllium granuloma (Sprince et al., 1975, Document ID 1405). 2. Cardiovascular Effects Severe cases of CBD can result in cor pulmonale, which is hypertrophy of the right heart ventricle. In a case history study of 17 individuals exposed to beryllium in a plant that manufactured fluorescent lamps, autopsies revealed right atrial and ventricular hypertrophy (Hardy and Tabershaw, 1946, Document ID 1516). It is not likely that these cardiac effects were due to direct toxicity to the heart, but rather were a response to impaired lung function. However, an increase in deaths due to heart disease or ischemic heart disease was found in workers at a beryllium manufacturing facility (Ward et al., 1992, Document ID 1378). Additionally, a study by Schubauer-Berigan et al. (2011) found an increase in mortality due to cor pulmonale in a follow-up study of workers at seven beryllium processing plants who were exposed to beryllium levels near the preceding OSHA PEL of 2.0 mg/m3 (SchubauerBerigan et al., 2011, Document ID 1266). Animal studies performed in monkeys indicate heart enlargement after acute inhalation exposure to 13 mg beryllium/ m3 as beryllium hydrogen phosphate, 0.184 mg beryllium/m3 as beryllium fluoride, or 0.198 mg beryllium/m3 as PO 00000 Frm 00058 Fmt 4701 Sfmt 4700 beryllium sulfate (Schepers, 1957, Document ID 0458). Decreased arterial oxygen tension was observed in dogs exposed to 30 mg beryllium/m3 as beryllium oxide for 15 days (HSDB, 2010, Document ID 0533), 3.6 mg beryllium/m3 as beryllium oxide for 40 days (Hall et al., 1950, Document ID 1494), and 0.04 mg beryllium/m3 as beryllium sulfate for 100 days (Stokinger et al., 1950, Document ID 1484). These are thought to be indirect effects on the heart due to pulmonary fibrosis and toxicity, which can increase arterial pressure and restrict blood flow. 3. Renal Effects Renal or kidney stones have been found in severe cases of CBD that resulted from high levels of beryllium exposure. Renal stones containing beryllium occurred in about 10 percent of patients affected by high exposures (Barnett et al., 1961, Document ID 0453). The ATSDR reported that 10 percent of the CBD cases found in the BCR reported kidney stones. In addition, an excess of calcium in the blood and urine was frequently found in patients with CBD (ATSDR, 2002, Document ID 1371). 4. Ocular and Mucosal Effects Soluble and poorly soluble beryllium compounds have been shown to cause ocular irritation in humans (VanOrdstrand et al., 1945, Document ID 1383; De Nardi et al., 1953 (1545); Nishimura, 1966 (1435); Epstein, 1991 (0526); NIOSH, 1994 (1261). In addition, soluble and poorly soluble beryllium has been shown to induce acute conjunctivitis with corneal maculae and diffuse erythema (HSDB, 2010, Document ID 0533). The mucosa (mucosal membrane) is the moist lining of certain tissues/organs including the eyes, nose, mouth, lungs, and the urinary and digestive tracts. Soluble beryllium salts have been shown to be directly irritating to mucous membranes (HSDB, 2010, Document ID 0533). 5. Dermal Effects Several commenters suggested OSHA add dermal effects to this Health Effects section. National Jewish Health noted that rash and granulomatous reactions of the skin still occur in occupational settings (Document ID 1664, p. 5). The National Supplemental Screening Program also recommended including skin conditions such as dermatitis and nodules (Document ID 1677, p. 3). The American Thoracic Society also recommended including ‘‘beryllium sensitization, CBD, and skin disease as the major adverse health effects E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS associated with exposure to beryllium at or below 0.1 mg/m3 and acute beryllium disease at higher exposures based on the currently available epidemiologic and experimental studies’’ (Document ID 1688, p. 2). OSHA agrees and has included dermal effects in this section of the final preamble. As summarized in Epstein (1991), skin exposure to soluble beryllium compounds (mainly beryllium fluoride but also beryllium metal which may contain beryllium fluoride) resulted in irritant dermatitis with inflammation, and local edema. Beryllium oxide, beryllium alloys and nearly pure beryllium metal did not produce such responses in the skin of workers (Epstein, 1991, Document ID 0526). Skin lacerations or abrasions contaminated with soluble beryllium can lead to skin ulcerations (Epstein, 1991, Document ID 0526). Soluble and poorly soluble beryllium-compounds that penetrate the skin as a result of abrasions or cuts have been shown to result in chronic ulcerations and skin granulomas (VanOrdstrand et al., 1945, Document ID 1383; Lederer and Savage, 1954 (1467)). However, ulcerating granulomatous formation of the skin is generally associated with poorly soluble forms of beryllium (Epstein, 1991, Document ID 0526). Beryllium, beryllium oxide and other soluble and poorly soluble forms of beryllium have been classified as a skin irritant (category 2) in accordance with the EU Classification, Labelling and Packaging Regulation (Document ID 1669, p. 2). Contact dermatitis (skin hypersensitivity) was observed in some individuals exposed via skin to soluble forms of beryllium, especially individuals with a dermal irritant response (Epstein, 1991, Document ID 0526). Contact allergy has been observed in workers exposed to beryllium chloride (Document ID 0522). G. Summary of Conclusions Regarding Health Effects Through careful analysis of the best available scientific information outlined in this section, OSHA has determined that beryllium and beryllium-containing compounds can cause sensitization, CBD, and lung cancer. The Agency has determined through its review and evaluation of the studies outlined in section V.A.2 of this health effects section that skin and inhalation exposure to beryllium can lead to sensitization; and inhalation exposure, or skin exposure coupled with inhalation, can cause onset and progression of CBD. In addition, the Agency’s review and evaluation of the studies outlined in section V.E. of this VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 health effects section led to a finding that inhalation exposure to beryllium and beryllium-containing materials can cause lung cancer. 1. OSHA’s Evaluation of the Evidence Finds That Beryllium Causes Sensitization Below the Preceding PEL and Sensitization is a Precursor to CBD Through the biological and immunological processes outlined in section V.B. of the Health Effects, the Agency has concluded that the scientific evidence supports the following mechanisms for the development of sensitization and CBD. • Inhaled beryllium and berylliumcontaining materials able to be retained and solubilized in the lungs have the ability to initiate sensitization and facilitate CBD development (section V.B.5). Genetic susceptibility may play a role in the development of sensitization and progression to CBD in certain individuals. • Beryllium compounds that dissolve in biological fluids, such as sweat, can penetrate intact skin and initiate sensitization (section V.A.2; V.B). Phagosomal fluid and lung fluid have the capacity to dissolve beryllium compounds in the lung (section V.A.2a). • Sensitization occurs through a Tcell mediated process with both soluble and poorly soluble beryllium and beryllium-containing compounds through direct antigen presentation or through further antigen processing in the skin or lung. T-cell mediated responses, such as sensitization, are generally regarded as long-lasting (e.g., not transient or readily reversible) immune conditions (section V.D.1). • Beryllium sensitization and CBD are adverse events along a pathological continuum in the disease process with sensitization being the necessary first step in the progression to CBD (section V.D). • Particle characteristics such as size, solubility, surface area, and other properties may play a role in the rate of development of beryllium sensitization and CBD. However, there is currently not sufficient information to delineate the biological role these characteristics may play. • Animal studies have provided supporting evidence for T-cell proliferation in the development of granulomatous lung lesions after beryllium exposure (sections V.D.2; V.D.6). • Since the pathogenesis of CBD involves a beryllium-specific, cellmediated immune response, CBD cannot occur in the absence of beryllium sensitization (section V.D.1). While no clinical symptoms are PO 00000 Frm 00059 Fmt 4701 Sfmt 4700 2527 associated with sensitization, a sensitized worker is at risk of developing CBD when inhalation exposure to beryllium has occurred. Epidemiological evidence that covers a wide variety of beryllium compounds and industrial processes demonstrates that sensitization and CBD are continuing to occur at present-day exposures below OSHA’s preceding PEL (sections V.D.4; V.D.5 and section VI of this preamble). • OSHA considers CBD to be a progressive illness with a continuous spectrum of symptoms ranging from its earliest asymptomatic stage following sensitization through to full-blown CBD and death (section V.D.7). • Genetic variabilities appear to enhance risk for developing sensitization and CBD in some groups (section V.D.3). In addition, epidemiological studies outlined in section V.D.5 have demonstrated that efforts to reduce exposures have succeeded in reducing the frequency of sensitization and CBD. 2. OSHA’s Evaluation of the Evidence Has Determined Beryllium To Be a Human Carcinogen OSHA conducted an evaluation of the available scientific information regarding the carcinogenic potential of beryllium and beryllium-containing compounds (section V.E). Based on the weight of evidence and plausible mechanistic information obtained from in vitro and in vivo animal studies as well as clinical and epidemiological investigations, the Agency has determined that beryllium and beryllium-containing materials are properly regarded as human carcinogens. This information is in accordance with findings from IARC, NTP, EPA, NIOSH, and ACGIH (section V.E). Key points from this analysis are summarized briefly here. • Epidemiological cohort studies have reported statistically significant excess lung cancer mortality among workers employed in U.S. beryllium production and processing plants during the 1930s to 1970s (section V.E.2). • Significant positive associations were found between lung cancer mortality and both average and cumulative beryllium exposures when appropriately adjusted for birth cohort and short-term work status (section V.E.2). • Studies in which large amounts of different beryllium compounds were inhaled or instilled in the respiratory tracts in multiple species of laboratory animals resulted in an increased E:\FR\FM\09JAR2.SGM 09JAR2 2528 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS incidence of lung tumors (section V.E.3). • Authoritative scientific organizations, such as the IARC, NTP, and EPA, have classified beryllium as a known or probable human carcinogen (section V.E). While OSHA has determined there is sufficient evidence of beryllium carcinogenicity, the Agency acknowledges that the exact tumorigenic mechanism for beryllium has yet to be determined. A number of mechanisms are likely involved, including chronic inflammation, genotoxicity, mitogenicity, oxidative stress, and epigenetic changes (section V.E.3). • Studies of beryllium-exposed animals have consistently demonstrated chronic pulmonary inflammation after exposure (section V.E.3). Substantial data indicate that tumor formation in certain animals after inhalation exposure to poorly soluble particles at doses causing marked, chronic inflammation is due to a secondary mechanism unrelated to the genotoxicity of the particles (section V.E.5). • A review conducted by the NAS (2008) (Document ID 1355) found that beryllium and beryllium-containing compounds tested positive for genotoxicity in nearly 50 percent of studies without exogenous metabolic activity, suggesting a possible directacting mechanism may exist (section V.E.1) as well as the potential for epigenetic changes (section V.E.4). Other health effects are discussed in sections F of the Health Effects Section and include hepatic, cardiovascular, renal, ocular, and mucosal effects. The adverse systemic effects from human exposures mostly occurred prior to the introduction of occupational and environmental standards set in 1970– 1973 (ACGIH, 1971, Document ID 0543; ANSI, 1970 (1303); OSHA, 1971, see 39 FR 23513; EPA, 1973 (38 FR 8820)) and therefore are less relevant. VI. Risk Assessment To promulgate a standard that regulates workplace exposure to toxic materials or harmful physical agents, OSHA must first determine that the standard reduces a ‘‘significant risk’’ of ‘‘material impairment.’’ Section 6(b)(5) of the OSH Act, 29 U.S.C. 655(b). The first part of this requirement, ‘‘significant risk,’’ refers to the likelihood of harm, whereas the second part, ‘‘material impairment,’’ refers to the severity of the consequences of exposure. Section II, Pertinent Legal Authority, of this preamble addresses the statutory bases for these VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 requirements and how they have been construed by the Supreme Court and federal courts of appeals. It is OSHA’s practice to evaluate risk to workers and determine the significance of that risk based on the best available evidence. Using that evidence, OSHA identifies material health impairments associated with potentially hazardous occupational exposures, assesses whether exposed workers’ risks are significant, and determines whether a new or revised rule will substantially reduce these risks. As discussed in Section II, Pertinent Legal Authority, when determining whether a significant risk exists OSHA considers whether there is a risk of at least one-in-a-thousand of developing amaterial health impairment from a working lifetime of exposure at the prevailing OSHA standard (referred to as the ‘‘preceding standard’’ or ‘‘preceding TWA PEL’’ in this preamble). For this purpose, OSHA generally assumes that a term of 45 years constitutes a working life. The Supreme Court has found that OSHA is not required to support its finding of significant risk with scientific certainty, but may instead rely on a body of reputable scientific thought and may make conservative assumptions (i.e., err on the side of protecting the worker) in its interpretation of the evidence (see Section II, Pertinent Legal Authority). For single-substance standards governed by section 6(b)(5) of the OSH Act, 29 U.S.C. 655(b)(5), OSHA sets a permissible exposure limit (PEL) based on its risk assessment as well as feasibility considerations. These health and risk determinations are made in the context of a rulemaking record in which the body of evidence used to establish material impairment, assess risks, and identify affected worker population, as well as the Agency’s preliminary risk assessment, are placed in a public rulemaking record and subject to public comment. Final determinations regarding the standard, including final determinations of material impairment and risk, are thus based on consideration of the entire rulemaking record. OSHA’s approach for the risk assessment for beryllium incorporates both: (1) A review of the literature on populations of workers exposed to beryllium at and below the preceding time-weighted average permissible exposure limit (TWA PEL) of 2 mg/m3; and (2) OSHA’s own analysis of a data set of beryllium-exposed machinists. The Preliminary Risk Assessment included in the NPRM evaluated risk at several alternate TWA PELs that the Agency was considering (1 mg/m3, 0.5 PO 00000 Frm 00060 Fmt 4701 Sfmt 4700 mg/m3, 0.2 mg/m3, and 0.1 mg/m3), as well as OSHA’s preceding TWA PEL of 2 mg/m3. OSHA’s risk assessment relied on available epidemiological studies to evaluate the risk of sensitization and CBD for workers exposed to beryllium at and below the preceding TWA PEL and the effectiveness of exposure control programs in reducing risk. OSHA also conducted a statistical analysis of the exposure-response relationship for sensitization and CBD at the preceding PEL and alternate PELs the Agency was considering. For this analysis, OSHA used data provided by National Jewish Health (NJH), a leading medical center specializing in the research and treatment of CBD, on a population of workers employed at a beryllium machining plant in Cullman, AL. The review of the epidemiological studies and OSHA’s own analysis both show significant risk of sensitization and CBD among workers exposed at and below the preceding TWA PEL of 2 mg/m3. They also show substantial reduction in risk where employers implemented a combination of controls, including stringent control of airborne beryllium levels and additional measures, such as respirators and dermal personal protective equipment (PPE) to further protect workers against dermal contact and airborne beryllium exposure. To evaluate lung cancer risk, OSHA relied on a quantitative risk assessment published in 2011 by SchubauerBerigan et al. (Document ID 1265). Schubauer-Berigan et al. found that lung cancer risk was strongly and significantly related to mean, cumulative, and maximum measures of workers’ exposure; the authors predicted significant risk of lung cancer at the preceding TWA PEL, and substantial reductions in risk at the alternate PELs OSHA considered in the proposed rule, including the final TWA PEL of 0.2 mg/m3 (Schubauer-Berigan et al., 2011). OSHA requested input on the preliminary risk assessment presented in the NPRM, and received comments from a variety of public health experts and organizations, unions, industrial organizations, individual employers, and private citizens. While many comments supported OSHA’s general approach to the risk assessment and the conclusions of the risk assessment, some commenters raised specific concerns with OSHA’s analytical methods or recommended additional studies for OSHA’s consideration. Comments about the risk assessment as a whole are reviewed here, while comments on specific aspects of the risk assessment are addressed in the relevant sections throughout the remainder of E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations this chapter and in the background document, Risk Analysis of the NJH Data Set from the Beryllium Machining Facility in Cullman, Alabama—CBD and Sensitization (OSHA, 2016), which can be found in the rulemaking docket (docket number OSHA–H005C–2006– 0870) at www.regulations.gov. Following OSHA’s review of all the comments submitted on the preliminary risk assessment, and its incorporation of suggested changes to the risk assessment, where appropriate, the Agency reaffirms its conclusion that workers’ risk of material impairment of health from beryllium exposure at the preceding PEL of 2 mg/m3 is significant, and is substantially reduced but still significant at the new PEL of 0.2 mg/m3 (see this preamble at Section VII, Significance of Risk). The comments OSHA received on its preliminary risk analysis generally supported OSHA’s overall approach and conclusions. NIOSH indicated that OSHA relied on the best available evidence in its risk assessment and concurred with ‘‘OSHA’s careful review of the available literature on [beryllium sensitization] and CBD, OSHA’s recognition of dermal exposure as a potential pathway for sensitization, and OSHA’s careful approach to assessing risk for [beryllium sensitization] and CBD’’ (Document ID 1725, p. 3). NIOSH agreed with OSHA’s approach to the preliminary lung cancer risk assessment (Document ID 1725, p. 7) and the selection of a 2011 analysis (SchubauerBerigan et al., 2011, Document ID 1265) as the basis of that risk assessment (Document ID 1725, p. 7). NIOSH further supported OSHA’s preliminary conclusions regarding the significance of risk of material health impairment at the preceding TWA PEL of 2 mg/m3, and the substantial reduction of such risk at the new TWA PEL of 0.2 mg/m3 (Document ID 1725, p. 3). Finally, NIOSH agreed with OSHA’s preliminary conclusion that compliance with the new PEL would lessen but not eliminate risk to exposed workers, noting that OSHA likely underestimated the risks of beryllium sensitization and CBD (Document ID 1725, pp. 3–4). Other commenters also agreed with the general approach and conclusions of OSHA’s preliminary risk assessment. NJH, for example, determined that ‘‘OSHA performed a thorough assessment of risk for [beryllium sensitization], CBD and lung cancer using all available studies and literature’’ (Document ID 1664, p. 5). Dr. Kenny Crump and Ms. Deborah Proctor commented, on behalf of beryllium producer Materion, that they ‘‘agree with OSHA’s conclusion that there is a VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 significant risk (>1/1000 risk of CBD) at the [then] current PEL, and that risk is reduced at the proposed PEL (0.2 mg/m3) in combination with stringent measures (ancillary provisions) to reduce worker’s exposures’’ (Document ID 1660, p. 2). They further stated that OSHA’s ‘‘finding is evident based on the available literature . . . and the prevalence data [OSHA] presented for the Cullman facility’’ (Document ID 1660, p. 2). OSHA also received comments objecting to OSHA’s conclusions regarding risk of lung cancer from beryllium exposure and suggesting additional published analyses for OSHA’s consideration (e.g., Document ID 1659; 1661, pp. 1–3). One comment critiqued the statistical exposureresponse model OSHA presented as one part of its preliminary risk analysis for sensitization and CBD (Document ID 1660). These comments are discussed and addressed in the remainder of this chapter. A. Review of Epidemiological Literature on Sensitization and Chronic Beryllium Disease As discussed in the Health Effects section, studies of beryllium-exposed workers conducted using the beryllium lymphocyte proliferation test (BeLPT) have found high rates of beryllium sensitization and CBD among workers in many industries, including at some facilities where exposures were primarily below OSHA’s preceding PEL of 2 mg/m3 (e.g., Kreiss et al., 1993, Document ID 1478; Henneberger et al., 2001 (1313); Schuler et al., 2005 (0919); Schuler et al., 2012 (0473)). In the mid1990s, some facilities using beryllium began to aggressively monitor and reduce workplace exposures. In the NPRM, OSHA reviewed studies of workers at four plants where several rounds of BeLPT screening were conducted before and after implementation of new exposure control methods. These studies provide the best available evidence on the effectiveness of various exposure control measures in reducing the risk of sensitization and CBD. The experiences of these plants—a copper-beryllium processing facility in Reading, PA, a ceramics facility in Tucson, AZ, a beryllium processing facility in Elmore, OH, and a machining facility in Cullman, AL—show that comprehensive exposure control programs that used engineering controls to reduce airborne exposure to beryllium, required the use of respiratory protection, controlled dermal contact with beryllium using PPE, and employed stringent housekeeping methods to keep work PO 00000 Frm 00061 Fmt 4701 Sfmt 4700 2529 areas clean and prevent transfer of beryllium between work areas, sharply curtailed new cases of sensitization among newly-hired workers. In contrast, efforts to prevent sensitization and CBD by using engineering controls to reduce workers’ beryllium exposures to median levels around 0.2 mg/m3, with no corresponding emphasis on PPE, were less effective than comprehensive exposure control programs implemented more recently. OSHA also reviewed additional, but more limited, information on the occurrence of sensitization and CBD among workers with low-level beryllium exposures at nuclear facilities and aluminum smelting plants. A summary discussion of the experiences at all of these facilities is provided in this section. Additional discussion of studies on these facilities and several other studies of sensitization and CBD among beryllium-exposed workers is provided in Section V, Health Effects. The Health Effects section also discusses OSHA’s findings and the supporting evidence concerning the role of particle characteristics and beryllium compound solubility in the development of sensitization and CBD among beryllium-exposed workers. First, it finds that respirable particles small enough to reach the deep lung are responsible for CBD. However, larger inhalable particles that deposit in the upper respiratory tract may lead to sensitization. Second, it finds that both soluble and poorly soluble forms of beryllium are able to induce sensitization and CBD. Poorly soluble forms of beryllium that persist in the lung for longer periods may pose greater risk of CBD while soluble forms may more easily trigger immune sensitization. Although particle size and solubility may influence the toxicity of beryllium, the available data are too limited to reliably account for these factors in the Agency’s estimates of risk. 1. Reading, PA, Plant Schuler et al. (2005, Document ID 0919) and Thomas et al. (2009, Document ID 0590) conducted studies of workers at a copper-beryllium processing facility in Reading, PA. Exposures at this plant were believed to be low throughout its history due to both the low percentage of beryllium in the metal alloys used and the relatively low exposures found in general area samples collected starting in 1969 (sample median ≤0.1 mg/m3, 97% < 0.5 mg/m3) (Schuler et al., 2005). Ninetynine percent of personal lapel sample measurements were below the preceding OSHA TWA PEL of 2 mg/m3; 93 percent were below the new TWA E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2530 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations PEL of 0.2 mg/m3 (Schuler et al., 2005). Schuler et al. (2005) screened 152 workers at the facility with the BeLPT in 2000. The reported prevalences of sensitization (6.5 percent) and CBD (3.9 percent) showed substantial risk at this facility, even though airborne exposures were primarily below both the preceding and final TWA PELs.11 The only group of workers with no cases of sensitization or CBD, a group of 26 office administration workers, was the group with the lowest recorded exposures (median personal sample 0.01 mg/m3, range <0.01–0.06 mg/m3 (Schuler et al., 2005). After the initial BeLPT screening was conducted in 2000, the company began implementing new measures to further reduce workers’ exposure to beryllium (Thomas et al. 2009, Document ID 0590). Requirements designed to minimize dermal contact with beryllium, including long-sleeve facility uniforms and polymer gloves, were instituted in production areas in 2000– 2002. In 2001, the company installed local exhaust ventilation (LEV) in die grinding and polishing operations (Thomas et al., 2009, Figure 1). Personal lapel samples collected between June 2000 and December 2001, showed reduced exposures plant-wide (98 percent were below 0.2 mg/m3). Median, arithmetic mean, and geometric mean values less than or equal to 0.03 mg/m3 were reported in this period for all processes except one, a wire annealing and pickling process. Samples for this process remained elevated, with a median of 0.1 mg/m3 (arithmetic mean of 0.127 mg/m3, geometric mean of 0.083 mg/m3) (Thomas et al., 2009, Table 3). In January 2002, the company enclosed the wire annealing and pickling process in a restricted access zone (RAZ). Beginning in 2002, the company required use of powered air-purifying respirators (PAPRs) in the RAZ, and implemented stringent measures to minimize the potential for skin contact and beryllium transfer out of the zone, such as requiring RAZ workers to shower before leaving the zone (Thomas et al., 2009, Figure 1). While exposure samples collected by the facility were sparse following the enclosure, they suggest exposure levels comparable to the 2000–2001 samples in areas other 11 Although OSHA reports percentages to indicate the risks of sensitization and CBD in this section, the benchmark OSHA typically uses to demonstrate significant risk, as discussed in Pertinent Legal Authority, is greater than or equal to 1 in 1,000 workers. One in 1,000 workers is equivalent to 0.1 percent. Therefore, any value of 0.1 percent or higher when reporting occurrence of a health effect is considered by OSHA to indicate a significant risk. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 than the RAZ (Thomas et al., 2009, Table 3). The authors reported that outside the RAZ, ‘‘the vast majority of employees do not wear any form of respiratory protection due to very low airborne beryllium concentrations’’ (Thomas et al., 2009, p. 122). To test the efficacy of the new measures in preventing sensitization and CBD, in June 2000 the facility began an intensive BeLPT screening program for all new workers (Thomas et al., 2009, Document ID 0590). Among 82 workers hired after 1999, three cases of sensitization were found (3.7 percent). Two (5.4 percent) of 37 workers hired prior to enclosure of the wire annealing and pickling process, which had been releasing beryllium into the surrounding area, were found to be sensitized within 3 and 6 months of beginning work at the plant. One (2.2 percent) of 45 workers hired after the enclosure was built was confirmed as sensitized. From these early results comparing the screening conducted on workers hired before 2000 and those hired in 2000 and later, especially following the enclosure of the RAZ, it appears that the greatest reduction in sensitization risk (to one sensitized worker, or 2.2 percent) was achieved after workers’ exposures were reduced to below 0.1 mg/m3 and PPE to prevent dermal contact was instituted (Thomas et al., 2009). 2. Tucson, AZ, Plant Kreiss et al. (1996, Document ID 1477), Cummings et al. (2007, Document ID 1369), and Henneberger et al. (2001, Document ID 1313) conducted studies of workers at a beryllia ceramics plant in Tucson, Arizona. Kreiss et al. (1996) screened 136 workers at this plant with the BeLPT in 1992. Full-shift area samples collected between 1983 and 1992 showed primarily low airborne beryllium levels at this facility (76 percent of area samples were at or below 0.1 mg/m3 and less than 1 percent exceeded 2 mg/m3). 4,133 short-term breathing zone measurements collected between 1981 and 1992 had a median of 0.3 mg/m3. A small set (75) of personal lapel samples collected at the plant beginning in 1991 had a median of 0.2 mg/m3 and ranged from 0.1 to 1.8 mg/m3 (arithmetic and geometric mean values not reported) (Kreiss et al., 1996). Kreiss et al. reported that eight (5.9 percent) of the 136 workers tested in 1992 were sensitized, six (4.4 percent) of whom were diagnosed with CBD. One sensitized worker was one of 13 administrative workers screened, and was among those diagnosed with CBD. Exposures of administrative workers were not well characterized, but were believed to be among the lowest in the PO 00000 Frm 00062 Fmt 4701 Sfmt 4700 plant. Personal lapel samples taken on administrative workers during the 1990s were below the detection limit at the time, 0.2 mg/m3 (Cummings et al., 2007, Document ID 1369). Following the 1992 screening, the facility reduced exposures in machining areas (for example, by enclosing additional machines and installing additional exhaust ventilation), resulting in median exposures of 0.2 mg/ m3 in production jobs and 0.1 mg/m3 in production support jobs (Cummings et al., 2007). In 1998, a second screening found that 7 out of 74 tested workers hired after the 1992 screening (9.5 percent) were sensitized, one of whom was diagnosed with CBD. All seven of these sensitized workers had been employed at the plant for less than two years (Henneberger et al., 2001, Document ID 1313, Table 3). Of 77 Tucson workers hired prior to 1992 who were tested in 1998, 8 (10.4 percent) were sensitized and 7 of these (9.7 percent) were diagnosed with CBD (Henneberger et al., 2001). Following the 1998 screening, the company continued efforts to reduce exposures, along with risk of sensitization and CBD, by implementing additional engineering and administrative controls and a comprehensive PPE program which included the use of respiratory protection (1999) and latex gloves (2000) (Cummings et al., 2007, Document ID 1369). Enclosures were installed for various beryllium-releasing processes by 2001. Between 2000 and 2003, water-resistant or water-proof garments, shoe covers, and taped gloves were incorporated to keep berylliumcontaining fluids from wet machining processes off the skin. To test the efficacy of the new measures instituted after 1998, in January 2000 the company began screening new workers for sensitization at the time of hire and at 3, 6, 12, 24, and 48 months of employment. These more stringent measures appear to have substantially reduced the risk of sensitization among new employees. Of 97 workers hired between 2000 and 2004, one case of sensitization was identified (1 percent) (Cummings et al., 2007). 3. Elmore, OH, Plant Kreiss et al. (1997, Document ID 1360), Bailey et al. (2010, Document ID 0676), and Schuler et al. (2012, Document ID 0473) conducted studies of workers at a beryllium metal, alloy, and oxide production plant in Elmore, Ohio. Workers participated in several plant-wide BeLPT surveys beginning in 1993–1994 (Kreiss et al., 1997; Schuler et al., 2012) and in a series of screenings E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations for workers hired in 2000 and later, conducted beginning in 2000 (Bailey et al., 2010). Exposure levels at the plant between 1984 and 1993 were characterized using a mixture of general area, short-term breathing zone, and personal lapel samples (Kreiss et al., 1997, Document ID 1360). Kreiss et al. reported that the median area samples for various work areas ranged from 0.1 to 0.7 mg/m3, with the highest values in the alloy arc furnace and alloy melting-casting areas. Personal lapel samples were available from 1990–1992, and showed high exposures overall (median value of 1.0 mg/m3), with very high exposures for some processes. Kreiss et al. reported median sample values from the personal lapel samples of 3.8 mg/m3 for beryllium oxide production, 1.75 mg/m3 for alloy melting and casting, and 1.75 mg/m3 for the arc furnace. The authors reported that 43 (6.9 percent) of 627 workers tested in 1993–1994 were sensitized. 29 workers (including 5 previously identified) were diagnosed with CBD (29/632, or 4.6 percent) (Kreiss et al., 1997). In 1996–1999, the company took further steps to reduce workers’ beryllium exposures, including enclosure of some beryllium-releasing processes, establishment of restrictedaccess zones, and installation or updating of certain engineering controls (Bailey et al., 2010, Document ID 0676, Tables 1–2). Beginning in 1999, all new employees were required to wear loosefitting PAPRs in manufacturing buildings. Skin protection became part of the protection program for new employees in 2000, and glove use was required in production areas and for handling work boots beginning in 2001. By 2001, either half-mask respirators or PAPRs were required throughout the production facility (type determined by airborne beryllium levels) and respiratory protection was required for roof work and during removal of work boots (Bailey et al., 2010). Beginning in 2000, newly hired workers were offered periodic BeLPT testing to evaluate the effectiveness of the new exposure control program implemented by the company (Bailey et al., 2010). Bailey et al. compared the occurrence of beryllium sensitization and disease among 258 employees who began work at the Elmore plant between January 15, 1993 and August 9, 1999 (the ‘‘pre-program group’’) with that of 290 employees who were hired between February 21, 2000 and December 18, 2006, and were tested at least once after hire (the ‘‘program group’’). They found that, as of 1999, 23 (8.9 percent) of the pre-program group were sensitized to VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 beryllium. Six (2.1 percent) of the program group had confirmed abnormal results on their final round of BeLPTs, which occurred in different years for different employees. This four-fold reduction in sensitization suggests that beryllium-exposed workers’ risk of sensitization (and therefore of CBD, which develops only following sensitization) can be much reduced by the combination of process controls, respiratory protection requirements, and PPE requirements applied in this facility. Because most of the workers in the study had been employed at the facility for less than two years, and CBD typically develops over a longer period of time (see section V, Health Effects), Bailey et al. did not report the incidence of CBD among the sensitized workers (Bailey et al., 2010). Schuler et al. (2012, Document ID 0473) published a study examining beryllium sensitization and CBD among short-term workers at the Elmore, OH plant, using exposure estimates created by Virji et al. (2012, Document ID 0466). The study population included 264 workers employed in 1999 with up to 6 years tenure at the plant (91 percent of the 291 eligible workers). By including only short-term workers, Virji et al. were able to construct participants’ exposures with more precision than was possible in studies involving workers exposed for longer durations and in time periods with less exposure sampling. A set of 1999 exposure surveys and employee work histories was used to estimate employees’ long-term lifetime weighted (LTW) average, cumulative, and highestjob-worked exposures for total, respirable, and submicron beryllium mass concentrations (Schuler et al., 2012; Virji et al., 2012). As reported by Schuler et al. (2012), the overall prevalence of sensitization was 9.8 percent (26/264). Sensitized workers were offered further evaluation for CBD. Twenty-two sensitized workers consented to clinical testing for CBD via transbronchial biopsy. Although followup time was too short (at most 6 years) to fully evaluate CBD in this group, 6 of those sensitized were diagnosed with CBD (2.3 percent, 6/264). Schuler et al. (2012) found 17 cases of sensitization (8.6%) within the first 3 quartiles of LTW average exposure (198 workers with LTW average total mass exposures lower than 1.1 mg/m3) and 4 cases of CBD (2.2%) within those first 3 quartiles (183 workers with LTW average total mass exposures lower than 1.07 mg/ m3)12 The authors found 3 cases (4.6%) 12 The total number of workers Schuler et al. reported in their table of LTW average quartiles for sensitization differs from the total number of PO 00000 Frm 00063 Fmt 4701 Sfmt 4700 2531 of sensitization among 66 workers with total mass LTW average exposures below 0.1 mg/m3, and no cases of sensitization among workers with total mass LTW average exposures below 0.09 mg/m3, suggesting that berylliumexposed workers’ risk can be much reduced or eliminated by reducing airborne exposures to average levels below 0.1 mg/m3. Schuler et al. (2012, Document ID 0473) then used logistic regression to explore the relationship between estimated beryllium exposure and sensitization and CBD. For beryllium sensitization, the logistic models by Schuler et al. showed elevated odds ratios (OR) for LTW average (OR 1.48) and highest job (OR 1.37) exposure for total mass exposure; the OR for cumulative exposure was smaller (OR 1.23) and borderline statistically significant (95 percent CI barely included unity).13 Relationships between sensitization and respirable exposure estimates were similarly elevated for LTW average (OR 1.37) and highest job (OR 1.32) exposures. Among the submicron exposure estimates, only highest job (OR 1.24) had a 95 percent CI that just included unity for sensitization. For CBD, elevated odds ratios were observed only for the cumulative exposure estimates and were similar for total mass and respirable exposure (total mass OR 1.66, respirable OR 1.68). Cumulative submicron exposure showed an elevated, borderline significant odds ratio (OR 1.58). The odds ratios for average exposure and highest-exposed job were not statistically significantly elevated. Schuler et al. concluded that both total and respirable mass concentrations of beryllium exposure were relevant predictors of risk for beryllium sensitization and CBD. Average and highest job exposures were predictive of risk for sensitization, while cumulative exposure was predictive of risk for CBD (Schuler et al., 2012). Materion submitted comments supporting OSHA’s use of the Schuler et al. (2012) study as a basis for the final TWA PEL of 0.2 mg/m3. Materion stated that ‘‘the best available evidence to establish a risk-based OEL [occupational exposure limit] is the study conducted by NIOSH and presented in Schuler 2012. The exposure assessment in workers reported in their table of LTW average quartiles for CBD. The table for CBD appeared to exclude 20 workers with sensitization and no CBD. 13 An odds ratio (OR) is a measure of association between an exposure and an outcome. The OR represents the odds that an outcome will occur given a particular exposure, compared to the odds of the outcome occurring in the absence of that exposure. E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2532 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Schuler et al. was based on a highly robust workplace monitoring dataset and the study provides improved data for determining OELs’’ (Document ID 1661, pp. 9–10). Materion also submitted an unpublished manuscript documenting an analysis it commissioned, entitled ‘‘Derived NoEffect Levels for Occupational Beryllium Exposure Using Cluster Analysis and Benchmark Dose Modeling’’ (Proctor et al., Document ID 1661, Attachment 5). In this document, Proctor et al. used data from Schuler et al. 2012 to develop a Derived No-Effect Level (DNEL) for beryllium measured as respirable beryllium, total mass of beryllium, and inhalable beryllium.14 OSHA’s beryllium standard measures beryllium as total mass; thus, the results for total mass are most relevant to OSHA’s risk analysis for the beryllium standard. The assessment reported a DNEL of 0.14 mg/m3 for total mass beryllium (Document ID 1661, Attachment 5, p. 16). Materion commented that this finding ‘‘add[s] to the body of evidence that supports the fact that OSHA is justified in lowering the existing PEL to 0.2 mg/m3’’ (Document ID 1661, p. 11). Proctor et al. characterized the DNEL of 0.14 mg/m3 as ‘‘inherently conservative because average exposure metrics were used to determine DNELs, which are limits not [to] be exceeded on a daily basis’’ (Document ID 1661, Attachment 5, p. 22). Materion referred to the DNELs derived by Proctor et al. as providing an ‘‘additional margin of safety’’ for similar reasons (Document ID 1661, p. 11). Consistent with NIOSH comments discussed in the next paragraph, OSHA disagrees with this characterization of the DNEL as representing a ‘‘no effect level’’ for CBD or as providing a margin of safety for several reasons. The DNEL from Proctor et al. is based on CBD findings among a short-term worker population and thus cannot represent the risk presented to workers who are exposed over a working lifetime. Proctor et al. noted that it is ‘‘important to consider that these data are from relatively short-term exposures [median tenure 20.9 months] and are being used to support DNELs for lifetime occupational exposures,’’ but considered the duration of exposure to be sufficient because ‘‘CBD can develop 14 Derived No-Effect Level (DNEL) is used in REACH quantitative risk characterizations to mean the level of exposure above which humans should not be exposed. It is intended to represent a safe level of exposure for humans., REACH is the European Union’s regulation on Registration, Evaluation, Authorization and Restriction of Chemicals. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 with latency as short as 3 months of exposure, and . . . the risk of CBD declines over time’’ (Document ID 1661, Attachment 5, p. 19). In stating this, Procter et al. cite studies by Newman et al. (2001, Document ID 1354) and Harber et al. (2009, as cited in Document ID 1661). Newman et al. (2001) studied a group of workers in a machining plant with job tenures averaging 11.7 years, considerably longer than the worker cohort from the study used by Procter et al., and identified new cases of CBD from health screenings conducted up to 4 years after an initial screening. Harber et al., (2009) developed an analytic model of disease progression from beryllium exposure and found that, although the rate at which new cases of CBD declined over time, the overall proportion of individuals with CBD increased over time from initial exposure (see Figure 2 of Haber et al., 2009). Furthermore, the study used by Proctor et al. to derive the DNEL, Schuler et al. (2012), did report finding that the risk of CBD increased with cumulative exposure to beryllium, as summarized above. Therefore, OSHA is not convinced that a ‘‘no effect level’’ for beryllium that is based on the health experience of workers with a median job tenure of 20.9 months can represent a ‘‘no-effect level’’ for workers exposed to beryllium for as long as 45 years. NIOSH commented on the results of Proctor et al.’s analysis and the underlying data set, noting several features of the dataset that are common to the beryllium literature, such as uncertain date of sensitization or onset of CBD and no ‘‘background’’ rate of beryllium sensitization or CBD, that make statistical analyses of the data difficult and add uncertainty to the derivation of a DNEL (Document ID 1725, p. 5). NIOSH also noted that risk of CBD may be underestimated in the underlying data set if workers with CBD were leaving employment due, in part, to adverse health effects (‘‘unmeasured survivor bias’’) and estimated that as much as 30 percent of the cohort could have been lost over the 6-year testing period (Document ID 1725, p. 5). NIOSH concluded that Proctor et al.’s analysis ‘‘does not contribute to the risk assessment for beryllium workers’’ (Document ID 1725, p. 5). OSHA agrees with NIOSH that the DNEL identified by Proctor et al. cannot be considered a reliable estimate of a no-effect level for beryllium. 4. Cullman, AL, Plant Newman et al. (2001, Document ID 1354), Kelleher et al. (2001, Document ID 1363), and Madl et al. (2007, Document ID 1056) studied beryllium PO 00000 Frm 00064 Fmt 4701 Sfmt 4700 workers at a precision machining facility in Cullman, Alabama. After a case of CBD was diagnosed at the plant in 1995, the company began BeLPT screenings to identify workers at risk of CBD and implemented engineering and administrative controls designed to reduce workers’ beryllium exposures in machining operations. Newman et al. (2001) conducted a series of BeLPT screenings of workers at the facility between 1995 and 1999. The authors reported 22 (9.4 percent) sensitized workers among 235 tested, 13 of whom were diagnosed with CBD within the study period. Personal lapel samples collected between 1980 and 1999 indicate that median exposures were generally well below the preceding PEL (≤0.35 mg/m3 in all job titles except maintenance (median 3.1 mg/m3 during 1980–1995) and gas bearings (1.05 mg/ m3 during 1980–1995)). Between 1995 and 1999, the company built enclosures around several beryllium-releasing operations; installed or updated LEV for several machining departments; replaced pressurized air hoses and dry sweeping with wet methods and vacuum systems for cleaning; changed the layout of the plant to keep beryllium-releasing processes close together; limited access to the production area of the plant; and required the use of company uniforms. Madl et al. (2007, Document ID 1056) reported that engineering and work process controls, rather than personal protective equipment, were used to limit workers’ exposure to beryllium. In contrast to the Reading and Tucson plants, gloves were not required at this plant. Personal lapel samples collected extensively between 1996 and 1999 in machining and non-machining jobs had medians of 0.16 mg/m3 and 0.08 mg/m3, respectively (Madl et al., 2007, Table IV). At the time that Newman et al. reviewed the results of BeLPT screenings conducted in 1995–1999, a subset of 60 workers had been employed at the plant for less than a year and had therefore benefitted to some extent from the controls described above. Four (6.7 percent) of these workers were found to be sensitized, of whom two were diagnosed with CBD and one with probable CBD (Newman et al., 2001, Document ID 1354). The later study by Madl. et al. reported seven sensitized workers who had been hired between 1995 and 1999, of whom four had developed CBD as of 2005 (2007, Table II) (total number of workers hired between 1995 and 1999 not reported). Beginning in 2000 (after the implementation of controls between 1997 and 1999), exposures in all jobs at the machining facility were reduced to E:\FR\FM\09JAR2.SGM 09JAR2 2533 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations extremely low levels (Madl et al., 2007, Document ID 1056). Personal lapel samples collected between 2000 and 2005 had a median of 0.12 mg/m3 or less in all machining and non-machining processes (Madl. et al., 2007, Table IV). Only one worker hired after 1999 became sensitized (Madl et al. 2007, Table II). The worker had been employed for 2.7 years in chemical finishing, which had the highest median exposure of 0.12 mg/m3 (medians for other processes ranged from 0.02 to 0.11 mg/m3); Madl et al. 2007, Table II). This result from Madl et al. (2007) suggests that beryllium-exposed workers’ risk of sensitization can be much reduced by steps taken to reduce workers’ airborne exposures in this facility, including enclosure of beryllium-releasing processes, LEV, wet methods and vacuum systems for cleaning, and limiting worker access to production areas. The Cullman, AL facility was also the subject of a case-control study published by Kelleher et al. in 2001 (Document ID 1363). After the diagnosis of a case of CBD at the plant in 1995, NJH researchers, including Kelleher, worked with the plant to conduct the medical surveillance program mentioned above, using the BeLPT to screen workers biennially for beryllium sensitization and offering sensitized workers further evaluation for CBD (Kelleher et al., 2001). Concurrently, research was underway by Martyny et al. to characterize the particle size distribution of beryllium exposures generated by processes at this plant (Martyny et al., 2000, Document ID 1358). Kelleher et al. used the dataset of 100 personal lapel samples collected by Martyny et al. and other NJH researchers to characterize exposures for each job in the plant. Detailed work history information gathered from plant data and worker interviews was used in combination with job exposure estimates to characterize cumulative and LTW average beryllium exposures for workers in the surveillance program. In addition to cumulative and LTW average exposure estimates based on the total mass of beryllium reported in their exposure samples, Kelleher et al. calculated cumulative and LTW average estimates based specifically on exposure to particles <6 mm and particles <1 mm in diameter. To analyze the relationship between exposure level and risk of sensitization and CBD, Kelleher et al. performed a case-control analysis using measures of both total beryllium exposure and particle size-fractionated exposure. The results, however, were inconclusive, probably due to the relatively small size of the dataset (Kelleher et al., 2001). 5. Aluminum Smelting Plants Taiwo et al. (2008, Document ID 0621; 2010 (0583) and Nilsen et al. (2010, Document ID 0460) studied the relationship between beryllium exposure and adverse health effects among workers at aluminum smelting plants. Taiwo et al. (2008) studied a population of 734 employees at 4 aluminum smelters located in Canada (2), Italy (1), and the United States (1). In 2000, a company-wide beryllium exposure limit of 0.2 mg/m3 and an action level of 0.1 mg/m3, expressed as 8-hour TWAs, and a short-term exposure limit (STEL) of 1.0 mg/m3 (15minute sample) were instituted at these plants. Sampling to determine compliance with the exposure limit began at all four smelters in 2000. Table VI–1 below, adapted from Taiwo et al. (2008), shows summary information on samples collected from the start of sampling through 2005. TABLE VI–1—EXPOSURE SAMPLING DATA BY PLANT—2000–2005 Number samples Smelter Canadian smelter 1 ......................................................................................... Canadian smelter 2 ......................................................................................... Italian smelter .................................................................................................. US smelter ....................................................................................................... Arithmetic mean (μg/m3) Median (μg/m3) 246 329 44 346 0.03 0.11 0.12 0.03 Geometric mean (μg/m3) 0.09 0.29 0.14 0.26 0.03 0.08 0.10 0.04 Adapted from Taiwo et al., 2008, Document ID 0621, Table 1. All employees potentially exposed to beryllium levels at or above the action level for at least 12 days per year, or exposed at or above the STEL 12 or more times per year, were offered medical surveillance, including the BeLPT (Taiwo et al., 2008). Table VI–2 below, adapted from Taiwo et al. (2008), shows test results for each facility between 2001 and 2005. TABLE VI–2—BELPT RESULTS BY PLANT—2001–2005 Employees tested Smelter asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Canadian smelter 1 ......................................................................................... Canadian smelter 2 ......................................................................................... Italian smelter .................................................................................................. US smelter ....................................................................................................... Abnormal BeLPT (unconfirmed) Normal 109 291 64 270 107 290 63 268 1 1 0 2 Confirmed sensitized 1 0 1 0 Adapted from Taiwo et al., 2008, Document ID 0621, Table 2 The two workers with confirmed beryllium sensitization were offered further evaluation for CBD. Both were diagnosed with CBD, based on bronchoalveolar lavage (BAL) results in one case and pulmonary function tests, VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 respiratory symptoms, and radiographic evidence in the other. In 2010, Taiwo et al. (Document ID 0583) published a study of berylliumexposed workers from four companies, with a total of nine smelting operations. PO 00000 Frm 00065 Fmt 4701 Sfmt 4700 These workers included some of the workers from the 2008 study. 3,185 workers were determined to be ‘‘significantly exposed’’ to beryllium and invited to participate in BeLPT screening. Each company used different E:\FR\FM\09JAR2.SGM 09JAR2 2534 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations criteria to determine ‘‘significant’’ exposure, and the criteria appeared to vary considerably (Taiwo et al., 2010); thus, it is difficult to compare rates of sensitization across companies in this study. 1932 workers, about 60 percent of invited workers, participated in the program between 2000 and 2006, of whom 9 were determined to be sensitized (.4 percent). The authors stated that all nine workers were referred to a respiratory physician for further evaluation for CBD. Two were diagnosed with CBD (.1 percent), as described above (see Taiwo et al., 2008). In general, there appeared to be a low level of sensitization and CBD among employees at the aluminum smelters studied by Taiwo et al. (2008; 2010). This is striking in light of the fact that many of the employees tested had worked at the smelters long before the institution of exposure limits for beryllium at some smelters in 2000. However, the authors noted that respiratory and dermal protection had been used at these plants to protect workers from other hazards (Taiwo et al., 2008). A study by Nilsen et al. (2010, Document ID 0460) of aluminum workers in Norway also found a low rate of sensitization. In the study, 362 workers and 31 control individuals received BeLPT testing for beryllium sensitization. The authors found one sensitized worker (0.28 percent). No borderline results were reported. The authors reported that exposure measurements in this plant ranged from 0.1 mg/m3 to 0.31 mg/m3 (Nilsen et al., 2010) and that respiratory protection was in use, as was the case in the smelters studied by Taiwo et al. (2008; 2010). asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 6. Nuclear Weapons Facilities Viet et al. (2000, Document ID 1344) and Arjomandi et al. (2010, Document ID 1275) evaluated beryllium-exposed nuclear weapons workers. In 2000, Viet et al. published a case-control study of participants in the Rocky Flats Beryllium Health Surveillance Program (BHSP), which was established in 1991 to screen workers at the Department of Energy’s Rocky Flats, CO, nuclear weapons facility for beryllium sensitization and evaluate sensitized workers for CBD. The program, which the authors reported had tested over 5,000 current and former Rocky Flats employees for sensitization, had identified a total of 127 sensitized individuals as of 1994 when Viet et al. initiated their study; 51 of these sensitized individuals had been diagnosed with CBD. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 Using subjects from the BHSP, Viet et al. (2000) matched a total of 50 CBD cases to 50 controls who tested negative for beryllium sensitization and had the same age (± 3 years), gender, race and smoking status, and were otherwise randomly selected from the database. Using the same matching criteria, 74 sensitized workers who were not diagnosed with CBD were matched to 74 control individuals from the BHSP database who tested negative for beryllium sensitization. Viet et al. (2000) developed exposure estimates for the cases and controls based on daily fixed airhead (FAH) beryllium air samples collected in one of 36 buildings at Rocky Flats where beryllium was used, the Building 444 Beryllium Machine Shop. Annual mean FAH samples in Building 444 collected between 1960 and 1988 ranged from a low of 0.096 mg/m3 (1988) to a high of 0.622 mg/m3 (1964) (Viet et al., 2000, Table II). Because exposures in this shop were better characterized than in other buildings, the authors developed estimates of exposures for all workers based on samples from Building 444. The authors’ statistical analysis of the resulting data set included conditional logistic regression analysis, modeling the relationship between risk of each health outcome and individuals’ logtransformed cumulative exposure estimate (CEE) and mean exposure estimate (MEE). These coefficients corresponded to odds ratios of 6.9 and 7.2 per 10-fold increase in exposure, respectively. Risk of sensitization without CBD did not show a statistically significant relationship with log-CEE (coef = 0.111, p = 0.32), but showed a nearly-significant relationship with logMEE (coef = 0.230, p = 0.097). Viet et al. found highly statistically significant relationships between log-CEE and risk of CBD (coef = 0.837, p = 0.0006) and between log-MEE (coef = 0.855, p = 0.0012) and risk of CBD, indicating that risk of CBD increases with exposure level. Arjomandi et al. (2010) published a study of 50 sensitized workers from a nuclear weapons research and development facility who were evaluated for CBD. Quantitative exposure estimates for the workers were not presented; however, the authors characterized their likely exposures as low (possibly below 0.1 mg/m3 for most jobs). In contrast to the studies of lowexposure populations discussed previously, this group had much longer follow-up time (mean time since first exposure = 32 years) and length of employment at the facility (mean of 18 years). PO 00000 Frm 00066 Fmt 4701 Sfmt 4700 Five of the 50 evaluated workers (10 percent) were diagnosed with CBD based on histology or high-resolution computed tomography. An additional three (who had not undergone full clinical evaluation for CBD) were identified as probable CBD cases, bringing the total prevalence of CBD and probable CBD in this group to 16 percent. OSHA notes that this prevalence of CBD among sensitized workers is lower than the prevalence of CBD that has been observed in some other worker groups known to have exposures exceeding the action level of 0.1 mg/m3. For example, as discussed above, Newman et al. (2001, Document ID 1354) reported 22 sensitized workers, 13 of whom (59 percent) were diagnosed with CBD within the study period. Comparison of these results suggests that controlling respiratory exposure to beryllium may reduce risk of CBD among already-sensitized workers as well as reducing risk of CBD via prevention of sensitization. However, it also demonstrates that some workers in low-exposure environments can become sensitized and then develop CBD. 7. Conclusions The published literature on beryllium sensitization and CBD discussed above shows that risk of both health effects can be significant in workplaces in compliance with OSHA’s preceding PEL (e.g., Kreiss et al., 1996, Document ID 1477; Henneberger et al., 2001 (1313); Newman et al., 2001 (1354); Schuler et al., 2005 (0919), 2012 (0473); Madl et al., 2007 (1056)). For example, in the Tucson beryllia ceramics plant discussed above, Kreiss et al. (1996) reported that 8 (5.9 percent) of the 136 workers tested in 1992 were sensitized, 6 (4.4 percent) of whom were diagnosed with CBD. In addition, of 77 Tucson workers hired prior to 1992 who were tested in 1998, 8 (10.4 percent) were sensitized and 7 of these (9.7 percent) were diagnosed with CBD (Henneberger et al., 2001, Document ID 1313). Fullshift area samples showed airborne beryllium levels below the preceding PEL (76 percent of area samples collected between 1983 and 1992 were at or below 0.1 mg/m3 and less than 1 percent exceeded 2 mg/m3; short-term breathing zone measurements collected between 1981 and 1992 had a median of 0.3 mg/m3; personal lapel samples collected at the plant beginning in 1991 had a median of 0.2 mg/m3) (Kreiss et al., 1996). Results from the Elmore, OH beryllium metal, alloy, and oxide production plant and Cullman, AL machining facility also showed significant risk of sensitization and CBD E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations among workers with exposures below the preceding TWA PEL. Schuler et al. (2012, Document ID 0473) found 17 cases of sensitization (8.6%) among Elmore, OH workers within the first three quartiles of LTW average exposure (198 workers with LTW average total mass exposures lower than 1.1 mg/m3) and 4 cases of CBD (2.2%) within the first three quartiles of LTW average exposure (183 workers with LTW average total mass exposures lower than 1.07 mg/m3; note that follow-up time of up to 6 years for all study participants was very short for development of CBD). At the Cullman, AL machining facility, Newman et al. (2001, Document ID 1354) reported 22 (9.4 percent) sensitized workers among 235 tested in 1995–1999, 13 of whom were diagnosed with CBD. Personal lapel samples collected between 1980 and 1999 indicate that median exposures were generally well below the preceding PEL (≤0.35 mg/m3 in all job titles except maintenance (median 3.1 mg/m3 during 1980–1995) and gas bearings (1.05 mg/ m3 during 1980–1995)). There is evidence in the literature that although risk will be reduced by compliance with the new TWA PEL, significant risk of sensitization and CBD will remain in workplaces in compliance with OSHA’s new TWA PEL of 0.2 mg/m3 and could extend down to the new action level of 0.1 mg/ m3, although there is less information and therefore greater uncertainty with respect to significant risk from airborne beryllium exposures at and below the action level. For example, Schuler et al. (2005, Document ID 0919) reported substantial prevalences of sensitization (6.5 percent) and CBD (3.9 percent) among 152 workers at the Reading, PA facility who had BeLPT screening in 2000. These results showed significant risk at this facility, even though airborne exposures were primarily below both the preceding and final TWA PELs due to the low percentage of beryllium in the metal alloys used (median general area samples ≤0.1 mg/m3, 97% ≤0.5 mg/ m3); 93% of personal lapel samples were below the new TWA PEL of 0.2 mg/ m3). The only group of workers with no cases of sensitization or CBD, a group of 26 office administration workers, was the group with exposures below the new action level of 0.1 mg/m3 (median personal sample 0.01 mg/m3, range <0.01–0.06 mg/m3 (Schuler et al., 2005). The Schuler et al. (2012, Document ID 0473) study of short-term workers in the Elmore, OH facility found 3 cases (4.6%) of sensitization among 66 workers with total mass LTW average exposures below 0.1 mg/m3; 3 of these VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 workers had LTW average exposures of approximately 0.09 mg/m3. Furthermore, cases of sensitization and CBD continued to arise in the Cullman, AL machining plant after control measures implemented beginning in 1995 brought median airborne exposures below 0.2 mg/m3 (personal lapel samples between 1996 and 1999 in machining jobs had a median of 0.16 mg/m3 and 0.08 mg/m3 in non-machining jobs) (Madl et al., 2007, Document ID 1056, Table IV). At the time that Newman et al. (2001, Document ID 1354) reviewed the results of BeLPT screenings conducted in 1995–1999, a subset of 60 workers had been employed at the plant for less than a year and had therefore benefitted to some extent from the exposure reductions. Four (6.7 percent) of these workers were found to be sensitized, two of whom were diagnosed with CBD and one with probable CBD (Newman et al., 2001). A later study by Madl. et al. (2007, Document ID 1056) reported seven sensitized workers who had been hired between 1995 and 1999, of whom four had developed CBD as of 2005 (Table II; total number of workers hired between 1995 and 1999 not reported). The experiences of several facilities in developing effective industrial hygiene programs have shown the importance of minimizing both airborne exposure and dermal contact to effectively reduce risk of sensitization and CBD. Exposure control programs that have used a combination of engineering controls and PPE to reduce workers’ airborne exposure and dermal contact have substantially lowered risk of sensitization among newly hired workers.15 Of 97 workers hired between 2000 and 2004 in the Tucson, AZ plant after the introduction of mandatory respirator use in production areas beginning in 1999 and mandatory use of latex gloves beginning in 2000, one case of sensitization was identified (1 percent) (Cummings et al., 2007, Document ID 1369). In Elmore, OH, where all workers were required to wear respirators and skin PPE in production areas beginning in 2000–2001, the 15 As discussed in Section V, Health Effects, beryllium sensitization can occur from dermal contact with beryllium. Studies conducted in the 1950s by Curtis et al. showed that soluble beryllium particles could cause beryllium hypersensitivity (Curtis, 1951, Document ID 1273; NAS, 2008, Document ID 1355). Tinkle et al. established that 0.5- and 1.0-mm particles can penetrate intact human skin surface and reach the epidermis, where beryllium particles would encounter antigenpresenting cells and initiate sensitization (Tinkle et al., 2003, Document ID 1483). Tinkle et al. further demonstrated that beryllium oxide and beryllium sulfate, applied to the skin of mice, generate a beryllium-specific, cell-mediated immune response similar to human beryllium sensitization. PO 00000 Frm 00067 Fmt 4701 Sfmt 4700 2535 estimated prevalence of sensitization among workers hired after these measures were put in place was around 2 percent (Bailey et al., 2010, Document ID 0676). In the Reading, PA facility, only one (2.2 percent) of 45 workers hired after workers’ exposures were reduced to below 0.1 mg/m3 and PPE to prevent dermal contact was instituted was sensitized (Thomas et al., 2009, Document ID 0590). And, in the aluminum smelters discussed by Taiwo et al. (2008, Document ID 0621), where available exposure samples from four plants indicated median beryllium levels of about 0.1 mg/m3 or below (measured as an 8-hour TWA) and workers used respiratory and dermal protection, confirmed cases of sensitization were rare (zero or one case per location). OSHA recognizes that the studies on recent programs to reduce workers’ risk of sensitization and CBD were conducted on populations with very short exposure and follow-up time. Therefore, they could not adequately address the question of how frequently workers who become sensitized in environments with extremely low airborne exposures (median <0.1 mg/m3) develop CBD. Clinical evaluation for CBD was not reported for sensitized workers identified in the studies examining the post-2000, very lowexposed worker cohorts in Tucson, Reading, and Elmore (Cummings et al. 2007, Document ID 1369; Thomas et al. 2009 (0590); Bailey et al. 2010 (0676)). In Cullman, however, two of the workers with CBD had been employed for less than a year and worked in jobs with very low exposures (median 8-hour personal sample values of 0.03–0.09 mg/ m3) (Madl et al., 2007, Document ID 1056, Table III). The body of scientific literature on occupational beryllium disease also includes case reports of workers with CBD who are known or believed to have experienced minimal beryllium exposure, such as a worker employed only in shipping at a copperberyllium distribution center (Stanton et al., 2006, Document ID 1070), and workers employed only in administration at a beryllium ceramics facility (Kreiss et al., 1996, Document ID 1477). Therefore, there is some evidence that cases of CBD can occur in work environments where beryllium exposures are quite low. 8. Community-Acquired CBD In the NPRM, OSHA discussed an additional source of information on lowlevel beryllium exposure and CBD: Studies of community-acquired chronic beryllium disease (CA–CBD) in residential areas surrounding beryllium E:\FR\FM\09JAR2.SGM 09JAR2 2536 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations production facilities. The literature on CA–CBD, including the Eisenbud (1949, Document ID 1284), Leiben and Metzner (1959, Document ID 1343), and Maier et al. (2008, Document ID 0598) studies, documents cases of CBD among individuals exposed to airborne beryllium at concentrations below the new PEL. OSHA included a review of these studies in the NPRM as a secondary source of information on risk of CBD from low-level beryllium exposure. However, the available studies of CA–CBD have important limitations. These case studies do not provide information on how frequently individuals exposed to very low airborne levels develop CBD. In addition, the reconstructed exposure estimates for CA–CBD cases are less reliable than the exposure estimates for working populations reviewed in the previous sections. The literature on CA– CBD therefore was not used by OSHA as a basis for its quantitative risk assessment for CBD, and the Agency did not receive any comments or testimony on this literature. Nevertheless, these case reports and the broader CA–CBD literature indicate that individuals exposed to airborne beryllium below the final TWA PEL can develop CBD (e.g., Leiben and Metzner, 1959; Maier et al., 2008). B. OSHA’s Prevalence Analysis for Sensitization and CBD OSHA evaluated exposure and health outcome data on a population of workers employed at the Cullman machining facility as one part of the Agency’s Preliminary Risk Analysis presented in the NPRM. A summary of OSHA’s preliminary analyses of these data, a discussion of comments received on the analyses and OSHA’s responses to these comments, as well as a summary OSHA’s final quantitative analyses, are presented in the remainder of this section. A more detailed discussion of the data, background information on the facility, and OSHA’s analyses appears in the background document OSHA has placed in the record (Risk Analysis of the NJH Data Set from the Beryllium Machining Facility in Cullman, Alabama—CBD and Sensitization, OSHA, 2016). NJH researchers, with consent and information provided by the Cullman facility, compiled a dataset containing employee work histories, medical diagnoses, and air sampling results and provided it to OSHA for analysis. OSHA’s contractors from Eastern Research Group (ERG) gathered additional information about work operations and conditions at the plant, developed exposure estimates for individual workers in the dataset, and helped to conduct quantitative analyses of the data to inform OSHA’s risk assessment (Document ID tbd). 1. Worker Exposure Reconstruction The work history database contains job history records for 348 workers. ERG calculated cumulative and average exposure estimates for each worker in the database. Cumulative exposure was calculated as, where e(i) is the exposure level for job (i), and t(i) is the time spent in job (i). Cumulative exposure was divided by total exposure time to estimate each worker’s long-term average exposure. These exposures were computed in a time-dependent manner for the statistical modeling.16 For workers with beryllium sensitization or CBD, exposure estimates excluded exposures following diagnosis. Workers who were employed for long time periods in jobs with low-level exposures tend to have low average and cumulative exposures due to the way these measures are constructed, incorporating the worker’s entire work history. As discussed in the Health Effects chapter, higher-level exposures or short-term peak exposures such as those encountered in machining jobs may be highly relevant to risk of sensitization. However, individuals’ beryllium exposure levels and sensitization status are not continuously monitored, so it is not known exactly when workers became sensitized or what their ‘‘true’’ peak exposures leading up to sensitization were. Only a rough approximation of the upper levels of exposure a worker experienced is possible. ERG attempted to represent workers’ highest exposures by constructing a third type of exposure estimate reflecting the exposure level associated with the highest-exposure job (HEJ) and time period experienced by each worker. This exposure estimate (HEJ), the cumulative exposure estimate, and the average exposure were used in the quartile analysis and statistical analyses presented below. 2. Prevalence of Sensitization and CBD In the database provided to OSHA, 7 workers were reported as sensitized only (that is, sensitized with no known development of CBD). Sixteen workers were listed as sensitized and diagnosed with CBD upon initial clinical evaluation. Three workers, first shown to be sensitized only, were later diagnosed with CBD. Tables VI–3, VI–4, and VI–5 below present the prevalence of sensitization and CBD cases across several categories of LTW average, cumulative, and HEJ exposure. Exposure values were grouped by quartile. For this analysis, OSHA excluded 8 workers with no job title listed in the data set (because their exposures could not be estimated); 7 workers whose date of hire was before 1969 (because this indicates they worked in the company’s previous plant, for which no exposure measurements were available); and 14 workers who had zero exposure time in the data set, perhaps indicating that they had been hired but had not come to work at Cullman. After these exclusions, a total of 319 workers remained. None of the excluded workers were identified as having beryllium sensitization or CBD. Note that all workers with CBD are also sensitized. Thus, the columns ‘‘Total Sensitized’’ and ‘‘Total %’’ refer to all sensitized workers in the dataset, including workers with and without a diagnosis of CBD. LTW average exposure (μg/m3) Group size 0.0–0.080 ................................................. 0.081–0.18 ............................................... 0.19–0.51 ................................................. 0.51–2.15 ................................................. Sensitized only 91 73 77 78 Total sensitized CBD 1 2 0 4 1 4 6 8 Total (%) 2 6 6 12 16 Each worker’s exposure was calculated at each time that BeLPT testing was conducted. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00068 Fmt 4701 Sfmt 4700 E:\FR\FM\09JAR2.SGM 09JAR2 CBD (%) 2.2 8.2 7.8 15.4 1.0 5.5 7.8 10.3 ER09JA17.003</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS TABLE VI–3—PREVALENCE OF SENSITIZATION AND CBD BY LTW AVERAGE EXPOSURE QUARTILE IN NJH DATA SET Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 2537 TABLE VI–3—PREVALENCE OF SENSITIZATION AND CBD BY LTW AVERAGE EXPOSURE QUARTILE IN NJH DATA SET— Continued LTW average exposure (μg/m3) Group size Total .................................................. Sensitized only 319 Total sensitized CBD 7 19 Total (%) 26 CBD (%) 8.2 6.0 TABLE VI–4—PREVALENCE OF SENSITIZATION AND CBD BY CUMULATIVE EXPOSURE QUARTILE IN NJH DATA SET Cumulative exposure (μg/m3-yrs) Group size Sensitized only Total sensitized CBD Total (%) CBD (%) 0.0–0.147 ................................................. 0.148–1.467 ............................................. 1.468–7.008 ............................................. 7.009–61.86 ............................................. 81 79 79 80 2 0 3 2 2 2 8 7 4 2 11 9 4.9 2.5 13.9 11.3 2.5 2.5 8.0 8.8 Total .................................................. 319 7 19 26 8.2% 6.0% TABLE VI–5—PREVALENCE OF SENSITIZATION AND CBD BY HIGHEST-EXPOSED JOB EXPOSURE QUARTILE IN NJH DATA SET HEJ exposure (μg/m3) Group size Sensitized only Total sensitized CBD Total (%) CBD (%) 86 81 76 76 1 1 2 3 0 6 9 4 1 7 11 7 1.2 8.6 14.5 9.2 0.0 7.4 11.8 5.3 Total .................................................. asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 0.0–0.086 ................................................. 0.091–0.214 ............................................. 0.387–0.691 ............................................. 0.954–2.213 ............................................. 319 7 19 26 8.2 6.0 Table VI–3 shows increasing prevalence of total sensitization and CBD with increasing LTW average exposure. The lowest prevalence of sensitization and CBD was observed among workers with average exposure levels less than or equal to 0.08 mg/m3, where two sensitized workers (2.2 percent), including one case of CBD (1.0 percent), were found. The sensitized worker in this category without CBD had worked at the facility as an inspector since 1972, one of the lowestexposed jobs at the plant. Because the job was believed to have very low exposures, it was not sampled prior to 1998. Thus, estimates of exposures in this job are based on data from 1998– 2003 only. It is possible that exposures earlier in this worker’s employment history were somewhat higher than reflected in his estimated average exposure. The worker diagnosed with CBD in this group had been hired in 1996 in production control, and had an estimated average exposure of 0.08 mg/ m3. This worker was diagnosed with CBD in 1997. The second quartile of LTW average exposure (0.081–0.18 mg/m3) shows a marked rise in overall prevalence of beryllium-related health effects, with 6 workers sensitized (8.2 percent), of whom 4 (5.5 percent) were diagnosed VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 with CBD. Among 6 sensitized workers in the third quartile (0.19–0.51 mg/m3), all were diagnosed with CBD (7.8 percent). Another increase in prevalence is seen from the third to the fourth quartile, with 12 cases of sensitization (15.4 percent), including eight (10.3 percent) diagnosed with CBD. The quartile analysis of cumulative exposure also shows generally increasing prevalence of sensitization and CBD with increasing exposure. As shown in Table VI–4, the lowest prevalences of CBD and sensitization are in the first two quartiles of cumulative exposure (0.0–0.147 mg/m3yrs, 0.148–1.467 mg/m3-yrs). The upper bound on this cumulative exposure range, 1.467 mg/m3-yrs, is the cumulative exposure that a worker would have if exposed to beryllium at a level of 0.03 mg/m3 for a working lifetime of 45 years; 0.15 mg/m3 for ten years; or 0.3 mg/m3 for five years. These exposure levels are in the range of those OSHA was interested in evaluating for purposes of this rulemaking. A sharp increase in prevalence of sensitization and CBD occurs in the third quartile (1.468–7.008 mg/m3-yrs), with roughly similar levels of both in the highest group (7.009–61.86 mg/m3yrs). Cumulative exposures in the third quartile would be experienced by a PO 00000 Frm 00069 Fmt 4701 Sfmt 4700 worker exposed for 45 years to levels between 0.03 and 0.16 mg/m3, for 10 years to levels between 0.15 and 0.7 mg/ m3, or for 5 years to levels between 0.3 and 1.4 mg/m3. When workers’ exposures from their highest-exposed job are considered, the exposure-response pattern is similar to that for LTW average exposure in the lower quartiles. In Table VI–5, the lowest prevalence is observed in the first quartile (0.0–0.086 mg/m3), with sharply rising prevalence from first to second and second to third exposure quartiles. The prevalence of sensitization and CBD in the top quartile (0.954–2.213 mg/m3) decreases relative to the third, with levels similar to the overall prevalence in the dataset. Many workers in the highest exposure quartiles are long-time employees, who were hired during the early years of the shop when exposures were highest. One possible explanation for the drop in prevalence in the highest exposure quartiles is that other highly-exposed workers from early periods may have developed CBD and left the plant before sensitization testing began in 1995 (i.e., the healthy worker survivor effect). The results of this prevalence analysis support OSHA’s conclusion that maintaining exposure levels below the new TWA PEL will help to reduce risk E:\FR\FM\09JAR2.SGM 09JAR2 2538 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations of beryllium sensitization and CBD, and that maintaining exposure levels below the action level can further reduce risk of beryllium sensitization and CBD. However, risk of both sensitization and CBD remains even among the workers with the lowest airborne exposures in this data set. asabaliauskas on DSK3SPTVN1PROD with PROPOSALS C. OSHA’s Statistical Modeling for Sensitization and CBD 1. OSHA’s Preliminary Analysis of the NJH Data Set In the course of OSHA’s development of the proposed rule, OSHA’s contractor (ERG) also developed a statistical analysis using the NJH data set and a discrete time proportional hazards analysis (DTPHA). This preliminary analysis predicted significant risks of both sensitization (96–394 cases per 1,000, or 9.6–39.4 percent) and CBD (44–313 cases per 1,000, or 4.4–31.3 percent) at the preceding TWA PEL of 2 mg/m3 for an exposure duration of 45 years (90 mg/m3-yr). The predicted risks of 8.2–39.9 cases of sensitization per 1,000 (0.8–3.9 percent) and 3.6 to 30.0 cases of CBD per 1,000 (0.4–3 percent) were approximately 10-fold less, but still significant, for a 45-year exposure at the new TWA PEL of 0.2 mg/m3 (9 mg/ m3-yr). In interpreting the risk estimates, OSHA took into consideration limitations in the preliminary statistical analysis, primarily study size-related constraints. Consequently, as discussed in the NPRM, OSHA did not rely on the preliminary statistical analysis for its significance of risk determination or to develop its benefits analysis. The Agency relied primarily on the previously-presented analysis of the epidemiological literature and the prevalence analysis of the Cullman data for its preliminary significance of risk determination, and on the prevalence analysis for its preliminary estimate of benefits. Although OSHA did not rely on the results of the preliminary statistical analysis for its findings, the Agency presented the DTPHA in order to inform the public of its results, explain its limitations, and solicit public comment on the Agency’s approach. Dr. Kenny Crump and Ms. Deborah Proctor submitted comments on OSHA’s preliminary risk assessment (Document ID 1660). Crump and Proctor agreed with OSHA’s review of the epidemiological literature and the prevalence analysis presented previously in this section. They stated, ‘‘we agree with OSHA’s conclusion that there is a significant risk (>1/1000 risk of CBD) at the [then] current PEL, and VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 that risk is reduced at the [then] proposed PEL (0.2 mg/m3) in combination with stringent measures (ancillary provisions) to reduce worker’s exposures. This finding is evident based on the available literature, as described by OSHA, and the prevalence data presented for the Cullman facility’’ (Document ID 1660, p. 2). They also presented a detailed evaluation of the statistical analysis of the Cullman data presented in the NPRM, including a critique of OSHA’s modeling approach and interpretation and suggestions for alternate analyses. However, they emphasized that the new beryllium rule should not be altered or delayed due to their comments regarding the statistical model (Document ID 1660, p. 2). After considering comments on this preliminary model, OSHA instructed its contractor to change the statistical analysis to address technical concerns and to incorporate suggestions from Crump and Proctor, as well as NIOSH (Document ID 1660; 1725). OSHA reviews and addresses these comments on the preliminary statistical analysis and provides a presentation of the final statistical analysis in the background document (Risk Analysis of the NJH Data Set from the Beryllium Machining Facility in Cullman, Alabama—CBD and Sensitization, OSHA, 2016). The results of the final statistical analysis are summarized here. 2. OSHA’s Final Statistical Analysis of the NJH Data Set As noted above, Dr. Roslyn Stone of University of Pittsburgh School of Public Health reanalyzed for OSHA the Cullman data set in order to address concerns raised by Crump and Proctor (Document ID 1660). The reanalysis uses a Cox proportional hazards model instead of the DTPHA. The Cox model, a regression method for survival data, provides an estimate of the hazard ratio (HR) and its confidence interval.17 Like the DTPHA, the Cox model can accommodate time-dependent data; however, the Cox model has an advantage over the DTPHA for OSHA’s purpose of estimating risk to berylliumexposed workers in that it does not estimate different ‘‘baseline’’ rates of sensitization and CBD for different years. Time-specific risk sets were constructed to accommodate the timedependent exposures. P-values were based on likelihood ratio tests (LRTs), with p-values <0.05 considered to be statistically significant. 17 The hazard ratio is an estimate of the ratio of the hazard rate in the exposed group to that of the control group. PO 00000 Frm 00070 Fmt 4701 Sfmt 4700 As in the preliminary statistical analysis, Dr. Stone used fractional polynomials 18 to check for possible nonlinearities in the exposure-response models, and checked the effects of age and smoking habits using data on birth year and smoking (current, former, never) provided in the Cullman data set. Data on workers’ estimated exposures and health outcomes through 2005 were included in the reanalysis.19 The 1995 risk set (e.g., analysis of cases of sensitization and CBD identified in 1995) was excluded from all models in the reanalysis so as not to analyze longstanding (prevalent) cases of sensitization and CBD together with newly arising (incident) cases of sensitization and CBD. Finally, Dr. Stone used the testing protocols provided in the literature on the Cullman study population to determine the years in which each employee was scheduled to be tested, and excluded employees from the analysis for years in which they were not scheduled to be tested (Newman et al., 2001, Document ID 1354). In the reanalysis of the NJH data set, the HR for sensitization increased significantly with increasing LTW average exposure (HR = 2.92, 95% CI = 1.51–5.66, p = 0.001; note that HRs are rounded to the second decimal place). Cumulative exposure was also a statistically significant predictor for beryllium sensitization, although it was not as strongly related to sensitization as LTW average exposure (HR = 1.04, 95% CI 1.00–1.07, p = 0.03). The HR for CBD increased significantly with increasing cumulative exposure (HR = 1.04, 95% CI = 1.01–1.08, p = 0.02). The HR for CBD increased somewhat with increasing LTW average exposure, but this increase was not significant at the 0.05 level (HR = 2.25, 95% CI = 0.94– 5.35, p = 0.07). None of the analyses Dr. Stone performed to check for nonlinearities in exposure-response or the effects of smoking or age substantially impacted the results of the analyses for beryllium sensitization or CBD. The sensitivity analysis recommended by Crump and Proctor, excluding workers hired prior to 1980 (see Document ID 1660, p. 11), did not substantially impact the results 18 Fractional polynomials are linear combinations of polynomials that provide flexible shapes of exposure response. 19 Data from 2003 to 2005 were excluded in some previous analyses due to uncertainty in some employees’ work histories. OSHA accepted the.Crump and Proctor recommendation that these data should be included, so as to treat uncertain exposure estimates consistently in the reanalysis (data prior to the start of sampling in 1980 were included in the previous analysis and most models in the reanalysis). E:\FR\FM\09JAR2.SGM 09JAR2 2539 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations of the analyses for beryllium sensitization, but did affect the results for CBD. The HR for CBD using cumulative exposure dropped to slightly below 1 and was not statistically significant following exclusion of workers hired before 1980 (HR 0.96, 95% CI 0.81–1.13, p = 0.6). OSHA discusses this result further in the background document, concluding that the reduced follow-up time for CBD in the subcohort hired in 1980 or later, in combination with genetic risk factors that may attenuate both exposureresponse and disease latency in some people, may explain the lack of significant exposure-response observed in this sensitivity analysis. Because LTW average exposure was most strongly associated with beryllium sensitization, OSHA used the final model for LTW average exposure to estimate risk of sensitization at the preceding TWA PEL, the final TWA PEL, and several alternate TWA PELs it considered. Similarly, because cumulative exposure was most strongly associated with CBD, OSHA used the final model for cumulative exposure to estimate risk of CBD at the preceding, final, and alternate TWA PELs. In calculating these risks, OSHA used a small, fixed estimate of ‘‘baseline’’ risk (i.e., risk of sensitization or CBD among persons with no known exposure to beryllium), as suggested by Crump and Proctor (Document ID 1660) and NIOSH (Document ID 1725). Table VI–6 presents the risk estimates for sensitization and the corresponding 95 percent confidence intervals using two different fixed ‘‘background’’ rates of sensitization, 1 percent and 0.5 percent. Table VI–7 presents the risk estimates for sensitization and the corresponding 95 percent confidence intervals using a fixed ‘‘background’’ rate of CBD of 0.5 percent. The corresponding interval is based on the uncertainty in the exposure coefficient (i.e., the predicted values based on the 95 percent confidence limits for the exposure coefficient). Since the Cox proportional hazards model does not estimate a baseline risk, this 95 percent interval fully represents statistical uncertainty in the risk estimates. TABLE VI–6—PREDICTED CASES OF SENSITIZATION PER 1,000 WORKERS EXPOSED AT THE PRECEDING AND ALTERNATE PELS BASED ON COX PROPORTIONAL HAZARDS MODEL, LTW AVERAGE EXPOSURE METRIC, WITH CORRESPONDING INTERVAL BASED ON THE UNCERTAINTY IN THE EXPOSURE COEFFICIENT. [1 Percent and 0.5 percent baselines] Estimated cases/1000, .5% baseline Exposure level (μg/m3) 2.0 1.0 0.5 0.2 0.1 .................................................................................................................... .................................................................................................................... .................................................................................................................... .................................................................................................................... .................................................................................................................... 42.75 14.62 8.55 6.20 5.57 Estimated cases/1000, 1% baseline 95% CI 11.4–160.34 7.55–28.31 6.14–11.90 5.43–7.07 5.21–5.95 95% CI 85.49 29.24 17.10 12.39 11.13 22.79–320.69 15.10–56.63 12.29–23.80 10.86–14.15 10.42–11.89 TABLE VI–7—PREDICTED CASES OF CBD PER 1,000 WORKERS EXPOSED AT THE PRECEDING AND ALTERNATIVE PELS BASED ON COX PROPORTIONAL HAZARDS MODEL, CUMULATIVE EXPOSURE METRIC, WITH CORRESPONDING INTERVAL BASED ON THE UNCERTAINTY IN THE EXPOSURE COEFFICIENT [0.5 percent baseline] Exposure Duration 5 years 10 years 20 years 45 years Exposure level (μg/m3) Cumulative (μg/m3-yrs) Estimated cases/1000 95% CI μg/m3-yrs Estimated cases/1000 95% CI Estimated cases/1000 95% CI μg/m3-yrs μg/m3-yrs 10.0 7.55 5.34–10.67 20.0 11.39 5.70–22.78 40.0 25.97 6.5–103.76 90.0 1.0 ................................................................... 5.0 1.0 0.1 ................................................................... 0.5 11.39 5.70–22.78 7.55 5.34–10.67 5.9 5.13–6.77 5.43 5.07–5.82 45.0 0.2 ................................................................... 7.55 5.34–10.67 6.14 5.17–7.30 5.43 5.07–5.82 5.21 5.03–5.39 20.0 2.5 6.14 5.17–7.30 5.54 5.08–6.04 5.21 5.03–5.39 5.1 5.02–5.19 10.0 0.5 ................................................................... asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2.0 ................................................................... The Cox proportional hazards model, used with the fixed ‘‘baseline’’ rates of 0.5 percent and 1 percent, predicted risks of sensitization totaling 43 and 86 cases per 1,000 workers, respectively, or 4.3 and 8.6 percent, at the preceding PEL of 2 mg/m3. The predicted risk of CBD is 203 cases per 1,000 workers, or 20.3 percent, at the preceding PEL of 2 mg/m3, assuming 45 years of exposure VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 5.0 2.0 1.0 (cumulative exposure of 90 mg/m3-yr).20 The predicted risks of sensitization at the new PEL of 0.2 mg/m3 are substantially lower, at 6 and 12 cases per 1,000 for the baselines of 0.5% and 20 The predictions for each model represent the estimated probability of being sensitized or having CBD at one point in time, rather than the cumulative risk over a lifetime of exposure, which would be higher. Lifetime risks are presented in the FEA, Benefits Analysis. PO 00000 Frm 00071 Fmt 4701 Sfmt 4700 10.0 4.0 2.0 22.5 9.0 4.5 Estimated cases/1000 95% CI 203.60 9.02– 4595.67 31.91 6.72–151.59 12.63 5.79–27.53 7.24 5.30–9.89 6.02 5.15–7.03 1.0%, respectively. The predicted risk of CBD is also much lower at the new TWA PEL of 0.2 mg/m3 (9 mg/m3-year), at 7 cases per 1,000 assuming 45 years of exposure. Due to limitations in the Cox analysis, including the small size of the dataset, relatively limited exposure data from the plant’s early years, study sizerelated constraints on the statistical analysis of the dataset, limited follow- E:\FR\FM\09JAR2.SGM 09JAR2 2540 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations up time on many workers, and sensitivity of the results to the ‘‘baseline’’ values assumed for sensitization and CBD, OSHA must interpret the model-based risk estimates presented in Tables VI–6 and VI–7 with caution. Uncertainties in these risk estimates are discussed in the background document (Risk Analysis of the NJH Data Set from the Beryllium Machining Facility in Cullman, Alabama—CBD and Sensitization, OSHA, 2016). However, these uncertainties do not alter OSHA’s conclusions with regard to the significance of risk at the preceding PEL and alternate PELs that OSHA considered, which are based primarily on the Agency’s review of the literature and the prevalence analysis presented earlier in this section (also see Section VII, Significance of Risk). asabaliauskas on DSK3SPTVN1PROD with PROPOSALS D. Lung Cancer As discussed more fully in the Health Effects section of the preamble, OSHA has determined beryllium to be a carcinogen based on an extensive review of the scientific literature regarding beryllium and cancer (see Section V.E). This review included an evaluation of the human epidemiological, animal cancer, and mechanistic studies described in the Health Effects section of this preamble. OSHA’s conclusion is supported by the findings of public health organizations such as the International Agency for Research on Cancer (IARC), which has determined beryllium and its compounds to be carcinogenic to humans (Group 1 category) (IARC 2012, Document ID 0650); the National Toxicology Program (NTP), which classifies beryllium and its compounds as known carcinogens (NTP 2014, Document ID 0389); and the Environmental Protection Agency (EPA), which considers beryllium to be a probable human carcinogen (EPA 1998, Document ID 0661). The Sanderson et al. study previously discussed in Health Effects evaluated the association between beryllium exposure and lung cancer mortality based on data from a beryllium processing plant in Reading, PA (Sanderson et al., 2001, Document ID 1419). Specifically, this case-control study evaluated lung cancer mortality in a cohort of 3,569 male workers employed at the plant from 1940 to 1969 and followed through 1992. For each lung cancer victim, 5 age- and racematched controls were selected by incidence density sampling, for a total of 142 identified lung cancer cases and 710 controls. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 A conditional logistic regression analysis showed an increased risk of death from lung cancer in workers with higher exposures when dose estimates were lagged by 10 and 20 years (Sanderson et al., 2001, Document ID 1419). This lag was incorporated in order to account for exposures that did not contribute to lung cancer because they occurred after the induction of cancer. The authors noted that there was considerable uncertainty in the estimation of exposure levels for the 1940s and 1950s and in the shape of the dose-response curve for lung cancer. In a 2008 study, Schubauer-Berigan et al. reanalyzed the data, adjusting for potential confounders of hire age and birth year (Schubauer-Berigan et al., 2008, Document ID 1350). The study reported a significant increasing trend (p < 0.05) in lung cancer mortality when average (log transformed) exposure was lagged by 10 years. However, it did not find a significant trend when cumulative (log transformed) exposure was lagged by 0, 10, or 20 years (Schubauer-Berigan et al., 2008, Table 3). In formulating the final rule, OSHA was particularly interested in lung cancer risk estimates from a 45-year (i.e., working lifetime) exposure to beryllium levels between 0.1 mg/m3 and 2 mg/m3. The majority of case and control workers in the Sanderson et al. (2001, Document ID 1419) case-control analysis were first hired during the 1940s and 50s when exposures were extremely high (estimated daily weighted averages (DWAs) >20 mg/m3 for most jobs) in comparison to the exposure range of interest to OSHA (Sanderson et al. 2001, Document ID 1419, Table II). About two-thirds of cases and half of controls worked at the plant for less than a year. Thus, a risk assessment based on this exposureresponse analysis would have needed to extrapolate from very high to low exposures, based on a working population with extremely short tenure. While OSHA risk assessments must often make extrapolations to estimate risk within the range of exposures of interest, the Agency acknowledges that these issues of short tenure and high exposures would have created substantial uncertainty in a risk assessment based on this particular study population. In addition, the relatively high exposures of the least-exposed workers in the study population might have created methodological issues for the lung cancer case-control study design. Mortality risk is expressed as an odds ratio that compares higher exposure quartiles to the lowest quartile. It is PO 00000 Frm 00072 Fmt 4701 Sfmt 4700 preferable that excess risks attributable to occupational beryllium be determined relative to an unexposed or minimally exposed reference population. However, in this study population, workers in the lowest quartile were exposed well above the preceding OSHA TWA PEL (average exposure <11.2 mg/m3) and may have had a significant lung cancer risk. This issue would have introduced further uncertainty into the lung cancer risks. In 2011, Schubauer-Berigan et al. published a quantitative risk assessment that addressed several of OSHA’s concerns regarding the Sanderson et al. analysis. This new risk assessment was based on an update of the Reading cohort analyzed by Sanderson et al., as well as workers from two smaller plants (Schubauer-Berigan et al. 2011, Document ID 1265). This study population was exposed, on average, to lower levels of beryllium and had fewer short-term workers than the previous cohort analyzed by Sanderson et al. (2001, Document ID 1250) and Schubauer-Berigan et al. (2008, Document ID 1350). Schubauer-Berigan et al. (2011) followed the study population through 2005 where possible, increasing the length of followup time overall by an additional 17 years of observation compared to the previous analyses. For these reasons, OSHA considered the SchubauerBerigan (2011) analysis more appropriate than Sanderson et al. (2001) and Schubauer-Berigan (2008) for its risk assessment. OSHA therefore based its preliminary QRA for lung cancer on the results from Schubauer-Berigan et al. (2011). OSHA received several comments about its choice of Schubauer-Berigan et al. (2011) as the basis for its preliminary QRA for lung cancer. NIOSH commented that OSHA’s choice of Schubauer-Berigan et al. for its preliminary analysis was appropriate because ‘‘[n]o other study is available that presents quantitative dose-response information for lung cancer, across a range of beryllium processing facilities’’ (Document ID 1725, p. 7). In supporting OSHA’s use of this study, NIOSH emphasized in particular the study’s inclusion of relatively low-exposed workers from two facilities that began operations in the 1950s (after employer awareness of acute beryllium disease (ABD) and CBD led to efforts to minimize worker exposures to beryllium), as well as the presence of both soluble and poorly soluble forms of beryllium in the facilities studied (Document ID 1725, p. 7). According to Dr. Paolo Boffetta, who submitted comments on this study, E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Schubauer-Berigan et al. (2011) is not the most relevant study available to OSHA for its lung cancer risk analysis. Dr. Boffetta argued that the most informative study of lung cancer risk in the beryllium industry after 1965 is one that he developed in 2015 (Boffetta et al., 2015), which he described as a pooled analysis of 11 plants and 4 distribution centers (Document ID 1659, p. 1). However, Dr. Boffetta did not provide OSHA with the manuscript of his study, which he stated was under review for publication. Instead, he reported some results of the study and directed OSHA to an abstract of the study in the 2015 Annual Conference of the Society for Epidemiologic Research (Document ID 1659; Document ID 1661, Attachment 1). Because only an abstract of Boffetta et al.’s 2015 study was available to OSHA (see Document ID 1661, Attachment 1), OSHA could not properly evaluate it or use it as the basis of a quantitative risk assessment for lung cancer. Nevertheless, OSHA has addressed comments Dr. Boffetta submitted based on his analyses in the relevant sections of the final QRA for lung cancer below. Because it was not possible to use this study for its lung cancer QRA and OSHA is not aware of other studies appropriate for use in its lung cancer QRA (nor did commenters besides Dr. Boffetta suggest that OSHA use any additional studies for this purpose), OSHA finds that the body of available evidence has not changed since the Agency conducted its preliminary QRA based on Schubauer-Berigan et al. (2011, Document ID 1265). Therefore, OSHA concludes that SchubauerBerigan et al. (2011) is the most appropriate study for its final lung cancer QRA, presented below. 1. QRA for Lung Cancer Based on Schubauer-Berigan et al. (2011) The cohort studied by SchubauerBerigan et al. (2011, Document ID 1265) included 5,436 male workers who had worked for at least 2 days at the Reading facility or at the beryllium processing plants in Hazleton, PA and Elmore, OH prior to 1970. The authors developed job-exposure matrices (JEMs) for the three plants based on extensive historical exposure data, primarily short-term general area and personal breathing zone samples, collected on a quarterly basis from a wide variety of operations. These samples were used to create DWA estimates of workers’ fullshift exposures, using records of the nature and duration of tasks performed by workers during a shift. Details on the JEM and DWA construction can be found in Sanderson et al. (2001, Document ID 1250), Chen et al. (2001, Document ID 1593), and Couch et al. (2010, Document ID 0880). Workers’ cumulative exposures (mg/ m3-days) were estimated by summing daily average exposures (assuming five workdays per week) (Schubauer-Berigan 2541 et al., 2011). To estimate mean exposure (mg/m3), cumulative exposure was divided by exposure time (in days), accounting where appropriate for lag time. Maximum exposure (mg/m3) was calculated as the highest annual DWA on record for a worker from the first exposure until the study cutoff date of December 31, 2005, again accounting where appropriate for lag time. Exposure estimates were lagged by 5, 10, 15, and 20 years in order to account for exposures that may not have contributed to lung cancer because of the long latency required for manifestation of the disease. The authors also fit models with no lag time. As shown in Table VI–8 below, estimated exposure levels for workers from the Hazleton and Elmore plants were on average far lower than those for workers from the Reading plant (Schubauer-Berigan et al., 2011). Whereas the median worker from Hazleton had a mean exposure across his tenure of less than 1.5 mg/m3 and the median worker from Elmore had a mean exposure of less than 1 mg/m3, the median worker from Reading had a mean exposure of 25 mg/m3. The Elmore and Hazleton worker populations also had fewer short-term workers than the Reading population. This was particularly evident at Hazleton, where the median value for cumulative exposure among cases was higher than at Reading despite the much lower mean and maximum exposure levels. TABLE VI–8—COHORT DESCRIPTION AND DISTRIBUTION OF CASES BY EXPOSURE LEVEL All plants Number of cases ............................................................... Number of non-cases ....................................................... Median value for mean exposure ..................................... (μg/m3) among cases ....................................................... Median value for cumulative exposure ............................. (μg/m3-days) among cases ............................................... Median value for maximum exposure .............................. (μg/m3) among cases ....................................................... Number of cases with potential asbestos exposure ......... Number of cases who were professional workers ........... ........................... ........................... No lag ............... 10-year lag ....... No lag ............... 10-year lag ....... No lag ............... 10-year lag ....... ........................... ........................... 293 5143 15.42 15.15 2843 2583 25 25 100 (34%) 26 (9%) Reading plant Hazleton plant 218 3337 25 25 2895 2832 25.1 25 68 (31%) 21 (10%) 30 583 1.443 1.443 3968 3648 3.15 3.15 16 (53%) 3 (10%) Elmore plant 45 1223 0.885 0.972 1654 1449 2.17 2.17 16 (36%) 2 (4%) asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Table adapted from Schubauer-Berigan et al., 2011, Document ID 1265, Table 1. Schubauer-Berigan et al. analyzed the data set using a variety of exposureresponse modeling approaches, including categorical analyses, continuous-variable piecewise log-linear models, and power models (2011, Document ID 1265). All models adjusted for birth cohort and plant. Because exposure values were log-transformed for the power model analyses, the authors added small values to exposures of 0 in lagged analyses (0.05 mg/m3 for mean and maximum exposure, 0.05 mg/ VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 m3-days for cumulative exposure). The authors used restricted cubic spline models to assess the shape of the exposure-response curves and suggest appropriate parametric model forms. The Akaike Information Criterion (AIC) value was used to evaluate the fit of different model forms and lag times. Because smoking information was available for only about 25 percent of the cohort (those employed in 1968), smoking could not be controlled for directly in the models. Schubauer- PO 00000 Frm 00073 Fmt 4701 Sfmt 4700 Berigan et al. reported that within the subset with smoking information, there was little difference in smoking by cumulative or maximum exposure category, suggesting that smoking was unlikely to act as a confounder in the cohort. In addition to models based on the full cohort, Schubauer-Berigan et al. also prepared risk estimates based on models excluding professional workers (ten percent of cases) and workers believed to have asbestos exposure (onethird of cases). These models were E:\FR\FM\09JAR2.SGM 09JAR2 2542 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations intended to mitigate the potential impact of smoking and asbestos as confounders.21 The authors found that lung cancer risk was strongly and significantly related to mean, cumulative, and maximum measures of workers’ exposure (all models reported in Schubauer-Berigan et al., 2011, Document ID 1265). They selected the best-fitting categorical, power, and monotonic piecewise log-linear (PWL) models with a 10-year lag to generate HRs for male workers with a mean exposure of 0.5 mg/m3 (the current NIOSH Recommended Exposure Limit for beryllium).22 In addition, they estimated the daily weighted average exposure that would be associated with an excess lung cancer mortality risk of one in one thousand (.005 mg/m3 to .07 mg/m3 depending on model choice). To estimate excess risk of cancer, they multiplied these hazard ratios by the 2004 to 2006 background lifetime lung cancer rate among U.S. males who had survived, cancer-free, to age 30. At OSHA’s request, Dr. Schubauer-Berigan also estimated excess lung cancer risks for workers with mean exposures at the preceding PEL of 2 mg/m3 and at each of the other alternate PELs that were under consideration: 1 mg/m3, 0.2 mg/ m3, and 0.1 mg/m3 (Document ID 0521). The resulting risk estimates are presented in Table VI–9 below. TABLE VI–9—EXCESS LUNG CANCER RISK PER 1,000 [95% CONFIDENCE INTERVAL] FOR MALE WORKERS AT ALTERNATE PELS [Based on Schubauer-Berigan et al., 2011] Mean exposure Exposure-response model 0.1 Best monotonic PWL—all workers ...................................... Best monotonic PWL—excluding professional and asbestos workers ....................................................................... Best categorical—all workers .............................................. Best categorical—excluding professional and asbestos workers ............................................................................. Power model—all workers ................................................... Power model—excluding professional and asbestos workers ..................................................................................... μg/m3 0.2 μg/m3 0.5 μg/m3 1 μg/m3 2 μg/m3 7.3 [2.0–13] 15 [3.3–29] 45 [9–98] 120 [20–340] 140 [29–370] 3.1 [<0–11] 4.4 [1.3–8] 6.4 [<0–23] 9 [2.7–17] 17 [<0–74] 25 [6–48] 39 [39–230] 59 [13–130] 61 [<0–280] 170 [29–530] 1.4 [<0–6.0] 12 [6–19] 2.7 [<0–12] 19 [9.3–29] 7.1 [<0–35] 30 [15–48] 15 [<0–87] 40 [19–66] 33 [<0–290] 52 [23–88] 19 [8.6–31] 30 [13–50] 49 [21–87] 68 [27–130] 90 [34–180] asabaliauskas on DSK3SPTVN1PROD with PROPOSALS SOURCE: Schubauer-Berigan, Document ID 0521, pp. 6–10. Schubauer-Berigan et al. (2011, Document ID 1265) discuss several strengths, weaknesses, and uncertainties of their analysis. Strengths include a long (>30 years) follow-up time and the extensive exposure and work history data available for the development of exposure estimates for workers in the cohort. Weaknesses and uncertainties of the study include the limited information available on workers’ smoking habits: As mentioned above, smoking information was available only for workers employed in 1968, about 25 percent of the cohort. Another potential weakness was that the JEMs used did not account for possible respirator use among workers in the cohort. The authors note that workers’ exposures may therefore have been overestimated, and that overestimation may have been especially severe for workers with high estimated exposures. They suggest that overestimation of exposures for workers in highly exposed positions may have caused attenuation of the exposureresponse curve in some models at higher exposures. This could cause the relationship between exposure level and lung cancer risk to appear weaker than it would in the absence of this source of error in the estimation of workers’ beryllium exposures. Schubauer-Berigan et al. (2011) did not discuss the reasons for basing risk estimates on mean exposure rather than cumulative exposure, which is more commonly used for lung cancer risk analysis. OSHA believes the decision may involve the non-monotonic relationship the authors observed between cancer risk and cumulative exposure level. As discussed previously, workers from the Reading plant frequently had very short tenures and high exposures, yielding lower cumulative exposures compared to cohort workers from other plants with longer employment. Despite the low estimated cumulative exposures among the short-term Reading workers, they may have been at high risk of lung cancer due to the tendency of beryllium to persist in the lung for long periods. This could lead to the appearance of a non-monotonic relationship between cumulative exposure and lung cancer risk. It is possible that a dose-rate effect may exist for beryllium, such that the risk from a cumulative exposure gained by long-term, low-level exposure is not equivalent to the risk from a cumulative exposure gained by very short-term, high-level exposure. In this case, mean exposure level may better correlate with the risk of lung cancer than cumulative exposure level. For these reasons, OSHA considers the authors’ use of the mean exposure metric to be appropriate and scientifically defensible for this particular dataset. Dr. Boffetta’s comment, mentioned above, addressed the relevance of the Schubauer-Berigan et al. (2011) cohort to determining whether workers currently employed in the beryllium industry experience an increased lung cancer hazard (Document ID 1659, pp. 1–2). His comment also analyzed the methods and findings in SchubauerBerigan et al. (2011) (Document ID 1659, pp. 2–3). Notably, he stated that his own study, Boffetta et al. (2015) provides better information for risk assessment than does Schubauer-Berigan et al. (2011) (Document ID 1659, pp. 1–2). As discussed above, OSHA cannot rely on a study for its QRA (Boffetta et al., 2015) that has not been submitted to the record and is not otherwise available to OSHA. However, in the discussion below, OSHA addresses Dr. Boffetta’s study to the extent it can given the 21 The authors appeared to reason that if professional workers had both lower beryllium exposures and lower smoking rates than production workers, smoking could be a confounder in the cohort comprising both production and professional workers. However, smoking was unlikely to be correlated with beryllium exposure among production workers, and would therefore probably not act as a confounder in a cohort excluding professional workers. 22 Here, ‘‘monotonic PWL model’’ means a model producing a monotonic exposure-response curve in the 0 to 2 mg/m3 range. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00074 Fmt 4701 Sfmt 4700 E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations limited information available to the Agency. OSHA also responds to Dr. Boffetta’s comments on SchubauerBerigan et al. (2011, Document ID 1265) and Boffetta et al. (2014, Document ID 0403), which Dr. Boffetta asserts provides evidence that poorly soluble beryllium compounds are not associated with lung cancer (Document ID 1659, p. 1). Boffetta argued that the most informative study in the modern (post1965) beryllium industry is Boffetta et al. (2015, Document ID 1661, Attachment 1). According to Boffetta’s comment, the study found an SMR of 1.02 (95% CI 0.94–1.10, based on 672 deaths) for the overall cohort and an SMR for lung cancer among workers exposed only to insoluble beryllium of 0.93 (95% CI 0.79–1.08, based on 157 deaths). Boffetta noted that his study was based on 23 percent more overall deaths than the Schubauer-Berigan et al. cohort (Document ID 1659, pp. 1–2). As stated earlier, this study is unpublished and was not provided to OSHA. The abstract provided by Materion (Document ID 1661, Attachment 1) included very little information beyond the SMRs reported; for example, it provided no information about the manufacturing plants and distribution centers included, workers’ beryllium exposure levels, how the cohorts were defined, or how the authors determined the solubility of the beryllium to which workers were exposed. OSHA is therefore unable to evaluate the quality or conclusions of this study. Dr. Boffetta also commented that there is a lack of evidence of increased lung cancer risk among workers exposed only to poorly soluble beryllium compounds (Document ID 1659, p. 1). To support this statement, he cited a study he published in 2014 of workers at four ‘‘insoluble facilities’’ (Boffetta et al., 2014) and Schubauer-Berigan et al.’s 2011 study, arguing that increased cancer risk in beryllium-exposed workers in those two studies was only observed in workers employed in Reading and Lorain prior to 1955. Workers employed at the other plants and workers who were first employed in Reading and Lorain after 1955, according to Dr. Boffetta, were exposed primarily to poorly soluble forms of beryllium and did not experience an increased risk of lung cancer. Dr. Boffetta further stated that his unpublished paper (Boffetta et al., 2015) shows a similar result (Document ID 1659, p. 1). OSHA carefully considered Dr. Boffetta’s argument regarding the status of poorly soluble beryllium compounds, and did not find persuasive evidence VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 showing that the solubility of the beryllium to which the workers in the studies he cited were exposed accounts for the lack of statistically significantly elevated risk in the Boffetta et al. (2014) cohort or the Schubauer-Berigan et al. (2011) subcohort. While it is true that the SMR for lung cancer was not statistically significantly elevated in the Schubauer-Berigan et al. (2011) study when workers hired before 1955 in the Reading and Lorain plants were excluded from the study population, or in the study of four facilities published by Boffetta et al. in 2014, there are various possible reasons for these results that Dr. Boffetta did not consider in his comment. As discussed below, OSHA finds that the type of beryllium compounds to which these workers were exposed is not likely to explain Dr. Boffetta’s observations. As discussed in Section V, Health Effects and in comments submitted by NIOSH, animal toxicology evidence shows that poorly soluble beryllium compounds can cause cancer. IARC determined that poorly soluble forms of beryllium are carcinogenic to humans in its 2012 review of Group I carcinogens (see section V.E.5 of this preamble; Document ID 1725, p. 9; IARC, 2012, Document ID 0650). NIOSH noted that poorly soluble forms of beryllium remain in the lung for longer time periods than soluble forms, and can therefore create prolonged exposure of lung tissue to beryllium (Document ID 1725, p. 9). This prolonged exposure may lead to the sustained tissue inflammation that causes many forms of cancer and is believed to be one pathway for carcinogenesis due to beryllium exposure (see Section V, Health Effects). The comments from NIOSH also demonstrate that the available information cannot distinguish between the effects of soluble and poorly soluble beryllium. NIOSH submitted information on the solubility of beryllium in the Schubauer-Berigan et al. (2011) cohort, stating that operations typically involving both soluble and poorly soluble beryllium were performed at all three of the beryllium plants included in the study (Document ID 1725, p. 9; Ward et al., 1992, Document ID 1378). Based on evaluations of the JEMs and work histories of employees in the cohort (which were not published in the 2011 Schubauer-Berigan et al. paper), NIOSH stated that ‘‘the vast majority of beryllium work-time at all three of these facilities was due to either insoluble or mixed chemical forms. In fact, insoluble beryllium was the largest single contributor to work-time (for beryllium PO 00000 Frm 00075 Fmt 4701 Sfmt 4700 2543 exposure of known solubility class) at the three facilities across most time periods’’ (Document ID 1725, p. 9). NIOSH also provided figures showing the contribution of insoluble beryllium to exposure over time in the SchubauerBerigan et al. (2011) study, as well as the relatively small proportion of work years during which workers in the study were exposed exclusively to either soluble or poorly soluble forms (Document ID 1725, pp. 10–11). Boffetta et al. (2014, Document ID 0403) examined a population of workers allegedly exposed exclusively to poorly soluble beryllium compounds, in which overall SMR for lung cancer was not statistically significantly elevated (SMR 96.0, 95% CI 80.0–114.3). Boffetta et al. concluded, ‘‘[a]lthough a small risk for lung cancer is compatible with our results, we can confidently exclude an excess greater than 20%’’ in the study population (Boffetta et al., 2014, p. 592). Limitations of the study include a lack of information on many workers’ job titles, a lack of any beryllium exposure measurements, and the very short-term employment of most cohort members at the study facilities (less than 5 years for 72 percent of the workers) (Boffetta et al., 2014). OSHA reviewed this study, and finds that it does not contradict the findings of the Schubauer-Berigan et al. (2011) lung cancer risk analysis for several reasons. First, as shown in Table VI–9 above, none of the predictions of excess risk in the risk analysis exceed 20 percent (200 per 1,000 workers); most are well below this level, and thus are well within the range that Boffetta et al. (2014) state they cannot confidently exclude. Thus, the statement by Boffetta et al. that the risk of excess lung cancer is no higher than 20 percent is actually consistent with the risk findings from Schubauer-Berigan et al. (2011) presented above. Second, the fact that most workers in the cohort were employed for less than five years suggests that most workers’ cumulative exposures to beryllium were likely to be quite low, which would explain the non-elevated SMR for lung cancer in the study population regardless of the type of beryllium to which workers were exposed. The SMR for workers employed in the study facilities for at least 20 years was elevated (112.7, CI 66.8–178.1) (Boffetta et al., 2014, Document ID 0403, Table 3),23 supporting OSHA’s observation that the lack of elevated SMR in the cohort overall may be due to short-term 23 This SMR was not statistically significantly elevated, probably due to the small size of this subcohort (153 total deaths, 18 lung cancer deaths). E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2544 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations employment and low cumulative exposures. Finally, the approach of Boffetta et al. (2014), which relies on SMR analyses, does not account for the healthy worker effect. SMRs are calculated by comparing disease levels in the study population to disease levels in the general population, using regional or national reported disease rates. However, because working populations tend to have lower disease rates than the overall population, SMRs can underestimate excess risk of disease in those populations. The SMR in Boffetta et al. (2014) for overall mortality in the study population was statistically significantly reduced (94.7, 95 percent CI 89.9–99.7), suggesting a possible healthy worker effect. The SMR for overall mortality was even further reduced in the category of workers with at least 20 years of employment (87.7, 95 percent CI 74.3–102.7), in which an elevated SMR for lung cancer was observed. NIOSH commented that ‘‘[i]n a modern industrial population, the expected SMR for lung cancer would be approximately 0.93 [Park et al. (1991)]’’ (Document ID 1725, p. 8). This is lower than the SMR for lung cancer (96) observed in Boffetta et al. (2014) and much lower than the SMR for lung cancer in the category of workers employed for at least 20 years (112.7), which is the group most likely to have had sufficient exposure and latency to show excess lung cancer (Boffetta et al., 2014, Document ID 0403, Tables 2 and 3). Thus, it appears that the healthy worker effect is another factor (in addition to low cumulative exposures) that may account for the findings of Boffetta et al.’s 2014 study. Taken together, OSHA finds that the animal toxicology evidence on the carcinogenicity of poorly soluble beryllium forms, the long residence of poorly soluble beryllium in the lung, the likelihood that most workers in Schubauer-Berigan et al. (2011) were exposed to a mixture of soluble and poorly soluble beryllium forms, and the points raised above regarding Boffetta et al. (2014) rebut Boffetta’s claim that low solubility of beryllium compounds is the most likely explanation for the lack of statistically significantly elevated SMR results. Dr. Boffetta’s comment also raised technical questions regarding the Schubauer-Berigan et al. (2011, Document ID 1265) risk analysis. He noted that risk estimates at low exposures are dependent on choice of model in their analysis; the authors’ choice of a single ‘‘best’’ model was based on purely statistical criteria, and the results of the statistics used (AIC) VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 were similar between the models’’ (Document ID 1659, p. 2). Therefore, according to Dr. Boffetta, ‘‘there is ample uncertainty about the shape of the dose-response function in the lowdose range’’ (Document ID 1659, p. 3). OSHA agrees that it is difficult to distinguish a single ‘‘best’’ model from the set of models presented by Schubauer-Berigan et al. (2011), and that risk estimates at low exposure levels vary depending on choice of model. That is one reason OSHA presented results from all of the models (see Table VI–9). OSHA further agrees that there is uncertainty in the lung cancer risk estimates, the estimation of which (unlike for CBD) required extrapolation below beryllium exposure levels experienced by workers in the Schubauer-Berigan et al. (2011) study. However, the Schubauer-Berigan risk assessment’s six best-fitting models all support OSHA’s significant risk determination, as they all predict a significant risk of lung cancer at the preceding TWA PEL of 2 mg/m3 (estimates ranging from 33 to 170 excess lung cancers per 1,000 workers) and a substantially reduced, though still significant, risk of lung cancer at the new TWA PEL of 0.2 mg/m3 (estimates ranging from 3 to 30 excess lung cancers per 1,000 workers) (see Table VI–9). Dr. Boffetta also noted that the risk estimates provided by SchubauerBerigan et al. (2011, Document ID 1265) for OSHA’s lung cancer risk assessment depend on the background lung cancer rate used in excess risk calculations, and that industrial workers may have a different background lung cancer risk than the U.S. population as a whole (Document ID 1659, p. 2). OSHA agrees that choice of background risk could influence the number of excess lung cancers predicted by the models the Agency relied on for its lung cancer risk estimates. However, choice of background risk did not influence OSHA’s finding that excess lung cancer risks would be substantially reduced by a decrease in exposure from the preceding TWA PEL to the final TWA PEL, because the same background risk was factored into estimates of risk at both levels. Furthermore, the Schubauer-Berigan et al. (2011) estimates of excess lung cancer from exposure at the preceding PEL of 2 mg/ m3 (ranging from 33 to 170 excess lung cancers per 1,000 workers, depending on the model) are much higher than the level of 1 per 1,000 that OSHA finds to be clearly significant. Even at the final TWA PEL of 0.2 mg/m3, the models demonstrate a range of risks of excess lung cancers of 3 to 30 per 1,000 workers, estimates well above the PO 00000 Frm 00076 Fmt 4701 Sfmt 4700 threshold for significant risk (see Section II, Pertinent Legal Authority). Small variations in background risk across different populations are highly unlikely to influence excess lung cancer risk estimates sufficiently to influence OSHA’s finding of significant risk at the preceding TWA PEL, which is the finding OSHA relies on to support the need for a new standard. Finally, Dr. Boffetta noted that the models that exclude professional and asbestos workers (the groups that Schubauer-Berigan et al. believed could be affected by confounding from tobacco and asbestos exposure) showed nonsignificant increases in lung cancer with increasing beryllium exposure. According to Dr. Boffetta, this suggests that confounding may contribute to the results of the models based on the full population. He speculates that if more precise information on confounding exposures were available, excess risk estimates might be further reduced (Document ID 1659, p. 2). OSHA agrees with Dr. Boffetta that there is uncertainty in the SchubauerBerigan et al. (2011) lung cancer risk estimates, including uncertainty due to limited information on possible confounding from associations between beryllium exposure level and workers’ smoking habits or occupational coexposures. However, in the absence of detailed smoking and co-exposure information, the models excluding professional and asbestos workers are a reasonable approach to addressing the possible effects of unmeasured confounding. OSHA’s decision to include these models in its preliminary and final QRAs therefore represents the Agency’s best available means of dealing with this uncertainty. E. Risk Assessment Conclusions As described above, OSHA’s risk assessment for beryllium sensitization and CBD relied on two approaches: (1) Review of the literature, and (2) analysis of a data set provided by NJH. OSHA has a high level of confidence in its finding that the risks of sensitization and CBD are above the benchmark of 1 in 1,000 at the preceding PEL, and the Agency believes that a comprehensive standard requiring a combination of more stringent controls on beryllium exposure will reduce workers’ risk of both sensitization and CBD. Programs that have reduced median levels to below 0.1 mg/m3 and tightly controlled both respiratory exposure and dermal contact have substantially reduced risk of sensitization within the first years of exposure. These conclusions are supported by the results of several studies conducted in facilities dealing E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS with a variety of production activities and physical forms of beryllium that have reduced workers’ exposures substantially by implementing stringent exposure controls and PPE requirements since approximately 2000. In addition, these conclusions are supported by OSHA’s analyses of the NJH data set, which contains highly-detailed exposure and work history information on several hundred beryllium workers. Furthermore, OSHA believes that more stringent control of airborne beryllium exposures will reduce beryllium-exposed workers’ significant risk of lung cancer. The risk estimates from the lung cancer study by Schubauer-Berigan et al. (2011, Document ID 1265; 0521), described above, range from 33 to 170 excess lung cancers per 1,000 workers exposed at the preceding PEL of 2 mg/m3, based on the study’s six best-fitting models. These models each predict substantial reductions in risk with reduced exposure, ranging from 3 to 30 excess lung cancers per 1,000 workers exposed at the final PEL of 0.2 mg/m3. The evidence of lung cancer risk from the Schubauer-Berigan et al. (2011) risk assessment provides additional support for OSHA’s conclusions regarding the significance of risk of adverse health effects for workers exposed to beryllium levels at and below the preceding PEL. However, the lung cancer risks required a sizable low dose extrapolation below beryllium exposure levels experienced by workers in the Schubauer-Berigan et al. (2011) study. As a result, there is greater uncertainty regarding the lung cancer risk estimates than there is for the risk estimates for beryllium sensitization and CBD. The conclusions with regard to significance of risk are presented and further discussed in section VII of the preamble. VII. Significance of Risk In this section, OSHA discusses its findings that workers exposed to beryllium at and below the preceding TWA PEL face a significant risk of material impairment of health or functional capacity within the meaning of the OSH Act, and that the new standards will substantially reduce this risk. To make the significance of risk determination for a new final or proposed standard, OSHA uses the best available scientific evidence to identify material health impairments associated with potentially hazardous occupational exposures and to evaluate exposed workers’ risk of these impairments assuming exposure over a working lifetime. As discussed in section II, Pertinent Legal Authority, courts have stated that OSHA should consider all VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 forms and degrees of material impairment—not just death or serious physical harm. To evaluate the significance of the health risks that result from exposure to hazardous chemical agents, OSHA relies on epidemiological, toxicological, and experimental evidence. The Agency uses both qualitative and quantitative methods to characterize the risk of disease resulting from workers’ exposure to a given hazard over a working lifetime (generally 45 years) at levels of exposure reflecting compliance with the preceding standard and compliance with the new standards (see Section II, Pertinent Legal Authority). When determining whether a significant risk exists OSHA considers whether there is a risk of at least one-in-athousand of developing a material health impairment from a working lifetime of exposure. The Supreme Court has found that OSHA is not required to support its finding of significant risk with scientific certainty, but may instead rely on a body of reputable scientific thought and may make conservative assumptions (i.e., err on the side of protecting the worker) in its interpretation of the evidence (Section II, Pertinent Legal Authority). OSHA’s findings in this section follow in part from the conclusions of the preceding sections V, Health Effects, and VI, Risk Assessment. In this preamble at section V, Health Effects, OSHA reviewed the scientific evidence linking occupational beryllium exposure to a variety of adverse health effects and determined that beryllium exposure causes sensitization, CBD, and lung cancer, and is associated with various other adverse health effects (see section V.D, V.E, and V.F). In this preamble at section VI, Risk Assessment, OSHA found that the available epidemiological data are sufficient to evaluate risk for beryllium sensitization, CBD, and lung cancer among beryllium-exposed workers. OSHA evaluated the risk of sensitization, CBD, and lung cancer from levels of airborne beryllium exposure that were allowed under the previous standard, as well as the expected impact of the new standards on risk of these conditions. In this section of the preamble, OSHA explains its determination that the risk of material impairments of health, particularly CBD and lung cancer, from occupational exposures allowable under the preceding TWA PEL of 2 mg/m3 is significant, and is substantially reduced but still significant at the new TWA PEL of 0.2 mg/m3. Furthermore, evidence reviewed in section VI, Risk PO 00000 Frm 00077 Fmt 4701 Sfmt 4700 2545 Assessment, shows that significant risk of CBD and lung cancer could remain in workplaces with exposures as low as the new action level of 0.1 mg/m3. OSHA also explains here that the new standards will reduce the occurrence of sensitization. In the NPRM, OSHA preliminarily determined that both CBD and lung cancer are material impairments of health. OSHA also preliminarily determined that a working lifetime (45 years) of exposure to airborne beryllium at the preceding time-weighted average permissible exposure limit (TWA PEL) of 2 mg/m3 would pose a significant risk of both CBD and lung cancer, and that this risk is substantially reduced but still significant at the new TWA PEL of 0.2 mg/m3. OSHA did not make a preliminary determination as to whether beryllium sensitization is a material impairment of health because, as the Agency explained in the NPRM, it was not necessary to make such a determination. The Agency’s preliminary findings on CBD and lung cancer were sufficient to support the promulgation of new beryllium standards. Upon consideration of the entire rulemaking record, including the comments and information submitted to the record in response to the preliminary Health Effects, Risk Assessment, and Significance of Risk analyses (NPRM Sections V, VI, and VIII), OSHA reaffirms its preliminary findings that long-term exposure at the preceding TWA PEL of 2 mg/m3 poses a significant risk of material impairment of workers’ health, and that adoption of the new TWA PEL of 0.2 mg/m3 and other provisions of the final standards will substantially reduce this risk. Material Impairment of Health As discussed in Section V, Health Effects, CBD is a respiratory disease caused by exposure to beryllium. CBD develops when the body’s immune system reacts to the presence of beryllium in the lung, causing a progression of pathological changes including chronic inflammation and tissue scarring. CBD can also impair other organs such as the liver, skin, spleen, and kidneys and cause adverse health effects such as granulomas of the skin and lymph nodes and cor pulmonale (i.e., enlargement of the heart) (Conradi et al., 1971 (Document ID 1319); ACCP, 1965 (1286); Kriebel et al., 1988a (1292) and b (1473)). In early, asymptomatic stages of CBD, small granulomatous lesions and mild inflammation occur in the lungs. Over time, the granulomas can spread and lead to lung fibrosis (scarring) and E:\FR\FM\09JAR2.SGM 09JAR2 2546 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations moderate to severe loss of pulmonary function, with symptoms including a persistent dry cough and shortness of breath (Saber and Dweik, 2000, Document ID 1421). Fatigue, night sweats, chest and joint pain, clubbing of fingers (due to impaired oxygen exchange), loss of appetite, and unexplained weight loss may occur as the disease progresses (Conradi et al., 1971, Document ID 1319; ACCP, 1965 (1286); Kriebel et al., 1988 (1292); Kriebel et al., 1988 (1473)). Dr. Lee Newman, speaking at the public hearing on behalf of the American College of Occupational and Environmental Medicine (ACOEM), testified on his experiences treating patients with CBD: ‘‘as a physician who has spent most of my [practicing] career seeing patients with exposure to beryllium, with beryllium sensitization, and with chronic beryllium disease including those who have gone on to require treatment and to die prematurely of this disease . . . [I’ve seen] hundreds and hundreds, probably over a thousand individuals during my career who have suffered from this condition’’ (Document ID 1756, Tr. 79). Dr. Newman further testified about his 30 years of experience treating CBD in patients at various stages of the disease: asabaliauskas on DSK3SPTVN1PROD with PROPOSALS . . . some of them will go from being sensitized to developing subclinical disease, meaning that they have no symptoms. As I mentioned earlier, most of those will, if we actually do the tests of their lung function and their oxygen levels in their blood, those people are already demonstrating physiologic abnormality. They already have disease affecting their health. They go on to develop symptomatic disease and progress to the point where they require treatment. And sometimes to the extent of even requiring a [lung] transplant (Document ID 1756, Tr. 131). Dr. Newman described one example of a patient who developed CBD from his occupational beryllium exposure and ‘‘who went on to die prematurely with a great deal of suffering along the way due to the condition chronic beryllium disease’’ (Document ID 1756, Tr. 80). During her testimony at the public hearing, Dr. Lisa Maier of National Jewish Health (NJH) provided an example from her experience with treating CBD patients. ‘‘This gentleman started to have a cough, a dry cough in 2011 . . . His symptoms progressed and he developed shortness of breath, wheezing, chills, night sweats, and fatigue. These were so severe that he was eventually hospitalized’’ (Document ID 1756, Tr. 105). Dr. Maier noted that this patient had no beryllium exposure prior to 2006, and that his VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 CBD had developed from beryllium exposure in his job melting an aluminum alloy in a foundry casting airplane parts (Document ID 1756, Tr. 105–106). She described how her patient could no longer work because of his condition. ‘‘He requires oxygen and systemic therapy . . . despite aggressive treatment [his] test findings continue to demonstrate worsening of his disease and increased needs for oxygen and medications as well as severe side effects from medications. This patient may well need a lung transplant if this disease continues to progress . . . ’’ (Document ID 1756, Tr. 106–107). The likelihood, speed, and severity of individuals’ transition from asymptomatic to symptomatic CBD is understood to vary widely, with some individuals responding differently to exposure cessation and treatment than others (Sood, 2009, Document ID 0456; Mroz et al., 2009 (1443)). In the public hearing, Dr. Newman testified that the great majority of individuals with very early stage CBD in a cross-sectional study he published (Pappas and Newman, 1993) had physiologic impairment. Thus, even before x-rays or CAT scans found evidence of CBD, the lung functions of those individuals were abnormal (Document ID 1756, Tr. 112). Materion commented that the best available evidence on the transition from asymptomatic to more severe CBD is a recent longitudinal study by Mroz et al. (2009, Document ID 1443), which found that 19.3 percent of individuals with CBD developed clinical abnormalities requiring oral immunosuppressive therapy (Document ID 1661, pp. 5–6). The authors’ overall conclusions in that study include a finding that adverse physiological changes among initially asymptomatic CBD patients progress over time, requiring many individuals to be treated with corticosteroids, and that the patients’ levels of beryllium exposure may affect progression (Mroz et al., 2009). Dr. Maier, a co-author of the study, testified that studies ‘‘indicate that higher levels of exposure not only are risk factors for [developing CBD in general] but also for more severe [CBD] (Document ID 1756, Tr. 111).24 24 The study by Mroz et al. (2009, Document ID 1443) included all individuals who were clinically evaluated at NJH between 1982 and 2002 and were found to have CBD on baseline clinical evaluation. All cohort members were identified by abnormal BeLPTs before identification of symptoms, physiologic abnormalities, or radiographic changes. All members were offered evaluation for clinical abnormalities every 2 years through 2002, including pulmonary function testing, exercise testing, chest radiograph with International Labor Organization (ILO) B-reading, fiberoptic bronchoscopy with bronchoalveolar lavage (BAL), and transbronchial PO 00000 Frm 00078 Fmt 4701 Sfmt 4700 Treatment of CBD using inhaled and systemic steroid therapy has been shown to ease symptoms and slow or prevent some aspects of disease progression. As explained below, these treatments can be most effectively applied when CBD is diagnosed prior to development of symptoms. In addition, the forms of treatment that can be used to manage early-stage CBD have relatively minor side effects on patients, while systemic steroid treatments required to treat later-stage CBD often cause severe side effects. In the public hearing, Dr. Newman and Dr. Maier testified about their experiences treating patients with CBD at various stages of the disease. Dr. Newman stated that patients’ outcomes depend greatly on how early they are diagnosed. ‘‘So there are those people who are diagnosed very late in the course of disease where there’s little that we can do to intervene and they are going to die prematurely. There are those people who may be detected with milder disease where there are opportunities to intervene’’ (Document ID 1756, Tr. 132). Both Dr. Maier and Dr. Newman emphasized the importance of early detection and diagnosis, stating that removing the patient from exposure and providing treatment early in the course of the disease can slow or even halt progression of the disease (Document ID 1756, Tr. 111, 132). Dr. Maier testified that inhaled steroids can be used to treat relatively mild symptoms that may occur in early stages of the disease, such as a cough during exercise (Document ID 1756, Tr. 139). Inhaled steroids, she stated, are commonly used to treat other health conditions and have fewer and milder side effects than forms of steroid treatment that are used to treat more severe forms of CBD (Document ID 1756, Tr. 140). Early detection of CBD helps physicians to properly treat earlyonset symptoms, since appropriate forms of treatment for early stage CBD can differ from treatments for conditions it is commonly mistaken for, such as chronic obstructive pulmonary disease lung biopsies. Of 171 CBD cases, 33 (19.3%) developed clinical abnormalities requiring oral immunosuppressive therapy, at an average of 1.4 years after the initial diagnosis of CBD. To examine the effect of beryllium exposure level on the progression of CBD, Mroz et al. compared clinical manifestations of CBD among machinists (the group of patients likely to have had the highest beryllium exposures) to non- machinists, including only CBD patients who had never smoked. Longitudinal analyses showed significant declines in some clinical indicators over time since first exposure for machinists (p <0.01) as well as faster development of illness (p < 0.05), compared to a control group of non-machinists. E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations (COPD) and asthma (Document ID 1756, Tr. 140–141). CBD in later stages is often managed using systemic steroid treatments such as corticosteroids. In workers with CBD whose beryllium exposure has ceased, corticosteroid therapy has been shown to control inflammation, ease symptoms (e.g., difficulty breathing, fever, cough, and weight loss), and in some cases prevent the development of fibrosis (Marchand-Adam et al., 2008, Document ID 0370). Thus, although there is no cure for CBD, properly-timed treatment can lead to CBD regression in some patients (Sood, 2004, Document ID 1331). Other patients have shown shortterm improvements from corticosteroid treatment, but then developed serious fibrotic lesions (Marchand-Adam et al., 2008). Ms. Peggy Mroz, of NJH, discussed the results of the MarchandAdam et al. study in the hearing, stating that treatment of CBD using steroids has been most successful when treatment begins prior to the development of lung fibrosis (Document ID 1756, Tr. 113). Once fibrosis has developed in the lungs, corticosteroid treatment cannot reverse the damage (Sood, 2009, Document ID 0456). Persons with latestage CBD experience severe respiratory insufficiency and may require supplemental oxygen (Rossman, 1991, Document 1332). Historically, late-stage CBD often ended in death (NAS, 2008, Document ID 1355). While the use of steroid treatments can help to reduce the effects of CBD, OSHA is not aware of any studies showing the effect of these treatments on the frequency of premature death among patients with CBD. Treatment with corticosteroids has severe side effects (Trikudanathan and McMahon, 2008, Document ID 0366; Lipworth, 1999 (0371); Gibson et al., 1996 (1521); Zaki et al., 1987 (1374)). Adverse effects associated with longterm corticosteroid use include, but are not limited to: increased risk of opportunistic infections (Lionakis and Kontoyiannis, 2003, Document ID 0372; Trikudanathan and McMahon, 2008 (0366)); accelerated bone loss or osteoporosis leading to increased risk of fractures or breaks (Hamida et al., 2011, Document ID 0374; Lehouck et al., 2011 (0355); Silva et al., 2011 (0388); Sweiss et al., 2011 (0367); Langhammer et al., 2009 (0373)); psychiatric effects including depression, sleep disturbances, and psychosis (Warrington and Bostwick, 2006, Document ID 0365; Brown, 2009 (0377)); adrenal suppression (Lipworth, 1999, Document ID 0371; Frauman, 1996 (0356)); ocular effects including cataracts, ocular hypertension, and VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 glaucoma (Ballonzoli and Bourcier, 2010, Document ID 0391; Trikudanathan and McMahon, 2008 (0366); Lipworth, 1999 (0371)); an increase in glucose intolerance (Trikudanathan and McMahon, 2008, Document ID 0366); excessive weight gain (McDonough et al., 2008, Document ID 0369; Torres and Nowson, 2007 (0387); Dallman et al., 2007 (0357); Wolf, 2002 (0354); Cheskin et al., 1999 (0358)); increased risk of atherosclerosis and other cardiovascular syndromes (Franchimont et al., 2002, Document ID 0376); skin fragility (Lipworth, 1999, Document ID 0371); and poor wound healing (de Silva and Fellows, 2010, Document ID 0390). Based on the above, OSHA considers late-stage CBD to be a material impairment of health, as it involves permanent damage to the pulmonary system, causes additional serious adverse health effects, can have adverse occupational and social consequences, requires treatment that can cause severe and lasting side effects, and may in some cases cause premature death. Furthermore, OSHA has determined that early-stage CBD, an asymptomatic period during which small lesions and inflammation appear in the lungs, is also a material impairment of health. OSHA bases this conclusion on evidence and expert testimony that early-stage CBD is a measurable change in an individual’s state of health that, with and sometimes without continued exposure, can progress to symptomatic disease (e.g., Mroz et al., 2009 (1443); 1756, Tr. 131). Thus, prevention of the earliest stages of CBD will prevent development of more serious disease. In OSHA’s Lead standard, promulgated in 1978, the Agency stated its position that a ‘‘subclinical’’ health effect may be regarded as a material impairment of health. In the preamble to that standard, the Agency said: OSHA believes that while incapacitating illness and death represent one extreme of a spectrum of responses, other biological effects such as metabolic or physiological changes are precursors or sentinels of disease which should be prevented. . . . Rather than revealing the beginnings of illness the standard must be selected to prevent an earlier point of measurable change in the state of health which is the first significant indicator of possibly more severe ill health in the future. The basis for this decision is twofold—first, pathophysiologic changes are early stages in the disease process which would grow worse with continued exposure and which may include early effects which even at early stages are irreversible, and therefore represent material impairment themselves. Secondly, prevention of pathophysiologic changes will prevent the onset of the more serious, irreversible and PO 00000 Frm 00079 Fmt 4701 Sfmt 4700 2547 debilitating manifestations of disease (43 FR 52952, 52954). Since the Lead rulemaking, OSHA has also found other non-symptomatic (or sub-clinical) health conditions to be material impairments of health. In the Bloodborne Pathogens rulemaking, OSHA maintained that material impairment includes not only workers with clinically ‘‘active’’ hepatitis from the hepatitis B virus (HBV) but also includes asymptomatic HBV ‘‘carriers’’ who remain infectious and are able to put others at risk of serious disease through contact with body fluids (e.g., blood, sexual contact) (56 FR 64004). OSHA stated: ‘‘Becoming a carrier [of HBV] is a material impairment of health even though the carrier may have no symptoms. This is because the carrier will remain infectious, probably for the rest of his or her life, and any person who is not immune to HBV who comes in contact with the carrier’s blood or certain other body fluids will be at risk of becoming infected’’ (56 FR 64004, 64036). OSHA finds that early-stage CBD is the type of asymptomatic health effect the Agency determined to be a material impairment of health in the Lead and Bloodborne Pathogens standards. Early stage CBD involves lung tissue inflammation without symptoms that can worsen with—or without— continued exposure. The lung pathology progresses over time from a chronic inflammatory response to tissue scarring and fibrosis accompanied by moderate to severe loss in pulmonary function. Early stage CBD is clearly a precursor of advanced clinical disease, prevention of which will prevent symptomatic disease. OSHA determined in the Lead standard that such precursor effects should be considered material health impairments in their own right, and that the Agency should act to prevent them when it is feasible to do so. Therefore, OSHA finds all stages of CBD to be material impairments of health within the meaning of section 6(b)(5) of the OSH Act (29 U.S.C. 655(b)(5)). In reviewing OSHA’s Lead standard in United Steelworkers of America, AFL–CIO v. Marshall, 647 F.2d 1189, 1252 (D.C. Cir. 1980) (Lead I), the D.C. Circuit affirmed that the OSH Act ‘‘empowers OSHA to set a PEL that prevents the subclinical effects of lead that lie on a continuum shared with overt lead disease.’’ See also AFL–CIO v. Marshall, 617 F.2d 636, 654 n.83 (D.C. Cir. 1979) (upholding OSHA’s authority to prevent early symptoms of a disease, even if the effects of the disease are, at that point, reversible). According to the Court, OSHA only had to demonstrate, E:\FR\FM\09JAR2.SGM 09JAR2 2548 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS on the basis of substantial evidence, that preventing the subclinical effects would help prevent the clinical phase of disease (United Steelworkers of America, AFL–CIO, 647 F.2d at 1252). Thus, OSHA has the authority to regulate to prevent asymptomatic CBD whether or not it is properly labeled as a material impairment of health. OSHA has also determined that exposure to beryllium can cause beryllium sensitization. Sensitization is a precursor to development of CBD and an essential step for development of the disease. As discussed in Section V, Health Effects, only sensitized individuals can develop CBD (NAS, 2008, Document ID 1355).25 As explained above, OSHA has the authority to promulgate regulations designed to prevent precursors to material impairments of health. Therefore, OSHA’s new beryllium standards aim to prevent sensitization as well as the development of CBD and lung cancer. OSHA’s risk assessment for sensitization, presented in section VI, informs the Agency’s understanding of what exposure control measures have been successful in preventing sensitization, which in turn prevents development of CBD. Therefore, OSHA addresses sensitization in this section on significance of risk. Risk Assessment As discussed in Section VI, Risk Assessment, the risk assessment for beryllium sensitization and CBD relied on two approaches: (1) OSHA’s review of epidemiological studies of sensitization and CBD that contain information on exposures in the range of interest to OSHA (2 mg/m3 and below), and (2) OSHA’s analysis of a NJH data set on sensitization and CBD in a group of beryllium-exposed machinists in Cullman, AL. OSHA’s review of the literature includes studies of beryllium-exposed workers at a Tucson, AZ ceramics plant (Kreiss et al., 1996, Document ID 1477; Henneberger et al., 2001 (1313); Cummings et al., 2007 (1369)); a Reading, PA copper-beryllium processing plant (Schuler et al., 2005, Document ID 0919; Thomas et al., 2009 (0590)); a Cullman, AL beryllium machining plant (Newman et al., 2001, Document ID 1354; Kelleher et al., 2001 25 In the NPRM, OSHA took no position on whether beryllium sensitization by itself is a material impairment of health, stating it was unnecessary to do so as part of this rulemaking. The only comment on this issue came from Materion, which argued that ‘‘BeS does not constitute a material impairment of health or functional capacity’’ (document ID 1958). Because BeS is also a precursor to CBD, OSHA finds it unnecessary to resolve this issue here. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 (1363); Madl et al., 2007 (1056)); an Elmore, OH metal, alloy, and oxide production plant (Kreiss et al., 1993 Document ID 1478; Bailey et al., 2010 (0676); Schuler et al., 2012 (0473)); aluminum smelting facilities (Taiwo et al. 2008, Document ID 0621; 2010 (0583); Nilsen et al., 2010 (0460)); and nuclear facilities (Viet et al., 2000, Document ID 1344; Arjomandi et al., 2010 (1275)). The published literature on beryllium sensitization and CBD discussed in section VI shows that the risk of both can be significant in workplaces where exposures are at or below OSHA’s preceding PEL of 2 mg/m3 (e.g., Kreiss et al., 1996, Document ID 1477; Henneberger et al., 2001 (1313); Newman et al., 2001 (1354); Schuler et al., 2005 (0919), 2012 (0473); Madl et al., 2007 (1056)). For example, in the Tucson ceramics plant mentioned above, Kreiss et al. (1996) reported that eight (5.9 percent) 26 of the 136 workers tested in 1992 were sensitized, six (4.4 percent) of whom were diagnosed with CBD. In addition, of 77 Tucson workers hired prior to 1992 who were tested in 1998, eight (10.4 percent) were sensitized and seven of these (9.7 percent) were diagnosed with CBD (Henneberger et al., 2001, Document ID 1313). Full-shift area samples showed most airborne beryllium levels below the preceding PEL: 76 percent of area samples collected between 1983 and 1992 were at or below 0.1 mg/m3 and less than 1 percent exceeded 2 mg/m3; short-term breathing zone measurements collected between 1981 and 1992 had a median of 0.3 mg/m3; and personal lapel samples collected at the plant beginning in 1991 had a median of 0.2 mg/m3 (Kreiss et al., 1996). Results from the Elmore, OH beryllium metal, alloy, and oxide production plant and the Cullman, AL machining facility also showed significant risk of sensitization and CBD among workers with exposures below the preceding TWA PEL. Schuler et al. (2012, Document ID 0473) found 17 cases of sensitization (8.6 percent) among Elmore, OH workers within the first three quartiles of LTW average exposure (198 workers with LTW average total mass exposures lower than 1.1 mg/m3) and 4 cases of CBD (2.2 26 Although OSHA reports percentages to indicate the risks of sensitization and CBD in this section, the benchmark OSHA typically uses to demonstrate significant risk, as discussed earlier, is greater than or equal to 1 in 1,000 workers. One in 1,000 workers is equivalent to 0.1 percent. Therefore, any value of 0.1 percent or higher when reporting occurrence of a health effect is considered by OSHA to indicate a significant risk. PO 00000 Frm 00080 Fmt 4701 Sfmt 4700 percent) within those quartiles of LTW average exposure (183 workers with LTW average total mass exposures lower than 1.07 mg/m3; note that follow-up time of up to 6 years for all study participants was very short for development of CBD). At the Cullman, AL machining facility, Newman et al. (2001, Document ID 1354) reported 22 (9.4 percent) sensitized workers among 235 tested in 1995–1999, 13 of whom were diagnosed with CBD within the study period. Personal lapel samples collected between 1980 and 1999 indicate that median exposures were generally well below the preceding PEL (≤0.35 mg/m3 in all job titles except maintenance (median 3.1 mg/m3 during 1980–1995) and gas bearings (1.05 mg/ m3 during 1980–1995)). Although risk will be reduced by compliance with the new TWA PEL, evidence in the epidemiological studies reviewed in section VI, Risk Assessment, shows that significant risk of sensitization and CBD could remain in workplaces with exposures as low as the new action level of 0.1 mg/m3. For example, Schuler et al. (2005, Document ID 0919) reported substantial prevalences of sensitization (6.5 percent) and CBD (3.9 percent) among 152 workers at the Reading, PA facility screened with the BeLPT in 2000. These results showed significant risk at this facility, even though airborne exposures were primarily below both the preceding and final TWA PELs due to the low percentage of beryllium in the metal alloys used (median general area samples ≤0.1 mg/m3, 97% < 0.5 mg/m3; 93% of personal lapel samples below the new TWA PEL of 0.2 mg/m3). The only group of workers with no cases of sensitization or CBD, a group of 26 office administration workers, was the group with exposures below the new action level of 0.1 mg/m3 (median personal sample 0.01 mg/m3, range <0.01–0.06 mg/m3) (Schuler et al., 2005). The Schuler et al. (2012, Document ID 0473) study of short-term workers in the Elmore, OH facility found three cases (4.6%) of sensitization among 66 workers with total mass LTW average exposures below 0.1 mg/m3. All three of these sensitized workers had LTW average exposures of approximately 0.09 mg/m3. Furthermore, cases of sensitization and CBD continued to arise in the Cullman, AL machining plant after control measures implemented beginning in 1995 brought median airborne exposures below 0.2 mg/m3 (personal lapel samples between 1996 and 1999 in machining jobs had a median of 0.16 mg/m3 and the median was 0.08 mg/m3 in non-machining jobs) E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations (Madl et al., 2007, Document ID 1056, Table IV). At the time that Newman et al. (2001, Document ID 1354) reviewed the results of BeLPT screenings conducted in 1995–1999, a subset of 60 workers had been employed at the plant for less than a year and had therefore benefitted to some extent from the exposure reductions. Four (6.7 percent) of these workers were found to be sensitized, of whom two were diagnosed with CBD and one with probable CBD (Newman et al., 2001). A later study by Madl. et al. (2007, Document ID 1056) reported seven sensitized workers who had been hired between 1995 and 1999, of whom four had developed CBD as of 2005 (Table II; total number of workers hired between 1995 and 1999 not reported). The enhanced industrial hygiene programs that have proven effective in several facilities demonstrate the importance of minimizing both airborne exposure and dermal contact to effectively reduce risk of sensitization and CBD. Exposure control programs that have used a combination of engineering controls, PPE, and stringent housekeeping measures to reduce workers’ airborne exposure and dermal contact have substantially lowered risk of sensitization among newly-hired workers.27 Of 97 workers hired between 2000 and 2004 in the Tucson, AZ plant after the introduction of a comprehensive program which included the use of respiratory protection (1999) and latex gloves (2000), one case of sensitization was identified (1 percent) (Cummings et al., 2007, Document ID 1369). In Elmore, OH, where all workers were required to wear respirators and skin PPE in production areas beginning in 2000–2001, the estimated prevalence of sensitization among workers hired after these measures were put in place was around 2 percent (Bailey et al., 2010, Document ID 0676). In the Reading, PA facility, after workers’ exposures were reduced to below 0.1 mg/m3 and PPE to prevent dermal contact was instituted, only one (2.2 percent) of 45 workers hired was sensitized (Thomas et al. 2009, Document ID 0590). And, in the aluminum smelters discussed by Taiwo et al. (2008, Document ID 0621), where available exposure samples from four plants indicated median beryllium levels of about 0.1 mg/m3 or below (measured as an 8-hour TWA) and workers used respiratory and dermal protection, confirmed cases of 27 As discussed in Section V, Health Effects, beryllium sensitization can occur from dermal contact with beryllium. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 sensitization were rare (zero or one case per location). OSHA notes that the studies on recent programs to reduce workers’ risk of sensitization and CBD were conducted on populations with very short exposure and follow-up time. Therefore, they could not adequately address the question of how frequently workers who become sensitized in environments with extremely low airborne exposures (median <0.1 mg/m3) develop CBD. Clinical evaluation for CBD was not reported for sensitized workers identified in the studies examining the post-2000 worker cohorts with very low exposures in Tucson, Reading, and Elmore (Cummings et al. 2007, Document ID 1369; Thomas et al. 2009, (0590); Bailey et al. 2010, (0676)). In Cullman, however, two of the workers with CBD had been employed for less than a year and worked in jobs with very low exposures (median 8-hour personal sample values of 0.03–0.09 mg/ m3) (Madl et al., 2007, Document ID 1056, Table III). The body of scientific literature on occupational beryllium disease also includes case reports of workers with CBD who are known or believed to have experienced minimal beryllium exposure, such as a worker employed only in shipping at a copperberyllium distribution center (Stanton et al., 2006, Document ID 1070), and workers employed only in administration at a beryllium ceramics facility (Kreiss et al., 1996, Document ID 1477). Therefore, there is some evidence that cases of CBD can occur in work environments where beryllium exposures are quite low. In summary, the epidemiological literature on beryllium sensitization and CBD that OSHA’s risk assessment relied on show sufficient occurrence of sensitization and CBD to be considered significant within the meaning of the OSH Act. These demonstrated risks are far in excess of 1 in 1,000 among workers who had full-shift exposures well below the preceding TWA PEL of 2 mg/m3 and workers who had median full-shift exposures down to the new action level of 0.1 mg/m3. These health effects occurred among populations of workers whose follow-up time was much less than 45 years. As stated earlier, OSHA is interested in the risk associated with a 45-year (i.e., working lifetime) exposure. Because CBD often develops over the course of years following sensitization, the risk of CBD that would result from 45 years of occupational exposure to airborne beryllium is likely to be higher than the prevalence of CBD observed among PO 00000 Frm 00081 Fmt 4701 Sfmt 4700 2549 these workers.28 In either case, based on these studies, the risks to workers from long-term exposure at the preceding TWA PEL and below are clearly significant. OSHA’s review of epidemiological studies further showed that worker protection programs that effectively reduced the risk of beryllium sensitization and CBD incorporated engineering controls, work practice controls, and personal protective equipment (PPE) that reduce workers’ airborne beryllium exposure and dermal contact with beryllium. OSHA has therefore determined that an effective worker protection program should incorporate both airborne exposure reduction and dermal protection provisions. OSHA’s conclusions on significance of risk at the final PEL and action level are further supported by its analysis of the data set provided to OSHA by NJH from which OSHA derived additional information on sensitization and CBD at exposure levels of interest. The data set describes a population of 319 berylliumexposed workers at a Cullman, AL machining facility. It includes exposure samples collected between 1980 and 2005, and has updated work history and screening information through 2003. Seven (2.2 percent) workers in the data set were reported as sensitized only. Sixteen (5.0 percent) workers were listed as sensitized and diagnosed with CBD upon initial clinical evaluation. Three (0.9 percent) workers, first shown to be sensitized only, were later diagnosed with CBD. The data set includes workers exposed at airborne beryllium levels near the new TWA PEL of 0.2 mg/m3, and extensive exposure data collected in workers’ breathing zones, as is preferred by OSHA. Unlike the Tucson, Reading, and Elmore facilities after 2000, respirator use was not generally required for workers at the Cullman facility. Thus, analysis of this data set shows the risk associated with varying levels of airborne exposure rather than estimating exposure accounting for respirators. Also unlike the Tucson, Elmore, and Reading facilities, glove use was not reported to be mandatory in the Cullman facility. Therefore, OSHA believes reductions in risk at the Cullman facility to be the result of airborne exposure control, rather than the combination of airborne and dermal exposure controls used at other facilities. OSHA analyzed the prevalence of beryllium sensitization and CBD among 28 This point was emphasized by members of the scientific peer review panel for OSHA’s Preliminary Risk Assessment (see the NPRM preamble at section VII). E:\FR\FM\09JAR2.SGM 09JAR2 2550 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations briefly below, and in more detail in section VI, Risk Assessment and in the background document (Risk Analysis of the NJH Data Set from the Beryllium Machining Facility in Cullman, Alabama—CBD and Sensitization, OSHA, 2016). Tables VII–1 and VII–2 below present the prevalence of sensitization and CBD cases across several categories of workers at the Cullman facility who were exposed to airborne beryllium levels at and below the preceding TWA PEL of 2 mg/m3. In addition, a statistical modeling analysis of the NJH Cullman data set was conducted under contract with Dr. Roslyn Stone of the University of Pittsburgh Graduate School of Public Heath, Department of Biostatistics. OSHA summarizes these analyses lifetime-weighted (LTW) average and highest-exposed job (HEJ) exposure at the Cullman facility. The HEJ exposure is the exposure level associated with the highest-exposure job and time period experienced by each worker. The columns ‘‘Total’’ and ‘‘Total percent’’ refer to all sensitized workers in the data set, including workers with and without a diagnosis of CBD. TABLE VII–1—PREVALENCE OF SENSITIZATION AND CBD BY LTW AVERAGE EXPOSURE QUARTILE IN NJH DATA SET LTW average exposure (μg/m3) Group size Sensitized only CBD Total (%) Total CBD (%) 0.0–0.080 ................................................. 0.081–0.18 ............................................... 0.19–0.51 ................................................. 0.51–2.15 ................................................. 91 73 77 78 1 2 0 4 1 4 6 8 2 6 6 12 2.2 8.2 7.8 15.4 1.0 5.5 7.8 10.3 Total .................................................. 319 7 19 26 8.2 6.0 Source: Section VI, Risk Assessment. TABLE VII–2—PREVALENCE OF SENSITIZATION AND CBD BY HIGHEST-EXPOSED JOB EXPOSURE QUARTILE IN NJH DATA SET HEJ exposure (μg/m3) Group size Sensitized only CBD Total (%) Total CBD (%) 0.0–0.086 ................................................. 0.091–0.214 ............................................. 0.387–0.691 ............................................. 0.954–2.213 ............................................. 86 81 76 76 1 1 2 3 0 6 9 4 1 7 11 7 1.2 8.6 14.5 9.2 0.0 7.4 11.8 5.3 Total .................................................. 319 7 19 26 8.2 6.0 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Source: Section VI, Risk Assessment. The preceding PEL of 2 mg/m3 is close to the upper bound of the highest quartile of LTW average (0.51–2.15 mg/ m3) and HEJ (0.954–2.213 mg/m3) exposure levels. In the highest quartile of LTW average exposure, there were 12 cases of sensitization (15.4 percent), including eight (10.3 percent) diagnosed with CBD. Notably, the Cullman workers had been exposed to beryllium dust for considerably less than 45 years at the time of testing. A high prevalence of sensitization (9.2 percent) and CBD (5.3 percent) is seen in the top quartile of HEJ exposure as well, with even higher prevalences in the third quartile (0.387–0.691 mg/m3).29 The new TWA PEL of 0.2 mg/m3 is close to the upper bound of the second quartile of LTW average (0.81–0.18 mg/ m3) and HEJ (0.091–0.214 mg/m3) exposure levels and to the lower bound of the third quartile of LTW average (0.19–0.50 mg/m3) exposures. The second quartile of LTW average 29 This exposure-response pattern, wherein higher rates of response are seen in workers with lower exposures, is sometimes attributed to a ‘‘healthy worker effect’’ or to exposure misclassification, as discussed in this preamble at section VI, Risk Assessment. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 exposure shows a high prevalence of beryllium-related health effects, with six workers sensitized (8.2 percent), of whom four (5.5 percent) were diagnosed with CBD. The second quartile of HEJ exposure also shows a high prevalence of beryllium-related health effects, with seven workers sensitized (8.6 percent), of whom six (7.4 percent) were diagnosed with CBD. Among six sensitized workers in the third quartile of LTW average exposures, all were diagnosed with CBD (7.8 percent). The prevalence of CBD among workers in these quartiles was approximately 5–8 percent, and overall sensitization (including workers with and without CBD) was about 8–9 percent. OSHA considers these rates to be evidence that the risks of developing sensitization and CBD are significant among workers exposed at and below the preceding TWA PEL, and even below the new TWA PEL. These risks are much higher than the benchmark for significant risk of 1 in 1,000. Much lower prevalences of sensitization and CBD were found among workers with exposure levels less than or equal to about 0.08 mg/m3, although these risks are still significant. Two sensitized workers (2.2 percent), PO 00000 Frm 00082 Fmt 4701 Sfmt 4700 including one case of CBD (1.0 percent), were found among workers with LTW average exposure levels less than or equal to 0.08 mg/m3. One case of sensitization (1.2 percent) and no cases of CBD were found among workers with HEJ exposures of at most 0.086 mg/m3. Strict control of airborne exposure to levels below 0.1 mg/m3 using engineering and work practice controls can, therefore, substantially reduce risk of sensitization and CBD. Although OSHA recognizes that maintaining exposure levels below 0.1 mg/m3 may not be feasible in some operations (see this preamble at section VIII, Summary of the Economic Analysis and Regulatory Flexibility Analysis), the Agency finds that workers in facilities that meet the action level of 0.1 mg/m3 will face lower risks of sensitization and CBD than workers in facilities that cannot meet the action level. Table VII–3 below presents the prevalence of sensitization and CBD cases across cumulative exposure quartiles, based on the same Cullman data used to derive Tables 1 and 2. Cumulative exposure is the sum of a worker’s exposure across the duration of his or her employment. E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 2551 TABLE VII–3—PREVALENCE OF SENSITIZATION AND CBD BY CUMULATIVE EXPOSURE QUARTILE IN NJH DATA SET Cumulative exposure (μg/m3-yrs) Group size Sensitized only CBD Total Total % CBD % 0.0–0.147 ................................................. 0.148–1.467 ............................................. 1.468–7.008 ............................................. 7.009–61.86 ............................................. 81 79 79 80 2 0 3 2 2 2 8 7 4 2 11 9 4.9 2.5 13.9 11.3 2.5 2.5 8.0 8.8 Total .................................................. 319 7 19 26 8.2 6.0 SOURCE: Section VI, Risk Assessment. asabaliauskas on DSK3SPTVN1PROD with PROPOSALS A 45-year working lifetime of occupational exposure at the preceding PEL would result in 90 mg/m3-years of exposure, a value far higher than the cumulative exposures of workers in this data set, who worked for periods of time less than 45 years and whose exposure levels were mostly well below the previous PEL. Workers with 45 years of exposure to the new TWA PEL of 0.2 mg/ m3 would have a cumulative exposure (9 mg/m3-years) in the highest quartile for this worker population. As with the average and HEJ exposures, the greatest risk of sensitization and CBD appears at the higher exposure levels (<1.467 mg/ m3-years). The third cumulative quartile, at which a sharp increase in sensitization and CBD appears, is bounded by 1.468 and 7.008 mg/m3years. This is equivalent to 0.73–3.50 years of exposure at the preceding PEL of 2 mg/m3, or 7.34–35.04 years of exposure at the new TWA PEL of 0.2 mg/ m3. Prevalence of both sensitization and CBD is substantially lower in the second cumulative quartile (0.148–1.467 mg/m3years). This is equivalent to approximately 0.7 to 7 years at the new TWA PEL of 0.2 mg/m3, or 1.5 to 15 years at the action level of 0.1 mg/m3. Risks at all levels of cumulative exposure presented in Table 3 are significant. These findings support OSHA’s determination that maintaining exposure levels below the new TWA PEL will help to protect workers against risk of beryllium sensitization and CBD. Moreover, while OSHA finds that significant risk remains at the PEL, OSHA’s analysis shows that further reductions of risk will ensue if employers are able to reduce exposure to the action level or even below. Lung Cancer Lung cancer, a frequently fatal disease, is a well-recognized material impairment of health. OSHA has determined that beryllium causes lung cancer based on an extensive review of 30 The estimates for lung cancer represent ‘‘excess’’ risks in the sense that they reflect the risk VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 the scientific literature regarding beryllium and cancer. This review included an evaluation of the human epidemiological, animal cancer, and mechanistic studies described in section V, Health Effects. OSHA’s conclusion that beryllium is carcinogenic is supported by the findings of expert public health and governmental organizations such as the International Agency for Research on Cancer (IARC), which has determined beryllium and its compounds to be carcinogenic to humans (Group 1 category) (IARC, 2012, Document ID 0650); the National Toxicology Program (NTP), which classifies beryllium and its compounds as known carcinogens (NTP, 2014, Document ID 0389); and the Environmental Protection Agency (EPA), which considers beryllium to be a probable human carcinogen (EPA, 1998, Document ID 0661). OSHA’s review of epidemiological studies of lung cancer mortality among beryllium workers found that most of them did not characterize exposure levels sufficiently to evaluate the risk of lung cancer at the preceding and new TWA PELs. However, as discussed in this preamble at section V, Health Effects and section VI, Risk Assessment, Schubauer-Berigan et al. published a quantitative risk assessment based on beryllium exposure and lung cancer mortality among 5,436 male workers first employed at beryllium processing plants in Reading, PA, Elmore, OH, and Hazleton, PA, prior to 1970 (SchubauerBerigan et al., 2011, Document ID 1265). This risk assessment addresses important sources of uncertainty for previous lung cancer analyses, including the sole prior exposureresponse analysis for beryllium and lung cancer, conducted by Sanderson et al. (2001) on workers from the Reading plant alone. Workers from the Elmore and Hazleton plants who were added to the analysis by Schubauer-Berigan et al. were, in general, exposed to lower levels of beryllium than those at the Reading plant. The median worker from Hazleton had a LTW average exposure of less than 1.5 mg/m3, while the median worker from Elmore had a LTW average exposure of less than 1 mg/m3. The Elmore and Hazleton worker populations also had fewer short-term workers than the Reading population. Finally, the updated cohorts followed the worker populations through 2005, increasing the length of follow-up time compared to the previous exposureresponse analysis. For these reasons, OSHA based the preliminary risk assessment for lung cancer on the Schubauer-Berigan risk analysis. Schubauer-Berigan et al. (2011, Document ID 1265) analyzed the data set using a variety of exposure-response modeling approaches, described in this preamble at section VI, Risk Assessment. The authors found that lung cancer mortality risk was strongly and significantly correlated with mean, cumulative, and maximum measures of workers’ exposure to beryllium (all of the models reported in the study). They selected the best-fitting models to generate risk estimates for male workers with a mean exposure of 0.5 mg/m3 (the current NIOSH Recommended Exposure Limit for beryllium). In addition, they estimated the daily weighted average exposure that would be associated with an excess lung cancer mortality risk of one in one thousand (.005 mg/m3 to .07 mg/m3 depending on model choice). At OSHA’s request, the authors also estimated excess lifetime risks for workers with mean exposures at the preceding TWA PEL of 2 mg/m3 as well as at each of the alternate TWA PELs that were under consideration: 1 mg/m3, 0.2 mg/m3, and 0.1 mg/m3. Table VII–4 presents the estimated excess risk of lung cancer mortality associated with various levels of beryllium exposure, based on the final models presented in Schubauer-Berigan et al’s risk assessment.30 of dying from lung cancer over and above the risk of dying from lung cancer faced by those who are not occupationally exposed to beryllium. PO 00000 Frm 00083 Fmt 4701 Sfmt 4700 E:\FR\FM\09JAR2.SGM 09JAR2 2552 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations TABLE VII–4—EXCESS RISK OF LUNG CANCER MORTALITY PER 1,000 MALE WORKERS AT ALTERNATE PELS (BASED ON SCHUBAUER-BERIGAN et al., 2011) Mean exposure Exposure-response model 0.1 μg/m3 Best monotonic PWL-all workers ......................................... Best monotonic PWL—excluding professional and asbestos workers ....................................................................... Best categorical—all workers .............................................. Best categorical—excluding professional and asbestos workers ............................................................................. Power model—all workers ................................................... Power model—excluding professional and asbestos workers ..................................................................................... 0.2 μg/m3 0.5 μg/m3 1 μg/m3 2 μg/m3 7.3 15 45 120 140 3.1 4.4 6.4 9 17 25 39 59 61 170 1.4 12 2.7 19 7.1 30 15 40 33 52 19 30 49 68 90 Source: Schubauer-Berigan, Document ID 0521, pp. 6–10. asabaliauskas on DSK3SPTVN1PROD with PROPOSALS The lowest estimate of excess lung cancer deaths from the six final models presented by Schubauer-Berigan et al. is 33 per 1,000 workers exposed at a mean level of 2 mg/m3, the preceding TWA PEL. Risk estimates as high as 170 lung cancer deaths per 1,000 result from the other five models presented. Regardless of the model chosen, the excess risk of about 33 to 170 per 1,000 workers is clearly significant, falling well above the level of risk the Supreme Court indicated a reasonable person might consider acceptable (see Benzene, 448 U.S. at 655). The new PEL of 0.2 mg/m3 is expected to reduce these risks significantly, to somewhere between 2.7 and 30 excess lung cancer deaths per 1,000 workers. At the new action level of 0.1 mg/m3, risk falls within the range of 1.4 to 19 excess lung cancer deaths. These risk estimates still fall above the threshold of 1 in 1,000 that OSHA considers clearly significant. However, the Agency believes the lung cancer risks should be regarded as less certain than the risk estimates for CBD and sensitization discussed previously. While the risk estimates for CBD and sensitization at the preceding and new TWA PELs were determined from exposure levels observed in occupational studies, the lung cancer risks were extrapolated from much higher exposure levels. Conclusions As discussed throughout this section, OSHA used the best available scientific evidence to identify adverse health effects of occupational beryllium exposure, and to evaluate exposed workers’ risk of these impairments. The Agency reviewed extensive epidemiological and experimental research pertaining to adverse health effects of occupational beryllium exposure, including lung cancer, CBD, and beryllium sensitization, and has evaluated the risk of these effects from exposures allowed under the preceding VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 and new TWA PELs. The Agency has, additionally, reviewed the medical literature, as well as previous policy determinations and case law regarding material impairment of health, and has determined that CBD, at all stages, and lung cancer constitute material health impairments. OSHA has determined that long-term exposure to beryllium at the preceding TWA PEL would pose a risk of CBD and lung cancer greater than the risk of 1 per 1,000 exposed workers the Agency considers clearly significant, and that adoption of the new TWA PEL, action level, and dermal protection requirements of the final standards will substantially reduce this risk. OSHA believes substantial evidence supports its determinations, including its choices of the best available published studies on which to base its risk assessment, its examination of the prevalence of sensitization and CBD among workers with exposure levels comparable to the preceding TWA PEL and new TWA PEL in the NJH data set, and its selection of the Schubauer-Berigan QRA to form the basis for its lung cancer risk estimates. The previously-described analyses demonstrate that workers with occupational exposure to airborne beryllium at the preceding PEL face risks of developing CBD and dying from lung cancer that far exceed the value of 1 in 1,000 used by OSHA as a benchmark of clearly significant risk. Furthermore, OSHA’s risk assessment indicates that risk of CBD and lung cancer can be significantly reduced by reduction of airborne exposure levels, and that dermal protection measures will additionally help reduce risk of sensitization and, therefore, of CBD. OSHA’s risk assessment also indicates that, despite the reduction in risk expected with the new PEL, the risks of CBD and lung cancer to workers with average exposure levels of 0.2 mg/m3 are still significant and could extend down to 0.1 mg/m3, although there is greater PO 00000 Frm 00084 Fmt 4701 Sfmt 4700 uncertainty in this finding for 0.1 mg/m3 since there is less information available on populations exposed at and below this level. Although significant risk remains at the new TWA PEL, OSHA is also required to consider the technological and economic feasibility of the standard in determining exposure limits. As explained in Section VIII, Summary of the Final Economic Analysis and Final Regulatory Flexibility Analysis, OSHA determined that the new TWA PEL of 0.2 mg/m3 is both technologically and economically feasible in the general industry, construction, and shipyard sectors. OSHA was unable to demonstrate, however, that a lower TWA PEL of 0.1 mg/m3 would be technologically feasible. Therefore, OSHA concludes that, in setting a TWA PEL of 0.2 mg/m3, the Agency is reducing the risk to the extent feasible, as required by the OSH Act (see section II, Pertinent Legal Authority). In this context, the Agency finds that the action level of 0.1 mg/m3, dermal protection requirements, and other ancillary provisions of the final rule are critically important in reducing the risk of sensitization, CBD, and lung cancer among workers exposed to beryllium. Together, these provisions, along with the new TWA PEL of 0.2 mg/ m3, will substantially reduce workers’ risk of material impairment of health from occupational beryllium exposure. VIII. Summary of the Final Economic Analysis and Final Regulatory Flexibility Analysis A. Introduction OSHA’s Final Economic Analysis and Final Regulatory Flexibility Analysis (FEA) addresses issues related to the costs, benefits, technological and economic feasibility, and the economic impacts (including impacts on small entities) of this final beryllium rule and evaluates regulatory alternatives to the final rule. Executive Orders 13563 and E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 12866 direct agencies to assess all costs and benefits of available regulatory alternatives and, if regulation is necessary, to select regulatory approaches that maximize net benefits (including potential economic, environmental, and public health and safety effects; distributive impacts; and equity). Executive Order 13563 emphasized the importance of quantifying both costs and benefits, of reducing costs, of harmonizing rules, and of promoting flexibility. The full FEA has been placed in OSHA rulemaking docket OSHA–H005C– 2006–0870. This rule is an economically significant regulatory action under Sec. 3(f)(1) of Executive Order 12866 and has been reviewed by the Office of Information and Regulatory Affairs in the Office of Management and Budget, as required by executive order. The purpose of the FEA is to: • Identify the establishments and industries potentially affected by the final rule; • Estimate current exposures and the technologically feasible methods of controlling these exposures; • Estimate the benefits resulting from employers coming into compliance with the final rule in terms of reductions in cases of lung cancer, chronic beryllium disease; • Evaluate the costs and economic impacts that establishments in the regulated community will incur to achieve compliance with the final rule; • Assess the economic feasibility of the final rule for affected industries; and • Assess the impact of the final rule on small entities through a Final Regulatory Flexibility Analysis (FRFA), to include an evaluation of significant regulatory alternatives to the final rule that OSHA has considered. asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Significant Changes to the FEA Between the Proposed Standards and the Final Standards OSHA made changes to the Preliminary Economic Analysis (PEA) for several reasons: • Changes to the rule, summarized in Section I of the preamble and discussed in detail in the Summary and Explanation; • Comments on the PEA; • Updates of economic data; and • Recognition of errors in the PEA. OSHA revised its technological and economic analysis in response to these changes and to comments received on the NPRM. The FEA contains some costs that were not included in the PEA and updates data to use more recent data sources and, in some cases, revised methodologies. Detailed discussions of VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 these changes are included in the relevant sections throughout the FEA. The Final Economic Analysis contains the following chapters: 2553 The remainder of this section (Section VIII) of the preamble is organized as follows: Chapter I. Introduction Chapter II. Market Failure and the Need for Regulation Chapter III. Profile of Affected Industries Chapter IV. Technological Feasibility Chapter V. Costs of Compliance Chapter VI. Economic Feasibility Analysis and Regulatory Flexibility Determination Chapter VII. Benefits and Net Benefits Chapter VIII. Regulatory Alternatives Chapter IX. Final Regulatory Flexibility Analysis B. Market Failure and the Need for Regulation C. Profile of Affected Industries D. Technological Feasibility E. Costs of Compliance F. Economic Feasibility Analysis and Regulatory Flexibility Determination G. Benefits and Net Benefits H. Regulatory Alternatives I. Final Regulatory Flexibility Analysis. B. Market Failure and the Need for Regulation Employees in work environments addressed by the final beryllium rule are Table VIII–1 provides a summary of exposed to a variety of significant OSHA’s best estimate of the costs and hazards that can and do cause serious benefits of the final rule using a injury and death. As described in discount rate of 3 percent. As shown, Chapter II of the FEA in support of the the final rule is estimated to prevent 90 final rule, OSHA concludes there is a fatalities and 46 beryllium-related demonstrable failure of private markets illnesses annually once it is fully to protect workers from exposure to effective, and the estimated cost of the unnecessarily high levels beryllium and rule is $74 million annually. Also as that private markets, as well as shown in Table VIII–1, the discounted information dissemination programs, monetized benefits of the final rule are workers’ compensation systems, and estimated to be $561 million annually, tort liability options, each may fail to and the final rule is estimated to protect workers from beryllium generate net benefits of $487 million annually. Table VIII–1 also presents the exposure, resulting in the need for a more protective OSHA beryllium rule. estimated costs and benefits of the final After carefully weighing the various rule using a discount rate of 7 percent. potential advantages and disadvantages of using a regulatory approach to TABLE VIII–1—ANNUALIZED BENEFITS, improve upon the current situation, COSTS AND NET BENEFITS OF OSHA concludes that, in the case of OSHA’S FINAL BERYLLIUM STAND- beryllium exposure, the final mandatory ARD standards represent the best choice for [3 Percent Discount Rate, 2015 dollars] reducing the risks to employees. Annualized Costs: Control Costs ............................... Rule Familiarization ..................... Exposure Assessment ................. Regulated Areas .......................... Beryllium Work Areas .................. Medical Surveillance .................... Medical Removal ......................... Written Exposure Control Plan .... Protective Work Clothing & Equipment ................................ Hygiene Areas and Practices ...... Housekeeping .............................. Training ........................................ Respirators .................................. Total Annualized Costs (Point Estimate) ................ Annual Benefits: Number of Cases Prevented: Fatal Lung Cancers (Midpoint Estimate) ...................................... Fatal Chronic Beryllium Disease Beryllium-Related Mortality .......... Beryllium Morbidity ...................... Monetized Annual Benefits (Midpoint Estimate) ......................... Net Benefits: Net Benefits ................................. C. Profile of Affected Industries $12,269,190 180,158 13,748,676 884,106 129,648 7,390,958 1,151,058 2,339,058 1,985,782 2,420,584 22,763,595 8,284,531 320,885 73,868,230 4 86 90 46 $560,873,424 $487,005,194 Sources: US DOL, OSHA, Directorate of Standards and Guidance, Office of Regulatory Analysis PO 00000 Frm 00085 Fmt 4701 Sfmt 4700 Chapter III of the FEA presents profile data for industries potentially affected by the final beryllium rule. This Chapter provides the background data used throughout the remainder of the FEA including estimates of what industries are affected, and their economic and beryllium exposure characteristics. OSHA identified the following application groups as affected by the standard: • Beryllium Production • Beryllium Oxide Ceramics and Composites • Nonferrous Foundries • Secondary Smelting, Refining, and Alloying • Precision Turned Products • Copper Rolling, Drawing, and Extruding • Fabrication of Beryllium Alloy Products • Welding • Dental Laboratories • Aluminum Production • Coal-Fired Electric Power Generation E:\FR\FM\09JAR2.SGM 09JAR2 2554 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS • Abrasive Blasting VerDate Sep<11>2014 21:46 Jan 06, 2017 Table VIII–3 shows the affected industries by application group and selected economic characteristics of Jkt 241001 PO 00000 Frm 00086 Fmt 4701 Sfmt 4700 these affected industries. Table VIII–4 provides industry-by-industry estimates of current exposure. E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS VerDate Sep<11>2014 Table Vlll-2: Characteristics of Industries Affected by OSHA's Final Standard for Beryllium-All Entities Group Jkt 241001 PO 00000 Frm 00087 Fmt 4701 Total Industry 09JAR2 Affected Affected Affected Entities Establish- Employees Entities Establish- Employees ments [a] [a] [b] ments [b] [b] 163 186 10,773 1 1 636 655 13,096 2 748 830 66,833 459 463 376 418 Total Revenues Revenues/ Revenues/ ($1 ,OOO)[a] Entity Establishment 616 $15,853,340 $97,259,754 $85,233,010 2 83 $2,224,322 $3,497,362 $3,395,911 9 10 120 $29,075,882 $38,871 ,500 $35,031,183 8,767 5 5 60 $2,944,276 $6,414,545 $6,359,128 19,796 11 12 144 $3,829,332 $10,184,393 $9,161,081 Beryllium Production Nonferrous Beryllium Production Metal (except 331410a Aluminum) Smelting and Refining Beryllium Oxide Ceramics and Composites Pottery, Be OxidePrimary Ceramics, and 327110a Plumbing Fixture Manufacturing Radicand Sfmt 4725 E:\FR\FM\09JAR2.SGM Total [a] NAICS Total Television Be OxideSecondary Broadcasting 334220 and Wireless Communicatio ns Equipment Manufacturing Audio and Be OxideSecondary 334310 Video Equipment Manufacturing Capacitor, Resistor, Coil, Be OxideSecondary 334416 Transformer, and Other Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Application Inductor Manufacturing 2555 ER09JA17.004</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2556 VerDate Sep<11>2014 Table Vlll-2: Characteristics of Industries Affected by OSHA's Final Standard for Beryllium-All Entities (continued) Group Industry Jkt 241001 PO 00000 Frm 00088 Fmt 4701 Sfmt 4725 E:\FR\FM\09JAR2.SGM 09JAR2 Total Affected Entities Establish- Employees Entities [a] NAICS Total ments [a] [a] [b] 1,162 1,259 54,693 28 30 674 749 64,271 8 636 655 13,096 618 678 396 383 Establish Affected Total Revenues Revenues/ Revenues/ ($1 ,OOO)[a] Entity Establishment 360 $11,749,377 $10,111,340 $9,332,309 9 108 $29,145,680 $43,242,849 $38,912,791 14 14 168 $2,224,322 $3,497,362 $3,395,911 50,017 9 10 120 $21 ,336,550 $34,525,161 $31,469,837 434 31,010 45 50 822 $8,177,926 $20,651 ,328 $18,843,147 406 15,446 7 7 120 $2,953,370 $7,711,149 $7,274,311 -ments [b] Employees [b] Other Be OxideSecondary 334419 Electronic Component Manufacturing Electrometrica Be OxideSecondary I and 334510 Electrotherape utic Apparatus Manufacturing Pottery, Be OxideSecondary Ceramics, and 327110b Plumbing Fixture Manufacturing Motor Vehicle Be OxideSecondary Electrical and 336320a Electronic Equipment Manufacturing Nonferrous Foundries Nonferrous Non Sand Foundries 331523 Metal Diecasting Foundries Aluminum Non Sand Foundries 331524 Foundries (except Diecasting) ER09JA17.005</GPH> Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Application Affected Total asabaliauskas on DSK3SPTVN1PROD with PROPOSALS VerDate Sep<11>2014 Table Vlll-2: Characteristics of Industries Affected by OSHA's Final Standard for Beryllium-All Entities (continued) Group Affected Jkt 241001 Total Industry Fmt 4701 Sfmt 4725 E:\FR\FM\09JAR2.SGM Affected Entities Establish- Employees Entities ments [a] [a] [b] 293 300 9,522 18 18 293 300 9,522 22 92 114 5,415 179 249 228 261 Establish Affected Total Revenues Revenues/ Revenues/ ($1 ,OOO)[a] Entity Establishment 304 $2,517,475 $8,592,063 $8,391,582 23 430 $2,517,475 $8,592,063 $8,391,582 1 1 9 $5,866,913 $63,770,798 $51,464,153 21,408 3 4 36 $24,370,147 10,913 26 30 270 $15,183,933 -ments [b] Employees [b] Other Nonferrous Non Sand Foundries 331529a Metal Foundries (except Die- PO 00000 Frm 00089 Total [a] NAICS Total Casting) Other Nonferrous Sand Foundries 331529b Metal Foundries (except DieCasting) Secondary Smelting, Refining, and Alloying Secondary SmeltingBe Alloys 331314 Smelting and Alloying of Aluminum Copper SmeltingBe Alloys Rolling, 331420b Drawing, Extruding, and $136,146,07 1 $97,872,075 09JAR2 Alloying Secondary Smelting, Refining, and SmeltingPrecious metals 331492 Alloying of Nonferrous $66,596,198 $58,175,989 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Application Metal (except Copper and ER09JA17.006</GPH> 2557 Aluminum) asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2558 VerDate Sep<11>2014 Application Group Affected Jkt 241001 PO 00000 Total Industry Total Affected Entities Establish- Employees Entities [a] NAICS Total ments [a] [a] [b] 3,601 3,688 103,546 21 22 3,601 3,688 103,546 339 179 249 21,408 179 249 21,408 1392 114,829 Establish Affected Total Revenues Revenues/ Revenues/ ($1 ,OOO)[a] Entity Establishment 289 $18,818,245 $5,225,839 $5,102,561 347 4,607 $18,818,245 $5,225,839 $5,102,561 8 11 1,086 $24,370,147 32 45 3,597 $24,370,147 1252 1296 -ments [b] Employees [b] Precision Machining Precision Machining (high) turned product 332721a manufacturing (high beryllium Frm 00090 content) Precision turned product Fmt 4701 (low) Sfmt 4725 Machining Copper Rolling, Drawing and Extruding 332721b manufacturing (low beryllium content) Copper E:\FR\FM\09JAR2.SGM Rolling, Rolling 331420a Drawing, Extruding, and $136,146,07 1 $97,872,075 Alloying Copper 09JAR2 Rolling, Drawing 331420c Drawing, Extruding, and $136,146,07 1 $97,872,075 Alloying Stamping, Spring, and Connector Manufacturing Springs ER09JA17.007</GPH> 1332613 I Spring Manufacturing I 334 12,166 1 $3.751.288 1 $11 .231 ,400 1 $9.569.611 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Table Vlll-2: Characteristics of Industries Affected by OSHA's Final Standard for Beryllium-All Entities (continued) asabaliauskas on DSK3SPTVN1PROD with PROPOSALS VerDate Sep<11>2014 Table Vlll-2: Characteristics of Industries Affected by OSHA's Final Standard for Beryllium-All Entities (continued) Group Affected Jkt 241001 Total Industry Affected Entities Establish- Employees Entities ments [a] [a] [b] 1,417 1,499 53,018 68 72 195 234 21,132 39 618 678 50,017 4,900 5,114 93,863 1,633 Establish Affected Total Revenues Revenues/ Revenues/ ($1 ,OOO)[a] Entity Establishment 508 $12,329,183 $8,700,906 $8,224,939 47 328 $5,940,257 $30,462,858 $25,385,715 135 148 1,037 $21 ,336,550 $34,525,161 $31,469,837 33,073 1,225 1,278 5,954 $3,604,997 $735,751 $704,996 99,830 654,879 172 183 851 $81,961,314 $873,199 $821,007 1,705 11,024 408 426 1,985 $1,201,666 $735,751 $704,996 -ments [b] Employees [b] Metal Crown, Closure, and Stamping 332119 PO 00000 Frm 00091 Total [a] NAICS Total Other Metal Stamping (except Automotive) Electronic Stamping 334417 Connector Manufacturing Fmt 4701 Motor Vehicle Electrical and Sfmt 4725 Stamping E:\FR\FM\09JAR2.SGM Dental Laboratories 336320c Electronic Equipment Manufacturing Dental LabsSubstituting 339116a Dental Laboratories * 09JAR2 Dental LabsSubstituting 621210a Offices of Dentists * Dental Labs- NonSubstituting 339116b Dental Laboratories Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Application ** 2559 ER09JA17.008</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2560 VerDate Sep<11>2014 Table Vlll-2: Characteristics of Industries Affected by OSHA's Final Standard for Beryllium-All Entities (continued) Group Affected Jkt 241001 PO 00000 Frm 00092 Total Industry Total Affected Entities Establish- Employees Entities [a] NAICS Total ments [a] [a] [b] 31,288 33,277 218,293 57 61 414 562 105,309 5 Establish Affected Total Revenues Revenues/ Revenues/ ($1 ,OOO)[a] Entity Establishment 284 $27,320,438 $873,199 $821,007 6 24 $118,135,862 -ments [b] Employees [b] Dental Labs- NonSubstituting 621210b Offices of Dentists ** Arc and Gas Welding Iron and Steel WeldingGI 331110a Mills and Ferroalloy $285,352,32 $210,206,160 3 Manufacturing Rolled Steel Fmt 4701 WeldingGI 331221 Shape Sfmt 4725 E:\FR\FM\09JAR2.SGM 09JAR2 150 167 7,836 1 2 6 $6,250,961 $41 ,673,076 $37,430,907 194 208 18,236 1 1 5 $4,733,402 $24,398,978 $22,756,739 121 133 8,160 1 1 3 $2,111,591 $17,451,166 $15,876,625 935 1,012 27,852 3 3 13 $7,043,067 $7,532,692 $6,959,553 2,823 3,099 87,722 49 54 216 $27,839,554 $9,861,691 $8,983,399 1,211 1,245 34,225 21 22 87 $7,461,246 $6,161,227 $5,992,968 Manufacturing Steel WeldingGI 331513 Foundries (except Investment) Powder WeldingGI 332117 Metallurgy Part Manufacturing Saw Blade WeldingGI 332216 and Handtool Manufacturing Fabricated WeldingGI 332312 Structural Metal Manufacturing WeldingGI ER09JA17.009</GPH> 332313 Plate Work Manufacturing Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Application asabaliauskas on DSK3SPTVN1PROD with PROPOSALS VerDate Sep<11>2014 Table Vlll-2: Characteristics of Industries Affected by OSHA's Final Standard for Beryllium-All Entities (continued) Group Affected Total Industry Frm 00093 332322 E:\FR\FM\09JAR2.SGM Entities Establish- Employees Entities ments [a] [a] [b] 3,830 4,099 98,201 67 71 2,175 2,214 29,694 38 298 346 11,749 224 243 3,483 Establish Affected 09JAR2 Total Revenues Revenues/ Revenues/ ($1 ,OOO)[a] Entity Establishment 286 $20,892,732 $5,455,021 $5,097,031 39 154 $6,058,633 $2,785,578 $2,736,510 5 6 24 $3,885,743 $13,039,407 $11,230,472 14,260 3 3 12 $5,062,721 $22,601 ,434 $20,834,244 3,553 70,118 38 38 153 $15,415,053 $4,425,798 $4,338,602 1,048 1,124 65,302 19 20 82 $42,075,186 $40,148,079 $37,433,440 441 472 17,959 4 4 18 $5,535,698 $12,552,603 $11,728,174 -ments [b] Employees [b] Work Manufacturing Ornamental and WeldingGI 332323 Architectural Metal Work Manufacturing Other Metal WeldingGI 332439 Container Manufacturing Fmt 4701 Sfmt 4725 Affected Sheet Metal WeldingGI Jkt 241001 PO 00000 Total [a] NAICS Total Other Metal WeldingGI 332919 Valve and Pipe Fitting Manufacturing All Other Miscellaneous WeldingGI 332999 Fabricated Metal Product Manufacturing Farm Machinery WeldingGI 333111a and Equipment Manufacturing Heating Equipment WeldingGI 333414a (except Warm Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Application Air Furnaces) ER09JA17.010</GPH> 2561 Manufacturing asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2562 VerDate Sep<11>2014 Table Vlll-2: Characteristics of Industries Affected by OSHA's Final Standard for Beryllium-All Entities (continued) Jkt 241001 WeldingGI Group Affected PO 00000 Total Industry 333911 09JAR2 Entities Establish- Employees Entities ments [a] [a] [b] 441 539 33,772 6 7 751 799 31,725 10 340 360 22,389 1,590 1,654 656 Establish Affected Total Revenues Revenues/ Revenues/ ($1 ,OOO)[a] Entity Establishment 27 $15,903,209 $36,061 ,699 $29,505,027 10 41 $8,945,712 $11,911,734 $11,196,135 4 5 18 $11,772,772 $34,625,801 $32,702,145 51,495 20 21 84 $15,726,526 $9,890,897 $9,508,178 741 40,544 13 15 60 $11,773,922 $17,948,052 $15,889,234 571 663 39,267 12 13 54 $10,544,247 $18,466,282 $15,903,842 1,302 1,508 122,041 5 6 25 $60,628,177 $46,565,420 $40,204,361 -ments [b] Employees [b] Pumping Equipment Manufacturing Conveyor and WeldingGI 333922 Conveying Equipment Manufacturing Industrial Truck, Tractor, WeldingGI 333924 Trailer, and Stacker Machinery Sfmt 4725 E:\FR\FM\09JAR2.SGM Affected Pump and Frm 00094 Fmt 4701 Total [a] NAICS Total Manufacturing All Other Miscellaneous WeldlngGI 333999 General Purpose Machinery Manufacturing Motor Vehicle WeldingGI 336211 Body Manufacturing Travel Trailer WeldingGI 336214 and Camper Manufacturing Other Motor WeldingGI 336390a Vehicle Parts Manufacturing ER09JA17.011</GPH> Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Application asabaliauskas on DSK3SPTVN1PROD with PROPOSALS VerDate Sep<11>2014 Application Group Affected Jkt 241001 Total Industry Fmt 4701 WeldingGI 336510a Entities Establish- Employees Entities ments [a] [a] [b] 164 234 29,173 2 3 13 $17,944,334 387 397 13,327 3 3 12 $7,731,109 $19,977,027 $19,473,827 1,042 1,097 33,437 2 2 10 $6,809,534 $6,535,062 $6,207,415 19,661 21,347 193,427 136 147 589 $34,529,038 $1,756,220 $1,617,512 Establish -ments [b] Affected Employees [b] Total Revenues Revenues/ Revenues/ ($1 ,OOO)[a] Entity Establishment Rolling Stock Manufacturing $109,416,67 1 $76,685,188 All Other WeldingGI Transportation 336999 Equipment Manufacturing Showcase, Partition, WeldingGI 337215 Sfmt 4725 E:\FR\FM\09JAR2.SGM Affected Railroad PO 00000 Frm 00095 Total [a] NAICS Total Shelving, and Locker Manufacturing Commercial and Industrial Machinery and Equipment WeldingGI 811310 (except 09JAR2 Automotive and Electronic) Repair and Maintenance Resistance Welding Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Table Vlll-2: Characteristics of Industries Affected by OSHA's Final Standard for Beryllium-All Entities (continued) 2563 ER09JA17.012</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2564 VerDate Sep<11>2014 Application Group Affected Total Industry Jkt 241001 PO 00000 Entities Establish- Employees Entities ments [a] [a] [b] 414 491 24,138 17 20 729 878 84,823 29 119 127 8,216 95 98 10,408 Establish Affected Total Revenues Revenues/ Revenues/ ($1 ,OOO)[a] Entity Establishment 428 $6,278,849 $15,166,303 $12,787,881 35 766 $31,852,834 $43,693,874 $36,278,855 6 6 138 $3,560,517 $29,920,308 $28,035,564 5 5 107 $4,674,297 $49,203,131 $47,696,913 -ments [b] Employees [b] Industrial and Resistance Welding Fan and 333413 Blower and Air Purification Equipment Manufacturing AirConditioning Fmt 4701 and Warm Air Heating Resistance Welding Equipment 333415 and Commercial E:\FR\FM\09JAR2.SGM 09JAR2 Affected Commercial Frm 00096 Sfmt 4725 Total [a] NAICS Total and Industrial Refrigeration Equipment Manufacturing Small Resistance Welding 335210 Electrical Appliance Manufacturing Household Resistance Welding 335221 Cooking Appliance Manufacturing ER09JA17.013</GPH> Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Table Vlll-2: Characteristics of Industries Affected by OSHA's Final Standard for Beryllium-All Entities (continued) asabaliauskas on DSK3SPTVN1PROD with PROPOSALS VerDate Sep<11>2014 Table Vlll-2: Characteristics of Industries Affected by OSHA's Final Standard for Beryllium-All Entities (continued) Group Affected Jkt 241001 PO 00000 Frm 00097 Fmt 4701 Sfmt 4725 E:\FR\FM\09JAR2.SGM 09JAR2 Total Industry Total Affected Entities Establish- Employees Entities [a] NAICS Total ments [a] [a] [b] 23 30 9,374 1 2 33 $3,686,247 8 9 1,994 0 0 10 $951,577 30 36 9,059 2 2 39 $4,710,323 788 849 52,752 39 42 925 $33,235,797 $42,177,407 $39,146,993 618 678 50,017 31 34 739 $21 ,336,550 $34,525,161 $31,469,837 210 245 28,663 11 12 267 $12,290,261 $58,525,051 $50,164,329 Establish -ments [b] Affected Employees [b] Total Revenues Revenues/ Revenues/ ($1 ,OOO)[a] Entity Establishment Household Resistance Welding Refrigerator 335222 and Home Freezer $160,271,59 4 $122,874,888 Manufacturing Household Resistance Welding 335224 Laundry Equipment $118,947,18 7 $1 05,730,833 Manufacturing Other Major Resistance Welding 335228 Household Appliance $157,010,75 1 $130,842,293 Manufacturing Motor Vehicle Resistance Welding Gasoline 336310 Engine and Engine Parts Manufacturing Motor Vehicle Resistance Welding Electrical and 336320b Electronic Equipment Manufacturing Motor Vehicle Steering and Resistance Welding Suspension 336330 Components Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Application (except Spring) ER09JA17.014</GPH> 2565 Manufacturing asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2566 VerDate Sep<11>2014 Table Vlll-2: Characteristics of Industries Affected by OSHA's Final Standard for Beryllium-All Entities (continued) Group Resistance Welding Affected Total Industry Frm 00098 Entities Establish- Employees Entities ments [a] [a] [b] 156 195 21,859 8 10 424 503 58,248 21 302 398 47,010 645 773 441 Establish Affected Resistance Welding Revenues/ Revenues/ ($1 ,OOO)[a] Entity Establishment 213 $10,467,412 $67,098,794 $53,679,036 25 548 $35,792,318 $84,415,844 $71,157,690 15 20 434 $23,631,348 $78,249,498 $59,375,247 81,018 32 39 843 $32,802,040 $50,855,876 $42,434,722 472 17,959 18 19 412 $5,535,698 $12,552,603 $11,728,174 1,302 1,508 122,041 65 75 1,644 $60,628,177 $46,565,420 $40,204,361 3 8 5,433 2 6 859 $370,719 -ments [b] [b] Brake System Manufacturing Transmission 336350 and Power Train Parts Manufacturing Motor Vehicle Resistance Fmt 4701 Sfmt 4725 Resistance 09JAR2 Total Revenues Employees Motor Vehicle Welding E:\FR\FM\09JAR2.SGM Affected Motor Vehicle 336340 Jkt 241001 PO 00000 Total [a] NAICS Total Seating and 336360 Interior Trim Manufacturing Welding Motor Vehicle 336370 Metal Stamping Heating Resistance Welding Equipment 333414b (except Warm Air Furnaces) Manufacturing Resistance Welding Other Motor 336390b Vehicle Parts Manufacturing Aluminum Production Alumina Aluminum Production Refining and 331313 Primary Aluminum Production Coal Fired Utilities ER09JA17.015</GPH> $123,573,10 7 $46,339,915 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Application asabaliauskas on DSK3SPTVN1PROD with PROPOSALS VerDate Sep<11>2014 Table Vlll-2: Characteristics of Industries Affected by OSHA's Final Standard for Beryllium-All Entities (continued) Group Coal Fired Jkt 241001 Utilities Coal Fired PO 00000 Utilities Coal Fired Frm 00099 Utilities Coal Fired Utilities Fmt 4701 Coal Fired Sfmt 4725 Coal Fired Utilities Utilities E:\FR\FM\09JAR2.SGM Coal Fired Utilities Affected 09JAR2 Total Industry Total Affected Entities Establish- Employees Entities [a] NAICS Total ments [a] [a] [b] 456 2,716 142,164 70 418 10,534 $167,481,521 31 63 6,687 6 12 338 $12,894,946 15 31 5,790 7 14 395 $4,822,174 344 383 17,101 2 2 56 $9,644,849 $28,037,353 $25,182,374 843 880 27,740 2 2 56 $29,912,097 $35,482,914 $33,991 ,019 149 219 13,423 1 1 28 $6,708,744 $45,025,125 $30,633,533 33 42 8,678 1 1 28 $6,842,997 125 209 60,053 7 11 310 $45,144,793 17 20 4,398 20 24 677 $3,218,103 82 177 35,545 7 16 451 $29,706,665 899 1,161 69,352 3 4 113 $97,687,597 Establish -ments [b] Affected Employees [b] Total Revenues Revenues/ Revenues/ ($1 ,OOO)[a] Entity Establishment Fossil Fuel 221112 Electric Power Generation 311221 311313 Wet Com Milling Beet Sugar Manufacturing $367,284,03 7 $415,965,99 4 $321 ,478,25 2 $61,664,772 $204,681,680 $155,553,993 Spice and 311942 Extract Manufacturing 312120 Breweries 321219 Wood Product Reconstituted Manufacturing 322110 Pulp Mills $207,363,54 0 $162,928,496 Paper (except Coal Fired Utilities Coal Fired Utilities Coal Fired Utilities 322121 Newsprint) Mills 322122 322130 Newsprint Mills Paperboard Mills $361,158,34 5 $189,300,16 7 $362,276,40 7 $216,003,795 $160,905,142 $167,834,268 Plastics Coal Fired Utilities 325211 Material and Resin $1 08,662,51 1 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Application $84,140,910 Manufacturing 2567 ER09JA17.016</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2568 VerDate Sep<11>2014 Table Vlll-2: Characteristics of Industries Affected by OSHA's Final Standard for Beryllium-All Entities (continued) Group Industry Jkt 241001 PO 00000 Frm 00100 Fmt 4701 Sfmt 4725 E:\FR\FM\09JAR2.SGM Total Affected Entities Establish- Employees Entities [a] NAICS Total ments [a] [a] [b] 615 664 23,229 1 1 122 240 12,617 1 1,048 1,124 65,302 164 234 2,282 Establish Affected 09JAR2 Total Revenues Revenues/ Revenues/ ($1 ,OOO)[a] Entity Establishment 28 $28,371,519 $46,132,552 $42,728,192 2 56 $6,246,422 $51 ,200,178 $26,026,757 1 1 28 $42,075,186 $40,148,079 $37,433,440 29,173 1 1 28 $17,944,334 4,329 1,805,199 5 9 254 $232,517,218 31,317 31,376 163,073 1,088 1,090 4,360 $19,595,278 $625,707 $624,531 28,734 29,072 193,631 998 1,010 4,040 $39,396,242 $1,371,067 $1,355,127 -ments [b] Employees [b] Soap and Coal Fired Utilities 325611 Other Detergent Manufacturing Coal Fired Utilities 327310 Cement Manufacturing Farm Coal Fired Utilities Machinery 333111b and Equipment Manufacturing Coal Fired Utilities Railroad 336510b Rolling Stock Manufacturing $109,416,67 1 $76,685,188 Colleges, Coal Fired Utilities Universities, 611310 and Professional $1 01 ,891 ,85 7 $53,711,531 Schools Abrasive Blasting- Construction Abrasive BlastingConstructio Painting and 238320 Abrasive BlastingConstructio n Wall Covering Contractors n All Other 238990 Specialty Trade Contractors Abrasive Blasting Shipyards*- ER09JA17.017</GPH> Affected Total Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Application asabaliauskas on DSK3SPTVN1PROD with PROPOSALS VerDate Sep<11>2014 Application Group Jkt 241001 336611a PO 00000 Shipyards Industry Frm 00101 Total Total Affected Entities Establish- Employees Entities [a] NAICS Abrasive Blasting- Affected Total ments [a] [a] [b] 604 689 108,311 604 689 604 689 108,311 6 Ship Building and Repairing Establish Affected Fmt 4701 Total Revenues Revenues/ Revenues/ ($1 ,OOO)[a] Entity Establishment 3,825 $26,136,187 $43,271 ,832 $37,933,508 7 26 $26,136,187 $43,271 ,832 $37,933,508 50,261 $1,931,626,954 $9,334,778 $8,540,786 -ments [b] Employees [b] Welding in Shipyards**** Welding In Shipyards 336611b Ship Building and Repairing Total Sfmt 4725 General Industry Subtotal 206,928 226,165 5,877,434 3,869 4,538 Construction Subtotal 60,051 60,448 356,704 2,086 2,100 8,400 $58,991 ,519 $982,357 $975,905 Maritime Subtotal 1,208 1,378 216,622 610 696 3,086 $52,272,373 $43,271 ,832 $37,933,508 Total, All Industries 268,187 287,991 6,450,760 6,565 7,333 61,747 $2,042,890,84 7 $7,617,412 $7,093,593 [a] US Census Bureau, Statistics of US Businesses: 2012. E:\FR\FM\09JAR2.SGM [b] OSHA estimates of employees potentially exposed to beryllium and associated entities and establishments. Affected entities and establishments constrained to be less than or equal to the number of affected employees. Within each NAICS industry, the number of affected entities was calculated as the product of total number of entities for that industry and the ratio of the number of affected establishments to the number of total establishments. Application group Dental Labs- Substituting applies to establishments that substitute beryllium-free material for beryllium and incur costs due to the price differential between beryllium-free alloys and 09JAR2 alloys that contain beryllium plus the cost of additional training to teach dental technicians how to cast the beryllium-free alloys. ** Application group Dental Labs - Non-Substituting are estabishments with exposures below the PEL that continue to use berylium alloys and incur the cost of the ancillary provisions required by the final standard. *** Employers in application group Abrasive Blasting- Shipyards are shipyards employing abrasive blasters that use mineral slag abrasives to etch the surfaces of boats and ships. *** Employers in application group Welding in Shipyards employ welders in shipyards. Some of these employers may do both welding and abrasive blasting. Source: US DOL, OSHA, Directorate of Standards and Guidance, Office of Regulatory Analysis. Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Table Vlll-2: Characteristics of Industries Affected by OSHA's Final Standard for Beryllium-All Entities (continued) 2569 ER09JA17.018</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2570 VerDate Sep<11>2014 Vlll-3: Number of Workers Exposed to Beryllium by Affected Industry and Exposure Range (~gfm3) Exposure Level (1Jgfm3) Application Group/ Industry 0 to :S0.0.5 NAICS >0.05 to :S0.1 >0.1 to :S0.2 >0.2to >0.25 to >0.5 to :S0.25 ::S0.5 :S1.0 >1.0to ::S2.0 >2.0 Total Jkt 241001 Beryllium Oxide - Primary Pottery, Ceramics, and Plumbing Fixture Manufacturing PO 00000 Frm 00102 Fmt 4701 Sfmt 4725 E:\FR\FM\09JAR2.SGM 09JAR2 9 15 6 32 7 3 2 83 334220 Radio and Television Broadcasting and Wireless Communications Equipment Manufacturing 41 41 16 2 11 5 2 1 120 334310 Audio and Video Equipment Manufacturing 21 21 8 1 6 3 1 1 60 334416 Capacitor, Resistor, Coil, Transformer, and Other Inductor Manufacturing 50 50 19 3 13 7 2 1 144 334419 Other Electronic Component Manufacturing 124 124 47 7 34 16 5 4 360 334510 ER09JA17.019</GPH> 9 Electromedical and Electrotherapeutic Apparatus Manufacturing 37 37 14 2 10 5 1 1 108 327110a Beryllium Oxide - Secondary Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Table asabaliauskas on DSK3SPTVN1PROD with PROPOSALS VerDate Sep<11>2014 Exposure Level (1Jg/m3) Application Group/ Industry NAICS Jkt 241001 PO 00000 Frm 00103 Fmt 4701 Sfmt 4725 E:\FR\FM\09JAR2.SGM >0.2 to >0.25 to >0.5to :!1:0.25 :!1:0.5 :!1:1.0 22 3 16 41 16 2 183 183 85 216 216 31 0 to :!1:0.0.5 >0.05 to :!1:0.1 >0.1 to :!1:0.2 >1.0 to :!1:2.0 >2.0 Total 327110b Pottery, Ceramics, and Plumbing Fixture Manufacturing 58 58 8 2 2 168 336320a Motor Vehicle Electrical and Electronic Equipment Manufacturing 41 11 5 2 1 120 12 62 39 25 28 616 1,726 173 863 1,381 345 1,035 5,954 31 247 25 123 197 49 148 851 Beryllium Production 331410a Nonferrous Metal (except Aluminum) Smelting and Refining Dental Labs Substituting* 339116a Dental Laboratories 621210a Offices of Dentists Dental Labs - Non-Substituting** 09JAR2 339116a Dental Laboratories 992 992 0 0 0 0 0 0 1,985 621210a Offices of Dentists 142 142 0 0 0 0 0 0 284 1,447 1,447 327 40 201 41 41 52 3,597 Drawing 331420c Copper Rolling, Drawing, Extruding, and Alloying Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Table Vlll-3: Number of Workers Exposed to Beryllium by Affected Industry and Exposure Range (1Jg/m3) (continued) Machining - High 2571 ER09JA17.020</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2572 VerDate Sep<11>2014 21:46 Jan 06, 2017 Application Group/ Jkt 241001 332721a Table Vlll-3: Number of Workers Exposed to Beryllium by Affected Industry and Exposure Range (1Jg/m3) (continued) Industry PO 00000 Frm 00104 >0.2 to >0.25 to >0.5to :!!:0.25 :!!:0.5 :!!:1.0 34 21 106 1,699 518 58 17 17 183 331524 Aluminum Foundries (except DieCasting) 2 2 331529a Other Nonferrous Metal Foundries (except DieCasting) 6 NAICS 0 to :!!:0.0.5 >0.05 to :!!:0.1 >0.1 to :!!:0.2 Precision Turned Product Manufacturing 20 20 Precision Turned Product Manufacturing 1,699 331523 Nonferrous Metal Die-Casting Foundries 332721b Total 44 20 24 289 288 115 58 173 4,607 45 224 159 49 128 822 27 7 33 23 7 19 120 6 68 17 83 59 18 47 304 512 512 42 3 14 4 0 0 1,086 8 8 85 21 104 74 72 59 430 Non Sand Foundries Sfmt 4725 09JAR2 >2.0 Machining - Low Fmt 4701 E:\FR\FM\09JAR2.SGM >1.0 to :!!:2.0 Rolling 331420a Copper Rolling, Drawing, Extruding, and Alloying Sand Foundries 331529b Other Nonferrous Metal Foundries (except DieCasting) Smelting - Beryllium Alloys ER09JA17.021</GPH> Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Exposure Level (1Jgfm3) asabaliauskas on DSK3SPTVN1PROD with PROPOSALS VerDate Sep<11>2014 Table Vlll-3: Number of Workers Exposed to Beryllium by Affected Industry and Exposure Range (1Jg/m3) (continued) Industry Frm 00105 Fmt 4701 Sfmt 4725 E:\FR\FM\09JAR2.SGM >0.5to :!!:0.5 :!!:1.0 2 0 0 2 9 0 60 60 60 Spring Manufacturing 986 986 332119 Metal Crown, Closure, and Other Metal Stamping (except Automotive) 224 Electronic Connector Manufacturing 336320c PO 00000 >0.25 to :!!:0.25 334417 Jkt 241001 >0.2 to Motor Vehicle Electrical and Electronic Equipment Manufacturing NAICS 331314 331420b 0 to :!!:0.0.5 Secondary Smelting and Alloying of Aluminum Copper Rolling, Drawing, Extruding, and >0.05 to :!!:0.1 >0.1 to :!!:0.2 >1.0 to :!!:2.0 >2.0 Total 0 0 0 2 5 9 2 0 0 6 18 36 15 75 0 0 0 270 117 13 64 0 0 0 2,166 224 13 8 39 0 0 0 508 145 145 9 5 25 0 0 0 328 457 457 27 16 79 0 0 0 1,037 Alloying Smelting - Precious Metals 331492 Secondary Smelting, Refining, and Alloying of Nonferrous Metal (except Copper and Aluminum) Springs 332613 Stamping 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Exposure Level (1Jgfm3) Application Group/ 2573 ER09JA17.022</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2574 VerDate Sep<11>2014 Exposure Level (1Jgfm3) Application Group/ Industry >0.2 to >0.25 to >0.5to :!!:0.25 :!!:0.5 :!!:1.0 3 1 3 2 1 0 1 1 1 Powder Metallurgy Part Manufacturing 1 1 332216 Saw Blade and Handtool Manufacturing 4 332312 Fabricated Structural Metal Manufacturing 332313 PO 00000 Frm 00106 Fmt 4701 Sfmt 4725 E:\FR\FM\09JAR2.SGM 09JAR2 >2.0 Total 3 0 1 24 1 1 0 0 6 0 1 1 0 0 5 0 0 0 0 0 0 3 4 2 0 2 1 0 0 13 61 61 29 6 29 23 0 6 216 Plate Work Manufacturing 25 25 12 2 12 9 0 2 87 332322 Sheet Metal Work Manufacturing 81 81 39 8 39 31 0 8 286 Ornamental and Architectural MetalWork Manufacturing 44 44 21 4 21 17 0 4 154 332439 Jkt 241001 >1.0 to :!!:2.0 332323 ER09JA17.023</GPH> NAICS 0 to :!!:0.0.5 >0.05 to :!!:0.1 >0.1 to :!!:0.2 331110a Iron and Steel Mills and Ferroalloy Manufacturing 7 7 331221 Rolled Steel Shape Manufacturing 2 331513 Steel Foundries (except Investment) 332117 other Metal Container Manufacturing 7 7 3 1 3 3 0 1 24 Welding -Arc and Gas Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Table Vlll-3: Number of Workers Exposed to Beryllium by Affected Industry and Exposure Range (1Jg/m3) (continued) asabaliauskas on DSK3SPTVN1PROD with PROPOSALS VerDate Sep<11>2014 Exposure Level (1Jgfm3) Application Group/ Industry NAICS Jkt 241001 >0.2 to >0.25 to >0.5to :!!:0.25 :!!:0.5 :!!:1.0 2 0 2 0 to :!!:0.0.5 >0.05 to :!!:0.1 >0.1 to :!!:0.2 3 3 >1.0 to :!!:2.0 >2.0 Total 1 0 0 12 332999 All Other Miscellaneous Fabricated Metal Product Manufacturing 44 44 21 4 21 17 0 4 153 333111a Farm Machinery and Equipment Manufacturing 23 23 11 2 11 9 0 2 82 333414a Heating Equipment (except Warm Air Furnaces) Manufacturing 5 5 2 0 2 2 0 0 18 333911 Pump and Pumping Equipment Manufacturing 8 8 4 1 4 3 0 1 27 333922 Conveyor and Conveying Equipment Manufacturing 12 12 5 1 5 4 0 1 41 333924 Industrial Truck, Tractor, Trailer, and Stacker Machinery Manufacturing 5 5 2 0 2 2 0 0 18 PO 00000 332919 Other Metal Valve and Pipe Fitting Manufacturing Frm 00107 Fmt 4701 Sfmt 4725 E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Table Vlll-3: Number of Workers Exposed to Beryllium by Affected Industry and Exposure Range (1Jg/m3) (continued) 2575 ER09JA17.024</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2576 VerDate Sep<11>2014 Application Group/ Jkt 241001 NAICS PO 00000 333999 Exposure Level (1Jgfm3) Industry All Other Miscellaneous General Purpose Machinery Frm 00108 336211 Motor Vehicle Body >0.5to :!!:0.25 :!!:0.5 :!!:1.0 11 2 11 17 8 2 15 15 7 7 7 4 >0.1 to :!!:0.2 >1.0 to :!!:2.0 >2.0 Total 24 24 9 0 2 84 17 8 7 0 2 60 1 7 6 0 1 54 3 1 3 3 0 1 25 4 2 0 2 1 0 0 13 3 3 2 0 2 1 0 0 12 3 3 1 0 1 1 0 0 10 Fmt 4701 Sfmt 4725 Manufacturing Camper Manufacturing 336390a Vehicle Parts Manufacturing E:\FR\FM\09JAR2.SGM >0.25 to >0.05 to :!!:0.1 Manufacturing 336214 Travel Trailer and other Motor 336510a Railroad Rolling Stock Manufacturing 336999 All Other Transportation Equipment 09JAR2 Manufacturing Showcase, 337215 Partition, Shelving, and Locker Manufacturing ER09JA17.025</GPH> >0.2 to 0 to :!!:0.0.5 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Table Vlll-3: Number of Workers Exposed to Beryllium by Affected Industry and Exposure Range (1Jg/m3) (continued) asabaliauskas on DSK3SPTVN1PROD with PROPOSALS VerDate Sep<11>2014 Application Group/ NAICS Jkt 241001 PO 00000 811310 Exposure Level (1Jgfm3) Industry Frm 00109 Fmt 4701 >0.25 to >0.5to :!!:0.25 :!!:0.5 :!!:1.0 Commercial and Industrial Machinery and Equipment (except Automotive and 80 16 80 214 0 0 383 383 0 69 69 53 53 >0.05 to :!!:0.1 >0.1 to :!!:0.2 >1.0 to :!!:2.0 >2.0 Total 167 167 64 0 16 589 214 0 0 0 0 428 0 0 0 0 0 766 0 0 0 0 0 0 138 0 0 0 0 0 0 107 Electronic) Repair and Maintenance Welding - Resistance Welding 333413 Sfmt 4725 E:\FR\FM\09JAR2.SGM >0.2 to 0 to :!!:0.0.5 Industrial and Commercial Fan and Blower and Air Purification Equipment Manufacturing Air-Conditioning and Warm Air Heating 333415 Equipment and Commercial and Industrial 09JAR2 Refrigeration Equipment Manufacturing 335210 335221 Small Electrical Appliance Manufacturing Household Cooking Appliance Manufacturing Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Table Vlll-3: Number of Workers Exposed to Beryllium by Affected Industry and Exposure Range (1Jg/m3) (continued) 2577 ER09JA17.026</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2578 VerDate Sep<11>2014 Exposure Level (1Jgfm3) Application Group/ Industry NAICS Jkt 241001 >0.2 to >0.25 to >0.5to :!!:0.25 :!!:0.5 :!!:1.0 0 0 0 0 to :!!:0.0.5 >0.05 to :!!:0.1 >0.1 to :!!:0.2 16 16 >1.0 to :!!:2.0 >2.0 Total 0 0 0 33 5 5 0 0 0 0 0 0 10 335228 Other Major Household Appliance Manufacturing 20 20 0 0 0 0 0 0 39 336310 Motor Vehicle Gasoline Engine and Engine Parts Manufacturing 463 463 0 0 0 0 0 0 925 336320b Motor Vehicle Electrical and Electronic Equipment Manufacturing 370 370 0 0 0 0 0 0 739 336330 Motor Vehicle Steering and Suspension Components (except Spring) Manufacturing 134 134 0 0 0 0 0 0 267 Motor Vehicle Brake System Manufacturing 106 106 0 0 0 0 0 0 213 Frm 00110 335224 Household Laundry Equipment Manufacturing 336340 PO 00000 335222 Household Refrigerator and Home Freezer Manufacturing Fmt 4701 Sfmt 4725 E:\FR\FM\09JAR2.SGM 09JAR2 ER09JA17.027</GPH> Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Table Vlll-3: Number of Workers Exposed to Beryllium by Affected Industry and Exposure Range (1Jg/m3) (continued) asabaliauskas on DSK3SPTVN1PROD with PROPOSALS VerDate Sep<11>2014 Table Vlll-3: Number of Workers Exposed to Beryllium by Affected Industry and Exposure Range (1Jg/m3) (continued) Industry Jkt 241001 PO 00000 Frm 00111 >0.2 to >0.25 to >0.5to :!!:0.25 :!!:0.5 :!!:1.0 0 0 0 217 0 0 421 421 0 333414b Heating Equipment (except Warm Air Furnaces) Manufacturing 206 206 336390b Other Motor Vehicle Parts Manufacturing 822 Alumina Refining and Primary Aluminum Production NAICS 0 to :!!:0.0.5 >0.05 to :!!:0.1 >0.1 to :!!:0.2 336350 Motor Vehicle Transmission and Power Train Parts Manufacturing 274 274 336360 Motor Vehicle Seating and Interior Trim Manufacturing 217 336370 Motor Vehicle Metal Stamping Fmt 4701 Sfmt 4725 E:\FR\FM\09JAR2.SGM 09JAR2 >1.0 to :!!:2.0 >2.0 Total 0 0 0 548 0 0 0 0 434 0 0 0 0 0 843 0 0 0 0 0 0 412 822 0 0 0 0 0 0 1,644 322 322 77 9 43 34 34 17 859 3,950 3,950 2,633 0 0 0 0 0 10,534 Aluminum Production 331313 Coal Fired Utilities 221112 Fossil Fuel Electric Power Generation w/o Objective Data 311221 Wet Com Milling 127 127 85 0 0 0 0 0 338 311313 Beet Sugar Manufacturing 148 148 99 0 0 0 0 0 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Exposure Level (1Jgfm3) Application Group/ 395 2579 ER09JA17.028</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2580 VerDate Sep<11>2014 Exposure Level (1Jgfm3) Application Group/ Industry NAICS 0 to :!!:0.0.5 >0.05 to :!!:0.1 >0.1 to :!!:0.2 >0.2 to >0.25 to >0.5to :!!:0.25 :!!:0.5 :!!:1.0 >1.0 to :!!:2.0 >2.0 Total Spice and Extract Manufacturing 21 21 14 0 0 0 0 0 56 312120 Breweries 21 21 14 0 0 0 0 0 56 321219 Reconstituted Wood Product Manufacturing 11 11 7 0 0 0 0 0 28 322110 Pulp Mills 11 11 7 0 0 0 0 0 28 322121 Paper (except Newsprint) Mills 116 116 78 0 0 0 0 0 310 322122 Newsprint Mills 254 254 169 0 0 0 0 0 677 322130 Paperboard Mills 169 169 113 0 0 0 0 0 451 Sfmt 4725 325211 Plastics Material and Resin Manufacturing 42 42 28 0 0 0 0 0 113 E:\FR\FM\09JAR2.SGM 325611 Soap and Other Detergent Manufacturing 11 11 7 0 0 0 0 0 28 327310 Cement Manufacturing 21 21 14 0 0 0 0 0 56 333111b Farm Machinery and Equipment Manufacturing 11 11 7 0 0 0 0 0 28 336510b Railroad Rolling Stock Manufacturing 11 11 7 0 0 0 0 0 28 611310 Colleges, Universities, and Professional Schools 95 95 63 0 0 0 0 0 254 Jkt 241001 311942 PO 00000 Frm 00112 Fmt 4701 09JAR2 Abrasive Blasting - Construction ER09JA17.029</GPH> Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Table Vlll-3: Number of Workers Exposed to Beryllium by Affected Industry and Exposure Range (1Jg/m3) (continued) asabaliauskas on DSK3SPTVN1PROD with PROPOSALS VerDate Sep<11>2014 Application Group/ Jkt 241001 NAICS Exposure Level (1Jg/m3) Industry PO 00000 Frm 00113 Fmt 4701 Sfmt 4725 E:\FR\FM\09JAR2.SGM >0.2 to >0.25 to >0.5to :!1:0.25 :!1:0.5 :!1:1.0 1,443 43 216 970 1,337 40 734 734 1,013 7 7 17,222 2,016 0 to :!1:0.0.5 >0.05 to :!1:0.1 >0.1 to :!1:0.2 1,046 1,046 970 Painting and Wall Covering Contractors All other Specialty Trade 238990 Contractors Abrasive Blasting Shipyards*** Ship Building and 336611a Repairing Welding in Shipyards**** Ship Building and 336611b Repairing Total 238320 General Industry Subtotal Construction Subtotal Maritime Subtotal Total, All Industries >1.0 to :!1:2.0 >2.0 Total 82 123 359 4,360 200 76 114 333 4,040 30 152 58 87 252 3,060 4 1 4 3 0 1 26 17,222 7,428 568 2,842 2,445 736 1,798 50,261 2,016 2,781 83 416 159 238 692 8,400 742 742 1,017 31 155 61 87 253 3,086 19,979 19,979 11,225 683 3,413 2,665 1,060 2,742 61,747 Note: Data may not sum to totals due to rounding. Application group Dental Labs- Substituting applies to establishments that substitute beryllium-free material for beryllium and incur costs due to the price differential between beryllium-free alloys and 09JAR2 alloys that contain beryllium plus the cost of additional training to teach dental technicians how to cast the beryllium-free alloys. •• Application group Dental Labs- Non-Substituting are estabishments with exposures below the PEL that continue to use berylium alloys and incur the cost of the ancillary provisions required by the final standard. ... Employers in application group Abrasive Blasting- Shipyards are shipyards employing abrasive blasters that use mineral slag abrasives to etch the surfaces of boats and ships. •••• Employers in application group Welding in Shipyards employ welders in shipyards. Some of these employers may do both welding and abrasive blasting. Sources: US DOL OSHA, Directorate of Standards and Guidance, Office ofTechnological Feasibility. Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Table Vlll-3: Number of Workers Exposed to Beryllium by Affected Industry and Exposure Range (1Jg/m 3) (continued) 2581 ER09JA17.030</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2582 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations D. Technological Feasibility of the Final Standard on Occupational Exposure to Beryllium The OSH Act requires OSHA to demonstrate that a proposed health standard is technologically feasible (29 U.S.C. 655(b)(5)). As described in the preamble to the final rule (see Section II, Pertinent Legal Authority), technological feasibility has been interpreted broadly to mean ‘‘capable of being done’’ (Am. Textile Mfrs. Inst. v. Donovan, 452 U.S. 490, 509–510 (1981) (‘‘Cotton Dust’’)). A standard is technologically feasible if the protective measures it requires already exist, can be brought into existence with available technology, or can be created with technology that can reasonably be expected to be developed, i.e., technology that ‘‘looms on today’s horizon’’ (United Steelworkers of Am., AFL–CIO–CLC v. Marshall, 647 F.2d 1189, 1272 (D.C. Cir. 1980) (‘‘Lead I’’); Amer. Iron & Steel Inst. v. OSHA, 939 F.2d 975, 980 (D.C. Cir. 1991) (‘‘Lead II’’); AFL–CIO v. Brennan, 530 F.2 109, 121 (3rd Cir. 1975)). Courts have also interpreted technological feasibility to mean that, for health standards, a typical firm in each affected industry will reasonably be able to implement engineering and work practice controls that can reduce workers’ exposures to meet the permissible exposure limit in most operations most of the time, without reliance on respiratory protection (see Lead I, 647 F.2d at 1272; Lead II, 939 F.2d at 990). OSHA’s technological feasibility analysis is presented in Chapter IV of the FEA. The technological feasibility analysis identifies the affected industries and application groups in which employees can reasonably be expected to be exposed to beryllium, summarizes the available air sampling data used to develop employee exposure profiles, and provides descriptions of engineering controls and other measures employers can take to reduce their employees’ exposures to beryllium. For each affected industry sector or application group, OSHA provides an assessment of the technological feasibility of compliance with the final permissible exposure limit (PEL) of 0.2 mg/m3 as an 8-hour TWA and a 15minute short-term exposure limit (STEL) of 2.0 mg/m3. The technological feasibility analysis covers twelve application groups that correspond to specific industries or production processes that involve the potential for occupational exposures to materials containing beryllium and that OSHA has determined fall within the scope of this final beryllium standard. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 Within each of these application groups, exposure profiles have been developed to characterize the distribution of the available exposure measurements by job title or group of jobs. Each section includes descriptions of existing, or baseline, engineering controls for operations that generate beryllium exposure. For those job groups in which current exposures were found to exceed the final PEL, OSHA identifies and describes additional engineering and work practice controls that can be implemented to reduce exposure and achieve compliance with the final PEL. For each application group or industry, a final determination is made regarding the technological feasibility of achieving the proposed permissible exposure limits based on the use of engineering and work practice controls and without reliance on the use of respiratory protection. The determination is made based on the legal standard of whether the PEL can be achieved for most operations most of the time using such controls. In a separate chapter on shortterm exposures, OSHA also analyzes the feasibility of achieving compliance with the Short-Term Exposure Limit (STEL). The analysis is based on the best evidence currently available to OSHA, including a comprehensive review of the industrial hygiene literature, National Institute for Occupational Safety and Health (NIOSH) Health Hazard Evaluations and case studies of beryllium exposure, site visits conducted by an OSHA contractor (Eastern Research Group (ERG)), and inspection data from OSHA’s Integrated Management Information System (IMIS) and OSHA’s Information System (OIS). OSHA also obtained information on beryllium production processes, worker exposures, and the effectiveness of existing control measures from Materion Corporation, the primary beryllium producer in the United States, interviews with industry experts, and comments submitted to the rulemaking docket in response to the Notice of Proposed Rulemaking and informal public hearings. All of this evidence is in the rulemaking record. The twelve application groups are: • Primary Beryllium Production, • Beryllium Oxide Ceramics and Composites, • Nonferrous Foundries, • Secondary Smelting, Refining, and Alloying, Including Handling of Scrap and Recycled Materials, • Precision Turned Products, • Copper Rolling, Drawing, and Extruding, • Fabrication of Beryllium Alloy Products, • Welding, PO 00000 Frm 00114 Fmt 4701 Sfmt 4700 • Dental Laboratories, • Abrasive Blasting, • Coal-Fired Electric Power Generation, • Aluminum Production For discussion purposes, the twelve application groups are divided into four general categories based on the distribution of exposures in the exposure profiles: (1) Application groups in which baseline exposures for most jobs are already at or below the final PEL of 0.2 mg/m3; (2) application groups in which baseline exposures for one or more jobs exceed the final PEL of 0.2 mg/m3, but additional controls have been identified that could achieve exposures at or below the final PEL for most of the operations most of the time; (3) application groups in which exposures in one or more jobs routinely exceed the preceding PEL of 2.0 mg/m3, and therefore substantial reductions in exposure would be required to achieve the final PEL; and (4) application groups in which exposure to beryllium occurs due to trace levels of beryllium found in dust or fumes that nonetheless can result in exposures that exceed 0.1 mg/ m3 as an 8-hour TWA under foreseeable conditions. The application groups in category 1, where exposures for most jobs are already at or below the final PEL of 0.2 mg/m3, typically handle beryllium alloys containing a low percentage of beryllium (<2 percent) using processes that do not result in significant airborne exposures. These four application groups are (1) copper rolling, drawing, and extruding; (2) fabrication of beryllium alloy products; (3) welding; and (4) aluminum production. The handling of beryllium alloys in solid form is not expected to result in exposures of concern. For example, beryllium alloys used in copper rolling, drawing, and extruding typically contain 2 percent beryllium by weight or less (Document ID 0081, Attachment 1). One facility noted that the copperberyllium alloys it used contained as little as 0.1 percent beryllium (Document ID 0081, Attachment 1). These processes, such as rolling operations that consist of passing beryllium alloys through a rolling press to conform to a desired thickness, tend to produce less particulate and fume than high energy processes. Exposures can be controlled using containment, exhaust ventilation, and work practices that include rigorous housekeeping. In addition, the heating of metal during welding operations results in the release of fume, but the beryllium in the welding fume accounts for a relatively small percentage of the beryllium exposure. Worker exposure to beryllium E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations during welding activities is largely attributable to flaking oxide scale on the base metal, which can be reduced through chemically stripping or pickling the beryllium alloy piece prior to welding on it, and/or enhancing exhaust ventilation (Corbett, 2006; Kent, 2005; Materion Information Meeting, 2012). For application groups in category 2, where baseline exposures for one or more jobs exceed the final PEL of 0.2 mg/ m 3, but additional controls have been identified that could achieve exposures at or below the final PEL for most of the operations most of the time, workers may encounter higher content beryllium (20 percent or more by weight), or higher temperature processes (Document ID 1662, p. 4.) The application groups in the second category are: (1) Precision turned products and (2) secondary smelting, refining, and alloying. While the median exposures for most jobs in these groups are below the preceding PEL of 2.0 mg/ m3, the median exposures for some jobs in these application groups exceed the final PEL of 0.2 mg/m3 when not adequately controlled. For these application groups, additional exposure controls and work practices will be required to reduce exposures to or below the final PEL for most operations most of the time. For example, personal samples collected at a precision turned products facility that machined pure beryllium metal and high beryllium content materials (40–60 percent) measured exposures on two machinists of 2.9 and 6.6 mg/m3 (ERG Beryllium Site 4, 2003). A second survey at this same facility conducted after an upgrade to the ventilation systems in the mill and lathe departments measured PBZ exposures for these machinists of 1.1 and 2.3 mg/m3 (ERG Beryllium Site 9, 2004), and it was noted that not all ventilation was optimally positioned, indicating that further reduction in exposure could be achieved. In 2007, the company reported that after the installation of enclosures on milling machines and additional exhaust, average exposures to mill and lathe operators were reduced to below 0.2 mg/ m3 (ICBD, 2007). For secondary smelting operations, several surveys conducted at electronic recycling and precious metal recovery operations indicate that exposures for mechanical processing operators can be controlled to or below 0.2 mg/m3. However, for furnace operations in secondary smelting, the median value in the exposure profile exceeds the preceding PEL. Furnace operations involve high temperatures that produce significant amounts of fumes and particulate that VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 can be difficult to contain. Therefore, the reduction of 8-hour average exposures to or below the final PEL may not be achievable for most furnace operations involved with secondary smelting of beryllium alloys. In these cases, the supplemental use of respiratory protection for specific job tasks will be needed to adequately protect furnace workers for operations where exposures are found to exceed 0.2 mg/m3 despite the implementation of all feasible engineering and work practice controls. The application groups in category 3 include application groups for which the exposure profiles indicate that exposures in one or more jobs routinely exceed the preceding PEL of 2.0 mg/m3. The three application groups in this category are: (1) Beryllium production, (2) beryllium oxide ceramics production, and (3) nonferrous foundries. For the job groups in which exposures have been found to routinely exceed the preceding PEL, OSHA identifies additional exposure controls and work practices that the Agency has determined can reduce exposures to or below the final PEL, most of the time. For example, OSHA concluded that exposures to beryllium resulting from material transfer, loading, and spray drying of beryllium oxide powders can be reduced to or below 0.2 mg/m3 with process enclosures, ventilation hoods, and diligent housekeeping for material preparation operators working in beryllium oxide ceramics and composites facilities (FEA, Chapter IV– 04). However, for furnace operations in primary beryllium production and nonferrous foundries, and shakeout operations at nonferrous foundries, OSHA recognizes that even after installation of feasible controls, supplemental use of respiratory protection may be needed to protect workers adequately (FEA, Chapter IV– 03 and IV–05). The evidence in the rulemaking record is insufficient to conclude that these operations would be able to reduce the majority of the exposure to levels below 0.2 mg/m3 most of the time, and therefore some increased supplemental use of respiratory protection may be required for certain tasks in these jobs. Category 4 includes application groups that encounter exposure to beryllium due to trace levels found in dust or fumes that nonetheless can exceed 0.1 mg/m3 as an 8-hour TWA under foreseeable conditions. The application groups in this category are (1) coal-fired power plants in which exposure to beryllium can occur due to trace levels of beryllium in the fly ash during very dusty maintenance PO 00000 Frm 00115 Fmt 4701 Sfmt 4700 2583 operations, such as cleaning the air pollution control devices; (2) aluminum production in which exposure to beryllium can occur due to naturally occurring trace levels of beryllium found in bauxite ores used to make aluminum; and (3) abrasive blasting using coal and copper slag that can contain trace levels of beryllium. Workers who perform abrasive blasting using either coal or copper slag abrasives are potentially exposed to beryllium due to the high total exposure to the blasting media. Due to the very small amounts of beryllium in these materials, the final PEL for beryllium will be exceeded only during operations that generate excessive amount of visible airborne dust, for which engineering controls and respiratory protection are already required. However, the other workers in the general vicinity do not experience these high exposures if proper engineering controls and work practices, such as temporary enclosures and maintaining appropriate distance during the blasting or maintenance activities, are implemented. During the rulemaking process, OSHA requested and received comments regarding the feasibility of the PEL of 0.2 mg/m3, as well as the proposed alternative PEL of 0.1 mg/m3 (80 FR 47565, 47780 (Aug. 7, 2015)). OSHA did this because it recognizes that significant risk of beryllium disease is not eliminated at an exposure level of 0.2 mg/m3. As discussed below, OSHA finds that the proposed PEL of 0.2 mg/ m3 can be achieved through engineering and work practice controls in most operations most of the time in all the affected industry sectors and application groups, and therefore is feasible for these industries and application groups under the OSH Act. OSHA could not find, however, that the proposed alternative PEL of 0.1 mg/m3 is also feasible for all of the affected industry sectors and application groups. The majority of commenters, including stakeholders in labor and industry, public health experts, and the general public, explicitly supported the proposed PEL of 0.2 mg/m3 (NIOSH, Document ID 1671, Attachment 1, p. 2; National Safety Council, 1612, p. 3; Beryllium Health and Safety Committee Task Group, 1655, p. 2; Newport News Shipbuilding, 1657, p. 1; National Jewish Health (NJH), 1664, p. 2; the Aluminum Association, 1666, p. 1; the Boeing Company, 1667, p. 1; American Industrial Hygiene Association, 1686, p. 2; United Steelworkers (USW), 1681, p. 7; Andrew Brown, 1636, p. 6; Department of Defense, 1684, p. 1). In addition, Materion Corporation, the sole E:\FR\FM\09JAR2.SGM 09JAR2 2584 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations primary beryllium production company in the U.S., and USW, jointly submitted a draft proposed rule that included an exposure limit of 0.2 mg/m3 (Document ID 0754, p. 4). In its written comments, Materion explained that it is feasible to control exposure to levels below 0.2 mg/ m3 through the use of engineering controls and work practices in most, but not all, operations: asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Based on many years’ experience in controlling beryllium exposures, its vigorous product stewardship program in affected operations, and the judgment of its professional industrial hygiene staff, Materion Brush believes that the 0.2 mg/m3 PEL for beryllium, based on median exposures, can be achieved in most operations, most of the time. Materion Brush does recognize that it is not feasible to reduce exposures to below the PEL in some operations, and in particular, certain beryllium production operations, solely through the use of engineering and work practice controls (Document ID 1052). On the other hand, the Nonferrous Founders’ Society (NFFS) asserted that OSHA had not demonstrated that the final PEL of 0.2 mg/m3 was feasible for the nonferrous foundry industry (Document ID 1678, pp. 2–3). NFFS asserted that ‘‘OSHA has failed to meet its burden of proof that a ten-fold reduction to the current two micrograms per cubic meter limit is technologically or economically feasible in the nonferrous foundry industry’’ (Document ID 1678, pp. 2–3; 1756, Tr. 18). In written testimony submitted as a hearing exhibit, NFFS claimed that OSHA’s supporting documentation in the PEA had no ‘‘concrete assurance on technologic feasibility either by demonstration or technical documentation’’ (Document ID 1732, Appendix A, p. 4). However, contrary to the NFFS comments, which are addressed at greater length in Section IV–5 of the FEA, OSHA’s exposure profile is based on the best available evidence for nonferrous foundries; the exposure data are taken from NIOSH surveys, an ERG site visit, and the California Cast Metals Association (Document ID 1217; 1185; 0341, Attachment 6; 0899). Materion also submitted substantial amounts of monitoring data, process descriptions and information of engineering controls that have been implemented in its facilities to control beryllium exposure effectively, including operations that involve the production of beryllium alloys using the same types of furnace and casting operations as those conducted at nonferrous foundries producing beryllium alloys (Document ID 0719; 0720; 0723). Furthermore, Materion submitted the above- VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 referenced letter to the docket stating that, based on its many years of experience controlling beryllium exposures, a PEL of 0.2 mg/m3 can be achieved in most operations, most of the time (Document ID 1052). Materion’s letter is consistent with the monitoring data Materion submitted, and OSHA considers its statement regarding feasibility at the final PEL relevant to nonferrous foundries because Materion has similar operations in its facilities, such as beryllium alloy production. As stated in Section IV–5 of the FEA, the size and configuration of nonferrous foundries may vary, but they all use similar processes; they melt and pour molten metal into the prepared molds to produce a casting, and remove excess metal and blemishes from the castings (NIOSH 85–116, 1985). While the design may vary, the basic operations and worker job tasks are similar regardless of whether the casting metal contains beryllium. In the NPRM, OSHA requested that affected industries submit to the record any available exposure monitoring data and comments regarding the effectiveness of currently implemented control measures to inform the Agency’s final feasibility determinations. During the informal public hearings, OSHA asked the NFFS panel to provide information on current engineering controls or the personal protective equipment used in foundries claiming to have difficulty complying with the preceding PEL, but no additional information was provided (Document ID 1756; Tr. 24–25; 1785, p. 1). Thus, the NFFS did not provide any sampling data or other evidence regarding current exposure levels or existing control measures to support its assertion that a PEL of 0.2 mg/m3 is not feasible, and did not show that the data in the record are insufficient to demonstrate technological feasibility for nonferrous foundry industry. In sum, while OSHA agrees that two of the operations in the nonferrous foundry industry, furnace and shakeout operations, employing a relatively small percentage of workers in the industry, may not be able to achieve the final PEL of 0.2 mg/m3 most of the time, evidence in the record indicates that the final PEL is achievable in the other six job categories in this industry. Therefore, in the FEA, OSHA finds the PEL of 0.2 mg/ m3 is technologically feasible for the nonferrous foundry industry. OSHA also recognizes that engineering and work practice controls may not be able to consistently reduce and maintain exposures to the final PEL of 0.2 mg/m3 in some job categories in other application groups, due to the PO 00000 Frm 00116 Fmt 4701 Sfmt 4700 processing of materials containing high concentrations of beryllium, which can result in the generation of substantial amounts of fumes and particulate. For example, the final PEL of 0.2 mg/m3 cannot be achieved most of the time for furnace operations in primary beryllium production and for some furnace operation activities in secondary smelting, refining, and alloying facilities engaged in beryllium recovery and alloying. Workers may need supplementary respiratory protection during these high exposure activities where exposures exceed the final PEL of 0.2 mg/m3 or STEL of 2.0 mg/m3 with engineering and work practice controls. In addition, OSHA has determined that workers who perform open-air abrasive blasting using mineral grit (i.e., coal slag) will routinely be exposed to levels above the final PEL (even after the installation of feasible engineering and work practice controls), and therefore, these workers will also be required to wear respiratory protection. Overall, however, based on the information discussed above and the other evidence in the record and described in Chapter IV of the FEA, OSHA has determined that for the majority of the job groups evaluated exposures are either already at or below the final PEL, or can be adequately controlled to levels below the final PEL through the implementation of additional engineering and work practice controls for most operations most of the time. Therefore, OSHA concludes that the final PEL of 0.2 mg/ m3 is technologically feasible. In contrast, the record evidence does not show that it is feasible for most operations in all affected industries and application groups to achieve the alternative PEL of 0.1 mg/m3 most of the time. As discussed below, although a number of operations can achieve this level, they may be interspersed with operations that cannot, and OSHA sees value in having a uniform PEL that can be enforced consistently for all operations, rather than enforcing different PELs for the same contaminant in different operations. Several commenters supported a PEL of 0.1 mg/m3. Specifically, Public Citizen; the American Federation of Labor and Congress of Industrial Organizations (AFL–CIO); the International Union, United Automobile, Aerospace, and Agriculture Implement Workers of America (UAW); North America’s Building Trades Unions (NABTU); and the American College of Occupational and Environmental Medicine contended that OSHA should adopt this lower level because of the residual risk at 0.2 mg/m3 E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations (Document ID 1689, p. 7; 1693, p. 3; 1670, p. 1; 1679, pp. 6–7; 1685, p. 1; 1756, Tr. 167). Two of these commenters, Public Citizen and the AFL–CIO, also contended that a TWA PEL of 0.1 mg/m3 is feasible (Document ID 1756, Tr. 168–169, 197–198). Neither of those commenters, however, submitted any additional evidence to the record that OSHA could rely on to conclude that a PEL of 0.1 mg/m3 is achievable. On the other hand, the Beryllium Health and Safety Committee and NJH specifically rejected a PEL of 0.1 mg/m3 in their comments. They explained that they believed the proposed PEL of 0.2 mg/m3 and the ancillary provisions would reduce the prevalence of beryllium sensitization and chronic beryllium disease (CBD) and be the best overall combination for protecting workers when taking into consideration the analytical chemistry capabilities and economic considerations (Document ID 1655, p. 16; 1664, p. 2). Based on the record evidence, OSHA cannot conclude that the alternative PEL of 0.1 mg/m3 is achievable most of the time for at least one job category in 8 of the 12 application groups or industries included in this analysis: Primary beryllium production; beryllium oxide ceramics and composites; nonferrous foundries; secondary smelting, refining, and alloying, including handling of scrap and recycled materials; precision turned products; dental laboratories; abrasive blasting; and coal-fired electric power generation. In general, OSHA’s review of the available sampling data indicates that the alternative PEL of 0.1 mg/m3 cannot be consistently achieved with engineering and work practice controls in application groups that use materials containing high percentages of beryllium or that involve processes that result in the generation of substantial amounts of fumes and particulate. Variability in processes and materials for operations involving the heating or machining of beryllium alloys or beryllium oxide ceramics also makes it difficult to conclude that exposures can be routinely reduced to below 0.1 mg/ m3. For example, in the precision turned products industry, OSHA has concluded that exposures for machinists machining pure beryllium or high beryllium alloys can be reduced to or below 0.2 mg/m3, but not 0.1 mg/m3. Additionally, OSHA has determined that job categories that involve highenergy operations will not be able to consistently achieve 0.1 mg/m3 (e.g., abrasive blasting with coal slag in openair). These operations can cause workers to have elevated exposures even when VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 available engineering and work practice controls are used. In other cases, paucity of data or other data issues prevent OSHA from determining whether engineering and work practice controls can reduce exposures to or below 0.1 mg/m3 most of the time (see Chapter IV of the FEA). A large portion of the sample results obtained by OSHA for the dental laboratories industry and for two of the job categories in the coal-fired electric power generation industry (operations workers and routine maintenance workers) were below the reported limit of detection (LOD). Because the LODs for many of these samples were higher than 0.1 mg/m3, OSHA could not assess whether exposures were below 0.1 mg/ m3. For example, studies of dental laboratories showed that use of wellcontrolled ventilation can consistently reduce exposures to below the LOD of 0.2 mg/m3. However, without additional information, OSHA cannot conclude that exposures can be reduced to or below 0.1 mg/m3 most of the time. Therefore, OSHA cannot determine if a PEL of 0.1 mg/m3 would be feasible for the dental laboratory industry. The lack of available data has also prevented OSHA from determining whether exposures at or below of 0.1 mg/m3 can be consistently achieved for machining operators in the beryllium oxide ceramics and composites industry. As discussed in Section IV–4 of the FEA, the exposure profile for dry (green) machining and lapping and plate polishing (two tasks within the machining operator job category) is based on 240 full-shift PBZ samples obtained over a 10-year period (1994 to 2003). The median exposure levels in the exposure profile for green machining and lapping and polishing are 0.16 mg/m3 and 0.29 mg/m3, respectively. While the record indicates that improvements in exposure controls were implemented over time (Frigon, 2005, Document ID 0825; Frigon, 2004 (Document ID 0826)), data showing to what extent exposures have been reduced are not available. Nonetheless, because the median exposures for green machining are already below 0.2 mg/m3, and the median exposures for lapping and polishing are only slightly above the PEL of 0.2 mg/m3, OSHA concluded that the controls that have been implemented are sufficient to reduce exposures to at or below 0.2 mg/m3 most of the time. However, without additional information, OSHA cannot conclude that exposures could be reduced to or below 0.1 mg/m3 most of the time for these tasks. Most importantly for this analysis, the available evidence demonstrates that the PO 00000 Frm 00117 Fmt 4701 Sfmt 4700 2585 alternative PEL of 0.1 mg/m3 is not achievable in five out of the eight job categories in the nonferrous foundries industry: Furnace operator, shakeout operator, pouring operator, material handler, and molder. As noted above, the first two of these job categories, furnace operator and shakeout operator, which together employ only a small fraction of the workers in this industry, cannot achieve the final PEL of 0.2 mg/ m3 either, but evidence in the record demonstrates that nonferrous foundries can reduce the exposures of most of the rest of the workers in the other six job categories to or below the final PEL of 0.2 mg/m3, most of the time. However, OSHA’s feasibility determination for the pouring operator, material handler, and molder job categories, which together employ more than half the workers at these foundries, does not allow the Agency to conclude that exposures for those jobs can be consistently lowered to the alternative PEL of 0.1 mg/m3. See Section IV–5 of the FEA. Thus, OSHA cannot conclude that most operations in the nonferrous foundries industry can achieve a PEL of 0.1 mg/m3, most of the time. Accordingly, OSHA finds that the alternative PEL of 0.1 mg/m3 is not feasible for the nonferrous foundries industry. OSHA has also determined either that information in the rulemaking record demonstrates that 0.1 mg/m3 is not consistently achievable in a number of operations in other affected industries or that the information is insufficient to establish that engineering and work practice controls can consistently reduce exposures to or below 0.1 mg/m3. Therefore, OSHA finds that the proposed alternative PEL of 0.1 mg/m3 is not appropriate, and the rule’s final PEL of 0.2 mg/m3 is the lowest exposure limit that can be found to be technologically feasible through engineering and work practice controls in all of the affected industries and application groups included in this analysis. Because of this inability to achieve 0.1 mg/m3 in many operations, if OSHA were to adopt a PEL of 0.1 mg/m3, a substantial number of employees would be required to wear respirators. As discussed in the Summary and Explanation for paragraph (f), Methods of Compliance, use of respirators in the workplace presents a number of independent safety and health concerns. Workers wearing respirators may experience diminished vision, and respirators can impair the ability of employees to communicate with one another. Respirators can impose physiological burdens on employees due to the weight of the respirator and increased breathing resistance E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2586 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations experienced during operation. The level of physical work effort required, the use of protective clothing, and environmental factors such as temperature extremes and high humidity can interact with respirator use to increase the physiological strain on employees. Inability to cope with this strain as a result of medical conditions such as cardiovascular and respiratory diseases, reduced pulmonary function, neurological or musculoskeletal disorders, impaired sensory function, or psychological conditions can place employees at increased risk of illness, injury, and even death. The widespread, routine use of respirators for extended periods of time that may be required by a PEL of 0.1 mg/m3 creates more significant concerns than the less frequent respirator usage that is required by a PEL of 0.2 mg/m3. Furthermore, OSHA concludes that it would complicate both compliance and enforcement of the rule if it were to set a PEL of 0.1 mg/m3 for some industries or operations and a PEL of 0.2 mg/m3 for the remaining industries and operations where technological feasibility at the lower PEL is either unattainable or unknown. OSHA may exercise discretion to issue a uniform PEL if it determines that the PEL is technologically feasible for all affected industries (if not for all affected operations) and that a uniform PEL would constitute better public policy. See Pertinent Legal Authority (discussing the Chromium decision). In declining to lower the PEL to 0.1 mg/m3 for any segment of the affected industries, OSHA has made that determination here. Therefore, OSHA has determined that the proposed alternative PEL of 0.1 mg/m3 is not appropriate. OSHA also evaluated the technological feasibility of the final STEL of 2.0 mg/m3 and the alternative STEL of 1.0 mg/m3. An analysis of the available short-term exposure measurements presented in Chapter IV, Section 15 of the FEA indicates that elevated exposures can occur during short-term tasks such as those associated with the operation and maintenance of furnaces at primary beryllium production facilities, at nonferrous foundries, and at secondary smelting operations. Peak exposures can VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 also occur during the transfer and handling of beryllium oxide powders. OSHA finds that in many cases, the control of peak short-term exposures associated with these intermittent tasks will be necessary to reduce workers’ TWA exposures to or below the final PEL. The short-term exposure data presented in the FEA show that the majority (79%) of these exposures are already below 2.0 mg/m3. A number of stakeholders submitted comments related to the proposed and alternative STELs. Some of these stakeholders supported a STEL of 2.0 mg/m3. Materion stated that a STEL of 2.0 mg/m3 for controlling the upper range of worker short term exposures is sufficient to prevent CBD (Document ID 1661, p. 3). Other commenters recommended a STEL of 1.0 mg/m3 (Document ID 1661, p. 19; 1681, p. 7). However, no additional engineering controls capable of reducing short term exposures to at or below 1.0 mg/m3 were identified by these commenters. OSHA provides a full discussion of the public comments in the Summary and Explanation section of this preamble. OSHA has determined that the implementation of engineering and work practice controls required to maintain full shift exposures at or below a PEL of 0.2 mg/m3 will reduce short term exposures to 2.0 mg/m3 or below, and that a STEL of 1.0 mg/m3 would require additional respirator use. Furthermore, OSHA notes that the combination of a PEL of 0.2 mg/m3 and a STEL of 2.0 mg/m3 would, in most cases, keep workers from being exposed to 15 minute intervals of 1.0 mg/m3. See Table IV.78 of Chapter IV of the FEA. Therefore, OSHA concludes that the STEL of 2.0 mg/m3 can be achieved for most operations most of the time, given that most short-term exposures are already below 2.0 mg/m3. OSHA recognizes that for a small number of tasks, short-term exposures may exceed the final STEL, even after feasible control measures to reduce TWA exposure to or below the final PEL have been implemented, and therefore, some limited use of respiratory protection will continue to be required for shortterm tasks in which peak exposures cannot be reduced to less than 2.0 mg/ m3 through use of engineering controls. After careful consideration of the record, including all available data and PO 00000 Frm 00118 Fmt 4701 Sfmt 4700 stakeholder comments in the record, OSHA has determined that a STEL of 2.0 mg/m3 is technologically feasible. Thus, as explained in the Summary and Explanation for paragraph (c), OSHA has retained the proposed value of 2.0 mg/m3 as the final STEL. E. Costs of Compliance In Chapter V, Costs of Compliance, OSHA assesses the costs to general industry, maritime, and construction establishments in all affected application groups of reducing worker exposures to beryllium to an eight-hour time-weighted average (TWA) permissible exposure limit (PEL) of 0.2 mg/m3 and to the final short-term exposure limit (STEL) of 2.0 mg/m3, as well as of complying with the final standard’s ancillary provisions. These ancillary provisions encompass the following requirements: Exposure monitoring, regulated areas (and competent person in construction), a written exposure control plan, protective work clothing, hygiene areas and practices, housekeeping, medical surveillance, medical removal, familiarization, and worker training. This final cost assessment is based in part on OSHA’s technological feasibility analysis presented in Chapter IV of the FEA; analyses of the costs of the final standard conducted by OSHA’s contractor, Eastern Research Group (ERG); and the comments submitted to the docket in response to the request for information (RFI) as part of the Small Business Regulatory Enforcement Fairness Act (SBREFA) process, comments submitted to the docket in response to the PEA, comments during the hearings conducted in March 2016, and comments submitted to the docket after the hearings concluded. Table VIII–4 presents summary of the annualized costs. All costs in this chapter are expressed in 2015 dollars and were annualized using a discount rate of 3 percent. (Costs at other discount rates are presented in the chapter itself). Annualization periods for expenditures on equipment are based on equipment life, and one-time costs are annualized over a 10-year period. Chapter V provides detailed explanation of the basis for these cost estimates. E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 2587 Table Vlll-4 Total Annualized Costs, by Sector and Six-Digit NAICS Industry, for Entities Affected by the Final Beryllium Standard; Results Shown by Size Category (3 Percent Discount Rate, 2015 Dollars) Application Small Entities Very Small Entities (SBA-defined) (<20 Employees) $315,959 $117,793 - $232,556 $105,595 - $118,084 $99,209 - $278,998 $199,642 - $697,514 $482,652 - $209,703 $35,369 - $325,494 $218,758 - $232,562 Industry $140,444 - $2,013,397 - - All Establishments Group/ NAICS Beryllium Oxide - Primary 327110a Pottery, Ceramics, and Plumbing Fixture Manufacturing Beryllium Oxide - Secondary Radio and Television Broadcasting and Wireless 334220 Communications Equipment Manufacturing 334310 Audio and Video Equipment Manufacturing Capacitor, Resistor, Coil, Transformer, and Other Inductor 334416 Manufacturing 334419 Other Electronic Component Manufacturing Electromedical and Electrotherapeutic Apparatus 334510 Manufacturing 327110b Pottery, Ceramics, and Plumbing Fixture Manufacturing Motor Vehicle Electrical and Electronic Equipment 336320a Manufacturing Beryllium Production 331410a Nonferrous Metal (except Aluminum) Smelting and Refining Dental Labs - Substituting* 339116a Dental Laboratories $1,253,495 $1,017,075 $631,145 621210a Offices of Dentists $178,968 $168,032 $144,738 Dental Labs - Non-Substituting** 339116b Dental Laboratories $2,167,822 $1,757,907 $1,090,462 621210b Offices of Dentists $309,649 $290,706 $250,457 Copper Rolling, Drawing, Extruding, and Alloying $4,426,834 $2,252,945 $109,260 Precision Turned Product Manufacturing $729,198 $640,150 $137,756 Precision Turned Product Manufacturing $8,049,765 $7,072,180 $1,542,921 Drawing 331420c Machining - High 332721a Machining - Low 332721b Non Sand Foundries 331523 Nonferrous Metal Die-Casting Foundries $3,576,462 $2,153,997 $534,414 331524 Aluminum Foundries (except Die-Casting) $521,441 $419,706 $106,565 331529a Other Nonferrous Metal Foundries (except Die-Casting) $1,323,804 $955,352 $336,613 Copper Rolling, Drawing, Extruding, and Alloying $1,177,254 $599,439 $29,407 Other Nonferrous Metal Foundries (except Die-Casting) $1,802,392 $1,307,125 $468,335 Rolling 331420a asabaliauskas on DSK3SPTVN1PROD with PROPOSALS VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00119 Fmt 4701 Sfmt 4725 E:\FR\FM\09JAR2.SGM 09JAR2 ER09JA17.031</GPH> Sand Foundries 331529b 2588 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Smelting - Beryllium Alloys 331314 Secondary Smelting and Alloying of Aluminum 331420b $41,736 I Copper Rolling, Drawing, Extruding, and Alloying 1 $114,295 $34,100 1 $67,494 $26,479 1 $14,331 Table Vlll-4 Total Annualized Costs, by Sector and Six-Digit NAICS Industry, for Entities Affected by the Final Beryllium Standard; Results Shown by Size Category (3 Percent Discount Rate, 2015 Dollars) (continued) Application Small Entities Very Small Entities (<20 Employees) $527,762 $184,943 $3,702,257 $2,602,479 $666,079 $904,241 $736,071 $177,472 $584,177 $277,415 $74,764 $1,846,653 $1,070,556 $325,146 $67,570 Industry (SBA-defined) $805,282 Group/ $17,445 $6,384 All Establishments NAICS Smelting - Precious Metals Secondary Smelting, Refining, and Alloying of Nonferrous Metal 331492 (except Copper and Aluminum) Springs 332613 Spring Manufacturing Stamping Metal Crown, Closure, and Other Metal Stamping (except 332119 Automotive) Electronic Connector Manufacturing 334417 Motor Vehicle Electrical and Electronic Equipment 336320c Manufacturing Welding - Arc and Gas 331110a Iron and Steel Mills and Ferroalloy Manufacturing 331221 Rolled Steel Shape Manufacturing $19,960 $16,860 $5,201 331513 Steel Foundries (except Investment) $16,788 $9,628 $5,852 332117 Powder Metallurgy Part Manufacturing $12,314 $8,617 $6,564 332216 Saw Blade and Handtool Manufacturing $38,399 $26,832 $8,395 332312 Fabricated Structural Metal Manufacturing $581,440 $394,214 $100,387 332313 Plate Work Manufacturing $233,595 $206,246 $41,748 332322 Sheet Metal Work Manufacturing $769,001 $629,529 $153,221 332323 Ornamental and Architectural Metal Work Manufacturing $415,257 $342,102 $133,212 332439 Other Metal Container Manufacturing $66,574 $38,415 $10,537 332919 Other Metal Valve and Pipe Fitting Manufacturing $35,290 $19,690 $4,906 $412,635 $359,345 $92,112 All Other Miscellaneous Fabricated Metal Product 332999 Manufacturing 333111a Farm Machinery and Equipment Manufacturing $219,739 $119,863 $37,334 333414a Heating Equipment (except Warm Air Furnaces) Manufacturing $50,310 $34,014 $9,120 333911 Pump and Pumping Equipment Manufacturing $75,055 $29,195 $10,276 333922 Conveyor and Conveying Equipment Manufacturing $109,339 $83,855 $14,647 $51,556 $24,921 $8,516 $226,282 $138,069 $39,972 Industrial Truck, Tractor, Trailer, and Stacker Machinery 333924 All Other Miscellaneous General Purpose Machinery 333999 Manufacturing 336211 Motor Vehicle Body Manufacturing $162,264 $104,321 $22,757 336214 Travel Trailer and Camper Manufacturing $145,158 $61,005 $23,374 VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00120 Fmt 4701 Sfmt 4725 E:\FR\FM\09JAR2.SGM 09JAR2 ER09JA17.032</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Manufacturing Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 2589 Table Vlll-4 Total Annualized Costs, by Sector and Six-Digit NAICS Industry, for Entities Affected by the Final Beryllium Standard; Results Shown by Size Category (3 Percent Discount Rate, 2015 Dollars) (continued) Application Small Entities Industry Very Small Entities (SBA-defined) Group/ (<20 Employees) All Establishments NAICS 336390a Other Motor Vehicle Parts Manufacturing $68,384 $33,840 $10,605 336510a Railroad Rolling Stock Manufacturing $36,795 $12,111 $4,009 336999 All Other Transportation Equipment Manufacturing $35,556 $16,540 $9,603 337215 Showcase, Partition, Shelving, and Locker Manufacturing $28,978 $21,921 $6,522 $1,584,633 $932,053 $611,277 $526,305 $256,015 $33,706 $941,303 $328,435 $32,255 Commercial and Industrial Machinery and Equipment (except 811310 Automotive and Electronic) Repair and Maintenance Welding - Resistance Welding Industrial and Commercial Fan and Blower and Air Purification 333413 Equipment Manufacturing Air-Conditioning and Warm Air Heating Equipment and 333415 Commercial and Industrial Refrigeration Equipment Manufacturing 335210 Small Electrical Appliance Manufacturing $170,175 $125,024 $8,227 335221 Household Cooking Appliance Manufacturing $131,328 $60,983 $4,126 335222 Household Refrigerator and Home Freezer Manufacturing $40,241 $7,346 $1,310 335224 Household Laundry Equipment Manufacturing $12,166 $1,369 $1,310 335228 Other Major Household Appliance Manufacturing $48,304 $7,091 $1,310 $1,137,535 $398,286 $57,392 $908,472 $455,773 $39,843 $328,342 $107,290 $8,454 $261,342 $112,290 $5,042 $674,120 $241,333 $16,175 $533,438 $189,394 $12,131 Motor Vehicle Gasoline Engine and Engine Parts 336310 Manufacturing Motor Vehicle Electrical and Electronic Equipment 336320b Manufacturing Motor Vehicle Steering and Suspension Components (except 336330 Spring) Manufacturing 336340 Motor Vehicle Brake System Manufacturing Motor Vehicle Transmission and Power Train Parts 336350 Manufacturing Motor Vehicle Seating and Interior Trim Manufacturing 336360 336370 Motor Vehicle Metal Stamping $1,036,026 $617,330 $25,234 333414b Heating Equipment (except Warm Air Furnaces) Manufacturing $505,883 $332,174 $46,775 336390b Other Motor Vehicle Parts Manufacturing $2,020,751 $953,614 $75,178 $1,448,385 $1,448,385 - Aluminum Production 331313 Alumina Refining and Primary Aluminum Production Coal Fired Utilities $6,174,423 $989,185 $27,884 Wet Corn Milling $198,450 $32,970 - 311313 Beet Sugar Manufacturing $231,570 $42,324 - 311942 Spice and Extract Manufacturing $33,064 $19,954 - 312120 Breweries $33,089 $18,534 - 321219 Reconstituted Wood Product Manufacturing $16,530 $7,274 - VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00121 Fmt 4701 Sfmt 4725 E:\FR\FM\09JAR2.SGM 09JAR2 ER09JA17.033</GPH> Fossil Fuel Electric Power Generation 311221 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 221112 2590 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Table Vlll-4 Total Annualized Costs, by Sector and Six-Digit NAICS Industry, for Entities Affected by the Final Beryllium Standard; Results Shown by Size Category (3 Percent Discount Rate, 2015 Dollars) (continued) Application Small Entities Very Small Entities (SBA-defined) (<20 Employees) $16,553 $2,995 - $182,256 $39,535 - Newsprint Mills $397,171 $173,886 - Paperboard Mills $264,737 $37,754 - Plastics Material and Resin Manufacturing $66,132 $33,457 - 325611 Soap and Other Detergent Manufacturing $16,537 $7,446 - 327310 Cement Manufacturing $33,060 $10,073 - 333111b Farm Machinery and Equipment Manufacturing $16,538 $8,747 - 336510b Railroad Rolling Stock Manufacturing $16,542 $4,748 - 611310 Colleges, Universities, and Professional Schools $149,175 $11,694 - Group/ Industry All Establishments 322110 Pulp Mills 322121 Paper (except Newsprint) Mills 322122 322130 325211 NAICS Abrasive Blasting - Construction 238320 Painting and Wall Covering Contractors $4,416,714 $3,719,871 $2,605,987 238990 All Other Specialty Trade Contractors $4,092,952 $3,147,411 $2,149,166 $3,316,687 $1,063,477 $557,570 $69,071 $20,244 $11,326 General Industry Subtotal $61,972,805 $36,113,291 $8,624,173 Construction Subtotal $8,509,666 $6,867,282 $4,755,152 Maritime Subtotal $3,385,759 $1,083,721 $568,896 Total, All Industries $73,868,230 $44,064,294 $13,948,222 Abrasive Blasting - Shipyards*** 336611a Ship Building and Repairing Welding in Shipyards•••• 336611b Ship Building and Repairing Total Notes: Figures in rows may not add to totals due to rounding. "-" denotes industries where OSHA has preliminarily determined that there are no affected small or very small establishments. Application group Dental Labs- Substituting applies to establishments that substitute beryllium-free material for beryllium and incur costs due to the price differential between beryllium-free alloys and alloys that contain beryllium plus the cost of additional training to teach dental technicians how to cast the beryllium-free alloys. •• Application group Dental Labs - Non-Substituting are estabishments with exposures below the PEL that continue to use berylium alloys and incur the cost of the ancillary provisions required by the final standard. ••• Employers in application group Abrasive Blasting- Shipyards are shipyards employing abrasive blasters that use mineral slag abrasives to etch the surfaces of boats and ships. •••• Employers in application group Welding in Shipyards employ welders in shipyards. Some of these employers may do both welding and abrasive blasting. F. Economic Feasibility and Regulatory Flexibility Determination In Chapter VI, OSHA investigates the economic impacts of its final beryllium rule on affected employers. This impact investigation has two overriding objectives: (1) To establish whether the final rule is economically feasible for all VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 affected application groups/industries,31 31 As noted in the FEA, OSHA uses the umbrella term ‘‘application group’’ to refer either to an industrial sector or to a cross-industry group with a common process. In the industrial profile chapter, because some of the discussion being presented has historically been framed in the context of the economic feasibility for an ‘‘industry,’’ the Agency uses the term ‘‘application group’’ and ‘‘industry’’ interchangeably. PO 00000 Frm 00122 Fmt 4701 Sfmt 4700 and (2) to determine if the Agency can certify that the final rule will not have a significant economic impact on a substantial number of small entities. Table VIII–5 presents OSHA’s screening analysis, which shows costs as percentage of revenues and as a percentage of profits. The chapter explains why these screening analysis E:\FR\FM\09JAR2.SGM 09JAR2 ER09JA17.034</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Source: US DOL, OSHA, Directorate of Standards and Guidance, Office of Regulatory Analysis asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Jkt 241001 NAICS Profits Compliance Costs Per Per As a Percent As a Percent Establishment Establishment of Revenues of Profits Total Affected Total Per Establishments ($1,000) Establishment 655 2 $2,224,322 -- -- -- $157,979 -- -- 830 10 $29,075,882 $35,031 '183 0.72% $250,797 $23,256 0.07% 9.27% Rate Beryllium Oxide- Primary 327110a Pottery, Ceramics, and Plumbing Fixture Manufacturing Beryllium Oxide - Secondary 334220 Radio and Television Broadcasting and Wireless Frm 00123 Communications Equipment Manufacturing 334310 Audio and Video Equipment Manufacturing 463 5 $2,944,276 $6,359,128 -0.24% -$15,180 $23,617 0.37% -155.58% 334416 Capacitor, Resistor, Coil, Transformer, and Other Inductor 418 12 $3,829,332 $9,161,081 3.95% $361,417 $23,250 0.25% 6.43% Fmt 4701 Manufacturing Sfmt 4725 E:\FR\FM\09JAR2.SGM 334419 Other Electronic Component Manufacturing 1,259 30 $11,749,377 $9,332,309 3.95% $368,172 $23,250 0.25% 6.32% 334510 Electromedical and Electrotherapeutic Apparatus Manufacturing 749 9 $29,145,680 $38,912,791 4.74% $1,842,824 $23,300 0.06% 1.26% 327110b Pottery, Ceramics, and Plumbing Fixture Manufacturing 655 14 $2,224,322 $3,395,911 1.57% $53,418 $23,250 0.68% 43.52% 336320a Motor Vehicle Electrical and Electronic Equipment Manufacturing 678 10 $21,336,550 $31,469,837 1.51% $475,965 $23,256 0.07% 4.89% 186 1 $15,853,340 -- -- -- $2,013,397 -- -- Beryllium Production 331410a Nonferrous Metal (except Aluminum) Smelting and Refining Dental Labs - Substituting* 339116a Dental Laboratories 5,114 1,278 $3,604,997 $704,996 7.33% $51,693 $981 0.14% 1.90% 621210a Offices of Dentists 99,830 183 $81,961,314 $821,007 7.24% $59,424 $980 0.12% 1.65% Dental Labs - Non-Substituting** 09JAR2 339116b Dental Laboratories 1,705 426 $1,201,666 $704,996 7.33% $51,693 $5,087 0.72% 9.84% 621210b Offices of Dentists 33,277 61 $27,320,438 $821,007 7.24% $59,424 $5,087 0.62% 8.56% Copper Rolling, Drawing, Extruding, and Alloying 249 45 $24,370,147 $97,872,075 2.08% $2,037,366 $99,439 0.10% 4.88% 3,688 22 $18,818,245 $5,102,561 4.73% $241,533 $33,512 0.66% 13.87% Drawing 331420c Machining - High 332721a Precision Turned Product Manufacturing shows similar results for small and very small entities. PO 00000 Total Establishments Industry Code Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Revenues results can reasonably be viewed as economically feasible. Section VIII.j VerDate Sep<11>2014 TableVIII-5 Screening Analysis for Establishments Affected by the Final Beryllium Standard With Costs Calculated Using a 3 Percent Discount Rate 2591 ER09JA17.035</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2592 VerDate Sep<11>2014 Revenues Jkt 241001 NAICS Total Industry Code Total Affected PO 00000 Establishments Establishments 3,688 347 Total ($1 ,000) Compliance Costs Profits Per Per Per As a Percent As a Percent Establishment Establishment of Revenues of Profits $231,495 $22,015 0.45% 9.51% Rate Establishment Machining- Low 332721b Precision Turned Product Manufacturing $18,036,209 $4,890,512 4.73% Non-Sand Foundries Frm 00124 Fmt 4701 331523 Nonferrous Metal Die-Casting Foundries 434 50 $7,838,073 $18,060,076 4.72% $853,009 $70,398 0.39% 8.25% 331524 Aluminum Foundries (except Die-Casting) 406 7 $2,830,636 $6,972,010 4.72% $329,300 $70,535 1.01% 21.42% 331529a Other Nonferrous Metal Foundries (except Die-Casting) 300 18 $2,412,855 $8,042,850 4.72% $379,878 $70,394 0.88% 18.53% Copper Rolling, Drawing, Extruding, and Alloying 249 11 $23,357,388 $93,804,771 2.08% $1,952,698 $95,071 0.10% 4.87% 300 23 $2,412,855 $8,042,850 4.72% $379,878 $76,605 0.95% 20.17% Rolling 331420a Sand Foundries 331529b Other Nonferrous Metal Foundries (except Die-Casting) Sfmt 4725 Smelting - Beryllium Alloys Secondary Smelting and Alloying of Aluminum 114 1 $5,623,100 $49,325,439 2.47% $1,217,849 $40,853 0.08% 3.35% 331420b Copper Rolling, Drawing, Extruding, and Alloying 249 4 $23,357,388 $93,804,771 2.08% $1,952,698 $27,690 0.03% 1.42% 261 30 $14,552,929 $55,758,349 2.08% $1,160,700 $25,959 0.05% 2.24% 392 296 $3,595,394 $9,171,923 4.73% $434,159 $11,590 0.13% 2.67% 1,499 72 $11,816,815 $7,883,132 3.99% $314,432 $11,597 0.15% 3.69% 234 47 $5,693,396 $24,330,752 3.95% $959,882 $11,591 0.05% 1.21% 678 E:\FR\FM\09JAR2.SGM 331314 148 $20,449,859 $30,162,034 1.51% $456,185 $11,596 0.04% 2.54% Smelting - Precious Metals 331492 Secondary Smelting, Refining, and Alloying of Nonferrous Metal (except Copper and Aluminum) Springs 332613 Spring Manufacturing Stamping 09JAR2 332119 Metal Crown, Closure, and Other Metal Stamping (except Automotive) 334417 Electronic Connector Manufacturing 336320c Motor Vehicle Electrical and Eleclronic Equipment Manufacturing ER09JA17.036</GPH> Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Table Vlll-5, continued Screening Analysis for Establishments Affected by the Final Beryllium Standard With Costs Calculated Using a 3 Percent Discount Rate asabaliauskas on DSK3SPTVN1PROD with PROPOSALS VerDate Sep<11>2014 Revenues Jkt 241001 NAICS Total Total Affected Establishments Establishments Industry Code Total ($1 ,000) Compliance Costs Profits Per Per Per As a Percent As a Percent Establishment Establishment of Revenues of Profits Rate Establishment Welding - Arc and Gas PO 00000 562 6 Rolled Steel Shape Manufacturing 167 2 $113,226,448 $201,470,548 1.24% $2,500,783 $10,496 0.01% 0.42% $5,991 '188 $35,875,377 2.08% $746,804 $12,618 0.04% 1.69% 331513 Steel Foundries (except Investment) 208 332117 Powder Metallurgy Part Manufacturing 133 1 $4,536,694 $21,811,029 4.72% $1,030,173 $13,345 0.06% 1.30% 1 $2,023,839 $15,216,835 3.99% $606,949 $11,887 0.08% Saw Blade and Handtool Manufacturing 1.96% 1,012 3 $7,043,067 $6,959,553 4.20% $292,270 $11,630 0.17% 3.98% 332312 Fabricated Structural Metal Manufacturing 3,099 54 $27,839,554 $8,983,399 2.72% $244,507 $10,768 0.12% 4.40% 332313 Plate Work Manufacturing 1,245 22 $7,461,246 $5,992,968 2.72% $163,115 $10,769 0.18% 6.60% 332322 Sheet Metal Work Manufacturing 4,099 71 $20,892,732 $5,097,031 2.72% $138,729 $10,768 0.21% 7.76% 332323 Ornamental and Architectural Metal Work Manufacturing 2,214 39 $6,058,633 $2,736,510 2.72% $74,481 $10,765 0.39% 14.45% 332439 Other Metal Container Manufacturing 346 6 $3,885,743 $11,230,472 3.04% $341,463 $11,043 0.10% 3.23% 332919 Other Metal Valve and Pipe Fitting Manufacturing 243 3 $5,062,721 $20,834,244 6.09% $1,268,082 $11,767 0.06% 0.93% 332999 All Other Miscellaneous Fabricated Metal Product 3,553 38 $15,415,053 $4,338,602 6.09% $264,070 $10,766 0.25% 4.08% 333111a Farm Machinery and Equipment Manufacturing 1,124 20 $42,075,186 $37,433,440 5.86% $2,193,945 $10,772 0.03% 0.49% 333414a Heating Equipment (except Warm Air Furnaces) 472 4 $5,535,698 $11,728,174 3.21% $376,991 $11,294 0.10% 3.00% 0.93% Sfmt 4725 332216 Fmt 4701 Iron and Steel Mills and Ferroalloy Manufacturing 331221 Frm 00125 331110a E:\FR\FM\09JAR2.SGM Manufacturing Manufacturing 09JAR2 333911 Pump and Pumping Equipment Manufacturing 539 7 $15,903,209 $29,505,027 3.99% $1,176,661 $10,961 0.04% 333922 Conveyor and Conveying Equipment Manufacturing 799 10 $8,945,712 $11,196,135 3.99% $446,502 $10,771 0.10% 2.41% 333924 Industrial Truck, Tractor, Trailer, and Stacker Machinery 360 5 $11,772,772 $32,702,145 3.99% $1,304,162 $11,272 0.03% 0.86% 1,654 21 $15,726,526 $9,508,178 3.99% $379,186 $10,769 0.11% 2.84% 741 15 $11,773,922 $15,889,234 1.51% $240,317 $10,773 0.07% 4.48% Manufacturing 333999 All Other Miscellaneous General Purpose Machinery Manufacturing 336211 Motor Vehicle Body Manufacturing Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Table Vlll-5, continued Screening Analysis for Establishments Affected by the Final Beryllium Standard With Costs Calculated Using a 3 Percent Discount Rate 2593 ER09JA17.037</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2594 VerDate Sep<11>2014 Screening Analysis for Establishments Affected by the Final Beryllium Standard With Costs Calculated Using a 3 Percent Discount Rate Revenues NAICS Jkt 241001 Total Total Affected Establishments Establishments 663 13 $10,544,247 Industry Code Total ($1 ,000) Compliance Costs Profits Per Per Per As a Percent Establishment Establishment of Revenues As a Percent $240,538 $10,771 0.07% 4.48% 1.81% Rate Establishment Frm 00126 Fmt 4701 336390a Other Motor Vehicle Parts Manufacturing 1,508 6 $60,628,177 $40,204,361 1.51% $608,070 $11,028 0.03% 336510a Railroad Rolling Stock Manufacturing 234 3 $17,944,334 $76,685,188 1.51% $1,159,824 $11,708 0.02% 1.01% 336999 All Other Transportation Equipment Manufacturing 397 3 $7,731,109 $19,473,827 4.36% $848,139 $11,749 0.06% 1.39% 337215 PO 00000 Travel Trailer and Camper Manufacturing Showcase, Partition, Shelving, and Locker Manufacturing 1,097 2 $6,809,534 $6,207,415 2.91% $180,835 $12,129 0.20% 6.71% Commercial and Industrial Machinery and Equipment (except 21,347 147 $34,529,038 $1,617,512 2.81% $45,395 $10,763 0.67% 23.71% 491 20 $6,278,849 $12,787,881 3.21% $411,054 $26,798 0.21% 6.52% 878 35 $31 ,852,834 $36,278,855 3.21% $1 '166, 148 $26,802 0.07% 2.30% 811310 $15,903,842 1.51% of Profits 336214 Automotive and Electronic) Repair and Maintenance Welding - Resistance Welding 333413 Industrial and Commercial Fan and Blower and Air Purification Equipment Manufacturing Sfmt 4725 333415 E:\FR\FM\09JAR2.SGM Air-Conditioning and Warm Air Heating Equipment and 335210 Small Electrical Appliance Manufacturing 127 6 $3,560,517 $28,035,564 4.28% $1,200,467 $26,799 0.10% 2.23% 335221 Household Cooking Appliance Manufacturing 98 5 $4,674,297 $47,696,913 4.28% $2,042,354 $26,802 0.06% 1.31% 0.51% Commercial and Industrial Refrigeration Equipment Manufacturing 09JAR2 335222 Household Refrigerator and Home Freezer Manufacturing 30 2 $3,686,247 $122,874,888 4.28% $5,261,431 $26,827 0.02% 335224 Household Laundry Equipment Manufacturing 9 1 $951,577 $105,730,833 4.28% $4,527,333 $12,166 0.01% 0.27% 335228 Other Major Household Appliance Manufacturing 36 2 $4,710,323 $130,842,293 4.28% $5,602,591 $26,836 0.02% 0.48% 336310 Motor Vehicle Gasoline Engine and Engine Parts 849 42 $33,235,797 $39,146,993 1.51% $592,078 $26,797 0.07% 4.53% 336320b Motor Vehicle Electrical and Electronic Equipment 678 34 $21,336,550 $31 ,469,837 1.51% $475,965 $26,799 0.09% 5.63% 245 12 $12,290,261 $50,164,329 1.51% $758,710 $26,803 0.05% 3.53% 195 10 $10,467,412 $53,679,036 1.51% $811,868 $26,804 0.05% 3.30% Manufacturing Manufacturing 336330 Motor Vehicle Steering and Suspension Components (except Spring) Manufacturing 336340 ER09JA17.038</GPH> Motor Vehicle Brake System Manufacturing Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Table Vlll-5, continued asabaliauskas on DSK3SPTVN1PROD with PROPOSALS VerDate Sep<11>2014 Revenues Jkt 241001 NAICS Industry Code 336350 Total Total Affected Total ($1 ,000) Establishment Per Rate Establishments Motor Vehicle Transmission and Power Train Parts Compliance Costs Profits Per Establishments 503 25 $35,792,318 $71,157,690 1.51% Per As a Percent Establishment Establishment of Revenues $1,076,224 $26,804 0.04% As a Percent of Profits 2.49% PO 00000 Manufacturing Frm 00127 Fmt 4701 336360 Motor Vehicle Seating and Interior Trim Manufacturing 398 20 $23,631,348 $59,375,247 1.51% $898,020 $26,806 0.05% 2.98% 336370 Motor Vehicle Metal Stamping 773 39 $32,802,040 $42,434,722 1.51% $641,804 $26,805 0.06% 4.18% 333414b Heating Equipment (except Warm Air Furnaces) 472 19 $5,535,698 $11,728,174 3.21% $376,991 $26,795 0.23% 7.11% 1,508 75 $60,628,177 $40,204,361 1.51% $608,070 $26,800 0.07% 4.41% 8 6 $370,719 $46,339,915 2.47% $1,144,136 $224,939 0.49% 19.66% Manufacturing 336390b Other Motor Vehicle Parts Manufacturing Aluminum Production 331313 Alumina Refining and Primary Aluminum Production Coal Fired Utilities Sfmt 4725 221112 Fossil Fuel Electric Power Generation 2,716 418 $167,481,521 $123,329,544 0.90% $553,734 $29,543 0.02% 5.34% 311221 Wet Corn Milling 63 12 $12,894,946 $204,681,680 4.62% $9,466,006 $16,537 0.01% 0.17% 0.13% E:\FR\FM\09JAR2.SGM 311313 Beet Sugar Manufacturing 31 14 $4,822,174 $155,553,993 8.23% $12,796,838 $16,541 0.01% 311942 Spice and Extract Manufacturing 383 2 $9,644,849 $25,182,374 4.61% $1,159,747 $16,532 0.07% 1.43% 312120 Breweries 880 2 $29,912,097 $33,991,019 10.78% $3,665,509 $16,544 0.05% 0.45% 321219 Reconstituted Wood Product Manufacturing 219 1 $6,708,744 $30,633,533 1.37% $420,171 $16,530 0.05% 3.93% 0.71% Pulp Mills 42 1 $6,842,997 $162,928,496 1.43% $2,328,331 $16,553 0.01% 322121 Paper (except Newsprint) Mills 209 11 $45,144,793 $216,003,795 1.43% $3,086,804 $16,569 0.01% 0.54% 322122 Newsprint Mills 20 24 $3,218,103 $160,905,142 1.43% $2,299,416 $16,549 0.01% 0.72% 322130 Paperboard Mills 177 16 $29,706,665 $167,834,268 1.43% $2,398,437 $16,546 0.01% 0.69% 325211 Plastics Material and Resin Manufacturing 1,161 4 $97,687,597 $84,140,910 5.94% $4,998,379 $16,533 0.02% 0.33% 325611 Soap and Other Detergent Manufacturing 664 1 $28,371,519 $42,728,192 12.34% $5,274,306 $16,537 0.04% 0.31% 327310 Cement Manufacturing 240 2 $6,246,422 $26,026,757 1.47% $382,683 $16,530 0.06% 4.32% 333111b 09JAR2 322110 Farm Machinery and Equipment Manufacturing 1,124 1 $42,075,186 $37,433,440 5.86% $2,193,945 $16,538 0.04% 0.75% Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Table Vlll-5, continued Screening Analysis for Establishments Affected by the Final Beryllium Standard With Costs Calculated Using a 3 Percent Discount Rate 2595 ER09JA17.039</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2596 Revenues Jkt 241001 NAICS Total Affected Establishmen1s Establishmen1s Industry Code 33651 Db Total Compliance Costs Per Per As a Percent As a Percent Establishment Establishment of Revenues of Proli1s Rate Establishment Frm 00128 Fmt 4701 Sfmt 4700 234 1 $17,944,334 $76,685,188 1.51% $1,159,824 $16,542 0.02% 1.43% 4,329 9 $232,517,218 $53,711,531 6.07% $3,259,004 $16,575 0.03% 0.51% 31,376 1,090 $19,595,278 $624,531 3.47% $21,663 $4,052 0.65% 18.71% 29,072 1,010 $39,396,242 $1,355,127 3.47% $46,957 $4,052 0.30% 8.63% 689 689 $26,136,187 $37,933,508 6.13% $2,324,545 $4,814 0.01% 0.21% 689 7 $26,136,187 $37,933,508 6.13% $2,324,545 $10,467 0.03% 0.45% General Industry Subtotal 226,165 4,538 $1,931,626,954 $8,540,786 3.55% $303,168 $13,657 0.16% 4.50% Construction Subtotal 60,448 2,100 $58,991,519 $975,905 3.47% $33,828 $4,052 0.42% 11.98% 611310 Abrasive Blasting - Construction 09JAR2 as in the PEA. OSHA did not receive many comments challenging any aspect E:\FR\FM\09JAR2.SGM beryllium rule. The methodology for these estimates largely remains the same PO 00000 IRailroad Rolling Stock Manufacturing IColleges, Universities, and Professional Schools Total ($1 ,000) Profits Per ER09JA17.040</GPH> 238320 238990 IPainting and Wall Covering Contractors IAll Other Specialty Trade Contractors Abrasive Blasting - Shipyards*336611a IShip Building and Repairing Welding- Shipyards**** 336611b IShip Building and Repairing Total Maritime Subtotal 1,378 696 $52,272,373 $37,933,508 6.13% $2,324,545 $4,867 0.01% 0.21% Total, All Industries 287,991 7,333 $2,042,890,847 $7,617,412 3.61% $2,661,541 $10,073 0.02% 0.38% Notes: Figures in rows may not add to totals due to rounding. "--" indicates areas where data are not available. (While the average revenues and implied profits for the Beryllium Production (NAICS 32711 Oa) and Beryllium Oxide (NAICS 33141 Oa) industries can be calculated, they would in no way reflect the actual revenues and profits of the affected facilities. Application group Dental Labs- Substituting applies to establishments that substitute beryllium-free material for beryllium and incur costs due to the price differential between beryllium-free alloys and alloys that contain beryllium plus the cost of additional training to teach dental technicians how to cast the beryllium-free alloys. Application group Dental Labs- Non-Substituting are estabishments with exposures below the PEL that continue to use berylium alloys and incur the cost of the ancillary provisions required by the final standard. Employers in application group Abrasive Blasting- Shipyards are shipyards employing abrasive blasters that use mineral slag abrasives to etch the surfaces of boats and ships. **** Employers in application group Welding in Shipyards employ welders in shipyards. Some of these employers may do both welding and abrasive blasting. Source: US DOL, OSHA, Directorate of Standards and Guidance, Office of Regulatory Analysis Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 In Chapter VII, OSHA estimates the benefits and net benefits of the final VerDate Sep<11>2014 Table Vlll-5, continued Screening Analysis for Establishmen1s Affected by the Final Beryllium Standard With Cos1s Celculatad Using a 3 Percent Discount Rata Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations PEL is adopted, but uses the results from the first step to estimate what would happen under a realistic scenario in which new employees will not be exposed above the final PEL, while employees already at work will experience a combination of exposures below the final PEL and baseline exposures that exceed the final PEL over their working lifetime. The comparison of these steps is given in Table VIII–6. OSHA also presents in Chapter VII similar kinds of results for a variety of other risk assessment and population models. various interest rates and monetization values. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00129 Fmt 4701 Sfmt 4700 E:\FR\FM\09JAR2.SGM 09JAR2 ER09JA17.041</GPH> proposed rule, coverage of these latter industries was only presented as an alternative and therefore were not included in the benefits in the PEA, but they are covered by the final rule. This chapter proceeds in five steps. The first step estimates the numbers of diseases and deaths prevented by comparing the current (baseline) situation to a world in which the final PEL is adopted in a final standard, and in which employees are exposed throughout their working lives to either the baseline or the final PEL. The second step also assumes that the final The third step covers the monetization of benefits. Table VIII–7 presents the monetization of benefits at asabaliauskas on DSK3SPTVN1PROD with PROPOSALS of the benefits analysis presented in the PEA. There are, however, a few significant alterations, such as: Using an empirical turnover rate as part of the estimation of exposure response functions, full analysis of the population model with varying turnover (a model only briefly presented in the PEA), and presentation of a statistical proportional hazard model in response to comment. The other large change to the benefits analysis is the result of the increase in the scope of the rule to protect workers in the construction and ship-building industries. In the 2597 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS In the fourth step, OSHA estimates the net benefits of the final rule by comparing the monetized benefits to the costs presented in Chapter V of the FEA. These values are presented in Table VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 VIII–8. The table shows that benefits exceed costs for all situations except for the low estimate of benefits using a 7 percent discount rate. The low estimate of benefits reflects the assumption that PO 00000 Frm 00130 Fmt 4701 Sfmt 4700 the ancillary provisions have no independent effect in reducing cases of CBD. OSHA considers this assumption to be very unlikely, based on the available evidence. E:\FR\FM\09JAR2.SGM 09JAR2 ER09JA17.042</GPH> 2598 In the fifth step, OSHA provides a sensitivity analysis to explore the robustness of the estimates of net benefits with respect to many of the assumptions made in developing and applying the underlying models. This is done because the models underlying each step inevitably need to make a variety of assumptions based on limited data. OSHA invited comments on each aspect of the data and methods used in this chapter, and received none specifically on the sensitivity analysis. Because dental laboratories constituted a significant source of both costs and benefits to the proposal, the PEA indicated that OSHA was particularly interested in comments regarding the appropriateness of the model, assumptions, and data for estimating the benefits to workers in that industry. Although the Agency did not receive any comments on this question directly, the American Dental Association’s comments relevant to the underlying use of beryllium alloys in dental labs are addressed in Chapter III of the FEA. The Agency has not altered its main estimates of the exposure profile for dental laboratory workers, but provides sensitivity analyses in the FEA to examine the outcome if a lower VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 percentage of dental laboratories were to substitute materials that do not contain beryllium for beryllium-containing materials. OSHA also estimates net benefits with a variety of scenarios in which dental laboratories are not included. All of these results are presented in Chapter VII of the FEA. H. Regulatory Alternatives Chapter VIII presents the costs, benefits and net benefits of a variety of regulatory alternatives. I. Final Regulatory Flexibility Analysis The Regulatory Flexibility Act, (RFA), Public Law 96–354, 94 Stat. 1164 (codified at 5 U.S.C. 601), requires Federal agencies to consider the economic impact that a final rulemaking will have on small entities. The RFA states that whenever an agency promulgates a final rule that is required to conform to the notice-and-comment rulemaking requirements of section 553 of the Administrative Procedure Act (APA), the agency shall prepare a final regulatory flexibility analysis (FRFA). 5 U.S.C. 604(a). However, 5 U.S.C. 605(b) of the RFA states that Section 604 shall not apply to any final rule if the head of the agency certifies that the rule will not, if PO 00000 Frm 00131 Fmt 4701 Sfmt 4700 2599 promulgated, have a significant economic impact on a substantial number of small entities. As discussed in Chapter VI of the FEA, OSHA was unable to so certify for the final beryllium rule. For OSHA rulemakings, as required by 5 U.S.C. 604(a), the FRFA must contain: 1. A statement of the need for, and objectives of, the rule; 2. a statement of the significant issues raised by the public comments in response to the initial regulatory flexibility analysis, a statement of the assessment of the agency of such issues, and a statement of any changes made in the proposed rule as a result of such comments; 3. the response of the agency to any comments filed by the Chief Counsel for Advocacy of the Small Business Administration (SBA) in response to the proposed rule, and a detailed statement of any change made to the proposed rule in the final rule as a result of the comments; 4. a description of and an estimate of the number of small entities to which the rule will apply or an explanation of why no such estimate is available; 5. a description of the projected reporting, recordkeeping and other E:\FR\FM\09JAR2.SGM 09JAR2 ER09JA17.043</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 2600 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS compliance requirements of the rule, including an estimate of the classes of small entities which will be subject to the requirement and the type of professional skills necessary for preparation of the report or record; 6. a description of the steps the agency has taken to minimize the significant economic impact on small entities consistent with the stated objectives of applicable statutes, including a statement of the factual, policy, and legal reasons for selecting the alternative adopted in the final rule and why each one of the other significant alternatives to the rule considered by the agency which affect the impact on small entities was rejected; and for a covered agency, as defined in section 609(d)(2), a description of the steps the agency has taken to minimize any additional cost of credit for small entities. The Regulatory Flexibility Act further states that the required elements of the FRFA may be performed in conjunction with or as part of any other agenda or analysis required by any other law if such other analysis satisfies the provisions of the FRFA. 5 U.S.C. 605(a). In addition to these elements, OSHA also includes in this section the recommendations from the Small Business Advocacy Review (SBAR) Panel and OSHA’s responses to those recommendations. While a full understanding of OSHA’s analysis and conclusions with respect to costs and economic impacts on small entities requires a reading of the complete FEA and its supporting materials, this FRFA will summarize the key aspects of OSHA’s analysis as they affect small entities. • The Need for, and Objective of, the Rule The objective of the final beryllium standard is to reduce the number of fatalities and illnesses occurring among employees exposed to beryllium. This objective will be achieved by requiring employers to install engineering controls where appropriate and to provide employees with the equipment, respirators, training, medical surveillance, and other protective measures necessary to perform their jobs safely. The legal basis for the rule is the responsibility given the U.S. Department of Labor through the Occupational Safety and Health Act of 1970 (OSH Act). The OSH Act provides that, in promulgating health standards dealing with toxic materials or harmful physical agents, the Secretary ‘‘shall set the standard which most adequately assures, to the extent feasible, on the basis of the best available evidence, that VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 no employee will suffer material impairment of health or functional capacity even if such employee has regular exposure to the hazard dealt with by such standard for the period of his working life.’’ 29 U.S.C. 655(b)(5). See Section II of the preamble for a more detailed discussion. Chronic beryllium disease (CBD) is a hypersensitivity, or allergic reaction, to beryllium that leads to a chronic inflammatory disease of the lungs. It takes months to years after final beryllium exposure before signs and symptoms of CBD occur. Removing an employee with CBD from the beryllium source does not always lead to recovery. In some cases CBD continues to progress following removal from beryllium exposure. CBD is not a chemical pneumonitis but an immune-mediated granulomatous lung disease. OSHA’s final risk assessment, presented in Section VI of the preamble, indicates that there is significant risk of beryllium sensitization and chronic beryllium disease from a 45-year (working life) exposure to beryllium at the current TWA PEL of 2 mg/m3. The risk assessment further indicates that there is significant risk of lung cancer to workers exposed to beryllium at the current TWA PEL of 2 mg/m3. The final standard, with a lower PEL of 0.2 mg/m3, will help to address these health concerns. See the Health Effects and Risk Assessment sections of the preamble for further discussion. • Summary of Significant Issues Raised by Comments on the Initial Regulatory Flexibility Analysis (IRFA) and OSHA’s Assessment of, and Response to, Those Issues This section of the FRFA focuses only on public comments concerning significant issues raised on the Initial Regulatory Flexibility Analysis (IRFA). OSHA received only one such comment. The Non-Ferrous Founders’ Society claimed that the costs of the rule will disproportionately affect small employers and result in job losses to foreign competition (Document ID 1678, p. 3). This comment is addressed in the FEA in the section on International Trade Effects in Chapter VI: Economic Feasibility Analysis and Regulatory Flexibility Determination. The summary of OSHA’s response is that, in general, metalcasters in the U.S. have shortened lead times, improved productivity through computer design and logistics management, expanded design and development services to customers, and provided a higher quality product than foundries in China and other nations where labor costs are low (Document ID 1780, p. 3–12). All of these measures, PO 00000 Frm 00132 Fmt 4701 Sfmt 4700 particularly the higher quality of many U.S. metalcasting products and the ability of domestic foundries to fulfill orders quickly, are substantial advantages for U.S. metalcasters that may outweigh the very modest price increases that might occur due to the final rule. For a more detailed response please see the section on International Trade Effects in Chapter VI of the FEA. Response to Comments by the Chief Counsel for Advocacy of the Small Business Administration and OSHA’S Response to Those Comments The Chief Counsel for Advocacy of the Small Business Administration (‘‘Advocacy’’) did not provide OSHA with comments on this rule. • A Description of, and an Estimate of, the Number of Small Entities To Which the Rule Will Apply OSHA has analyzed the impacts associated with this final rule, including the type and number of small entities to which the standard will apply. In order to determine the number of small entities potentially affected by this rulemaking, OSHA used the definitions of small entities developed by the Small Business Administration (SBA) for each industry. OSHA estimates that approximately 6.600 small business entities would be affected by the beryllium standard. Within these small entities, 33,800 workers are exposed to beryllium and would be protected by this final standard. A breakdown, by industry, of the number of affected small entities is provided in Table III–14 in Chapter III of the FEA. OSHA estimates that approximately 5,280 very small entities—those with fewer than 20 employees—would be affected by the beryllium standard. Within these very small entities, 11,800 workers are exposed to beryllium and would be protected by the standard. A breakdown, by industry, of the number of affected very small entities is provided in Table III–15 in Chapter III of the FEA. A Description of the Projected Reporting, Recordkeeping, and Other Compliance Requirements of the Rule Tables VIII–9 and VIII–10 show the average costs of the beryllium standard and the costs of compliance as a percentage of profits and revenues by NAICS code for, respectively, small entities (classified as small by SBA) and very small entities (those with fewer than 20 employees). The full derivation of these costs is presented in Chapter V. The cost for SBA-defined small entities ranges from a low of $832 per entity for E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS entities in NAICS 339116a: Dental Laboratories, to a high of about $599,836 for NAICS 331313: Alumina Refining and Primary Aluminum Production. The annualized cost for very small entities ranges from a low of $542 for entities in NAICS 339116a: Dental VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 Laboratories, to a high of about $34,222 for entities in NAICS 331529b: Other Nonferrous Metal Foundries (except Die-Casting).32 32 The cost of $542 for NAICS 339116a is the sum of a $524 cost to substitute for a non-hazard PO 00000 Frm 00133 Fmt 4701 Sfmt 4700 2601 material and $19 for cost of ancillary provisions. The total cost of $34,222 for NAICS 331529b is the sum of $22,601 for engineering controls, $186 for respirator costs, and $11,435 for ancillary provisions. E:\FR\FM\09JAR2.SGM 09JAR2 2602 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Table Vlll-9: Average Costs and Impacts for SBA-Defined Small Entities Affected by the Final Beryllium Standard With Costs Calculated Using a 3 Percent Discount Rate Cost Per Cost to Cost to Entity Application Revenue Profit Industry Group/ NAICS Beryllium Oxide - Primary $118,743 Pottery, Ceramics, and Plumbing Fixture Manufacturing -- -- $12,538 327110a 0.1% 18.1% Beryllium Oxide - Secondary Radio and Television Broadcasting and Wireless Communications Equipment 334220 Manufacturing 334310 Audio and Video Equipment Manufacturing $20,325 0.4% -173.4% 334416 Capacitor, Resistor, Coil, Transformer, and Other Inductor Manufacturing $19,317 0.3% 8.3% 334419 Other Electronic Component Manufacturing $18,331 0.3% 7.8% 334510 Electromedical and Electrotherapeutic Apparatus Manufacturing $7,414 0.5% 10.3% 327110b Pottery, Ceramics, and Plumbing Fixture Manufacturing $16,508 1.0% 63.6% 336320a Motor Vehicle Electrical and Electronic Equipment Manufacturing $16,333 0.1% 7.1% $0 -- -- Beryllium Production 331410a Nonferrous Metal (except Aluminum) Smelting and Refining Dental Labs Substituting* 339116a Dental Laboratories $832 0.2% 2.1% 621210a Offices of Dentists $981 0.1% 1.7% Dental Labs - Non-Substituting** 339116b Dental Laboratories $4,315 0.8% 11.0% 621210b Offices of Dentists $5,090 0.6% 8.6% Copper Rolling, Drawing, Extruding, and Alloying $79,253 0.1% 6.9% Precision Turned Product Manufacturing $30,658 0.7% 14.5% Precision Turned Product Manufacturing $21,237 0.5% 10.0% Drawing 331420c Machining - High 332721a Machining - Low 332721b Non-Sand Foundries 331523 Nonferrous Metal Die-Casting Foundries $52,387 0.6% 12.1% 331524 Aluminum Foundries (except Die-Casting) $63,675 1.3% 27.1% 331529a Other Nonferrous Metal Foundries (except Die-Casting) $56,187 1.0% 21.8% Copper Rolling, Drawing, Extruding, and Alloying $82,941 0.1% 7.2% Other Nonferrous Metal Foundries (except Die-Casting) $61,501 1.1% 23.8% Rolling 331420a Sand Foundries 331529b Smelting - Beryllium Alloys Secondary Smelting and Alloying of Aluminum $36,757 0.1% 5.0% 331420b Copper Rolling, Drawing, Extruding, and Alloying $26,425 0.0% 2.3% $22,398 0.0% 2.2% Smelting - Precious Metals Secondary Smelting, Refining, and Alloying of Nonferrous Metal (except Copper and 331492 Aluminum) VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00134 Fmt 4701 Sfmt 4725 E:\FR\FM\09JAR2.SGM 09JAR2 ER09JA17.044</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 331314 2603 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Table Vlll-9: Average Costs and Impacts for SBA-Defined Small Entities Affected by the Final Beryllium Standard With Costs Calculated Using a 3 Percent Discount Rate, Continued Cost Per Industry Cost to Cost to Entity Application Group/ NAICS Revenue Profit Springs 332613 Spring Manufacturing $10,777 0.2% 3.4% 332119 Metal Crown, Closure, and Other Metal Stamping (except Automotive) $11,131 0.2% 4.4% 334417 Electronic Connector Manufacturing $7,926 0.1% 1.5% 336320c Motor Vehicle Electrical and Electronic Equipment Manufacturing $8,419 0.1% 3.7% $4,380 0.0% 0.6% Stamping Welding - Arc and Gas 331110a Iron and Steel Mills and Ferroalloy Manufacturing 331221 Rolled Steel Shape Manufacturing $13,662 0.0% 1.8% 331513 Steel Foundries (except Investment) $9,473 0.1% 1.9% 332117 Powder Metallurgy Part Manufacturing $8,783 0.1% 2.4% 332216 Saw Blade and Handtool Manufacturing $9,018 0.2% 5.5% 332312 Fabricated Structural Metal Manufacturing $8,243 0.1% 5.1% 332313 Plate Work Manufacturing $9,998 0.2% 7.1% 332322 Sheet Metal Work Manufacturing $9,650 0.2% 8.9% 332323 Ornamental and Architectural Metal Work Manufacturing $9,132 0.4% 15.7% 332439 Other Metal Container Manufacturing $7,874 0.1% 4.5% 332919 Other Metal Valve and Pipe Fitting Manufacturing $8,224 0.1% 1.1% 332999 All Other Miscellaneous Fabricated Metal Product Manufacturing $9,726 0.3% 4.4% 333111a Farm Machinery and Equipment Manufacturing $6,431 0.1% 1.1% 333414a Heating Equipment (except Warm Air Furnaces) Manufacturing $8,622 0.1% 3.4% 333911 Pump and Pumping Equipment Manufacturing $5,759 0.1% 1.3% 333922 Conveyor and Conveying Equipment Manufacturing $9,180 0.1% 2.7% 333924 Industrial Truck, Tractor, Trailer, and Stacker Machinery Manufacturing $6,208 0.1% 1.5% 333999 All Other Miscellaneous General Purpose Machinery Manufacturing $7,212 0.1% 3.6% 336211 Motor Vehicle Body Manufacturing $8,159 0.1% 5.1% 336214 Travel Trailer and Camper Manufacturing $5,388 0.1% 5.7% 336390a Other Motor Vehicle Parts Manufacturing $6,784 0.0% 2.3% 336510a Railroad Rolling Stock Manufacturing $6,219 0.0% 1.9% 336999 All Other Transportation Equipment Manufacturing $5,817 0.1% 3.1% Showcase, Partition, Shelving, and Locker Manufacturing $9,887 0.2% 7.4% $7,050 0.7% 25.1% $16,755 0.2% 7.2% $11,917 0.1% 2.9% 337215 Commercial and Industrial Machinery and Equipment (except Automotive and 811310 Electronic) Repair and Maintenance Welding - Resistance Welding Industrial and Commercial Fan and Blower and Air Purification Equipment 333413 Manufacturing Air-Conditioning and Warm Air Heating Equipment and Commercial and Industrial 333415 335210 Small Electrical Appliance Manufacturing $21,934 0.1% 2.9% 335221 Household Cooking Appliance Manufacturing $13,257 0.1% 1.5% 335222 Household Refrigerator and Home Freezer Manufacturing $7,733 0.0% 0.5% VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00135 Fmt 4701 Sfmt 4725 E:\FR\FM\09JAR2.SGM 09JAR2 ER09JA17.045</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Refrigeration Equipment Manufacturing 2604 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Table Vlll-9: Average Costs and Impacts for SBA-Defined Small Entities Affected by the Final Beryllium Standard With Costs Calculated Using a 3 Percent Discount Rate, Continued Application Cost Per Cost to Cost to Entity Revenue Profit Industry Group/ NAICS 335224 Household Laundry Equipment Manufacturing $1,369 0.0% 0.6% 335228 Other Major Household Appliance Manufacturing $6,753 0.0% 0.7% 336310 Motor Vehicle Gasoline Engine and Engine Parts Manufacturing $10,707 0.1% 8.5% 336320b Motor Vehicle Electrical and Electronic Equipment Manufacturing $15,635 0.1% 6.8% 336330 Motor Vehicle Steering and Suspension Components (except Spring) Manufacturing $11,414 0.1% 3.4% 336340 Motor Vehicle Brake System Manufacturing $16,760 0.1% 4.5% 336350 Motor Vehicle Transmission and Power Train Parts Manufacturing $12,376 0.1% 3.6% 336360 Motor Vehicle Seating and Interior Trim Manufacturing $13,577 0.1% 4.3% 336370 Motor Vehicle Metal Stamping $20,274 0.1% 5.4% 333414b Heating Equipment (except Warm Air Furnaces) Manufacturing $19,867 0.2% 7.7% 336390b Other Motor Vehicle Parts Manufacturing $15,723 0.1% 5.3% $599,836 0.5% 19.7% $41,467 0.0% 3.8% $6,657 0.0% 0.3% Aluminum Production 331313 Alumina Refining and Primary Aluminum Production Coal Fired Utilities 221112 Fossil Fuel Electric Power Generation 311221 Wet Corn Milling 311313 Beet Sugar Manufacturing $10,413 0.0% 0.1% 311942 Spice and Extract Manufacturing $12,092 0.1% 1.9% 312120 Breweries $9,720 0.2% 1.5% 321219 Reconstituted Wood Product Manufacturing $8,314 0.0% 3.4% 322110 Pulp Mills $3,137 0.0% 0.5% 322121 Paper (except Newsprint) Mills $7,437 0.0% 0.8% $11,147 0.0% 0.7% $7,201 0.0% 1.0% $11,843 0.0% 0.6% $7,622 0.1% 0.9% 322122 Newsprint Mills 322130 Paperboard Mills 325211 Plastics Material and Resin Manufacturing 325611 Soap and Other Detergent Manufacturing 327310 Cement Manufacturing $11,512 0.1% 4.9% 333111b Farm Machinery and Equipment Manufacturing $9,096 0.1% 1.5% 336510b Railroad Rolling Stock Manufacturing $5,305 0.0% 1.6% 611310 Colleges, Universities, and Professional Schools $3,773 0.0% 0.6% Abrasive Blasting - Construction 238320 Painting and Wall Covering Contractors $3,430 0.6% 18.7% 238990 All Other Specialty Trade Contractors $3,175 0.3% 8.8% $1,818 0.0% 0.3% $3,613 0.0% 0.6% General Industry Subtotal $9,651 0.3% 8.1% Construction Subtotal $3,308 0.4% 12.3% Maritime Subtotal $1,835 0.0% 0.3% Weighted Average, All Industries $6,876 0.0% 0.9% Abrasive Blasting Shipyards*** 336611a Ship Building and Repairing Welding Shipyards**** 336611b Ship Building and Repairing VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00136 Fmt 4701 Sfmt 4725 E:\FR\FM\09JAR2.SGM 09JAR2 ER09JA17.046</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Total 2605 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Table Vlll-9: Average Costs and Impacts for SBA-Defined Small Entities Affected by the Final Beryllium Standard With Costs Calculated Using a 3 Percent Discount Rate, Continued Cost Per Industry Cost to Cost to Entity Application Group/ NAICS Revenue Profit Notes: Figures in rows may not add to totals due to rounding. "--" indicates areas where data are not available. (While the average revenues and implied profits for the Beryllium Production (NAICS 32711 Oa) and Beryllium Oxide (NAICS 331410a) industries can be calculated, they would in no way reflect the actual revenues and profits of the affected facilities. Application group Dental Labs- Substituting applies to establishments that substitute beryllium-free material for beryllium and incur costs due to the price differential between beryllium-free alloys and alloys that contain beryllium plus the cost of additional training to teach dental technicians how to cast the beryllium-free alloys. •• Application group Dental Labs - Non-Substituting are estabishments with exposures below the PEL that continue to use berylium alloys and incur the cost of the ancillary provisions required by the final standard. ••• Employers in application group Abrasive Blasting -Shipyards are shipyards employing abrasive blasters that use mineral slag abrasives to etch the surfaces of boats and ships. •••• Employers in application group Welding in Shipyards employ welders in shipyards. Some of these employers may do both welding and abrasive blasting. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00137 Fmt 4701 Sfmt 4725 E:\FR\FM\09JAR2.SGM 09JAR2 ER09JA17.047</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Source: US DOL, OSHA, Directorate of Standards and Guidance, Office of Regulatory Analysis 2606 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Table Vlll-10: Average Costs and Impacts for Very Small Entities (with Fewer than 20 Employees) Affected by the Final Beryllium Standard With Costs Calculated Using a 3 Percent Discount Rate Application Cost Per Cost to Cost to Entity Revenue Profit Industry Group/ NAICS Beryllium Oxide - Primary 327110a $0 -- -- $0 Pottery, Ceramics, and Plumbing Fixture Manufacturing 0.00% 0.00% Beryllium Oxide - Secondary Radio and Television Broadcasting and Wireless Communications Equipment 334220 Manufacturing 334310 Audio and Video Equipment Manufacturing $0 0.00% 0.00% 334416 Capacitor, Resistor, Coil, Transformer, and Other Inductor Manufacturing $0 0.00% 0.00% 334419 Other Electronic Component Manufacturing $0 0.00% 0.00% 334510 Electromedical and Electrotherapeutic Apparatus Manufacturing $0 0.00% 0.00% 327110b Pottery, Ceramics, and Plumbing Fixture Manufacturing $0 0.00% 0.00% 336320a Motor Vehicle Electrical and Electronic Equipment Manufacturing $0 0.00% 0.00% $0 -- -- Beryllium Production 331410a Nonferrous Metal (except Aluminum) Smelting and Refining Dental Labs Substituting• 339116a Dental Laboratories $542 0.18% 2.42% 621210a Offices of Dentists $872 0.12% 1.67% Dental Labs - Non-Substituting•• 339116b Dental Laboratories $2,812 0.92% 12.54% 621210b Offices of Dentists $4,526 0.63% 8.67% Copper Rolling, Drawing, Extruding, and Alloying $9,121 0.26% 12.66% Precision Turned Product Manufacturing $10,396 0.83% 17.64% Precision Turned Product Manufacturing $7,300 0.59% 12.39% 1.85% 39.11% Drawing 331420c Machining - High 332721a Machining - Low 332721b Non-Sand Foundries 331523 Nonferrous Metal Die-Casting Foundries $23,395 331524 Aluminum Foundries (except Die-Casting) $26,897 3.36% 71.13% 331529a Other Nonferrous Metal Foundries (except Die-Casting) $30,747 2.47% 52.38% $9,656 0.28% 13.41% $34,222 2.75% 58.30% Rolling 331420a Copper Rolling, Drawing, Extruding, and Alloying Sand Foundries 331529b Other Nonferrous Metal Foundries (except Die-Casting) Smelting - Beryllium Alloys Secondary Smelting and Alloying of Aluminum $26,479 0.69% 28.12% 331420b Copper Rolling, Drawing, Extruding, and Alloying $13,315 0.38% 18.48% $13,081 0.27% 13.12% Smelting - Precious Metals Secondary Smelting, Refining, and Alloying of Nonferrous Metal (except Copper 331492 and Aluminum) VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00138 Fmt 4701 Sfmt 4725 E:\FR\FM\09JAR2.SGM 09JAR2 ER09JA17.048</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 331314 2607 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Table Vlll-10: Average Costs and Impacts for Very Small Entities (with Fewer than 20 Employees) Affected by the Final Beryllium Standard With Costs Calculated Using a 3 Percent Discount Rate, Continued Cost Per Cost to Cost to Entity Application Revenue Profit Industry Group/ NAICS Springs 332613 Spring Manufacturing $4,458 0.37% 7.84% 332119 Metal Crown, Closure, and Other Metal Stamping (except Automotive) $4,587 0.33% 8.19% 334417 Electronic Connector Manufacturing $3,854 0.34% 8.72% 336320c Motor Vehicle Electrical and Electronic Equipment Manufacturing $3,882 0.33% 21.75% $3,277 0.12% 9.87% Stamping Welding - Arc and Gas 331110a Iron and Steel Mills and Ferroalloy Manufacturing 331221 Rolled Steel Shape Manufacturing $5,201 0.13% 6.14% 331513 Steel Foundries (except Investment) $5,852 0.48% 10.10% 332117 Powder Metallurgy Part Manufacturing $6,564 0.31% 7.82% 332216 Saw Blade and Handtool Manufacturing $3,829 0.51% 12.17% 332312 Fabricated Structural Metal Manufacturing $3,039 0.21% 7.67% 332313 Plate Work Manufacturing $3,212 0.28% 10.14% 332322 Sheet Metal Work Manufacturing $3,372 0.30% 11.06% 332323 Ornamental and Architectural Metal Work Manufacturing $4,217 0.59% 21.53% 332439 Other Metal Container Manufacturing $3,287 0.28% 9.33% 332919 Other Metal Valve and Pipe Fitting Manufacturing $3,936 0.16% 2.70% 332999 All Other Miscellaneous Fabricated Metal Product Manufacturing $3,249 0.38% 6.26% 333111a Farm Machinery and Equipment Manufacturing $3,043 0.25% 4.19% 333414a Heating Equipment (except Warm Air Furnaces) Manufacturing $3,514 0.23% 7.22% 333911 Pump and Pumping Equipment Manufacturing $3,210 0.12% 3.09% 333922 Conveyor and Conveying Equipment Manufacturing $3,034 0.18% 4.57% 333924 Industrial Truck, Tractor, Trailer, and Stacker Machinery Manufacturing $3,491 0.26% 6.50% 333999 All Other Miscellaneous General Purpose Machinery Manufacturing $3,040 0.22% 5.49% 336211 Motor Vehicle Body Manufacturing $3,034 0.20% 13.43% 336214 Travel Trailer and Camper Manufacturing $3,034 0.25% 16.59% 336390a Other Motor Vehicle Parts Manufacturing $3,269 0.19% 12.35% 336510a Railroad Rolling Stock Manufacturing $3,877 0.17% 11.02% 336999 All Other Transportation Equipment Manufacturing $3,924 0.28% 6.47% Showcase, Partition, Shelving, and Locker Manufacturing $4,266 0.52% 17.84% $4,938 0.76% 27.08% $3,830 0.25% 7.90% $1,952 0.10% 3.25% 337215 Commercial and Industrial Machinery and Equipment (except Automotive and 811310 Electronic) Repair and Maintenance Welding - Resistance Welding Industrial and Commercial Fan and Blower and Air Purification Equipment 333413 Manufacturing Air-Conditioning and Warm Air Heating Equipment and Commercial and Industrial 333415 335210 Small Electrical Appliance Manufacturing $2,165 0.12% 2.70% 335221 Household Cooking Appliance Manufacturing $1,310 0.11% 2.68% 335222 Household Refrigerator and Home Freezer Manufacturing $1,310 0.08% 1.82% VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00139 Fmt 4701 Sfmt 4725 E:\FR\FM\09JAR2.SGM 09JAR2 ER09JA17.049</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Refrigeration Equipment Manufacturing 2608 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Table Vlll-10: Average Costs and Impacts for Very Small Entities (with Fewer than 20 Employees) Affected by the Final Beryllium Standard With Costs Calculated Using a 3 Percent Discount Rate, Continued Cost Per Cost to Cost to Entity Application Revenue Profit Industry Group/ NAICS 335224 Household Laundry Equipment Manufacturing $1,310 0.09% 2.08% 335228 Other Major Household Appliance Manufacturing $1,310 0.06% 1.41% 336310 Motor Vehicle Gasoline Engine and Engine Parts Manufacturing $1,923 0.20% 13.52% 336320b Motor Vehicle Electrical and Electronic Equipment Manufacturing $2,075 0.18% 11.63% $1,470 0.07% 4.62% Motor Vehicle Steering and Suspension Components (except Spring) 336330 Manufacturing 336340 Motor Vehicle Brake System Manufacturing $1,310 0.11% 7.60% 336350 Motor Vehicle Transmission and Power Train Parts Manufacturing $1,315 0.08% 4.98% 336360 Motor Vehicle Seating and Interior Trim Manufacturing $1,488 0.09% 6.26% 336370 Motor Vehicle Metal Stamping $2,214 0.10% 6.85% 333414b Heating Equipment (except Warm Air Furnaces) Manufacturing $4,252 0.28% 8.73% 336390b Other Motor Vehicle Parts Manufacturing $1,906 0.11% 7.20% $0 0.00% 0.00% $2,626 0.01% 2.39% Aluminum Production 331313 Alumina Refining and Primary Aluminum Production Coal Fired Utilities 221112 Fossil Fuel Electric Power Generation 311221 Wet Corn Milling $0 0.00% 0.00% 311313 Beet Sugar Manufacturing $0 0.00% 0.00% 311942 Spice and Extract Manufacturing $0 0.00% 0.00% 312120 Breweries $0 0.00% 0.00% 321219 Reconstituted Wood Product Manufacturing $0 0.00% 0.00% 322110 Pulp Mills $0 0.00% 0.00% 322121 Paper (except Newsprint) Mills $0 0.00% 0.00% 322122 Newsprint Mills $0 0.00% 0.00% 322130 Paperboard Mills $0 0.00% 0.00% 325211 Plastics Material and Resin Manufacturing $0 0.00% 0.00% 325611 Soap and Other Detergent Manufacturing $0 0.00% 0.00% 327310 Cement Manufacturing $0 0.00% 0.00% 333111b Farm Machinery and Equipment Manufacturing $0 0.00% 0.00% 336510b Railroad Rolling Stock Manufacturing $0 0.00% 0.00% 611310 Colleges, Universities, and Professional Schools $0 0.00% 0.00% Abrasive Blasting - Construction 238320 Painting and Wall Covering Contractors $2,504 0.71% 20.34% 238990 All Other Specialty Trade Contractors $2,289 0.32% 9.28% $1,467 0.10% 1.66% $3,112 0.22% 3.52% General Industry Subtotal $2,956 0.34% 6.06% Construction Subtotal $2,402 0.46% 13.22% Maritime Subtotal $1,483 0.10% 1.68% Abrasive Blasting Shipyards*** 336611a Ship Building and Repairing Welding Shipyards**** Ship Building and Repairing Total VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00140 Fmt 4701 Sfmt 4725 E:\FR\FM\09JAR2.SGM 09JAR2 ER09JA17.050</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 336611b Description of the Steps OSHA Has Taken To Minimize the Significant Economic Impact on Small Entities Consistent With the Stated Objectives of Applicable Statutes and Statement of the Reasons For Selecting the Alternative Adopted in the Final Rule OSHA has made a number of changes in the final beryllium rule that will serve to minimize significant impacts on small entities consistent with the objectives of the OSH Act. These changes are explained in more detail in Section XVI: Summary and Explanation in this preamble. During the SBAR Panel, SERs requested a clearer definition of the triggers for medical surveillance. This concern was rooted in the cost of BeLPTs and the trigger of potential skin contact. For the final rule, the Agency has removed skin contact as a trigger for medical surveillance. OSHA has also reduced the frequency of medical surveillance from annually (in the proposed rule) to biennially in the final rule. In the final rule, OSHA has added a performance option, as an alternative to scheduled monitoring, to allow employers to comply with exposure assessment requirements. This performance option should allow employers more flexibility, and often lower cost, in complying with the exposure assessment requirements. Some SERs were already applying many of the protective controls and practices that would be required by the VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 ancillary provisions of the standard. However, many SERs objected to the requirements regarding hygiene facilities. For this final rule, OSHA has concluded that all affected employers currently have hand washing facilities. OSHA has also concluded that no affected employers will be required to install showers. OSHA noted in the PEA that some facilities already have showers. There were no comments challenging the Agency’s preliminary determinations regarding the existing availability of shower facilities or the means of preventing contamination, so the Agency concludes that all employers have showers where needed. Therefore, employers will not need to provide any new shower facilities to comply with the standard.33 Similarly, in the PEA the Agency included no additional costs for readily accessible washing facilities, under the expectation that employers already have such facilities in place (PEA p. IX–19). Although the abrasive blasters exposed to beryllium in maritime and 33 OSHA reached the same conclusion in the PEA (p. V–118). For information purposes, OSHA estimated the initial cost of installing portable showers at $39,687, with an annualized cost of $4,653 per facility (Id.) and did not receive any comments suggesting that shower costs should be included or regarding the cost of installing them. The annual cost per employee for shower supplies, towels, and time required for showering was estimated to be $1,519. However, as indicated above in the text, the Agency believed that employers would be able to comply with the standard by less costly means than the installation of shower facilities. PO 00000 Frm 00141 Fmt 4701 Sfmt 4700 2609 construction work may not have been expressly addressed in the PEA, OSHA notes that their employers are typically already required to provide readily accessible washing facilities to comply with other OSHA standards such as its sanitation standard at 29 CFR 1926.51(f)(1).34 In the absence of additional comment, OSHA is not including any costs for washing facilities in the FEA. OSHA’s shipyard standard at 29 CFR 1915.58(e) requires handwashing facilities ‘‘at or adjacent to each toilet facility’’ and ‘‘equipped with . . . running water and soap, or with waterless skin-cleansing agents that are capable of . . . neutralizing the contaminants to which the employee may be exposed.’’ OSHA’s construction standard at 29 CFR 1926.51(f)(1) requires ‘‘adequate washing facilities for employees engaged in . . . operations where contaminants may be harmful to the employees. Such facilities shall be in near proximity to the worksite and shall be so equipped as to enable employees to remove such substances.’’ 34 OSHA’s shipyard standard at 29 CFR 1915.58(e) requires handwashing facilities ‘‘at or adjacent to each toilet facility’’ and ‘‘equipped with . . . running water and soap, or with waterless skin-cleansing agents that are capable of . . . neutralizing the contaminants to which the employee may be exposed.’’ OSHA’s construction standard at 29 CFR 1926.51(f)(1) requires ‘‘adequate washing facilities for employees engaged in . . . operations where contaminants may be harmful to the employees. Such facilities shall be in near proximity to the worksite and shall be so equipped as to enable employees to remove such substances.’’ E:\FR\FM\09JAR2.SGM 09JAR2 ER09JA17.051</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 2610 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations The Agency has determined that the long-term rental of modular units was representative of costs for a range of reasonable approaches to comply with the change room part of the provision. Alternatively, employers could renovate and rearrange their work areas in order to meet the requirements of this provision. Finally, in the final rule, OSHA has extended the compliance deadlines for change rooms from one year to two years and for engineering controls from two years to three years. asabaliauskas on DSK3SPTVN1PROD with PROPOSALS • Regulatory Alternatives For the convenience of those persons interested only in OSHA’s regulatory flexibility analysis, this section repeats the discussion presented in Chapter VIII of the FEA, but only for the regulatory alternatives to the final OSHA beryllium standard that would have lowered costs. Each regulatory alternative presented here is described and analyzed relative to the final rule. Where appropriate, the Agency notes whether the regulatory alternative, to have been a legitimate candidate for OSHA consideration, required evidence contrary to the Agency’s final findings of significant risk and feasibility. For this chapter on the Final Regulatory Flexibility Analysis, the Agency is only presenting regulatory alternatives that would have reduced costs for small entities. (See Chapter VIII for the full list of all alternatives analyzed.) There are 14 alternatives that would have reduced costs for small entities (and for all VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 businesses in total). Using the numbering scheme from Chapter VIII of the FEA, these are Regulatory Alternatives #1a, #2a, #2b, #5, #6, #7, #8, #9, #10, #11, #12, #13, #15, #16, #18, and #22. OSHA has organized these 16 cost-reducing alternatives (and a general discussion of considered phase-ins of the rule) into four categories: (1) Scope; (2) exposure limits; (3) methods of compliance; and (4) ancillary provisions. (1) Scope Alternatives The scope of the beryllium final rule applies to general industry work, construction and maritime activities. In addition, the final rule provides an exemption for those working with materials containing only trace amounts of beryllium (less than 0.1% by weight) when the employer has objective data that employee exposure to beryllium will remain below the action level as an 8-hour TWA under any foreseeable conditions. The first set of regulatory alternatives would alter the scope of the final standard by differing in coverage of groups of employees and employers. Regulatory Alternatives #1a, #2a, and #2b would decrease the scope of the final standard. Regulatory Alternative #1a would exclude all operations where beryllium exists only as a trace contaminant; that is, where the materials used contain less than 0.1% beryllium by weight, with no other conditions. OSHA has identified two industries with workers engaged in PO 00000 Frm 00142 Fmt 4701 Sfmt 4700 general industry work that would be excluded under Regulatory Alternative #1a: Primary aluminum production and coal-fired power generation. Table VIII–11 presents, for informational purposes, the estimated costs, benefits, and net benefits of Regulatory Alternative #1a using alternative discount rates of 3 percent and 7 percent. In addition, this table presents the incremental costs, incremental benefits, and incremental net benefits of this alternative relative to the final rule. Table VIII–11 also breaks out costs by provision, and benefits by type of disease and by morbidity/ mortality prevented. (Note: ‘‘morbidity’’ cases are cases where health effects are limited to non-fatal illness; in these cases there is no further disease progression to fatality). As shown in Table VIII–11, Regulatory Alternative #1a would decrease the annualized cost of the rule from $73.9 million to $64.6 million using a 3 percent discount rate and from $76.6 million to $67.0 million using a 7 percent discount rate. Annualized benefits in monetized terms would decrease from $560.9 million to $515.7 million, using a 3 percent discount rate, and from $249.1 million to $229.0 million using a 7 percent discount rate. Net benefits would decrease from $487.0 million to $451.1 million using a 3 percent discount rate and from $172.4 million to $162.0 million using a 7 percent discount rate. E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Rule Alternative 1a {PEL= 0.2 1Jg/m3, AL = 0.10 1Jg/m3) {Remove trace contaminants) Jkt 241001 Cases 3% 7% Cases 3% 7% Incremental Costs/Benefits Cases 3% 7% Annualized Costs Frm 00143 $13.3 $11.6 $12.5 -$0.7 -$0.7 Respirators $0.3 $0.3 $0.3 $0.3 $0.0 $0.0 Rule Familiarization Fmt 4701 Sfmt 4700 $0.2 $0.2 $0.2 $0.2 $0.0 $0.0 $13.7 $14.4 $10.7 $11.1 -$3.1 -$3.2 Regulated Areas $0.9 $0.9 $0.9 $0.9 $0.0 $0.0 Beryllium Work Areas $0.1 $0.2 $0.1 $0.1 $0.0 $0.0 Medical Surveillance $7.4 $7.7 $6.4 $6.6 -$1.0 -$1.1 Exposure Assessment Medical Removal $1.2 $1.3 $1.0 $1.1 -$0.2 -$0.2 Exposure Control Plan $2.3 $2.4 $2.1 $2.2 -$0.2 -$0.2 Protective Clothing and Equipment $2.0 $2.0 $1.8 $1.8 -$0.2 -$0.2 Hygiene Areas and Practices $2.4 $2.4 $2.4 $2.4 $0.0 $0.0 $22.8 $23.2 $20.0 $20.4 -$2.8 -$2.9 $8.3 $8.3 $7.3 $7.3 -$1.0 -$1.0 $73.9 $76.6 $64.6 $67.0 -$9.3 -$9.7 -$19.9 Housekeeping Training Total Costs (Point Estimate) Annual Benefits: Number of Cases Prevented 09JAR2 4 4 0 Fatal Chronic Beryllium Disease 86 79 -7 Beryllium-Related Mortality 90 $558.0 $247.5 83 $513.1 $227.5 -7 -$44.9 Beryllium Morbidity 46 $2.9 $1.6 42 $2.6 $1.5 -4 -$0.2 -$0.1 $560.9 $249.1 $515.7 $229.0 -$45.2 -$20.1 $487.0 $172.4 $451.1 $162.0 -$35.9 -$10.4 Fatal Lung Cancers (Midpoint Estimate) ER09JA17.052</GPH> Monetized Annual Benefits (Midpoint Estimate) Net Benefits Net Benefits Notes: Figures in rows may not add to totals due to rounding. Source: US DOL, OSHA, Directorate of Standards and Guidance, Office of Regulatory Analysis 2611 would exclude abrasive blasters, pot tenders, and cleanup staff working in E:\FR\FM\09JAR2.SGM work from the scope of the final standard. For example, this alternative PO 00000 $12.3 Control Costs Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Regulatory Alternative #2a would exclude construction and maritime VerDate Sep<11>2014 Table Vlll-11 Annualized Costs, Benefits and Incremental Benefits of OSHA's Final Beryllium Standard of Alternative Scope {Regulatory Alternative #1a) {2015 Million Dollars) 2612 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS construction and shipyards who have the potential for airborne beryllium exposure during blasting operations and during cleanup of spent media. Table VIII–12 presents the estimated costs, benefits, and net benefits of Regulatory Alternative #2a using alternative discount rates of 3 percent and 7 percent. In addition, this table presents the incremental costs, incremental benefits, and incremental net benefits of these alternatives relative to the final rule. Table VIII–12 also breaks out costs by provision and benefits by type of disease and by morbidity/mortality. As shown in Table VIII–12, Regulatory Alternative #2a would decrease costs from $73.9 million to $62.0 million, using a 3 percent discount rate, and from $76.6 million to $64.4 million using a 7 percent discount rate. Annualized benefits would decrease from $560.9 million to $533.3 million, using a 3 percent discount rate, and from $249.1 million to $236.8 million using a 7 percent discount rate. Net benefits would change from $487.0 million to $471.3 million, using a 3 VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 percent discount rate, and is essentially unchanged at a discount rate of 7 percent, with the final rule having net benefits of $172.4 million while the alternative has $172.5 million. Thus, at a 7 percent discount rate, the costs exceed the benefits for this alternative by $0.1 million per year. However, OSHA believes that for these industries, the cost estimate is severely overestimated because 45 percent of the costs are for exposure monitoring assuming that employers use the periodic monitoring option. Employers in this sector are far more likely to use the performance based monitoring options at considerably reduced costs. If this is the case, benefits would exceed costs even at a 7 percent discount rate. Regulatory Alternative #2b would eliminate the ancillary provisions in the final rule for the shipyard and construction sectors and for any operations where beryllium exists only as a trace contaminant. Accordingly, only the final TWA PEL and STEL would apply to employers in these sectors and operations (through 29 CFR 1910.1000 Tables Z–1 and Z–2, PO 00000 Frm 00144 Fmt 4701 Sfmt 4700 1915.1000 Table Z, and 1926.55 Appendix A). Operations in general industry where the ancillary provisions would be eliminated under Regulatory Alternative #2b include aluminum smelting and production and coalpowered utility facilities and any other operations where beryllium is present only as a trace contaminant (in addition to all operations in construction and shipyards). As shown in Table VIII–13, Regulatory Alternative #2b would decrease the annualized cost of the rule from $73.9 million to $53.5 million using a 3 percent discount rate, and from $76.6 to $55.6 million using a 7 percent discount rate. Annualized benefits would decrease from $560.9 million to $493.3 million, using a 3 percent discount rate, and from $249.1 million to $219.1 million, using a 7 percent discount rate. Net benefits would decrease from $487.0 million to $439.8 million, using a 3 percent discount rate, and from $172.4 million to $163.5 million, using a 7 percent discount rate. E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS VerDate Sep<11>2014 Rule 3 (PEL = 0.2 11g1ID , AL Jkt 241001 Cases Alternative 2a =0.1 0 IJg/m 3 ) 7% 3% (Remove Maritime and Construction Sectors) Cases 7% 3% Incremental Costs/Benefrts cases 7% 3% Annualized Costs PO 00000 Frm 00145 $12.3 Exposure Assessment $13.2 $0.0 $0.0 $0.3 $0.3 $0.0 $0.0 $0.2 Rule Familiarization $12.2 $0.3 $0.2 $0.1 $0.1 -$0.1 -$0.1 $13.7 Respirators $13.3 $0.3 Control Costs $14.4 $8.5 $8.9 -$5.3 -$5.4 -$0.3 Fmt 4701 Regulated Areas $0.9 $0.9 $0.6 $0.6 -$0.3 Beryllium Work Areas $0.1 $0.2 $0.1 $0.2 $0.0 $0.0 Medical Surveillance $7.4 $7.7 $6.0 $6.2 -$1.4 -$1.5 Medical Removal $1.2 $1.3 $0.7 $0.7 -$0.5 -$0.6 Exposure Control Plan $2.3 $2.4 $2.1 $2.2 -$0.2 -$0.2 Sfmt 4725 E:\FR\FM\09JAR2.SGM 09JAR2 Protective Clothing and Equipment $2.0 $2.0 $1.8 $1.8 -$0.2 -$0.2 Hygiene Areas and Practices $2.4 $2.4 $0.9 $0.9 -$1.5 -$1.6 $22.8 $23.2 $21.1 $21.6 -$1.6 -$1.7 $8.3 $8.3 $7.5 $7.6 -$0.8 -$0.8 $73.9 $76.6 $62.0 $64.4 -$11.9 -$12.3 -$12.2 Housekeeping Training Total Costs (Point Estimate) Annual Benefits: Number of Cases Prevented 4 4 0 Fatal Chronic Beryllium Disease 86 81 -4 Beryllium-Related Mortality 90 $558.0 $247.5 85 $530.6 $235.3 -4 -$27.4 Beryllium Morbidity 46 $2.9 $1.6 44 $2.7 $1.5 -2 -$0.1 -$0.1 $560.9 $249.1 $533.3 $236.8 -$27.6 -$12.3 $487.0 $172.4 $471.3 $172.5 -$15.7 $0.0 Fatal Lung Cancers (Midpoint Estimate) Monetized Annual Benefits (Midpoint Estimate) Net Benefrts Net Benefits Notes: Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Table Vlll-12 Annualized Costs, Benefits and Incremental Benefits of OSHA's Final Beryllium Standard of Alternative Scope Excluding Maritime and Construction (Regulatory Alternative #2a) (2015 Million Dollars) Figures in rows may not add to totals due to rounding. Source: US DOL, OSHA, Directorate of Standards and Guidance, Office of Regulatory Analysis 2613 ER09JA17.053</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2614 VerDate Sep<11>2014 (Regula1ory Alternative #2b) (2015 Million Dollars) Alternative 2b Rule Jkt 241001 (PEL= 0.2 Cases ~g/m', AL = 0.1 ~glm') 7% 3% (Update Z Tables 1910.1000, 1915.1000, and 1926.55 and Require Control Incremental Cos1s/Benefi1s Cos1s for Industries with Trace Contamlnan1s) Cases 3% 7% Cases 3% 7% PO 00000 Annualized Cos1s $12.3 Respirators $13.3 $12.3 $13.3 $0.0 $0.0 $0.3 Control Costs $0.3 $0.3 $0.3 -$0.1 -$0.1 Frm 00146 Rule Familiarization Regulated Areas $0.9 $0.9 $0.6 $0.6 -$0.3 $0.1 $0.2 $0.1 $0.1 $0.0 $0.0 Medical Surveillance $7.4 $7.7 $5.0 $5.1 -$2.4 -$2.6 -$0.8 $0.2 $0.2 $0.2 $0.2 $0.0 $0.0 $13.7 Exposure Assessment $14.4 $5.4 $5.7 -$8.3 -$8.7 -$0.3 Fmt 4701 Beryllium Work Areas Medical Removal $1.2 $1.3 $0.5 $0.5 -$0.7 Sfmt 4725 Exposure Control Plan $2.3 $2.4 $1.9 $1.9 -$0.5 -$0.5 Protective Clothing and Equipment $2.0 $2.0 $1.6 $1.6 -$0.4 -$0.4 E:\FR\FM\09JAR2.SGM Housekeeping $2.4 $2.4 $0.9 $0.9 -$1.6 -$1.6 $22.8 Hygiene Areas and Practices $23.2 $18.3 $18.7 -$4.4 -$4.5 $8.3 Total Costs (Point Estimate) $8.3 $6.5 $6.6 -$1.8 -$1.8 $73.9 Training $76.6 $53.5 $55.6 -$20.4 -$21.1 -$29.8 Annual Benefi1s: Number of Cases Prevented Fatal Lung Cancers (Midpoint Estimate) Fatal Chronic Beryllium Disease 4 4 0 86 75 -11 09JAR2 Beryllium-Related Mortality 90 $558.0 $247.5 79 $490.8 $217.7 -11 -$67.2 Beryllium Morbidity 46 $2.9 $1.6 40 $2.5 $1.4 -6 -$0.4 -$0.2 $560.9 $249.1 $493.3 $219.1 -$67.5 -$30.0 $487.0 $172.4 $439.8 $163.5 -$47.2 -$8.9 Monetized Annual Benefits (Midpoint Estimate) Nat Benefi1s Net Benefits Notes: Figures in rows may not add to totals due to rounding. Source: US DOL, OSHA, Directorate of Standards and Guidance, Office of Regulatory Analysis ER09JA17.054</GPH> Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Table Vlll-13 Annualized Costs, Benefi1s and Incremental Benefits of OSHA's Final Beryllium Standard of Updating Z Tables 1910.1000, 1915.1000, and 1926.55 and Requiring Control Costs for Industries with Trace Contaminan1s Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS (2) Exposure Limit (TWA PEL, STEL, and Action Level) Alternatives Paragraph (c) of the three final standards establishes two PELs for beryllium in all forms, compounds, and mixtures: An 8-hour TWA PEL of 0.2 mg/m3 (paragraph (c)(1)), and a 15minute short-term exposure limit (STEL) of 2.0 mg/m3 (paragraph (c)(2)). OSHA has defined the action level for the final standard as an airborne concentration of beryllium of 0.1 mg/m3 calculated as an eight-hour TWA (paragraph (b)). In this final rule, as in other standards, the action level has been set at one half of the TWA PEL. Regulatory Alternative #5 would set a higher TWA PEL at 0.5 mg/m3 and an action level at 0.25 mg/m3. This alternative responds to an issue raised during the Small Business Advocacy Review (SBAR) process conducted in 2007 to consider a draft OSHA beryllium proposed rule that culminated in an SBAR Panel report (SBAR, 2008). That report included a recommendation that OSHA consider both the economic impact of a low TWA VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PEL and regulatory alternatives that would ease cost burden for small entities. OSHA has provided a full analysis of the economic impact of its final PELs (see Chapter VI of the FEA), and Regulatory Alternative #5 was considered in response to the second half of that recommendation. However, the higher 0.5 mg/m3 TWA PEL is not consistent with the Agency’s mandate under the OSH Act to promulgate a lower PEL if it is feasible and could prevent additional fatalities and nonfatal illnesses. The data presented in Table VIII–14 below indicate that the final TWA PEL would prevent additional fatalities and non-fatal illnesses relative to Regulatory Alternative #5. Table VIII–14 below presents, for informational purposes, the estimated costs, benefits, and net benefits of the final rule under the final TWA PEL of 0.2 mg/m3 and for the regulatory alternative TWA PEL of 0.5 mg/m3 (Regulatory Alternative #5), using alternative discount rates of 3 percent and 7 percent. In addition, the table PO 00000 Frm 00147 Fmt 4701 Sfmt 4700 2615 presents the incremental costs, the incremental benefits, and the incremental net benefits of going from a TWA PEL of 0.5 mg/m3 to the final TWA PEL of 0.2 mg/m3. Table VIII–14 also breaks out costs by provision and benefits by type of disease and by morbidity/mortality. As Table VIII–14 shows, going from a TWA PEL of 0.5 mg/m3 to a TWA PEL of 0.2 mg/m3 would prevent, annually, an additional 30 beryllium-related fatalities and an additional 16 non-fatal illnesses. This is consistent with OSHA’s final risk assessment, which indicates significant risk to workers exposed at a TWA PEL of 0.5 mg/m3; furthermore, OSHA’s final feasibility analysis indicates that a lower TWA PEL than 0.5 mg/m3 is feasible. Net benefits of this regulatory alternative versus the final TWA PEL of 0.2 mg/m3 would decrease from $487.0 million to $376.5 million using a 3 percent discount rate and from $172.4 million to $167.2 million using 7 percent discount rate. E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2616 VerDate Sep<11>2014 Jkt 241001 Rule Altemative5 (PEL= 0.21Jg/m3, AL = 0.10 1Jg/m3) (PEL = 0.5 1Jg/m3, AL = 0.25 1Jg/m3) Cases Cases 3% 7% 3% 7% Alternative 5 Incremental Costs/Benefits Cases 3% 7% Annualized Costs PO 00000 Frm 00148 $12.3 Exposure Assessment Respirators $13.3 $7.6 $8.2 $4.7 $5.1 $0.3 Control Costs $0.3 $0.2 $0.2 $0.1 $0.1 $0.2 $0.2 $0.2 $0.2 $0.0 $0.0 $13.7 Rule Familiarization $14.4 $7.8 $8.4 $5.9 $5.9 Fmt 4701 Regulated Areas $0.9 $0.9 $0.5 $0.5 $0.4 $0.4 Beryllium Work Areas $0.1 $0.2 $0.1 $0.2 $0.0 $0.0 Medical Surveillance $7.4 $7.7 $4.9 $5.1 $2.5 $2.6 Sfmt 4725 E:\FR\FM\09JAR2.SGM 09JAR2 Medical Removal $1.2 $1.3 $0.3 $0.4 $0.8 $0.9 Exposure Control Plan $2.3 $2.4 $2.3 $2.4 $0.0 $0.0 Protective Clothing and Equipment $2.0 $2.0 $2.0 $2.0 $0.0 $0.0 Hygiene Areas and Practices $2.4 $2.4 $1.6 $1.6 $0.8 $0.8 $22.8 $23.2 $22.8 $23.2 $0.0 $0.0 $8.3 $8.3 $8.3 $8.3 $0.0 $0.0 $73.9 $76.6 $58.6 $60.7 $15.3 $15.9 $183.4 $81.3 Housekeeping Training Total Costs (Point Estimate) Annual Benefits: Number of Cases Prevented Fatal Lung Cancers (Midpoint Estimate) Fatal Chronic Beryllium Disease 4 4 0 86 56 29 Beryllium-Related Mortality 90 $558.0 $247.5 Beryllium Morbidity 46 $2.9 $1.6 $560.9 $487.0 Monetized Annual Benefits (Midpoint Estimate) 60 $374.6 $166.2 30 30 $1.9 $1.1 16 $1.0 $0.5 $249.1 $376.5 $167.2 $184.4 $81.9 $172.4 $376.5 $167.2 $110.5 $5.2 Net Benefits Net Benefits Notes: Figures in rows may not add to totals due to rounding. Source: US DOL, OSHA, Directorate of Standards and Guidance, Office of Regulatory Analysis ER09JA17.055</GPH> Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 21:46 Jan 06, 2017 Table Vlll-14 Annualized Costs, Benefits and Incremental Benefits of OSHA's Final Beryllium Standard of 0.1 1Jg/m3 and 0.5 1Jg/m3 PEL Alternative (Regulatory Alternatives #4 and #5) (2015 Million Dollars) asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Regulatory Alternative With Unchanged PEL But Full Ancillary Provisions An Informational Analysis: This final regulation has the somewhat unusual feature for an OSHA substance-specific health standard that most of the quantified benefits that OSHA estimated would come from the ancillary provisions rather than from meeting the PEL solely with engineering controls (see Chapter VII of the FEA for a more detailed discussion). OSHA decided to analyze for informational purposes the effect of retaining the preceding PEL but applying all of the ancillary provisions, including respiratory protection. Under this approach, the TWA PEL would remain at 2.0 micrograms per cubic meter, but all of the other final provisions (including respiratory protection) would be required with their triggers remaining the same as in the final rule—either the presence of airborne beryllium at any level (e.g., initial monitoring, written exposure control plan), at certain kinds of dermal exposure (PPE), at the action level of 0.1 mg/m3 (e.g., periodic monitoring, medical removal), or at 0.2 mg/m3 (e.g., regulated areas, respiratory protection, medical surveillance). Given the record regarding beryllium exposures, this approach is not one OSHA could legally adopt. The absence of engineering controls would not be consistent with OSHA’s application of the hierarchy of controls, in which engineering controls are applied to eliminate or control hazards, before administrative controls and personal protective equipment are applied to address remaining exposures. Section 6(b)(5) of the OSH Act requires OSHA to ‘‘set the standard which most adequately assures, to the extent feasible, on the basis of the best available evidence, that no employee will suffer material impairment of health or functional capacity even if such employee has regular exposure to the hazard dealt with by such standard for the period of his working life.’’ For that reason, this additional analysis is provided strictly for informational purposes. E.O. 12866 and E.O. 13563 direct agencies to identify approaches that maximize net benefits, and this analysis is purely for the purpose of exploring whether this approach would hold any real promise to maximize net benefits if it was permissible under the OSH Act. It does not appear to hold such promise because an ancillaryprovisions-only approach would not be as protective and thus offers fewer benefits than one that includes a lower PEL and engineering controls. Also, OSHA estimates the costs would be VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 about the same (or slightly lower, depending on certain assumptions) under that approach as under the traditional final approach. When examined on an industry-byindustry basis, OSHA found that some industries would have lower costs if they could adopt the ancillaryprovision-only approach. Some employers would use engineering controls where they are cheaper, even if they are not mandatory. OSHA does not have sufficient information to do an analysis employer-by-employer of when the ancillary-provisions-only approach might be cheaper. In the majority of affected industries, the Agency estimates there are no cost savings to the ancillary-provisions-only approach. However, OSHA estimates an annualized total cost saving of $2.7 million per year for entire industries where the ancillary-provisions-only approach would be less expensive. The above discussion does not account for the possibility that the lack of engineering controls would result in higher beryllium exposures for workers in adjacent (non-production) work areas due to the increased level of beryllium in the air. Because of a lack of data, and because the issue did not arise in the other regulatory alternatives OSHA considered (all of which have a PEL of less than 2.0 mg/m3), OSHA did not examine exposure levels in nonproduction areas for either cost or benefit purposes. To the extent such exposure levels would be above the action level, there would be additional costs for respiratory protection and medical surveillance. If respirators were as effective as engineering controls, the ancillaryprovisions-only approach would have benefits comparable to the benefits of the final rule. However, in this alternative most exposed individuals would be required to use respirators, which OSHA considers less effective than engineering controls in preventing employee exposure to beryllium. OSHA also examined what the benefits would be if respirators were not required, were not worn, or were ineffective. OSHA found that, if all of the other aspects of the benefits analysis remained the same, the annualized benefits would be reduced by from $33.2 million using a discount rate of 3 percent, and $22.4 using a discount rate of 7 percent, largely as a result of failing to reduce deaths from lung cancer, which are unaffected by the ancillary provisions. However, there are also other reasons to believe that benefits may be even lower: (1) As noted above, in the final rule OSHA did not consider benefits caused by reductions in exposure in non- PO 00000 Frm 00149 Fmt 4701 Sfmt 4700 2617 production areas. Unless employers act to reduce exposures in the production areas, the absence of a requirement for such controls would largely negate such benefits from reductions in exposure in the non-productions areas. (2) OSHA judges that the benefits of the ancillary provisions (a midpoint estimate of eliminating 45 percent of all remaining cases of CBD for all sectors except for abrasive blasting and coalfired power plants, and an estimate of 11.25 percent, or one fourth of the percentage for other sectors, for abrasive blasting and coal-fired power plants) would be partially or wholly negated in the absence of engineering controls that would reduce both airborne and surface dust levels. The Agency’s high estimate (90 percent for all sectors except abrasive blasting and coal fired power plants, 22.5 percent for abrasive blasting and coal-fired power plants) of the proportion of remaining CBD cases eliminable by ancillary provisions is based on data from a facility with average exposure levels of less than 0.2 mg/m3. Based on these considerations, OSHA finds that the ancillary-provisions-only approach is not one that is likely to maximize net benefits. The cost savings, if any, are estimated to be small, and the difficult-to-measure declines in benefits could be substantial. (2) A Method-of-Compliance Alternative Paragraph (f)(2)(i) of the final standards contains requirements for the implementation of engineering and work practice controls to minimize beryllium exposures in general industry, maritime, and construction. For each operation in a beryllium work area in general industry or where exposures are or can reasonably be expected to be above the action level in shipyards or construction, employers must ensure that one or more of the following are in place to minimize employee exposure: Material and/or process substitution; isolation, such as ventilated partial or full enclosures; local exhaust ventilation; or process controls, such as wet methods and automation. Employers are exempt from using these methods only when they can show that such methods are not feasible or where exposures are below the action level based on two exposure samples taken at least seven days apart. OSHA believes that the methods outlined in paragraph (f)(2)(i) provide the most reliable means to control variability in exposure levels. However, OSHA also recognizes that the requirements of paragraph (f)(2)(i) are not typical of OSHA standards, which usually require engineering controls E:\FR\FM\09JAR2.SGM 09JAR2 2618 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations the final TWA PEL and STEL, but does eliminate the requirement to use one or more of the specified engineering or work practice controls where exposures equal or exceed the action level. As shown in Table VIII–15, Regulatory Alternative #6 would decrease the annualized cost of the final rule by $606,706 using a discount rate of 3 percent and by $638,100 using a discount rate of 7 percent. In the PEA, OSHA had been unable to estimate the benefits of this alternative and invited public comment. The Agency did not receive public comment and therefore has not estimated the change in benefits resulting from Regulatory Alternative #6. (4) Regulatory Alternatives That Affect Ancillary Provisions The final standard contains several ancillary provisions (provisions other than the exposure limits), including requirements for exposure assessment, medical surveillance, medical removal, training, competent person, and regulated areas or access control. As reported in Chapter V of the FEA, these ancillary provisions account for $61.3 million (about 83 percent) of the total annualized costs of the rule ($73.4 million) using a 3 percent discount rate. The most expensive of the ancillary provisions are the requirements for housekeeping and exposure monitoring, with annualized costs of $22.8 million and $13.7 million, respectively, at a 3 percent discount rate. OSHA’s reasons for including each of the final ancillary provisions are explained in Section XVI of the preamble, Summary and Explanation of the Standards. OSHA has examined a variety of regulatory alternatives involving changes to one or more of the final ancillary provisions. The incremental cost of each of these regulatory alternatives and its impact on the total costs of the final rule are summarized in Table VIII–16 at the end of this section. OSHA has determined that several of these ancillary provisions will increase the benefits of the final rule, for example, by helping to ensure the TWA PEL is not exceeded or by lowering the risks to workers given the significant risk remaining at the final TWA PEL. However, except for Regulatory Alternative #7 (involving the elimination of all ancillary provisions), OSHA did not estimate changes in monetized benefits for the regulatory alternatives that affect ancillary provisions. Two regulatory alternatives that involve all ancillary provisions are presented below (#7 and #8), followed by regulatory alternatives for exposure monitoring (#9, #10, and #11), for regulated areas (#12), for personal protective clothing and equipment (#13), for medical surveillance (#14 through #20), and for medical removal protection (#22). the final TWA PEL of 0.2 mg/m3 or the final STEL of 2.0 mg/m3. Regulatory Alternative #7 would only update 1910.1000 Tables Z–1 and Z–2, so that the final TWA PEL and STEL would apply to all workers in general industry, construction, and maritime. This alternative would eliminate all of the ancillary provisions of the final rule, including exposure assessment, medical surveillance, medical removal protection, PPE, housekeeping, training, competent person, and regulated areas or access control. Under this regulatory alternative, OSHA estimates that the costs for the final ancillary provisions of the rule (estimated at $61.4 million annually at a 3 percent discount rate) would be eliminated. In order to meet the PELs, employers would still commonly need to do monitoring, train workers on the use of controls, and set up some kind of regulated areas to indicate where respirator use would be required. It is also likely that, under this alternative, many employers would follow the recommendations of Materion and the United Steelworkers to provide medical surveillance, PPE, and other protective measures for their workers (Materion and United Steelworkers, 2012). OSHA has not attempted to estimate the extent to which these ancillary provision costs would be incurred if they were not formally required or whether any of VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 All Ancillary Provisions The SBAR Panel recommended that OSHA analyze a PEL-only standard as a regulatory alternative. The Panel also recommended that OSHA consider not applying ancillary provisions of the standard where exposure levels are low so as to minimize costs for small businesses (SBAR, 2008). In response to these recommendations, OSHA analyzed Regulatory Alternative #7, a PEL-only standard, and Regulatory Alternative #8, which would apply ancillary provisions of the beryllium standard only where exposures exceed PO 00000 Frm 00150 Fmt 4701 Sfmt 4700 E:\FR\FM\09JAR2.SGM 09JAR2 ER09JA17.056</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS only where exposures exceed the TWA PEL or STEL. The Agency therefore also considered Regulatory Alternative #6, which would drop the provisions of (f)(2)(i) from the final standard and make conforming edits to paragraphs (f)(2)(ii) and (iii). This regulatory alternative does not eliminate the need for engineering controls to comply with asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations these costs under Regulatory Alternative #7 would reasonably be attributable to the final rule. The total costs for this alternative are $12.5 million at a 3% discount rate and $13.5 million at a 7% discount rate. OSHA has also estimated the effect of this regulatory alternative on the benefits of the rule, presented in Table VIII–16. As a result of eliminating all of the ancillary provisions, annualized benefits are estimated to decrease 71 percent, relative to the final rule, from $560.9 million to $211.9 million, using a 3 percent discount rate, and from $249.1 million to $94.0 million using a 7 percent discount rate. This estimate follows from OSHA’s analysis of benefits in Chapter VII of the FEA, which found that about 68 percent of the benefits of the final rule, evaluated at their mid-point value, were attributable to the combination of the ancillary provisions. As these estimates show, OSHA expects that the benefits estimated under the final rule will not be fully achieved if employers do not implement the ancillary provisions of the final rule. Both industry and worker groups have recognized that a comprehensive standard is needed to protect workers exposed to beryllium. The stakeholders’ recommended standard—that representatives of Materion, the primary beryllium producer, and the United Steelworkers union provided to OSHA—confirms the importance of ancillary provisions in protecting workers from the harmful effects of beryllium exposure (Materion and United Steelworkers, 2012). Ancillary provisions such as personal protective clothing and equipment, regulated areas, medical surveillance, hygiene areas, housekeeping requirements, and hazard communication all serve to reduce the risks to beryllium-exposed workers beyond that which the final TWA PEL alone could achieve. Under Regulatory Alternative #8, several ancillary provisions that the current final rule would require under a variety of exposure conditions (e.g., dermal contact, any airborne exposure, exposure at or above the action level) would instead only apply where exposure levels exceed the TWA PEL or STEL. Regulatory Alternative #8 affects the following provisions of the final standard: —Exposure monitoring: Whereas the scheduled monitoring option of the final standards requires monitoring every six months when exposure levels are at or above the action level and at or below the TWA PEL VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 and every three months when exposure levels exceed the TWA PEL, Regulatory Alternative #8 would require annual exposure monitoring where exposure levels exceed the TWA PEL or STEL; Æ Written exposure control plan: Whereas the final standards require written exposure control plans to be maintained in any facility covered by the standard, Regulatory Alternative #8 would require only facilities with exposures above the TWA PEL or STEL to maintain a plan; Æ PPE: Whereas the final standards require PPE when airborne exposure to beryllium exceeds, or can reasonably be expected to exceed, the PEL or STEL, and where there is a reasonable expectation of dermal contact with beryllium, Alternative #8 would require PPE only for employees exposed above the TWA PEL or STEL; Æ Medical Surveillance: Whereas the final standard’s medical surveillance provisions require employers to offer medical surveillance to employees exposed above the action level for 30 days per year, showing signs or symptoms of CBD, exposed to beryllium in an emergency, or when recommended by a medical opinion, Alternative #8 would require surveillance only for those employees exposed above the TWA PEL or STEL. To estimate the cost savings for this alternative, OSHA re-estimated the group of workers that would fall under the above provisions, with results presented in Table VIII–16. Combining these various adjustments along with associated unit costs, OSHA estimates that, under this regulatory alternative, the costs for the final rule would decline from $73.9 million to $35.8 million, using a 3 percent discount rate, and from $76.6 million to $37.9 million, using a 7 percent discount rate. The Agency has not quantified the impact of this alternative on the benefits of the rule. However, ancillary provisions that offer protective measures to workers exposed below the final TWA PEL, such as personal protective clothing and equipment, beryllium work areas, hygiene areas, housekeeping requirements, and hazard communication, all serve to reduce the risks to beryllium-exposed workers beyond that which the final TWA PEL and STEL could achieve. The remainder of this chapter discusses additional regulatory alternatives that apply to individual ancillary provisions. PO 00000 Frm 00151 Fmt 4701 Sfmt 4700 2619 Exposure Monitoring Paragraph (d) of the final standard, Exposure Assessment, allows employers to choose either the performance option or scheduled monitoring. The scheduled monitoring option requires semi-annual monitoring for those workers exposed at or above the action level but at or below the PEL and quarterly exposure monitoring for those workers exposed above the PEL. The rationale for this provision is provided in the preamble discussion of paragraph (a) in Section XVI, Summary and Explanation of the Standards. OSHA has examined three regulatory alternatives that would modify the requirements of periodic monitoring in the final rule. Under Regulatory Alternative #9, employers would be required to perform periodic exposure monitoring annually when exposures are at or above the action level or above the STEL, but at or below the TWA PEL. As shown in Table VIII–16, Regulatory Alternative #9 would decrease the annualized cost of the final rule by about $4.3 million using either a 3 percent or 7 percent discount rate. Under Regulatory Alternative #10, employers would be required to perform periodic exposure monitoring annually when exposures are at or above the action level. As shown in Table VIII–16, Regulatory Alternative #10 would decrease the annualized cost of the final rule by about $4.9 million using either a 3 percent or 7 percent discount rate. Under Regulatory Alternative #11, employers would be required to perform annual exposure monitoring where exposures are at or above the action level but at or below the TWA PEL and STEL. When exposures are above the TWA PEL, no periodic monitoring would be required. As shown in Table VIII–16, Regulatory Alternative #11 would decrease the annualized cost of the final rule by about $5.0 million using either a 3 percent or 7 percent discount rate. OSHA is unable to quantify the effect of this change on benefits but has judged the alternative adopted necessary and protective. Regulated Areas Final paragraph (e) for General Industry requires employers to establish and maintain beryllium work areas in any work area containing a process or operation that can release beryllium where employees are, or can reasonably be expected to be, exposed to airborne beryllium at any level or where there is the potential for dermal contact with beryllium, and regulated areas wherever airborne concentrations of beryllium exceed, or can reasonably be expected to E:\FR\FM\09JAR2.SGM 09JAR2 2620 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS exceed, the TWA PEL or STEL. The Shipyards standard also requires regulated areas. The Construction standard has a comparable competent person requirement. Employers in General Industry and Shipyards are required to demarcate regulated areas and limit access to regulated areas to authorized persons. The SBAR Panel report recommended that OSHA consider dropping or limiting the provision for regulated areas (SBAR, 2008). In response to this recommendation, OSHA examined Regulatory Alternative #12, which would eliminate the requirement that employers establish regulated areas in the General Industry and Maritime standards, and eliminate the competent person requirement in the Construction standard. This alternative would not eliminate the final requirement to establish beryllium work areas, where required. As shown in Table VIII–16, Regulatory Alternative #12 would decrease the annualized cost of the final rule by about $1.0 million using either a 3 or 7 percent discount rate. Personal Protective Clothing and Equipment Regulatory Alternative #13 would modify the requirements for personal protective equipment (PPE) by eliminating the requirement for appropriate PPE whenever there is potential for skin contact with beryllium or beryllium-contaminated surfaces. This alternative would be narrower, and thus less protective, than the PPE requirement in the final standards, which require PPE to be used where airborne exposure exceeds, or can reasonably be expected to exceed, the TWA PEL or STEL, or where there is a reasonable expectation of dermal contact with beryllium. The economic analysis for the final standard already contains costs for protective clothing, namely gloves, for all employees who can reasonably be expected to be have dermal contact with beryllium; thus OSHA estimated the cost of this alternative as the cost reduction from not providing gloves under these circumstances. As shown in Table VIII–16, Regulatory Alternative #13 would decrease the annualized cost of the final rule by about $481,000 using either a 3 percent or 7 percent discount rate. • Medical Surveillance The final requirements for medical surveillance include: (1) Medical examinations, including a test for beryllium sensitization, for employees who are or are reasonably expected to be exposed to beryllium at or above the VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 action level for more than 30 days per year, who show signs or symptoms of CBD or other beryllium-related health effects, are exposed to beryllium in an emergency, or whose more recent written medical opinion required by paragraph (k)(6) or (k)(7) recommends such surveillance, and (2) low dose CT scans for employees when recommended by the PLCHP. The final standards require biennial medical exams to be provided for eligible employees. The standards also require tests for beryllium sensitization to be provided to eligible employees biennially. OSHA estimated in Chapter V of the FEA that the medical surveillance requirements would apply to 4,528 workers in general industry, of whom 387 already receive medical surveillance.35 In Chapter V of the FEA, OSHA estimated the costs of medical surveillance for the remaining 4,141 workers who would now have such protection due to the final standard. The Agency’s final analysis indicates that 4 workers with beryllium sensitization and 6 workers with CBD will be referred to a CBD diagnostic center annually as a result of this medical surveillance. Medical surveillance is particularly important for this rule because beryllium-exposed workers, including many workers exposed below the final PELs, are at significant risk of illness.36 OSHA has examined four regulatory alternatives (#15, #16, #18, and #22) that would modify the final rule’s requirements for employee eligibility, the tests that must be offered, and the frequency of periodic exams. Medical surveillance was a subject of special concern to SERs during the SBAR Panel process, and the SBAR Panel offered many comments and recommendations related to medical surveillance for OSHA’s consideration. Some of the Panel’s concerns have been partially addressed in this final rule, which was modified since the SBAR Panel was convened (see the preamble at Section XVI, Summary and Explanation of the Standards, for more detailed discussion). Regulatory Alternative #16 also responds to recommendations by the SBAR Panel to reduce burdens on small businesses by dropping or reducing the frequency of medical surveillance requirements. OSHA has determined that a significant risk of beryllium sensitization, CBD, and lung cancer 35 See baseline compliance rates for medical surveillance in Chapter III of the FEA, Table III–20. 36 OSHA did not estimate, and the benefits analysis does not include, monetized benefits resulting from early discovery of illness. PO 00000 Frm 00152 Fmt 4701 Sfmt 4700 exists at exposure levels below the final TWA PEL and that there is evidence that beryllium sensitization can occur even from short-term exposures (see the preamble at Section V, Health Effects, and Section VII, Significance of Risk). The Agency therefore anticipates that more employees would develop adverse health effects without receiving the benefits of early intervention in the disease process because they are not eligible for medical surveillance (see section XVI of this preamble, the Summary and Explanation for paragraph (k)). Regulatory Alternative #15 would decrease eligibility for medical surveillance to employees who are exposed to beryllium above the final PEL To estimate the cost of Regulatory Alternative #15, OSHA assumed that all workers exposed above the PEL before the final rule would continue to be exposed after the standard is promulgated. Thus, this alternative eliminates costs for medical exams for the number of workers exposed between the action level and the TWA PEL. As shown in Table VIII–16, Regulatory Alternative #15 would decrease the annualized cost of the final rule by about $4.5 million using a discount rate of 3 percent, and by about $4.8 million using a discount rate of 7 percent. In response to concerns raised during the SBAR Panel process about testing requirements, OSHA considered two regulatory alternatives that would provide greater flexibility in the program of tests provided as part of an employer’s medical surveillance program. Under Regulatory Alternative #16, employers would not be required to offer employees testing for beryllium sensitization. As shown in Table VIII– 16, this alternative would decrease the annualized cost of the final rule by about $2.4 million using either a 3 percent or 7 percent discount rate. Regulatory Alternative #18 would eliminate the CT scan requirement from the final rule. This alternative would decrease the annualized cost of the final rule by about $613,000 using a discount rate of 3 percent, and by about $643,000 using a discount rate of 7 percent. • Medical Removal Under paragraph (l) of the final standard, Medical Removal, employees in jobs with exposure at or above the action level become eligible for medical removal when they provide their employers with a written medical report indicating they are diagnosed with CBD or confirmed positive for beryllium sensitization, or if a written medical opinion recommends medical removal E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS in accordance with the medical surveillance paragraph of the standards. When an employee chooses removal, the employer is required to remove the employee to comparable work in an environment where beryllium exposure is below the action level if such work is available and the employee is either already qualified or can be trained within one month. If comparable work is not available, the employer must place the employee on paid leave for six VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 months or until comparable work becomes available (whichever comes first). Or, rather than choosing removal, an eligible employee could choose to remain in a job with exposure at or above the action level, in which case the employer would have to provide, and the employee would have to use, a respirator. The SBAR Panel report included a recommendation that OSHA give careful consideration to the impacts that an PO 00000 Frm 00153 Fmt 4701 Sfmt 4700 2621 MRP requirement could have on small businesses (SBAR, 2008). In response to this recommendation, OSHA analyzed Regulatory Alternative #22, which would remove the final requirement that employers offer MRP. As shown in Table VIII–16, this alternative would decrease the annualized cost of the final rule by about $1.2 million using a discount rate of 3 percent, and by about $1.3 million using a discount rate of 7 percent. E:\FR\FM\09JAR2.SGM 09JAR2 2622 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Table Vlll-16 Cost of Regulatory Alternatives Affecting Ancillary Provisions (2015 dollars) Total Cost Incremental Cost Benefits Relative to Rule Incremental Benefits Relative to Rule 3% Discount Rate Rule - $73,868,230 Alternative 7: Update Z table 1910.1000 only (No ancillary $560,873,424 $12,516,905 -$61,351,325 $35,794,047 -$38,07 4,183 $69,544,910 -$4,323,319 $69,021,502 -$4,846,728 $68,847,033 -$5,021 '197 $72,854,475 -$1,013,754 $73,387,012 -$481,217 $69,405,421 -$4,462,809 Alternative 16: No BeLPTs in medical surveillance $71 ,492,837 -$2,375,392 Alternative 17: BeLPTs part of annual exam, rather than biennially. $76,666,395 $2,798,166 Alternative 18: No CT Scans $73,236,886 -$631,343 Alternative 22: No medical removal protection $72,717,171 -$1,151,058 $76,637,363 - - provisions) Alternative 8: Ancillary provisions apply only when exposure above PEL/STEL Alternative 9: Annual periodic monitoring between AL!STEL and $211,870,162 -$349,003,262 PEL Alternative 10: Annual periodic monitoring AL!STEL to PEL and> PEL. Alternative 11: Annual periodic monitoring when exposure above AL/STEL, biannual monitoring when exposure above PEL Alternative 12: No regulated areas, ancillary provisions triggered by PEL or STEL Alternative 13: No PPE wherever there is contact with beryllium or beryllium contaminated surfaces Alternative 15: Medical surveillance applies to workers above the PEL post-rule 7% Discount Rate Rule Alternative 7: Update Z table 1910.1000 only (No ancillary $249,078,679 $13,541,714 -$63,095,649 $37,894,318 -$38,743,045 $72,314,044 -$4,323,319 $71 '790,636 -$4,846,728 $71,616,166 -$5,021 '197 $75,594,292 -$1,043,071 $76,156,146 -$481,217 $71 ,882,838 -$4,754,525 $74,214,979 -$2,422,384 Alternative 17: BeLPTs part of annual exam, rather than biennially. $79,356,557 $2,719,194 Alternative 18: No CT Scans $75,994,175 -$643,188 Alternative 22: No medical removal protection $75,338,041 - -$1,299,322 provisions) Alternative 8: Ancillary provisions apply only when exposure above PEL/STEL Alternative 9: Annual periodic monitoring between AL!STEL and PEL Alternative 10: Annual periodic monitoring AL!STEL to PEL and> PEL. Alternative 11: Annual periodic monitoring when exposure above AL!STEL, biannual monitoring when exposure above PEL Alternative 12: No regulated areas, ancillary provisions triggered $94,023,516 -$155,055,163 by PEL or STEL Alternative 13: No PPE wherever there is contact with beryllium or beryllium contaminated surfaces Alternative 15: Medical surveillance applies to workers above the PEL post-rule Source: US DOL, OSHA, Directorate of Standards and Guidance, Office of Regulatory Analysis VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00154 Fmt 4701 Sfmt 4725 E:\FR\FM\09JAR2.SGM 09JAR2 ER09JA17.057</GPH> asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Alternative 16: No BeLPTs in medical surveillance Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 2623 • Table VIII–17: SBAR Panel Recommendations and OSHA Responses SBAR Panel Table VIII–17 lists all of the SBAR Panel recommendations and OSHA’s response to those recommendations. Panel recommendation OSHA response The Panel recommends that OSHA evaluate carefully the costs and technological feasibility of engineering controls at all PEL options, especially those at the lowest levels. The Panel recommends that OSHA consider alternatives that would alleviate the need for monitoring in operations with exposures far below the PEL. The Panel also recommends that OSHA consider explaining more clearly how employers may use ‘‘objective data’’ to estimate exposures. Although the draft proposal contains a provision allowing employers to initially estimate exposures using ‘‘objective data’’ (e.g., data showing that the action level is unlikely to be exceeded for the kinds of process or operations an employer has), the SERs did not appear to have fully understood how this alternative may be used. OSHA has reviewed its cost estimates and the technological feasibility of engineering controls at various PEL levels. These issues are discussed in the Regulatory Alternatives Chapter. OSHA has removed the initial exposure monitoring requirement for workers likely to be exposed to beryllium by skin or eye contact through routine handling of beryllium powders or dusts or contact with contaminated surfaces. The periodic monitoring requirement presented in the SBAR Panel report required monitoring every 6 months for airborne levels at or above the action level but below the PEL, and every 3 months for exposures at or above the PEL. The final standard, in line with OSHA’s normal practice, requires exposure monitoring every three months for levels above the PEL or STEL and every six months for exposures between the action level and the PEL. In the preamble to the final standard, OSHA provides further explanation on the use of objective data, which would exempt employers from the requirements of the final rule. These issues are discussed in the preamble at Section XVI, Summary and Explanation of the Standards, (d): Exposure Monitoring. In the preamble to the final standards, OSHA discusses the issue of objective data. While OSHA recognizes that some establishments will have objective data, for purposes of estimating the cost of this rule, the Agency is assuming that no establishments will use objective data. The Agency recognizes that this will overestimate costs. The use of objective data is discussed in the preamble at Section XVI, Summary and Explanation of the Standards, (d): Exposure Monitoring. asabaliauskas on DSK3SPTVN1PROD with PROPOSALS The Panel recommends that OSHA consider providing some type of guidance to describe how to use objective data to estimate exposures in lieu of conducting personal sampling. Using objective data could provide significant regulatory relief to several industries where airborne exposures are currently reported by SERs to be well below even the lowest PEL option. In particular, since several ancillary provisions, which may have significant costs for small entities may be triggered by the PEL or an action level, OSHA should consider encouraging and simplifying the development of objective data from a variety of sources. The Panel recommends that OSHA revisit its analysis of the costs of regulated areas if a very low PEL is proposed. Drop or limit the provision for regulated areas: SERs with very low exposure levels or only occasional work with beryllium questioned the need for separating areas of work by exposure level. Segregating machines or operations, SERs said, would affect productivity and flexibility. Until the health risks of beryllium are known in their industries, SERs challenged the need for regulated areas. The Panel recommends that OSHA revisit its cost model for hygiene areas to reflect SERs’ comments that estimated costs are too low and more carefully consider the opportunity costs of using space for hygiene areas where SERs report they have no unused space in their physical plant for them. The Panel also recommends that OSHA consider more clearly defining the triggers (skin exposure and contaminated surfaces) for the hygiene areas provisions. In addition, the Panel recommends that OSHA consider alternative requirements for hygiene areas dependent on airborne exposure levels or types of processes. Such alternatives might include, for example, hand washing facilities in lieu of showers in particular cases or different hygiene area triggers where exposure levels are very low. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00155 Fmt 4701 SERs with very low exposure levels or only occasional work with beryllium will not be required to have regulated areas unless exposures are above the final PEL of 0.2 μg/m3. The final standards for general industry and maritime require the employer to establish and maintain a regulated area wherever employees are, or can be expected to be, exposed to airborne beryllium at levels above the PEL of 0.2 μg/m3. There is no regulated area requirement in Construction. In General industry employers must ensure that employees who have dermal contact with beryllium wash any exposed skin at the end of the activity, process, or work shift and prior to eating, drinking, smoking, chewing tobacco or gum, applying cosmetics, or using the toilet. In General Industry, although there is a shower requirement, OSHA has determined that establishments required to have showers will already have them, and employers will not have to install showers to comply with the beryllium standard (Please see the Hygiene Areas and Practices section in Chapter V of the FEA). In Construction and Maritime, for each employee required to use personal protective clothing or equipment, the employer must ensure that employees who have dermal contact with beryllium wash any exposed skin at the end of the activity, process, or work shift and prior to eating, drinking, smoking, chewing tobacco or gum, applying cosmetics, or using the toilet. For Construction and Maritime, language involving showers has been removed but employers are still required to provide change rooms. Where personal protective clothing or equipment must be used, the employer must provide washing facilities. The standards do not require that eating and drinking areas be provided, but impose requirements when the employer chooses to have eating and drinking areas. Change rooms have been costed in general industry for employees who work in a beryllium work area and in construction and maritime for employees who required to use personal protective clothing or equipment. The Agency has determined that the long-term rental of modular units is representative of costs for a range of reasonable approaches to comply with the change room part of the provision. Alternatively, employers could renovate and rearrange their work areas in order to meet the requirements of this provision. Sfmt 4700 E:\FR\FM\09JAR2.SGM 09JAR2 2624 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Panel recommendation OSHA response The Panel recommends that OSHA consider clearly explaining the purpose of the housekeeping provision and describing what affected employers must do to achieve it. For example, OSHA should consider explaining more specifically what surfaces need to be cleaned and how frequently they need to be cleaned. The Panel recommends that the Agency consider providing guidance in some form so that employers understand what they must do. The Panel also recommends that once the requirements are clarified that the Agency re-analyze its cost estimates. The Panel also recommends that OSHA reconsider whether the risk and cost of all parts of the medical surveillance provisions are appropriate where exposure levels are very low. In that context, the Panel recommends that OSHA should also consider the special problems and costs to small businesses that up until now may not have had to provide or manage the various parts of an occupational health standard or program. In the preamble to the final rule, OSHA has clarified the purpose of the housekeeping provision. However, due to the variety of work settings in which beryllium is used, OSHA has concluded that a highly specific directive in the preamble on what surfaces need to be cleaned, and how frequently, would not provide effective guidance to businesses. Instead, at the suggestion of industry and union stakeholders (Materion and USW, 2012), OSHA’s final standards include a more flexible requirement for employers to develop a written exposure control plan specific to their facilities. In general industry, the employer must establish procedures to maintain all surfaces in beryllium work areas as free as practicable of beryllium as required by the written exposure control plan. Other than requirements pertaining to eating and drinking areas, there are no requirements to maintain surface cleanliness in construction or maritime. These issues are discussed in the preamble at Section XVI, Summary and Explanation of the Standards, (f) Methods of Compliance and (j) Housekeeping. The adoption of Regulatory Alternative #20 in the PEA reduced the frequency of physical examinations from annual to biennial, matching the frequency of BeLPT testing in the final rule. These alternatives for medical surveillance are discussed in the Regulatory Alternatives Chapter, Chapter VIII and in the preamble at section XVI, Summary and Explanation of the Standards, (k) Medical Surveillance. Under the final standards, skin exposure is not a trigger for medical removal (unlike the draft version used for the SBAR Panel). Employees are only eligible for medical removal if they are in a job with airborne exposure at or above the action level and provide the employer with a written medical report confirming that they are sensitized or have been diagnosed with CBD, or that the physician recommends removal, or if the employer receives a written medical opinion recommending removal of the employee. After becoming eligible for medical removal an employee may choose to remain in a job with exposure at or above the action level, provided that the employer provides and the employee wears a respirator in accordance with the Respiratory Protection standard (29 CFR 1910.134). If the employee chooses removal, the employer is only required to place the employee in comparable work with exposure below the action level if such work is available; if such work is not available, the employer may place the employee on paid leave for six months or until such work becomes available, whichever comes first. OSHA discusses the basis of the provision in the preamble at Section XVI, Summary and Explanation of the Standards, (l) Medical Removal Protection. OSHA provides an analysis of costs and economic impacts of the provision in the FEA in Chapter V and Chapter VI, respectively. As stated above, the triggers for medical surveillance in the final standard have changed from those presented to the SBAR Panel. Whereas the draft standard presented at the SBAR Panel required medical surveillance for employees with skin contact—potentially applying to employees with any level of airborne exposure—the final standard ties medical surveillance to exposures at or above the action level for more than 30 days per year (or signs or symptoms of berylliumrelated health effects, emergency exposure, or a medical opinion recommending medical surveillance on the basis of a CBD or sensitization diagnosis). Thus, small businesses with exposures below the final action level would not need to provide or manage medical surveillance for their employees unless employees develop signs or symptoms of beryllium-related health effects or are exposed in emergencies. These issues are discussed in the preamble at section XVI, Summary and Explanation of the Standards, (k) Medical Surveillance. OSHA has reviewed the possible effects of the final regulation on market demand and/or foreign production, in addition to the Agency’s usual measures of economic impact (costs as a fraction of revenues and profits). This discussion can be found in Chapter VI of the FEA (entitled Economic Feasibility Analysis and Regulatory Flexibility Determination). The Panel recommends that OSHA consider that small entities may lack the flexibility and resources to provide alternative jobs to employees who test positive for the BeLPT, and whether medical removal protection (MRP) achieves its intended purpose given the course of beryllium disease. The Panel also recommends that if MRP is implemented, that its effects on the viability of very small firms with a sensitized employee be considered carefully. asabaliauskas on DSK3SPTVN1PROD with PROPOSALS The Panel recommends that OSHA consider more clearly defining the trigger mechanisms for medical surveillance and also consider additional or alternative triggers—such as limiting the BeLPT to a narrower range of exposure scenarios and reducing the frequency of BeLPT tests and physical exams. The Panel also recommends that OSHA reconsider whether the risk and cost of all parts of the medical surveillance provisions are appropriate where exposure levels are very low. In that context, the Panel recommends that OSHA should also consider the special problems and costs to small businesses that up until now may not have had to provide or manage the various parts of an occupational health standard or program. The Panel recommends that the Agency, in evaluating the economic feasibility of a potential regulation, consider not only the impacts of estimated costs on affected establishments, but also the effects of the possible outcomes cited by SERs: Loss of market demand, the loss of market to foreign competitors, and of U.S. production being moved abroad by U.S. firms. The Panel also recommends that OSHA consider the potential burdens on small businesses of dealing with employees who have a positive test from the BeLPT. OSHA may wish to address this issue by examining the experience of small businesses that currently provide the BeLPT test. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00156 Fmt 4701 Sfmt 4700 E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 2625 Panel recommendation OSHA response The Panel recommends that OSHA consider seeking ways of minimizing costs for small businesses where the exposure levels may be very low. Clarifying the use of objective data, in particular, may allow industries and establishments with very low exposures to reduce their costs and involvement with many provisions of a standard. The Panel also recommends that the Agency consider tiering the application of ancillary provisions of the standard according to exposure levels and consider a more limited or narrowed scope of industries. The provisions in the standard presented in the SBAR panel report applied to all employees, whereas the final standard’s ancillary provisions are only applied to employees in work areas who are, or can reasonably be expected to be, exposed to airborne beryllium. In addition, the scope of the final standard includes several limitations. Whereas the standard presented in the SBAR panel report covered beryllium in all forms and compounds in general industry, construction, and maritime, the scope of the final standard (1) does not apply to beryllium-containing articles that the employer does not process; and (2) does not apply to materials that contain less than 0.1% beryllium by weight if the employer has objective data demonstrating that employee exposure to beryllium will remain below the action level as an 8-hour TWA under any foreseeable conditions. In the preamble to the final standard, OSHA has clarified the circumstances under which an employer may use historical and objective data in lieu of initial monitoring (Section XVI, Summary and Explanation of the Standards, (d) Exposure Monitoring). OSHA also considered two Regulatory Alternatives that would reduce the impact of ancillary alternatives on employers, including small businesses. Regulatory Alternative #7, a PEL-only standard, would drop all ancillary provisions from the standard. Regulatory Alternative #8 would limit the application of several ancillary provisions, including Exposure Monitoring, the written exposure control plan section of Method of Compliance, PPE, Housekeeping, and Medical Surveillance, to operations or employees with exposure levels exceeding the TWA PEL or STEL. These alternatives are discussed in the Regulatory Alternatives, Chapter VIII of the FEA. The explanation and analysis for all health outcomes (and their scientific basis) are discussed in the preamble to the final standard at Section V, Health Effects, and Section VI, Risk Assessment. They are also reviewed in the preamble to the final standard at Section VII, Significance of Risk, and the Benefits Chapter of the FEA. As discussed above, OSHA considered Regulatory Alternatives #7 and #8, which would eliminate or reduce the impact of ancillary provisions on employers, respectively. These alternatives are discussed in Chapter VIII of the FEA. asabaliauskas on DSK3SPTVN1PROD with PROPOSALS The Panel recommends that OSHA provide an explanation and analysis for all health outcomes (and their scientific basis) upon which it is regulating employee exposure to beryllium. The Panel also recommends that OSHA consider to what extent a very low PEL (and lower action level) may result in increased costs of ancillary provisions to small entities (without affecting airborne employee exposures). Since in the draft proposal the PEL and action level are critical triggers, the Panel recommends that OSHA consider alternate action levels, including an action level set at the PEL, if a very low PEL is proposed. The Panel recommends that OSHA consider more clearly and thoroughly defining the triggers for ancillary provisions, particularly the skin exposure trigger. In addition, the Panel recommends that OSHA clearly explain the basis and need for small entities to comply with ancillary provisions. The Panel also recommends that OSHA consider narrowing the trigger related to skin and contamination to capture only those situations where surfaces and surface dust may contain beryllium in a concentration that is significant enough to pose any risk—or limiting the application of the trigger for some ancillary provisions. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00157 Fmt 4701 OSHA has removed skin exposure as a trigger for several ancillary provisions in the final standard, including Exposure Assessment and Medical Surveillance. For each employee working in a beryllium work area in general industry, and for each employee required to use personal protective clothing or equipment in construction and maritime, the employer must ensure that employees who have dermal contact with beryllium wash any exposed skin at the end of the activity, process, or work shift and prior to eating, drinking, smoking, chewing tobacco or gum, applying cosmetics, or using the toilet. In addition, the potential for dermal contact with beryllium triggers requirements related to beryllium work areas, the written exposure control plan, washing facilities, housekeeping and training: For some ancillary provisions, including PPE and Housekeeping, the requirements are triggered by visible contamination with beryllium or dermal contact with beryllium. In Construction and Maritime, for each employee required to use personal protective clothing or equipment, the employer must ensure that employees who have dermal contact with beryllium wash any exposed skin at the end of the activity, process, or work shift and prior to eating, drinking, smoking, chewing tobacco or gum, applying cosmetics, or using the toilet. For Construction and Maritime, language involving showers has been removed and employers are required to provide change rooms for employees required to use personal protective clothing or equipment and required to remove their personal clothing. Where dermal contact occurs, employers must provide washing facilities. These requirements are discussed in the preamble at Section XVI, Summary and Explanation of the Standards. The Agency has also explained the basis and need for compliance with ancillary provisions in the preamble at Section XVI, Summary and Explanation of the Standards. Sfmt 4700 E:\FR\FM\09JAR2.SGM 09JAR2 2626 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Panel recommendation OSHA response Several SERs said that OSHA should first assume the burden of describing the exposure level in each industry rather than employers doing so. Others said that the Agency should accept exposure determinations made on an industry-wide basis, especially where exposures were far below the PEL options under consideration. As noted above, the Panel recommends that OSHA consider alternatives that would alleviate the need for monitoring in operations or processes with exposures far below the PEL. The use of objective data is a principal method for industries with low exposures to satisfy compliance with a proposed standard. The Panel recommends that OSHA consider providing some guidance to small entities in the use of objective data. The Panel recommends that OSHA consider more fully evaluating whether the BeLPT is suitable as a test for beryllium sensitization in an OSHA standard and respond to the points raised by the SERs about its efficacy. In addition, the Agency should consider the availability of other tests under development for detecting beryllium sensitization and not limit either employers’ choices or new science and technology in this area. Finally, the Panel recommends that OSHA re-consider the trigger for medical surveillance where exposures are low and consider if there are appropriate alternatives. In the Technological Feasibility Analysis presented in the FEA, OSHA has described the baseline exposure levels in each industry or application group. In the preamble to the final standards, OSHA discusses the issue of objective data. While OSHA recognizes that some establishments will have objective data, for purposes of the economic analysis, the Agency is choosing to assume that no establishments will use objective data. The Agency recognizes that this will overestimate costs. asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Seeking ways of minimizing costs to low-risk processes and operations: OSHA should consider alternatives for minimizing costs to industries, operations, or processes that have low exposures. Such alternatives may include, but not be limited to: Encouraging the use of objective data by such mechanisms as providing guidance for objective data; assuring that triggers for skin exposure and surface contamination are clear and do not pull in low-risk operations; providing guidance on least-cost ways for low risk facilities to determine what provisions of the standard they need to comply with; and considering ways to limit the scope of the standard if it can be ascertained that certain processes do not represent a significant risk. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00158 Fmt 4701 OSHA has provided discussion of the BeLPT in the preamble to the final rule at section V, Health Effects; and in the preamble at section XVI, Summary and Explanation of the Standards, (b) Definitions and (k) Medical Surveillance. In the regulatory text, OSHA has clarified that a test for beryllium sensitization other than the BeLPT may be used in lieu of the BeLPT if a more reliable and accurate diagnostic test is developed. As stated above, the triggers for medical surveillance in the final standard have changed from those presented to the SBAR Panel. Whereas the draft standard presented during the SBREFA process required medical surveillance for employees with skin contact—potentially applying to employees with any level of airborne exposure—the final standard ties medical surveillance to exposures above the final action level of 0.1 μg/m3 (or signs or symptoms of beryllium-related health effects, emergency exposure, or a medical opinion recommending medical surveillance on the basis of a CBD or sensitization diagnosis). The triggers for medical surveillance are discussed in the preamble at section XVI, Summary and Explanation of the Standards, (k) Medical Surveillance. OSHA has considered Regulatory Alternative #16, where employers would not be required to offer employees a BeLPT that tests for beryllium sensitization. from the final standard. This alternative is discussed in the Regulatory Alternatives Chapter and in in the preamble at Section XVI, Summary and Explanation of the Final Standard, (k) Medical Surveillance. The standard presented in the SBAR panel report had skin exposure as a trigger. The final standards require PPE when there is a reasonable expectation of dermal contact with beryllium. The employer must ensure that employees who have dermal contact with beryllium wash any exposed skin at the end of the activity, process, or work shift and prior to eating, drinking, smoking, chewing tobacco or gum, applying cosmetics, or using the toilet. OSHA uses an exposure profile to determine which workers will be affected by the standards. As a result, in General Industry and Maritime, the final standards require regulated areas where exposures can exceed the PEL or STEL. In General Industry, beryllium work areas must be established in areas that contain a process or operation that can release beryllium where employees are, or can reasonably be expected to be, exposed to airborne beryllium at any level or where there is the potential for dermal contact with beryllium. In Construction, the written exposure control plan must contain procedures used to restrict access to work areas when airborne exposures are, or can reasonably be expected to be, above the TWA PEL or STEL, and the competent person must implement the plan. In addition, the scope of the final standards includes several limitations. Whereas the standard presented in the SBAR panel report covered beryllium in all forms and compounds in general industry, construction, and maritime, the scope of the final standard (1) does not apply to beryllium-containing articles that the employer does not process; and (2) does not apply to materials that contain less than 0.1% beryllium by weight where the employer has objective data demonstrating that employee exposure to beryllium will remain below the action level as an 8-hour TWA under any foreseeable conditions. In the preamble to the final standards, OSHA discusses the issue of objective data. While OSHA recognizes that some establishments will have objective data, for purposes of this rule, the Agency is choosing to assume that no establishments will use objective data. The Agency recognizes that this will overestimate costs. Sfmt 4700 E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 2627 Panel recommendation OSHA response PEL-only standard: One SER recommended a PEL-only standard. This would protect employees from airborne exposure risks while relieving the beryllium industry of the cost of the ancillary provisions. The Panel recommends that OSHA, consistent with its statutory obligations, analyze this alternative. Alternative triggers for ancillary provisions: The Panel recommends that OSHA clarify and consider eliminating or narrowing the triggers for ancillary provisions associated with skin exposure or contamination. In addition, the Panel recommends that OSHA should consider trying ancillary provisions dependent on exposure rather than have these provisions all take effect with the same trigger. If OSHA does rely on a trigger related to skin exposure, OSHA should thoroughly explain and justify this approach based on an analysis of the scientific or research literature that shows a risk of sensitization via exposure to skin. If OSHA adopts a relatively low PEL, OSHA should consider the effects of alternative airborne action levels in pulling in many low risk facilities that may be unlikely to exceed the PEL—and consider using only the PEL as a trigger at very low levels. OSHA considered Regulatory Alternative #7, a PEL-only standard. This alternative is discussed in Chapter VIII of the FEA. asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Revise the medical surveillance provisions, including eliminating the BeLPT: The BeLPT was the most common complaint from SERs. The Panel recommends that OSHA carefully examine the value of the BeLPT and consider whether it should be a requirement of a medical surveillance program. The Panel recommends that OSHA present the scientific evidence that supports the use of the BeLPT as several SERs were doubtful of its reliability. The Panel recommends that OSHA also consider reducing the frequency of physicals and the BeLPT, if these provisions are included in a proposal. The Panel recommends that OSHA also consider a performance-based medical surveillance program, permitting employers in consultation with physicians and health experts to develop appropriate tests and their frequency. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00159 Fmt 4701 OSHA has removed skin exposure as a trigger for several ancillary provisions in the final standard, including Exposure Monitoring and Medical Surveillance. In General Industry, the employer must ensure that employees who have dermal contact with beryllium wash any exposed skin at the end of the activity, process, or work shift and prior to eating, drinking, smoking, chewing tobacco or gum, applying cosmetics, or using the toilet. In Construction and Maritime, for each employee required to use personal protective clothing or equipment, the employer must ensure that employees who have dermal contact with beryllium wash any exposed skin at the end of the activity, process, or work shift and prior to eating, drinking, smoking, chewing tobacco or gum, applying cosmetics, or using the toilet. In addition, the language of the final standard regarding skin exposure has changed: For some ancillary provisions, including PPE and Housekeeping, the requirements are triggered by visible contamination with beryllium or skin contact with beryllium compounds. These requirements are discussed in the preamble at Section XVI, Summary and Explanation of the Standards. OSHA has explained the scientific basis for minimizing skin exposure to beryllium in the preamble to the final rule at Section V, Health Effects, and explains the basis for specific ancillary provisions related to skin exposure in the preamble at Section XVI, Summary and Explanation of the Standards. In the final standards, the application of ancillary provisions is dependent on exposure, and not all provisions take effect with the same trigger. A number of requirements are triggered by exposures (or a reasonable expectation of exposures) above the PEL or action level (AL). As discussed above, OSHA considered Regulatory Alternatives #7 and #8, which would eliminate or reduce the impact of ancillary provisions on employers, respectively. These alternatives are discussed in Chapter VIII of the FEA. After considering comments from SERs, OSHA has revised the medical surveillance provision and removed the skin exposure trigger for medical surveillance. As a result, OSHA estimates that the number of small-business employees requiring a BELPT will be substantially reduced. OSHA has provided discussion of the BeLPT in the preamble to the final rule at section V, Health Effects; and in the preamble at section XVI, Summary and Explanation of the Standards, (b) Definitions and (k) Medical Surveillance. In the regulatory text, OSHA has clarified that a test for beryllium sensitization other than the BeLPT may be used in lieu of the BeLPT if a more reliable and accurate diagnostic test is developed. The frequency of periodic BeLPT testing in the final standard is biennial, whereas annual testing was included in the draft standard presented to the SBAR Panel. Regulatory Alternative #20 would reduce the frequency of physical examinations from biennial to annual, matching the frequency of BeLPT testing in the final rule. In response to the suggestion to allow performance-based medical surveillance, OSHA considered two regulatory alternatives that would provide greater flexibility in the program of tests provided as part of an employer’s medical surveillance program. Regulatory Alternative #16 would eliminate BeLPT testing requirements from the final standard. Regulatory Alternative #18 would eliminate the CT scan requirement from the final standard. These alternatives are discussed in the Regulatory Alternatives Chapter and in the preamble at Section XVI, Summary and Explanation of the Standards, (k) Medical Surveillance. Sfmt 4700 E:\FR\FM\09JAR2.SGM 09JAR2 2628 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Panel recommendation OSHA response No medical removal protection (MRP): OSHA’s draft proposed standard did not include any provision for medical removal protection, but OSHA did ask the SERs to comment on MRP as a possibility. Based on the SER comments, the Panel recommends that if OSHA includes an MRP provision, the agency provide a thorough analysis of why such a provision is needed, what it might accomplish, and what its full costs and economic impacts on those small businesses that need to use it might be. The final standard includes an MRP provision. OSHA discusses the basis of the provision in the preamble at Section XVI, Summary and Explanation of the Standards, (l) Medical Removal Protection. OSHA provides an analysis of costs and economic impacts of the provision in the FEA in Chapter V and Chapter VI, respectively. The Agency considered Alternative #22, which would eliminate the MRP requirement from the standard. This alternative is discussed in the Regulatory Alternatives Chapter and in the preamble at section XVI, Summary and Explanation of the Standards, (l) Medical Removal Protection. IX. OMB Review Under the Paperwork Reduction Act of 1995 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Introduction The three final beryllium standards (collectively ‘‘the standards’’) for occupational exposure to beryllium— general industry (29 CFR 1910.1024), construction (29 CFR 1926.1124), and shipyard (29 CFR 1915.1024)—contain collection of information (paperwork) requirements that are subject to review by the Office of Management and Budget (OMB) under the Paperwork Reduction Act of 1995 (PRA), 44 U.S.C. 3501 et seq, and OMB’s regulations at 5 CFR part 1320. The PRA requires that agencies obtain approval from OMB before conducting any collection of information (44 U.S.C. 3507). The PRA defines ‘‘collection of information’’ to mean ‘‘the obtaining, causing to be obtained, soliciting, or requiring the disclosure to third parties or the public, of facts or opinions by or for an agency, regardless of form or format’’ (44 U.S.C. 3502(3)(A)). In accordance with the PRA (44 U.S.C. 3506(c)(2)), OSHA solicited public comments on the Beryllium Standard for General Industry (29 CFR 1910.1024), Information Collection Request (ICR) (paperwork burden hour and cost analysis) for the proposed rule (80 FR 47555). The Department submitted this ICR to OMB for review in accordance with 44 U.S.C. 3507(d) on August 7, 2015. A copy of this ICR is available to the public at https:// www.reginfo.gov/public/do/PRAOMB History?ombControlNumber=12180267). On October 21, 2015, OMB issued a Notice of Action (NOA) assigning Beryllium Standard for General Industry new OMB Control Number 1218–0267 to use in future paperwork submissions involving this rulemaking. OMB requested that, ‘‘Prior to publication of the final rule, the agency should provide a summary of any comments related to the information collection and their response, including any changes made to the ICR as a result of comments. In VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 addition, the agency must enter the correct burden estimates.’’ The proposed rule invited the public to submit comments to OMB, in addition to OSHA, on the proposed collections of information with regard to the following: • Whether the proposed collections of information are necessary for the proper performance of the Agency’s functions, including whether the information is useful; • The accuracy of OSHA’s estimate of the burden (time and cost) of the collections of information, including the validity of the methodology and assumptions used; • The quality, utility, and clarity of the information collected; and • Ways to minimize the compliance burden on employers, for example, by using automated or other technological techniques for collecting and transmitting information (78 FR 56438). No public comments were received specifically in response to the proposed ICR submitted to OMB for review. However, several public comments submitted in response to the Notice of Proposed Rulemaking (NPRM), described earlier in this preamble, substantively addressed provisions containing collections of information and contained information relevant to the burden hour and costs analysis. These comments are addressed in the preamble, and OSHA considered them when it developed the revised ICR associated with these final standards. The Department of Labor submitted the final ICR January 9, 2017 containing a full analysis and description of the burden hours and costs associated with the collections of information of the standards to OMB for approval. A copy of the ICR is available to the public at https://www.reginfo.gov. OSHA will publish a separate notice in the Federal Register that will announce the results of OMB’s review. That notice will also include a list of OMB approved collections of information and total burden hours and costs imposed by the new standards. PO 00000 Frm 00160 Fmt 4701 Sfmt 4700 Under the PRA, Federal agency cannot conduct or sponsor a collection of information unless it is approved by OMB under the PRA, and the collection of information notice displays a currently valid OMB control number (44 U.S.C. 3507(a)(3)). Also, notwithstanding any other provision of law, no employer shall be subject to penalty for failing to comply with a collection of information if the collection of information does not display a currently valid OMB control number (44 U.S.C. 3512). The major collections of information found in the standards are listed below. Summary of Information Collection Requirements The Beryllium standards contain collection of information requirements which are essential components of the occupational safety and health standards that will assist both employers and their employees in identifying the exposures to beryllium and beryllium compounds, the medical effects of such exposures, and the means to reduce the risk of overexposures to beryllium and beryllium compounds. In the final ICR, OSHA has expanded its coverage to include the construction and shipyard industries—in order to tailor the collection of information requirements to the circumstances found in these sectors. The decision to include standards for construction and shipyards is based on information and comment submitted in response to the NPRM request for comment, and during the informal public hearing. 1. Title: Beryllium (29 CFR 1910.1024; 29 CFR 1915.1024; 29 CFR 1926. 1124). 2. Type of Review: New. 3. OMB Control Number: 1218–0267. 4. Affected Public: Business or other for-profit. This standard applies to employers in general industry, shipyard, and construction who have employees that may have occupational exposures to any form of beryllium, including compounds and mixtures, except those articles and materials exempted by paragraphs (a)(2) and (a)(3) of the Final standard. E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 5. Number of Respondents: 5,872 affected employers. 6. Frequency of Responses: On occasion; quarterly, semi-annually, annual; biannual. 7. Number of Responses: 246,433. 8. Average Time per Response: Varies from 5 minutes (.08 hours) for a clerical worker to generate and maintain an employee medical record, to more than 8 hours for a human resource manager to develop and implement a written exposure control plan. 9. Estimated Total Burden Hours: 196,894. 10. Estimated Cost (capital-operation and maintenance): $46,158,266. asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Discussion of Significant Changes in the Collections of Information Requirements Below is a summary of the collection of information requirements contained in the final rule, and a brief description of the most significant changes between the proposal and the final rule portions of the regulatory text containing collection of information requirements. One of the most significant changes between the NPRM and this final rule is that OSHA extended the scope of the rule so that the most of the provisions now also apply to construction and shipyard work. As a result, while most of the provisions are identical across all three standards (general industry, construction, and shipyards), there are technically more collections of information. However, for purposes of the review and explanation that follows, OSHA has focused on the changes to the general industry provisions and has not separately identified the additions to the construction and shipyard standard unless they deviate from the requirements in the general industry standard. A more detailed discussion of all the changes made to the proposed rule, including the requirements that include identified collection of information, is in Section XVIII: Summary and Explanation. The impact on information collections is also discussed in more detail in Item 8 of the ICR. Exposure Assessment Paragraph (d) sets forth requirements for assessing employee exposures to beryllium. Consistent with the definition of ‘‘airborne exposure’’ in paragraph (b) of these standards, exposure monitoring results must reflect the exposure to airborne beryllium that would occur if the employee were not using a respirator. Proposed paragraph (d) used the term ‘‘Exposure monitoring.’’ In the final rule, this term was changed to ‘‘Exposure assessment’’ throughout the VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 paragraph. This change in the final standards was made to align the provision’s purpose with the broader concept of exposure assessment beyond conducting air monitoring, including the use of objective data. OSHA added a paragraph (d)(2) as an alternative exposure assessment method to the scheduled monitoring requirements in the proposed rule. Under this option employers must assess 8-hour TWA exposure and the 15-minute short term exposure for each employee using any combination of air monitoring data and objective data sufficient to accurately characterize airborne exposure to beryllium. Proposed paragraph (d)(3), Periodic Exposure Monitoring, would have required employers whose initial monitoring results indicated that employee’s exposures results are at or above the action level and at or below the TWA PEL to conduct periodic exposure monitoring at least annually. Final paragraph (d)(3), Scheduled Monitoring Option, increased the frequency schedule for periodic monitoring and added a requirement to perform periodic exposure monitoring when exposures are above the PEL, paragraph (d)(3)(vi) and when exposures are above the STEL in paragraph (d)(3)(viii). Proposed paragraph (d)(4) would have required employers to conduct exposure monitoring within 30 days after a change in production processes, equipment, materials, personnel, work practices, or control methods that could reasonably be expected to result in new or additional exposures. OSHA changed the proposed requirement to require that employers perform reassessment of exposures when there is a change in ‘‘production, process, control equipment, personnel, or work practices’’ that may reasonably be expected to result in new or additional exposures at or above the action level or STEL. In addition, OSHA added ‘‘at or above the action level or STEL’’ to final paragraph (d)(4). In summary, the final rule requires that employers must perform reassessment of exposures when there is a change in production, process, control equipment, personnel, or work practices that may reasonably be expected to result in new or additional exposures at or above the action level or STEL. Proposed paragraph (d)(5)(i), Employee Notification of Monitoring Results, would have required employers in general industry to inform their employees of results within 15 working days after receiving the results of any exposure monitoring completed under this standard. Final paragraph (d)(6), PO 00000 Frm 00161 Fmt 4701 Sfmt 4700 2629 Employee Notification of Assessment Results, requires that employers in general industry, construction and shipyards inform their employees of results within 15 working days after completing an exposure assessment. Proposed paragraph (d)(5)(ii) (paragraph (d)(6)(ii) of the final standards) would have required that whenever an exposure assessment indicates that airborne exposure is above the TWA PEL or STEL, the employer must include in the written notification the suspected or known sources of exposure and the corrective action(s) the employer has taken or will take to reduce exposure to or below the PELs, where feasible corrective action exists but had not been implemented when the monitoring was conducted. Final paragraph (d)(6)(ii) removes the requirement that employers include suspected or known sources of exposure in the written notification. Methods of Compliance Proposed paragraph (f)(1)(i) would have required employers to establish, implement and maintain a written control plan for beryllium work areas. OSHA has retained the requirement for a written exposure control plan and incorporated most provisions of the proposed paragraph (f)(1)(i) into the final standards for construction and shipyards, with certain modifications due to the work processes and worksites particular to these sectors. Paragraph (f)(1)(i) differs from the proposal in that it requires a written exposure control plan for each facility, whereas the proposal would have required a written exposure control plan for beryllium work areas within each facility. OSHA has modified the requirement of a list of operations and job titles reasonably expected to have exposure to include those operations and job titles that are reasonably expected to have dermal contact with beryllium. Finally, OSHA modified the proposed requirement to inventory engineering and work practice controls required by paragraph (f)(2) of this standard to include respiratory protection. Paragraph (f)(1)(ii) of the final standards requires the employer to review and evaluate the effectiveness of each written exposure control plan at least annually and update it when: (A) Any change in production processes, materials, equipment, personnel, work practices, or control methods results or can reasonably be expected to result in additional or new airborne exposure to beryllium; (B) the employer is notified that an employee is eligible for medical removal in accordance with paragraph E:\FR\FM\09JAR2.SGM 09JAR2 2630 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS (l)(1) of this standard, referred for evaluation at a CBD Diagnostic Center, or shows signs or symptoms associated with airborne exposure to or dermal contact with beryllium; or (C) the employer has any reason to believe that new or additional airborne exposure is occurring or will occur. OSHA made several changes to that paragraph. First, OSHA added a requirement to review and evaluate the effectiveness of each written exposure control plan at least annually. Second, OSHA changed the proposed language of (f)(1)(ii)(B) to reflect other changes in the standard, including a change to ensure that employers are not automatically notified of cases of sensitization or CBD among their employees. Third, OSHA modified (f)(1)(ii)(B) to clarify the Agency’s understanding that signs and symptoms of beryllium exposure may be related to inhalation or dermal exposure. Finally, OSHA modified the wording of (f)(1)(ii) to require the employer to update ‘‘each’’ written exposure control plan rather than ‘‘the’’ written exposure control plan, since an employer who operates multiple facilities is required to establish, implement and maintain a written exposure control plan for each facility. Paragraph (f)(1)(iii) of the proposed rule would have required the employer to make a copy of the exposure control plan accessible to each employee who is or can reasonably be expected to be exposed to airborne beryllium in accordance with OSHA’s Access to Employee Exposure and Medical Records (Records Access) standard (29 CFR 1910.1020(e)). OSHA did not receive comments specific to this provision, and has retained it in the final standard for general industry and included the paragraph in the final standards for construction and shipyards. Respiratory Protection Proposed Paragraph (g) of the standard would have established the requirements for the use of respiratory protection. OSHA added language to paragraph (g) to clarify that both the selection and use of respiratory protection must be in accordance with the Respiratory Protection standard 29 CFR 1910.134, which is crossreferenced, and to provide a powered air-purifying respirator (PAPR) when requested by an employee. The Respiratory protection standard contains collection of information requirements, include a written respiratory protection program and fittesting records (29 CFR 1910.134(c)). The collection of information VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 requirements contained in the Respiratory Protection Program standard are approved under OMB Control Number 1218–0099. Personal Protective Equipment Final paragraph (h)(3)(iii), like proposed paragraph (h)(3), requires employers to inform in writing the persons or the business entities who launder, clean or repair the protective clothing or equipment required by this standard of the potentially harmful effects of exposure to airborne beryllium and contact with soluble beryllium compounds and how the protective clothing and equipment must be handled in accordance with the standard. Housekeeping Paragraph (j)(3) requires warning labels in accordance with the requirements in paragraph (m) when employer transfer materials containing beryllium. Medical Surveillance Final paragraph (k) sets forth requirements for the medical surveillance provisions. The paragraph specifies which employees must be offered medical surveillance, as well as the frequency and content of medical examinations. It also sets forth the information that the licensed physician and CBD diagnostic center is to provide to the employee and employer. In paragraphs (k)(1)(i)(A)–(D) of the proposal, OSHA specified that employers must make medical surveillance required by this paragraph available for each employee: (1) Who has worked in a regulated area for more than 30 days in the last 12 months; (2) showing symptoms or signs of CBD, such as shortness of breath after a short walk or climbing stairs, persistent dry cough, chest pain, or fatigue; or (3) exposed to beryllium during an emergency; and (4) who was exposed to airborne beryllium above .2 mg/m3 for more than 30 days in a 12-month period for 5 years or more, limited to the procedures described in paragraph (k)(3)(ii)(F) of this section unless the employee also qualifies for an examination under paragraph (k)(1)(i)(A), (B), or (C) of this section. OSHA revised the first proposed medical surveillance trigger to require the offering of medical surveillance based on exposures at or above the action level, rather than the PEL. In addition, OSHA revised the proposed trigger to require employers to make medical surveillance available to each employee who is or is reasonably expected to be exposed at or above the action level for more than 30 days a PO 00000 Frm 00162 Fmt 4701 Sfmt 4700 year, rather than waiting for the 30th day of exposure to occur. Paragraph (k)(1)(i)(B) has been revised to include signs or symptoms of other beryllium-related health effects. Proposed paragraph (k)(1)(i)(C) required employers to offer medical surveillance to employees exposed during an emergency. No revisions were made to this paragraph. OSHA added final paragraph (k)(1)(i)(D), which requires that medical surveillance be made available when the most recent written medical opinion to the employer recommends continued medical surveillance. Under final paragraphs (k)(6) and (k)(7), the written opinion must contain a recommendation for continued periodic medical surveillance if the employee is confirmed positive or diagnosed with CBD, and the employee provides written authorization. Frequency: Proposed paragraph (k)(2) specified when and how frequently medical examinations were to be offered to those employees covered by the medical surveillance program. Under proposed paragraph (k)(2)(i)(A), employers would have been required to provide each employee with a medical examination within 30 days after making a determination that the employee had worked in a regulated area for more than 30 days in the past 12 months, unless the employee had received a medical examination provided in accordance with this standard within the previous 12 months. OSHA made several changes to this requirement. First, OSHA revised the medical surveillance trigger of employees working in a regulated area to a determination that employee is or is reasonably expected to be exposed at or above the action level for more than 30 days of year; or who shows signs or symptoms of CBD or other berylliumrelated health effects. Second, the Agency changed the extended the length of time from within the last 12 months to within the last two years. Proposed paragraph (k)(2)(ii) required employers to provide an examination annually (after the first examination is made available) to employees who continue to meet the criteria of proposed paragraph (k)(1)(i)(A) or (B). OSHA revised the paragraph to specify that medical examinations were to be made available ‘‘at least’’ every two years and to include employees who continue to meet the criteria of final paragraph (k)(1)(i)(D), i.e., each employee whose most recent written medical opinion required by paragraph (k)(6) or (k)(7) recommends periodic medical surveillance. Under the final standards, employees exposed in an E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations emergency, who are covered by paragraph (k)(1)(i)(C), are not included in the biennial examination requirement unless they also meet the criteria of paragraphs (k)(1)(i)(A) or (B) or (D). Final paragraph (k)(2)(i)(A) also differs from the proposal in that in the proposed paragraph the employer did not have to offer an examination if the employee had received an equivalent examination within the last 12 months. In the final rule, this was increased to within two years to align that provision with the frequency of periodic examinations, which is every two years in the final rule. Proposed paragraph (k)(2)(iii) required the employer to offer a medical examination at the termination of employment, if the departing employee met any of the criteria of proposed paragraphs (k)(1) at the termination of employment for each employee who met the criteria of paragraphs (k)(1)(i)(A), (B), or (C), unless an examination has been provided in accordance with the standard during the 6 months prior to the date of termination. Final paragraph (k)(2)(iii) requires the employer to make a medical examination available to each employee who meets the criteria of final paragraph (k)(1)(i) at the termination of employment, unless the employee received an exam meeting the requirements of the standards within the last 6 months. OSHA extended the requirement to employees who meet the criteria of final paragraph (k)(1)(i)(D). Contents of Examination. Paragraph (k)(3) details the contents of the examination. Paragraph (k)(3)(i) requires the employer to ensure that the PLHCP advised the employee of the risks and benefits of participating in the medical surveillance program and the employee’s right to opt out of any or all parts of the medical examination. Paragraphs (k)(3)(ii)(A)–(D) detail the content of the medical examination. The final rule made several changes to the content of the employee medical examination including, but not limited to, revising paragraphs: (k)(3)(ii)(A), to include emphasis on past and present airborne exposure to or dermal contact with beryllium; (k)(3)(ii)(C) to require a physical examination for skin rashes, rather than an examination for breaks and wounds; (k)(3)(ii)(E) to require the BeLPT test to be offered ‘‘at least’’ every two years, rather than every two years; (k)(3)(ii)(F) to include an LDCT scan when recommended by the PLHCP. With these changes, final paragraphs (k)(3)(ii)(A)–(D) require the medical examination to include: (1) Medical and work history, with emphasis on past VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 and present airborne exposure to or dermal contact with beryllium, any history of respiratory dysfunction and smoking history, and; (2) a physical examination with emphasis on the respiratory system; (3) a physical examination for skin rashes; and (4) a pulmonary function test, performed in accordance with guidelines established by the ATS including forced vital capacity (FVC) and a forced expiratory volume in one second (FEV1). A more detailed discussion regarding all of the changes to the content of the Medical examinations may be found in section XVI, Summary and Explanation of the Standards, under (k) Medical Surveillance. Information Provided to the PLHCP Proposed paragraph (k)(4) detailed which information must be provided to the PHLCP. Specifically, the proposed standard required the employer to provide to the examining PLHCP the following information, if known to the employer: A description of the employee’s former and current duties that relate to the employee’s occupational exposure ((k)(4)(i)); the employee’s former and current levels of occupational exposure ((k)(4)(ii)); a description of any personal protective clothing and equipment, including respirators, used by the employee, including when and for how long the employee has used that clothing and equipment ((k)(4)(iii)); and information the employer has obtained from previous medical examinations provided to the employee, that is currently within the employer’s control, if the employee provides a medical release of the information ((k)(4)(iv)). OSHA made several changes to this paragraph. First, OSHA updated paragraph (k)(4)(i) to require the employer to provide a description of the employee’s former and current duties that relate to both the employee’s airborne exposure to and dermal contact with beryllium, instead of merely requiring the provision of information related to occupational exposure. Second, OSHA changed the requirement that the employer obtain a ‘‘medical release’’ from the employee to ‘‘written consent’’ before providing the PLHCP with information from records of employment-related medical examinations. Third, OSHA revised the provision to require that the employer ensure that the same information provided to the PLHCP is also provided to the agreed-upon CBD diagnostic center, if an evaluation is required under paragraph (k)(7) of the standard. PO 00000 Frm 00163 Fmt 4701 Sfmt 4700 2631 Licensed Physician’s Written Medical Opinion Paragraph (k)(5) of the proposed standard provided for the licensed physician to give a written medical opinion to the employer, but relied on the employer to give the employee a copy of that opinion; thus, there was no difference between information the employer and employee received. The final standards differentiate the types of information the employer and employee receive by including two separate paragraphs within the medical surveillance section that require a written medical report to go to the employee, and a more limited written medical opinion to go to the employer. The requirement to provide the medical opinion to the employee is in paragraph (k)(5) of the final standards; the requirement for providing documentation to the employer is in paragraph (k)(6) of the final standards. Most significantly, OSHA removed the requirement that the medical opinion pass through the employer to the employee. Licensed Physician’s Written Medical Report for the Employee Final paragraphs (k)(5)(i)–(v) provide the contents of the licensed physician’s written medical report for the employee. They include: The results of the medical examination, including any medical condition(s), such as CBD or beryllium sensitization (i.e., the employee is confirmed positive, as is defined in paragraph (b) of the standard), that may place the employee at increased risk from further airborne exposure; any medical conditions related to airborne exposure that require further evaluation or treatment (this requirement was not expressly included in the proposal); any recommendations on the employee’s use of respirators, protective clothing, or equipment; and any recommended limitations on airborne beryllium exposure. Paragraph (k)(5) also provides that if the employee is confirmed positive or diagnosed with CBD, or if the physician otherwise deems it appropriate, the written medical report must also contain a referral to a CBD diagnostic center, a recommendation for continued medical surveillance, and a recommendation for medical removal from airborne beryllium exposures above the action level, as described in paragraph (l) of the standard. Proposed paragraph (k)(6) also addressed information provided to employees who were confirmed positive or diagnosed with CBD, but simply required a consultation with the physician. E:\FR\FM\09JAR2.SGM 09JAR2 2632 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Licensed Physician’s Written Medical Opinion for the Employer Paragraph (k)(6)(i) requires employers to obtain a written medical opinion from the licensed physician within 45 days of the medical examination (including any follow-up BeLPT required under (k)(3)(ii)(E)). In proposed (k)(5), the physician would have been required to share most of the information identified now provided directly to the employee per final (k)(5) with the employer, but in the final rule OSHA limited the information that could be shared with the employer. In final (k)(6) the written medical opinion for the employer must contain only the date of the examination, a statement that the examination has met the requirements of this standard, and any recommended limitations on the employee’s use of respirators, protective clothing, and equipment; and a statement that the PLHCP explained the results of the examination to the employee, including any tests conducted, any medical conditions related to airborne exposure that require further evaluation or treatment, and any special provisions for use of personal protective clothing or equipment. Paragraph (k)(6)(ii) states that if the employee provides written authorization, the written medical opinion for the employer must also contain any recommended limitations on the employee’s airborne exposure to beryllium. The requirement for written authorization was not in the proposal. Paragraphs (k)(6)(iii)–(v) state that if an employee is confirmed positive or diagnosed with CBD and the employee provides written authorization, the written opinion must also contain a referral for evaluation at a CBD diagnostic center and recommendations for continued medical surveillance and medical removal from airborne exposure to beryllium as described in paragraph (l). Paragraph (k)(6)(vi) requires the employer to ensure that employees receive a copy of the written medical opinion for the employer within 45 days of any medical examination (including any follow-up BeLPT required under paragraph (k)(3)(ii)(E) of this standard) performed for that employee. A similar requirement was included in proposed (k)(5)(iii), but the time period was two weeks. Beryllium Sensitization Test Results Research (Removed) Proposed paragraph (k)(7) would have required employers to convey the results of beryllium sensitization tests to OSHA for evaluation and analysis at the VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 request of OSHA. Based on comments received during the comment period, OSHA decided not to include the proposed paragraph (k)(7) in the final standard. Referral to a Diagnostic Center Final paragraph (k)(7) requires that if the employee wants a clinical evaluation at a CBD diagnostic center, the employer must provide the examination at no cost to the employee. OSHA made several changes to final paragraph (k)(7) as compared to similar provisions in paragraph (k)(6) of the proposal. First, OSHA changed the trigger for referral to a CBD diagnostic center to include both confirmed positive and a CBD diagnosis for consistency with final paragraphs (k)(5)(iii) and (k)(6)(iii). Second, OSHA removed the requirement for a consultation between the physician and employee. However, final paragraph (k)(7)(i) requires that employers provide a no-cost evaluation at a CBD-diagnostic center that is mutually agreed upon by the employee and employer. Final paragraph (k)(7) requires the employer to ensure that the employee receives a written medical report form the CBD diagnostic center that contains all the information required in paragraph (k)(5)(i), (ii), (iv) and (v) and that the PLHCP explains the results of the examination of the employee within 30 days of the examination. Communication of Hazards Proposed paragraph (m)(1)(i) required chemical manufacturers, importers, distributors, and employers to comply with all applicable requirements of the HCS (29 CFR 1910.1200) for beryllium. No substantive changes were made to this paragraph. Proposed paragraph (m)(1)(ii) would have required employers to address at least the following, in classifying the hazards of beryllium: Cancer; lung effects (chronic beryllium disease and acute beryllium disease); beryllium sensitization; skin sensitization; and skin, eye, and respiratory tract irritation. According to the HCS, employers must classify hazards if they do not rely on the classifications of chemical manufacturers, importers, and distributors (see 29 CFR 1910.1200(d)(1)). OSHA revised the language to bring it into conformity with other substance specific standards so it is clear that chemical manufacturers, importers, and distributors are among the entities required to classify the hazards of beryllium. OSHA has chosen not to include an equivalent requirement in the final standards for construction and shipyards since PO 00000 Frm 00164 Fmt 4701 Sfmt 4700 employers in construction and shipyards are generally downstream users of beryllium products (blasting media) and would not therefore be classifying chemicals. Proposed paragraph (m)(1)(iii) would have required employers to include beryllium in the hazard communication program established to comply with the HCS, and ensure that each employee has access to labels on containers and safety data sheets for beryllium and is trained in accordance with the HCS and the training paragraph of the standard. The final paragraph (m)(1)(iii) applies to the general industry, shipyards, and construction. The final provisions are substantively unchanged from the proposal. Recordkeeping Paragraph (n) of the final standards sets forth the employer’s obligation to comply with requirements to maintain records of air monitoring data, objective data, medical surveillance, and training. Proposed paragraph (n)(1)(i) required employers to maintain records of all measurements taken to monitor employee exposure to beryllium as required by paragraph (d) of the standard. OSHA made one minor modification in the final standard: OSHA added the words ‘‘make and’’ prior to ‘‘maintain’’ in order to clarify that the employer’s obligation is to create and preserve such records. Proposed paragraph (n)(1)(ii) required that records of all measurements taken to monitor employee exposure include at least the following information: The date of measurement for each sample taken; the operation being monitored; the sampling and analytical methods used and evidence of their accuracy; the number, duration, and results of samples taken; the type of personal protective clothing and equipment, including respirators, worn by monitored employees at the time of monitoring; and the name, social security number, and job classification of each employee represented by the monitoring, indicating which employees were actually monitored. OSHA has made one editorial modification to paragraph (n)(1)(ii)(B), which is to change ‘‘operation’’ to ‘‘task.’’ Proposed paragraph (n)(1)(iii) required employers to maintain employee exposure monitoring records in accordance with 29 CFR 1910.1020(d)(1)(ii). OSHA has changed the requirement that the employer ‘‘maintain this record as required by’’ OSHA’s Records Access standard to ‘‘ensure that exposure records are maintained and made available in accordance with’’ that standard. E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Proposed Paragraph (n)(2) Historical Monitoring Data (Removed) Proposed paragraph (n)(2) contained the requirement to retain records of any historical monitoring data used to satisfy the proposed standard’s the initial monitoring requirements. OSHA deleted the separate recordkeeping requirement for historical data. Final (n)(2)(i), (ii), and (iii) Objective Data proposed paragraph (n)(4)(ii)(B) to paragraph (n)(3)(ii)(B) of the final standards. Proposed paragraph (n)(4)(iii) required the employer to maintain employee medical records in accordance with OSHA’s Records Access Standard at 29 CFR 1910.1020. OSHA has added ‘‘and made available’’ after ‘‘maintained’’ in final paragraph (n)(3)(iii) of the standards, but the requirement is otherwise unchanged. Paragraph (n)(4)(i) and (ii) Training Records Paragraph (n)(4) of the final standards (paragraph (n)(5) of the proposal) requires employers to preserve training records, including records of annual retraining or additional training, for a period of three years after the completion of the training. At the completion of training, the employer is required to prepare a record that includes the name, social security number, and job classification of each employee trained; the date the training was completed; and the topic of the training. This record maintenance requirement also applied to records of annual retraining or additional training as described in paragraph (m)(4). This paragraph is substantively unchanged from the proposal. Paragraph (n)(3)(i), (ii), & (iii) Medical Surveillance Records asabaliauskas on DSK3SPTVN1PROD with PROPOSALS As a result of deleting paragraph (n)(2) Historical Data, OSHA has included proposed paragraph (n)(3) as paragraph (n)(2) in the final standards, with minor alterations. Paragraph (n)(2) contains the requirements to keep accurate records of objective data. Paragraph (n)(2)(i) requires employers to establish and maintain accurate records of the objective data relied upon to satisfy the requirement for initial monitoring in paragraph (d)(2). Under paragraph (n)(2)(ii), the record is required to contain at least the following information: (A) The data relied upon; (B) the beryllium-containing material in question; (C) source of the data; (D) description of the process, task, or activity on which the objective data were based; (E) other data relevant to the process, task, activity, material, or airborne exposure on which the objective data were based. These requirements included minor changes in the description of the last two changes, but were not substantively different. Paragraph (n)(2)(iii) of the final standard (paragraph (n)(3)(iii) in the proposal) requires the employer to maintain a record of objective data relied upon as required by the Records Access standard, which specifies that exposure records must be maintained for 30 years (29 CFR 1910.1020(d)(1)(ii)). Paragraph (n)(6) Training Records Paragraph (n)(6) of the final standards (paragraph (n)(6) in the proposal), requires that employers comply with the Records Access standard regarding the transfer of records, 29 CFR 1910.1020(h), which instructs employers either to transfer records to successor employers or, if there is no successor employer, to inform employees of their access rights at least three months before the cessation of the employer’s business. This paragraph is substantively unchanged from the proposal. Paragraph (n)(3) of the final standards (paragraph (n)(4) in the proposal), addresses medical surveillance records. Employers must establish and maintain medical surveillance records for each employee covered by the medical surveillance requirements in paragraph (k). Paragraph (n)(3)(ii) lists the categories of information that an employer was required to record: The employee’s name, social security number, and job classification; a copy of all licensed physicians’ written medical opinions; and a copy of the information provided to the PLHCP. OSHA has moved the requirement that the record include copies of all licensed physicians’ written opinions from VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 Paragraph (n)(5) Access to Records Paragraph (n)(5) of the final standards (paragraph (n)(6) of the proposal), requires employers to make all records mandated by these standards available for examination and copying to the Assistant Secretary, the Director of NIOSH, each employee, and each employee’s designated representative as stipulated by OSHA’s Records Access standard (29 CFR 1910.1020). This paragraph is substantively unchanged from the proposal. X. Federalism OSHA reviewed the final beryllium rule according to the most recent Executive Order (‘‘E.O.’’) on Federalism, PO 00000 Frm 00165 Fmt 4701 Sfmt 4700 2633 E.O. 13132, 64 FR 43255 (Aug. 10, 1999). The E.O. requires that Federal agencies, to the extent possible, refrain from limiting State policy options, consult with States before taking actions that would restrict States’ policy options, and take such actions only when clear constitutional authority exists and the problem is of national scope. The E.O. allows Federal agencies to preempt State law only with the expressed consent of Congress. In such cases, Federal agencies must limit preemption of State law to the extent possible. Under Section 18 of the Occupational Safety and Health Act (the ‘‘Act’’ or ‘‘OSH Act’’), 29 U.S.C. 667, Congress expressly provides that States may adopt, with Federal approval, a plan for the development and enforcement of occupational safety and health standards. OSHA refers to States that obtain Federal approval for such plans as ‘‘State-Plan States.’’ 29 U.S.C. 667. Occupational safety and health standards developed by State-Plan States must be at least as effective in providing safe and healthful employment and places of employment as the Federal standards. Subject to these requirements, State-Plan States are free to develop and enforce their own occupational safety and health standards. While OSHA wrote this final rule to protect employees in every State, Section 18(c)(2) of the OSH Act permits State-Plan States to develop and enforce their own standards, provided those standards require workplaces to be at least as safe and healthful as this final rule requires. Additionally, standards promulgated under the OSH Act do not apply to any worker whose employer is a state or local government. 29 U.S.C. 652(5). This final rule complies with E.O. 13132. In States without OSHAapproved State plans, Congress expressly provides for OSHA standards to preempt State occupational safety and health standards in areas addressed by the Federal standards. In these States, this rule limits State policy options in the same manner as every standard promulgated by the Agency. In States with OSHA-approved State plans, this rulemaking does not significantly limit State policy options to adopt stricter standards. XI. State-Plan States When Federal OSHA promulgates a new standard or a more stringent amendment to an existing standard, the States and U.S. territories with their own OSHA-approved occupational safety and health plans (‘‘State-Plan E:\FR\FM\09JAR2.SGM 09JAR2 2634 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS States’’) must revise their standards to reflect the new standard or amendment. The State standard must be at least as effective as the Federal standard or amendment, and must be promulgated within six months of the publication date of the final Federal rule. 29 CFR 1953.5(a). Currently, there are 28 StatePlan States. A State-Plan State may demonstrate that a standard change is not necessary because the State standard is already the same as or at least as effective as the new or amended Federal standard. In order to avoid delays in worker protection, the effective date of the State standard and any of its delayed provisions must be the date of State promulgation or the Federal effective date, whichever is later. The Assistant Secretary may permit a longer time period if the State makes a timely demonstration that good cause exists for extending the time limitation. 29 CFR 1953.5(a). Of the 28 States and territories with OSHA-approved State plans, 22 cover public and private-sector employees: Alaska, Arizona, California, Hawaii, Indiana, Iowa, Kentucky, Maryland, Michigan, Minnesota, Nevada, New Mexico, North Carolina, Oregon, Puerto Rico, South Carolina, Tennessee, Utah, Vermont, Virginia, Washington, and Wyoming. The remaining six states and territories cover only public-sector employees: Connecticut, Illinois, New Jersey, Maine, New York, and the Virgin Islands. This beryllium rule applies to general industry, construction, and shipyards. This rule requires that all State-Plan States revise their standards appropriately within six months of the date of this notice. XII. Unfunded Mandates Reform Act Under Section 202 of the Unfunded Mandates Reform Act of 1995 (‘‘UMRA’’), 2 U.S.C. 1532, an agency must prepare a written ‘‘qualitative and quantitative assessment’’ of any regulation creating a mandate that ‘‘may result in the expenditure by the State, local, and tribal governments, in the aggregate, or by the private sector, of $100,000,000 or more (adjusted annually for inflation)’’ in any one year before promulgating a final rule. OSHA’s rule does not place a mandate on State or local governments, for purposes of the UMRA, because OSHA cannot enforce its regulations or standards on State or local governments. 29 U.S.C. 652(5). Under voluntary agreement with OSHA, some States require public sector entities to comply with State standards, and these agreements specify that these State VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 standards must be at least as protective as OSHA standards. The OSH Act does not cover tribal governments in the performance of traditional governmental functions, though it does cover tribal governments when they engage in commercial activity. However, the final rule will not require tribal governments to expend, in the aggregate, $100,000,000 or more in any one year for their commercial activities. Thus, the final rule does not trigger the requirements of UMRA based on its impact on State, local, or tribal governments. Based on the analysis presented in the Final Economic Analysis (see Section VIII above), OSHA concludes that the rule would not impose a Federal mandate on the private sector in excess of $100 million (adjusted annually for inflation) in expenditures in any one year. As noted below, OSHA also reviewed this final rule in accordance with E.O. 13175 on Consultation and Coordination with Indian Tribal Governments, 65 FR 67249 (Nov. 9, 2000), and determined that it does not have ‘‘tribal implications’’ as defined in that Order. XIII. Protecting Children From Environmental Health and Safety Risks E.O. 13045, 66 FR 19931 (Apr. 23, 2003), requires that Federal agencies submitting covered regulatory actions to OMB’s Office of Information and Regulatory Affairs (‘‘OIRA’’) for review pursuant to E.O. 12866, 58 FR 51735 (Oct. 4, 1993), must provide OIRA with (1) an evaluation of the environmental health or safety effects that the planned regulation may have on children, and (2) an explanation of why the planned regulation is preferable to other potentially effective and reasonably feasible alternatives considered by the agency. E.O. 13045 defines ‘‘covered regulatory actions’’ as rules that may (1) be economically significant under E.O. 12866 (i.e., a rulemaking that has an annual effect on the economy of $100 million or more, or would adversely affect in a material way the economy, a sector of the economy, productivity, competition, jobs, the environment, public health or safety, or State, local, or tribal governments or communities), and (2) concern an environmental health risk or safety risk that an agency has reason to believe may disproportionately affect children. In this context, the term ‘‘environmental health risks and safety risks’’ means risks to health or safety that are attributable to products or substances that children are likely to come in contact with or ingest (e.g., through air, food, water, soil, or product use). PO 00000 Frm 00166 Fmt 4701 Sfmt 4700 The final beryllium rule is economically significant under E.O. 12866 (see Section IX of this preamble). However, after reviewing the rule, OSHA has determined that it will not impose environmental health or safety risks to children as set forth in E.O. 13045. The final rule will require employers to limit employee exposure to beryllium and take other precautions to protect employees from adverse health effects associated with exposure to beryllium. OSHA is not aware of any studies showing that exposure to beryllium in workplaces disproportionately affects children, who typically are not allowed in workplaces where such exposure exists. OSHA is also not aware that there are a significant number of employees under 18 years of age who may be exposed to beryllium, or that employees of that age are disproportionately affected by such exposure. One commenter, KimberlyClark Professional, noted that children may be subject to secondary beryllium exposure due to beryllium particles being carried home on their parents’ work clothing, shoes, and hair (Document ID 1962, p. 2). Commenter Evan Shoemaker also noted that ‘‘beryllium can collect on surfaces such as shoes, clothing, and hair as well as vehicles leading to contamination of the family and friends of workers exposed to beryllium’’ (Document ID 1658, p. 3). However, OSHA does not believe beryllium exposure disproportionately affects children or that beryllium particles brought home on work clothing, shoes, and hair result in exposures at or near the action level. Furthermore, Kimberly-Clark Professional also noted that potential secondary exposures can be controlled through the use of personal protective equipment in the workplace (Document ID 1676, p. 2). The final standards contain ancillary provisions, such as personal protective clothing and hygiene areas, which are specifically designed to minimize the amount of beryllium leaving the workplace. Therefore, OSHA believes that the final beryllium rule does not constitute a covered regulatory action as defined by E.O. 13045. XIV. Environmental Impacts OSHA has reviewed the final beryllium rule according to the National Environmental Policy Act of 1969 (NEPA) (42 U.S.C. 4321 et seq.), the regulations of the Council on Environmental Quality (40 CFR part 1500), and the Department of Labor’s NEPA procedures (29 CFR part 11). OSHA made a preliminary determination that the proposed E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations standard would have no significant impact on air, water, or soil quality; plant or animal life; the use of land or aspects of the external environment. No comments to the record questioned this determination, nor has the Agency found other evidence to invalidate it. Therefore, OSHA concludes that the final beryllium standard will have no significant environmental impacts. asabaliauskas on DSK3SPTVN1PROD with PROPOSALS XV. Consultation and Coordination With Indian Tribal Governments OSHA reviewed this final rule in accordance with E.O. 13175 on Consultation and Coordination with Indian Tribal Governments, 65 FR 67249 (Nov. 9, 2000), and determined that it does not have ‘‘tribal implications’’ as defined in that order. The OSH Act does not cover tribal governments in the performance of traditional governmental functions, so the rule will not have substantial direct effects on one or more Indian tribes in their sovereign capacity, on the relationship between the Federal government and Indian tribes, or on the distribution of power and responsibilities between the Federal government and Indian tribes. On the other hand, employees in commercial businesses owned by tribes or tribal members will receive the same protections and benefits of the standard as all other covered employees. XVI. Summary and Explanation of the Standards OSHA proposed a standard for occupational exposure to beryllium and beryllium compounds in general industry and proposed regulatory alternatives to address beryllium exposures in the construction and maritime industries. The proposed standard for general industry was structured according to OSHA’s traditional approach, with permissible exposure limits, and ancillary provisions such as exposure assessment, methods of compliance, and medical surveillance. As discussed below, OSHA based the proposal substantively on a joint industry and labor stakeholders’ draft occupational health standard developed and submitted to OSHA by Materion Corporation (Materion) and the United Steelworkers (USW). The final rule, however, is based on the entirety of the rulemaking record. In the final rule, OSHA is expanding coverage to include the construction and shipyard industries and establishing separate final standards for occupational exposure to beryllium in general industry, construction, and shipyards. In the NPRM, OSHA discussed Regulatory Alternative 2a to VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 include both the construction and shipyard industries in the final rule (80 FR 47732–47734), presented estimated costs and benefits associated with extending the scope of the final rule, and requested comment on the alternative. The decision to include standards for construction and shipyards is based on information and comment submitted in response to this request for comment and evaluated by OSHA during the public comment periods and the informal public hearing. OSHA decided to issue three separate standards because there are some variations in the standards for each industry, although the structure of the final standards for general industry, construction, and shipyards remains generally consistent with other OSHA health standards. The most significant change is in the standard for construction where paragraph (e) Competent person, replaces paragraph (e) Beryllium work areas and regulated areas in general industry and paragraph (e) Regulated areas in shipyards. All three final standards have a provision for methods of compliance, although in the standard for construction this provision has an additional requirement to describe procedures used by the designated competent person to restrict access to work areas, when necessary, to minimize the number of employees exposed to airborne beryllium above the PEL or STEL. This requirement allows the competent person to perform essentially the same role as the requirement governing regulated areas in general industry and shipyards, which is to regulate and minimize the number of workers exposed to hazardous levels of beryllium. OSHA decided to include a competent person provision in the final standard for construction because of the industry’s familiarity with this concept and its past successful use in many OSHA construction standards and documents. ‘‘Competent person’’ is defined in OSHA’s Safety and Health Regulations for Construction (29 CFR 1926.32(f)) as being a person who is capable of identifying existing and predictable hazards in the surroundings or working conditions which are unsanitary, hazardous, or dangerous to employees, and who has authorization to take prompt corrective measures to eliminate them. This generally applicable definition corresponds well with the definition for ‘‘competent person’’ in the standard for construction: In this context, ‘‘competent person’’ means an individual who is capable of identifying existing and foreseeable beryllium PO 00000 Frm 00167 Fmt 4701 Sfmt 4700 2635 hazards in the workplace and who has authorization to take prompt corrective measures to eliminate or minimize them. The competent person must have the knowledge, ability, and authority necessary to fulfill the responsibilities set forth in paragraph (e) of this standard. OSHA has retained, in modified form, the scope exemption from the proposed standard for materials containing less than 0.1 percent beryllium by weight in the standard for general industry and included it in the standards for construction and shipyards. The scope exemption has been modified in the final standards with the additional requirement that the employer must have objective data demonstrating that employee exposure to beryllium will remain below the action level as an 8hour TWA under any foreseeable conditions. The 0.1 percent exemption was generally supported by commenters from general industry and shipyards; construction employers did not comment. Other commenters, especially those representing workers or public health organizations, expressed concern that these materials, in some cases, could expose workers to hazardous levels of beryllium. As discussed in more detail in the summary and explanation for Scope and application, the objective data requirement addresses these concerns and ensures the protection of workers who experience significant exposures from materials containing trace amounts of beryllium. Employers who have objective data showing that employees will not be exposed at or above the action level under any foreseeable conditions when processing materials containing less than 0.1 percent beryllium by weight are exempt from the standard. OSHA decided to add a performance option in paragraph (d), Exposure assessment, as an alternative exposure assessment method to the scheduled monitoring requirements in the proposed rule, based on public comment received from industry and labor. OSHA believes the performance option, which encompasses either exposure monitoring or assessments based on objective data, gives employers flexibility in determining employee exposure to beryllium based on to their unique workplace circumstances. OSHA has provided this performance option in recent health standards such as respirable crystalline silica (29 CFR 1910.1053(d)(2)) and chromium VI (29 CFR 1910.1026(d)(3)). OSHA also received comments about other provisions in the proposed standard, and in some cases, OSHA responded with changes from the E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2636 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations proposed rule that were based on the evidence provided in the record. Any changes made to the provisions in the final standards are described in detail in their specific summary and explanation sections. Although details of the final standards for general industry, construction, and shipyards differ slightly, most of the requirements are the same or similar in all three standards. Therefore, the summary and explanation is organized according to the main requirements of the standards, but includes paragraph references to the standards for general industry, construction, and shipyards. The summary and explanation uses the term ‘‘standards’’ or ‘‘final standards’’ when referring to all three standards. Generally, when the summary and explanation refers to the term ‘‘standards,’’ it is referring to the final standards. To avoid confusion, the term ‘‘final rule’’ is sometimes used when making a comparison to or clarifying a change from the proposed rule. The proposed rule applied to occupational exposure to beryllium in all forms, compounds, and mixtures in general industry, except those articles and materials exempted by proposed paragraphs (a)(2) and (a)(3) of the proposed standard. The final standards are identical in their application to occupational exposures to beryllium. In the summary and explanation sections, OSHA has changed ‘‘beryllium and beryllium compounds’’ or anything specifying soluble beryllium to just ‘‘beryllium.’’ OSHA intends the term ‘‘beryllium’’ to cover all forms of beryllium, including compounds and mixtures, both soluble and poorly soluble, throughout the summary and explanation sections. Other global changes in the regulatory text include changing ‘‘shall’’ to ‘‘must’’ to make it clear when a provision is a requirement and adding ‘‘personal’’ to ‘‘protective clothing or equipment’’ and ‘‘protective clothing and equipment’’ consistently. OSHA has changed ‘‘exposure’’ to ‘‘airborne exposure’’ to make it clear when referring to just airborne exposure, and specifically noting when OSHA intends to cover dermal contact. As noted above, OSHA’s proposed rule was based, in part, upon a draft occupational health standard submitted to the Agency by Materion, the leading producer of beryllium and beryllium products in the United States, and USW, an international labor union representing workers who manufacture beryllium alloys and berylliumcontaining products in a number of industries (Document ID 0754). Materion and USW worked together to craft a model beryllium standard that VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 OSHA could adopt and that would have support from both labor and industry. They submitted their joint draft standard to OSHA in February 2012. Like the proposal, many of the provisions in the final rules are identical or substantively similar to those contained in Materion and USW’s draft standard. For example, the final rule for general industry and the Materion/USW draft standard both include an exclusion for materials containing less than 0.1 percent beryllium; both contain many similar definitions; both contain a time weighted average (TWA) PEL of 0.2 mg/ m3; both include exposure monitoring provisions, including provisions for scheduled monitoring, employee notification of results, methods of sample analysis, and observation of monitoring; both contain similar requirements for beryllium work areas and regulated areas; both mandate a written exposure control plan and engineering and work practice controls that follow OSHA’s traditional hierarchy of controls; and both include similar provisions related to respiratory protection, protective clothing and equipment, hygiene areas and practices, housekeeping, medical surveillance, medical removal protection, training and communication of hazards, recordkeeping, and compliance dates. (a) Scope and Application Separate standards for general industry, construction, and shipyards. OSHA proposed a standard addressing occupational exposure to beryllium in general industry and regulatory alternatives to address exposures in the construction and maritime industries.37 The proposal was modeled on a suggested rule that was crafted by two major stakeholders in general industry, Materion Corporation (Materion) and the United Steelworkers (USW) 37 The proposed rule did not cover agricultural employers because OSHA had not found any evidence indicating that beryllium is used or handled in agriculture in a way that might result in beryllium exposure. OSHA’s authority is also restricted in this area; since 1976, an annual rider in the Agency’s Congressional appropriations bill has limited OSHA’s use of funds with respect to farming operations that employ fewer than ten employees (Consolidated Appropriations Act, 1976, 94, 90 Stat. 1420, 1421 (1976) (and subsequent appropriations acts)). In the Notice of Proposed Rulemaking (NPRM), the Agency requested information on whether employees in the agricultural sector are exposed to beryllium in any form and, if so, their levels of exposure and what types of exposure controls are currently in place (80 FR 47565, 47775). OSHA did not receive comment on beryllium and the agriculture industry or information that would support coverage of agricultural operations. Therefore, agriculture employers and operations are not covered by the rule. PO 00000 Frm 00168 Fmt 4701 Sfmt 4700 (Document ID 0754). Materion and USW provided OSHA with data on exposure and control measures and information on their experiences with handling beryllium in general industry settings (80 FR 47774). At the time, the information available to OSHA on beryllium exposures outside of general industry was limited. Therefore, the Agency preliminarily decided to limit the scope of its beryllium rule proposal to general industry but propose regulatory alternatives that would expand the scope of the proposed standard to also include employers in construction and maritime if it turned out the record evidence warranted it. Specifically, OSHA requested comment on Regulatory Alternative #2a, which would expand the scope of the proposed standard to also include employers in construction and maritime, and Regulatory Alternative #2b, which would update 29 CFR 1910.1000 Tables Z–1 and Z–2, 1915.1000 Table Z, and 1926.55 Appendix A so that the proposed TWA PEL and STEL would apply to all employers and employees in general industry, shipyards, and construction, including occupations where beryllium exists only as a trace contaminant. OSHA also requested stakeholder comment and data on employees in construction or maritime, or in general industry, not covered in the scope of the proposed standard, who deal with beryllium only as a trace contaminant, who may be at significant risk from occupational beryllium exposures. OSHA did not receive any additional exposure data for construction or shipyards in response to OSHA’s request in the NPRM. However, since the proposal, OSHA reviewed its OIS compliance exposure database and identified personal exposure sample results on beryllium for abrasive blasting workers in construction, general industry and maritime, which can be found broken out by sector in FEA Table IV.68. The vast majority of stakeholders who submitted comments on this issue supported extending the scope of the proposed rule to cover workers in the construction and maritime industries who are exposed to beryllium (e.g., Document ID 1592; 1625, p. 3; 1655, p. 15; 1658, p. 5; 1664, pp. 1–2; 1670, p. 7; 1671, Attachment 1, p. 5; 1672, p. 1; 1675, p. 2; 1676, p. 1; 1677, p. 1; 1679, p. 2; 1681, pp. 5, 16; 1683, p. 2; 1684, Attachment 2, p. 3; 1685, p. 2; 1686, p. 2; 1689, p. 6; 1690, p. 2; 1693, p. 3; 1703, p. 2; 1705, p. 1). For example, the National Council for Occupational Safety and Health (National COSH) urged that OSHA should ensure greater E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations protections to beryllium exposed workers by extending the scope of the proposed standard to workers in the construction and maritime industries. National COSH explained: ‘‘In the proposed preamble, OSHA recognizes that these workers are exposed to beryllium during abrasive blasting and clean-up of spent material. The risks that construction and maritime workers face when exposed to beryllium particulate is the same as the risk faced at similar exposures by general industry workers’’ (Document ID 1690, p. 2). The American Federation of Labor and Congress of Industrial Organizations (AFL–CIO) agreed, adding that ‘‘[a]vailable data in the construction and maritime sector shows that there is a significant risk of sensitization and CBD among these workers’’ (Document ID 1689, p. 6). Similarly, the American Industrial Hygiene Association (AIHA) warned that the ‘‘[p]otential for exposure, especially in the construction industry, is very high’’ (Document ID 1686, p. 2). OSHA also heard testimony during the public hearing from Dr. Lee Newman of the American College of Occupational and Environmental Medicine (ACOEM), Peggy Mroz of National Jewish Health (NJH), Emily Gardner of Public Citizen, Mary Kathryn Fletcher of AFL–CIO, and Mike Wright of the USW that supported covering workers in the construction and maritime industries (Document ID 1756, Tr. 81; 1756, Tr. 97–98; 1756, Tr. 172– 175; 1756, Tr. 198–199; 1755, Tr. 181). Peggy Mroz of NJH testified that ‘‘[b]ased on the data presented, [NJH] support[s] expanding the scope of the proposed standard to include . . . employers in construction and maritime’’ (Document ID 1756, Tr. 98). Emily Gardner of Public Citizen argued that ‘‘the updated standard cannot leave construction and shipyard workers vulnerable to the devastating effects of beryllium’’ (Document ID 1756, Tr. 175). She added that ‘‘Public Citizen urges OSHA to revise the proposed rule to cover these workers’’ (Document ID 1756, Tr. 175). Several commenters specifically supported Regulatory Alternative #2a. For example, the International Union, United Automobile, Aerospace, and Agriculture Implement Workers of America (UAW) indicated its support for this alternative (Document ID 1693, p. 3 (pdf)). UAW added that Alternative #2a would cover abrasive blasters, pot tenders, and cleanup staff working in construction and shipyards who have the potential for airborne beryllium exposure during blasting operations and during cleanup of spent media VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 (Document ID 1693, p. 3 (pdf)). Kimberly-Clark Professional (KCP) similarly indicated that it favored the adoption of this alternative (Document ID 1676, p. 1). KCP explained that ‘‘[h]azardous exposures are equally dangerous to workers regardless of whether the worker is in a factory or on a construction site, and the worker protection provided by OSHA regulations should also be equal’’ (Document ID 1676, p. 1). In addition, 3M Company also observed that Regulatory Alternative #2a is a more protective alternative (Document ID 1625, p. 3 (pdf)). However, other commenters argued in favor of keeping the proposed scope unchanged (e.g., Document ID 1583; 1661, Attachment 2, pp. 6–7; 1673, pp. 12–23). Some of these stakeholders contended that adding construction and maritime was not necessary (e.g., Document ID 1673, pp. 20–22). For example, Materion opined that ‘‘the requirements of [29 CFR] 1910.94 provide sufficient protections for the construction and maritime industries and accordingly, [Materion and USW] did not include construction and maritime within [their] assessment of technological feasibility or the scope of the standard’’ (Document ID 1661, Attachment 2, p. 7). Materion added that ‘‘it is [its] understanding that in the absence of a specific maritime standard, OSHA applies general industry standards to the maritime industries’’ (Document ID 1661, Attachment 2, p. 7). While this may be the general practice of the industry, OSHA does not enforce general industry standards where the shipyard standards apply unless they are specifically cross referenced in the shipyard standards. Some of these commenters offered specific concerns with covering the construction and maritime industries, or with covering abrasive blasting in general. For instance, Jack Allen, Inc. argued against extending the proposed rule to cover the use of coal slag in the sandblasting industry because the industry already has processes and controls in place to prevent exposures to all dusts during operations (Document ID 1582). The Abrasive Blasting Manufacturers Alliance (ABMA) presented a number of arguments against the coverage of abrasive blasting. ABMA argued that regulating the trace amounts of beryllium in abrasive blasting will increase the use of silicabased blasting agents ‘‘despite OSHA’s longstanding recommendation of substitution for silica-based materials’’ (Document ID 1673, p. 14). ABMA added that scoping in abrasive blasting would increase the amount of coal slag PO 00000 Frm 00169 Fmt 4701 Sfmt 4700 2637 materials ‘‘going to landfills rather than being used for beneficial purpose’’ (Document ID 1673, p. 14). ABMA also cited to technological feasibility issues in sampling and analysis, noted that the proposed standard was not appropriately tailored to construction and maritime worksites, and argued that it is not appropriate to regulate abrasive blasting on a chemical-by-chemical basis (Document ID 1673, pp. 8, 21–23). After careful consideration of these comments and those relating to Regulatory #2b discussed below, OSHA has decided to adopt Regulatory Alternative #2a to expand the proposal’s scope to cover construction and shipyards. As noted by commenters like the AFL–CIO, record evidence shows that exposures above the new action level and PEL, primarily from abrasive blasting operations, occur in both the construction and shipyard industries (see Chapter IV of the Final Economic Analysis and Regulatory Flexibility Analysis (FEA)). As discussed in Section V, Health Effects, and Section VII, Significance of Risk, employees exposed to airborne beryllium at these levels are at significant risk of developing adverse health effects, primarily chronic beryllium disease (CBD) and lung cancer. And under the OSH Act, and specifically section 6(b)(5), the Agency is required to set health standards which most adequately assure, to the extent feasible, that no employee will suffer material impairment of health or functional capacity even if such employee has regular exposure to the hazard dealt with by such standards for the period of his working life. Therefore, OSHA finds it would be inappropriate to exclude construction and shipyard employers from coverage under this rule. OSHA disagrees with Materion’s assertion that existing standards render it unnecessary to have this standard cover construction and shipyard employers whose employees are exposed to beryllium during abrasive blasting operations. The OSHA Ventilation standard referenced by Materion (29 CFR 1910.94) applies only to general industry and does not cover construction and shipyard workers. The OSHA Ventilation standard in construction (1926.57) and Mechanical paint removers standard in shipyards (1915.34) provide some general protections for abrasive blasting workers but do not provide the level of protection provided by the ancillary provisions contained in the final standards such as medical surveillance, personal protective clothing and equipment, and beryllium-specific training. E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2638 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations OSHA also disagreed with Jack Allen, Inc.’s assertion that the employers conducting abrasive blasting already have sufficient processes and controls in place to prevent exposures to all dusts during operations. OSHA’s examination of the record identifies data on beryllium exposure in the abrasive blasting industry showing beryllium exposure above the action level and TWA PEL when beryllium-containing slags are used (e,g., Document ID 1166; 1815, Attachment 35; 1880). And even in abrasive blasting operations where all available controls and work processes to reduce beryllium exposure are used, additional ancillary provisions are still as necessary to protect workers from the harmful effects of exposure to beryllium as in general industry. OSHA also finds unsubstantiated ABMA’s assertion that regulating the trace amounts of beryllium in abrasive blasting will increase the use of silica-based blasting agents and result in an increase in the amount of coal slag materials going to landfills. OSHA has identified several controls for abrasive blasting in its technological feasibility analysis (see Chapter IV of the FEA). OSHA also noted that substitution is not always feasible and employers should be cautious to not introduce additional hazards when switching to an alternate media. The Agency is certainly not encouraging employers to increase the use of silica sand as a blasting media. However, workers using silica-based blasting materials are protected under a new comprehensive silica standard (29 CFR 1910.1053, 29 CFR 1926.1153). Employers are in the best position to determine which blasting material to use and how to weigh the costs of compliance with the two rules. A 1998 NIOSH-funded study on substitute materials for silica sand in abrasive blasting provides comprehensive information on alternative media and can be used by employers seeking to identify appropriate abrasive blasting media alternatives (Document ID 1815, Attachment 85–87). In fact, exploring the use of alternative media for safer abrasive blasting media is already underway (Document ID 1741, p. 2). OSHA anticipates that the amount of slag material being deposited in landfills will remain constant regardless of its use prior to disposal, as the spent slag material used in abrasive blasting will still need to be disposed of. OSHA is also not persuaded by ABMA’s technological feasibility argument that regulating trace amounts of beryllium would require testing below the limit of detection and that it is not technologically feasible to measure VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 beryllium exposures in abrasive blasting. As explained in sections 2 and 12 of Chapter IV of the Final Economic Analysis, there are a number of available sampling and analytical methods that are capable of detecting beryllium at air concentrations below the action level of 0.1 mg/m3, as well as existing exposure data for beryllium in abrasive blasting operations. And finally, OSHA disagrees with ABMA’s assertion that regulating abrasive blasting on a chemical-by-chemical basis is inappropriate. The beryllium rule is typical of OSHA substancespecific health standards that have been promulgated for the construction and shipyard industries and include abrasive blasting operations, such as the Lead standard for construction (1926.62) and the Lead standard for general industry (1910.1025), which applies to the shipyard industry. However, OSHA does agree with ABMA’s observation that many of the conditions in the construction and shipyard industries are distinct from those in general industry, and agrees that the standard as proposed was not tailored to construction and shipyard worksites. The Agency has long recognized a distinction between the construction and general industry sectors and has issued standards specifically applicable to construction and shipyard work under 29 CFR part 1926 and 29 CFR part 1915, respectively. OSHA’s understanding of the differences between these industries is why OSHA specifically asked stakeholders with experience and knowledge of the construction or shipyard industries to opine on whether coverage of those industries is appropriate and, if so, how the proposal should be revised to best protect workers in those industries. As discussed throughout the rest of this Summary and Explanation section, many stakeholders responded to OSHA’s request. After careful consideration of the record, OSHA finds that the unique needs of, conditions in, and challenges posed by the construction and maritime sectors, particularly concerning abrasive blasting operations at construction sites and shipyards, warrant different requirements from general industry. Therefore, OSHA is issuing three separate standards—one for each of these sectors. OSHA judges that the primary source of beryllium exposure at construction worksites and in shipyards is from abrasive blasting operations when using abrasives that contain trace amounts beryllium. Abrasive blasters and their helpers are exposed to beryllium from coal slag and PO 00000 Frm 00170 Fmt 4701 Sfmt 4700 other abrasive blasting material like copper slag that may contain beryllium as a trace contaminant. The most commonly used abrasives in the construction industry include coal slag and steel grit, which are used to remove old coatings and etch the surfaces of outdoor structures, such as bridges, prior to painting (Document ID 1815, Attachment 93, p. 80). Shipyards are large users of mineral slag abrasives. In a recent survey conducted for the Navy, the use of coal slag abrasives accounted for 68 percent and copper slag accounted for 20 percent of abrasive media usage as reported by 26 U.S. shipyards and boatyards (Document ID 0767). The use of coal and copper slag abrasives has increased in recent years as industries have sought substitutes for silica sand blasting abrasives to avoid health risks associated with respirable crystalline silica (Document ID 1671, Attachment 3; 1681, Attachment 1, pp. 1–2). OSHA’s exposure profile for abrasive blasters, pot tenders/helpers, and abrasive material cleanup workers is found in Section 12 of Chapter IV in the FEA. The exposure profile for abrasive blasters shows a median of 0.2 mg/m3, a mean of 2.18 mg/m3, and a range from 0.004 mg/m3 to 66.5 mg/m3. The mean level of 2.18 mg/m3 is above the preceding PEL for beryllium. For pot tenders/helpers, the exposure profile shows a median of 0.09 mg/m3, a mean of 0.10 mg/m3, and a range from 0.04 to 0.20 mg/m3. Beryllium exposure for workers engaged in abrasive material cleanup shows a median of 0.18 mg/m3, a mean of 1.76 mg/m3, and a range from 0.04 mg/m3 to 7.4 mg/m3 (see Section 12 of Chapter IV in the FEA). OSHA concludes that abrasive blasters, pot tenders/helpers, and cleanup workers have the potential for significant airborne beryllium exposure during abrasive blasting operations and during cleanup of spent abrasive material. Accordingly, these workers require protection under the beryllium standards. To address high concentrations of various hazardous chemicals in abrasive blasting, employers are already required to use engineering and work practice controls to limit workers’ exposures and supplement these controls with respiratory protection when necessary. For example, abrasive blasters in the construction industry fall under the protection of the Ventilation standard (29 CFR 1926.57). The Ventilation standard includes an abrasive blasting subsection (29 CFR 1926.57(f)), which requires that abrasive blasting respirators be worn by all abrasive E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations blasting operators when working inside blast-cleaning rooms (29 CFR 1926.57(f)(5)(ii)(A)), when using silica sand in manual blasting operations where the nozzle and blast are not physically separated from the operator in an exhaust-ventilated enclosure (29 CFR 1926.57(f)(5)(ii)(B)), or when needed to protect workers from exposures to hazardous substances in excess of the limits set in § 1926.55 (29 CFR 1926.57(f)(5)(ii)(C)). For the shipyard industry, paragraph (c) of the Mechanical paint removers standard (29 CFR 1915.34) also has respiratory protection requirements for abrasive blasting operations. Because of these requirements, OSHA believes that employers already have those controls in place and provide respiratory protection during abrasive blasting operations. Nonetheless, the construction and shipyard standards’ new ancillary provisions such as medical surveillance, personal protective clothing and equipment, housekeeping, and beryllium-specific training will provide increased protections to workers in these industries. OSHA also received comment and heard testimony on potential beryllium exposure from other sources. NIOSH commented that construction workers may be exposed to beryllium when demolishing buildings or building equipment, based on a study of workers demolishing oil-fired boilers (Document ID 1671, Attachment 1, pp. 5, 15; 1671, Attachment 21). Peggy Mroz of NJH testified that ‘‘[n]umerous studies have documented beryllium exposure sensitization and chronic beryllium disease in construction industries, demolition and decommissioning, and among workers who use non-sparking tools’’ (Document ID 1756, Tr. 98). Many such cases were discovered among trade workers at Department of Energy sites from the National Supplemental Screening Program (Document ID 1756, Tr. 81–82). Ashlee Fitch from the USW testified that in addition to abrasive blasting using beryllium-contaminated slags, workers in the maritime industry use nonsparking tools that are composed of beryllium alloys. Ms. Fitch stated that these tools can create beryllium particulate when they are dressed (e.g., sharpening, grinding, straightening). She also noted that shipyards may use beryllium for other tasks in the future. Ms. Fitch alluded to a 2000 Navy survey of potential exposure to beryllium in shipyards which identified potential beryllium sources in welding, abrasive blasting, and metal machining VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 (Document ID 1756, Tr. 242–243). Mr. Wright of the USW testified that shipyard management told a USW representative ‘‘that most of the beryllium that they’re aware of comes in in the form of articles . . . . That is to say, it might be part of some assembly . . . [a]nd it comes in and it’s sealed and closed’’ (Document ID 1756, Tr. 270). However, Mr. Wright stated that beryllium is a high-tech material and that ‘‘there is nothing more high-tech than an aircraft carrier or a nuclear submarine’’ so exposure from berylliumcontaining alloys cannot be ruled out in these operations (Document ID 1756, Tr. 270). Despite requesting information both in the NPRM and during the public hearing, OSHA does not have sufficient data on beryllium exposures in the construction and shipyard industries to characterize exposures of workers in application groups other than abrasive blasting with beryllium-containing slags. OSHA could not develop exposure profiles for construction and shipyard workers engaged in activities involving non-sparking tools, demolition of beryllium-contaminated buildings or equipment, and working with beryllium-containing alloys. However, OSHA acknowledges the USW’s concerns about future beryllium use and recognizes that there is potential for exposure to beryllium in construction and shipyard operations other than abrasive blasting. As such, workers engaged in such operations are exposed to the same hazard of developing CBD and other berylliumrelated disease, and therefore deserve the same level of protection as do workers who are engaged in abrasive blasting or covered in the general industry final rule. Therefore, although at this time OSHA cannot specifically quantify exposures in construction or shipyard operations outside of abrasive blasting, OSHA has determined that it is necessary for the final standards for construction and maritime to cover all occupational exposures to beryllium in those industries in order to ensure that the standard is broadly effective and addresses all potential harmful exposures. Three commenters representing the maritime industry supported Regulatory Alternative #2b—adopting the new PELs for construction and maritime by updating the existing Z tables to incorporate them, but not applying the other ancillary provisions of this standard to construction and maritime (Document ID 1595, p. 2; 1618, p. 2; 1657. p. 1). The Shipbuilders Council of America (SCA) supported lowering the PEL for beryllium from 2.0 m/m3 to 0.2 PO 00000 Frm 00171 Fmt 4701 Sfmt 4700 2639 m/m3 in 29 CFR 1915.1000 Table Z, but argued that a new beryllium standard would prove to be redundant. SCA contended that many shipyards maintain a comprehensive industrial hygiene program focused on exposure assessments and protective measures for a variety of metals in shipyard tasks, and that shipyards encounter beryllium only at trace contaminant levels in materials involved in the welding and abrasive blasting processes. SCA stated that the potential hazards inherent in and unique to abrasive blasting in shipyards are already effectively controlled through existing regulations (Document ID 1618, pp. 2–4). General Dynamics’ Bath Iron Works expressed similar views in their comments on this issue, as did Newport News Shipbuilding (Document 1595, p. 2; 1657, p. 1). In addition to the commenters representing the maritime industry, Ameren, an electric and natural gas public utility, also supported applying the proposed TWA PEL and STEL to all employers in general industry, construction, and maritime even where beryllium exists only as a trace contaminant (Document ID 1675, p. 3). However, not all commenters endorsed Alternative #2b. The Department of Energy’s National Supplemental Screening Program (NSSP) did not support this alternative because the other provisions of the standard would only cover employers and employees within the scope of the proposed general industry rule (Document ID 1677, p. 2). Furthermore, many commenters supported extending the full protections of the standard to the construction and maritime industries as set forth in Regulatory Alternative #2a, discussed earlier, which implicitly rejects Regulatory Alternative #2b (see, e.g., Document ID 1756, Tr. 81; 1756, Tr. 97–98; 1756, Tr. 172–175; 1756, Tr. 198–199; 1755, Tr. 181). OSHA is not persuaded by the maritime industry commenters’ assertions that the ancillary provisions of the beryllium standard would be redundant. While OSHA acknowledges that shipyards encounter beryllium only at trace levels in materials involved in the welding and abrasive blasting processes, OSHA disagrees with their contention that updating the PEL and STEL will provide adequate protection to shipyard workers. OSHA agrees with NSSP and all the commenters supporting Regulatory Alternative #2a that a comprehensive standard specific to beryllium will provide the important protection of ancillary provisions, such as medical surveillance and medical removal protection. OSHA intends to E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2640 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations ensure that workers exposed to beryllium in the construction and shipyard industries are provided with protection that is comparable to the protection afforded workers in general industry. Therefore, OSHA has set an identical PEL and STEL and, where no meaningful distinctions are identified in the record, included substantially the same or approximately equivalent ancillary provisions in all three standards. For further discussion of the differences among the standards, see the provision-specific sections included in this Summary and Explanation. Therefore, OSHA declines to adopt Regulatory Alternative #2b, which, as noted above, would have updated 29 CFR 1910.1000 Tables Z–1 and Z–2, 29 CFR 1915.1000 Table Z, and 29 CFR 1926.55 Appendix A so that the new TWA PEL and STEL, but not the standard’s ancillary provisions, would apply to all employers and employees in general industry, shipyards, and construction, including occupations where beryllium exists only as a trace contaminant. The Agency intends for employers that are exempt from the scope of these comprehensive standards in accordance with paragraph (a) to comply with the preceding TWA PEL and STEL in 29 CFR 1910.1000 Table Z– 2, 29 CFR 1915.1000 Table Z, and 29 CFR 1926.55 Appendix A, as applicable. Given that the Agency is issuing separate beryllium standards for the construction and shipyard industries, OSHA is also adding to these tables a cross-reference to the new standards and clarifying that if the new standards are stayed or otherwise not in effect, the preceding PEL and short-term ceiling limit apply. Paragraph (a)(1). Proposed paragraph (a)(1) applied the standard to occupational exposures to beryllium in all forms, compounds, and mixtures in general industry, except those articles and materials exempted by paragraphs (a)(2) and (a)(3) of the standards. As OSHA explained in the proposal, the Agency preliminarily chose to treat beryllium generally, instead of individually addressing specific compounds, forms, and mixtures. This decision was based on the Agency’s preliminary determination that the toxicological effects of beryllium exposure on the human body are similar regardless of the form of beryllium (80 FR 47774). Several commenters offered opinions on this approach. The Non-Ferrous Founders’ Society (NFFS) expressed concern that beryllium metal was being treated the same as soluble beryllium compounds, such as salts, even though NFFS believes these soluble compounds VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 are more hazardous and suggested that OSHA establish a bifurcated standard for insoluble beryllium versus soluble beryllium compounds (Document ID 1732, p. 3; 1678, p. 2; 1756, Tr. 18). In related testimony, NIOSH’s Dr. Aleks Stefaniak discussed the dermal exposure mechanisms of poorly soluble beryllium through particle penetration and particle dissolving (Document ID 1755, pp. 35–39). Dr. Stefaniak testified that while ‘‘intact skin naturally has a barrier . . . [v]ery few people actually have fully intact skin, especially in an industrial environment’’ (Document ID 1755, p. 36). He added: in fact, beryllium particles, beryllium oxide, beryllium metal, beryllium alloys, all these sort of what we call insoluble forms actually do in fact dissolve very readily in analog of human sweat. And once beryllium is in an ionic form on the skin, it’s actually very easy for it to cross the skin barrier (Document ID 1755, pp. 36–37). NIOSH also provided additional information on beryllium solubility and the development of CBD in its posthearing brief, labeling as untrue NFFS’s assertion that insoluble beryllium does not cause CBD (Document ID 1960, Attachment 2, pp. 8–10), citing studies showing that workers exposed to insoluble forms of beryllium have developed sensitization and CBD (Kreiss, et al., 1997, Document ID 1360; Schuler et al., 2005 (1349); Schuler et al., 2008 (1291); Wegner et al., 2000, (1960, Attachment 7)). After careful consideration of the various comments on this issue, OSHA is not persuaded that there are differences in workers’ health risks that justify treating poorly soluble beryllium differently than soluble compounds. The Agency is persuaded by NIOSH that poorly soluble beryllium presents a significant risk of beryllium-related disease to workers and discusses this topic further in Section V of this preamble, Health Effects. OSHA has determined that the toxicological effects of beryllium exposure on the human body are similar regardless of the form of beryllium. Therefore, the Agency concludes that the record supports issuing standards that apply to beryllium in all forms, compounds, and mixtures. Final paragraph (a)(1) is therefore substantively unchanged from the proposal in all three standards. Paragraph (a)(2). Proposed paragraph (a)(2) excluded from the standard’s scope articles, as defined in the Hazard Communication standard (HCS) (29 CFR 1910.1200(c)), that contain beryllium and that the employer does not process. As OSHA explained in the proposal (80 FR 47775), the HCS defines an ‘‘article’’ as PO 00000 Frm 00172 Fmt 4701 Sfmt 4700 a manufactured item other than a fluid or particle: (i) Which is formed to a specific shape or design during manufacture; (ii) which has end use function(s) dependent in whole or in part upon its shape or design during end use; and (iii) which under normal conditions of use does not release more than very small quantities, e.g., minute or trace amounts of a hazardous chemical . . ., and does not pose a physical hazard or health risk to employees. OSHA preliminarily found that items or parts containing beryllium that employers assemble where the physical integrity of the item is not compromised are unlikely to release beryllium that would pose a physical or health hazard for workers. Therefore, OSHA proposed to exempt such articles from the scope of the standard. This proposed provision was intended to ease the burden on employers by exempting items from coverage where they are unlikely to pose a risk to employees. Commenters generally supported this proposed exemption. For example, NFFS stated that the exemption was ‘‘important and practical’’ (Document ID 1678, p. 2; Document ID 1756, Tr. 35– 36)). However, two commenters requested minor amendments to the exemption. First, ORCHSE Strategies (ORCHSE) asked OSHA to ‘‘clarify’’ that proposed paragraph (a)(2) ‘‘exempts ‘articles’ even if they are processed, unless the processing releases beryllium to an extent that negates the definition of an ‘article’ ’’ (Document ID 1691, Attachment 1, p. 16). ORCHSE asserted that the standard should not apply in a workplace when ‘‘the item actually meets OSHA’s definition of an article’’ and that OSHA should change the regulation’s language accordingly (Document ID 1691, Attachment 1, pp. 16–17). Second, the American Dental Association (ADA) asked that OSHA clarify the article exemption, specifically that employers who use but do not process articles are fully exempt from all requirements of the proposed rule, including those established for recordkeeping (Document ID 1597, p. 1). In contrast, Public Citizen objected to the inclusion of this exemption because exempting articles that are not processed does not take into consideration dermal exposure from handling articles containing beryllium (Document ID 1670, p. 7). Public Citizen pointed to OSHA’s proposed rule in which OSHA acknowledged that beryllium absorbed through the skin can induce a sensitization response that is a necessary first step toward CBD and that there is evidence that the risk is not limited to soluble forms. However, during follow-up questioning at the beryllium public hearings, Dr. Almashat E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations of Public Citizen was unable to provide any examples of dermal exposure from articles through their handling, as opposed to when processing beryllium materials (Document ID 1756, Tr. 178– 180). And, in its post-hearing comments, Public Citizen did not provide evidence of dermal exposure to workers handling beryllium materials that would fall under the definition of article (Document ID 1964). In the final standard, OSHA has decided not to alter the proposed exemption of articles. OSHA is not persuaded by ORCHSE’s argument that OSHA should change the regulation’s language to exempt articles even if they are processed, unless the processing releases beryllium to an extent that negates the definition of an article. The HCS defines an article as asabaliauskas on DSK3SPTVN1PROD with PROPOSALS a manufactured item other than a fluid or particle: (i) Which is formed to a specific shape or design during manufacture; (ii) which has end use function(s) dependent in whole or in part upon its shape or design during end use; and (iii) which under normal conditions of use does not release more than very small quantities, e.g., minute or trace amounts of a hazardous chemical (as determined under paragraph (d) of this section), and does not pose a physical hazard or health risk to employees. (29 CFR 1910.1200(c)). Whether a particular item is an ‘‘article’’ under the HCS depends on the physical properties and intended use of that item. However, employers may use and process beryllium-containing items in ways not necessarily intended by the manufacturer. Therefore, OSHA has decided not to link the processing limitation to the definition of an ‘‘article’’ and is retaining the language of proposed (a)(2) to comport with the intention of the exemption. In response to the ADA’s request for clarification that employers who use but do not process articles are fully exempt from all requirements of the rule, OSHA notes that paragraph (a)(2) of the final standards states that the ‘‘standard does not apply’’ to those articles. Furthermore, the recordkeeping requirement for objective data in paragraph (n)(2) of the standards states that it applies to objective data used to satisfy exposure assessment requirements, but does not mention any data used to determine coverage under paragraph (a). Therefore, OSHA has determined that no further clarification in the regulatory text is necessary. In response to the comment from Public Citizen, OSHA did not receive any evidence on the issue of beryllium exposure through dermal contact with unprocessed articles. Therefore, OSHA cannot find that such contact poses a risk. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 Paragraph (a)(2) of the final standards therefore remains unchanged from the proposed standard. The final standards do not apply to articles, as defined in the Hazard Communication standard (HCS) (29 CFR 1910.1200(c)), that contain beryllium and that the employer does not process. Paragraph (a)(3). Proposed paragraph (a)(3) exempted from coverage materials containing less than 0.1 percent beryllium by weight. Requesting comment on this exemption (80 FR 47776), OSHA presented Regulatory Alternative #1a, which would have eliminated the proposal’s exemption for materials containing less than 0.1 percent beryllium by weight, and #1b, which would have exempted operations where the employer can show that employees’ exposures will not meet or exceed the action level or exceed the STEL. The Agency asked whether it is appropriate to include an exemption for operations where beryllium exists only as a trace contaminant, but some workers can nevertheless be significantly exposed. And the Agency asked whether it should consider dropping the exemption, or limiting it to operations where exposures are below the proposed action level and STEL. In addition, OSHA requested additional data describing the levels of airborne beryllium in workplaces that fall under this exemption. Some stakeholders supported keeping the 0.1 percent exemption as proposed (Document ID 1661, p. 6; 1666, p. 2; 1668, p. 2; 1673, p. 8; 1674, p. 3; 1687, Attachment 2, p. 8; 1691, Attachment 1, p. 3; 1756, Tr. 35–36, 63). For example, the Edison Electric Institute (EEI) strongly supported the exemption and asserted ‘‘that abandoning the exemption would result in no additional benefits from a reduction in the beryllium permissible exposure limit (PEL) or from ancillary provisions similar to those already in place for the arsenic and other standards’’ (Document ID 1674, p. 3). Mr. Weaver of NFFS also opposed eliminating the exemption, testifying that without the 0.1 percent exemption, 900 to 1,100 foundries would come under the scope of the rule (Document ID 1756, Tr. 55–56). ABMA also supported the proposed 0.1 percent exemption, suggesting that there is a lack of evidence of significant risk from working with material containing beryllium in trace amounts and that OSHA needs substantial evidence that it is ‘‘at least more likely than not’’ that exposure to beryllium in trace amounts presents significant risk of harm, under court decisions concerning the Benzene rule (Document ID 1673, pp. 8–9). ABMA further argued PO 00000 Frm 00173 Fmt 4701 Sfmt 4700 2641 that significant risk does not exist even below the previous PEL of 2.0 mg/m3 (Document ID 1673, pp. 8–9, 11). ABMA added that its members collectively have over 200 years of experience producing coal and/or copper slag abrasive material and have employed thousands of employees in this production process. ABMA explained: Through the years, Alliance members have worked with and put to beneficial use over 100 million tons of slag material that would otherwise have been landfilled. Despite this extensive history, the Alliance members have no history of employees with beryllium sensitization or beryllium-related illnesses. Indeed, the Alliance members are not aware of a single documented case of beryllium sensitization or beryllium-related illness associated with coal or copper slag abrasive production among their employees, or their customers’ employees working with the products of Alliance members (Document ID 1673, p. 9). OSHA is not persuaded by these arguments. The lack of anecdotal evidence of sensitization or berylliumrelated illness does not mean these workers are not at risk. As noted by Representative Robert C. ‘‘Bobby’’ Scott, Ranking Member of the U.S. House of Representatives Committee on Education and the Workforce the U.S. House of Representatives, ‘‘medical surveillance has not been required for beryllium-exposed workers outside of the U.S. Department of Energy. The absence of evidence is not evidence of absence’’ (Document ID 1672). As discussed in Section II of this preamble, Pertinent Legal Authority, courts have not required OSHA ‘‘to support its finding that a significant risk exists with anything approaching scientific certainty’’ (Benzene, 448 U.S. 607, 656 (1980)). Rather, OSHA may rely on ‘‘a body of reputable scientific thought’’ to which ‘‘conservative assumptions in interpreting the data . . .’’ may be applied, ‘‘risking error on the side of overprotection’’ (Benzene, 448 U.S. at 656). OSHA may thus act with a ‘‘pronounced bias towards worker safety’’ in making its risk determinations (Bldg & Constr. Trades Dep’t v. Brock, 838 F.2d 1258, 1266 (D.C. Cir. 1988). Where, as here, the Agency has evidence indicating that a certain operation can result in exposure levels that the Agency knows can pose a significant risk—such as evidence that workers that have been exposed to beryllium at the final PEL of 0.2 mg/m3 in primary beryllium production and beryllium machining operations have developed CBD (see this preamble at section V, Risk assessment)—OSHA need not wait until it has specific evidence that employees in that E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2642 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations particular industry are suffering. A number of commenters supported Regulatory Alternative #1a, proposing to eliminate the proposal’s exemption for materials containing less than 0.1 percent beryllium by weight (Document ID 1655, p. 15; 1664, p. 2; 1670, p. 7; 1671, Attachment 1, p. 5; 1672, pp. 4– 5; 1683, p. 2; 1686, p. 2; 1689, pp. 6– 7; 1690, p. 3; 1693, p. 3; 1720, pp. 1, 4). Public Citizen expressed concern with the proposed exemption and pointed out that OSHA identified studies in its proposal unequivocally demonstrating that beryllium sensitization and CBD occur in multiple industries utilizing products containing trace amounts of beryllium and that such an exemption would expose workers in such industries to the risks of beryllium toxicity (Document ID 1670, p. 7). The American Association for Justice, the AFL–CIO, and the UAW were all concerned that the proposed standard’s 0.1 percent exemption would result in workers being exposed to significant amounts of beryllium from abrasive blasting (Document ID 1683, p. 2; 1689, pp. 6–7, 10–11; 1693, p. 3). Both Dr. Sammy Almashat and Emily Gardner of Public Citizen testified that they support inclusion of work processes that involve materials containing less than 0.1 percent of beryllium because the beryllium can become concentrated in air, even when using materials with only trace amounts (Document ID 1756, Tr. 174, 177–178, 185–186). Similarly, the AFL–CIO stated that ‘‘there are known over-exposures among industries that use materials with less than 0.1% beryllium by weight, including an estimated 1,665 workers in primary aluminum production and 14,859 coalfired electric power generation workers’’ (Document ID 1689, p. 7). Mary Kathryn Fletcher of the AFL–CIO further explained that the AFL–CIO supported eliminating the exemption because these employees are at significant risk for developing sensitization, chronic beryllium disease (CBD), and lung cancer (Document ID 1756, Tr. 198– 199). The Sampling and Analysis Subcommittee Task Group of the Beryllium Health and Safety Committee (BHSC Task Group) recommended that OSHA remove the exemption (Document ID 1655, p. 15). AIHA also recommended eliminating or reducing the percentage content exemption until data is available to demonstrate that materials with very low beryllium content will not result in potential exposure above the proposed PEL (Document ID 1686, p. 2). Both NIOSH and North America’s Building Trades Unions (NABTU) VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 expressed concern that the 0.1 percent exemption would expose construction and shipyard workers conducting abrasive blasting with coal slags to beryllium in concentrations above the final PEL. NIOSH and NABTU cited a study by the Center for Construction Research and Training, and NIOSH also cited one of its exposure assessment studies of a coal slag blaster showing beryllium air concentrations exceeding the preceding OSHA PEL (Document ID 1671, Attachment 1, p. 5; 1679, pp. 3– 4). In addition, NIOSH points out that although the abrasive blasting workers may use personal protective equipment that limits exposure, supervisors and other bystanders may be exposed. NIOSH gave other examples where the 0.1 percent exemption could result in workers being exposed to beryllium, such as building or building equipment demolition and work in dental offices that fabricate or modify berylliumcontaining dental alloys, but did not provide reference material or exposure data for these examples (Document ID 1671, pp. 5–6). In its post-hearing brief, NIOSH also specifically disagreed with EEI’s contention that compliance with the arsenic and asbestos standards satisfies the proposed regulatory requirements of the beryllium rule. NIOSH argued that, unlike arsenic and lead, beryllium is a sensitizer, and as such, necessary and sufficient controls are required to protect workers from life-long risk of beryllium sensitization and disease (Document ID 1960, Attachment 2, p. 6). OSHA also received comment and heard testimony from Dr. Weissman of NIOSH recommending that the scope of the standard be based on employee exposures and not the concentration of beryllium in the material (Document ID 1671, pp. 5–6; Document ID 1755, Tr. 17–18). NIOSH identified coal-fired electric power generation and primary aluminum production as industries that could fall under the 0.1 percent exemption (Document ID 1671, Attachment 1, p. 6). Stating it was not aware of any medical screening of utility workers exposed to fly ash, NIOSH recommended that OSHA include coal-fired electric power generation in the scope of the standard unless and until available data can demonstrate that there is no risk of sensitization to those workers (Document ID 1671, p. 6). NIOSH did not offer specifics on the magnitude of beryllium exposure in the aluminum production industry. In its post-hearing brief, NIOSH recommended that OSHA remove the 0.1 percent exemption from the rule, allowing the rule to cover a PO 00000 Frm 00174 Fmt 4701 Sfmt 4700 broad range of construction, shipyard, and electric utility power generation activities that are associated with beryllium exposure, such as abrasive blasting with coal or copper slag, repairing and maintaining structures contaminated with fly ash, and remediation or demolition (Document ID 1960, Attachment 2, p. 2). And Peggy Mroz of NJH testified that beryllium sensitization and CBD have been reported in the aluminum industry and that NJH has continued to see cases of severe CBD in workers exposed to beryllium through medical recycling and metal reclamation (Document ID 1756, Tr. 98–99). Other commenters suggested limiting the exemption, as OSHA proposed in Regulatory Alternative #1b, to require employers to demonstrate, using objective data, that the materials, when processed or handled, cannot release beryllium in concentrations at or above the action level as an 8-hour TWA under any foreseeable conditions (Document ID 1597, p. 1; 1681, pp. 5– 6). For example, the Materion-USW proposed standard included the 0.1 percent exemption unless objective data or initial monitoring showed exposures could exceed the action level or STEL. USW asserted that not including this requirement in the rule would be a mistake (Document ID 1681, pp. 5–6). The AFL–CIO also supported the joint USW-Materion scope provision (Document ID 1756, Tr. 212). Mike Wright of the USW asserted that maintaining the 0.1 percent exemption would leave thousands of workers unprotected, including those performing abrasive blasting operations in general industry, ship building, and construction (Document ID 1755, Tr. 111–114). Mr. Wright argued that in the 1,3 Butadiene standard OSHA recognized that the 0.1 percent exemption would not protect some workers and therefore included additional language limiting the exemption where objective data showed ‘‘that airborne concentrations generated by such mixtures can exceed the action level or STEL under reasonably predictable conditions of processing, use or handling that will cause the greatest possible release’’ (Document ID 1755, Tr. 113; 29 CFR 1910.1051(a)(2)(ii)). Mr. Wright urged OSHA to include similar language in the beryllium standard (Document ID 1755, Tr. 113–114). Some commenters endorsed a modified version of Alternative #1b. For example, the Department of Defense (DOD) supported Alternative #1b, but also suggested limiting the exemption if exposures ‘‘could present a health risk E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations to employees’’ (Document ID 1684, Attachment 2, pp. 1, 3). Boeing suggested adding a different exemption to the scope of the standard: asabaliauskas on DSK3SPTVN1PROD with PROPOSALS where the employer has objective data demonstrating that a material containing beryllium or a specific process, operation, or activity involving beryllium cannot release dusts, fumes, or mists of beryllium in concentrations at or above 0.02 mg/m3 as an 8-hour time-weighted average (TWA) or at or above 0.2 mg/m3 as determined over a sampling period of 15 minutes under any expected conditions of use (Document ID 1667, p. 12). Other commenters, like ABMA, criticized Regulatory Alternative #1b, insisting that the rulemaking record contained no evidence to support expanding the scope, but that if the scope was expanded to cover trace beryllium, a significant exemption would be needed. ABMA argued that such an exemption would need to go considerably beyond that of using the action level or STEL because of the substantial costs, particularly on small businesses, that would be incurred where there is no evidence of benefit. However, ABMA did not specify what such an exemption would look like (Document ID 1673, p. 11). Similarly, the National Rural Electric Cooperative Association (NRECA) objected to Regulatory Alternative #1b as being unnecessary to protect employees from CBD in coal fired power plants (Document ID 1687, p. 2). Ameren did not agree with the objective data requirement in Regulatory Alternative #1b because it would be difficult to perform sampling in a timely manner for the many different maintenance operations that occur infrequently. This would include in the scope of the rule activities for which exposures are difficult to measure, but are less likely to cause exposure than other operations (Document ID 1675, p. 2). The NSSP also does not support Regulatory Alternative #1b because without first expanding the scope of the rule to cover the construction and maritime sectors, employers in construction and maritime would still be excluded (Document ID 1677, p. 1). OSHA agrees with the many commenters and testimony expressing concern that materials containing trace amounts of beryllium (less than 0.1 percent by weight) can result in hazardous exposures to beryllium. We disagree, however, with those who supported completely eliminating the exemption because this could have unintended consequences of expanding the scope to cover minute amounts of naturally occurring beryllium (Ex 1756 Tr. 55). Instead, we believe that VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 alternative #1b—essentially as proposed by Materion and USW and acknowledging that workers can have significant beryllium exposures even with materials containing less than 0.1%—is the most appropriate approach. Therefore, in the final standard, it is exempting from the standard’s application materials containing less than 0.1% beryllium by weight only where the employer has objective data demonstrating that employee exposure to beryllium will remain below the action level as an 8hour TWA under any foreseeable conditions. As noted by NIOSH, NABTU, and the AFL–CIO, and discussed in Chapter IV of the FEA, workers in abrasive blasting operations using materials that contain less than 0.1 percent beryllium still have the potential for significant airborne beryllium exposure during abrasive blasting operations and during cleanup of spent abrasive material. NIOSH and the AFL–CIO also identified coal-fired electric power generation and primary aluminum production as industries that could fall under the 0.1 percent exemption but still have significant worker exposure to beryllium. Furthermore, OSHA agrees with NIOSH that the Agency should regulate based on the potential for employee exposures and not the concentration of beryllium in the material being handled. However, OSHA acknowledges the concerns expressed by ABMA and EEI that processing materials with trace amounts of beryllium may not necessarily cause significant exposures to beryllium. OSHA does not have evidence that all materials containing less than 0.1 percent beryllium by weight can result in significant exposure to beryllium, but the record contains ample evidence that there are significant exposures in operations using materials with trace amounts of beryllium, such as abrasive blasting, coal-fired power generation, and primary aluminum production. As discussed in Section VII of this preamble, Significance of Risk, preventing airborne exposures at or above the action level reduces the risk of beryllium-related health effects to workers. OSHA is also not persuaded by comments that claim obtaining this exposure data is too difficult for infrequent or short-term tasks because employers must be able to establish their eligibility for the exemption before being able to take advantage of it. If an employer cannot establish by objective data, including actual monitoring data, that exposures will not exceed the action level, then the beryllium PO 00000 Frm 00175 Fmt 4701 Sfmt 4700 2643 standards apply to protect that employer’s workers. As pointed out by commenters such as the USW, similar exemptions are included in other OSHA standards, including Benzene (29 CFR 1910.1028), Methylenedianiline (MDA) (29 CFR 1910.1050), and 1,3-Butadiene (BD) (29 CFR 1910.1051). These exemptions were established because workers in the exempted industries or workplaces were not exposed to the subject chemical substances at levels of significant risk. In the preamble to the MDA standard, OSHA states that the Agency relied on data showing that worker exposure to mixtures or materials of MDA containing less than 0.1 percent MDA did not create any hazards other than those expected from worker exposure beneath the action level (57 FR 35630, 35645–46). The exemption in the BD standard does not apply where airborne concentrations generated by mixtures containing less than 0.1 percent BD by volume can exceed the action level or STEL (29 CFR 1910.1051(a)(2)(ii)). The exemption in the Benzene standard was based on indications that exposures resulting from substances containing trace amounts of benzene would generally be below the exposure limit and on OSHA’s determination that the exemption would encourage employers to reduce the concentration of benzene in certain substances (43 FR 27962, 27968). OSHA’s decision to maintain the 0.1 percent exemption and require employers to demonstrate, using objective data, that the materials, when processed or handled, cannot release beryllium in concentrations at or above the action level as an 8-hour TWA under any foreseeable conditions, is a change from proposed paragraph (a)(3) that specified only that the standard did not apply to materials containing less than 0.1 percent beryllium by weight. This is also a change from Regulatory Alternative #1b in another respect, insofar as it proposed requiring objective data demonstrating that employee exposure to beryllium will remain below both the proposed action level and STEL. OSHA removed the STEL requirement as largely redundant because if exposures exceed the STEL of 2.0 mg/m3 for more than one 15-minute period per 8-hour shift, even if exposures are non-detectable for the remainder of the shift, the 8-hour TWA would exceed the action level of 0.1 mg/m3. Further, OSHA added the phrase ‘‘under any foreseeable conditions’’ to paragraph (a)(3) of the final standards to make clear that limited sampling results indicating exposures are below the E:\FR\FM\09JAR2.SGM 09JAR2 2644 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS action level would be insufficient to take advantage of this exemption. When using the phrase ‘‘any foreseeable conditions,’’ OSHA is referring to situations that can reasonably be anticipated. For example, annual maintenance of equipment during which exposures could exceed the action level would be a situation that is generally foreseeable. In sum, the proposed standard covered occupational exposures to beryllium in all forms, compounds, and mixtures in general industry. It did not apply to articles, as defined by the HCS, or to materials containing less than 0.1 percent beryllium by weight. After a thorough review of the record, OSHA has decided to adopt Regulatory Alternative #2a and include the construction and shipyard sectors within the scope of the final rule. This decision was in response to the majority of comments recommending that OSHA protect workers in these sectors under the final rule and the exposure data in these sectors contained in the record. OSHA has also decided to adopt a modified version of Regulatory Alternative #1b and limit the 0.1 percent exemption to those employers who have objective data demonstrating that employee exposure to beryllium will remain below the action level as an 8-hour TWA under any foreseeable conditions. Therefore, the final rule contains three standards—one each for general industry, construction, and shipyard. The article exemption has remained unchanged, and the 0.1 percent exemption has been limited to protect workers with significant exposures despite working with materials with trace amounts of beryllium. (b) Definitions Paragraph (b) includes definitions of key terms used in the standard. To the extent possible, OSHA uses the same terms and definitions in the standard as the Agency has used in other OSHA health standards. Using similar terms across health standards, when possible, makes them more understandable and easier for employers to follow. In addition, using similar terms and definitions helps to facilitate uniformity of interpretation and enforcement. Action level means a concentration of airborne beryllium of 0.1 micrograms per cubic meter of air (mg/m3) calculated as an 8-hour time-weighted average (TWA). Exposures at or above the action level trigger requirements for periodic exposure monitoring when the employer is following the scheduled monitoring option (see paragraph (d)(3)). In addition, paragraph (f)(1)(i)(B) VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 requires employers to list as part of their written exposure control plan the operations and job titles reasonably expected to have exposure at or above the action level. Paragraph (f)(2) requires employers to ensure that at least one of the controls listed in paragraph (f)(2)(i) is in place unless employers can demonstrate for each operation or process either that such controls are not feasible, or that employee exposures are below the action level based on at least two representative personal breathing zone samples taken at least seven days apart. In addition, under paragraph (k)(1)(i)(A), employee exposure at or above the action level for more than 30 days per year triggers requirements for medical surveillance. The medical surveillance provision triggered by the action level allows employees to receive exams at least every two years at no cost to the employee. The action level is also relevant to the medical removal requirements. Employees eligible for removal can choose to remain in environments with exposures at or above the action level, provided they wear respirators (paragraph (l)(2)(ii)). These employees may also choose to be transferred to comparable work in environments with exposures below the action level (if comparable work is not available, the employer must maintain the employee’s earnings and benefits for six months or until comparable work becomes available (paragraph (l)(3)). OSHA’s risk assessment indicates that significant risk remains at and below the TWA PEL (see this preamble at section VII, Significance of Risk). When there is significant risk remaining at the PEL, the courts have ruled that OSHA has the legal authority to impose additional requirements, such as action levels, on employers to further reduce risk when those requirements will result in a greater than minimal incremental benefit to workers’ health (Asbestos II, 838 F.2d at 1274). OSHA concludes that an action level for beryllium exposure will result in a further reduction in risk beyond that provided by the PEL alone. Another important reason to set an action level involves the variable nature of employee exposures to beryllium. Because of this fact, OSHA concludes that maintaining exposures below the action level provides reasonable assurance that employees will not be exposed to beryllium above the TWA PEL on days when no exposure measurements are made. This consideration is discussed later in this section of the preamble regarding paragraph (d)(3). The United Steelworkers (USW) commented in support of the action PO 00000 Frm 00176 Fmt 4701 Sfmt 4700 level, noting that it is typical in OSHA standards to have an action level at one half of the PEL (Document ID 1681, p. 11). The USW also commented that the ‘‘action level will further reduce exposure to beryllium by workers and will incentivize employers to implement best practice controls keeping exposures at a minimum as well as reducing costs of monitoring and assessments’’ (Document ID 1681, p. 11). National Jewish Health (NJH) also supported OSHA’s proposal for a more comprehensive standard and noted that the action level in the Department of Energy’s beryllium standard has been ‘‘very effective at reducing exposures and rates of beryllium sensitization and chronic beryllium disease in those facilities’’ (Document ID 1756, p. 90). As noted by the commenters, OSHA’s decision to set an action level of onehalf of the TWA PEL is consistent with previous standards, including those for inorganic arsenic (29 CFR 1910.1018), chromium (VI) (29 CFR 1910.1026), benzene (29 CFR 1910.1028), ethylene oxide (29 CFR 1910.1047), methylene chloride (29 CFR 1910.1052), and respirable crystalline silica (29 CFR 1910.1053). The definition of ‘‘action level’’ is therefore unchanged from the proposal. Some of the ancillary provisions triggered by the action level have changed since the proposal. Those changes are discussed in more detail in the Summary and Explanation sections for those provisions. Airborne exposure and airborne exposure to beryllium mean the exposure to airborne beryllium that would occur if the employee were not using a respirator. OSHA included a definition for the terms ‘‘exposure’’ and ‘‘exposure to beryllium’’ in the proposed rule, and defined the terms to mean ‘‘the exposure to airborne beryllium that would occur if the employee were not using a respirator.’’ In the final rule, the word ‘‘airborne’’ is added to the terms to make clear that they refer only to airborne beryllium, and not to dermal contact with beryllium. The modified terms replace ‘‘exposure’’ and ‘‘exposure to beryllium’’ in the rule, and the terms ‘‘exposure’’ and ‘‘exposure to beryllium’’ are no longer defined. Assistant Secretary means the Assistant Secretary of Labor for Occupational Safety and Health, United States Department of Labor, or designee. OSHA received no comments on this definition, and it is unchanged from the proposal. Beryllium lymphocyte proliferation test (BeLPT) means the measurement of blood lymphocyte proliferation in a E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations laboratory test when lymphocytes are challenged with a soluble beryllium salt. For additional explanation of the BeLPT, see the Health Effects section of this preamble (section V). Under paragraph (f)(1)(ii)(B), an employer must review and evaluate its written exposure control plan when an employee is confirmed positive. The BeLPT could be used to determine whether an employee is confirmed positive (see definition of ‘‘confirmed positive’’ in paragraph (b) of this standard). Paragraph (k)(3)(ii)(E) requires the BeLPT unless a more reliable and accurate test becomes available. NJH supported OSHA’s definition of the BeLPT in the NPRM (Document ID 1664, p. 5). However, OSHA has made one change from the proposed definition of the BeLPT in the NPRM to the final definition to provide greater clarity. The Agency has moved the characterization of a confirmed positive result from the BeLPT definition to the ‘‘confirmed positive’’ definition because it was more appropriate there. Beryllium work area means any work area containing a process or operation that can release beryllium where employees are, or can reasonably be expected to be, exposed to airborne beryllium at any level or where there is potential for dermal contact with beryllium. The definition of ‘‘beryllium work area’’ has been changed from the proposed definition to reflect stakeholder concerns regarding the overlap between a beryllium work area and regulated area, and to include the potential for dermal exposure. The definition only appears in the general industry standard because the requirement for a beryllium work area only applies to the general industry standard. Beryllium work areas are areas where employees are or can reasonably be expected to be exposed to airborne beryllium at any level, whereas an area is a regulated area only if employees are or can reasonably be expected to be exposed above the TWA PEL or STEL; the regulated area, therefore, is either a subset of the beryllium work area or, less likely, identical to it, depending on the configuration and circumstances of the worksite. Dermal exposure has also been included in the final definition to address the potential for sensitization from dermal contact. Therefore, while not all beryllium work areas are regulated areas, all regulated areas are beryllium work areas because they are areas with employee exposure to beryllium. Accordingly, all requirements for beryllium work areas also apply in all regulated areas, but requirements specific to regulated areas apply only to regulated areas and not to VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 beryllium work areas where exposures do not exceed the TWA PEL or STEL. For further discussion, see this section of the preamble regarding paragraph (e), Beryllium work areas and regulated areas. The presence of a beryllium work area triggers a number of the requirements in the general industry standard. Under paragraph (d)(3)(i), employers must determine exposures for each beryllium work area. Paragraphs (e)(1)(i) and (e)(2)(i) require employers to establish, maintain, identify, and demarcate the boundaries of each beryllium work area. Under paragraph (f)(1)(i)(D), employers must minimize cross-contamination by preventing the transfer of beryllium between surfaces, equipment, clothing, materials, and articles within a beryllium work area. Paragraph (f)(1)(i)(F) states that employers must minimize migration of beryllium from the beryllium work area to other locations within and outside the workplace. Paragraph (f)(2) requires employers to implement at least one of the controls listed in (f)(2)(i)(A) through (D) for each operation in a beryllium work area unless one of the exemptions in (f)(2)(ii) applies. Paragraph (i)(1) requires employers to provide readily accessible washing facilities to employees working in a beryllium work area, and to ensure that employees who have dermal contact with beryllium wash any exposed skin at the end of the activity, process, or work shift and prior to eating, drinking, smoking, chewing tobacco or gum, applying cosmetics, or using the toilet. In addition employers must ensure that these areas comply with the Sanitation standard (29 CFR 1910.141) (paragraph (i)(4)). Employers must maintain surfaces in all beryllium work areas as free as practicable of beryllium (paragraph (j)(1)(i)). Paragraph (j)(2) requires certain practices and prohibits other practices for cleaning surfaces in beryllium work areas. Under paragraph (m)(4)(ii)(B), employers must ensure workers demonstrate knowledge of the written exposure control plan with emphasis on the location(s) of beryllium work areas. CBD diagnostic center means a medical diagnostic center that has an on-site pulmonary specialist and on-site facilities to perform a clinical evaluation for the presence of chronic beryllium disease (CBD). This evaluation must include pulmonary function testing (as outlined by the American Thoracic Society criteria), bronchoalveolar lavage (BAL), and transbronchial biopsy. The CBD diagnostic center must also have the capacity to transfer BAL samples to a laboratory for appropriate diagnostic testing within 24 hours. The on-site PO 00000 Frm 00177 Fmt 4701 Sfmt 4700 2645 pulmonary specialist must be able to interpret the biopsy pathology and the BAL diagnostic test results. For purposes of these standards, the term ‘‘CBD diagnostic center’’ refers to any medical facility that meets these criteria, whether or not the medical facility formally refers to itself as a CBD diagnostic center. For example, if a hospital has all of the capabilities required by this standard for CBD diagnostic centers, the hospital would be considered a CBD diagnostic center for purposes of these standards. OSHA received comments from NJH and ORCHSE Strategies (ORCHSE) regarding the definition of the ‘‘CBD diagnostic center.’’ NJH commented that CBD diagnostic centers do not need to be able to perform the BeLPT but should be able to process the BAL appropriately and ship samples within 24 hours to a facility that can perform the BeLPT. NJH also indicated that CBD diagnostic centers should be able to perform CT scans, pulmonary function tests with DLCO (diffusing capacity of the lungs for carbon monoxide), and measure gas exchange abnormalities. NJH further indicated that CBD diagnostic centers should have a medical doctor who has experience and expertise, or is willing to obtain such expertise, in the diagnosis and treatment of chronic beryllium disease (Document ID 1664, pp. 5–6). ORCHSE argued that CBD diagnostic centers should be allowed to rely on off-site interpretation of transbronchial biopsy pathology, reasoning that this change would broaden the accessibility of CBD diagnostic centers to more affected employees (Document ID 1691, p. 3). OSHA evaluated these recommendations and included the language regarding sample processing and removed the proposal’s requirement that BeLPTs be performed on-site. The Agency also changed the requirement that pulmonary specialist perform testing as outlined in the proposal to the final definition which requires that a pulmonary specialist be on-site. This requirement addresses the concerns ORCHSE raised about accessibility of CBD diagnostic centers by increasing the number of facilities that would qualify as centers. This also preserves the expertise required to diagnose and treat CBD as stated by NJH (Document 1664, p. 6). Paragraph (k)(7) includes provisions providing for an employee who has been confirmed positive to receive an initial clinical evaluation and subsequent medical examinations at a CBD diagnostic center. Chronic beryllium disease (CBD) means a chronic lung disease associated E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2646 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations with exposure to airborne beryllium. The Health Effects section of this preamble, section V, contains more information on CBD. CBD is relevant to several provisions of this standard. Under paragraph (k)(1)(i)(B), employers must make medical surveillance available at no cost to employees who show signs and symptoms of CBD. Paragraph (k)(3)(ii)(B) requires medical examinations conducted under this standard to include a physical examination with emphasis on the respiratory system, in order to identify respiratory conditions such as CBD. Under paragraph (k)(5)(i)(A), the licensed physician’s report must advise the employee on whether or not the employee has any detected medical condition that would place the employee at an increased risk of CBD from further exposure to beryllium. Furthermore, CBD is a criterion for medical removal under paragraph (l)(1). Under paragraph (m)(1)(ii), employers must address CBD in classifying beryllium hazards under the hazard communication standard (HCS) (29 CFR 1910.1200). Employers must also train employees on the signs and symptoms of CBD (see paragraph (m)(4)(ii)(A) of the general industry and shipyard standards and paragraph (m)(3)(ii)(A) of the construction standard). Competent person means an individual on a construction site who is capable of identifying existing and foreseeable beryllium hazards in the workplace and who has authorization to take prompt corrective measures to eliminate or minimize them. The competent person must have the knowledge, ability, and authority necessary to fulfill the responsibilities set forth in paragraph (e) of the standard for construction. This definition appears only in the standard for construction. The competent person concept has been broadly used in OSHA construction standards (e.g., 29 CFR 1926.32(f) and 1926.20(b)(2)), including in the recent health standard for respirable crystalline silica (29 CFR 1926.1153). Under 29 CFR 1926.32(f), competent person is defined as ‘‘one capable of identifying existing and predictable hazards in the surroundings or working conditions that are unsanitary, hazardous, or dangerous to employees and who is authorized to take prompt corrective measures to eliminate them.’’ OSHA has adapted this definition for the beryllium construction standard by specifying ‘‘foreseeable beryllium hazards in the workplace’’ instead of ‘‘predictable hazards in the surroundings or working conditions that are unsanitary, hazardous, or dangerous to employees.’’ VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 The Agency also replaced the word ‘‘one’’ with ‘‘an individual.’’ The Agency revised the phrase ‘‘to eliminate them’’ to read ‘‘to eliminate or minimize them’’ to denote there may be cases where complete elimination would not be feasible. The definition of competent person also indicates that the competent person must have the knowledge, ability, and authority necessary to fulfill the responsibilities set forth in paragraph (e) of the construction standard, in order to ensure that the competent has appropriate training, education, or experience. See the discussion of ‘‘competent person’’ in the summary and explanation of paragraphs (e), Beryllium work areas and regulated areas, and (f), Methods of compliance, in this section. Confirmed positive means the person tested has beryllium sensitization, as indicated by two (either consecutive or non-consecutive) abnormal BeLPT test results, an abnormal and borderline test result, or three borderline test results. The definition of ‘‘confirmed positive’’ also includes a single result of a more reliable and accurate test indicating that a person has been identified as sensitized to beryllium if the test has been validated by repeat testing to have more accurate and precise diagnostic capabilities within a single test result than the BeLPT. OSHA recognizes that diagnostic tests for beryllium sensitization could eventually be developed that would not require a second test to confirm sensitization. Alternative test results would need to have comparable or increased sensitivity, specificity and positive predictive value (PPV) in order to replace the BeLPT as an acceptable test to evaluate beryllium sensitization (see section V.D.5.b of this preamble). OSHA received comments from NJH, the American Thoracic Society (ATS) and ORCHSE regarding the requirement for consecutive test results within a two year time frame, and the inclusion of borderline test results (Document ID 1664, p.5; 1668, p. 2; 1691, p. 20). NJH and ATS submitted similar comments regarding the requirement of two abnormal BeLPT test results to be consecutive and within two years. According to NJH, ‘‘the definition of ‘confirmed positive’ [should] include two abnormals, an abnormal and a borderline test result, and/or three borderline tests. This recommendation is based on studies of Middleton et al. (2008, and 2011), which showed that these other two combinations result in a PPV similar to two abnormal test results and are an equal predictor of CBD.’’ (Document ID 1664, p. 5). In addition, the ATS stated: PO 00000 Frm 00178 Fmt 4701 Sfmt 4700 These test results need not be from consecutive BeLPTs or from a second abnormal BeLPT result within a two-year period of the first abnormal result. These recommendations are based on the many studies cited in the docket, as well as those of Middleton, et al. (2006, 2008, and 2011), which showed that an abnormal and a borderline result provide a positive predictive value (PPV) similar to that of two abnormal test results for the identification of both beryllium sensitization and for CBD (Document ID 1668, p. 2). Materion Corporation (Materion) opposed changing the requirement for two abnormal BeLPT results and opposed allowing two or three borderline results to determine sensitization (Document ID 1808, p. 4). Without providing scientific studies or other bases for its position, Materion argued that ‘‘[m]aking a positive BeS determination for an individual without any confirmed abnormal test result is not warranted and clearly is not justifiable from a scientific, policy or legal perspective’’ (Document ID 1808, p. 4). OSHA evaluated these comments and modified the definition of ‘‘confirmed positive’’ accordingly for reasons described more fully within the Health Effects section of this preamble, V.D.5.b, including reliance on the Middleton studies (2008, 2011). The original definition for ‘‘confirmed positive’’ in the proposed standard was adapted from the model standard submitted to OSHA by Materion and the USW in 2012. Having carefully considered all these comments and their supporting evidence, where provided, the Agency finds the arguments from NJH, ATS, and ORCHSE persuasive. In particular ATS points out the Middleton et al. studies ‘‘. . . showed that an abnormal and a borderline result provide a positive predictive value (PPV) similar to that of two abnormal test results for the identification of both beryllium sensitization and for CBD.’’ (Document ID. 1688 p. 3). Therefore, the Agency recognizes that a borderline BeLPT test result when accompanied by an abnormal test result, or three separate borderline test results, should also be considered ‘‘confirmed positive.’’ In addition, ORCHSE commented on the use of a single test result from a more reliable and accurate test (Document ID 1691, p. 20). Specifically, ORCHSE recommended revising the language to include ‘‘the result of a more reliable and accurate test such that beryllium sensitization can be confirmed after one test, indicating a person has been identified as having beryllium sensitization’’ (Document ID 1691, p. 20). In response to the comment from ORCHSE, the Agency has included E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations additional language regarding the results from an alternative test (Document ID 1691, p. 20). OSHA inserted additional language clarifying that the alternative test has to be validated by repeat testing indicating that it has comparable or increased sensitivity, specificity and PPV than the BeLPT. The Agency finds that this language provides more precise direction for acceptance of an alternative test. Director means the Director of the National Institute for Occupational Safety and Health (NIOSH), U.S. Department of Health and Human Services, or designee. The recordkeeping requirements mandate that, upon request, employers make all records required by this standard available to the Director (as well as the Assistant Secretary) for examination and copying (see paragraph (n)(6)). Typically, the Assistant Secretary sends representatives to review workplace safety and health records. However, the Director may also review these records while conducting studies such as Health Hazard Evaluations of workplaces, or for other purposes. OSHA received no comments on this definition, and it is unchanged from the proposal. Emergency means any uncontrolled release of airborne beryllium. An emergency could result from equipment failure, rupture of containers, or failure of control equipment, among other causes. An emergency triggers several requirements of this standard. Under paragraph (g)(1)(iv), respiratory protection is required during emergencies to protect employees from potential overexposures. Emergencies also trigger clean-up requirements under paragraph (j)(1)(ii), and medical surveillance under paragraph (k)(1)(i)(C). In addition, under paragraph (m)(4)(ii)(D) of the standards for general industry and shipyards and paragraph (m)(3)(ii)(D) of the standard for construction, employers must train employees in applicable emergency procedures. High-efficiency particulate air (HEPA) filter means a filter that is at least 99.97 percent effective in removing particles 0.3 micrometers in diameter (see Department of Energy Technical Standard DOE–STD–3020–2005). HEPA filtration is an effective means of removing hazardous beryllium particles from the air. The standard requires beryllium-contaminated surfaces to be cleaned by HEPA vacuuming or other methods that minimize the likelihood of exposure (see paragraphs (j)(2)(i) and (ii)). OSHA received no comments on VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 this definition, and it is unchanged from the proposal. Objective data means information, such as air monitoring data from industry-wide surveys or calculations based on the composition of a substance, demonstrating airborne exposure to beryllium associated with a particular product or material or a specific process, task, or activity. The data must reflect workplace conditions closely resembling or with a higher airborne exposure potential than the processes, types of material, control methods, work practices, and environmental conditions in the employer’s current operations. OSHA did not include a definition of ‘‘objective data’’ in the proposed rule. Use of objective data was limited in the proposed rule, and applied only to an exception from initial monitoring requirements in proposed paragraph (d)(2). Proposed paragraph (d)(2)(ii) included criteria for objective data. The final rule allows for expanded use of objective data. Paragraph (a)(3) allows for use of objective data to support an exception from the scope of the standards. Paragraph (d)(2) allows for use of objective data as part of the performance option for exposure assessment. OSHA is therefore including a definition of ‘‘objective data’’ in paragraph (b) of the standards. The definition is generally consistent with the criteria included in proposed paragraph (d)(2)(ii), and with the use of this term in other OSHA substancespecific health standards such as the standards addressing exposure to cadmium (29 CFR 1910.1027), chromium (VI) (29 CFR 1010.1026), and respirable crystalline silica (29 CFR 1910.1053). Physician or other licensed health care professional (PLHCP) means an individual whose legally permitted scope of practice, such as license, registration, or certification, allows the person to independently provide or be delegated the responsibility to provide some or all of the health care services required in paragraph (k). The Agency recognizes that personnel qualified to provide medical surveillance may vary from State to State, depending on State licensing requirements. Whereas all licensed physicians would meet this definition of PLHCP, not all PLHCPs must be physicians. Under paragraph (k)(5) of the standards, the written medical report for the employee must be completed by a licensed physician. Under paragraph (k)(6) of the standard, the written medical opinion for the employer must also be completed by a licensed physician. However, other requirements PO 00000 Frm 00179 Fmt 4701 Sfmt 4700 2647 of paragraph (k) may be performed by a PLHCP under the supervision of a licensed physician (see paragraphs (k)(1)(ii), (k)(3)(i), (k)(3)(ii)(F), (k)(3)(ii)(G), and (k)(5)(iii)). The standard also identifies what information the employer must give to the PLHCP providing the services listed in this standard, and requires that employers maintain a record of this information for each employee (see paragraphs (k)(4) and (n)(3)(ii)(C), and the summary and explanation of paragraphs (k), Medical surveillance, in this section). Allowing a PLHCP to provide some of the services required under this rule is consistent with other recent OSHA health standards, such as bloodborne pathogens (29 CFR 1910.1030), respiratory protection (29 CFR 1910.134), methylene chloride (29 CFR 1910.1052), and respirable crystalline silica (29 CFR 1910.1053). OSHA received no comments on this definition, and it is unchanged from the proposal. Regulated area means an area, including temporary work areas where maintenance or non-routine tasks are performed, where an employee’s airborne exposure exceeds, or can reasonably be expected to exceed, either the TWA PEL or STEL. For an explanation of the distinction and overlap between beryllium work areas and regulated areas, see the definition of ‘‘beryllium work area’’ earlier in this section of the preamble and the summary and explanation for paragraph (e), Beryllium work areas and regulated areas. Regulated areas appear only in the general industry and shipyard standards, and they trigger several other requirements. Paragraphs (e)(1)(ii) and (e)(2)(ii) require employers to establish and demarcate regulated areas. Note that the demarcation requirements for regulated areas are more specific than those for other beryllium work areas (see also paragraph (m)(2) of the standards for general industry and shipyards). Paragraph (e)(3) requires employers to restrict access to regulated areas to authorized persons, and paragraph (e)(4) requires employers to provide all employees in regulated areas appropriate respiratory protection and personal protective clothing and equipment, and to ensure that these employees use the required respiratory protection and protective clothing and equipment. Paragraph (i)(5)(i) prohibits employers from allowing employees to eat, drink, smoke, chew tobacco or gum, or apply cosmetics in regulated areas. Paragraph (m)(2) requires warning signs associated with regulated areas to meet E:\FR\FM\09JAR2.SGM 09JAR2 2648 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS certain specifications. Paragraph (m)(4)(ii)(B) requires employers to train employees on the written exposure control plan required by paragraph (f)(1), including the location of regulated areas and the specific nature of operations that could result in airborne exposure. In the proposed rule, OSHA included in the definition of the term ‘‘regulated area’’ that it was ‘‘an area that the employer must demarcate.’’ Because the requirement to demarcate regulated areas is presented elsewhere in the standards, the reference in the definition to ‘‘an area that the employer must demarcate’’ is redundant, and has been removed from the final definition of the term. This definition of regulated areas is consistent with other substance-specific health standards that apply to general industry and shipyards, such as the standards addressing occupational exposure to cadmium (29 CFR 1910.1027 and 29 CFR 1915.1027), benzene (29 CFR 1910.1028 and 29 CFR 1915.1028), and methylene chloride (29 CFR 1910.1052 and 29 CFR 1915.1052). This standard means the beryllium standard in which it appears. In the general industry standard, it refers to 29 CFR 1910.1024. In the shipyard standard, it refers to 29 CFR 1915.1024. In the construction standard, it refers to 29 CFR 1926.1124. This definition elicited no comments and differs from the proposal only in that it appears in the three separate standards. (c) Permissible Exposure Limits (PELs) Paragraph (c) of the standards establishes two permissible exposure limits (PELs) for beryllium in all forms, compounds, and mixtures: An 8-hour time-weighted average (TWA) PEL of 0.2 mg/m3 (paragraph (c)(1)), and a 15minute short-term exposure limit (STEL) of 2.0 mg/m3 (paragraph (c)(2)). The TWA PEL section of the standards requires employers to ensure that no employee’s exposure to beryllium, averaged over the course of an 8-hour work shift, exceeds 0.2 mg/m3. The STEL section of the standards requires employers to ensure that no employee’s exposure, sampled over any 15-minute period during the work shift, exceeds 2.0 mg/m3. While the proposed rule contained slightly different language in paragraph (c), i.e. requiring that ‘‘each employee’s airborne exposure does not exceed’’ the TWA PEL and STEL, the final language was chosen by OSHA to remain consistent with prior OSHA health standards and to clarify that OSHA did not intend a different interpretation of the PELs in this standard. The same PELs apply to VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 general industry, construction, and shipyards. TWA PEL. OSHA proposed a new TWA PEL of 0.2 mg/m3 of beryllium— one-tenth the preceding TWA PEL of 2 mg/m3—because OSHA preliminarily found that occupational exposure to beryllium at and below the preceding TWA PEL of 2 mg/m3 poses a significant risk of material impairment of health to exposed workers. As with several other provisions of these standards, OSHA’s proposed TWA PEL followed the draft recommended standard submitted to the Agency by Materion Corporation (Materion) and the United Steelworkers (USW) (see this preamble at section III, Events Leading to the Standards). After evaluating the record, including published studies and more recent exposure data from industrial facilities involved in beryllium work, OSHA is adopting the proposed TWA PEL of 0.2 mg/m3. OSHA has made a final determination that occupational exposure to a variety of beryllium compounds at levels below the preceding PELs poses a significant risk to workers (see this preamble at section VII, Significance of Risk). OSHA’s risk assessment, presented in section VI of this preamble, indicates that there is significant risk of beryllium sensitization,38 CBD, and lung cancer from a 45-year (working life) exposure to beryllium at the preceding TWA PEL of 2 mg/m3. The risk assessment further indicates that, although the risk is much reduced, significant risk remains at the new TWA PEL of 0.2 mg/m3. OSHA has determined that the new TWA PEL is feasible across all affected industry sectors (see section VIII.D of this preamble, Technological Feasibility) and that compliance with the new PEL will substantially reduce employees’ risks of beryllium sensitization, Chronic Beryllium Disease (CBD), and lung cancer (see section VI of this preamble, Risk Assessment). OSHA’s conclusion about feasibility is supported both by the results of the Agency’s feasibility analysis and by the recommendation of the PEL of 0.2 mg/m3 by Materion and the USW. Materion is the sole beryllium producer in the U.S., and its facilities include some of the processes where OSHA expects it will be most challenging to control beryllium exposures. Although OSHA also found that there is significant risk at the proposed alternative TWA PEL of 0.1 mg/m3, OSHA did not adopt that alternative because the Agency could 38 As discussed in section VII of this preamble, Significance of Risk, beryllium sensitization is a necessary precursor to developing CBD. PO 00000 Frm 00180 Fmt 4701 Sfmt 4700 not demonstrate technological feasibility at that level (see section VIII.D of this preamble, Technological Feasibility). The TWA PEL was the subject of numerous comments in the rulemaking record. Comments from stakeholders in labor and industry, public health experts, and the general public supported OSHA’s selection of 0.2 mg/ m3 as the final PEL (NIOSH, Document ID 1671, Attachment 1, p. 2; National Safety Council, 1612, p. 3; The Sampling and Analysis Subcommittee Task Group of the Beryllium Health and Safety Committee of the Department of Energy’s National Nuclear Security Administration Lawrence Livermore National Lab (BHSC Task Group), 1655, p. 2; Newport News Shipbuilding, 1657, p. 1; National Jewish Health (NJH),1664, p. 2; The Aluminum Association, 1666, p. 1; The Boeing Company (Boeing), 1667, p. 1; American Industrial Hygiene Association (AIHA), 1686, p. 2; United Steelworkers (USW), 1681, p. 7; Andrew Brown, 1636, p. 6; Department of Defense, 1684, p. 1). Materion stated that the record does not support the feasibility of any limit lower than 0.2 mg/m3 (Document ID 1808, p. 2). OSHA also received comments supporting selection of a lower TWA PEL of 0.1 mg/ m3 from Public Citizen, the AFL–CIO, the United Automobile, Aerospace & Agricultural Implement Workers of America (UAW), North America’s Building Trades Unions (NABTU), and the American College of Occupational and Environmental Medicine (ACOEM) (Document ID 1689, p. 7; 1693, p. 3; 1670, p. 1; 1679, pp. 6–7; 1685, p. 1; 1756, Tr. 167). These commenters based their recommendations on the significant risk of material health impairment from exposure at the TWA PEL of 0.2 mg/m3 and below, which OSHA acknowledges. In addition to their concerns about risk, Public Citizen and the American Federation of Labor and Congress of Industrial Organizations (AFL–CIO) argued that a TWA PEL of 0.1 mg/m3 is feasible (Document ID 1756, Tr. 168– 169, 197–198). As discussed further below, however, OSHA’s selection of the TWA PEL in this case was limited by the findings of its technological feasibility analysis. No commenter provided information that would permit OSHA to show the feasibility of a TWA PEL of 0.1 mg/m3 in industries where OSHA did not have sufficient information to make this determination at the proposal stage. Public Citizen instead argued that insufficient evidence that engineering and work practice controls can maintain exposures at or below a TWA PEL of 0.1 E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations mg/m3 should not preclude OSHA from establishing such a PEL; and that workplaces unable to achieve a TWA PEL of 0.1 mg/m3 should be required to reduce airborne exposures as much as possible using engineering and work practice controls, supplemented with a respiratory protection program (Document ID 1670, p. 5). OSHA has determined that Public Citizen’s claim that the Agency should find a PEL of 0.1 mg/m3 technologically feasible is inconsistent with the test for feasibility as described by the courts as well as the evidence in the rulemaking record. OSHA bears the evidentiary burden of establishing feasibility in a rulemaking challenge. The D.C. Circuit, in its decision on OSHA’s Lead standard (United Steelworkers of America v. Marshall, 647 F.2d 1189 (D.C. Cir. 1981) (‘‘Lead’’)), explained that in order to establish that a standard is technologically feasible, ‘‘OSHA must prove a reasonable possibility that the typical firm will be able to develop and install engineering and work practice controls that can meet the PEL in most of its operations’’ (Lead, 647 F.2d at 1272). ‘‘The effect of such proof,’’ the court continued, ‘‘is to establish a presumption that industry can meet the PEL without relying on respirators’’ (Lead, 647 F.2d at 1272). The court’s definition of technological feasibility thus recognizes that, for a standard based on a hierarchy of controls prioritizing engineering and work practice controls over respirators, a particular PEL is not technologically feasible simply because it can be achieved through the widespread use of respirators (see Lead, 647 F.2d at 1272). OSHA’s long-held policy of avoiding requirements that will result in extensive respirator use is consistent with this legal standard. In considering an alternative TWA PEL of 0.1 mg/m3 that would reduce risks to workers further than would the TWA PEL of 0.2 mg/m3, OSHA was unable to determine that this level was technologically feasible. For some work operations, the evidence is insufficient for OSHA to demonstrate that a TWA PEL of 0.1 mg/m3 could be achieved most of the time. In other operations, a TWA PEL of 0.1 mg/m3 appears to be impossible to achieve without resort to respirators (see section VIII.D of this preamble, Technological Feasibility, for a detailed discussion of OSHA’s feasibility findings). Thus, OSHA was unable to meet its legal burden to demonstrate the technological feasibility of the alternative TWA PEL of 0.1 mg/ m3 (see Lead, 647 F.2d at 1272; Amer. Iron & Steel Inst. v. OSHA, 939 F.2d 975, 990 (D.C. Cir. 1991)) and has VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 adopted the proposed PEL of 0.2 mg/m3, for which there is substantial evidence demonstrating technological feasibility. OSHA also invited comment on and considered an alternative TWA PEL of 0.5 mg/m3—two-and-a-half times greater than the proposed PEL that it is adopting. As noted above, OSHA determined that significant risk to worker health exists at the preceding PEL of 2.0 mg/m3 as well as at the new TWA PEL of 0.2 mg/m3. Because OSHA found that a TWA PEL of 0.2 mg/m3 is technologically and economically feasible, the Agency concludes that setting the TWA PEL at 0.5 mg/m3—a level that would leave workers exposed to even greater health risks than they will face at the new PEL of 0.2 mg/m3— would be contrary to the OSH Act, which requires OSHA to eliminate the risk of material health impairment ‘‘to the extent feasible’’ (29 U.S.C. 655(b)(5)). Thus, the Agency is not adopting the proposed alternative TWA PEL of 0.5 mg/m3. Because significant risks of sensitization, CBD, and lung cancer remain at the new TWA PEL of 0.2 mg/m3, the final standards include a variety of ancillary provisions to further reduce risk to workers. These ancillary provisions include implementation of feasible engineering controls in beryllium work areas, respiratory protection, personal protective clothing and equipment, exposure monitoring, regulated areas, medical surveillance, medical removal, hygiene areas, housekeeping requirements, and hazard communication. The Agency has determined that these provisions will reduce the risk beyond that which the TWA PEL alone could achieve. These provisions are discussed later in this Summary and Explanation section of the preamble. STEL. OSHA is also promulgating a STEL of 2.0 mg/m3, as determined over a sampling period of 15 minutes. The new STEL of 2 mg/m3 was suggested by the joint Materion-USW proposed rule and proposed in the NPRM. As discussed in section VII of this preamble, significant risks of sensitization, CBD, and lung cancer remain at the TWA PEL of 0.2 mg/m3. Where a significant risk of material impairment of health remains at the TWA PEL, OSHA must impose a STEL if doing so would further reduce risk and is feasible to implement (Pub. Citizen Health Research Grp. v. Tyson, 796 F.2d 1479, 1505 (D.C. Cir. 1986) (‘‘Ethylene Oxide’’); see also Building and Construction Trades Department, AFL–CIO v. Brock, 838 F.2d 1258, 1271 (D.C. Cir. 1988)). In this case, the evidence in the record demonstrates PO 00000 Frm 00181 Fmt 4701 Sfmt 4700 2649 that the STEL is feasible and that it will further reduce the risk remaining at the TWA PEL. The goal of a STEL is to protect employees from the risk of harm that can occur as a result of brief exposures that exceed the TWA PEL. Without a STEL, the only protection workers would have from high shortduration exposures is that, when those exposures are factored in, they cannot exceed the cumulative 8-hour exposure at the proposed 0.2 mg/m3 TWA PEL (i.e., 1.6 mg/m3). Since there are 32 15minute periods in an 8-hour work shift, a worker’s 15-minute exposure in the absence of a STEL could be as high as 6.4 mg/m3 (32 × 0.2 mg/m3) if that worker’s exposures during the remainder of the 8-hour work shift are non-detectable. A STEL serves to minimize high, task-based exposures by requiring feasible controls in these situations, and has the added effect of further reducing the 8-hour TWA exposure. OSHA believes a STEL for beryllium will help reduce the risk of sensitization and CBD in beryllium-exposed employees. As discussed in this preamble at section V, Health Effects, beryllium sensitization is the initial step in the development of CBD. Sensitization has been observed in some workers who were only exposed to beryllium for a few months (see section V.D.1 of this preamble), and tends to be more strongly associated with ’peak’ and highest-job-worked exposure metrics than cumulative exposure (see section V.D.5 of this preamble). Shortterm exposures to beryllium have also been shown to contribute to the development of lung disease in laboratory animals (see this preamble at section V, Health Effects). These study findings indicate that adverse effects to the lung may occur from beryllium exposures of relatively short duration. Thus OSHA expects a STEL to add further protection from the demonstrated significant risk of harm than that afforded by the new 0.2 mg/m3 TWA PEL alone. STEL exposures are typically associated with, and need to be measured by the employer during, the highest-exposure operations that an employee performs (see paragraph (d)(3)(ii)). OSHA has determined that the STEL of 2.0 mg/m3 can be measured for this brief period of time using OSHA’s available sampling and analytical methodology, and that feasible means exist to maintain 15minute short-term exposures at or below the proposed STEL (see section VIII.D of this preamble, Technological Feasibility). Comments on the STEL were generally supportive of OSHA’s E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2650 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations decision to include a beryllium STEL, but differed on the appropriate level. NIOSH recommended a STEL of at most 1 mg/m3, noting that available exposure assessment methods are sensitive enough to support a STEL of 1 mg/m3 and that it is likely to be more protective than the proposed STEL of 2 mg/m3 (Document ID 1960, Attachment 2, p. 4; 1725, p. 35; 1755, Tr. 22). NJH’s comments also supported a STEL of 1 mg/m3 as the best option (Document ID 1664, p. 3). Public Citizen and the AFL– CIO advocated for a STEL of 1 mg/m3, stating that it would be more protective than the proposed STEL of 2 mg/m3 (Document ID 1670, p. 6; 1689, p. 7–8). The AFL–CIO and Public Citizen both stated that a STEL of 1 mg/m3 is supported in the record, including by exposure data from OSHA workplace inspections (Document ID 1670, p. 6; 1756, Tr. 171). However, no additional engineering controls capable of reducing short term exposures to or below 1.0 mg/ m3 were identified by commenters. Public commenters did not provide any empirical data to suggest that those exposed to working conditions associated with a STEL of 2.0 mg/m3 would be more likely to be sensitized than those exposed to working conditions associated with a STEL of 1.0 mg/m3. However, OSHA notes that the available epidemiological literature on beryllium-related disease does not address the question of whether those exposed to working conditions associated with a STEL of 2.0 mg/m3 would be more likely to be sensitized than those exposed to working conditions associated with a STEL of 1.0 mg/m3. Detailed documentation of workers’ short-term exposures is typically not available to researchers. Therefore, OSHA cannot exclusively rely on evidence relating health effects to specific short-term exposure levels to set a STEL. In setting a STEL, OSHA also examines the likelihood that a given STEL will help to reduce excursions above the TWA PEL and the feasibility of meeting a given STEL using engineering controls. The UAW emphasized that ‘‘OSHA must include the STEL in the standard to ensure that peak exposures are characterized and controlled’’ (Document ID 1693, p. 3). The UAW argued, specifically, for a STEL of five times the PEL (recommending a STEL of 0.5 mg/m3 based on a TWA PEL of 0.1 mg/m3), noting that single short-term, high-level beryllium exposures can lead to sensitization, and that UAW members in industries such as nonferrous foundries and scrap metal reclamation may experience such exposures even when VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 not exposed above the 8 hour TWA PEL (Document ID 1693, p. 3). Ameren Services Company, a public utility that includes electric power generation companies, expressed support for the proposed PEL and STEL, but also expressed support for selecting a STEL of five times the PEL in order to maintain consistency with OSHA’s typical approach to setting STELs (Document ID 1675, p. 3). In contrast, NGK Metals Corporation (NGK) supported the proposed STEL of 2 mg/m3, and specifically argued against a STEL of 0.5 mg/m3 on the basis that a reduced STEL would not be feasible or offer significantly more protection than the proposed STEL (Document ID 1663, p. 4). Materion emphasized the need for ‘‘proactive operational control’’ of tasks that could generate high, shortterm beryllium exposures, and supported the STEL of 2 mg/m3 contained in OSHA’s proposed rule (Document ID 1661, pp. 3, 5). Materion indicated in its comments that the proposed STEL of 2.0 mg/m3 was based on controlling the upper range of worker short term exposures (Document ID 1661). Materion used data provided in the Johnson study of the United Kingdom Atomic Weapons Establishment (AWE) in Cardiff, Wales, as supporting evidence for the proposed STEL (Document ID 1505). However, Dr. Christine Schuler from NIOSH commented that the AWE study was not an appropriate basis for an OSHA STEL because the AWE study was based on workers showing physical signs of CBD (‘‘If somebody became really apparently ill, then they would have identified them.’’) (Document ID 1755, Tr. 35). Dr. Schuler additionally commented that the studies performed in the United States are more appropriate since they are based on identified cases of CBD at an earlier stage where there are generally very few symptoms (called asymptomatic or subclinical) (Document ID 1755, Tr. 34–35). OSHA agrees with Dr. Schuler’s assessment and that the AWE study should not be used as scientific evidence to support a STEL of 2.0 mg/m3. After careful consideration of the record, including all available data and stakeholder comments, OSHA has reaffirmed its preliminary determinations that a STEL of 2.0 mg/m3 (ten times the final PEL of 0.2 mg/m3) is technologically feasible and will help reduce the risk of beryllium-related health effects in exposed employees. As discussed in section VIII.D of this preamble, Technological Feasibility, OSHA has determined that the implementation of engineering and work practice controls required to PO 00000 Frm 00182 Fmt 4701 Sfmt 4700 maintain full shift exposures at or below a PEL of 0.2 mg/m3 will reduce short term exposures to 2.0 mg/m3 or below. However, adopting a STEL of 1.0 mg/m3 or lower would likely require additional respirator use in some situations. Thus, OSHA has retained the proposed value of 2.0 mg/m3 as the final STEL. OSHA also received a comment from Paul Wambach, (an independent commenter) stating that a STEL should not be included in the final rule, arguing that the diseases associated with beryllium exposure are chronic in nature and therefore are not affected by brief excursions above the TWA PEL (Document ID 1591, p. 1). However, as discussed above, OSHA has determined that there is sufficient evidence that brief, high-level exposures to beryllium contribute to the development of beryllium sensitization and CBD to support inclusion of a STEL in the final rule (see this preamble at section V, Health Effects). This comment also discussed the statistical relationship between a 15-minute STEL and 8-hour TWA PEL and issues of sampling strategy, discussed in section VIII.D of this preamble, Technological Feasibility. CFR Entries. OSHA’s preceding PELs for ‘‘beryllium and beryllium compounds,’’ were contained in 29 CFR 1910.1000 Table Z–2 for general industry. Table Z–2 contained two PELs: (1) A 2 mg/m3 TWA PEL, and (2) a ceiling concentration of 5 mg/m3 that employers must ensure is not exceeded during the 8-hour work shift, except for a maximum peak of 25 mg/m3 over a 30minute period in an 8-hour work shift. The preceding PELs for beryllium and beryllium compounds in shipyards (29 CFR 1915.1000 Table Z) and construction (29 CFR 1926.55 Appendix A) were also 2 mg/m3, but did not include ceiling or peak exposure limits. OSHA adopted the preceding PELs in 1972 pursuant to section 6(a) of the OSH Act (29 U.S.C. 655(a)). The 1972 PELs were based on the 1970 American National Standards Institute (ANSI) Beryllium and Beryllium Compounds standard (Document ID 1303), which in turn was based on a 1949 U.S. Atomic Energy Commission adoption of a threshold limit for beryllium of 2.0 m/m3 and was included in the 1971 American Conference of Governmental Industrial Hygienists Documentation of the Threshold Limit Values for Substances in Workroom Air (Document ID 0543). OSHA is revising the entry for beryllium and beryllium compounds in 29 CFR 1910.1000 Table Z–1 to crossreference the new general industry standard, 1910.1024. A comparable revision to 29 CFR 1915.1000 Table Z E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS cross-references the shipyard standard, 1915.1024, and 29 CFR 1926.55 Appendix A is revised to cross-reference the construction standard, 1926.1124. A footnote is added to 29 CFR 1910.1000 Table Z–1, which refers to 29 CFR 1910.1000 Table Z–2 for situations when the new exposure limits in 1910.1024 are stayed or otherwise not in effect. The preceding PELs for beryllium are retained in 29 CFR 1910.1000 Table Z–2, 29 CFR 1915.1000 Table Z, and 29 CFR 1926.55 Appendix A. Footnotes are added to these tables to make clear that the preceding PELs apply to any sectors or operations where the new TWA PEL of 0.2 mg/m3 and STEL of 2.0 mg/m3 are not in effect. The preceding PELs are also applicable during the time between publication of the beryllium rule and the dates established for compliance with the rule, as well as in the event of regulatory delay, a stay, or partial or full invalidation by the Court. (d) Exposure Assessment Paragraph (d) of the final standards for general industry, construction, and shipyards sets forth requirements for assessing employee exposures to beryllium. The requirements are issued pursuant to section 6(b)(7) of the OSH Act, which mandates that any standard promulgated under section 6(b) shall, where appropriate, ‘‘provide for monitoring or measuring employee exposure at such locations and intervals, and in such manner as may be necessary for the protection of employees.’’ 29 U.S.C. 655(b)(7). Consistent with the definition of ‘‘airborne exposure’’ in paragraph (b) of these standards, exposure monitoring results must reflect the exposure to airborne beryllium that would occur if the employee were not using a respirator. Exposures must be assessed using the new performance option (i.e., use of any combination of air monitoring data or objective data sufficient to accurately characterize employee exposures) or by following the scheduled monitoring option (with the frequency of monitoring determined by the results of the initial and subsequent monitoring). The performance option provides flexibility for employers who are able to accurately characterize employee exposures through alternative methods like objective data and has been successfully applied in the Chromium (VI) standard and recently included in the respirable crystalline silica standard. The scheduled monitoring option provides a framework that is familiar to many employers, having been a customary practice in past substance-specific OSHA health standards. Under either option, VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 employers must assess the exposure of each employee who is or may reasonably be expected to be exposed to airborne beryllium. In the proposed exposure monitoring provision, OSHA required employers to assess the exposure of employees who are, or may reasonably be expected to be, exposed to airborne beryllium. This obligation consisted of an initial exposure assessment, unless the employer relied on objective data to demonstrate that exposures would be below the action level or the short term exposure level (STEL) under any expected conditions; periodic exposure monitoring (at least annually if initial exposure monitoring indicates that exposures are at or above the action level and at or below the time-weighted average (TWA) PEL); and additional monitoring if changes in the workplace could reasonably be expected to result in new or additional exposures to beryllium. In the proposed rule, monitoring to determine employee TWA exposures had to represent the employee’s average exposure to airborne beryllium over an eight-hour workday. STEL exposures had to be characterized by sampling periods of 15 minutes for each operation likely to produce exposures above the STEL. Samples taken had to reflect the exposure of employees on each work shift, for each job classification, in each beryllium work area. Samples had to be taken within an employee’s breathing zone. The proposed rule also included provisions for employee notification of monitoring results and observation of monitoring. OSHA received comments on a variety of issues pertaining to the proposal’s exposure monitoring provision. In hearing testimony, Dr. Lisa Maier from National Jewish Health (NJH) expressed general support for exposure monitoring in the workplace ‘‘to target areas that are at or above the action level and to regulate these areas to trigger administrative controls’’ (Document ID 1756, Tr. 108). All other comments regarding the exposure monitoring requirements focused on specific areas of those requirements and are discussed in the appropriate subject section below. OSHA has retained the provisions related to exposure assessment in the final standards. These provisions are important because assessing employee exposure to toxic substances is a wellrecognized and accepted risk management tool. As the Agency noted in the proposal, the purposes of requiring assessment of employee exposures to beryllium include determination of the extent and degree PO 00000 Frm 00183 Fmt 4701 Sfmt 4700 2651 of exposure at the worksite; identification and prevention of employee overexposure; identification of the sources of exposure to beryllium; collection of exposure data so that the employer can select the proper control methods to be used; and evaluation of the effectiveness of those selected methods. Assessment enables employers to meet their legal obligation to ensure that their employees are not exposed in excess of the permissible exposure limit (PEL) or short-term exposure limit (STEL) and to ensure employees have access to accurate information about their exposure levels, as required by section 8(c)(3) of the Act, 29 U.S.C. 657(c)(3). In addition, exposure data enable physicians or other licensed health care professionals (PLHCPs) performing medical examinations to be informed of the extent of the worker’s exposure to beryllium. In the final standards, paragraph (d) is now titled ‘‘Exposure assessment.’’ This change from ‘‘exposure monitoring’’ in the proposal to ‘‘exposure assessment’’ in the final standards was made to align the provision’s purpose with the broader concept of exposure assessment beyond conducting air monitoring, including the use of objective data. General Requirements. Proposed paragraph (d)(1)(i) contained the general requirement that the exposure assessment provisions would apply when employees ‘‘are, or may reasonably be expected to be, exposed to airborne beryllium.’’ OSHA did not receive comment on this specific provision. However, in paragraph (d)(1) of the final standards for general industry, construction, and shipyards, the Agency has changed the proposed requirement that ‘‘These exposure monitoring requirements apply when employees are, or may reasonably be expected to be, exposed to airborne beryllium’’ to ‘‘The employer must assess the airborne exposure of each employee who is or may reasonably be expected to be exposed to airborne beryllium.’’ This change aligns the language to other OSHA standards such as respirable crystalline silica (29 CFR 1910.1053) and hexavalent chromium (d1910.1026) as well as clarifies the employer’s obligation to assess each employee’s beryllium exposure. Additionally, for reasons discussed below, paragraph (d)(1) of the final standards now requires the employer to assess employee exposure in accordance with either the new performance option, added at paragraph (d)(2), or the scheduled monitoring option, moved to paragraph (d)(3) of this section. Changes from the proposed exposure monitoring provision also include an increased E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2652 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations frequency schedule for periodic monitoring and a requirement to perform periodic exposure monitoring when exposures are above the PEL in the scheduled monitoring option in paragraph (d)(3)(vi) and when exposures are above the STEL in the scheduled monitoring option in paragraph (d)(3)(viii). Proposed paragraphs (d)(1)(ii)–(v) have been moved to different paragraphs in the final standards and will be discussed in the appropriate sections below. The performance option. Proposed paragraph (d)(2) set forth initial exposure monitoring requirements and the circumstances under which employers do not need to conduct initial exposure monitoring. In the proposal, employers did not have to conduct initial exposure monitoring if they relied on historical data or objective data. The proposal also set forth requirements for the sufficiency of any historical data or objective data used to satisfy proposed paragraph (d)(2). OSHA has decided to remove this provision from the final standards as part of the change to allow employers to choose between the scheduled monitoring option and the performance option for all exposure assessment. Paragraph (d)(2) of the final standards for general industry, construction, and shipyards describes the exposure assessment performance option. OSHA has included this option because it provides employers flexibility to assess the 8-hour TWA and STEL exposure for each employee on the basis of any combination of air monitoring data or objective data sufficient to accurately characterize employee exposures to beryllium. OSHA recognizes that exposure monitoring may present challenges in certain instances, particularly when tasks are of short duration or performed under varying environmental conditions. The performance option is intended to allow employers flexibility in assessing the beryllium exposures of their employees. The performance option for exposure assessment is consistent with other OSHA standards, such as those for exposure to respirable crystalline silica (29 CFR 1910.1053) and chromium (VI) (29 CFR 1910.1026). When the employer elects the performance option, the employer must initially conduct the exposure assessment and must demonstrate that employee exposures have been accurately characterized. As evident in final paragraph (d)(3), OSHA considers exposures to be accurately characterized when they reflect the exposures of employees on each shift, for each job VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 classification, in each work area. However, under this option, the employer has flexibility to determine how to achieve this. For example, under this option an employer could determine that there are no differences between the exposure of an employee in a certain job classification who performs a task in a particular work area on one shift and the exposure of another employee in the same job classification who performs the same task in the same work area on another shift. In that case, the employer could characterize the exposure of the second employee based on the first employee’s exposure. Accurately characterizing employee exposures under the performance option is also an ongoing duty. In order for exposures to continue to be accurately characterized, the employer is required to reassess exposures whenever a change in production, process, control equipment, personnel, or work practices may reasonably be expected to result in new or additional exposures at or above the action level or STEL, or when the employer has any reason to believe that new or additional exposures at or above the action level have occurred (see discussion below of paragraph (d)(4) of the final standards for general industry, construction, and shipyards). When using the performance option, the burden is on the employer to demonstrate that the data accurately characterize employee exposure. However, the employer can characterize employee exposure within a range, in order to account for variability in exposures. For example, an employer could use the performance option and determine that an employee’s exposure is above the action level but below the PEL. Based on this exposure assessment, the employer would be required under paragraph (k)(1)(i)(A) to provide medical surveillance if the employee is exposed for more than 30 days per year. OSHA has not included specific criteria for implementing the performance option in the final standards. Because the goal of the performance option is to give employers flexibility to accurately characterize employee exposures using whatever combination of air monitoring data and objective data is most appropriate for their circumstances, OSHA concludes it would be inconsistent to specify in the standards exactly how and when data should be collected. When an employer wants a more structured approach for meeting their exposure assessment obligations, it may opt for the scheduled monitoring option. OSHA does, however, offer two clarifying points. First, the Agency clarifies that when using the term ‘‘air PO 00000 Frm 00184 Fmt 4701 Sfmt 4700 monitoring data’’ in this paragraph, OSHA refers to any monitoring conducted by the employer to comply with the requirements of these standards, including the prescribed accuracy and confidence requirements in paragraph (d)(5). Second, objective data can include historic air monitoring data, but that data must reflect workplace conditions closely resembling or with a higher airborne exposure potential than the processes, types of material, control methods, work practices, and environmental conditions in the employer’s current operations. Additional discussion of the types of data and exposure assessment strategies that may be used by employers as ‘‘objective data’’ to accurately characterize employee exposures to beryllium can be found in the summary and explanation of ‘‘objective data’’ in paragraph (b) (‘‘Definitions’’). Where employers rely on objective data generated by others as an alternative to developing their own air monitoring data, they will be responsible for ensuring that the data relied upon from other sources are accurate measures of their employees’ exposures. Thus, the burden is on the employer to show that the exposure assessment is sufficient to accurately characterize employee exposures to beryllium. As with the Chromium (VI) standard, 29 CFR 1910.1026, OSHA does not limit when objective data can be used to characterize exposure. OSHA permits employers to rely on objective data for meeting their exposure assessment obligations, even where exposures may exceed the action level or PEL. OSHA’s intent is to allow employers flexibility to assess employee exposures to beryllium, but to ensure that the data used are accurate in characterizing employee exposures. For example, where an employer has a substantial body of data (from previous monitoring, industry-wide surveys, or other sources) indicating that employee exposures in a given task are between the action level and PEL, the employer may choose to rely on those data to determine his or her compliance obligations (e.g., medical surveillance). OSHA has also not established time limitations for air monitoring results used to characterize employee exposures under the performance option. The burden is on the employer to show that the data accurately characterize employee exposure to beryllium. This burden applies to the age of the data as well as to the source of the data. For example, monitoring results obtained 18 months prior to the effective date of the standards could be E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations used to determine employee exposures, but only if the employer could show that the data were obtained during work operations conducted under conditions closely resembling the processes, types of material, control methods, work practices, and environmental conditions in the employer’s current operations. Regardless of when they were collected, the data must accurately reflect current conditions. Any air monitoring data relied upon by employers must be maintained and made available in accordance with the recordkeeping requirements in paragraph (n)(1) of the final standards for general industry, construction, and shipyards. Any objective data relied upon must be maintained and made available in accordance with the recordkeeping requirements in paragraph (n)(2) of the standards. The scheduled monitoring option. Paragraph (d)(3) of the final standards for general industry, construction, and shipyards describes the scheduled monitoring option. Parts of the scheduled monitoring option in the final standards come from proposed paragraphs (d)(1)(ii)–(iv), which set out the general exposure monitoring requirements. Proposed paragraph (d)(1)(ii) required the employer to determine the 8-hour TWA exposure for each employee, and proposed paragraph (d)(1)(iii) required the employer to determine the 15-minute short-term exposure for each employee. Both proposed paragraph (d)(1)(ii) and (d)(1)(iii) required breathing zone samples to represent the employee’s exposure on each work shift, for each job classification, in each beryllium work area. Some commenters disagreed with the requirement to perform exposure monitoring on each work shift. NGK stated that sampling on each shift is overly burdensome and unnecessary since samples are collected from those employees who are expected to have the highest exposure (Document ID 1663, p. 1). Materion and the United Steelworkers (USW) recommended representative sampling instead of sampling all employees, and sampling from the shift expected to have the highest exposures (Document ID 1680, p. 3). Materion separately commented that monitoring on all three shifts is not warranted, would be burdensome to small businesses, and does not align well with other standards (Document ID 1661, p. 14 (pdf)). In post-hearing comments, Materion submitted an analysis of exposure variation by shift at one of their facilities and argued that the data are the best available evidence that monitoring on all three shifts is not VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 justifiable or necessary to fulfill the requirements of the OSH Act (Document ID 1807, Attachment 1, p. 5, Attachment 7, p. 82; 1958, pp. 5–6). In an individual submission, the USW also stated that three-shift monitoring would add unnecessary compliance costs. Additionally, it commented that if the operations are identical, the shift chosen will not matter, while if they are not identical, then monitoring on the highest exposed shift will overestimate exposures on the other shifts (Document ID 1681, Attachment 1, p. 8). Conversely, the American Federation of Labor and Congress of Industrial Organizations (AFL–CIO) noted in posthearing comments that widely accepted industrial hygiene practice includes exposure monitoring during different shifts, tasks, and times of the year and that monitoring is specifically designed this way to characterize exposure under different conditions (Document ID 1809, p. 1). During the hearings, Dr. Virji from NIOSH testified that because exposure is variable and ‘‘different things happen at different shifts,’’ including maintenance activities, ‘‘it is hard to . . . gauge . . . which shift [has] the highest exposure,’’ so ‘‘it is important that multiple shifts get representative sampling’’ (Document ID 1755, Tr. 50– 51). OSHA agrees with the AFL–CIO and Dr. Virji and has retained the requirement in proposed paragraphs (d)(1)(ii) and (iii) that samples reflect exposures on each shift, for each job classification, and in each work area. This requirement is included in final paragraphs (d)(3)(i) and (ii). However, in response to the comments from Materion and the USW, OSHA restructured the exposure assessment requirements in order to provide employers with greater flexibility to meet their exposure assessment obligations by using either the performance option or the scheduled monitoring option depending on the operation and information available. OSHA believes that conducting exposure assessment on a specific schedule provides employers with a workable structure to properly assess their employees’ exposure to beryllium and provides sufficient information for employers to make informed decisions regarding exposure prevention measures. Alternatively, the performance option provides employers with flexibility in accurately characterizing employee exposures to beryllium on the bases of any combination of air monitoring and objective data. Comments submitted from Mr. Paul Wambach, a private citizen, stated that PO 00000 Frm 00185 Fmt 4701 Sfmt 4700 2653 the proposed short-term exposure limit (STEL) of 2 mg/m3 has the potential for being misinterpreted as requiring the use of impractical exposure monitoring methods that would require collecting 32 consecutive 15-minute samples while providing no real health protection benefit and should be dropped from the final rule (Document ID 1591, p. 3). OSHA’s intent, however, is that compliance with the STEL can be assessed using a task specific monitoring strategy, during which representative 15-minute samples can be taken to evaluate peak exposures. OSHA maintains that consistent with the comments from Materion, the identification and control of short-term exposures is critical to the protection of worker health from exposure to beryllium. OSHA has decided to include the scheduled monitoring option in the final standards because it provides employers with a clearly defined, structured approach to assessing employee exposures. Under paragraph (d)(3)(i) of the final standards, employers who select the scheduled monitoring option must conduct initial monitoring to determine employee exposure to beryllium. Air monitoring to determine employee exposures must represent the employee’s 8-hour TWA exposure to beryllium. Final paragraph (d)(3)(ii) requires the employer to perform initial monitoring to assess the employee’s 15-minute short-term exposure. Under both paragraphs (d)(3)(i) and (d)(3)(ii), samples must be taken within the employee’s personal breathing zone, and must represent the employee’s airborne exposure on each shift, for each job classification, in each work area. In the final standards, OSHA has changed ‘‘in each beryllium work area’’ to ‘‘in each work area’’ to avoid confusion with the beryllium work areas defined in paragraphs (b) and (e) of the final standard for general industry. In other OSHA standards, the term ‘‘work area’’ is used to describe the general worksite where employees are present and performing tasks or where work processes and operations are being carried out. Employers following the scheduled monitoring option should conduct initial monitoring as soon as work on a task or project involving beryllium exposure begins so they can identify situations where control measures are needed. Representative sampling. Paragraph (d)(3)(iii) of the final standards, like proposed paragraph (d)(1)(iv), describes the circumstances under which employers may use representative sampling. Proposed paragraphs (d)(1)(iv)(A)–(C) permitted the use of E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2654 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations representative sampling to characterize exposures of non-sampled employees, provided that the employer performed such sampling where several employees performed the same job tasks, in the same job classification, on the same work shift, and in the same work area, and had similar duration and frequency of exposure; took breathing zone samples sufficient to accurately characterize exposure on each work shift, for each job classification, in each work area; and sampled the employees expected to have the highest exposure. The USW and AFL–CIO supported the representative sampling provision in OSHA’s proposed exposure monitoring requirements (Document ID 1681, p. 8; 1689, p. 11). OSHA has decided to retain the representative sampling provision in the final standards to provide employers with greater flexibility in meeting their exposure assessment obligations. Under the scheduled monitoring option, just as under the performance option, employers must accurately characterize the exposure of each employee to beryllium. In some cases, this will entail monitoring all exposed employees. In other cases, monitoring of ‘‘representative’’ employees is sufficient. As in the proposal, representative exposure sampling is permitted under the final standards when several employees perform the same tasks on the same shift and in the same work area. However, OSHA has not included the requirement in proposed paragraph (d)(1)(iv)(A) that employees ‘‘have similar duration and frequency of exposure’’ in final paragraph (d)(3)(iii). This provision is unnecessary because final paragraph (d)(3)(iii), like proposed paragraph (d)(1)(iv)(C), requires the employer to sample the employee(s) expected to have the highest exposures to beryllium. Additionally, the requirement in proposed paragraph (d)(1)(iv)(B) that employers take ‘‘sufficient breathing zone samples to accurately characterize exposure on each work shift, for each job classification, in each work area’’ has been removed because when performing exposure monitoring under final paragraphs (d)(3)(i) or (d)(3)(ii), employers already must assess exposures based on personal breathing zone air samples that reflect the airborne exposure of employees on each shift, for each job classification, and in each work area. Under these conditions, OSHA expects that exposures will be accurately characterized. Finally, the proposed requirement in paragraph (d)(1)(iv)(C) that employers must monitor the employee(s) expected to have the highest exposures has been VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 retained in the final standards. For example, this could involve monitoring the beryllium exposure of the employee closest to an exposure source. The exposure result may then be attributed to other employees who perform the same tasks on the same shift and in the same work area. Exposure assessment should include, at a minimum, one fullshift sample and one 15 minute sample taken for each job classification, in each work area, for each shift. Where employees are not performing the same tasks on the same shift and in the same work area, representative sampling will not adequately characterize actual exposures of those employees, and individual monitoring is necessary. Frequency of monitoring under scheduled monitoring option. Paragraph (d)(3) of the proposed standard required periodic monitoring at least annually if initial exposure monitoring indicated that exposures were at or above the action level and at or below the TWA PEL. The proposal did not require periodic exposure monitoring if initial monitoring indicated that exposures were below the action level. In the NPRM, OSHA solicited comment on the reasonableness of discontinuing monitoring based on one sample below the action level. In response, many commenters discussed the importance of taking multiple samples to evaluate a worker’s exposure even if initial results are below the action level. NJH emphasized that ‘‘[i]t is NOT reasonable to discontinue monitoring after one sample result below the action level’’ because ‘‘a single sample result does not reflect the random variation in sampling and analytical methods’’ (Document ID 1664, p. 6). NIOSH commented that, because occupational exposure distributions are right-skewed (i.e., the mean is higher than the median so most sample results will be below the average exposure level), collecting fewer samples leads to a higher likelihood of showing compliance when it may not be warranted (Document ID 1671, Attachment 1, p. 6). Also during the hearings, Marc Kolanz of Materion stated that one sample does not provide ‘‘a good understanding of what’s out there,’’ and there is ‘‘value in trying to collect at least a few samples’’ (Document ID 1755, Tr. 140). The Department of Defense (DOD) commented that it is not appropriate to discontinue monitoring based on one sample below the action level (Document ID 1684, Attachment 2, p. 3). The American College of Occupational and Environmental Medicine (ACOEM) commented that ‘‘[t]here is significant PO 00000 Frm 00186 Fmt 4701 Sfmt 4700 uncertainty associated with limited sample numbers’’ (Document 1685, p. 3). Ameren Corporation (Ameren), an electric utility company, stated that the number of samples needed ‘‘depend[s] on how well the sample characterizes the work performed’’ (Document ID 1675, p. 10). The Sampling and Analysis Subcommittee Task Group of the Beryllium Health and Safety Committee (BHSC Task Group), a non-profit organization promoting the understanding and prevention of beryllium-induced conditions and illnesses, commented that it would not consider a single sample to be a reasonable determination of exposures (Document ID 1665, p. 6). North America’s Building Trades Unions (NABTU) commented that it was unreasonable to allow discontinuation of monitoring based on one sample below the action level, because that sample could be a statistical aberration, and ‘‘the assumption that if a workplace is in compliance at one time it will stay in compliance in the future is a fallacy, particularly on an active, dynamic construction site’’ (Document ID 1679, p. 8). The USW and Materion stated that exposure characterization often requires more than one sample (Document ID 1680, p. 3). Southern Company suggested that ‘‘language regarding initial and periodic monitoring, and the discontinuation of both, [should] be consistent with existing substance specific standards’’ (Document ID 1668, p. 3). OSHA has considered these comments and has determined that if initial monitoring indicates that employee exposures are below the action level and at or below the STEL, no further monitoring is required. Paragraph (d)(3)(iv) of the final standards permits employers to discontinue monitoring of employees whose exposure is represented by such monitoring where initial monitoring indicates that exposure is below the action level and at or below the STEL. However, a single sample below the action level and at or below the STEL does not necessarily warrant discontinuation of exposure monitoring. OSHA has clarified in final paragraphs (d)(3)(i) and (d)(3)(ii) that any initial monitoring conducted under the scheduled monitoring option must reflect exposures on each shift, for each job classification, and in each work area. Therefore, where there is more than one shift or work area for a particular task, there will be more than one sample; accordingly, it is unlikely that an employer would be able to sufficiently characterize and assess employee E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations exposure for a given job classification under the scheduled monitoring option using a single sample. In paragraph (d)(3) of the proposed rule, periodic exposure monitoring was required at least annually if initial exposure monitoring found exposures at or above the action level and at or below the TWA PEL. In the NPRM, OSHA asked a question about the frequency of monitoring and the reasoning behind that frequency. During the hearings, Peggy Mroz with NJH testified that periodic monitoring conducted at least every 180 days when exposures are at or above the action level is ‘‘the most protective for workers’’ (Document ID 1756, Tr. 99–100). Ms. Mroz further stated that exposure monitoring should also be conducted at least annually for all other processes and jobs where initial monitoring shows levels below the action level since changes in working conditions can affect monitoring results, and ‘‘[i]t has already been shown that beryllium sensitization and CBD occur at measured exposures below the proposed action level’’ (Document ID 1756, Tr. 100). Both NIOSH and NJH recommended more frequent monitoring for employers to fully understand levels of exposure that may vary over time and to assess whether proper controls are in place after a high exposure level is documented (Document ID 1725, p. 29; 1720, p. 5). The BHSC Task Group stated that annual monitoring is inadequate, and recommended sampling more frequently than every 180 days (Document ID 1665, pp. 15, 17). And, the AFL–CIO commented that annual exposure monitoring is inadequate and does not provide the employer with enough information to make appropriate changes to prevent and minimize exposure. The AFL–CIO cited various OSHA health standards that required more frequent periodic exposure monitoring, including cadmium, asbestos, vinyl chloride, arsenic, lead, and respirable crystalline silica (Document ID 1809, pp. 1–2). In contrast, Ameren agreed with the proposal’s requirement to conduct monitoring annually if exposures are at or above the action level, because the proposal already requires additional monitoring when work conditions change (Document ID 1675, p. 4). And, the Edison Electric Institute (EEI) commented that beryllium exposure in the electric utility industry occurs during maintenance outages, ‘‘which more closely align with the annual resampling requirements than the 180 [day] provisions in these alternatives’’ (Document ID 1674, p. 14). VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 OSHA is persuaded by the commenters recommending more frequent periodic monitoring and has changed the frequency required for exposures between the action level and the TWA PEL in the scheduled monitoring option in the final standards. Paragraph (d)(3)(v) of the final standards requires monitoring every six months if initial exposure monitoring indicates that exposures are at or above the action level but at or below the TWA PEL, which is the typical frequency in other health standards for carcinogens such as respirable crystalline silica, cadmium, vinyl chloride, and asbestos for this level of exposure. Alternatively, employers in general industry, construction, and shipyards can use the performance option in paragraph (d)(2), which provides employers greater flexibility to meet their exposure assessment obligations. In the proposal, OSHA did not require periodic exposure monitoring if initial exposure monitoring indicated that exposures were above the TWA PEL or STEL. In response to a question in the NPRM about monitoring above the PEL, Materion commented that there is no benefit to expending time and money monitoring exposures that exceed the PEL, because it is more important that activities be directed toward the exposure control plan. Based on their experience, Materion believes that employers will conduct monitoring as often as necessary to demonstrate that exposures have been reduce to below the PEL (Document ID 1661, p. 24 (pdf)). Other commenters disagreed with OSHA’s proposal not to require periodic exposure monitoring above the PEL. The DOD commented that periodic monitoring should also be performed when levels are above the PEL to ensure respiratory protection is adequate and to test the effectiveness of engineering controls (Document ID 1684, Attachment 2, p. 9). In response to a question during the hearings on the benefits of monitoring above the PEL, NIOSH’s Dr. Virji testified that exposure can vary within a job and that even though an employer may know exposures are high in a particular area, the information is ‘‘useful because then it allows an understanding of what level of engineering controls that would be required to bring down the exposures to acceptable levels’’ (Document ID 1755, Tr. 49–50). In her testimony, Mary Kathryn Fletcher with the AFL–CIO expressed support for monitoring above the PEL, stating that ‘‘exposure monitoring is important to reevaluate control measures in cases of over- PO 00000 Frm 00187 Fmt 4701 Sfmt 4700 2655 exposure,’’ and ‘‘[it is] important to characterize the job to know the exposures if you’re going to try to reduce those exposures’’ (Document ID 1756, Tr. 236). Also during the hearings, Ashlee Fitch with the Health, Safety, and Environment Department of the USW responded to a similar question on the benefits of air monitoring in cases where exposures are believed to exceed the PEL. She stated, ‘‘You see oftentimes that employers used exposure rates to measure how well ventilation systems are working or what the exposure is, and after they implement engineering controls, what that exposure goes to’’ (Document ID 1756, Tr. 282). In her testimony, Peggy Mroz with NJH expressed support for periodic exposure monitoring every 90 days where exposures exceed the TWA PEL or STEL as ‘‘routine and regular sampling and repeated sampling should be done to assess whether proper controls are in place after a high sample is documented as we know that beryllium sensitization and chronic beryllium disease can occur within a few weeks of exposure’’ (Document ID 1756, Tr. 100). Based on these comments received in the record and testimony obtained from the public hearing, OSHA’s final standards require periodic exposure monitoring every three months when exposures are above the TWA PEL or STEL under the scheduled monitoring option in paragraphs (d)(3)(vi) and (d)(3)(viii). Alternatively, employers in general industry, construction, and shipyards can use the performance option in paragraph (d)(2) which provides employers with greater flexibility to meet their exposure assessment obligations. Proposed paragraph (d) did not include a separate provision to allow employers to discontinue monitoring if exposures were subsequently reduced to below the action level, as demonstrated by periodic monitoring. In the NPRM, OSHA solicited comment on the reasonableness of discontinuing monitoring based on one sample below the action level. As discussed more fully in the explanation of final paragraph (d)(3)(iv), many commenters discussed the importance of taking multiple samples to confirm exposures are below the action level before allowing the discontinuation of monitoring. For example, ORCHSE Strategies (ORCHSE) commented that allowing discontinuation of monitoring based on one sample is not appropriate and that two consecutive samples taken at least seven days apart, that show exposure below the action level, should be required to allow monitoring to be E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2656 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations discontinued (Document ID 1691, Attachment 1, p. 3). As stated in the explanation of final paragraph (d)(3)(iv), OSHA has carefully considered these comments and agrees that a single sample is not sufficient to allow employers to discontinue monitoring. OSHA has therefore decided to add paragraph (d)(3)(vii) to the final standards. This provision requires that, where the most recent exposure monitoring indicates that employee exposure is below the action level, the employer must repeat exposure monitoring within six months of the most recent monitoring. The employer may discontinue TWA monitoring, for those employees whose exposure is represented by such monitoring, only when two consecutive measurements, taken seven or more days apart, are below the action level, except as otherwise provided in the reassessment of exposures requirements in paragraph (d)(4) of the final standards. Additionally, OSHA has added paragraph (d)(3)(viii) to the final standards. This provision requires that, where the most recent exposure monitoring indicates that employee exposure is above the STEL, the employer must repeat exposure monitoring within three months of the most recent short-term exposure monitoring until two consecutive measurements, taken seven or more days apart, are below the STEL. At this point, the employer may discontinue monitoring for those employees whose exposure is represented by such monitoring. As discussed below, reassessment is always required whenever a change in the workplace may be reasonably expected to result in new or additional exposures at or above the action level or above the STEL or the employer has any reason to believe that new or additional exposures at or above the action level or above the STEL have occurred, regardless of whether the employer has ceased monitoring because exposures are below the action level or at or below the STEL under paragraphs (d)(3)(iv), (d)(3)(vii), or (d)(3)(viii) of the final standards. Exposure assessment in construction and shipyard industries. Beryllium exposure occurs in the construction and shipyard industries primarily during abrasive blasting operations that use coal and copper slags containing trace amounts of beryllium (Document ID 1815, Attachment 85, pp. 70–72; 0767, p. 6). During the public hearing, testimony was heard about abrasive blasting operations using slags at a shipyard facility. Mike Wright, with the USW, testified that the use of enclosure VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 (containment) is important to prevent the escape of beryllium dust during abrasive blasting operations and that exposure monitoring could help determine the integrity of the enclosure along with establishing a perimeter where beryllium contamination is controlled (Document ID 1756, Tr. 274– 275). Ashlee Fitch, also representing the USW, testified about monitoring worker exposure to beryllium in the maritime industry. Ms. Fitch stated that abrasive blasting using beryllium-containing abrasive materials should be done in full containment and that exposures outside the containment should not exceed the PEL or STEL (Document ID 1756, Tr. 244–245). Ms. Fitch recommended that in cases where full containment is used, ‘‘the employer shall do an initial monitoring for each configuration of the containment’’ and ‘‘if the initial monitoring shows exposures above the action level, monitoring shall be performed for every blasting operation.’’ She also recommended air monitoring of exposed workers outside of the containment or through monitoring of the positions where exposure is likely to be the highest, or if full containment is not used, ‘‘around any abrasive blasting operation’’ (Document ID 1756, Tr. 245). Representative Robert Scott, the ranking minority member on the Committee on Education and the Workforce of the U.S. House of Representatives (Representative Scott), commented that when workers are engaged in abrasive blasting and the abrasive blasting area is contained, exposure monitoring should be routinely performed when levels exceed the action level (Document ID 1672, p.4). Substantially agreeing with these comments, in paragraph (d)(3) of the final standards, OSHA is requiring monitoring on each work shift, for each job classification, and in each work area when employers are following the scheduled monitoring option. OSHA also agrees that monitoring should be of the positions where exposure is likely to be the highest, so when employers engage in representative sampling under the scheduled monitoring option, final paragraph (d)(3)(iii) requires that they must sample the employee(s) expected to have the highest airborne exposure to beryllium. OSHA also agrees with Representative Scott that exposure monitoring should be routinely performed for abrasive blasting and all other operations exposing workers to beryllium when exposures exceed the action level. If exposures exceed the action level or STEL, the employer is required to monitor exposures at PO 00000 Frm 00188 Fmt 4701 Sfmt 4700 frequencies indicated in the scheduled monitoring option or using the performance option to accurately assess the beryllium exposure of their employees. However, OSHA does not consider monitoring to be necessary each time there is an abrasive blasting or other operation that fits within the profile of a previously taken representative sample. Reassessment of exposures. Paragraph (d)(4) of the final standards, like paragraph (d)(4) of the proposal, describes the employer’s obligation to reassess employee exposures under certain circumstances. Proposed paragraphs (d)(4)(i) and (d)(4)(ii) required the employer to conduct exposure monitoring within 30 days after a change in production processes, equipment, materials, personnel, work practices, or control methods that could reasonably be expected to result in new or additional exposure, or if the employer had any other reason to believe that new or additional exposure was occurring. Commenters generally advocated for monitoring to assess any new exposures. For example, in her testimony, Mary Kathryn Fletcher with the AFL–CIO expressed support for exposure monitoring even if exposure is reduced as far as feasible, because exposures can change, so ‘‘it’s important to monitor as tasks change and over time, there are different procedures, different workers in the area, doing different things’’ (Document ID 1756, Tr. 236). Also, NJH commented that ‘‘periodic sampling, even of low exposure potential tasks, ensures that despite changes in processes, personnel, exhaust systems, and other control measures, the exposure remains low and workers remain safe’’ (Document ID 1664, p. 6). Therefore, the Agency has decided to retain the requirement of proposed paragraph (d)(4) that employers reassess exposures, but has made minor changes to the regulatory text. OSHA has changed the title ‘‘Additional Monitoring’’ in proposed paragraph (d)(4) to ‘‘Reassessment of exposures’’ in paragraph (d)(4) of the final standards to be consistent with the change in paragraph (d) terminology from ‘‘exposure monitoring’’ to ‘‘exposure assessment.’’ OSHA has also changed the proposed requirement that employers conduct exposure monitoring within 30 days after a change in ‘‘production processes, equipment, materials, personnel, work practices, or control methods’’ that could reasonably be expected to result in new or additional exposures to the requirement in the final standards that employers must perform reassessment of exposures E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations when there is a change in ‘‘production, process, control equipment, personnel, or work practices’’ that may reasonably be expected to result in new or additional exposures at or above the action level or STEL. OSHA made these changes to provide clarity and consistency with other OSHA health standards. In addition, there may be other situations that can result in new or additional exposures that are unique to an employer’s work situation. In order to cover those special situations, OSHA has retained the requirement in proposed paragraph (d)(4)(ii) that the employer must reassess exposures whenever the employer has any reason to believe that a change has occurred that may result in new or additional exposures, and has added ‘‘at or above the action level or STEL’’ to final paragraph (d)(4). Under this provision, for example, an employer is required to reassess exposures when an employee has a confirmed positive result for beryllium sensitization, exhibits signs or symptoms of CBD, or is diagnosed with CBD. These conditions necessitate a reassessment of exposures to ascertain if airborne exposures contributed to the beryllium-related health effects. Additionally, reassessment of exposures would be required following a process modification that increases the amount of beryllium-containing material used, thereby possibly increasing employee exposure. Reassessment of exposures will also be required when a shipyard or construction employer introduces a new beryllium-containing slag for use in an abrasive blasting operation. Once reassessment of exposures is performed and if exposures are above the action level, TWA PEL, or STEL, the employer can take appropriate action to protect exposed employees and must perform periodic monitoring as discussed above. Methods of sample analysis. Paragraph (d)(5) of the final standards, like proposed paragraph (d)(1)(v), addresses methods for evaluating air monitoring samples. Proposed paragraph (d)(1)(v) required employers to use a method of exposure monitoring and analysis that could measure beryllium to an accuracy of plus or minus 25 percent within a statistical confidence level of 95 percent for airborne concentrations at or above the action level. This provision is largely unchanged in the final standards. OSHA has changed the title ‘‘Accuracy of measurement’’ in the proposal’s paragraph (d)(1)(v) to ‘‘Methods of sample analysis’’ in paragraph (d)(5) of the final standards. OSHA made this change to more accurately describe the purpose of this requirement. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 Additionally, OSHA changed the requirement that employers ‘‘use a method of exposure monitoring and analysis’’ in the proposed rule to require that employers ‘‘ensure that all samples taken to satisfy the monitoring requirements of paragraph (d) are evaluated by a laboratory’’ to clarify that employers may send samples to a laboratory for analysis, and OSHA does not intend to require employers to have a laboratory to analyze samples at the worksite. Under final paragraph (d)(5), the employer is required to make sure that all samples taken to satisfy the monitoring requirements of paragraph (d) are evaluated by a laboratory that can measure airborne levels of beryllium to an accuracy of plus or minus 25 percent within a statistical confidence level of 95 percent for airborne concentrations at or above the action level. The following methods meet these criteria: NIOSH 7704 (also ASTM D7202), ASTM D7439, OSHA 206, OSHA 125G, and OSHA 125G using ICP–MS. All of these methods are available to commercial laboratories analyzing beryllium samples. However, not all of these methods are appropriate for measuring beryllium oxide, so employers must verify that the analytical method used is appropriate for measuring the form(s) of beryllium present in the workplace. In the NPRM, OSHA requested comment on whether these methods would satisfy the requirements of this paragraph, and if there were other methods that would also meet these criteria. The BHSC Task Group commented that OSHA’s accuracy criteria could be met for full shift samples using available analytical methods. The BHSC Task Group agreed with the guidance in OSHA’s NPRM to use ICP–MS or fluorescence to assure adequate sensitivity and analytical precision (Document ID 1655, p. 2). In response to a question on whether the current methods were sufficiently sensitive, Kevin Ashley with NIOSH testified that both the fluorescence method (NIOSH method 7704) and the inductively coupled plasma mass spectrometry (ASTM method D7439) were adequately sensitive to measure at the proposed PEL and STEL (Document ID 1755, Tr. 58). The DOD commented that the current limit of quantification (LOQ) of 0.05 mg for beryllium using the NIOSH 7300 and OSHA 125G methods would be adequate to detect exposures below the proposed action level of 0.1 mg/m3 and the proposed STEL of 2 mg/ m3 (Document ID 1684, Attachment 2, p. 9). OSHA has identified several sampling and analysis methods for PO 00000 Frm 00189 Fmt 4701 Sfmt 4700 2657 beryllium that are capable of detecting beryllium at air concentrations below the final action level of 0.1 mg/m3 and the final STEL of 2.0 mg/m3 for a 15minute sampling period (see Chapter IV of the Final Economic Analysis, Technological Feasibility). Therefore, OSHA has determined that the sampling and analytical methods currently available to employers are sufficient to measure beryllium as required in paragraph (d) of the final standards. Rather than specifying a particular method that must be used, the final standards allow for a performanceoriented approach that allows the employer to use the method and analytical laboratory of its choosing as long as that method meets the accuracy specifications in paragraph (d)(5) and the reported results represent the total airborne concentration of beryllium for the worker being characterized. Other methods, such as a respirable fraction sample or size selective sample, would not provide results directly comparable to either PEL, and therefore would not be considered valid. Employee Notification of Assessment Results. Paragraph (d)(6) of the final standards, like proposed paragraph (d)(5), addresses employee notification requirements. OSHA did not receive comment specifically on this provision, but several commenters supported the exposure monitoring provisions as a whole, and after reviewing the record, OSHA has decided to retain the employee notification requirements in the final standards. OSHA has changed the title ‘‘Employee Notification of Monitoring Results’’ in proposed paragraph (d)(5) to ‘‘Employee Notification of Assessment Results’’ in final paragraph (d)(6) to reflect the change in the title of paragraph (d). This requirement is consistent with other OSHA standards, such as those for respirable crystalline silica (29 CFR 1910.1053), methylenedianiline (29 CFR 1910.1050), 1,3-butadiene (29 CFR 1910.1051), and methylene chloride (29 CFR 1910.1052). Proposed paragraph (d)(5)(i) required employers to notify each employee of his or her monitoring results within 15 working days after receiving the results of any exposure monitoring. Both the employees whose exposures were measured directly and those whose exposures were represented by the monitoring had to be notified. The employer had to notify each employee individually in writing or post the monitoring results in an appropriate location accessible to all employees required to be notified. Proposed paragraph (d)(5)(i) is now paragraph (d)(6)(i) in the final standards, and has E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2658 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations been edited to reflect the change in language from ‘‘exposure monitoring’’ to ‘‘exposure assessment,’’ discussed earlier. This can be in print or electronically as long as the affected employees have access to the information and have been informed of the posting location. Final paragraph (d)(6)(i) for general industry, construction, and shipyards is substantively unchanged from the proposal. However, due to the transient nature of construction work and the need to receive exposure assessment results while the work is still occurring, OSHA recommends that employers in the construction industry make every effort to notify employees of their monitoring results as soon as possible. Proposed paragraph (d)(5)(ii) required that, whenever exposures exceeded the TWA PEL or STEL, the written notification required by proposed paragraph (d)(5)(i) include (1) suspected or known sources of exposure and (2) a description of the corrective action(s) that have been taken or will be taken by the employer to reduce the employee’s exposure to or below the TWA PEL or STEL where feasible corrective action exists but was not implemented at the time of the monitoring. OSHA did not receive comment on this specific provision, and after reviewing the record, including comments supporting paragraph (d) generally, OSHA has decided to retain a notification requirement focused on individual exposure assessments and the corrective actions being taken for exposures above the PEL or STEL. It is necessary to assure employees that the employer is making efforts to furnish them with a safe and healthful work environment, and to provide employees with information about their exposures. Furthermore, notification to employees of exposures above a prescribed PEL and the corrective actions being taken is required under section 8(c)(3) of the Act (29 U.S.C. 657(c)(3)). In order to provide consistency with other OSHA health standards, OSHA has removed the requirement in proposed paragraph (d)(5)(ii) that employers include suspected or known sources of exposure in the written notification. Proposed paragraph (d)(5)(ii), as revised, is now paragraph (d)(6)(ii) in the final standards. Observation of monitoring. Paragraph (d)(7) of the final standards, like proposed paragraph (d)(6), requires employers to provide for observation of exposure monitoring. OSHA did not receive comment on this specific provision, and after reviewing the record, including comments supporting paragraph (d) generally, OSHA has VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 decided to retain it in the final standards because it promotes occupational safety and health and is required by the OSH Act. Section 8(c)(3) of the Act (29 U.S.C. 657(c)(3)) mandates that regulations requiring employers to keep records of employee exposures to toxic materials or harmful physical agents provide employees or their representatives with the opportunity to observe monitoring or measurements. Proposed paragraph (d)(6)(i) required the employer to provide an opportunity to observe any exposure monitoring required by the standards to each employee whose airborne exposure was measured or represented by the monitoring and to each employee’s representative(s). Proposed paragraph (d)(6)(i) is now paragraph (d)(7)(i) in the final standards, and is substantively unchanged from the proposal. When observation of monitoring required entry into an area where the use of protective clothing or equipment was required, proposed paragraph (d)(6)(ii) required the employer to provide the observer with that personal protective clothing or equipment, at no cost. The employer was also required to ensure that the observer used such clothing or equipment appropriately. Proposed paragraph (d)(6)(ii) is now paragraph (d)(7)(ii) in the final standards, and is substantively unchanged from the proposal. Paragraph (d)(6)(iii) of the proposal required employers to ensure that each observer complied with all applicable OSHA requirements and the employer’s workplace safety and health procedures. Proposed paragraph (d)(6)(iii) is now paragraph (d)(7)(iii) in the final standards. OSHA has changed the proposed language to require that employers ensure that each observer follows all other applicable safety and health procedures to clarify that the burden to comply with OSHA requirements remains on the employer, not the observer. (e) Beryllium Work Areas and Regulated Areas (General Industry); Regulated Areas (Shipyards); and Competent Person (Construction) Paragraph (e) of the standards for general industry and shipyards sets forth the requirements for establishing, maintaining, demarcating, and limiting access to certain areas of the workplace to aid in minimizing employee exposure to beryllium. As discussed below, the general industry standard includes requirements for both ‘‘work areas’’ and ‘‘regulated areas,’’ which are subsets of work areas. The shipyard standard includes requirements for regulated areas, but not work areas. Paragraph (e) PO 00000 Frm 00190 Fmt 4701 Sfmt 4700 of the construction standard does not require either work areas or regulated areas, but instead includes requirements for a ‘‘competent person,’’ who has responsibility for demarcating certain areas of beryllium exposure for similar purposes. Specifically, paragraph (e)(1)(i) and (e)(2)(i) of the standard for general industry requires employers to establish, maintain, and demarcate one or more ‘‘beryllium work area,’’ which is defined as a work area containing a process or operation that can release beryllium where employees are, or can reasonably be expected to be, exposed to airborne beryllium at any level or where there is the potential for dermal contact with beryllium. OSHA intends these beryllium work area provisions to apply to the area surrounding the process, operation, or task where airborne beryllium is released or the potential for dermal contact is created. Beryllium work areas are also referenced in the general industry standard in paragraphs (f)(1) (the written exposure control plan), (f)(2) (engineering and work practice controls), and (j) (housekeeping). Under paragraphs (e)(1)(ii) and (e)(1) of the standards for general industry and shipyards, respectively, employers are also required to establish and maintain regulated areas wherever employees are, or can reasonably be expected to be, exposed to airborne beryllium at levels above the TWA PEL or STEL. As indicated and discussed in more detail below, the final standards for shipyards and construction do not contain provisions for beryllium work areas and the standard for construction does not require employers to establish regulated areas. In lieu of regulated areas, paragraph (e) of the final standard for construction, Competent Person, consists of a set of requirements designed to provide most of the same protections as regulated areas in general industry and shipyards, using a competent person instead of demarcated areas to achieve these ends. The requirements to establish beryllium work areas and regulated areas or designate competent persons serve several important purposes. First, requiring employers to establish and demarcate beryllium work areas in general industry ensures that workers and other persons are aware of the potential for work processes to release airborne beryllium or cause dermal contact with beryllium. Second, the required demarcation of regulated areas in general industry and shipyards in accordance with the paragraph (m) requirements for warning signs ensures that all persons entering regulated areas E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations will be aware of the serious health effects associated with exposure to beryllium. Similarly, assignment of a competent person to carry out the provisions of paragraph (e) in the construction standard where exposures may exceed the TWA PEL or STEL provides employees in construction with a knowledgeable on-site authority to convey information about the hazards of beryllium exposure. Third, limiting access to regulated areas (general industry and shipyards) or areas where exposures may exceed the TWA PEL or STEL (construction) restricts the number of workers potentially exposed to beryllium at levels above the TWA PEL or STEL. Finally, provisions for respiratory protection and PPE ensure that those who must enter regulated areas (general industry and shipyards) or areas where exposures may exceed the TWA PEL or STEL (construction) are properly protected, thereby reducing the risk of serious health effects associated with airborne beryllium exposure and dermal contact with beryllium. The remainder of this section provides detailed discussion of each provision in paragraph (e) of the final standards for general industry, shipyards, and construction, as well as comments OSHA received on paragraph (e) of the proposed standard, OSHA’s response to these comments, and the reasons for OSHA’s decisions regarding the provisions of paragraph (e) in each final standard. Beryllium Work Areas (General Industry). Provisions for the establishment of beryllium work areas were included in the proposed standard for general industry in paragraph (e)(1)(i). This proposed provision required employers to establish and maintain beryllium work areas where employees are, or can reasonably be expected to be, exposed to airborne beryllium. OSHA explained that it intended the provision to apply to all areas and situations where employees are actually exposed to airborne beryllium and to areas and situations where the employer has reason to anticipate or believe that airborne exposures may occur. The Agency further explained that—unlike the requirements for regulated areas—the proposed requirements were not tied to a particular level of exposure, but rather were triggered by the presence of airborne beryllium at any exposure level. The provision was based on a provision recommended by Materion Corporation (Materion) and the United Steelworkers (USW) in their joint submission, (see previous discussion in the Introduction to this Summary and Explanation section). VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 A number of stakeholders commented on the proposed definition of a beryllium work area. Some commenters, such as NGK Metals Corporation (NGK) and ORCHSE Strategies (ORCHSE), argued that the definition of a beryllium work area is vague and requested that OSHA trigger the requirement to establish and maintain beryllium work areas at a measureable threshold, such as the action level (e.g., Document ID 1663, p. 1; 1691, Attachment 1, p. 15). Edison Electric Institute (EEI), an industry association representing electric utility companies, also did not agree with the beryllium work area definition (Document ID 1674, p. 13). Like NGK and ORCHSE, EEI recommended that OSHA tie the beryllium work area requirements to a quantifiable exposure level, like the action level or the PEL (Document ID 1674, p. 13). The Boeing Company (Boeing) also recommended the use of a quantifiable trigger, but suggested a much lower trigger of 0.02 mg/m3 (Document ID 1667, p. 3). Boeing explained that not including a specific threshold can lead to inconsistent results because it depends on the sensitivity of the measurement method (Document ID 1667, p. 3). Other commenters supported the proposed standard’s establishment of beryllium work areas at any level of airborne beryllium exposure. For example, AWE commented that its ‘‘supervised beryllium workspaces’’ align with the proposal’s beryllium work areas (Document ID 1615, p. 1). NIOSH observed that the proposed approach is feasible and appropriate for beryllium work settings where work such as production, processing, handling, and manufacturing of beryllium products is performed and areas where needed preventive controls can be relatively easily demarcated (Document ID 1725, pp. 29–30). Materion and USW reiterated their support for provisions related to beryllium work areas ‘‘where operations generate airborne beryllium particulate’’, which were included in the recommended model standard they submitted to OSHA (Document ID 1680, p. 3). The purpose of a beryllium work area is to establish a demarcated area in which workers and other persons authorized to be in the area are made aware of the potential for beryllium exposure and must take certain precautions accordingly. OSHA finds that establishing beryllium work areas where exposures are at the action level or above the PEL would not adequately protect exposed workers operating outside demarcated regulated areas, for PO 00000 Frm 00191 Fmt 4701 Sfmt 4700 2659 which the applicable trigger is the TWA PEL or STEL. Because, as discussed in Section V, Health Effects, there is still a potential health risk to workers exposed to beryllium below the action level, the establishment and demarcation of beryllium work areas at any level of airborne exposure will provide additional protection for these workers by ensuring that they are aware of the presence of processes that release beryllium. OSHA similarly finds that Boeing’s suggested trigger of 0.02 mg/m3 is not suitable because OSHA has not established a level of exposure at which beryllium does not pose a risk to workers (see this preamble at Section VI, Risk Assessment). Therefore, OSHA finds that establishing and demarcating beryllium work areas wherever processes or operations release beryllium is more protective. OSHA also does not agree with those commenters who find the trigger for establishing beryllium work areas vague. As explained previously, OSHA has modified the beryllium work areas provision in the final standard for general industry to specify that the source of the airborne beryllium exposure and potential for dermal contact triggering the requirement for a beryllium work area must be generated from a process or operation within that area, not just the fact that an employee may be handling an article containing beryllium. An employer can (but is not required to) use air monitoring to determine the presence of airborne beryllium in the area surrounding the process, operation, or task that may be releasing beryllium or wipe sampling to determine the presence of beryllium on surfaces that workers may come into contact with. Affording the employer such flexibility to comply with this performance-based provision does not make it impermissibly vague. Accordingly, OSHA has decided to retain, as modified, the requirement that beryllium work areas must be established and maintained where there is a process or operation that can release beryllium and employees are, or can reasonably be expected to be, exposed to airborne beryllium at any level. However, as discussed below, OSHA has somewhat modified the definition of beryllium work areas in response to comments from other stakeholders and NIOSH. Two electric utility companies, Southern Company and Ameren Corporation (Ameren), argued that a work area requirement defined by any level of airborne beryllium exposure was subjective and would result in their entire facility falling under this E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2660 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations requirement (Document ID 1668, pp. 3– 4; 1675 p. 5). The Aluminum Association stated that there may be areas where airborne beryllium exposures are present but have been found through exposure assessments and monitoring to be insignificant; therefore, beryllium work areas are overly broad as defined in the proposal and should be dropped from the final standard (Document ID 1666, p. 2). The American College of Occupational and Environmental Medicine (ACOEM) also did not agree with the proposed definition of beryllium work areas because it is not specific to workplaces where beryllium is used or processed (Document ID 1685, p. 2). ACOEM argued that airborne beryllium is essentially ubiquitous at very low levels, and that the proposed definition of beryllium work areas could be interpreted to apply to most worksites regardless of work activity. Therefore, ACOEM suggested clarifying the requirement using language that specifies ‘‘worksites in which any beryllium or beryllium-containing materials are or have been processed using methods capable of generating dust or fume’’ (Document ID 1685, p. 2). OSHA did not intend a scenario where an entire facility becomes a beryllium work area from environmental or other nonoccupational sources of beryllium. Nor did the Agency intend to cause the entirety of any worksite covered by the rule to become a beryllium work area, even where the amount of airborne beryllium is insignificant in the sense that it is residually present at very low levels in areas of a facility where work processes that release airborne beryllium do not occur. (Note that the best available scientific evidence has not identified a medically insignificant level of beryllium exposure; as discussed in Section VI, Risk Assessment, beryllium sensitization has been found among individuals whose exposures are below the action level.) Such a situation might occur in a coalfired electric generating plant or a foundry where a very small amount of beryllium may be detectable far away from the processes that released it. To avoid these unintended consequences, OSHA has modified the beryllium work areas provision in the final standard for general industry to specify that the source of the airborne beryllium exposure and potential for dermal contact triggering the requirement for a beryllium work area must be generated from a process or operation within that area. This modification is similar to ACOEM’s suggestion to define VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 beryllium work areas as areas where beryllium or beryllium-containing materials are or have been processed (Document ID 1685, p. 2). While the trigger for beryllium work area is based on whether the beryllium is processed by controlling the release of airborne beryllium from the particular process, operation, or task, the employer can limit the size of the beryllium work area and eliminate the likelihood of an entire facility becoming a beryllium work area. OSHA believes this modified definition of beryllium work areas addresses the concerns raised by employers and ACOEM, while also maintaining the protective benefits associated with beryllium work areas for berylliumexposed employees. In addition to commenting on the level of exposure that should trigger the establishment and maintenance of a beryllium work area, NIOSH offered an opinion on the type of exposure that should trigger beryllium work areas. Specifically, NIOSH argued that limiting the definition of beryllium work area to employee exposure to airborne beryllium omits the potential contribution of dermal exposure to total exposure (Document ID 1725, p. 30). To support its point, NIOSH cited to Armstrong et al. (2014), which reported that work processes associated with elevated risk for beryllium sensitization had high air/high dermal exposure, high air/low dermal exposure, or low air/ high dermal exposure indicating that dermal exposures should be considered as relevant pathways (Document ID 1725, p. 30). OSHA agrees with NIOSH and has modified the beryllium work areas section of the final standard for general industry to include potential dermal exposure. OSHA also made two other minor, nonsubstantive changes to the proposed provision to help streamline the final general industry standard. First, instead of restating the definition of beryllium work area in paragraph (e)(1)(i) (as in the proposal), OSHA has modified final paragraph (e)(1)(i) in the proposal to merely refer to the term as defined in paragraph (b) of the standard for general industry. Second, the definition of beryllium work area in the final general industry standard includes the qualifier ‘‘where employees are, or can reasonably be expected to be, exposed to airborne beryllium at any level.’’ This is a modification from the proposed beryllium work area definition wording ‘‘where employees are, or can reasonably be expected to be, exposed to airborne beryllium, regardless of the level of exposure.’’ Both of these changes were intended only to simplify the language of the regulatory text and PO 00000 Frm 00192 Fmt 4701 Sfmt 4700 should not be read to suggest a change in substantive requirements or the Agency’s intent. The construction and shipyard sectors were not included in the proposed standard. However, OSHA requested comments on Regulatory Alternative #2a in the NPRM, which would apply all provisions of the proposed standard to facilities in construction and shipyards, including provisions pertaining to the establishment of beryllium work areas. Following careful consideration of the comments OSHA received from a variety of stakeholders and from NIOSH on this topic, OSHA has concluded that the requirement to establish and maintain beryllium work areas are not appropriate for construction or shipyards. The work processes (primarily abrasive blasting), worksites, and conditions in construction and shipyards differ substantially from those typically found in general industry; as discussed further below, establishment of beryllium work areas in these sectors is likely to be impractical. However, OSHA has modified the standards so that most of the protective measures related to beryllium work areas in the general industry standard apply to operations in construction and shipyards, using triggers more suitable for these sectors. Thus, OSHA believes the final standards for construction and shipyards provide employees protection similar to employees in general industry, but avoid the difficulties associated with establishment of beryllium work areas in the context of abrasive blasting operations in these sectors. NIOSH commented that while it supported triggering the requirement to establish beryllium work areas at any level of airborne exposures, it is not clear how such a requirement would work in an outdoor environment (Document ID 1725, p. 30). It explained that it is possible that even ambient conditions could cause an outdoor work environment to qualify as a ‘‘beryllium work area’’ (Document ID 1725, p. 30). NIOSH also noted that it was unclear how to delineate beryllium work areas in an outdoor setting when abrasive blasting the outer hull of a large ship and questioned how the beryllium work area trigger of any level of airborne exposure to beryllium could be applied only to that specified area (Document 1755, Tr. 21). NIOSH further explained that establishing a beryllium work area for abrasive blasting in an outdoor environment is difficult because outdoor blasting operations often involve large structures and constant moving of the operation (Document ID 1755, Tr. 55). E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Newport News Shipbuilding (NNS) similarly commented that since beryllium is primarily encountered in shipyards as a trace element in coal slag blasting media, the requirement to establish and maintain beryllium work areas is not appropriate for shipyards. NNS stated, ‘‘[i]t is relatively easy to control a work area to a stated number such as a permissible exposure limit or an action level, but controlling ‘regardless of level of exposure’ for a trace contaminant in dust is impractical’’ (Document ID 1657, pp. 1– 2). Recognizing the difficulties described by NIOSH and NNS, the Agency decided not to require employers in construction and shipyards to establish and maintain beryllium work areas. However, OSHA has modified provisions associated with beryllium work areas in paragraph (f)(1) and paragraph (h) of the proposed standard so as to provide employees in all sectors with largely equivalent protective measures. For example, employers in all sectors are required to create, implement, and maintain a written exposure control plan that lists jobs and operations where beryllium exposure may occur, and that documents procedures for limiting crosscontamination and migration of beryllium (see Summary and Explanation of paragraph (f)(1)). Similarly, whereas employers in general industry are required under paragraph (f)(2) to take certain steps to reduce airborne beryllium in beryllium work areas where exposures meet or exceed the action level, employers in construction and shipyards have a nearly identical requirement to take steps to reduce exposures where exposures meet or exceed the action level. Thus, the only provisions related to beryllium work areas that apply in general industry but not in construction and shipyards are those OSHA is persuaded add protective value in general industry but would be unworkable or ineffective in the construction and shipyard contexts of abrasive blasting and outdoor operations, e.g., certain housekeeping provisions related to surface contamination (see Summary and Explanation, paragraph (j), Housekeeping, for further discussion). Regulated Areas. Paragraph (e)(1)(ii) of the proposed standard required employers to establish and maintain regulated areas wherever employees are, or can reasonably be expected to be, exposed to airborne concentrations of beryllium in excess of the TWA PEL or STEL. OSHA explained that the requirement to establish and maintain VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 regulated areas would apply if any exposure monitoring or objective data indicate that airborne exposures are in excess of either the TWA PEL or STEL, or if the employer has reason to anticipate or believe that airborne exposures may be above the TWA PEL or STEL, even if the employer has not yet characterized or monitored those exposures. For example, if newly introduced processes involving beryllium appear to be creating dust and have not yet been monitored, the employer should reasonably anticipate that airborne exposures could exceed the TWA PEL or STEL. In this situation, the employer would be required to designate the area as a regulated area to protect workers and other persons until monitoring results establish that exposures are at or below the TWA PEL and STEL. In the proposed standard, work in regulated areas triggered additional requirements for medical surveillance (see Summary and Explanation for paragraph (k)), PPE (see Summary and Explanation for paragraph (h)), and hazard communication (see Summary and Explanation for paragraph (m)). The construction and shipyard sectors were not included in the proposed standard, but were included in Regulatory Alternative #2a in the NPRM, which would extend all provisions of the proposed standard for general industry to construction and shipyards, including provisions pertaining to regulated areas. OSHA requested comments on this proposed regulatory alternative. OSHA received relatively few comments on the proposed provisions for regulated areas, which were largely similar to the regulated areas provisions included in previous substance-specific standards. In general, commenters did not oppose the concept of regulated areas. Clive LeGresly with AWE noted that their organization establishes ‘‘Controlled’’ beryllium workspaces that align with the final standards’ regulated areas (Document ID 1615, p. 4). However, some commenters suggested modifications to OSHA’s proposed definition of regulated areas. In their comments, the Sampling and Analysis Subcommittee Task Group of the Beryllium Health and Safety Committee (BHSC Task Group) and National Jewish Health (NJH) both supported the concept of regulated areas but recommended they be established when exposures are at or above the action level (Document ID 1655, p. 7; 1664, p. 3). Finally, the Department of Defense (DoD) argued that having both beryllium work areas and regulated areas was PO 00000 Frm 00193 Fmt 4701 Sfmt 4700 2661 confusing and burdensome, and suggested that the final standard should include only areas with airborne beryllium above the TWA PEL or STEL, which they described as better defined and more enforceable than the provisions for beryllium work areas in the proposed standard (Document ID 1684, Attachment 2, p. 2). After carefully considering the record on regulated areas, OSHA has decided to modify some of the provisions associated with regulated areas to address commenters’ concerns where appropriate, but to retain paragraph (e)(1)(ii) as proposed in the final standard for general industry. Thus, final paragraph (e)(1)(ii) in general industry requires employers to establish and maintain a regulated area wherever employees are, or can reasonably be expected to be, exposed to airborne beryllium at levels above the TWA PEL or STEL. A detailed discussion of OSHA’s decisions and reasoning follows. As applied to general industry, OSHA has not accepted the DoD’s suggestion that only work areas where exposures exceed the TWA PEL or STEL need to be demarcated as limited-access or regulated areas. Because employees who are exposed to airborne beryllium below the TWA PEL and STEL and who have dermal contact with beryllium are at risk of adverse health effects, OSHA finds that it is appropriate to establish and demarcate beryllium work areas wherever work processes create such exposures and are primarily located in indoor settings, as OSHA finds is typical of operations in general industry. As discussed above, the requirement for the establishment and maintenance of beryllium work areas is necessary to alert workers to the presence of beryllium and to trigger basic exposure prevention methods, such as hygiene facilities and housekeeping. However, it is also appropriate to establish regulated areas with more stringent requirements, such as respiratory protection, limited access, and warning signs, where exposures may exceed the TWA PEL or STEL. OSHA concludes that beryllium work areas and regulated areas serve distinct purposes, and each provides important protections to employees. Therefore, OSHA has decided to retain both beryllium work areas and regulated areas in the final standard for the general industry standard. As explained elsewhere in this section, OSHA finds that requirements to establish and demarcate beryllium work areas are not appropriate to operations in construction and shipyards, and that the objectives of regulated areas are better E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2662 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations achieved through the use of a competent person in construction. OSHA has also carefully considered the recommendation by the BHSC Task Group and NJH to use the action level rather than the TWA PEL or STEL to trigger the provisions of the proposed standard associated with regulated areas, and finds that it has some merit. For example, in the proposed standard, employees who work in regulated areas for more than 30 days in a 12-month period would be eligible for medical surveillance. Because employees exposed to beryllium at levels below the TWA PEL are at significant risk of material impairment of health as a result of their exposure (Section VII, Significance of Risk), OSHA is persuaded that the action level is a more appropriate trigger for the provision of medical surveillance. Eligibility for medical surveillance at the action level is also consistent with previous OSHA standards where significant risk remains at the TWA PEL, such as the recently published respirable crystalline silica standard. In addition, because beryllium sensitization can occur from dermal contact with beryllium regardless of whether airborne exposures are above or below the TWA PEL or STEL, OSHA believes it is appropriate to apply PPE requirements much more broadly than the proposed standard, which relied heavily on work in regulated areas as a trigger for PPE. However, OSHA does not believe that all provisions associated with regulated areas should apply at exposure levels below the TWA PEL and STEL. Employers are required to restrict access to regulated areas, thereby limiting the number of employees potentially exposed to beryllium at levels above the TWA PEL or STEL and limiting others’ risk of serious health effects associated with such exposure. OSHA finds that lowering the exposure trigger for regulated areas could lead to the creation of large restricted areas, and therefore large numbers of employees with access to restricted areas where exposures may range anywhere between the action level and high above the final PEL. And, as discussed previously, establishing and demarcating regulated areas ensures that workers and other persons are aware of the potential presence of airborne beryllium at levels above the TWA PEL or STEL and ensures that all persons entering regulated areas are made aware of the dangers of exposure to beryllium at these levels. Moreover, in general industry, the requirement to demarcate beryllium work areas triggered by any level of beryllium exposure resulting from a process or operation, provides VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 awareness for the potential hazard of beryllium contact or exposure at levels below the action level. For these reasons, OSHA believes that it is appropriate to retain the proposed standard’s definition of regulated areas and related provisions for restricted access and demarcation. In addition, OSHA finds that it is inappropriate to extend mandatory provision and use of respirators (triggered by work in regulated areas in the proposed standard) to all workers whose exposures meet or exceed the action level. As discussed elsewhere in this Summary and Explanation, OSHA’s longstanding policy is to avoid issuing standards that result in widespread use of respiratory protection due to issues of health, safety, and effectiveness that can occur with employees’ regular use of respirators (see Summary and Explanation for paragraph (f), Methods of Compliance, and paragraph (g), Respiratory Protection). For the reasons described above, OSHA has decided to adopt more protective triggers for some of the provisions associated with regulated areas in the proposed standard. OSHA has expanded eligibility for medical surveillance to employees who work for at least 30 days in a 12-month period in operations where airborne beryllium exposures meet or exceed the action level (previously, employees who work for at least 30 days in a 12-month period in a regulated area; see Summary and Explanation for paragraph (k), Medical Surveillance). OSHA has also expanded PPE requirements to all employees whose work involves dermal contact with beryllium (see Summary and Explanation for paragraph (h), PPE). These expanded PPE requirements in recognition of the dermal risk posed by beryllium also are responsive to a request from Public Citizen that beryllium work areas and regulated areas be broadly defined in order to ensure ‘‘appropriate protections against dermal exposure to beryllium, and dermal sensitization’’ (Document ID 1756, Tr. 176–77). As discussed in the Summary and Explanation of paragraph (a), Scope and application, OSHA received comments from a variety of stakeholders on Regulatory Alternative #2a presented in the NPRM, which extends all provisions of the proposed standard to the construction and shipyard sectors. Following careful consideration of these comments, OSHA determined that it is appropriate to extend all provisions of the proposed standard to cover facilities in construction and shipyards, except where some provisions of the general industry standard may be inappropriate PO 00000 Frm 00194 Fmt 4701 Sfmt 4700 due to the nature of workplaces or work processes in construction or shipyards. OSHA has additionally reviewed comments received on the topic of regulated areas in construction and shipyards, to determine whether it is appropriate to modify the requirements for regulated areas in these sectors. Based on its review, as well as OSHA’s previous experience regulating chemical exposures in these sectors, the Agency has concluded that provisions for regulated areas (as opposed to the larger beryllium work areas) are appropriate to include in the final standard for shipyards. In construction, OSHA does not find regulated area requirements to be appropriate but has decided instead to require employers to meet the goals of the regulated areas provisions using a competent person approach, which the Agency believes will be more effective in construction work settings. OSHA’s review of the record and reasons for these decisions follow. In the NPRM, OSHA requested comment on whether the provisions of the abrasive blasting substandard in the Ventilation standard for construction (29 CFR 1926.57, paragraph (f)) and the standard for Mechanical paint removers in shipyards (29 CFR 1915.34(c)) provide adequate protection to employees exposed to beryllium from abrasive blasting operations in these sectors. As discussed previously in the Summary and Explanation for paragraph (a), Scope and application, commenters argued persuasively that these abrasive blasting standards do not adequately protect beryllium-exposed construction and shipyard employees, and that OSHA should extend all provisions of the general industry standard to these sectors (e.g., Document ID 1679; 1963). However, the Abrasive Blasting Manufacturers Alliance (ABMA) stated that the proposed provisions for regulated areas in general industry would be inconsistent with regulations for abrasive blasting in shipyards, which do not always require such designated areas (Document ID 1673, p. 22). A similar concern could apply to requirements for regulated areas in construction. In OSHA’s view, the provisions of the abrasive blasting standards in shipyards and in construction provide important baseline requirements appropriate to any situation where abrasive blasting is conducted in these sectors. However, the abrasive blasting standards are not intended to provide comprehensive requirements for all abrasive blasting operations, because some operations may involve hazards unique to the particular process or blast media in use. E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Operations that use berylliumcontaining blast media present unique risks of beryllium sensitization and CBD to exposed employees (see Section V, Health Effects), and thus require protective measures beyond those of the abrasive blasting standards. As discussed above, regulated areas and related provisions include requirements that are key to protecting employees from the effects of beryllium exposure, such as restricted access, respiratory protection, and warning signs. OSHA concludes that provisions similar to the requirements for regulated areas in the final standard for general industry will provide shipyard employees necessary protection complementing that found in the shipyard mechanical paint remover standard, and is not in conflict with the provisions or intent of that standard. OSHA has similarly concluded that the beryllium standard should apply to construction because it will better protect employees exposed to beryllium while abrasive blasting than application of the Ventilation standard alone. However, comments in the record and OSHA’s experience regulating chemical exposures in construction indicate that the establishment of regulated areas is not the most effective way to ensure that construction employees receive the protections associated with regulated areas in the general industry standard. This decision is chiefly based on the Agency’s recognition that conditions at construction worksites present challenges to establishing regulated areas due to the varied and changing nature of construction work. Some of these challenges were noted in the preamble to the recent respirable crystalline silica standard (81 FR 16285) and also apply here. For example, construction tasks, and specifically abrasive blasting, are commonly performed outdoors. Exposuregenerating tasks could be short or long in duration and are typically performed at non-fixed workstations or worksites. Moreover, construction tasks may move to different locations during the workday. Such conditions could make it difficult to establish and maintain regulated areas as required by the general industry and shipyard standards. At the same time, OSHA finds that construction workers, like their counterparts in general industry and shipyards, need to be made aware of those locations in their workplace where airborne exposures are, or can reasonably be expected to be, above the TWA PEL or STEL. Therefore, OSHA has decided to adopt the method that was recently included in the recent respirable crystalline silica standard for VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 construction, as well as in some prior construction standards. There, in lieu of establishing regulated areas, the Agency included a requirement for a designated competent person to implement procedures in the written exposure control plan to restrict access to work areas, where necessary, to limit exposures to respirable crystalline silica to achieve the primary objectives of a regulated area. OSHA has concluded that a similar approach is appropriate in this rulemaking. The Agency finds that this flexible approach balances the unique conditions of the construction industry with the need to protect construction employees. In summary, OSHA has decided to include regulated area requirements in the final standards for general industry and shipyards. The requirements to establish and maintain a regulated area wherever employees are, or can reasonably be expected to be, exposed to airborne beryllium at levels above the TWA PEL or STEL, can be found in paragraph (e)(1)(ii) of the standard for general industry and (e)(1) of the standard for shipyards. Other requirements related to regulated areas, e.g., the requirements to identify and limit access to regulated areas, are discussed in more detail below. In addition, OSHA has decided not to include requirements for regulated areas in the final construction standard, but has provided analogous protections for construction employees through the competent person provisions in paragraph (e) of the final construction standard. The competent person requirements are also discussed in detail below. In addition, NIOSH suggested that since demarcated areas may be difficult to establish and maintain in some construction or maritime settings, OSHA could consider alternative ways to provide the protections associated with such areas to employees in these sectors. For example, respiratory protection could be triggered by exposure to a threshold airborne level, or dermal protections could be triggered based on performance of tasks involving dermal contact with beryllium (Document ID 1755, Tr. 21–22). OSHA has adopted NIOSH’s suggestion to tie certain protective measures to employee inhalation exposures or dermal contact rather than using the intermediary step of establishing demarcated areas where such areas are not required in the construction or maritime sectors. For example, as explained below in the discussion of competent person requirements, respiratory protection requirements apply to employees in construction who have or may PO 00000 Frm 00195 Fmt 4701 Sfmt 4700 2663 reasonably be expected to have airborne exposure above the TWA PEL or STEL. In addition, requirements for provision and use of PPE are triggered based on the potential for dermal contact with beryllium in all three standards (see the Summary and Explanation for paragraph (h), Personal protective clothing and equipment). Thus, PPE is available to all employees whose work may involve dermal contact with beryllium, irrespective of whether they work in an industry where demarcated areas are required. Demarcation of regulated areas. Proposed paragraph (e)(2) included the requirements for the demarcation of beryllium work areas and regulated areas. Under proposed paragraph (e)(2)(i), employers were required to identify each beryllium work area through signs or any other methods that adequately establish and inform each employee of the boundaries of each beryllium work area. OSHA explained that the demarcation must effectively alert workers and other persons that airborne beryllium may be present. Proposed paragraph (e)(2)(ii) required employers to demarcate each regulated area in accordance with the paragraph (m)(2) hazard communication provisions of this standard. OSHA did not further specify requirements for demarcation, proposing instead to offer employers flexibility in determining the best means to demarcate beryllium work areas and regulated areas. The Agency requested comment on each of these proposed provisions, including whether the standard should specify what types of demarcation employers must use or take a more performance-oriented approach. See 80 FR 47786. OSHA received several comments on demarcation in general industry and maritime settings. First, NIOSH advocated the need for more specification on how to demarcate regulated areas (Document ID 1671, Attachment 1, p. 6). OSHA believes, however, that allowing employers to choose how to best demarcate regulated areas (as well as beryllium work areas) is consistent with its preference for performance-based approaches where, as here, the Agency has determined that employers, based on their knowledge of the specific conditions of their workplace, are in the best position to make such determinations. For example, if an employer knows that exposures in a particular work area might exceed the PEL on one particular day only, that employer might choose a temporary method of demarcation. Conversely, an employer might choose to use a more permanent method of demarcation for a beryllium work area that contains a E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2664 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations potentially beryllium-releasing operation that occurs daily. In some workplaces employers might choose to use barricades, in others textured flooring, roped-off areas, ‘‘No entry’’/ ‘‘No access’’ signs, or painted boundary lines. OSHA generally approves of each of these methods, provided that the particular method or methods the employer selects are clear and understandable enough to alert workers to the boundaries of the beryllium work area or regulated area. This may mean, for example, including more than one language on a sign, if the inclusion of a second language would make the sign understandable to a particular workforce with limited English reading skills. OSHA has identified several factors that it considers to be appropriate considerations for employers when they are determining how to demarcate beryllium work areas and regulated areas. These factors include the configuration of the beryllium work area or regulated area; whether the beryllium work area or regulated area is permanent; the airborne concentrations of beryllium in the beryllium work area or regulated area; the number of employees working in areas adjacent to any beryllium work area or regulated area; and the period of time the beryllium work area or regulated area is expected to have hazardous exposures. OSHA also notes that the use of a performance-oriented approached to the demarcation of regulated areas is consistent with previous health standards, such as respirable crystalline silica (29 CFR 1910.1053) and chromium (VI) (29 CFR 1910.1026). Moreover, although proposed paragraph (e)(2)(ii) allowed employers to demarcate regulated areas in a variety of ways, it also contained specific requirements for the posting and wording of a warning sign in accordance with proposed paragraph (m)(2). OSHA included this requirement in the proposal because it preliminarily found that employees must recognize when they are entering a regulated area, and understand the hazards associated with the area, as well as the need for respiratory protection. Signs are an effective means of accomplishing these objectives. Therefore, OSHA included a proposed requirement for employers to post all entrances to regulated areas with signs that bear the following legend: DANGER BERYLLIUM BERYLLIUM MAY CAUSE CANCER CAUSES DAMAGE TO LUNGS AUTHORIZED PERSONNEL ONLY VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 WEAR RESPIRATORY PROTECTION AND PROTECTIVE CLOTHING AND EQUIPMENT IN THIS AREA Ameren, an electric power utility, objected to the proposal’s demarcation requirement. Specifically, Ameren stated that ‘‘[c]onfined space areas such as a boiler penthouse during abrasive blasting activities would be hard to demarcate since the entrance to the regulated area is small and would block access to the area for personnel and equipment. It would also be difficult to establish areas for activities such as cleaning fly ash off of plant piping or structural steel.’’ Ameren suggested alternate, training-based means of informing employees of beryllium exposures, such as job planning and job safety briefings (Document ID 1675, p. 11). OSHA disagrees that its performance-oriented approach does not accommodate these circumstances. As discussed above, demarcation requirements for beryllium work areas and regulated areas allow employers maximum flexibility in designing forms of demarcation that best fit the nature of their facilities and processes. Forms of demarcation, such as tape, that do not block access to areas and can be applied in areas where fly ash is cleaned are not difficult to design or implement. Furthermore, training to inform employees of the location of beryllium exposures is a valuable complement to, but should not replace, demarcation in the final standards. The reinforcement of training with demarcation is an important protection to ensure that employees, who may work frequently in beryllium work areas and regulated areas, are continually aware of the location of beryllium exposures in their workplace. See summary and Explanation for paragraph (m), discussing employee training requirements. Also, requirements for demarcation ensure that persons other than employees, who may enter the worksite but may not receive training, are adequately informed of the presence of beryllium. Commenters also opined on the signage requirement in proposed paragraph (e)(2)(ii). Specifically, the ABMA argued that the beryllium specific signs required in the proposed standard for general industry are not appropriate for use in shipyard abrasive blasting, since this operation involves potential exposure to a number of hazardous chemicals (Document ID 1673, p. 22). OSHA disagrees and is maintaining the sign requirement in the final standards (with slightly altered language, noted below). Beryllium specific signs are appropriate and PO 00000 Frm 00196 Fmt 4701 Sfmt 4700 necessary to inform employees and others of the specific health hazards associated with beryllium exposure. Although employees should also be made aware of other hazardous chemicals they may be occupationally exposed to, training and signage regarding these other chemicals must necessarily be addressed elsewhere, and these concerns should not preclude OSHA from requiring appropriate warning signs for beryllium exposure. OSHA notes that in comments from the U.S. House of Representatives Committee on Education and the Workforce, the committee urged OSHA to implement ‘‘demarcation (through postings of warnings) if there is abrasive blasting with beryllium containing materials’’ by shipyard workers (Document ID 1672, p. 4). After carefully reviewing the record, OSHA finds that the proposed approach for the demarcation of beryllium work areas and regulated areas strikes a reasonable balance between the difficulties of establishing and maintaining these areas with the need to alert those exposed of the risks involved, to reduce the number of employees exposed to beryllium, and to protect those employees exposed to high levels of airborne beryllium. In particular, OSHA finds that the general performance-oriented approach in the proposed requirements, when coupled with the specificity of the signage requirements for regulated areas, provides employers with a good balance of direction and flexibility. The final standards do not require employers to establish and demarcate beryllium work areas or regulated areas by permanently segregating and isolating processes generating airborne beryllium. Instead, the standards allow employers to use temporary or flexible methods to demarcate beryllium work areas and regulated areas. In sum, OSHA finds that these flexible, performance-based requirements will accommodate open work spaces, changeable plant layouts, and sporadic or occasional beryllium use without imposing undue costs or burdens. Therefore, OSHA has decided to include paragraphs (e)(2)(i) and (e)(2)(ii), as proposed, in the final standard for general industry and to include regulated areas demarcation requirements in paragraph (e)(2) of the shipyard standard identical to those of paragraph (e)(2)(ii) of the general industry standard. However, OSHA notes that the required legend for the signage has been amended slightly to include the words ‘‘REGULATED AREA,’’ as discussed in the Summary and Explanation for paragraph (m), E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Communication of hazards, in this preamble. (OSHA is not including the proposed demarcation provisions in the final standard for construction because, as discussed above, the construction standard does not require the establishment or maintenance of either beryllium work areas or regulated areas.) Paragraph (e)(3) of the proposed standard required employers to limit access to regulated areas. Because of the serious health effects of exposure to beryllium and the need for persons entering the regulated area to be properly protected, OSHA proposed that the number of persons allowed to access regulated areas should be limited to: (i) Persons the employer authorizes or requires to be in a regulated area to perform work duties; (ii) persons entering a regulated area as designated representatives of employees for the purposes of exercising the right to observe exposure monitoring procedures under paragraph (d)(6) of this standard; and (iii) persons authorized by law to be in a regulated area. The first group, persons the employer authorizes or requires to be in a regulated area to perform work duties, may include workers and other persons whose jobs involve operating machinery, equipment, and processes located in regulated areas; performing maintenance and repair operations on machinery, equipment, and processes in those areas; conducting inspections or quality control tasks; and supervising those who work in regulated areas. The second group encompasses persons entering a regulated area as designated representatives of employees for the purpose of exercising the right to observe exposure monitoring under paragraph (d)(7). As explained in the summary and explanation section on paragraph (d) for exposure assessment, providing employees and their representatives with the opportunity to observe monitoring is consistent with the OSH Act and OSHA’s other substance-specific health standards, such as those for respirable crystalline silica (29 CFR 1910.1053), cadmium (29 CFR 1910.1027), and methylene chloride (29 CFR 1910.1052). The third group consists of persons authorized by law to be in a regulated area. This category includes persons authorized to enter regulated areas by the OSH Act, OSHA regulations, or any other applicable law. OSHA compliance officers would fall into this group. As discussed in the NPRM, limiting access to regulated areas restricts the number of persons potentially exposed to beryllium at levels above the TWA VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PEL or STEL, and thus reduces the risk of beryllium-related health effects for employees and others who do not need access to regulated areas. As explained previously in the Summary and Explanation for paragraph (a), Scope and application, OSHA has decided to extend all provisions of the general industry standard to construction and shipyards except where the Agency finds that they are not appropriate to construction and shipyard settings. OSHA did not receive comments on this provision in the proposed standard, and did not receive comments or evidence indicating that restricted access areas are not appropriate in construction and shipyards. However, as discussed previously, OSHA has determined that protections associated with regulated areas in general industry will be more effectively accomplished with a competent person provision in construction. OSHA has therefore decided to retain paragraph (e)(3) as proposed in the final standard for general industry, and to add an identical provision to the shipyard standard and an analogous provision to the construction standard. Thus, final paragraph (e)(3) requires employers in general industry and shipyards to limit access to regulated areas to: (i) Persons the employer authorizes or requires to be in a regulated area to perform work duties; (ii) persons entering a regulated area as designated representatives of employees for the purposes of exercising the right to observe exposure monitoring procedures under paragraph (d)(6) of this standard; and (iii) persons authorized by law to be in a regulated area. And paragraph (e) of the construction standard requires the designation of a competent person, who, among other things, will implement the written exposure control plan under paragraph (f) of this standard. As discussed in more detail below, paragraph (f)(1)(i)(H) of the construction standard requires employers to establish and implement procedures to restrict access to work areas when airborne exposures are, or can reasonably be expected to be, above the TWA PEL or STEL, to minimize the number of employees exposed to airborne beryllium and their level of exposure, including exposures generated by other employers or sole proprietors. Proposed paragraph (e)(4) required employers to provide and ensure that each employee entering a regulated area uses personal protective clothing and equipment, including respirators, in accordance with paragraphs (g) and (h) of the proposed standard. As discussed in the NPRM, provisions for respiratory PO 00000 Frm 00197 Fmt 4701 Sfmt 4700 2665 protection and PPE ensure that those who must enter regulated areas are properly protected, thereby reducing the risk of serious health effects associated with airborne beryllium exposure and dermal contact with beryllium. As explained previously in the Summary and Explanation for paragraph (a), Scope and application, OSHA has decided to extend all provisions of the general industry standard to construction and shipyards except where the Agency finds that they are not appropriate to construction and shipyard settings. OSHA did not receive comments on this provision in the proposed standard for general industry, and did not receive comments or evidence indicating that restricted access areas are not appropriate in construction and shipyards. However, as discussed previously in this section, OSHA has determined that protections associated with regulated areas in general industry will be more effectively accomplished with a competent person provision in construction. OSHA has therefore decided to retain paragraph (e)(4) as proposed in the final standard for general industry, and to add an identical provision to the shipyard standard and an analogous provision to the construction standard. Thus, final paragraph (e)(4) of the general industry and shipyard standards requires employers to provide and ensure that each employee entering a regulated area uses respiratory protection in accordance with paragraph (g) and personal protective clothing and equipment in accordance with paragraphs (h) of the final standard for general industry. Wherever employees are, or can reasonably be expected to be, exposed to airborne beryllium at levels above the TWA PEL or STEL in construction settings, paragraph (e) of the construction standard requires the employer to designate a competent person to ensure that all employees use respiratory protection and PPE in accordance with paragraphs (g) and (h) of the standard. Competent Person (Construction). To balance the unique conditions present in the construction industry with the need to protect construction industry employees from high airborne exposures, OSHA has chosen to adopt an approach in the construction standard for restricting access to highexposure areas similar to that used in the recent respirable crystalline silica standard for construction. This approach requires the employer to designate a competent person or persons, who will, among other things, implement the written exposure control plan, including procedures used to E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2666 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations restrict access to work areas when airborne exposures are, or can reasonably be expected to be, above the TWA PEL or STEL; ensure that all employees use respiratory protection in accordance with paragraph (g) of this standard; and ensure that all employees use personal protective clothing and equipment in accordance with paragraph (h) of this standard. OSHA finds this approach offers construction employers a flexible means of providing protection to their employees. The competent person requirement is a well-known and accepted concept in OSHA standards; competent person provisions are included in at least 20 of OSHA’s construction standards, including OSHA substance-specific standards for construction, such as lead (29 CFR 1926.62), asbestos (29 CFR 1926.1101), cadmium (29 CFR 1926.1127), and respirable crystalline silica (29 CFR 1926.1153). In addition, OSHA’s general safety and health provisions for construction require the employer to initiate and maintain programs for accident prevention, as may be necessary, and such programs require frequent and regular inspections of job sites, materials, and equipment by a designated competent person (29 CFR 1926.20(b)(1) and (2)). Competent person provisions are also commonly included in American National Standard Institute (ANSI) standards for construction. NIOSH and its state partners also routinely recommend the need for, and role of, designated competent persons in investigation reports conducted under NIOSH’s Fatality Assessment and Control Evaluation program. Thus, OSHA finds that the use of a competent person is consistent with current industry practices in that many construction employers are already using a designated competent person. Moreover, although OSHA did not include a competent person requirement in the proposed rule, stakeholders indicated that such a requirement would be appropriate if the Agency chose to include the construction industry within the scope of this rulemaking. For example, North America’s Building Trades Unions (NABTU) testified that beryllium construction work should be done under the supervision of a competent person (Document ID 1756, Tr. 231– 232). NABTU added that the most important point of having a competent person designated in the standard is to ensure there is an agent of the employer on site who has the appropriate authority to correct hazards (Document ID 1805, Attachment 1, p. 4). VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 Based on these comments and the reasons described above, OSHA has decided to include competent person requirements in the final rule for construction, instead of requiring regulated areas. In paragraph (b) of the construction standard, OSHA defines competent person as an individual who is capable of identifying existing and foreseeable beryllium hazards in the workplace and who has authorization to take prompt corrective measures to eliminate or minimize them. The definition also specifies that the competent person must have the knowledge, ability, and authority necessary to fulfill the responsibilities set forth in paragraph (e) of the construction standard. In order to craft an appropriate definition for this term, OSHA considered stakeholder comments, including NABTU’s above comments on the need for a competent person in the construction standard, and the definition of competent person in the safety and health regulations for construction (29 CFR 1926.32(f)). Under 29 CFR 1926.32(f), competent person is defined as a person capable of identifying existing and predictable hazards in the surroundings or working conditions that are unsanitary, hazardous, or dangerous to employees and who is authorized to take prompt corrective measures to eliminate them. OSHA’s definition for competent person in the construction standard is consistent with the 1926.32(f) definition with several minor changes. For example, the Agency tailored this definition to beryllium by specifying ‘‘beryllium hazards’’ instead of ‘‘unsanitary, hazardous, or dangerous’’ conditions. In addition, OSHA replaced the word ‘‘one’’ with ‘‘individual,’’ which is merely an editorial change. The Agency also removed the phrase ‘‘in the surroundings or working conditions’’ and changed it to ‘‘in the workplace’’ to make it specific to the workplace. And the Agency removed the phrase ‘‘to eliminate them’’ and changed it to ‘‘to eliminate or minimize them’’ to denote there may be cases where complete elimination would not be feasible. Finally, OSHA changed ‘‘predictable’’ to ‘‘foreseeable’’ to make the wording consistent with the scope of this construction standard (paragraph (a)). OSHA also decided that it was important to detail the necessary characteristics and authority of a competent person in the standard to ensure that he or she is truly competent to carry out the tasks designated under paragraph (e). Thus, under paragraph (b) of the construction standard, the PO 00000 Frm 00198 Fmt 4701 Sfmt 4700 competent person must have the knowledge, ability, and authority necessary to fulfill the responsibilities set forth in paragraph (e) of the construction standard. However, OSHA has chosen not to specify particular training requirements for competent persons. The Agency finds that it is not practical to specify in the rule the elements and level of training required for a competent person. And the Agency does not find it appropriate to mandate a ‘‘one size fits all’’ set of training requirements to establish the competency of competent persons in every conceivable construction setting. Therefore, the training requirement for a competent person is performanceoriented. This approach is consistent with most OSHA construction standards, such as cadmium (29 CFR 1926.1127), lead (29 CFR 1926.62) and respirable crystalline silica (1926.1153), which include a performance-based approach by not specifying training or qualifications required for a competent person. Like the regulated area provisions in general industry and shipyards, paragraph (e)(1) of the construction standard applies wherever employees are, or can reasonably be expected to be, exposed to airborne beryllium at levels above the TWA PEL or STEL. As discussed in more detail above with regard to the establishment and maintenance of regulated areas in general industry and shipyards, OSHA finds that this exposure level trigger is appropriate for provisions such as this one. Paragraph (e) of the standard for construction further specifies that wherever employees are, or can reasonably be expected to be, exposed to airborne beryllium at levels above the TWA PEL or STEL, the employer shall designate a competent person to: (1) Make frequent and regular inspections of job sites, materials, and equipment; (2) implement the written exposure control plan under paragraph (f) of this standard; (3) ensure that all employees use respiratory protection in accordance with paragraph (g) of this standard; and (4) ensure that all employees use personal protective clothing and equipment in accordance with paragraph (h) of this standard. OSHA finds that these responsibilities, together, offer construction employees similar protection to those afforded to general industry and shipyard employees while offering construction employers more flexibility to suit their workplaces. Under paragraph (e)(1) of the construction standard, the competent person must make frequent and regular E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations inspections of job sites, materials, and equipment. OSHA included this requirement in order to ensure that the competent person has the necessary information to carry out the rest of his or her duties. For example, the competent person’s second responsibility (as discussed below) is to implement the written exposure control plan under paragraph (f) of this standard. Among other things, the written exposure control plan includes procedures for minimizing crosscontamination (paragraph (f)(1)(i)(D)). In order to implement these procedures on a construction worksite, the competent person may need to know about the unique characteristics of the jobsite and the materials and equipment used therein. Similarly, in order to carry out his or her duty to implement the procedures used to restrict access to work areas when airborne exposures are, or can reasonably be expected to be, above the TWA PEL or STEL, and to minimize the number of employees exposed to airborne beryllium and their level of exposure, including exposures generated by other employers or sole proprietors, as required by paragraph (f)(1)(i)(I), the competent person will equally need to be familiar with the jobsite, materials, and equipment in order to know where high exposures might occur. Under paragraph (e)(2) of the construction standard, OSHA is requiring that the competent person implement the written exposure control plan because the plan specifies what must be done to consistently identify and control beryllium hazards on a job site. See Summary and Explanation for paragraph (f), Written exposure control plan. In construction, a competent person is needed to ensure that the requirements of the written exposure control plan are being met under variable conditions. The subjects that must be included in the written exposure control plan for construction are consistent with the duties of a competent person in past OSHA standards. Therefore, this requirement should be familiar to construction employers covered by this standard. In addition, under paragraph (f)(1)(i)(I) the written exposure control plan must contain procedures used to restrict access to work areas when airborne exposures are, or can reasonably be expected to be, above the TWA PEL or STEL, to minimize the number of employees exposed to airborne beryllium and their level of exposure, including exposures generated by other employers or sole proprietors. By requiring the competent person to implement these procedures, VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 OSHA is offering similar protection to construction employees as given to general industry and shipyard employees through the regulated area provisions in the general industry and shipyard standards. OSHA is cognizant that the written exposure control plan requirement regarding the exposures generated by other employers or sole proprietors is important in construction because at multi-employer worksites, the actions of one employer may expose employees of other employers to hazards. A competent person can help communicate hazards to other employers. OSHA expects that the employers or their competent persons will work with general contractors at construction sites to avoid high exposures of employees working alongside others by implementing administrative procedures such as scheduling high-exposure tasks when others will not be in the area. However, if this does not occur, the competent person has authority to implement other administrative procedures that would be effective for protecting employees in situations where an employer was not made aware that another employer or sole proprietor would be conducting abrasive blasting operations on the worksite. Upon encountering such situations on a worksite, the competent person is expected to remind employees to stay away from the abrasive blasting site and make sure that employees he or she oversees are positioned at a safe distance from the abrasive blasting activity In addition to limiting access to high exposure areas, the standard for construction requires the competent person to ensure that employees use respiratory protection and personal protective clothing and equipment while in high exposure areas (paragraph (e)(3)–(4)). This is an important requirement because without demarcated regulated areas, employees would not have signs to remind them of the need to use such protective equipment. It is therefore the competent person’s responsibility to provide the necessary warnings. OSHA is not requiring a competent person for the general industry and shipyard standards. OSHA has determined that in most cases, general industry scenarios are not as variable as those in construction. For example, most work is performed indoors and therefore, not subject to variables such as wind shifts and moving exposure sources that could significantly affect exposures or complicate establishment of regulated areas. Employers covered under the general industry and shipyard PO 00000 Frm 00199 Fmt 4701 Sfmt 4700 2667 standards are more likely to have health and safety professionals on staff who could assist with implementation of the standard. Finally, competent persons have not been included in other OSHA substance-specific standards for general industry. For example, a competent person requirement was included in the construction standard for cadmium because of environmental variability and the presence of multiple employers on the job site, but a competent person requirement was not included in the general industry standard for cadmium (29 CFR 1910.1027; 29 CFR 1926.1127; 57 FR 42101, 42382 (9/14/1992)). A competent person requirement was included in the construction standard for respirable crystalline silica for similar reasons (81 FR 16811). These factors explain and support OSHA’s conclusion that there is no regulatory need for including a competent person requirement in the beryllium standards for general industry and shipyards. (f) Methods of Compliance Paragraph (f) of the standards establishes methods for reducing employee exposure to beryllium through the use of a written exposure control plan and engineering and work practice controls. Paragraph (f)(1)(i) of each of the standards requires employers to establish, implement, and maintain a written exposure control plan and specifies the information that must be included in the plan. Paragraph (f)(1)(ii) establishes requirements for employers to review their plan(s) at least annually and update it under specified circumstances. Finally, paragraph (f)(1)(iii) requires employers to make a copy of the written exposure control plan accessible to each employee who is, or can reasonably be expected to be, exposed to airborne beryllium. Paragraph (f)(2) of the final standards requires employers to implement engineering and work practice controls to reduce beryllium exposures to employees. Where airborne exposure exceeds the TWA PEL or STEL, the employer must implement engineering and work practice controls to reduce airborne exposure to or below the exceeded exposure limit(s). Wherever the employer demonstrates that it is not feasible to reduce airborne exposure to or below the PELs by engineering and work practice controls, the employer must implement and maintain engineering and work practice controls to reduce airborne exposure to the lowest levels feasible and supplement these controls by using respiratory protection in accordance with paragraph (g) of this standard. In addition, E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2668 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations paragraph (f)(2) includes limited requirements for implementation of exposure controls where operations release airborne beryllium exceeding the action level. Finally, paragraph (f)(3) prohibits the employer from rotating employees to different jobs to achieve compliance with the TWA PEL and STEL. Paragraph (f)(1)(i) of the proposed rule would have required employers to establish, implement, and maintain a written exposure control plan for beryllium work areas, containing an inventory of operations and job titles reasonably expected to have exposure at or above the action level; an inventory of operations and job titles reasonably expected to have exposure above the TWA PEL or STEL; procedures for minimizing cross-contamination, keeping surfaces in the beryllium work area as free as practicable of beryllium; minimizing the migration of beryllium from beryllium work areas to other locations within or outside the workplace, and removal, laundering, storage, cleaning, repairing, and disposal of beryllium-contaminated personal protective clothing and equipment, including respirators; and an inventory of engineering and work practice controls required by paragraph (f)(2) of the proposed standard. Several commenters offered broad support for the inclusion of paragraph (f)(1)’s provisions in the final rule (e.g., Document ID 1681, Attachment 1, p. 9; 1689, p. 11; 1690, p. 1). For example, United Steelworkers (USW) stated: ‘‘[a] written plan will help to ensure that exposure controls and safety practices are continually followed. This will also provide workers and other stakeholders with information necessary in evaluating the health and safety protections and provisions provided by the employer’’ (Document ID 1681, p. 9). The American Federation of Labor and Congress of Industrial Organizations (AFL–CIO) also supported the inclusion of written exposure control plan requirements (Document ID 1689, p. 11). It argued that ‘‘[r]equiring employers to properly make use of a written plan is an essential tool for continuously controlling exposures and using proper safety practices’’ (Document ID 1689, p. 11). The National Council for Occupational Safety and Health (National COSH) agreed, stating that ‘‘[a] comprehensive program to protect workers from these exposures, that includes a requirement for a written beryllium control plan, regular exposure monitoring, medical surveillance, medical removal protection benefits, and training would provide much needed protection for beryllium VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 exposed workers’’ (Document ID 1690, p. 1). Written exposure control plan requirements were also included in the draft proposed rule submitted to the Agency by Materion Corporation (Materion) and United Steelworkers (USW) (Document ID 0754, p. 6). OSHA agrees with the opinions expressed by these commenters. Requiring employers to articulate where exposures occur and how those exposures will be controlled will help to ensure that they have a complete understanding of the controls needed to comply with the rule. Thus, OSHA expects a written exposure control plan will be instrumental in ensuring that employers comprehensively and consistently protect their employees. Consequently, the Agency has decided to include written exposure control plan requirements in paragraph (f)(1) of the final standards. In the preamble to the proposal, OSHA explained that adherence to the written exposure control plan will help reduce skin contact with beryllium, which can lead to beryllium sensitization, and airborne exposure, which can lead to beryllium sensitization, CBD, and lung cancer (80 FR 47787). Because skin contact and airborne exposure can occur in any workplace within the scope of the standard, OSHA preliminarily decided to require a written exposure control plan for all employers within the scope of the standard. OSHA received comments regarding the proposed trigger for written exposure control plan requirements. For example, NGK Metals Corporation (NGK) argued that requiring employers to develop and maintain a written exposure control plan for facilities where exposures are below the action level is burdensome, and recommended that the written plan be required only where exposures exceed the action level (Document ID 1663, p. 2). EEI asserted that a requirement for a written exposure control plan should apply to areas where exposures meet or exceed the action level or PEL, so as to be consistent with other health standards (Document ID 1674, p. 13). OSHA has re-examined the provisions of (f)(1) in light of these comments and reaffirms its preliminary decision to require all employers within the scope of the standard to establish, implement, and maintain a written exposure control plan. The Agency finds that the requirements that apply where exposures are below the action level (e.g., a list of operations and job titles reasonably expected to involve airborne exposure or dermal contact with beryllium; descriptions of procedures PO 00000 Frm 00200 Fmt 4701 Sfmt 4700 for handling beryllium-contaminated PPE and respirators; and descriptions of procedures for minimizing crosscontamination and migration of beryllium) are important to preventing beryllium sensitization and CBD, and are not overly burdensome. Moreover, many of the requirements in the plan are intended to complement the housekeeping and hygiene requirements that all facilities in the scope of the standard must already meet, and do not create significant burdens for employers beyond documentation of their procedures for meeting the requirements of other paragraphs in the standards, such as (h) Personal protective clothing and equipment, (i) Hygiene areas and practices, and (j) Housekeeping. Proposed paragraph (f)(1)(i)(A)–(H) set forth the required contents of the written exposure control plan. Under the proposal, the employer’s written exposure control plan was required to include: (1) An inventory of operations and job titles reasonably expected to have exposure; (2) an inventory of operations and job titles reasonably expected to have exposure at or above the action level; (3) an inventory of operations and job titles reasonably expected to have exposure above the TWA PEL or STEL; (4) procedures for limiting beryllium contamination, including but not limited to preventing the transfer of beryllium between surfaces, equipment, clothing, materials, and articles within the beryllium work area; (5) procedures for keeping surfaces in the beryllium work area as free as practicable of beryllium; (6) procedures for minimizing the migration of beryllium from beryllium work areas to other locations within or outside the workplace; (7) an inventory of engineering and work practice controls used by the employer to comply with paragraph (f)(2) of this standard; and (8) procedures for removal, laundering, storage, cleaning, repairing, and disposal of beryllium-contaminated personal protective clothing and equipment, including respirators. Stakeholders offered comments on the proposed written control plan contents. For example, the Boeing Company suggested that OSHA should revise the proposed provision requiring ‘‘procedures for keeping surfaces in the beryllium work area as free as practicable of beryllium’’ to define specific surface contaminant levels (Document ID 1667, p. 4). The apparent advantage of providing a target surface contaminant level is that employers could use surface sampling to determine whether they are in compliance with the standard’s requirements for surface cleaning. However, as OSHA explained E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations in the Summary and Explanation for paragraph (j), Housekeeping, the relationship between a precise amount of surface contamination and health risk is unknown. Therefore, OSHA cannot find that a particular level of contamination is safe. Rather, OSHA has determined that keeping surfaces as clean as practicable is appropriate because promptly removing beryllium deposits prevents them from becoming airborne, thus reducing employees’ inhalation exposure, and helps to minimize the likelihood of skin contact with beryllium. Moreover, the term ‘‘free as practicable’’ is accepted language and has been used in previous standards, such as standards addressing exposure to lead and chromium (VI). Consequently, OSHA has decided to retain the ‘‘free as practicable’’ language in the final rule for general industry. (As discussed in more detail below, the final standards for construction and shipyards do not include this requirement.) After careful consideration of the record, OSHA reaffirms the need for the written exposure control plan to contain each of the provisions included in the proposal. This written record of which operations and job titles are likely to have exposures at certain levels and which housekeeping provisions and engineering and work practice controls the company has selected to control exposures required in paragraph (f) will make it easier for employers to implement monitoring, hygiene practices, housekeeping, engineering and work practice controls, and other measures. The provisions contained in (f)(1)(i)(D), (E), (F), and (H) of the proposed rule will work to minimize the spread of beryllium throughout and outside the workplace and to reduce the likelihood of skin contact and reentrainment of beryllium particulate. Therefore, OSHA has decided to retain the proposed contents of the written exposure control plan in the standard for general industry, with the following revisions. First, OSHA has modified the proposed requirement to include an inventory of operations and job titles reasonably expected to have exposure, including by dermal contact. As discussed in detail in the Summary and Explanation for paragraph (h), Personal protective clothing and equipment (PPE), OSHA finds that it is important to protect employees from dermal contact with beryllium. OSHA therefore finds that the written exposure control plan should inform employees and others of jobs and operations where dermal contact with beryllium is reasonably expected, and has added dermal contact with beryllium to VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 paragraph (f)(1)(i)(A) of the final standards. Thus, the final standard for general industry requires the employer to include a list of operations and job titles reasonably expected to involve airborne exposure to beryllium or dermal contact with beryllium in their written exposure control plan(s). Second, OSHA modified the language of proposed paragraphs (f)(1)(i)(A), (B), (C), and (G) by replacing the term ‘‘inventory’’ with the term ‘‘list’’. This change in wording does not imply a change in the intent of the provision. Rather, OSHA made this change to clarify the Agency’s intent to require employers to simply identify jobs, operations and controls that match the criteria of these provisions, and that employers are not required to provide more extensive description of such jobs and operations. Third, OSHA modified (f)(1)(i)(D) by deleting ‘‘but not limited to’’ from the phrase ‘‘including but not limited to preventing the transfer of beryllium’’, because the term ‘‘including’’ implies that the examples to follow are not intended to be exhaustive. This change in wording does not imply a change in the intent of the provision. Fourth, OSHA has edited the proposed text, which required an ‘‘inventory’’ of operations and job titles reasonably expected to ‘‘have’’ exposure; exposure at or above the action level; and exposure above the TWA PEL or STEL. The final text requires a ‘‘list’’ of operations and job titles reasonably expected to ‘‘involve’’ airborne exposure to or dermal contact with beryllium; airborne exposure at or above the action level; and airborne exposure above the TWA PEL or STEL. This is an editorial change to provide greater clarity to better describe the actual requirement, and does not change the intent of the provision. Fifth, OSHA modified the proposed requirement to inventory engineering and work practice controls required by paragraph (f)(2) of this standard to include respiratory protection. This change ensures that the respiratory protection requirement, which is included in (f)(2)(iv) of the final standards, is treated in the same manner as the engineering and work practices control requirements in (f)(2)(i) and (f)(2)(iii). Finally, OSHA has included one additional provision in the final rule for general industry that was not contained in the proposal. Specifically, paragraph (f)(1)(i)(H) of the final rule requires employers to include within their written exposure control plan a list of personal protective clothing and equipment required by paragraph (h) of this standard. This provision is added in PO 00000 Frm 00201 Fmt 4701 Sfmt 4700 2669 recognition of the importance of personal protective clothing and equipment in protecting exposed employees, particularly those employees who may have dermal contact with beryllium. With the addition of this new provision, proposed paragraph (f)(1)(i)(H) (regarding procedures for removal, laundering, storage, cleaning, repairing, and disposal of beryllium-contaminated personal protective clothing and equipment, including respirators) has been redesignated as paragraph (f)(1)(i)(I) of the final rule for general industry. OSHA has incorporated most provisions of the proposed paragraph (f)(1)(i) into the final standards for construction and shipyards, with certain modifications due to the work processes and worksites particular to these sectors. As explained in the Summary and Explanation for paragraph (j), Housekeeping, OSHA has determined that abrasive blasting operations are the primary source of beryllium exposure in the construction and shipyard sectors and has chosen not to include provisions related to surface cleaning in the final standards for these sectors due to the extreme difficulty of maintaining clean surfaces during blasting operations. OSHA has therefore decided to exclude the provision regarding procedures for keeping surfaces as free as practicable of beryllium (proposed paragraph (f)(1)(i)(E)) from the construction and shipyard standards. And due to the difficulty of controlling contamination during blasting operations, OSHA has decided to include a more performance-oriented provision on cross-contamination in the standards for construction and shipyards than in paragraph (f)(1)(i)(D) of the general industry standard. Employers are still required to establish and implement procedures for minimizing cross-contamination of beryllium in construction and shipyard industries. However, the written exposure control plan provision on cross-contamination simply requires ‘‘procedures for minimizing crosscontamination’’; it does not specify ‘‘procedures for minimizing crosscontamination, including preventing the transfer of beryllium between surfaces, equipment, clothing, materials, and articles within beryllium work areas’’ as in general industry. OSHA has included the proposed provision for minimizing the migration of beryllium in the standards for construction and shipyards, but has removed the reference to beryllium work areas since these are not established in construction E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2670 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations and shipyards. The written exposure control plan provision on migration in these sectors requires the plan to include ‘‘procedures for minimizing the migration of beryllium within or to locations outside the workplace.’’ Because the requirements pertaining to surfaces contained in final paragraph (f)(1)(i)(E) of the general industry standard do not appear in the construction and shipyard standards, the numbering of the provisions differs from that of the general industry standard. For the construction and shipyard standards, requirements pertaining to the migration of beryllium appear in paragraphs (f)(1)(i)(E); requirements for a list of engineering controls, work practices, and respiratory protection are in paragraphs (f)(1)(i)(F); requirements for a list of personal protective clothing and equipment are in paragraphs (f)(1)(i)(G); and requirements pertaining to removal, laundering, storage, cleaning, repairing, and disposal of beryllium-contaminated personal protective clothing and equipment, including respirators, appear in paragraph (f)(1)(i)(H). Additional discussion of some of these requirements may be found in this section of the preamble, Summary and Explanation, at paragraph (h), Personal Protective Clothing and Equipment; paragraph (i), Hygiene Areas and Practices; and paragraph (j), Housekeeping. OSHA has also included paragraph (f)(1)(i)(I) in the construction standard only, requiring employers in the construction sector to establish, implement and maintain procedures to restrict access where airborne exposures are, or can reasonably be expected to be, above the TWA PEL or STEL. This addition is related to OSHA’s decision, explained in the Summary and Explanation of paragraph (e), not to include a requirement to establish regulated areas in the construction standard, and to achieve the protective benefits associated with regulated areas by other means. In the general industry and shipyard standards, the employer must limit access to regulated areas to persons who are authorized or required to be in a regulated area to perform work duties, observation, or other limited circumstances. OSHA has determined that restricting access to areas where airborne exposures exceed or may reasonably be expected to exceed the TWA PEL or STEL is appropriate to reduce employees’ and others’ risk of adverse health effects associated with airborne beryllium exposure. OSHA has therefore established alternative methods to ensure that construction employees do not enter such areas VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 unnecessarily. To this end, the final standard for construction includes paragraph (f)(1)(i)(I), which requires employers to establish, implement and maintain procedures used to restrict access to work areas when airborne exposures are, or can reasonably be expected to be, above the TWA PEL or STEL, in order to minimize the number of employees exposed to airborne beryllium and their level of exposure, including exposures generated by other employers or sole proprietors. Significantly, the construction standard additionally includes paragraph (e), Competent Person, which requires employers to designate a competent person to implement the written exposure control plan. The competent person is therefore responsible for ensuring that the procedures to restrict access are followed in the workplace. National Jewish Health (NJH) submitted a comment to OSHA regarding the importance of training, labeling, housekeeping measures, restricted entry to berylliumcontaminated areas, and technologies such as sticky mats and boot scrubbers in controlling employees’ exposure to beryllium. NJH requested that OSHA emphasize the importance of such measures in paragraph (f) of these standards (Document ID 1664, p. 6). OSHA agrees with NJH that all of these approaches are helpful, and in some cases essential, to reducing employees’ exposure. Training and some forms of labeling and access restriction are specifically required in other paragraphs of the standards. Specific tools such as sticky mats and boot scrubbers are not required in the standards, but are approaches employers should consider as part of their control procedures. All of the methods mentioned by NJH are ways to limit migration of beryllium and cross-contamination, and are therefore appropriate for inclusion in an employer’s written exposure control plan(s). The final standards’ paragraph (f)(1)(i) differs from the proposal in that it requires a written exposure control plan for each facility, whereas the proposal would have required a written exposure control plan for beryllium work areas within each facility. In addition, OSHA has removed the phrase ‘‘in the beryllium work area’’ from provision (f)(1)(i)(E) of the final standard for general industry, so that it now reads: ‘‘Procedures for keeping surfaces as free as practicable of beryllium’’. OSHA made these changes because it changed the definition of a ‘‘beryllium work area’’ in the proposed standard for general industry. The proposed standard defined a beryllium work area to PO 00000 Frm 00202 Fmt 4701 Sfmt 4700 include any area where employees are, or can reasonably be expected to be, exposed to airborne beryllium, regardless of the level of exposure. As discussed previously in the Summary and Explanation for paragraph (e), the final standard for general industry defines a beryllium work area to include only those areas containing a process or operation that releases beryllium where employees are, or can reasonably be expected to be, exposed to airborne beryllium at any level or where there is the potential for dermal contact with beryllium. Accordingly, OSHA made these changes to the wording of (f)(1)(i) and (f)(1)(i)(E) to maintain the intent of proposed paragraph (f)(1)(i)(A), to require employers to list all jobs and operations throughout their facilities involving beryllium exposure, and paragraph (f)(1)(i)(E) to control dermal contact with beryllium wherever airborne beryllium may settle on surfaces in their facilities. If employers’ procedures to prevent migration of beryllium from work areas to other areas of the facility are fully effective (paragraph (f)(1)(i)(F)), further steps to keep surfaces as free as practicable of beryllium will not be necessary. However, if the employer is unable to consistently prevent transfer of beryllium from work areas to other areas of the facility, the employer must develop and implement additional procedures to keep surfaces outside of the beryllium work areas as free as practicable of beryllium. Paragraph (f)(1)(ii) of the proposed rule would have required the employer to update the exposure control plan when: (A) Any change in production processes, materials, equipment, personnel, work practices, or control methods results or can reasonably be expected to result in new or additional exposures to beryllium; (B) an employee is confirmed positive, is diagnosed with CBD, or shows signs or symptoms associated with exposure; or (C) the employer has any reason to believe that new or additional exposures are occurring or will occur. OSHA did not receive any comments on this provision. However, as noted in the proposal, employers such as Materion and Axsys Technologies, who have worked to identify and document the exposure sources associated with cases of sensitization and CBD in their facilities, have used this information to develop and update beryllium exposure control plans (Document ID 0634; 0473; 0599). OSHA found that this process, whereby an employer uses employee health outcome data to check and improve the effectiveness of the employer’s exposure E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations control plan, is consistent with other performance-oriented aspects of these standards. Thus, after considering the record on this issue, OSHA has decided to retain proposed paragraph (f)(1)(ii) in the final rule, with the modifications discussed below, to ensure that the employer’s plan reflects the current conditions in the workplace. The first modification is that OSHA added a requirement to review and evaluate the effectiveness of each written exposure control plan at least annually. OSHA finds that an annual review is appropriate because workplace conditions can change. In addition, by requiring employers to check the effectiveness of their plans annually, the standards offer employers the opportunity to better protect their employees by reflecting on any lessons learned throughout the previous year. The final annual review requirement is consistent with previous OSHA standards, such as the standards addressing bloodborne pathogens (29 CFR 1910.1030) and respirable crystalline silica (29 CFR 1910.1053). Second, OSHA changed the proposed language of (f)(1)(ii)(B), which would have required employers to update their written exposure control plans when an employee is confirmed positive for beryllium sensitization, is diagnosed with CBD, or shows signs or symptoms associated with exposure. This change is related to another change from the proposed standard, which would have required notification of employers whenever an employee is confirmed positive for beryllium sensitization. As explained in the Summary and Explanation for paragraph (k), Medical Surveillance, OSHA has modified this provision so that employers are not automatically notified of cases of sensitization or CBD among their employees. However, employers will receive a written medical opinion from the licensed physician that may include a referral for an evaluation at a CBD Diagnostic Center (see (k)(6)(iii)) or a recommendation for medical removal from exposure to beryllium (see (k)(6)(v)). An employee may also provide the employer with a written medical report indicating a confirmed positive finding or CBD diagnosis. Final paragraph (f)(1)(ii)(B) has been revised from the proposal to reflect the circumstances under the final standards where an employer will be notified that an employee has, or may have, a beryllium-related health effect. This includes when the employer is notified that an employee is eligible for medical removal in accordance with paragraph (l)(1) of the standard (i.e., when the employee provides the employer with a VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 written medical report indicating a confirmed positive finding or CBD diagnosis, or the employer receives a written medical opinion recommending removal from exposure to beryllium); when the employer is notified that an employee is referred for evaluation at a CBD Diagnostic Center, or when an employee shows signs and symptoms associated with exposure. Third, OSHA further modified (f)(1)(ii)(B) to clarify the Agency’s understanding that signs and symptoms may be related to inhalation or dermal exposure, as discussed in Section V, Health Effects. Final paragraph (f)(1)(ii)(B) therefore refers to signs and symptoms of ‘‘airborne exposure to or dermal contact with beryllium’’. Fourth, OSHA modified the wording of (f)(1)(ii) to require the employer to update ‘‘each’’ written exposure control plan rather than ‘‘the’’ written exposure control plan, since an employer who operates multiple facilities is required to establish, implement and maintain a written exposure control plan for each facility. Paragraph (f)(1)(ii) of the final standards thus requires the employer to review and evaluate the effectiveness of each written exposure control plan at least annually and update it when: (A) Any change in production processes, materials, equipment, personnel, work practices, or control methods results or can reasonably be expected to result in new or additional airborne exposure to beryllium; (B) the employer is notified that an employee is eligible for medical removal in accordance with paragraph (l)(1) of this standard, referred for evaluation at a CBD Diagnostic Center, or shows signs or symptoms associated with airborne exposure to or dermal contact with beryllium; or (C) the employer has any reason to believe that new or additional airborne exposure is occurring or will occur. Paragraph (f)(1)(iii) of the proposed rule would have required the employer to make a copy of the exposure control plan accessible to each employee who is or can reasonably be expected to be exposed to airborne beryllium in accordance with OSHA’s Access to Employee Exposure and Medical Records (Records Access) standard (29 CFR 1910.1020(e)). As discussed above and in the NPRM, access to the exposure control plan will enable employees to partner with their employers in keeping the workplace safe. OSHA did not receive comments specific to this provision, and has decided to retain it in the final standard for general industry and include it in the final standards for construction and shipyards. PO 00000 Frm 00203 Fmt 4701 Sfmt 4700 2671 Proposed paragraph (f)(2) established a hierarchy of controls that employers must use to reduce beryllium exposures. This paragraph required employers to rely on engineering and work practice controls as the primary means to reduce exposures. As a general matter, where airborne exposure exceeded the TWA PEL or STEL, proposed paragraph (f)(2) required employers to implement engineering and work practice controls to reduce airborne exposure to or below the PELs. Wherever the employer demonstrated that it is not feasible to reduce airborne exposure to or below the PELs through the use of engineering and work practice controls, the employer would have been required to implement and maintain engineering and work practice controls to reduce airborne exposure to the lowest levels feasible and supplement these controls by using respiratory protection in accordance with paragraph (g) of this standard. In addition, proposed paragraph (f)(2) included limited requirements for implementation of exposure controls for each operation in a beryllium work area. OSHA’s long-standing hierarchy of controls policy was supported by a number of commenters, including USW; the Sampling and Analysis Subcommittee Task Group of the Beryllium Health and Safety Committee (BHSC Task Group); AWE; AFL–CIO; 3M; and National Jewish Health (e.g., Document ID 1963, p. 12; 1655, pp. 8, 16; 1618, p. 8 (pdf); 1689, p. 11; 1625, p. 6 (pdf); 1664, p. 6). For example, the BHSC Task Group stated that OSHA’s mandate ‘‘to assure safe and healthy workplaces requires it to reinforce fundamental industrial hygiene tenets. Prime among these is application of a hierarchy of controls’’ (Document ID 1655, p. 16). Similarly, 3M indicated that it ‘‘agree[d] with OSHA that the hierarchy of controls—effective engineering and work practice controls—should be the primary means to help reduce employee exposures to beryllium and its compounds’’ (Document ID 1625, p. 6 (pdf)). 3M added that ‘‘when engineering controls and work practices cannot reduce employee exposure to beryllium to below the PEL, then the employer must protect employees’ respiratory health through the use of respirators’’ (Document ID 1625, p. 6 (pdf)). NJH added that . . . engineering and/or work practice controls are critical in reducing beryllium exposure and we have consulted with clients on this issue. In identifying controls, using the hierarchy of industrial controls to start with elimination or substitution . . . followed by engineering controls and process E:\FR\FM\09JAR2.SGM 09JAR2 2672 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS controls such as enclosures, local exhaust ventilation, and wet methods . . . is crucial (Document ID 1664, p. 6). After a careful review of the record, OSHA concludes that requiring primary reliance on engineering and work practice controls is necessary and appropriate because reliance on these methods is consistent with good industrial hygiene practice, with the Agency’s experience in ensuring that workers have a healthy workplace, and with OSHA’s traditional adherence to a hierarchy of controls. The Agency finds that engineering controls are reliable, provide consistent levels of protection to a large number of workers, can be monitored continually and inexpensively, allow for predictable performance levels, and can efficiently remove toxic substances from the workplace. Once removed, the toxic substances no longer pose a threat to employees. The effectiveness of engineering controls does not generally depend to any substantial degree on human behavior, and the operation of control equipment is not as vulnerable to human error as is personal protective equipment. OSHA has identified several key methods of reducing exposures: (1) Substitution; (2) isolation (e.g., enclosures); (3) ventilation; and (4) process controls (e.g. wet methods, automation). Substitution refers to the replacement of a toxic material with another material that reduces or eliminates the harmful exposure. When available, substitution can replace a toxic material in the work environment with a non-toxic material, thus eliminating the risk of adverse health effects. Isolation, i.e., separating workers from the source of the hazard, is another effective engineering control employed to reduce exposures to beryllium. Isolation can be accomplished by either containing the hazard or isolating workers from the source of the hazard. For example, to contain the hazard, an employer might install a physical barrier around the source of exposure to contain a toxic substance within the barrier. Isolating the source of a hazard within an enclosure restricts respirable dust from spreading throughout a workplace and exposing employees who are not directly involved in exposuregenerating operations. Or, alternatively, an employer might isolate employees from the hazard source by placing them in a properly ventilated space or at some distance from the source of the beryllium exposure. Ventilation is another engineering control method used to minimize airborne concentrations of a VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 contaminant by supplying or exhausting air. The primary type of ventilation system used to control beryllium exposure is local exhaust ventilation (LEV). LEV is used to remove an air contaminant by capturing it at or near the source of emission, before the contaminant spreads throughout the workplace. If designed properly, LEV systems efficiently remove contaminants and provide for cleaner and safer work environments. Work practice controls involve adjustments in the way a task is performed. In many cases, work practice controls complement engineering controls in providing worker protection. For example, periodic inspection and maintenance of process equipment and control equipment such as ventilation systems is an important work practice control. Frequently, equipment which is in disrepair or near failure will not perform normally. Regular inspections can detect abnormal conditions so that timely maintenance can then be performed. If equipment is routinely inspected, maintained, and repaired or replaced before failure is likely, there is less chance that hazardous exposures will occur. Workers must know the proper way to perform their job tasks in order to minimize their exposure to beryllium and to maximize the effectiveness of control measures. For example, if an exhaust hood is designed to provide local ventilation and a worker performs a task that generates a contaminant away from the exhaust hood, the control measure will be of no use. Workers can be informed of proper operating procedures through information and training. Good supervision further ensures that proper work practices are carried out by workers. By persuading a worker to follow proper procedures, such as positioning the exhaust hood in the correct location to capture the contaminant, a supervisor can do much to minimize unnecessary exposure. Employees’ exposures can also be controlled by scheduling operations with the highest exposures at a time when the fewest employees are present. Under the hierarchy of controls, respirators can be another means of providing employees effective protection from exposure to air contaminants. However, to be effective, respirators must be individually selected, fitted and periodically refitted, conscientiously and properly worn, regularly maintained, and replaced as necessary. In many workplaces, these conditions for effective respirator use are difficult to achieve. The absence of any one of these conditions can reduce or eliminate the protection the PO 00000 Frm 00204 Fmt 4701 Sfmt 4700 respirator provides to some or all of the employees. For example, certain types of respirators require the user to be clean shaven to achieve an effective seal where the respirator contacts the employee’s skin. Failure to ensure a tight seal due to the presence of facial hair compromises the effectiveness of the respirator. Respirator effectiveness ultimately relies on employers educating employees on the necessary good work practices and ensuring that employees adopt those practices. In contrast, the effectiveness of engineering controls does not rely so heavily on actions of individual employees. Engineering and work practice controls are capable of reducing or eliminating a hazard from a worksite, while respirators protect only the employees who are wearing them correctly. Furthermore, engineering and work practice controls permit the employer to evaluate their effectiveness directly through air monitoring and other means. It is considerably more difficult to directly measure the effectiveness of respirators on a regular basis to ensure that employees are not unknowingly being overexposed. OSHA therefore continues to consider the use of respirators to be the least satisfactory approach to exposure control. In addition, use of respirators in the workplace presents other safety and health concerns. Respirators can impose substantial physiological burdens on employees, including the burden imposed by the weight of the respirator; increased breathing resistance during operation; limitations on auditory, visual, and olfactory sensations; and isolation from the workplace environment. Job and workplace factors such as the level of physical work effort, the use of protective clothing, and temperature extremes or high humidity can also impose physiological burdens on employees wearing respirators. These stressors may interact with respirator use to increase the physiological strain experienced by employees. Certain medical conditions can compromise an employee’s ability to tolerate the physiological burdens imposed by respirator use, thereby placing the employee wearing the respirator at an increased risk of illness, injury, and even death. These medical conditions include cardiovascular and respiratory diseases (e.g., a history of high blood pressure, angina, heart attack, cardiac arrhythmias, stroke, asthma, chronic bronchitis, emphysema), and reduced pulmonary function caused by other factors (e.g., smoking or prior exposure to respiratory hazards), neurological or E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations musculoskeletal disorders (e.g., epilepsy, lower back pain), and impaired sensory function (e.g., a perforated ear drum, reduced olfactory function). Psychological conditions, such as claustrophobia, can also impair the effective use of respirators by employees and may also cause, independent of physiological burdens, significant elevations in heart rate, blood pressure, and respiratory rate that can jeopardize the health of employees who are at high risk for cardiopulmonary disease (see 63 FR 1152, 1208–1209 (1/8/98)). In addition, safety problems created by respirators that limit vision and communication must always be considered. In some difficult or dangerous jobs, effective vision or communication is vital. Voice transmission through a respirator can be difficult, annoying, and fatiguing. In addition, movement of the jaw in speaking can cause leakage, thereby reducing the efficiency of the respirator and decreasing the protection afforded the employee. Skin irritation can result from wearing a respirator in hot, humid conditions. Such irritation can cause considerable distress to employees and can cause employees to refrain from wearing the respirator, thereby rendering it ineffective. These potential burdens placed on employees by the use of respirators were acknowledged in OSHA’s revision of its respiratory protection standard, and are the basis for the requirement (29 CFR 1910.134(e)) that employers provide a medical evaluation to determine the employee’s ability to wear a respirator before the employee is fit tested or required to use a respirator in the workplace (see 63 FR at 1152). Although experience in industry shows that most healthy employees do not have physiological problems wearing properly chosen and fitted respirators, nonetheless common health problems can cause difficulty in breathing while an employee is wearing a respirator. For these reasons, all OSHA substance-specific health standards have recognized and required employers to observe the hierarchy of controls, favoring engineering and work practice controls over respirators. And the Agency’s adherence to the hierarchy of controls has been successfully upheld by the courts (see Section II, Pertinent Legal Authority for further discussion of these cases). Therefore, OSHA has decided to require the use of the long-established hierarchy of controls in this standard. Because engineering and work practice controls are capable of reducing or eliminating a hazard from the VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 workplace, while respirators protect only the employees who are wearing them and depend on the selection and maintenance of the respirator and the actions of employees, OSHA holds to the view that engineering and work practice controls offer more reliable and consistent protection to a greater number of employees, and are therefore preferable to respiratory protection. Thus, the Agency continues to conclude that engineering and work practice controls provide a more protective first line of defense than respirators and must be used first when feasible. The provisions related to engineering and work practice controls begin in paragraph (f)(2)(i). Paragraph (f)(2)(i)(A) of the proposed rule stated that, for each operation in a beryllium work area (i.e., any work area involving airborne beryllium exposure), the employer shall ensure that at least one of the following engineering and work practice controls is in place to minimize employee exposure: (1) Material and/or process substitution; (2) ventilated partial or full enclosures; (3) local exhaust ventilation at the points of operation, material handling, and transfer; or (4) process control, such as wet methods and automation. Under proposed paragraph (f)(2)(i)(B), an employer would be exempt from using the above controls to the extent that: (1) The employer can establish that such controls are not feasible; or (2) the employer can demonstrate that exposures are below the action level, using no fewer than two representative personal breathing zone samples taken 7 days apart, for each affected operation. Because OSHA recognized that these proposed provisions are not typical for OSHA standards, which usually require engineering controls only where exposures exceed the PEL(s), the Agency asked for comments on the potential benefits of including such provisions in the beryllium standard, the potential costs and burdens associated with them, and whether OSHA should include these provisions in the final standard (80 FR 47789). In addition, the Agency examined and asked for comment on Regulatory Alternative #6, which would exclude the provisions of proposed paragraph (f)(2)(i) from the final standard. Comments on these provisions focused mainly on the trigger for proposed paragraph (f)(2)(i) or the action level exemption in proposed paragraph (f)(2)(i)(B)(2) and fell into one of two categories. The first group of stakeholders argued that the engineering and work practice controls requirement in proposed paragraph (f)(2)(i) was too broad. Specifically, they objected to the PO 00000 Frm 00205 Fmt 4701 Sfmt 4700 2673 inclusion of a requirement for controls where exposures do not exceed the TWA PEL or STEL. For example, NGK argued that ‘‘this provision essentially halves the PEL by requiring engineering controls above the action level’’ (Document ID 1663, p. 2). NGK asserted that engineering controls should only be required where exposures exceed the TWA PEL or STEL, concluding that the ‘‘mandatory use of certain engineering controls’’ should be removed (Document ID 1663, p. 4). Similarly, Ameren disagreed with the proposed requirement to use at least one engineering control in areas where, it stated, there may be only minimal exposures and thus no benefit to be gained from installing additional controls (Document ID 1675, p. 5). The second set of commenters argued that the engineering and work practice controls requirement in proposed paragraph (f)(2)(i) was too narrow. These commenters objected to the exemption in proposed paragraph (f)(2)(i)(B)(2), which exempted employers from using one of the controls listed in (f)(2)(i) to the extent that the employer could demonstrate that exposures are below the action level, using no fewer than two representative personal breathing zone samples taken 7 days apart, for each affected operation. USW commented that the only legitimate reasons not to require engineering controls below the action level are if such a requirement is technologically or economically infeasible (Document ID 1681, p. 10). The AFL–CIO and National COSH similarly recommended that the final standard require engineering and work practice controls wherever airborne beryllium is present (Document ID 1689, p. 11; 1690, p. 3). The AFL–CIO based their recommendation on the capacity of beryllium at very low concentrations to cause beryllium sensitization and its carcinogenicity (Document ID 1689, p. 12). OSHA has carefully reviewed the opinions and arguments of these commenters, and has concluded that the requirement to implement at least one form of exposure control on berylliumreleasing processes will serve to reduce the significant risk of both CBD and lung cancer remaining at the TWA PEL (see Section VII, Significance of Risk), and will also reduce the likelihood of exposures exceeding the PEL in the absence of any engineering or work practice control. OSHA therefore disagrees with Ameren’s argument that the requirements of (f)(2)(i) will not benefit workers, and with NGK’s position that engineering controls should not be required below the TWA E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2674 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations PEL and STEL. OSHA also disagrees with NGK’s characterization of the list of controls provided in (f)(2)(i) as a ‘‘mandatory use of certain engineering controls’’ (Document ID 1663, p. 4). Rather, the list includes a broad range of possible approaches to eliminate, capture or control beryllium emissions at the source so as to reduce employees’ exposure to airborne beryllium, and provides employers great flexibility in selection of at least one such approach where required by the standards. However, while the Agency upholds the importance of requiring at least one engineering or work practice control where operations release beryllium, it disagrees with comments that such controls should be required wherever there is airborne beryllium at any level. OSHA recognizes that a significant risk of developing beryllium-related adverse health effects remains at the action level. But the Agency finds that an exemption from the requirement to implement at least one of the controls listed in proposed paragraph (f)(2)(i)(A) when exposures are demonstrably below the action level strikes a reasonable balance between providing additional protection for employees who are at risk and the burdens associated with implementing controls that may provide little or no benefit (i.e., where airborne exposures are minimal). The action level serves as a reasonable and administratively convenient benchmark for a number of provisions in the standards (e.g., periodic exposure monitoring, medical surveillance); OSHA finds that the action level serves a comparable purpose with regard to the requirement to implement at least one of the controls listed in proposed paragraph (f)(2)(i)(A) as well. Moreover, as discussed in the NPRM, the inclusion of the engineering and work practice control provision in proposed paragraph (f)(2)(i)(A) addresses a concern regarding the proposed PEL. OSHA expects that dayto-day changes in workplace conditions might cause frequent excursions above the PEL in workplaces where periodic sampling indicates exposures are between the action level and the PEL. Normal variability in the workplace and work processes, such as workers’ positioning or patterns of airflow, can lead to excursions above the PEL. Substitution or controls such as those outlined in proposed paragraph (f)(2)(i)(A) provide the most reliable means to control variability in exposure levels. And, as noted above, they have the added benefit of further reducing beryllium exposures to employees where such means are feasible, and so reducing the significant risk of VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 beryllium-related adverse health effects associated with airborne exposures at the TWA PEL and the action level (see Section VII, Significance of Risk). In addition, OSHA finds that the exemption in proposed paragraph (f)(2)(i)(B)(2) will reduce the cost burden on employers with operations where measured exposures are below the action level, and therefore less likely to exceed the PEL in the course of typical exposure fluctuations. OSHA notes that this exemption is similar to a provision in 1,3-Butadiene (29 CFR 1910.1051), which requires an exposure goal program where exposures exceed the action level. Therefore, OSHA has retained the proposed provisions of paragraph (f)(2)(i) and the proposed exemptions. The Agency also revised the enumeration of the paragraphs for clarity in the final standards. OSHA has made a number of clarifying changes to the language of proposed paragraph (f)(2)(i), none of which is meant to change the meaning of the proposed language. First, OSHA revised the proposed language of (f)(2)(i)(A) (paragraph (f)(2)(i) in the final standards) by specifying that this provision applies to each operation in a beryllium work area ‘‘that releases airborne beryllium.’’ The proposed language could have been interpreted to require controls on operations that do not release airborne beryllium, if such operations happened to be performed in a beryllium work area; it was not OSHA’s intent to require employers to apply controls to any operations that do not release beryllium. Second, OSHA added the term ‘‘airborne’’ preceding ‘‘exposure’’ in proposed (f)(2)(i)(A) and (f)(2)(i)(B)(2) (paragraphs (f)(2)(i) and (f)(2)(ii)(B) in the final standards) to clarify the type of exposure addressed by these provisions. Third, OSHA removed the phrase ‘‘engineering and work practice controls’’ preceding the list of controls provided in proposed paragraph (f)(2)(i)(A) (paragraph (f)(2)(i) in the final standards) for brevity. Fourth, OSHA modified the language of proposed paragraph (f)(2)(i)(A) (paragraph (f)(2)(i) in the final standards) to require employers to ‘‘reduce’’, rather than ‘‘minimize’’ airborne exposure because ‘‘reduce’’ is more consistent with the requirement; employers are not required to implement more than one such control unless exposures exceed the TWA PEL or STEL. OSHA has included a nonmandatory appendix presenting a nonexhaustive list of engineering controls employers may use to comply with paragraph (f)(2)(i) (see Appendix A). The fifth and sixth clarifying changes to proposed paragraph (f)(2)(i) address PO 00000 Frm 00206 Fmt 4701 Sfmt 4700 the types of control measures that are acceptable for complying with the provision. The Southern Company suggested that isolation/containment should be considered for inclusion in the listed controls in proposed paragraph (f)(2)(i)(A) (Document ID 1668, p. 5). OSHA agrees that isolation is an appropriate method of exposure control, and proposed paragraph (f)(2)(i)(A)(2) listed ‘‘ventilated partial or full enclosures’’, which are forms of isolation. Paragraph (f)(2)(i)(B) of the final standards indicates ‘‘isolation, such as ventilated partial or full enclosures’’ to make clear that alternative forms of isolation are also acceptable. In addition, USW and Materion recommended that proposed paragraph (f)(2)(i)(A)(3), which read ‘‘local exhaust ventilation at the points of operation, material handling, or transfer’’ be revised to read ‘‘local exhaust ventilation such as at the points of operation, material handling, or transfer’’ to broaden the applicability of the provision (Document ID 1680, p. 4). OSHA agrees that the suggested revision more accurately describes acceptable control measures, and has adopted the recommended change in the final standards (now designated as paragraph (f)(2)(i)(C)). The seventh and final clarifying change to proposed paragraph (f)(2)(i) pertains to the proposed requirement for employers to demonstrate that airborne exposures are below the action level using personal breathing zone samples taken 7 days apart. In response to a comment from Ameren Corporation, which stated that some operations are short in duration and taking samples precisely 7 days apart may not be possible (Document ID 1675, p. 5), OSHA changed the text of the standards to ‘‘at least 7 days apart’’, which was the Agency’s intention. With these changes, final paragraph (f)(2)(i) of the general industry standard requires that, for each operation in a beryllium work area that releases airborne beryllium, the employer must ensure that at least one of the following is in place to reduce airborne exposure: (A) Material and/or process substitution; (B) isolation, such as ventilated partial or full enclosures; (C) local exhaust ventilation, such as at the points of operation, material handling, and transfer; or (D) process control, such as wet methods and automation. Final paragraph (f)(2)(ii) allows that an employer is exempt from using the above controls to the extent that: (A) The employer can establish that such controls are not feasible; or (B) the employer can demonstrate that airborne exposure is below the action level, using E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations no fewer than two representative personal breathing zone samples taken at least 7 days apart, for each affected operation. Final paragraph (f)(2)(i) of the construction and shipyard standards also requires employers to ensure that one of the four enumerated types of control is in place to reduce airborne exposure and exempts employers who can establish that such controls are not feasible or demonstrate that airborne exposure is below the action level, using no fewer than two representative personal breathing zone samples taken at least seven days apart, for each affected operation. However, the triggers in construction and shipyards differ from that in general industry: whereas the general industry standard requires employers to put one of the controls in place for each operation in a beryllium work area that releases airborne beryllium, the construction and shipyard standards do not require the establishment of beryllium work areas. In lieu of that trigger, the construction and shipyard provision requires the placement of a control where exposures are or can reasonably be expected to be at or above the action level. OSHA selected the action level as a trigger for this requirement because, as indicated above, the Agency finds that an exemption from the requirement to implement at least one of the controls is appropriate when exposures are below the action level. Congressman Robert C. Scott, Ranking Member of the House Committee on Education and the Workforce, recommended that the final standards should require abrasive blasting (the primary source of beryllium exposure in construction and maritime) to be conducted within containments whenever feasible (Document ID 1672, p. 4). OSHA agrees that containment is an effective approach to limit exposures outside of the blasting operation, and is protective of workers in nearby areas or performing ancillary activities. However, because abrasive blasting is performed in a wide variety of occupational settings and alternative methods of exposure control (for example, use of wet methods) may be effective in some settings, OSHA does not require the use of containment whenever feasible in blasting operations. Rather, paragraph (f)(2) is intended to provide employers flexibility to determine an appropriate approach to maintain airborne exposures below the TWA PEL and STEL and, in accordance with (f)(2)(i), reduce airborne exposures that exceed the action level. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 If exposures exceed the TWA PEL or STEL after the employer has implemented the control(s) required by paragraph (f)(2)(i), paragraph (f)(2)(iii) requires the employer to implement additional or enhanced engineering and work practice controls to reduce exposures to or below the PELs. For example, an enhanced engineering control may entail a redesigned hood on a local exhaust ventilation system to more effectively capture airborne beryllium at the source. The employer must use engineering and work practice controls, to the extent that such controls are feasible, to achieve the PELs. Whenever the employer demonstrates that it is not feasible to reduce exposures to or below the PELs using the engineering and work practice controls required by paragraphs (f)(2)(i) and (f)(2)(iii), however, paragraph (f)(2)(iv) requires the employer to implement and maintain engineering and work practice controls to reduce exposures to the lowest levels feasible and supplement these controls by using respiratory protection in accordance with paragraph (g) of this standard. As indicated previously, OSHA’s longstanding hierarchy of controls policy was supported by a number of commenters (e.g., Document ID 1963, p. 12; 1655, pp. 8, 16; 1618, p. 8; 1689, p. 11; 1625, p. 6; 1664, p. 6). Paragraphs (f)(2)(iii) and (f)(2)(iv) in the final standards are substantively consistent with the proposal, with minor changes to clarify that the provisions address only airborne exposures, and that paragraph (f)(2)(iii) applies to both the TWA PEL and STEL. Finally, paragraph (f)(3) of the proposed rule would have prohibited the employer from rotating workers to different jobs to achieve compliance with the PELs. As explained in the NPRM, worker rotation can potentially reduce exposures to individual employees, but increases the number of employees exposed. Because OSHA has determined that exposure to beryllium can result in sensitization, CBD, and cancer, the Agency considers it inappropriate to place more workers at risk. Since no absolute threshold has been established for sensitization or resulting CBD or the carcinogenic effects of beryllium, it was considered prudent to limit the number of workers exposed at any concentration by prohibiting employee rotation. This provision is not a general prohibition of worker rotation wherever workers are exposed to beryllium. It is only intended to restrict its use as a compliance method for the PEL (e.g., by exposing twice as many workers to beryllium for half the amount of time). PO 00000 Frm 00207 Fmt 4701 Sfmt 4700 2675 It is not intended to bar the use of worker rotation as deemed appropriate by the employer in activities such as to provide cross-training or to allow workers to alternate physically demanding tasks with less strenuous activities. This same provision is included in the standards for asbestos (29 CFR 1910.1001 and 29 CFR 1926.1101), chromium (VI) (29 CFR 1910.1026), 1,3-butadiene (29 CFR 1910.1051), methylene chloride (29 CFR 1910.1052), and cadmium (29 CFR 1910.1027 and 29 CFR 1926.1127), and methylenedianiline (29 CFR 1910.1050 and 29 CFR 1926.60). OSHA did not receive any objections to or comments on this provision and includes it in all three of the final standards to limit the number of employees at risk. (g) Respiratory Protection Paragraph (g) of the standard establishes the requirements for the use of respiratory protection. Specifically, this paragraph requires that employers provide respiratory protection at no cost to the employee and ensure that employees utilize such protection during the situations listed in paragraph (g)(1). As detailed in paragraph (g)(2), the selection and use of required respiratory protection must comply with OSHA’s Respiratory Protection standard (29 CFR 1910.134). In addition, paragraph (g)(3) requires employers to provide employees entitled to respiratory protection with a powered air-purifying respirator (PAPR) instead of a negative pressure respirator, if a PAPR is requested by the employee. Paragraph (g)(1) requires employers to ensure that each employee required to use a respirator does so. Accordingly, simply providing respirators to employees will not satisfy an employer’s obligations under paragraph (g)(1) unless the employer also ensures that each employee properly wears the respirator when required. Paragraph (g)(1) also requires employers to provide required respirators at no cost to employees. This requirement is consistent with the OSH Act’s holding employers principally responsible for complying with OSHA standards, with similar provisions under other OSHA standards, and specifically with OSHA’s Respiratory Protection standard, which also requires employers to provide required respiratory protection to employees at no cost (29 CFR 1910.134(c)(4)). Paragraph (g)(1) requires appropriate respiratory protection during certain enumerated situations. Paragraph (g)(1)(i) requires respiratory protection during the installation and implementation of feasible engineering E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2676 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations and/or work practice controls where airborne exposures exceed or can reasonably be expected to exceed the TWA PEL or STEL. The Agency understands that changing workplace conditions may require employers to install new engineering controls, modify existing controls, or make other workplace changes to reduce employee exposure to or below the TWA PEL and STEL. In these cases, the Agency recognizes that installing appropriate engineering controls and implementing proper work practices may take time, and that exposures may be above the PELs until such work is completed. See paragraph (g)(1)(ii), discussed below. During this time, employers must demonstrate that they are making prompt, good faith efforts to obtain and install appropriate engineering controls and implement effective work practices, and to evaluate their effectiveness for reducing airborne exposure to beryllium to or below the TWA PEL and STEL. Paragraph (g)(1)(ii) requires the provision and use of respiratory protection during any operations, including maintenance and repair operations and other non-routine tasks, when engineering and work practice controls are not feasible and airborne exposures exceed or can reasonably be expected to exceed the TWA PEL or STEL. OSHA included this provision because the Agency realizes that certain operations may take place when engineering and work practice controls are not operational or capable of reducing exposures to or below the TWA PEL and STEL. The installation of necessary engineering controls, covered by paragraph (g)(1)(i), is a particular example of this more general circumstance. For another example, during maintenance and repair operations, engineering controls may lose their full effectiveness or require partial or total breach, bypass, or shutdown. Under these circumstances, if exposures exceed or can reasonably be expected to exceed the TWA PEL or STEL, the employer must provide and ensure the use of respiratory protection. Paragraph (g)(1)(iii) requires the provision and use of respiratory protection where beryllium exposures exceed the TWA PEL or STEL, even after the employer has installed and implemented all feasible engineering and work practice controls. OSHA anticipates that there will be some situations where feasible engineering and work practice controls are insufficient to reduce airborne exposure to beryllium to levels at or below the TWA PEL or STEL (see this preamble at section VIII.D, Technological Feasibility). In such cases, the standard VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 requires that employers implement and maintain engineering and work practice controls to reduce exposure to the lowest levels feasible and supplement those controls by providing respiratory protection (paragraph (f)(2)(iv)). OSHA emphasizes that even where employers are able to demonstrate that engineering and work practice controls are not feasible or sufficient to reduce exposure to levels at or below the TWA PEL and STEL the use of respirators to achieve the PELs is only a supplement, and not a substitute for, such ‘‘lowest level feasible’’ controls. Paragraph (g)(1)(iv) requires the provision and use of respiratory protection in emergencies. Under the final standards, an emergency is defined as ‘‘any uncontrolled release of airborne beryllium’’ (see paragraph (b) of the standards). During emergencies, engineering controls may not be functioning fully or may be overwhelmed or rendered inoperable. Also, emergencies may occur in areas where there are no engineering controls. The standard recognizes that the provision of respiratory protection is critical in emergencies, as beryllium exposures may be very high and engineering controls may not be adequate to control an unexpected release of airborne beryllium. Boeing suggested limiting requirement of respirator use triggered by this definition of emergency, as it would not be practical to provide respirators to and train the large number of employees in the event of a fire or explosion (Document ID 1667, pp. 4–5). OSHA wishes to clarify that paragraph (g)(1)(iv) is not intended to require employers to provide respirators to all employees who may pass through areas where beryllium-releasing processes are housed, in the event of a general evacuation due to an event such as a fire or explosion. Rather, in the event that an uncontrolled release of beryllium occurs (f)(1)(iv) requires employers to provide respirators to employees who work in the vicinity of berylliumreleasing processes and employees who respond to such an emergency, because these employees will be in the immediate vicinity of an uncontrolled release. Paragraph (g)(1)(v) requires the provision and use of respiratory protection when an employee who is eligible for medical removal under paragraph (l)(1) chooses to remain in a job with airborne exposure at or above the action level. As explained in the summary and explanation of paragraph (l), Medical Removal Protection, an employee who is diagnosed with CBD or confirmed positive for beryllium PO 00000 Frm 00208 Fmt 4701 Sfmt 4700 sensitization and who works in a job with airborne exposure at or above the action level is eligible for medical removal protection (MRP). An employee who is eligible for MRP may choose medical removal from jobs with exposure at or above the action level, or may choose to remain in a job with exposure at or above the action level provided that the employee uses respiratory protection in accordance with the provisions of this paragraph (g), Respiratory Protection. This provision was not included in the proposed standard. However, OSHA received comments emphasizing the importance of reducing or eliminating the exposure of sensitized employees. For example, National Jewish Health (NJH) stated that ‘‘removal from exposure is the best form of prevention’’ (Document ID 1664, p. 4). The United Steelworkers (USW) commented that workers who are sensitized to beryllium or are in the early stages of chronic beryllium disease can significantly benefit from a reduction in their exposure to beryllium, based on evidence reviewed in Section VIII (Significant Risk) of the NPRM (Document ID 1963, p. 13). OSHA is cognizant that employees who are MRPeligible (i.e., confirmed positive for beryllium sensitization or diagnosed with CBD) may decide not to take medical removal protection (MRP) or otherwise alert the employer to their condition. Therefore, OSHA included paragraph (g)(1)(v) in the final standards to provide these employees access to respiratory protection if their airborne exposures are expected to be at or above the action level. While not as protective as removal from any beryllium exposure, NJH’s comments indicate that such protection has the potential to delay or avoid the onset of CBD in sensitized individuals and to mitigate or retard the effects of CBD in employees who are in the early stages of CBD. Because OSHA has not made a finding of significant risk at exposure levels below the action level, OSHA has chosen not to require provision and use of respirators for employees exposed below the action level, including sensitized employees. However, OSHA does not assume the absence of risk below the action level, especially to this particularly vulnerable population Indeed, it is the Agency’s recommendation that employers voluntarily provide such protection to employees who self-identify that they have tested positive for sensitization if they ask for it and will be exposed to beryllium below the action level, or for whom a licensed physician has E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations recommended such protection. OSHA intends to issue additional guidance regarding non-mandatory respiratory protection for this group of at-risk employees along with other compliance guidance in connection with these standards. OSHA received no comments objecting to paragraph (g)(1). Therefore, except for minor edits for clarity explained in the introduction to this section, it is unchanged from the proposal. Whenever respirators are used to comply with the requirements of this standard, paragraph (g)(2) requires that the employer implement a comprehensive written respiratory protection program in accordance with OSHA’s Respiratory Protection standard (29 CFR 1910.134). The Respiratory Protection standard is designed to ensure that employers properly select and use respiratory protection in a manner that effectively protects exposed employees. Under 29 CFR 1910.134(c)(1), the employer’s respiratory protection program must include: • Procedures for selecting appropriate respirators for use in the workplace; • Medical evaluations of employees required to use respirators; • Respirator fit testing procedures for tight-fitting respirators; • Procedures for proper use of respirators in routine and reasonably foreseeable emergency situations; • Procedures and schedules for cleaning, disinfecting, storing, inspecting, repairing, discarding, and otherwise maintaining respirators; • Procedures to ensure adequate quality, quantity, and flow of breathing air for atmosphere-supplying respirators; • Training of employees in the respiratory hazards to which they are potentially exposed during routine and emergency situations, and in the proper use of respirators; and • Procedures for evaluating the effectiveness of the program. In accordance with OSHA’s policy to avoid duplication and to establish regulatory consistency, paragraph (g)(2) incorporates by reference the requirements of 29 CFR 1910.134 rather than reprinting those requirements in this standard. OSHA notes that the respirator selection provisions in 29 CFR 1910.134 include requirements for Assigned Protection Factors (APFs) and Maximum Use Concentrations (MUCs) that OSHA adopted in 2006 (71 FR 50122 (Aug. 24, 2006)). The APFs and MUCs provide employers with critical information for the selection of respirators to protect workers from VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 exposure to atmospheric workplace contaminants. In incorporating the Respiratory Protection standard by reference, OSHA intends that any future change to that standard will automatically apply to this standard as well. As appropriate, OSHA will note the intended effect on this standard (and other standards) in either the text or preamble of the amended Respiratory Protection standard, but does not anticipate the need for a conforming amendment to this standard. Moreover, the situations in which respiratory protection is required under these standards are generally consistent with the requirements in other OSHA health standards, such as those for chromium (VI) (29 CFR 1910.1026), butadiene (29 CFR 1910.1051), and methylene chloride (29 CFR 1910.1052). Those standards and this standard also reflect the Agency’s traditional adherence to a hierarchy of controls in which engineering and work practice controls are preferred to respiratory protection (see the discussion of paragraph (f) earlier in this section of the preamble). OSHA received no comments objecting to paragraph (g)(2). OSHA added language to clarify that both the selection and use of respiratory protection must be in accordance with the Respiratory Protection standard. Other than that change and some minor edits for clarity, paragraph (g)(2) is unchanged from the proposal. Paragraph (g)(3) requires the employer to provide a powered air-purifying respirator (PAPR) instead of a negative pressure respirator at no cost to the employee when an employee entitled to respiratory protection under (g)(1) of these standards requests a PAPR. The employee may select any form of PAPR (half mask, full facepiece, helmet/hood, or loose fitting facepiece), so long as the PAPR is selected and used in compliance with the Respiratory Protection standard (29 CFR 1910.134) and provides adequate protection to the employee in accordance with paragraph (g)(2) of these standards. For example if an employee is using a half mask respirator with an APF of 10 then a loose fitting PAPR with an APF of 25 would be an appropriate alternative. However, if the employee is required to use a full face respirator with an APF of 50 then the appropriate PAPR alternative would be a tight fitting PAPR. The requirement to provide a PAPR upon request of the employee (paragraph (g)(3)) is similar to provisions in several previous OSHA standards, including inorganic arsenic (CFR 1910.1018), lead (CFR 1910.1025), PO 00000 Frm 00209 Fmt 4701 Sfmt 4700 2677 cotton dust (1910.1043), asbestos (CFR 1910.1001), and cadmium (1910.1027). In promulgating these standards, OSHA cited several reasons why PAPRs can provide employees with better protection than negative pressure respirators, including superior reliability and comfort, reduced interference with work processes, and superior protection, especially for employees who cannot obtain a good face fit with a negative pressure respirator (e.g., 43 FR 19584, 19619; 43 FR 52952, 52993; 51 FR 22612, 22698). Based on these considerations, OSHA required employers to provide PAPRs upon request to facilitate consistent and effective use of respiratory protection by employees when needed, and particularly in situations where respirator use is required for long periods of time (see 43 FR 52952, 52993; 51 FR 22612, 22698). The PAPR provision was not included in the proposed standard. However, OSHA solicited public comment on the issue of whether employers should be required to provide employees with PAPRs upon request. During the public comment period and public hearing for the beryllium NPRM, several commenters supported a requirement for employers to provide a PAPR upon an employee’s request, including the Sampling and Analysis Subcommittee Task Group of the Beryllium Health and Safety Committee (BHSC Task Group) (Document ID 1655, p. 8), a representative of the Department of Defense (Document ID 1684, Attachment 2, p. 4), ORCHSE Strategies (ORCHSE) (Document ID 1691, p. 4), NJH (Document ID 1664, p. 5), Kimberly-Clark Professional (KCP) (Document ID 1676, p. 3), and North America’s Building Trades Unions (NABTU) (Document ID 1679, p. 9). Dr. Lisa Maier of the NJH stated, ‘‘The beryllium standard should require employers to provide PAPRs when requested by the employee. We have consulted with clients on respiratory protection for beryllium exposure and found that employees are more likely to comply with respiratory protection requirements when they have an option regarding the type of respirator they wear’’ (Document ID 1664, p. 7). Joann Kline of KCP similarly commented that ‘‘[f]it, style, comfort and worker preference are significant factors in the effectiveness of protection . . . Allowing a worker to choose PPE, including PAPRs, makes it much more likely that it will be comfortable and accepted. PAPRs in particular add to worker comfort, especially in hot environments, because of the flow of E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2678 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations fresh air on and around the wearer’s face’’ (Document ID 1676, p. 3). Likewise, ORCHSE commented that ‘‘[c]omfort is a significant factor in the ability of employees to wear respiratory protection consistently, especially during an entire work shift, and/or under hot or stressful conditions. Employees experiencing discomfort, which is likely with negative-pressure respirators, are more apt to remove or otherwise compromise the effectiveness of their respirators while in the workplace. It is thus prudent for employers to provide the type of respiratory protection employees are more likely to use consistently and correctly’’ (Document 1691, p. 4). Chris Trahan of NABTU cited the susceptibility of some employees to beryllium sensitization as a reason to require employers to provide PAPRs to employees upon their request (Document ID 1679, p. 9). As discussed in Section V, some individuals are genetically susceptible to berylliuminduced sensitization and CBD, and may develop these conditions from exposure to beryllium at levels well below the PEL and STEL included in this standard. Genetically susceptible individuals may therefore benefit from the enhanced protection provided by a PAPR, which have APFs ranging from 50 to 1000 depending on type. OSHA also received comments opposing a requirement for employers to provide PAPRs upon employee request. For example, Julie A. Tremblay of 3M commented that the incorporation of the Respiratory Protection Standard (29 CFR 1910.134) by reference, particularly paragraph (d)(1)(i) and paragraph (e)(6)(ii), adequately addresses issues of appropriate respirator selection (Document ID 1625, Attachment 1, p. 2). 1910.134(d)(1)(i) directs the employer to select and provide an appropriate respirator based on the respiratory hazard(s) to which the worker is exposed and workplace and user factors that affect respirator performance and reliability. 1910.134(e)(6)(ii) states that if the PLHCP finds a medical condition that may place the employee’s health at increased risk if a negative pressure respirator is used, the employer shall provide a PAPR if the PLHCP’s medical evaluation finds that the employee can use such a respirator; however, if a subsequent medical evaluation finds that the employee is medically able to use a negative pressure respirator, then the employer is no longer required to provide a PAPR. OSHA received a similar comment from Charlie Shaw of Southern Company (Document ID 1668, p. 5). Two other commenters, William Orr of Ameren Corporation (Ameren) VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 and Daniel Shipp of the International Safety Equipment Association (ISEA), stated that respiratory protection selection should be based primarily on the required APF given the exposure concentration of beryllium (Document ID 1675, p. 12; 1682, p. 1). However, Mr. Orr also commented that workers handling beryllium-containing materials should have access to loose fitting respirators for added dermal protection so long as the respirator’s APF is appropriate to the work performed (Document ID 1675, p. 12). Mr. Orr also argued that a PAPR option is not necessary in the beryllium context: ‘‘A PAPR should only be required if the exposure level dictates that the protection of a PAPR is necessary. The level of protection in the asbestos standard (CFR 1910.1001) is applicable to protection from airborne fibers with the unique characteristics of asbestos. The level of protection for beryllium should closer resemble particulate metal protection such as seen in the standards for metals such as lead or hexavalent chromium’’ (Document ID 1675, p. 12). (As discussed above, the Agency notes that the OSHA lead standard (CFR 1910.1025) does include a PAPR requirement, as does the standard for cadmium (1910.1027), also a metal). Finally, OSHA received a comment from USW (Document ID 1681) recommending that OSHA limit the type of PAPR provided under (g)(3) to types with close-fitting facepieces. USW stated that ‘‘[t]he types with close-fitting face pieces can be quite effective, but it is easy to over breathe other types, especially the loose-fitting helmets’’ (Document ID 1681, p. 22). OSHA has carefully considered all comments received on the issue of requiring employers to provide employees with PAPRs upon request, and agrees with Dr. Maier of NJH, Ms. Trahan of NABTU, and other commenters who have argued that providing employees a choice in selection of respiratory protection will improve the effectiveness of respiratory protection in reducing risk of sensitization and disease from occupational beryllium exposure. While the provisions of the Respiratory Protection standard provide important baseline requirements appropriate to all situations where respiratory protection is required, as discussed above, OSHA recognizes that provisions beyond those of the Respiratory Protection standard are appropriate in some circumstances to ensure that required respiratory protection is used on a consistent basis and as effectively as possible. As discussed in section V, Health Effects and section VI, Risk Assessment of this PO 00000 Frm 00210 Fmt 4701 Sfmt 4700 preamble, beryllium sensitization and CBD can result from small, short-term beryllium exposure in some individuals. Accordingly, consistent and effective respirator usage has played an important role in minimizing risk among workers in occupational settings such as beryllium processing, where it has proven difficult to reduce airborne exposures below 0.2 mg/m3 using engineering controls. Based on this evidence, OSHA concludes that provision of PAPRs at the employee’s request will provide employees necessary protection beyond that found in provisions of the Respiratory Protection standard, where provision of a PAPR for reasons of fit, comfort and reliability is at the employer’s discretion. Contrary to the comments of Mr. Orr and Mr. Shipp cited above, the evidence that beryllium sensitization can result from short-term, low-level airborne beryllium exposure supports the provision of PAPRs upon request rather than relying on APF alone. Finally, while OSHA agrees with the USW that PAPRs with close-fitting facepieces can be more effective than loose-fitting helmets, the Agency recognizes that loose-fitting helmets may be required in certain work conditions or due to difficulty achieving proper fit for some workers. Therefore, the standards allow for selection of any type of PAPR, but require that the PAPR selected provide adequate protection to the employee in accordance with the Respiratory Protection standard. (h) Personal Protective Clothing and Equipment Paragraph (h) of the standards requires employers to provide employees with personal protective clothing and equipment (PPE) where employee exposure exceeds or can reasonably be expected to exceed the TWA PEL or STEL and where there is reasonable expectation of dermal contact with beryllium. Paragraph (h) also contains provisions for the safe removal, storage, cleaning, and replacement of the PPE required by the standards. To protect employees from adverse health effects, these PPE requirements are intended to prevent dermal exposure to beryllium, and prevent the accumulation of airborne beryllium on clothing, shoes, and equipment, which can result in additional inhalation exposure. The requirements also protect employees in other work areas, as well as employees and other individuals outside the workplace, from exposures that could occur if contaminated clothing were to transfer beryllium to those areas. The standards require the employer to E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations provide PPE at no cost to employees, and to ensure that employees use the provided PPE in accordance with the written exposure control plan as described in paragraph (f)(1) of these standards and OSHA’S Personal Protective Equipment standards (29 CFR part 1910 Subpart I, 29 CFR part 1926 Subpart E, and 29 CFR part 1915 Subpart I). PPE, as used in the description of paragraph (h), refers to both clothing and equipment used to protect an employee from either airborne exposure to or dermal contact with beryllium. The requirements in paragraph (h) are the same in general industry, construction, and shipyards, except for the references to OSHA’s Personal Protective and Life Saving Equipment standard for construction (29 CFR part 1926 Subpart E) in the construction standard and OSHA’s Personal Protective Equipment standard for shipyards (29 CFR part 1915 Subpart I) in the shipyard standard. Requiring PPE is consistent with section 6(b)(7) of the OSH Act, which states that, where appropriate, standards shall prescribe suitable protective equipment to be used in connection with hazards (29 U.S.C. 655(b)(7)). The requirements for PPE are based upon widely accepted principles and conventional practices of industrial hygiene, and are similar to the PPE requirements in other OSHA health standards, such as chromium (VI) (29 CFR 1910.1026), lead (29 CFR 1910.1025), cadmium (29 CFR 1910.1027), and methylenedianiline (MDA; 29 CFR 1910.1050). The final provisions in paragraph (h) are the same as the proposed provisions, with several exceptions. First, in the final standards OSHA has used the term ‘‘contact’’ instead of ‘‘exposure’’ where the standards refer to the skin, so as to distinguish clearly between exposure via the skin (dermal route) and the inhalation route of exposure in the regulatory text. Second, OSHA has deleted the proposed provision in paragraph (h)(1)(ii) requiring PPE where employees’ skin may become ‘‘visibly contaminated’’ with beryllium and instead will require use of PPE whenever there is a reasonable expectation of dermal contact with beryllium. Third, the final standards’ requirements for provision and use of PPE apply where employees may reasonably be expected to have dermal contact with beryllium regardless of whether the beryllium is in a soluble or poorly soluble (sometimes called ‘insoluble’) form, instead of just soluble beryllium compounds as in proposed paragraph (h)(1)(iii). Fourth, paragraph (h)(2)(iii) now requires that storage VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 facilities for PPE prevent cross contamination. Finally, OSHA has made a few minor changes to clarify or streamline the regulatory text. The comments and OSHA’s reasoning leading to these changes are discussed below. Paragraph (h)(1)(i) requires the provision and use of PPE for employees exposed to any form of airborne beryllium above the TWA PEL or STEL, or where exposure can reasonably be expected to exceed the TWA PEL or STEL, because such exposure would likely result in skin contact by means of deposits on employees’ skin or clothes or on surfaces touched by employees. The term ‘‘reasonably be expected’’ is intended to convey OSHA’s intent that the requirement for provision and use of PPE is defined by an employee’s potential exposure, not by any particular individual’s actual exposure. For example, if one employee’s exposure assessment results indicate that the employee’s exposure is above the PEL, it would be reasonable to expect that another employee doing a similar task would have exposures above the PEL and thus would require PPE. Paragraph (h)(1)(ii) requires the provision and use of PPE where employees are reasonably expected to have dermal contact with beryllium. This requirement applies to berylliumcontaining dust, liquid, abrasive blasting media, and other berylliumcontaining materials that can penetrate the skin, regardless of the level of airborne exposure. It is not intended to apply to dermal contact with solid objects (for example, tools made of beryllium alloy) unless the surface of such objects is contaminated with beryllium in a form that can penetrate the skin. Dermal contact with beryllium can result in absorption of beryllium through the skin and induce sensitization, a necessary precursor to CBD, as discussed further in Health Effects, section V.A.2. As mentioned above, the requirements of paragraph (h)(1) of the final standards differ from those of the proposed standard. Paragraph (h)(1) of the proposed standard required employers to provide employees with PPE where employee exposure exceeds or can reasonably be expected to exceed the TWA PEL or STEL; where work clothing or skin may become visibly contaminated with beryllium, including during maintenance and repair activities or during non-routine tasks; and where employees’ skin is reasonably expected to be exposed to soluble beryllium compounds. In the NPRM, OSHA discussed concerns with the proposed PO 00000 Frm 00211 Fmt 4701 Sfmt 4700 2679 requirements, requested public comment on proposed paragraph (h)(1), and presented Regulatory Alternative 13. Alternative 13, as described by OSHA, would replace the requirement for PPE where there is visible contamination with a requirement for appropriate PPE wherever there is potential for skin contact with beryllium or beryllium-contaminated surfaces. OSHA requested comments on this alternative, including the benefits and drawbacks of a broader PPE requirement and any relevant data or studies the Agency should consider. As discussed below, OSHA adopted Regulatory Alternative 13 in the final standard based on comments received in the public comment period and public hearing and on the scientific evidence in the record. The proposed requirement to use PPE where clothing or skin may become ‘‘visibly contaminated’’ with beryllium was a departure from most OSHA standards, which do not specify that contamination must be visible in order for PPE to be required. For example, the standard for chromium (VI) (29 CFR 1910.1026) requires the employer to provide appropriate PPE where a hazard is present or is likely to be present from skin or eye contact with chromium (VI). The lead (29 CFR 1910.1025) and cadmium (29 CFR 1910.127) standards require PPE where employees are exposed above the PEL or where there is potential for skin or eye irritation regardless of airborne exposure level. In the case of MDA (29 CFR 1910.1050), PPE must be provided where employees are subject to dermal exposure to MDA, where liquids containing MDA can be splashed into the eyes, or where airborne concentrations of MDA are in excess of the PEL. While OSHA’s language regarding PPE requirements varies somewhat from standard to standard, previous standards emphasize the potential for contact with a substance that can cause health effects via dermal exposure, and do not condition the provision and use of PPE on visible contamination with the substance. Nearly all comments OSHA received on the proposed requirement for employers to provide PPE where work clothing or skin may become ‘‘visibly contaminated’’ with beryllium stated that this provision would not be sufficiently protective of berylliumexposed workers (Document ID 1615, p. 8; 1625, p. 2; 1655, pp. 9–10; 1658, p. 6; 1664, pp. 3–4; 1671, Attachment 1, p. 7; 1676, pp. 2–3; 1677, p. 2; 1679, p. 9; 1685, p. 3; 1688, p. 3; 1689, p. 12; 1691, pp. 4–5). Dr. Paul Schulte of NIOSH stated that ‘‘visibly contaminated’’ is not E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2680 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations an appropriate trigger for PPE requirements, citing evidence from Day et al. (2007, Document ID 1548) that biologically relevant amounts of beryllium can accumulate on the skin without becoming visible, and evidence from Armstrong et al. (2014, Document ID 0502) that work surfaces in beryllium manufacturing facilities are typically contaminated with beryllium even where airborne exposures are low (Document ID 1671, Attachment 1, p. 7). Dr. Lisa Maier of NJH commented, ‘‘ ‘[v]isibly contaminated’ is not an appropriate trigger for PPE requirements; as noted by OSHA, ‘small particles may not be visible to the naked eye’ and as such PPE to protect from skin exposure should be worn for all tasks where there is potential for skin contact with beryllium particles’’ (Document ID 1664, pp. 3–4). Dr. Atul Malhotra of the American Thoracic Society (ATS) stated that ‘‘the use of ‘visibly contaminated’ as a trigger for PPE is problematic for multiple reasons . . . visual inspection cannot accurately estimate the amount of beryllium or its chemical state. Use of ‘visibly contaminated’ is also not supported by the literature cited, which demonstrates skin exposure and sensitization in work settings considered clean, with no visible contamination’’ (Document ID 1688, p. 3). In addition, some comments and testimony indicated that the term ‘‘visibly contaminated’’ is ambiguous and likely to be confusing to employers and others responsible for implementing the PPE requirements of the beryllium standards. According to Mr. Daniel Shipp of the International Safety Equipment Association (ISEA), ‘‘ ‘[v]isible contamination’ is not an appropriate trigger for PPE. This term is too subjective to be useful’’ (Document ID 1682, p. 2). Based on its evaluation of the evidence in the record, OSHA agrees with the commenters on these points. The Agency has determined that contact with and absorption of even minute amounts of beryllium through the skin may cause beryllium sensitization (see section V, Health Effects, subsection 2, Dermal Exposure) and that a ‘‘visibly contaminated’’ standard could allow for too much dermal exposure and be insufficiently protective of workers. In addition, as discussed in Section VI, Risk Assessment, studies conducted jointly by NIOSH and Materion Corporation (Materion) showed that a comprehensive approach to PPE is key to reducing risk of sensitization even in facilities that implement stringent exposure control and housekeeping VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 programs (See Section VI. Risk Assessment). Materion, whose joint submission with the United Steelworkers union of a proposed standard was the basis for the ‘‘visibly contaminated’’ language, discussed the use of the term in its post hearing comments (Document ID 1808, pp. 4–5). Materion indicated that the typical workplace cannot reasonably be expected to measure skin or surface contamination for the purpose of determining whether PPE use is necessary. Even if this was done, ‘‘such measures are lagging metrics which, by definition, are post potential exposure’’ (Document ID 1808, p. 5). Materion believed that a standard relying on visual cues to check for contamination is easily understood by workers and management and is a useful part of a beryllium worker protection model. OSHA has considered Materion’s comments supporting use of the terms ‘‘visibly contaminated’’ and ‘‘visibly clean.’’ The Agency finds that the provision in the final standard requiring PPE wherever there is a reasonable expectation of any dermal contact with beryllium more clearly conveys to employers the idea that the provision and use of PPE should be used as a precaution against potential dermal contact. OSHA believes the proposed requirements for PPE where clothing or skin may become ‘‘visibly contaminated’’ may be reasonably interpreted by employers to mean that PPE is only required where work processes release quantities of beryllium sufficient to create deposits visible to the naked eye. If this were the case, employers’ provision of PPE to employees would certainly lag behind potential exposure, if such provision occurs at all. Additionally, National Jewish Health agreed with OSHA that small particles may not be visible to the naked eye (Document ID 1664 p. 4). Therefore, OSHA has determined that the language of the final standards is more easily understood and applied so as to preempt dermal contact with beryllium and therefore prevent adverse health effects caused by dermal contact, such as beryllium sensitization. OSHA also notes that employers are not required to measure skin or surface contamination under the provisions governing the use and handling of PPE. Thus the Agency concludes that the changes made to the proposed rule adequately address Materion’s concerns and more closely express OSHA’s intent. OSHA also requested comment on proposed paragraph (h)(1)’s requirement for PPE to limit dermal contact with soluble beryllium compounds, and PO 00000 Frm 00212 Fmt 4701 Sfmt 4700 whether employers should also be required to provide PPE to limit dermal contact with poorly soluble (referred to as insoluble in the proposal) forms of beryllium. The solubility of beryllium was a consideration in the PPE requirements of the proposed standard because dermal absorption may occur at a greater rate for soluble beryllium than for poorly soluble beryllium. Comments submitted on the topic of beryllium solubility and dermal absorption indicate that beryllium in poorly soluble forms, as well as soluble forms, can be absorbed through the skin and cause sensitization (Document ID 1664, p. 3; 1671, p. 7; 1688, p. 3). Dr. Schulte of NIOSH stated that PPE should be required to protect against exposure to poorly soluble compounds as these forms can produce soluble beryllium ions in sweat, and because beryllium in any form can enter the body through minor abrasions, which are commonly found on the skin of industrial employees (Document ID 1671, p. 7). (See further discussion in Section V, Health Effects, subsection 2, Dermal Exposure.) General comments on whether OSHA should adopt more comprehensive PPE requirements similar to those specified in Regulatory Alternative 13 were, by and large, supportive. The Sampling and Analysis Subcommittee Task Group of the Beryllium Health and Safety Committee (BHSC Task Group) (Document ID 1655, pp. 16–17), NJH (Document ID 1664, pp. 3–4, 7), NIOSH (Document ID 1671, p. 7), KimberlyClark Professional (KCP) (Document ID 1676, p. 2), the DOE’s National Supplemental Screening Program (NSSP) (Document ID 1677, p. 2), ISEA (Document ID 1682, p. 2), the American College of Occupational and Environmental Medicine (ACOEM) (Document ID 1685, p. 3), ATS (Document ID 1688, p. 3), the AFL–CIO (Document ID 1689, p. 12), and ORCHSE Strategies (ORCHSE) (Document ID 1691, p. 4) all urged OSHA to adopt Regulatory Alternative 13 or similar requirements. The BHSC Task Group commented that its experience at Department of Energy Sites ‘‘strongly suggests that this alternative should be adopted, since the concept of ‘visibly contaminated’ is not sufficient to ensure an absence of such contamination on the skin’’ (Document ID 1655, p. 17). In addition, the BHSC Task Group noted that elimination of dermal contact with beryllium helps reduce the risk of sensitization (Document ID 1655, p. 17). Similarly, several commenters indicated that a more appropriate trigger for the provision and use of PPE under E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations paragraph (h)(1) would be whenever an employee has the potential for skin contact with beryllium (Document ID 1664, p. 3; 1671, Attachment 1, p. 7; 1676, pp. 2–3). Dr. Lisa Maier from NJH indicated, in her testimony, that ‘‘personal protective equipment (PPE) such as gloves, respirators, protective clothing should be used wherever there is a potential for respiratory or skin exposure’’ (Document ID 1720 p. 6). Another commenter ‘‘strongly recommend[ed] a PPE requirement wherever exposure to beryllium, soluble or insoluble, is reasonably expected’’ (Kimberly-Clark Professional, Document ID 1676, p. 3). In contrast, Ameren Corporation (Ameren) and NGK Metals (NGK) recommended against adoption of Regulatory Alternative 13. According to Ameren, ‘‘[t]race beryllium in fly ash is unlikely to cause sensitization issues but PPE would be required under this alternative’’ (Document ID 1675, p. 6). Ameren, however, did not provide further information or evidence to support this claim. NGK suggested the language ‘‘visibly contaminated with beryllium particulate or solutions’’ as a trigger for the standards’ PPE requirements, to clarify that PPE is not required when handling clean, solid materials that contain beryllium (Document ID 1663, pp. 2, 5). OSHA does not find these comments persuasive. OSHA included operations and industries where beryllium is present as a trace contaminant in the scope of the beryllium standard only when these operations and industries have the potential to release airborne exposures exceeding the action level of 0.1 mg/m3, at which sensitization is known to occur (see Section VI, Risk Assessment). With regard to NGK’s suggested language, the Agency believes the commenter’s intention to clarify OSHA’s position on clean, solid materials is already captured in the regulatory text of the standards. Paragraph (h)(1)(ii) is not intended to require the provision of PPE to employees whose only contact with beryllium is handling articles that do not have surface contamination with beryllium. In summary, OSHA has concluded that beryllium surface contamination may not be visible yet may still cause sensitization. Because small beryllium particles can pass through intact or broken skin and cause sensitization, limiting the requirements for PPE based on surfaces that are ‘‘visibly contaminated’’ may not adequately protect workers from beryllium exposure. Submicron particles (less than 1 mg in diameter) are not visible to the VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 naked eye and yet may pass through the skin and cause beryllium sensitization. And although solubility may play a role in the level of sensitization risk, the available evidence indicates that contact with poorly soluble as well as soluble beryllium can cause sensitization via dermal contact (see this preamble at section V, Health Effects). Based on these considerations, OSHA has adopted Regulatory Alternative 13 in paragraph (h)(1)(ii) of the final standards, which requires the employer to provide PPE and ensure its use wherever there is a reasonable expectation of dermal contact with beryllium to any extent and of any type. The USW recommended further specification of the PPE provisions, requesting clarification of the terms ‘‘skin’’ and ‘‘exposure’’ in the proposed standard’s PPE requirements (Document ID 1680, p. 4; 1681, p. 12). As discussed previously, the term ‘‘contact’’ has replaced ‘‘exposure’’ where the final standard refers to the skin. This change was made in order to clearly distinguish between airborne and contact exposure in the text of the standards. OSHA’s intention in using the term ‘‘contact’’ is straightforward, meaning any instance in which beryllium touches an employee’s body. ‘‘Skin’’ refers to the exterior surface of all parts of an employee’s body including face, arms, scalp, ears, and nostrils. OSHA notes that processes that have the potential to expose workers’ eyes to beryllium will generally also expose the face, and forms of PPE such as face shields used to protect the face generally also protect the eyes (e.g., face shields for use in situations where there is a danger of being splashed in the face with beryllium-containing liquid, or a hooded respirator where the employee is exposed to beryllium-containing fumes). The USW also requested that OSHA include a specific requirement for provision of PPE to workers performing maintenance and repair activities and during non-routine tasks, to ensure that PPE is worn during tasks for which airborne exposure levels are not assessed (Document ID 1680, pp. 4–5; 1681, p. 12). This comment was submitted in response to the proposed standard, which would have required PPE where airborne exposures exceed the TWA PEL or STEL, but not in all cases where dermal contact occurs and airborne exposure levels are lower. OSHA believes the USW’s concern has been addressed by the PPE requirements of the final standards, which apply wherever there is reasonable expectation of dermal contact with beryllium, including during PO 00000 Frm 00213 Fmt 4701 Sfmt 4700 2681 maintenance and repair activities and non-routine tasks that involve beryllium-releasing processes or that are conducted in beryllium-contaminated areas. OSHA also received a suggestion from the Boeing Company (Boeing) to amend proposed paragraph (h)(1)’s requirement to ensure use of appropriate PPE in accordance with the written exposure control plan, by adding ‘‘or equally as effective documentation’’ (Document ID 1667, p. 5). Boeing argued that the suggested language would allow employers to provide the required information through use of existing processes instead of through the creation of a second document (Document ID 1667, pp. 3–5). OSHA considered Boeing’s comment, but decided against adding the suggested language. OSHA determined that it would create unnecessary ambiguity in the requirements for documentation in the context of both compliance and enforcement, as employers and CSHOs would need to determine what constitutes ‘‘equally effective documentation.’’ If an employer such as Boeing already has documents describing appropriate use of PPE that comply with the requirements of these standards, OSHA believes those documents can easily be incorporated into the employer’s written exposure control plan. Taking this approach would eliminate the potential for confusion or redundancy caused by implementing multiple documents on PPE. The employer must exercise reasonable judgment in selecting appropriate PPE. This requirement is consistent with OSHA’s current standards for provision of personal protective equipment for general industry (29 CFR part 1910 Subpart I), construction (29 CFR part 1926 Subpart E), and shipyards (29 CFR part 1915 Subpart I). As described in the nonmandatory appendix providing guidance on conducting a hazard assessment for OSHA general industry standards (29 CFR 1910 Subpart I Appendix B), the employer should ‘‘exercise common sense and appropriate expertise’’ in assessing hazards. By ‘‘appropriate expertise,’’ OSHA means that individuals conducting hazard assessments must be familiar with the employer’s work processes, materials, and work environment. A thorough hazard assessment should include a walkthrough to identify sources of hazards to employees, wipe sampling to detect beryllium contamination on surfaces, review of injury and illness data, and employee input on the hazards to which E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2682 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations they are exposed. Information obtained in this manner provides a basis for the identification and evaluation of potential hazards. OSHA believes that the implementation of a comprehensive and thorough program to determine areas of potential exposure, consistent with the employer’s written exposure control plan, is a sound safety and health practice and a necessary element of ensuring overall worker protection. Based on the hazard assessment results, the employer must determine what PPE is necessary to protect employees from beryllium exposure. The requirements for choosing PPE under OSHA’s personal protective equipment standards (e.g., 29 CFR 1910 Subpart I for general industry) are performance-oriented, and are designed to allow the employer flexibility in selecting the PPE most suitable for each particular workplace. The type of PPE needed will depend on the potential for exposure, the physical properties of the beryllium-containing material used, and the conditions of use in the workplace. For example, shipping and receiving activities may necessitate only work uniforms and gloves. In other situations, such as when a worker is performing facility maintenance, gloves, work uniforms, coveralls, and respiratory protection may be appropriate. Beryllium compounds can exist in acidic or alkaline form, and these characteristics may influence the choice of PPE. Face shields may be appropriate in situations where there is a danger of being splashed in the face with beryllium or a liquid containing beryllium. Coveralls with a head covering may be appropriate when a sudden release of airborne beryllium could result in beryllium contamination of clothing, hair, or skin. Respirators are addressed separately in the explanation of paragraph (g) earlier in this section of the preamble. Although some personal protective clothing may be worn over street clothing, it is not appropriate for workers to wear protective clothing over street clothing if doing so could reasonably result in contamination of the workers’ street clothes. In situations in which it is not appropriate for workers to wear protective clothing over their street clothes employers must select and ensure the use of protective clothing that is worn in lieu of (rather than over) street clothing, and must provide change rooms under paragraph (i)(2). The Abrasive Blasting Manufacturers Alliance (ABMA) asserted that the PPE requirements under this standard are not consistent with the abrasive blasting requirements for construction and VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 maritime (e.g., 29 CFR 1926.57(f), 29 CFR 1915.34) (Document ID 1673, pp. 22–23). OSHA disagrees, based on the performance-oriented nature of the PPE requirements in the final beryllium standards. If an employer provides PPE that is appropriate and suitable for abrasive blasting and that protects the employee’s skin, this would be compliant with the requirements under this final beryllium standard. Paragraph (h)(2) contains requirements for removal and storage of PPE. This provision is intended to reduce beryllium contamination in the workplace and limit beryllium exposure outside the workplace. Wearing contaminated clothing outside the beryllium work area could lengthen the duration of exposure and carry beryllium from beryllium work areas to other areas of the workplace. In addition, contamination of personal clothing could result in beryllium being carried to employees’ cars and homes, increasing employees’ exposure as well as exposing others to beryllium hazards. An NJH collaborative study with NIOSH documented inadvertent transfer of beryllium from the workplace to workers’ automobiles, and stressed the need for separating clean and contaminated (‘‘dirty’’) PPE (Document ID 0474, Sanderson, 1999). Toxic metals brought by workers into the home via contaminated clothing and vehicles continue to result in exposure to children and other household members. A recent study of battery recycling workers found that lead surface contamination above the Environmental Protection Agency level of concern (≥40 mg/ft2) was common in the workers’ homes and vehicles (Document ID 1875, Centers for Disease Control and Prevention, 2012, pp. 967–970). Under paragraph (h)(2)(i), berylliumcontaminated PPE must be taken off at the end of the work shift, at the completion of tasks involving beryllium exposure, or when PPE becomes visibly contaminated with beryllium, whichever comes first. This provision is identical to the corresponding paragraph in the proposed standard, except for a slight reorganization to improve clarity and readability. Paragraph (h)(2)(i) is intended to convey that PPE contaminated with beryllium should not be worn when tasks involving beryllium exposure have been completed for the day. For example, if employees perform work tasks involving beryllium exposure for the first two hours of a work shift, and then perform tasks that do not involve exposure, they should remove their PPE after the exposure period to avoid the possibility of increasing the duration of exposure PO 00000 Frm 00214 Fmt 4701 Sfmt 4700 and contamination of the work area from beryllium residues on the PPE (i.e., re-entrainment of beryllium particulate). If, however, employees are performing tasks involving exposure intermittently throughout the day, or if employees are exposed to other contaminants where PPE is needed, this provision requires the employer to ensure that the employee wears is not intended to prevent them from wearing the PPE until the completion of their shift, unless it has become visibly contaminated with beryllium. PPE that is visibly contaminated with beryllium should be changed at the earliest reasonable opportunity. This provision is intended to protect employees working with beryllium and their co-workers from exposure due to accumulation of beryllium on PPE, and reduces the likelihood of crosscontamination from berylliumcontaminated PPE. Unlike the ‘‘visibly contaminated’’ language used in paragraph (h)(1)(ii) of the proposal, which has been removed, OSHA has determined that it is appropriate to use the same language here. Because the purpose of PPE is to serve as a barrier between an employee’s body and ambient or surface beryllium, PPE becomes contaminated with beryllium immediately as part of its protective function. Requiring PPE to be changed upon contamination with any amount of beryllium is unreasonable and unnecessary to protect employees. This is because contamination of PPE with beryllium during work processes does not reduce the effectiveness of PPE or create hazards to employees unless sufficient beryllium accumulates on the PPE to impair its function or create additional exposures, such as by dispersing accumulated beryllium into the air. Furthermore, the process of changing contaminated PPE can create opportunities for both inhalation exposure and dermal contact with beryllium. The use of ‘‘visibly contaminated’’ protects employees from potential exposures while changing PPE by limiting requirements to change PPE during work tasks involving beryllium exposure to those circumstances when changing it is necessary to maintain its protective function and prevent deposits of beryllium from accumulating and dispersing. Using the ‘‘visible contamination’’ trigger in (h)(1)(ii) to determine when employees must wear PPE in the first instance would have reduced the protectiveness of the standard. Thus, OSHA determined that it would be inappropriate to use such a trigger in that context. However, as explained above, using ‘‘visibly contaminated’’ in E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations paragraph (h)(2)(i) actually increases the protectiveness of the standard. It provides a cue for when it is unacceptable for a worker to continue to work in his or her contaminated PPE, regardless of whether a shift or a task involving beryllium exposure has been completed. This common sense approach is supported by Materion in its post-hearing comments: ‘‘If a job is such that company supplied work clothing may become dirty, wear a personal protective over-garment to keep your work clothing and your person clean. If your work clothing becomes dirty, change it.’’ (Document ID 1752). Paragraph (h)(2)(ii) requires employees to remove PPE consistent with the written exposure control plan required by paragraph (f)(1). Paragraph (f)(1) specifies that the employer’s written exposure control plan must contain procedures for minimizing cross-contamination, and procedures for the storage of beryllium-contaminated PPE, among other provisions. While proposed paragraph (h)(2)(ii) only required personal protective clothing to be removed pursuant to the written exposure control plan, the final language includes personal protective equipment as well as clothing. This change was made to ensure consistency with the rest of paragraph (h) and to confirm OSHA’s intent that berylliumcontaminated personal protective equipment should be treated with the same care as contaminated clothing in order to prevent additional airborne exposure and dermal contact. Paragraph (h)(2)(iii) requires employers to ensure that protective clothing is kept separate from employees’ street clothing and that storage facilities prevent crosscontamination as specified in the written exposure control plan. The language of this provision has been modified slightly from the proposed standard to emphasize prevention of cross-contamination as well as implementation of the written exposure control plan, consistent with other requirements intended to limit beryllium migration and crosscontamination. OSHA believes these provisions are necessary to prevent the spread of beryllium throughout and outside the workplace. The remainder of paragraph (h)(2) is unchanged from the proposal and did not elicit comments from stakeholders. To further limit exposures outside the workplace, paragraph (h)(2)(iv) requires employers to ensure that berylliumcontaminated PPE is only removed from the workplace by employees who are authorized to do so for the purpose of VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 laundering, cleaning, maintaining, or disposing of such PPE. These items must be brought to an appropriate location away from the workplace. To be an appropriate location for purposes of paragraph (h)(2)(iv), the facility must be equipped to handle berylliumcontaminated items in accordance with these standards. The standards further require in paragraph (h)(2)(v) that PPE removed from the workplace for laundering, cleaning, maintenance, or disposal be placed in closed, impermeable bags or containers. These requirements are intended to minimize cross-contamination and migration of beryllium, and to protect employees or other individuals who later handle beryllium-contaminated items. Required warning labels should alert those handling the contaminated PPE of the potential hazards of exposure to beryllium. Such labels must conform with the hazard communication standard (29 CFR 1910.1200) and paragraph (m)(3) of these standards. These warning requirements are meant to reduce confusion and ambiguity regarding critical hazard information communicated in the workplace by requiring that this information be presented in a clear and uniform manner. Paragraph (h)(3) of the standards addresses the cleaning and replacement of PPE. Proper cleaning is necessary to ensure that neither the workers who use the PPE nor those who clean and maintain it are exposed to beryllium via inhalation or dermal contact. Proper replacement is necessary to ensure that the PPE continues to function effectively in protecting workers from exposure. Paragraph (h)(3) is unchanged from the proposal. Paragraph (h)(3)(i) requires the employer to ensure that reusable PPE is cleaned, laundered, repaired, and replaced as needed to maintain its effectiveness. In keeping with the performance orientation of the standards, OSHA does not specify how often PPE should be cleaned, repaired, or replaced. Appropriate time intervals for these actions may vary widely based on the types of PPE used, the nature of the beryllium exposures, and other circumstances in the workplace. However, even in the absence of a mandated schedule, these requirements must be completed at a frequency, and in a manner, sufficient to ensure that PPE continues to serve its intended purpose of protecting workers from beryllium exposure. Several commenters discussed the merits of the use of disposable PPE versus reusable PPE. These commenters indicated that OSHA should allow the PO 00000 Frm 00215 Fmt 4701 Sfmt 4700 2683 use of disposable PPE, which could be both more protective and, in some cases, less costly, than reusable PPE (Document ID 1676, p. 3; 1682, p. 3). In response, OSHA notes that it is not prohibiting the use of disposable PPE. As discussed above, OSHA is leaving the decision regarding appropriate PPE to employers after they do their hazard assessments. While these commenters indicated that the regulatory text seems to focus on reusable PPE, the requirements specifically regarding reusable PPE are necessary to ensure that workers who handle this PPE downstream (for example, workers who launder or repair PPE) are protected and that reusable PPE is appropriately handled and cleaned before being reused. These provisions are not meant to indicate that OSHA prefers reusable PPE over disposable PPE. Under paragraph (h)(3)(ii), removal of beryllium from PPE by blowing, shaking, or any other means which disperses beryllium in the air is prohibited as this practice could result in unnecessary and harmful exposure to airborne beryllium. Paragraph (h)(3)(iii) requires the employer to inform, in writing, any person or business entity who launders, cleans, or repairs PPE required by this standard of the potentially harmful effects of exposure to airborne beryllium and dermal contact with beryllium, and of the need to handle the PPE in accordance with this standard. This provision is intended to limit dermal and inhalation exposure to beryllium, and to emphasize the need for hazard awareness and protective measures consistent with these standards among persons who clean, launder, or repair beryllium-contaminated items. (i) Hygiene Areas and Practices Paragraph (i) of the final standards for general industry, construction, and shipyards requires that, when certain conditions are met, the employer must provide employees with readily accessible washing facilities and change rooms. Additionally, paragraph (i) of the final standard for general industry requires that, when certain conditions are met, the employer must provide showers for employee use. Paragraph (i) of all three standards also requires the employer to take certain steps to minimize exposure in eating and drinking areas, and prohibits certain practices that may contribute to beryllium exposure. The final standards’ hygiene provisions are consistent with other OSHA standards providing similar protection. For example, OSHA health standards for hexavalent chromium (29 CFR 1910.1026) and lead (29 CFR E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2684 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 1910.1025) include hygiene provisions along with engineering control requirements to protect workers from exposure to toxic substances. OSHA’s standards addressing sanitation in general industry (29 CFR 1910.141), construction (29 CFR 1926.51) and shipyard employment (29 CFR 1915.88) also include hygiene provisions, requiring the employer to provide change rooms equipped with storage facilities for street clothes and separate storage facilities for protective clothing whenever employees are required by an OSHA standard to wear protective clothing because of the possibility of contamination with toxic materials. The sanitation standards also include provisions for washing facilities and prohibit storage or consumption of food or beverages in any area exposed to a toxic material. OSHA requested comment on the hygiene provisions of the proposed standard for general industry, which was similar in most respects to the hygiene provisions of the final general industry standard. It required employers to provide readily accessible washing facilities, change rooms and showers and to ensure the use of these facilities for each employee exposed to beryllium when necessary. The proposed standard also required employers to take certain steps to minimize exposure in eating and drinking areas and prohibited certain practices that may contribute to beryllium exposure. The remainder of this section discusses general comments on the hygiene section; explains the hygiene provisions of the final standards and OSHA’s response to comments on each provision; and discusses differences between the proposed and final standards and differences between the final standards for each sector. Most commenters agreed with the need for hygiene areas and practices to protect workers from airborne exposure to and dermal contact with beryllium (Document ID 1664, p. 7; 1665, pp. 10– 11; 1667, pp. 5–6; 1675, p. 13; 1679, p. 9; 1680, p, 5; 1689, p. 12). However, one commenter stated that its engineering control systems eliminated the need for hygiene facilities (Document ID 1615, p. 8). OSHA disagrees that engineering controls alone are sufficient to eliminate the need for hygiene areas and practices. Because significant risk of beryllium sensitization and CBD remain below the TWA PEL in the final beryllium standards, ancillary provisions such as requirements for hygiene areas and practices are appropriate to further reduce that risk. See Building and Constr. Trades Dept. v. Brock (Asbestos II), 838 F.2d 1258, 1274 (D.C. Cir. 1988). VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 As discussed in this preamble at Section V, Health Effects and Section VI, Risk Assessment, dermal contact with beryllium can cause beryllium sensitization, the first step in the development of CBD. Compliance with the hygiene provisions of the final standards will reduce the amount and duration of employees’ dermal contact with beryllium, and will therefore more effectively reduce employees’ risk of developing CBD than would compliance with the TWA PEL alone. Another commenter noted that hygiene areas and practices specified in the proposal exceed requirements for abrasive blasting operations discussed in OSHA’s Ventilation standard for construction (29 CFR 1926.57) and Mechanical paint removers standard in maritime employment (29 CFR 1915.34) (Document ID 1673, p. 23). Ancillary provisions in standards for specific substances such as beryllium complement these general OSHA standards. As OSHA noted in Section XVIII of the NPRM, the standards for abrasive blasting provide protection primarily to blasting operators, and do not apply to other employees who are likely to experience beryllium exposures, such as blasting helpers and cleanup workers. In addition, OSHA expects the hygiene provisions in the final beryllium standards to decrease the airborne exposure and dermal contact even of employees who wear respiratory protection and PPE required by other standards, and will therefore reduce significant risk of berylliumrelated health effects among abrasive blasters in construction and shipyards. Paragraph (i)(1) of the proposed standard required that employers provide, for each employee working in a beryllium work area, readily accessible washing facilities to remove beryllium from the hands, face, and neck. It also required employers to ensure that each employee exposed to beryllium use these facilities when necessary. The requirements for washing facilities will reduce employees’ skin contact with beryllium, the possibility of accidental ingestion and inhalation of beryllium, and the spread of beryllium within and outside the workplace. As discussed in Section V of this preamble, Health Effects, respiratory tract, skin, eye, or mucosal contact with beryllium can result in beryllium sensitization, which is a necessary first step toward the development of CBD. Also, beryllium can contaminate employees’ clothing, shoes, skin, and hair, prolonging workers’ beryllium exposure and exposing others such as family members if proper hygiene practices are PO 00000 Frm 00216 Fmt 4701 Sfmt 4700 not observed. A study by Sanderson et al. measured the levels of beryllium on workers’ skin and vehicle surfaces at a machining plant. The study showed beryllium was present on workers’ skin and in their vehicles, demonstrating that workers carried residual beryllium on their hands when leaving work (Sanderson et al., 1999, Document ID 0474). In addition, dermal contact with beryllium has been shown to occur even at low airborne exposure levels. For example, skin wipe sample analysis of dental laboratory technicians performing grinding operations demonstrated that beryllium was present on the hands of workers even when airborne exposures were well below the TWA PEL (Document ID 1878, pp. 8–9). The requirements in the standards to use washing facilities are performanceoriented, simply requiring employees to use the washing facilities to remove beryllium from their skin when the criteria in paragraph (i)(1) of the standards are met. Typically, washing facilities will consist of one or more sinks, soap or another cleaning agent, and a means for employees to dry themselves after washing. OSHA does not intend to require the use of any particular soap, cleaning agent, or drying mechanism. Employers can provide whatever washing materials and equipment they choose, as long as those materials and equipment are effective in removing beryllium from the skin and do not themselves cause skin or eye problems. Washing reduces exposure by limiting the period of time that beryllium is in contact with the skin, and helps prevent accidental ingestion. Although engineering and work practice controls and protective clothing and equipment are designed to prevent hazardous skin and eye contact, OSHA realizes that in some circumstances exposure will nevertheless occur. For example, an employee who wears gloves to protect against hand contact with beryllium may inadvertently touch his or her face with the contaminated glove during the course of the day. The purpose of requiring washing facilities is to mitigate adverse health effects when skin or eye contact with beryllium occurs. OSHA did not receive comment on this provision. Therefore, paragraph (i)(1) of the final standards is substantively unchanged from proposed paragraph (i)(1). Paragraph (i)(1) of the final standard for general industry requires the employer to provide readily accessible washing facilities for employees who work in beryllium work areas to remove beryllium from the E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations hands, face, and neck and ensure that employees who have had dermal contact with beryllium use these facilities at the end of the activity, process, or work shift and prior to eating, drinking, smoking, chewing tobacco or gum, applying cosmetics, or using the toilet. Because the standards for construction and shipyards do not require beryllium work areas, the requirements for washing facilities set forth in paragraph (i)(1) of the construction and shipyard standards differ from the general industry standard in that they require employers to provide washing facilities for each employee required to wear personal protective clothing or equipment by the final standards—that is, where employees are reasonably expected to be exposed to beryllium above the TWA PEL or STEL or where there is a reasonable expectation of dermal contact with beryllium. Otherwise, the requirements for washing facilities are the same in all three standards. Paragraph (i)(2) of the proposed standard required employers to provide affected employees with a designated change room and washing facilities in accordance with the proposed standard and the Sanitation standard where employees were required to remove their personal clothing. Change rooms allow employees to remove their personal clothing in order to use personal protective clothing. Minimizing contamination of employees’ personal clothes will also reduce the likelihood that beryllium will contaminate employees’ cars and homes, and other areas outside the workplace. Requiring employers to provide employees with change rooms to change out of work clothes, which are then segregated from their street clothes, and to leave work clothing at the workplace significantly reduces the possibility of beryllium migration outside the workplace, providing added protection from take-home beryllium exposure to workers and their families. One commenter recommended that change rooms be required only when there is required use of personal protective clothing and equipment (Document ID 1667, pp. 5–6). OSHA intends the change rooms requirement only to apply to covered workplaces where employees must change their clothing (i.e., take off their street clothes) to use protective clothing. In situations where removal of street clothes is not necessary (e.g., in a workplace where only gloves are used as protective clothing), change rooms are not required. The standards do not create a requirement for employees to VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 change their clothing. Note that paragraph (h) of all three standards requires employers to provide ‘‘appropriate’’ personal protective clothing. It is not appropriate for employees to wear protective clothing over street clothing if doing so results in contamination of the employee’s street clothes. In such situations, the employer must ensure that employees wear protective clothing in lieu of (rather than over) street clothing, and provide change rooms. Another commenter stated that the final rule should require employers to develop a program that defines approved storage areas for protective apparel and personal hygiene towels, restricts access to this area, provides for employee training when handling or reusing previously used items, and establishes an objective means for determining when an item can no longer be reused and must be laundered or discarded (Document ID 1962, p. 5). OSHA agrees that employers should develop and document procedures for limiting beryllium cross-contamination and migration, and has included such requirements in paragraph (f), Methods of Compliance, and paragraph (j), Housekeeping. These paragraphs of the final standards require each employer to develop, document, and implement procedures for limiting beryllium migration and cross-contamination in their facilities, which should address storage, handling and reuse of beryllium-contaminated items and access to storage facilities for berylliumcontaminated clothing and PPE, including towels if these are contaminated with beryllium during washing and showering. After carefully reviewing the record, OSHA has decided to keep paragraph (i)(2) substantively unchanged. Paragraph (i)(2) of the final standard for general industry requires the employer to provide a designated change room for employees who work in a beryllium work area and are required to remove their personal clothing. Paragraph (i)(2) of the final standards for construction and shipyards requires the employer to provide a designated change room for employees who are required by the final standards to wear personal protective clothing or equipment and are required to remove their personal clothing. The changed trigger for change rooms in the construction and shipyard standards is due to the fact that there are no beryllium work areas in those standards, and requiring change rooms where employees are required to wear personal protective clothing or equipment provides a similar level of protection to the general industry standard. Change PO 00000 Frm 00217 Fmt 4701 Sfmt 4700 2685 rooms must be designed in accordance with the written exposure control plan required by paragraph (f)(1) of all three standards, and with the applicable Sanitation standards in general industry (29 CFR 1910.141), construction (29 CFR 1926.51), and shipyards (29 CFR 1915.88). These Sanitation standards require change rooms to be equipped with storage facilities (e.g., lockers) for protective clothing, and separate storage facilities for street clothes, to prevent cross-contamination. As in the proposed standard for general industry, paragraph (i)(3) of the final standard for general industry requires employers in general industry to provide and ensure the use of showers if employees are or can reasonably be expected to be exposed above the TWA PEL or STEL (paragraph (i)(3)(i)(A)) and if employees’ hair or body parts other than hands, face, and neck could reasonably be expected to be contaminated with beryllium (paragraph (i)(3)(i)(B)). Employers are only required to provide showers if paragraphs (i)(3)(i)(A) and (B) both apply. Paragraph (i)(3)(ii) of the final standard for general industry, like the proposed standard for general industry, requires employers to ensure that employees use the showers at the end of the work activity or shift involving beryllium if the employees reasonably could have been exposed above the TWA PEL or STEL, and if beryllium could reasonably have contaminated the employees’ body parts other than hands, face, and neck. The requirement is restricted to body parts other than the hands, face, and neck because if employees have dermal contact with beryllium on their hands, faces, or necks, they must use the washing facilities required by paragraph (i)(1)(i). This language is intended to convey that showers must be used immediately after work activities involving beryllium exposure have been completed for the day. For example, if employees perform work activities involving beryllium exposure that meet the requirements for showers for the first two hours of a work shift, and then perform activities that do not involve exposure, they should shower after the exposure period to avoid increasing the duration of exposure, potential of accidental ingestion, and contamination of the work area from beryllium residue on their hair and body parts other than hands, face, and neck. If, however, employees are performing tasks involving exposure intermittently throughout the day, this provision is intended to require them to shower after the last task involving exposure, not after the completion of each such task. E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2686 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations The requirements of paragraph (i)(3) of the final standard for general industry are similar to requirements for provision and use of shower facilities in other substance-specific OSHA health standards, such as the standards for cadmium (29 CFR 1910.1027) and lead (29 CFR 1910.1025), which also require showers when exposures exceed the TWA PEL. OSHA’s standard for coke oven emissions (29 CFR 1910.1029) requires employers to provide showers and ensure that employees working in a regulated area shower at the end of the work shift. The standard for methylenedianiline (MDA) (29 CFR 1910.1050) requires employers to ensure that employees who may potentially be exposed to MDA above the action level shower at the end of the work shift. A majority of the comments on the proposed hygiene areas and practices provisions for general industry concerned the requirement for showers. The Sampling and Analysis Subcommittee Task Group of the Beryllium Health and Safety Committee (BHSC Task Group) expressed support for the mandatory use of showers for workers in beryllium regulated areas where airborne exposures can reasonably be expected to exceed the TWA PEL or STEL so that proper decontamination can occur and prevent beryllium from leaving the work area, and to ensure that workers and their families are not exposed to beryllium once workers leave their place of employment (Document ID 1665, pp. 10–11). Ameren Corporation (Ameren), the United Steelworkers (USW), and Materion Corporation (Materion) also supported the requirement for showers and their use by employees working in a beryllium regulated area (that is, where airborne exposures can reasonably be expected to exceed the TWA PEL or STEL) (Document ID 1675, p. 13; 1680, p. 5; 1681, p.12). Some commenters supported the requirement for showers, but suggested that employers should be required to provide shower facilities to workers exposed at lower exposure levels than the TWA PEL or STEL. National Jewish Health (NJH) suggested that showers should be required for workers exposed above the action level rather than the TWA PEL or STEL and in facilities where beryllium can be expected to contaminate the employees’ hair or other body parts (Document ID 1664, p. 7). The North America’s Building Trades Unions (NABTU) suggested that any beryllium work area should include all necessary decontamination facilities, including showers (Document ID 1679, p. 9). VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 OSHA notes that NJH and NABTU’s comments addressed the provisions of the proposed standard for general industry, which did not include a requirement to provide PPE wherever there is a potential for dermal contact with beryllium. As discussed previously in the Summary and Explanation for paragraph (h) of the final standards, OSHA has adopted much more comprehensive requirements for employers to provide and ensure the use of personal protective clothing and equipment (PPE) wherever exposure exceeds the TWA PEL or STEL or dermal contact with beryllium is reasonably expected to occur. The Agency believes that employees working in low-exposure contexts (where exposures do not exceed the TWA PEL or STEL) and using comprehensive PPE as required in paragraph (h) are unlikely to experience beryllium contamination that requires shower facilities to effectively remove beryllium from the hair and skin. OSHA therefore concludes that the required washing facilities and change rooms for general industry employees working in beryllium work areas in combination with the comprehensive PPE requirements described in paragraph (h) of the final standards are sufficient to protect workers in areas where exposures do not exceed the TWA PEL or STEL and where there is no reasonable expectation that body areas other than hands, face and neck will be contaminated with beryllium. OSHA therefore has decided not to require the provision of showers in general industry workplaces where exposure does not exceed the TWA PEL or STEL. The Boeing Company (Boeing) suggested requiring showers only when beryllium visibly contaminates employees’ hair or body parts other than hands, face, and neck (Document ID 1667, p. 6). However, as discussed previously in the Summary and Explanation of paragraph (h), Personal Protective Clothing and Equipment, dermal contact with beryllium can lead to adverse health effects regardless of whether sufficient beryllium-containing dust has accumulated to be visible to the naked eye. Therefore, OSHA has determined that requiring showers only where beryllium contamination is visible would not adequately protect employees from prolonged dermal contact with beryllium or adequately prevent transfer of beryllium outside the workplace. Another commenter suggested that air showers for when employees leave the work area would be more cost effective and acceptable than water-based showers (Document ID 1596, p. 1). PO 00000 Frm 00218 Fmt 4701 Sfmt 4700 OSHA does not believe that air showers are appropriate for removing beryllium from workers’ skin. Air showers are designed to remove accumulations of dust from the surface of work clothing, PPE, and exposed skin, but cannot remove residual beryllium as effectively as washing with water and soap. In addition, air showers can disperse beryllium-containing dust into the air and cause employees additional airborne exposure, whereas water-based showers do not re-entrain dust into the air. OSHA has not included a requirement for showers in the final standards for construction and shipyards. Workers in these industries are exposed to beryllium primarily when an abrasive that contains trace amounts of beryllium, usually coal or copper slags, is used during abrasive blasting operations. These abrasive slags contain less than 0.1% beryllium but may result in significant airborne exposure to beryllium because of the high dust levels generated during abrasive blasting. However, workers conducting abrasive blasting with these abrasives are currently protected from dermal contact with beryllium under existing OSHA standards. The OSHA Ventilation standard for construction (29 CFR 1926.57) and the OSHA Mechanical paint removers standard for shipyard employment (29 CFR 1915.34) require personal protective clothing and respiratory protection for abrasive blasters. The Ventilation standard requires employers to use only respirators approved by NIOSH under 42 CFR part 84 for protecting employees from dusts produced during abrasiveblasting operations (29 CFR 1926.57(f)(5)(i)) and abrasive-blasting respirators must be worn by all abrasiveblasting operators (29 CFR 1926.57(f)(5)(ii)). These abrasive blasting respirators cover the entire head, neck and shoulder area to protect the worker from rebounding abrasive during these operations and prevent beryllium exposure to the head and neck area. The Mechanical paint removers standard has similar requirements for abrasive blasters including the use of hoods and airline respirators, along with protective clothing (29 CFR 1915.34(c)). Compliance with these requirements should effectively prevent contamination of abrasive blasters’ bodies with beryllium; thus, use of showers to remove beryllium is unnecessary for these workers. Abrasive blasting support workers such as pot tenders and cleanup workers are also potentially exposed to beryllium during abrasive blasting E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations activities (Chapter IV, Technological Feasibility). However, their work is usually remote from the actual abrasive blasting or occurs prior to or after the operation is completed, resulting in lower exposures. OSHA’s exposure profile for these workers shows a median exposure below the final standards’ action level (0.09 mg/m3 for pot tenders and helpers and 0.07 mg/m3 for cleanup helpers) which is well below the median exposure level of 0.2 mg/m3 for abrasive blasters (Chapter IV, Technological Feasibility) and well below the trigger for provision of showers established in the final standard for general industry. While abrasive blasting support workers are not exposed to the high dust levels experienced by the abrasive blasting operator, these workers are nevertheless protected under the personal protective clothing and equipment requirements in paragraph (h) of the final standards which requires the use of appropriate personal protective clothing and equipment where exposure can reasonably be expected to exceed the TWA PEL or STEL or where there is a reasonable expectation of dermal contact with beryllium. Based on the personal protective clothing and equipment requirements under OSHA standards for abrasive blasting operators and support workers, and the low exposure levels described above and in Chapter IV, Technological Feasibility, OSHA is not requiring showers in the final standards for construction and shipyards. OSHA also notes that providing showers can be impractical in some temporary worksites, such as those often used in construction settings. Paragraph (i)(4) (eating and drinking areas) of OSHA’s proposed rule for general industry required that whenever the employer allows employees to consume food or beverages at a worksite where beryllium is present, the employer must ensure that surfaces in eating and drinking areas are as free as practicable of beryllium to minimize the possibility of food contamination and the likelihood of additional exposure to beryllium through inhalation or ingestion. Proposed paragraph (i)(4) further required employers to ensure that no employee in eating and drinking areas is exposed to airborne beryllium at or above the action level, and that eating and drinking areas must comply with the Sanitation standard (29 CFR 1910.141). Paragraph (i)(5)(ii) (prohibited activities) of the proposed rule, also related to eating and drinking areas, required the employer to ensure that no employees enter any eating or VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 drinking area with personal protective clothing or equipment unless, prior to entry, surface beryllium has been removed from the clothing or equipment by methods that do not disperse beryllium into the air or onto an employee’s body. A commenter with the American Federation of Labor and Congress of Industrial Organizations (AFL–CIO) recommended that OSHA develop stronger language to ensure that exposure levels are ‘‘well below’’ the action level for eating and drinking areas and that surfaces are truly as free as practicable of beryllium (Document ID 1689, pp. 12–13). OSHA agrees with the commenter that airborne beryllium should be maintained well below the action level in eating and drinking areas and has decided not to include the proposal’s hygiene provision that no employee in eating and drinking areas is exposed to airborne beryllium at or above the action level in the final standards. OSHA believes that this language may be interpreted to allow airborne exposure levels up to the action level in eating and drinking areas, which is not OSHA’s intent. The requirements to maintain surfaces in these eating and drinking areas as free as practicable of beryllium and to ensure that employees do not enter eating and drinking areas with personal protective work clothing or equipment unless beryllium has been removed will limit contamination and airborne exposure to beryllium and provide workers with safe areas to eat and drink. In comments on surface cleanliness pertaining to eating and drinking areas, Boeing suggested that the standard should define specific surface contaminant levels or instead simply rely on the existing OSHA Sanitation standard (1910.141) (Document ID 1667, p. 6). Kimberly-Clark Professional (KCP) suggested that OSHA should set a future goal of establishing maximum allowable surface contamination standards for toxic substances (Document ID 1962, p. 3). Materion suggests that its ‘‘visibly clean’’ standard is analogous to OSHA’s standard of ‘‘as free as practicable’’ and that its cleaning program ensures that surfaces remain ‘‘as free as practicable’’ of beryllium (Document ID 1807, p. 5). Materion and USW proposed the term ‘‘visibly clean’’ because they ‘‘have found it to be well understood by both workers and management’’ (Document ID 1808, p. 4). However, Materion also points out that the use of the term ‘‘as free as practicable’’ has been understood by workers, management and OSHA compliance officers and has been successfully applied and effective in practice: ‘‘[f]or decades, OSHA has used PO 00000 Frm 00219 Fmt 4701 Sfmt 4700 2687 the term ‘‘as free as practicable’’ in its substance specific standards . . . OSHA’s use of this term has been understood by workers, management and OSHA compliance officers. OSHA has successfully applied this compliance term in many prior OSHA standards which serves to demonstrate that its use is understandable and effective in practice’’ (Document ID 1808, p. 5). In post-hearing comments, KCP states its belief that ‘‘visibly contaminated’’ is an inadequate standard and should not be used as a stand-in for ‘‘as clean as practicable’’ (Document ID 1962, p. 2). In developing the final standards, OSHA carefully considered these comments on the use of ‘‘as free as practicable’’ and alternative requirements in reference to surface cleanliness in eating and drinking areas and elsewhere in the beryllium standards, and concluded that ‘‘as free as practicable’’ is the most appropriate terminology for requirements pertaining to surface cleanliness. Issues related to use of ‘‘as free as practicable’’ and alternatives to this language are also discussed in the Summary and Explanation for paragraph (j), Housekeeping. The requirement to maintain surfaces as free as practicable of the regulated substance is included in other OSHA health standards such as those for lead in general industry (29 CFR 1910.1025), lead in construction (29 CFR 1926.62), chromium (IV) (29 CFR 1910.1026), and asbestos (29 CFR 1910.1001). Employers therefore have the benefit of previous experience interpreting and developing methods for compliance with requirements to maintain surfaces ‘‘as free as practicable’’ of toxic substances, as well as guidance from OSHA on compliance with such requirements. As OSHA explained in a January 13, 2003 letter of interpretation concerning the meaning of ‘‘as free as practicable’’ in OSHA’s Lead in Construction standard, OSHA evaluates whether a surface is ‘‘as free as practicable’’ of a contaminant by the rigor of the employer’s program to keep surfaces clean (OSHA, 2003, Document ID 0550). A sufficient housekeeping program may be indicated by a routine cleaning schedule and the use of effective cleaning methods to minimize the possibility of exposure from accumulation of beryllium on surfaces. OSHA’s compliance directive on Inspection Procedures for the Chromium (VI) Standards provides additional detail on how OSHA interprets ‘‘as free as practicable’’ for enforcement purposes (OSHA, 2008, Document ID 0546, pp. 45–47). As explained in the directive, if a wipe E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2688 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations sample reveals a toxic substance on a surface, and the employer has not taken practicable measures to keep the surface clean, the employer has not kept the surface as free as practicable of the toxic substance. Thus, OSHA believes that the term ‘‘as free as practicable’’ is clearly understood by employers through its use in other standards and as explained in letters of interpretation and is using this term in the hygiene provision of the final standards. OSHA does not set quantitative limits for surface contamination because the best available scientific evidence on adverse health effects from dermal contact with beryllium does not provide sufficient information to link risk of adverse health effects with specific levels of surface contamination. As described above, OSHA finds that wipe sampling can be helpful in determining whether an employer is in compliance with a requirement to keep surfaces as free as practicable of toxic substances, but concludes that use of a specific target level of surface contamination should not define compliance with surface cleanliness requirements of the beryllium standards. Based on these conclusions, paragraph (i)(4) of the final standards requires that wherever the employer allows employees to consume food or beverages at a worksite where beryllium is present, the employer must ensure that surfaces in these areas are as free as practicable of beryllium. The employer must also ensure that employees do not enter eating and drinking areas with personal protective work clothing or equipment unless, prior to entry, surface beryllium has been removed from the clothing and equipment by methods that do not disperse beryllium into the air or onto an employee’s body, further protecting workers from beryllium contamination in areas where eating and drinking occurs. Eating and drinking areas must further comply with the Sanitation standards (29 CFR 1910.141(g), 1926.51(g), 1915.88(h)), which prohibit consuming or storing food or beverages in a toilet area or in any area exposed to a toxic material. In the final standards, the provisions for eating and drinking areas (paragraph (i)(4) of the general industry standard, paragraph (i)(3) of the construction and shipyard standards) and prohibited activities (paragraph (i)(5) of the general industry standard and paragraph (i)(4) of the construction and shipyard standards) have been retained with one exception and one structural change. The proposed requirement to ensure that no employee in eating and drinking areas is exposed to airborne beryllium at or above the action level has been VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 removed for the reasons already discussed above. And the requirement concerning employees entering any eating or drinking area with personal protective clothing or equipment has been moved from the prohibited activities section of the proposed rule’s hygiene provision to the eating and drinking areas section in the final standards. Paragraph (i)(4) of the final standard for general industry and paragraph (i)(3) of the final standards for construction and shipyards do not require the employer to provide separate eating and drinking areas to employees at the worksite. Employees may consume food or beverages offsite. However, where the employer chooses to allow employees to consume food or beverages at a worksite where beryllium is present, the employer is required to maintain the area in accordance with paragraph (i)(4) of the final standard for general industry or paragraph (i)(3) of the final standards for construction and shipyards, and with the applicable Sanitation standard (29 CFR 1910.141, 29 CFR 1915.1915.88, or 29 CFR 1926.51), and the employer must ensure that employees do not enter eating and drinking areas wearing contaminated personal protective clothing or equipment. Paragraph (i)(5)(i) of the proposed standard, setting forth prohibited activities, required the employer to ensure that no employees eat, drink, smoke, chew tobacco or gum, or apply cosmetics in regulated areas. OSHA did not receive comment on this provision. Therefore, paragraph (i)(5) of the final standards is substantively unchanged from proposed paragraph (i)(5)(i). Paragraph (i)(4) of the final construction and shipyard standards is substantively identical to paragraph (i)(5) of the general industry standard. Paragraph (i)(5) of the final standard for general industry and paragraph (i)(4) of the final standard for shipyards prohibit eating, drinking, smoking, chewing tobacco or gum, or applying cosmetics in regulated areas (areas where airborne exposure to beryllium is expected to exceed the TWA PEL or STEL). Paragraph (i)(4) of the final standard for construction differs slightly in that the employer is required to ensure that no employees eat, drink, smoke, chew tobacco or gum, or apply cosmetics in work areas where there is a reasonable expectation of exposure above the TWA PEL or STEL. This difference arises because the final standard for construction does not have a requirement for regulated areas but instead relies on a competent person provision (paragraph (e)) to restrict employee access to areas where PO 00000 Frm 00220 Fmt 4701 Sfmt 4700 exposures are, or can reasonably be expected to be, above the TWA PEL or STEL. Exposure at these levels creates a greater risk of beryllium contaminating the food, drink, tobacco, gum, or cosmetics. Prohibiting eating and drinking in these areas will reduce the potential for this manner of exposure. For the foregoing reasons, OSHA has decided to promulgate all the requirements of the proposed hygiene areas and practices provisions in the beryllium final standard for general industry except for the eating and drinking areas action level limit noted above. For the final standards for construction and shipyards, OSHA has decided to include all of the hygiene areas and practices provisions proposed for general industry except for the requirement for showers and the eating and drinking areas action level limit. (j) Housekeeping Paragraph (j) of the final standard for general industry requires employers to maintain all surfaces in beryllium work areas as free as practicable of beryllium; promptly clean spills and emergency releases of beryllium; use appropriate cleaning methods; and properly dispose of materials containing or contaminated with beryllium. Paragraph (j) of the final standards for construction and shipyards requires employers to follow the written exposure control plan required under paragraph (f)(1) when cleaning beryllium-contaminated areas, use appropriate cleaning methods, and provide recipients of berylliumcontaining materials for use or disposal with a copy of the warning described in paragraphs (m)(2) and (m)(3), respectively. As discussed in more detail below, the housekeeping requirements in the final standards are similar to those included in the proposal. While some stakeholders submitted divergent opinions on certain aspects of the proposed provisions, several commenters offered broad support for the inclusion of housekeeping provisions in the final rule (e.g., Document ID 1664, p. 7; 1681, Attachment 1, p. 13). For example, United Steelworkers (USW) stated that ‘‘the proposed text provides employers with clear responsibilities and provides strong provisions to ensure worker protection’’ (Document ID 1681, Attachment 1, p. 13). USW also expressed appreciation for the ‘‘precautions incorporated into this section to minimize the amount of particulate suspended in the air’’ (Document ID 1681, Attachment 1, p. 13). Another stakeholder, National Jewish Health (NJH), agreed with the E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations proposed rule regarding housekeeping (Document ID 1664, p. 7). Similarly, the American Federation of Labor and Congress of Industrial Organizations (AFL–CIO) argued that ‘‘housekeeping provisions are essential’’ ‘‘[b]ecause of the hazardous nature of beryllium and the significant risk of developing beryllium sensitization or disease’’ (Document ID 1689, p. 13). These comments support OSHA’s view, as expressed in the NPRM, that these provisions are important because they minimize additional sources of exposure to beryllium that engineering controls do not completely eliminate. Good housekeeping measures are a costeffective way to control worker exposures by removing settled beryllium that could otherwise become re-entrained into the surrounding atmosphere by physical disturbances or air currents and could enter an employee’s breathing zone. Moreover, housekeeping provisions may be especially critical in the final beryllium standards because contact with contaminated surfaces can result in dermal exposure to beryllium. As discussed in this preamble at section V, Health Effects, researchers have identified skin exposure to beryllium as a pathway to sensitization. In addition, the housekeeping provisions in paragraph (j) of the standards for general industry, construction, and shipyards are generally consistent with housekeeping requirements in other OSHA standards for toxic metals, including cadmium (29 CFR 1910.1027, 1926.1127), chromium (VI) (29 CFR 1910.1026), and lead (29 CFR 1910.1025, 1926.62). The Abrasive Blasting Manufacturers Alliance (ABMA) asserted that the proposed housekeeping requirements are not consistent with the abrasive blasting requirements for construction and shipyards (e.g., 29 CFR 1926.57(f), 29 CFR 1915.34) (Document ID 1673, pp. 22–23). OSHA disagrees. The performance-oriented provisions in the final construction and shipyard standards for beryllium provide employers with a great deal of flexibility in cleaning beryllium-contaminated areas and spills and emergency releases of beryllium and disposing of materials designated for disposal or recycling. In essence, the text requires employers to choose cleaning methods that minimize the likelihood and level of airborne exposure (unless certain conditions are met), handle and maintain cleaning equipment in a way that minimizes exposure, and protect their employees when dry sweeping, brushing, or using compressed air to clean in berylliumcontaminated areas. When transferring VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 materials containing beryllium to another party for use or disposal, the employer is required to advise the recipient of the beryllium content and hazards. These provisions complement, rather than contradict, the rules set out in 29 CFR 1926.57(f) and 29 CFR 1915.34, and are necessary for employee protection from beryllium-related adverse health effects. Paragraph (j)(1)(i) of the proposed rule would have required employers to maintain all surfaces in beryllium work areas as free as practicable of accumulations of beryllium and in accordance with the exposure control plan required under paragraph (f)(1) and the cleaning methods required under paragraph (j)(2) of the proposed rule. In this context, the phrase ‘‘as free as practicable’’ set forth the baseline goal in the development of an employer’s housekeeping program to keep work areas free from surface contamination. For a detailed discussion of the meaning of the phrase ‘‘as free as practicable,’’ see the discussion in the Summary and Explanation for paragraph (i), Hygiene areas and practices, in this section of the preamble. Although this requirement is often included in OSHA’s substance specific regulations, a number of commenters expressed concern about its inclusion in this rulemaking. For example, USW argued that a ‘‘requirement to maintain all surfaces in beryllium work areas as free as practicable of accumulations of beryllium could lead to difficulties in assessing compliance, since ‘as free as practicable’ is open to interpretation’’; instead, USW suggested that beryllium work areas should be required to be maintained ‘‘visibly clean’’ of accumulations (Document ID 1681, p. 13). Materion Corporation (Materion) also proposed the term ‘‘visibly clean’’ (Document ID 1808, p. 5; 1752, p. 1). However, Materion stated that OSHA has long used the term ‘‘as free as practicable’’ in its standards as a measure of cleanliness for work areas and eating areas, and the term is well understood by workers, management, and OSHA compliance officers. According to Materion, ‘‘visibly clean’’ is similar to ‘‘as free as practicable’’ and also well understood by workers and management (Document ID 1808, p. 5). Kimberly-Clark Professional (KCP) stated that this ‘‘ostensible equivalence’’ between the ‘‘as free as practicable’’ and ‘‘visibly clean’’ standards is ‘‘unfounded,’’ in part, because ‘‘[i]t is practicable using readily known and available methods to make many surfaces clean beyond that which is visibly apparent’’ (Document ID 1962, p. 2). Instead, KCP recommended that PO 00000 Frm 00221 Fmt 4701 Sfmt 4700 2689 OSHA ‘‘establish surface contamination standards such that all subjectivity of surface cleanliness is removed’’ (Document ID 1962, p. 2). KCP also argued that OSHA should require an employer’s surface cleanliness protocol to be based on objective sampling and measurement. KCP maintained that there are many examples where surface sampling is used in economically feasible ways, including in the facilities governed by the Department of Energy (DOE). However, it acknowledged that the methods in other environments, including the DOE protocols for beryllium control in energy facilities, may not translate directly to industrial facilities. Nevertheless, KCP observed that ‘‘there is sufficient ongoing successful use of such approaches to provide a framework for a more objective, data-driven protocol for surface control than ‘visibly contaminated’ ’’ (Document ID 1962, p. 3). The Boeing Company (Boeing) also requested that ‘‘as free as practicable’’ be replaced with defined surface contaminant levels (Document ID 1667, pp. 6). Conversely, the Department of Defense (DOD) commented that employers should not be required to measure beryllium contamination on surfaces, as the relationship between level of surface contamination and health risk is unknown. It also stated that wipe samples are not an appropriate enforcement tool for determining that surfaces are ‘‘as free as practicable’’ of beryllium contamination (Document ID 1684, Attachment 1, p. 1). ORCHSE Strategies (ORCHSE) agreed that OSHA should not require measurement of beryllium contamination on surfaces (Document ID 1691, p. 18). And, the American Industrial Hygiene Association (AIHA) commented that ‘‘the evaluation of ‘visible’ is subjective’’ (Document ID 1686, p. 1). After carefully considering these comments and other evidence in the record, OSHA has chosen not to require employers to measure beryllium contamination on surfaces, as suggested by KCP, or to otherwise ‘‘define specific surface contaminant levels,’’ as requested by Boeing Company. As DOD explains in its comments, the relationship between a precise amount of surface contamination and health risk is unknown. Therefore, OSHA cannot find that a particular level of contamination is safe. Rather, OSHA has determined that keeping surfaces as clean as practicable is appropriate because promptly removing beryllium deposits prevents them from becoming airborne, thus reducing employees’ E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2690 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations inhalation exposure, and helps to minimize the likelihood of skin contact with beryllium. The Agency notes, however, that wipe samples can be a helpful tool for employers. For example, wipe samples can be used by employers to detect the presence of beryllium on surfaces and help gauge when surfaces are as free as practicable of accumulations of beryllium. Therefore, OSHA has decided to retain the requirement that employers maintain all surfaces in beryllium work areas as free as practicable of beryllium in paragraph (j)(1)(i) of the final general industry standard. The term ‘‘as free as practicable’’ is accepted language and used in other OSHA housekeeping requirements for toxic dusts (Asbestos, 29 CFR 1910.1001 and Cadmium, 29 CFR 1910.1027). As the Agency has explained in a letter of interpretation on this term as used in the lead standard, ‘‘the requirement to maintain surfaces ‘as free as practicable’ is performanceoriented. . . . The requirement is met when the employer is vigilant in his efforts to ensure that surfaces are kept free of accumulations of lead-containing dust. The role of the Compliance Safety and Health Officer (CSHO) is to evaluate the employer’s housekeeping schedule, the possibility of exposure from these surfaces, and the characteristics of the workplace’’ (OSHA, Jan. 13, 2003, Letter of Interpretation.) The term ‘‘surface’’ has a common meaning but is not separately defined in the standard. This term has been used multiple times in OSHA’s substance specific standards and OSHA has not found that it is a source of confusion for employers. As indicated in the preamble to the proposed standard, the term includes the outer parts of objects that workers come into contact with, such as equipment, floors, and items in storage facilities, as well as objects that workers may not directly contact, such as rafters and ledges. See 80 FR 47796. Because all surfaces in beryllium work areas could potentially accumulate beryllium that could become airborne or that workers could later inhale, touch, or ingest, all surfaces in beryllium works areas must be kept as free as practicable of beryllium. OSHA has also decided to remove the phrase ‘‘accumulations of’’ from (j)(1)(i), because OSHA believes the reference to ‘‘accumulations’’ may be misinterpreted to suggest that cleaning is only required when substantial deposits of berylliumcontaining material have accumulated on surfaces. As discussed previously, dermal contact with small amounts of beryllium that are not visible to the naked eye can cause beryllium sensitization. Thus, the final standard VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 for general industry requires the employer to maintain all surfaces in beryllium work areas as free as practicable of beryllium and in accordance with the written exposure control plan required under paragraph (f)(1) and the cleaning methods required under paragraph (j)(2) of this standard. OSHA has not included the requirement that employers maintain all surfaces in beryllium work areas as free as practicable of beryllium in the final standards for construction and shipyards because certain conditions typical in these sectors warrant different approaches in the housekeeping provisions. As discussed in the Summary and Explanation for paragraph (a), Scope and application, in this preamble, although employees in the construction and shipyard industries may be exposed to beryllium during the demolition of berylliumcontaminated buildings and metal recycling or through the dressing of non-sparking tools, the primary exposure source of beryllium at construction worksites and in shipyards is from abrasive blasting operations (Document ID 1671, Attachment 1, p. 5; 1756, Tr. 97–99). Specifically, employees in the construction and shipyard industries are typically exposed when they use abrasive blasting media that contain beryllium. Abrasive blasting in the construction and shipyard industries often occurs outdoors (see the Final Economic Analysis (FEA), Chapter IV. The surfaces being blasted can be large structures, such as buildings or ships. The blasting process itself can be transient and may occur for short periods of time. The work can be performed in the open or in temporary work enclosures when abrading large objects or structures that cannot be transported or are fixed. These enclosures are typically constructed of tarps and regularly moved from newly abraded areas to areas needing abrasion over very large distances (Document ID 1632, p. 6). During the abrasive blasting process, large amounts of dust become airborne and then settle on nearby surfaces. Spent blasting media containing trace amounts of beryllium is cleaned up after the blasting operation is complete and has moved to a different area of the worksite. Paragraph (j)(2) of the construction and shipyard standards requires employers to ensure that employees use methods that minimize beryllium exposure during this cleaning process. However, due to the outdoor location of many worksites in construction and shipyards, OSHA finds it is not practical to require employers PO 00000 Frm 00222 Fmt 4701 Sfmt 4700 to maintain all surfaces in work areas as free as practicable of beryllium in construction or shipyards as for general industry. Therefore, OSHA has not included a reference to surfaces in the provisions of in paragraph (j)(1)(i) of the final standards for construction and shipyards. OSHA has modified paragraph (j)(1)(i) of these standards to require only that the employer follow the written exposure control plan required under paragraph (f)(1) when cleaning beryllium-contaminated areas. When beryllium is released into the workplace as a result of a spill or emergency release, paragraph (j)(1)(ii) of the final standards, like paragraph (j)(1)(ii) of the proposal, requires the employer to ensure prompt cleanup. As defined in paragraph (b) of the final standards, the term ‘‘emergency’’ means any uncontrolled release of airborne beryllium. An emergency could result from equipment failure, rupture of containers, or failure of control equipment, among other causes. Spills or emergency releases not attended to promptly are likely to result in additional employee exposure or skin contact. Boeing objected to the proposed requirement that employers maintain surfaces and clean up spills or emergency releases in accordance with the written exposure control plans required by paragraph (f)(1), in part, because it did not believe OSHA should require employees to establish a written exposure control plan. Instead, Boeing suggested the Agency revise the standard to allow employers to use ‘‘existing processes, such as a written beryllium worksite control procedure’’ (Document ID 1667, p. 4). To that end, Boeing suggested that employers be allowed to ensure prompt and proper cleanup in accordance with the exposure control plan, ‘‘or equally as effective documentation’’ (Document ID 1667, pp. 6–7). As explained in the Summary and Explanation for paragraph (f), Methods of Compliance, in this preamble, OSHA disagrees with Boeing and has chosen to retain the requirement to establish, implement, and maintain a written exposure control plan. Final paragraphs (j)(1)(i) and (ii) of the standards, like proposed paragraphs (j)(1)(i) and (ii), thus require employers to perform housekeeping activities in accordance with the written exposure control plan required by paragraph (f)(1) and the cleaning methods required by paragraph (j)(2) of the standards. Paragraph (j)(2) of the proposed rule included a few requirements regarding cleaning methods. Because OSHA recognizes that each work environment is unique, the Agency proposed E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations performance-oriented requirements for housekeeping to allow employers to determine how best to clean beryllium work areas. Paragraph (j)(2)(i) of the proposed standard would have required that surfaces in beryllium work areas be cleaned by high-efficiency particulate air filter (HEPA) vacuuming or other methods that minimize the likelihood and level of beryllium exposure. Some commenters, including NJH and USW, expressed support for the proposed requirement to use HEPAfiltered vacuuming (e.g., Document ID 1664, p. 7; 1681, p. 13). NJH indicated that HEPA-filtered vacuuming is one of the methods that it recommends using because ‘‘it has been shown to minimize exposures’’ (Document ID 1664, p. 7). USW added that HEPA vacuums are common in the manufacturing industry and requiring their use should not burden employers (Document ID 1681, p. 13). Southern Company also noted that where beryllium is present as a trace element in coal-fired power generation, ‘‘surfaces are cleaned and kept free of coal dust and ash by various methods, including vacuuming or washing,’’ methods that may already comply with this proposed provision (Document ID 1668, p. 6). KCP also indicated its support for HEPA vacuums, stating that vacuuming with HEPA filters is the safest way to remove dry contaminants from surfaces (Document ID 1676, Attachment 1, p. 5). However, KCP added that HEPA vacuums do not always work well in tight areas with recesses, crevices, and complex arrangements of equipment components and that workers are likely to use a towel to clean such areas. Because workers will naturally use nearby towels, KCP recommended that OSHA specify that towels used to clean surfaces must be wet, not dry. The Sampling and Analysis Subcommittee Task Group of the Beryllium Health and Safety Committee (BHSC Task Group) also expressed concern with the proposed provision’s reliance on HEPA-filtered vacuuming. The BHSC Task Group observed that although HEPA-filtered vacuuming is considered to be the most effective method for cleaning surfaces, it is not necessarily effective in minimizing the spread of contamination because the vacuums fail in various ways during use. The BHSC Task Group further suggested that if OSHA were to prescribe HEPA-filtered equipment use, it should include a requirement for particle counting during use (Document ID 1665, p. 11). OSHA finds that HEPA-filtered vacuuming is a highly effective method of cleaning beryllium-contaminated VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 surfaces. However, the Agency acknowledges that any housekeeping equipment may fail and that maintaining the equipment according to the manufacturer’s recommendations can be a critical part of ensuring that it functions as intended. (See summary and explanation of paragraph (j)(2)(v) which addresses maintenance of cleaning equipment.) Nevertheless, OSHA believes that when HEPA vacuums are maintained in proper working condition, it is not necessary to include a requirement for particle counting during the vacuuming. In addition, the Agency agrees with KCP that in certain circumstances other cleaning methods, such as wet wiping with towels, may also be effective in minimizing the likelihood and level of airborne exposure. Thus, paragraph (j)(2)(i) of the general industry standard retains the requirement that employers must ensure that surfaces in beryllium work areas are cleaned by HEPA-filter vacuuming or other cleaning methods that minimize the likelihood and level of airborne exposure. However, as discussed in detail below, OSHA has also added provisions to accommodate situations where cleaning with HEPAfiltered vacuums or other cleaning methods that minimize airborne exposure are not effective. As explained above, OSHA has chosen not to include a provision requiring the cleaning of surfaces in the final construction and shipyard standards. And, as explained in the Summary and Explanation for paragraph (e), the construction and shipyard standards do not include a provision establishing beryllium work areas. Thus, references to surface cleaning and beryllium work areas have been removed from paragraph (j)(2)(i) of the construction and shipyard standards. Paragraph (j)(2)(i) in these standards requires employers to ensure the use of HEPA-filter vacuuming or other methods that minimize the likelihood and level of airborne exposure when cleaning spent blast media or performing other cleaning in beryllium-contaminated areas. Paragraph (j)(2)(ii) of the proposed rule addressed the use of dry sweeping and brushing for cleaning in beryllium work areas. This proposed provision would have disallowed the use of dry sweeping and brushing unless the employer had tried cleaning with a HEPA-filtered vacuum or another method that minimizes the likelihood and level of exposure, and found that the method attempted was not effective under the particular circumstances found in the workplace. As explained in the proposal, OSHA included this PO 00000 Frm 00223 Fmt 4701 Sfmt 4700 2691 provision to provide employers flexibility when exposure-minimizing cleaning methods would not be effective. See 80 FR 47796. However, the Agency indicated it was not aware of any circumstances in which dry sweeping or brushing would be necessary and requested comment on whether either of these cleaning methods would ever be necessary, and if so, under what circumstances. See 80 FR 47574. Some commenters expressed general support for the prohibition on dry sweeping and brushing. For example, Ashlee Fitch, representing USW and Materion, commented that HEPA vacuums should be used whenever feasible, and stated that ‘‘OSHA has appropriately characterized this provision relative to exceptions’’ (Document ID 1680, p. 5). ORCHSE also agreed that prohibiting dry sweeping or brushing to clean surfaces in beryllium work areas is appropriate, and that employers should only be permitted to use dry sweeping and dry brushing when HEPA-filtered vacuuming have been tried and found not effective (Document ID 1691, Attachment 1, p. 5). Commenters AFL–CIO, AWE, the BHSC Task Group, and North America’s Building Trades Unions (NABTU), recommended prohibiting the use of dry sweeping under any circumstances (Document ID 1689, p. 13; 1615, p. 1, 9; 1655, p. 11; 1679, p. 9). For example, Clive LeGresley of AWE stated that AWE does not permit dry sweeping or brushing to clean surfaces and recommended banning this practice (Document ID 1615, p. 1). The BHSC Task Group recommended that dry sweeping be prohibited because it disturbs settled beryllium on surfaces, ‘‘which can exacerbate airborne contamination’’ (Document ID 1655, p. 11). It also argued that dry sweeping is not an effective cleaning method, and when dry cleaning is the only available option, dry pickup cloths rather than sweeping should be used (Document ID 1655, p. 13). The AFL–CIO recommended strengthening language in the final rule to prohibit dry housekeeping methods (Document ID 1689, p. 13). In addition, the AFL–CIO pointed out that under the DOE Chronic Beryllium Disease Prevention Program, 10 CFR 850.30 (Housekeeping), the use of dry methods for cleaning floors and surfaces in areas where beryllium is present is prohibited (Document ID 1689, p. 13). NABTU argued that there are no circumstances in which dry sweeping or brushing is necessary, that these practices are unsafe, and the use of such practices would trigger the need to decontaminate entire work areas E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2692 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations before any work could be performed (Document ID 1679, p. 9). AFL–CIO additionally recommended that if dry cleaning methods are necessary due to feasibility issues, ‘‘employers should be required to conduct an exposure assessment and provide a work process description’’ (Document ID 1809, p. 2). OSHA has considered AFL–CIO’s comment, and finds that the requirements for exposure assessment included in paragraph (d) of the final standards adequately address AFL– CIO’s recommendation for exposure assessment. If an employer uses dry methods for cleaning berylliumcontaminated surfaces or areas, exposure from these methods should be included in exposure assessment, and re-assessment of exposures must be conducted when an employer adopts or changes dry methods because this could cause new or additional exposures. In addition, OSHA has considered AFL–CIO’s recommendation to require employers who use dry methods to provide a work process description, and finds that a work process description provides no clear benefit to workers using dry methods for cleaning. However, OSHA notes that paragraph (m) of this standard, which requires training for every employee who is or can reasonably be expected to be exposed to airborne beryllium, encompasses any use of dry cleaning methods in the demarcated beryllium work areas (or, in construction and shipyard settings, in berylliumcontaminated areas). Paragraph (m)(4) includes requirements that employees can demonstrate knowledge and understanding of hazards associated with beryllium exposure, operations that could result in airborne exposure, and measures employees can take to protect themselves from airborne exposure to and contact with beryllium. OSHA intends that employees who use dry methods for cleaning berylliumcontaminated surfaces or areas must be trained on the potential for airborne exposure during such cleaning, the hazards associated with such exposure, and the measures they can take to protect themselves, including the requirements of final paragraphs (j)(2)(iv) and (j)(2)(v) discussed later in this section. OSHA finds that these training requirements serve the purpose of providing information to employees regarding the work process, hazards and methods of protection related to dry sweeping, as OSHA believes the AFL– CIO’s recommendation intended. Several stakeholders cited problems with the use of HEPA-filtered vacuums or wet methods in particular circumstances, or noted specific VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 circumstances where they believed the use of dry sweeping was necessary (Document ID 1676, p. 5; 1668, p. 6; 1807, pp. 2–3; 1756, Tr. 42–43). For example, as noted above, KCP argued that HEPA-filtered vacuums do not always work well in tight areas with recesses, crevices, and complex arrangements of equipment components. Materion commented that it generally prohibits the use of dry brushing or broom cleaning for cleaning but, in instances such as machining operations, the use of paint brushes to clean small chips is required. Materion also noted that some manufacturing processes may use dry brushes. It added that when it permits use of a brush, it performs an exposure assessment ‘‘to help ensure the task is well controlled’’ (Document ID 1807, Attachment 1, pp. 2–3). In addition, Jerrod Weaver from the Non-Ferrous Founders’ Society (NFFS) testified that dry sweeping is ‘‘not unusual’’ in the foundry industry. He explained that the use of wet sweeping or other wet cleaning methods would be dangerous in foundries because when water hits molten metal, it can cause an explosion (Document ID 1756, Tr. 42–43). Other stakeholders offered opinions on when the use of dry sweeping and dry brushing should be constrained. For example, the Southern Company argued that when dry sweeping does not result in exposure to beryllium above the action level, it should be considered a feasible cleaning option (Document ID 1668, p. 6). Similarly, Ameren Corporation stated that ‘‘prohibiting dry sweeping should be based on employee exposure at or above the action level, not whether it’s a beryllium work area’’ (Document ID 1675, p. 6). As discussed in Section V, Health Effects, and Section VI, Risk Assessment, the best available scientific evidence suggests that adverse health effects such as beryllium sensitization and CBD can result from airborne exposures below the action level of 0.1 mg/m3. In addition, OSHA does not see this suggestion as a practical solution where employers may feel obligated to perform exposure monitoring (or exposure assessments) every time housekeeping functions are performed. OSHA, as it has done in many other standards (e.g., Chromium (VI), 29 CFR 1910.1026), continues to believe that a general prohibition is warranted considering the risk even at the action level. After carefully reviewing the evidence in the record, OSHA finds that the use of dry sweeping and dry brushing can contribute to employee exposure. However, OSHA also finds convincing evidence that wet methods and HEPA- PO 00000 Frm 00224 Fmt 4701 Sfmt 4700 filtered vacuums may not be safe or effective in all situations in general industry. For example, wet sweeping in certain foundry work areas may be effective but is not safe because of the physical hazard created when water comes into contact with molten metal. Therefore, the Agency has retained both the prohibition on dry sweeping and dry brushing and the exceptions to that prohibition in paragraph (j)(2)(ii) of the final standard for general industry. Although OSHA has decided not to allow these methods based on a specific exposure level, OSHA has revised (j)(2)(ii) to clarify that employers may use dry sweeping or dry brushing to clean surfaces where HEPA-filtered vacuuming or other appropriate methods that minimize likelihood and level of exposure are not safe or effective. The proposed provision merely stated that employers could utilize the dry sweeping or brushing when HEPA-filtered vacuuming or the other methods were not ‘‘effective.’’ The Agency intended this term to encompass those situations in which HEPA-filtered vacuuming or the other chosen method would not accomplish the task at hand, i.e., cleaning, and situations in which the use of HEPAfiltered vacuuming or the other methods were unsafe. OSHA has modified the text of the final rule to make this intent explicit. In sum, final paragraph (j)(2)(ii) of the general industry standard states that the employer must not allow dry sweeping or brushing for cleaning surfaces in beryllium work areas unless HEPAfiltered vacuuming or other methods that minimize the likelihood and level of airborne exposure are not safe or effective. In situations where HEPAfiltered vacuuming or other methods that minimize the likelihood and level of airborne exposure would be ineffective, would cause damage, or would create a hazard in the workplace, the employer is not required to use these cleaning methods. The revised paragraph (j)(2)(ii) gives employers the necessary flexibility to use dry sweeping or dry brushing in such situations. Although OSHA is allowing for dry sweeping and brushing, the Agency anticipates that the number of circumstances where these methods are necessary will be extremely limited. Where the employer uses dry sweeping or brushing, the employer must be able to demonstrate that HEPA-filtered vacuuming or other methods, such as wet sweeping, that minimize the likelihood or exposure are not safe or effective. To comply with the final rule, it is enough for employers to demonstrate that such cleaning methods E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations are unsafe or ineffective—actually attempting the method on a particular worksite is unnecessary. However, as in the proposal, the employer bears the burden of providing that these methods are either unsafe or ineffective. OSHA has included a similar provision in final paragraph (j)(2)(ii) of the standards for construction and shipyards. Like the general industry provision, final paragraph (j)(2)(ii) of the standards for construction and shipyards disallows dry sweeping and dry brushing and includes an exception for circumstances where HEPA-filtered vacuuming, or other methods that minimize the likelihood of exposure are not safe or effective. Because the construction and shipyard standards do not include a provision establishing beryllium work areas, paragraph (j)(2)(i) of these standards requires the employer to ensure the use of HEPA-filter vacuuming or other methods that minimize the likelihood and level of airborne exposure when cleaning beryllium-contaminated areas. Paragraph (j)(2)(ii) states that the employer must not allow dry sweeping or brushing for cleaning in berylliumcontaminated areas unless HEPAfiltered vacuuming or other methods that minimize the likelihood and level of airborne exposure are not safe or effective. OSHA notes that methods that minimize the likelihood and level of airborne exposure other than HEPA vacuuming may be appropriate for use in construction and shipyards. Use of wet methods, such as wet sweeping or wet shoveling, or using mechanical equipment to move wetted material, may be viable alternatives for cleaning large amounts of spent blasting media used in abrasive blasting operations. Paragraph (j)(2)(iii) of the proposed rule would have prohibited the use of compressed air in cleaning berylliumcontaminated surfaces unless it was used in conjunction with a ventilation system designed to capture any resulting airborne beryllium. As OSHA indicated in the proposal, this provision was intended to limit airborne exposure by preventing the dispersal of beryllium into the air (80 FR 47796). Stakeholders offered a number of comments on the use of compressed air. For example, NJH expressed support for this provision, and emphasized that compressed air should only be used in conjunction with a ventilation system (Document ID 1664, p. 7). Several commenters discussed the use of compressed air for cleaning and other processes. Materion commented that it generally prohibits the use of compressed air, but production VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 operations may incorporate compressed air into manufacturing processes (Document ID 1807, Attachment 1, p. 3). Materion further commented that on the few occasions when it permits the use of compressed air, it performs an exposure assessment ‘‘to help ensure the task is well controlled’’ (Document ID 1807, Attachment 1, p. 3). Mr. Weaver, a representative of NFFS, testified that the use of compressed air in the foundry industry is ‘‘not unusual’’ (Document ID 1756, Tr. 42). He added that compressed air is useful for cleaning work surfaces (Document ID 1756, Tr. 42). Some commenters, including the AFL–CIO, AWE, and United Automobile, Aerospace & Agricultural Implement Workers of America (UAW), objected to the use of compressed air for cleaning (Document ID 1615 p. 1; 1689, p. 13; 1693, p. 4). For example, the AFL–CIO noted that the DOE Chronic Beryllium Disease Prevention Program prohibits the use of compressed air and dry methods for cleaning floors and surfaces in areas where beryllium is present (Document ID 1689, p. 13). And, UAW stated that ‘‘[c]apture hoods capable of reliably controlling particulates pushed by compressed air do not exist’’ (Document ID 1693, p. 4). OSHA has carefully considered these comments and finds that the use of compressed air to clean berylliumcontaminated surfaces may occasionally be necessary in general industry; particularly in manufacturing processes. Therefore, paragraph (j)(2)(iii) of the final standards allows for the use of compressed air to clean, but only where the compressed air is used in conjunction with a ventilation system designed to capture the particulates made airborne by the use of compressed air. This provision is consistent with other recent substance-specific standards, such as the standard for respirable crystalline silica (29 CFR 1910.1053). Because the standards for construction and shipyards do not include a provision establishing beryllium work areas, paragraph (j)(2)(iii) of these standards states that employers must not allow the use of compressed air for cleaning in beryllium-contaminated areas unless the compressed air is used in conjunction with a ventilation system designed to capture the particulates made airborne by the use of compressed air. OSHA intends this paragraph to apply when using compressed air to clean, for example, surfaces in work areas, tarps used for abrasive blasting enclosures, abrasive blasting equipment, and material designated for recycling or PO 00000 Frm 00225 Fmt 4701 Sfmt 4700 2693 disposal in order to prevent dispersal of beryllium into workers’ breathing zones. OSHA recognizes that even the limited uses permitted under these standards of dry sweeping, dry brushing, and compressed air to clean can result in employee exposure to beryllium. To help mitigate the potential health risks, OSHA included a provision in the proposed rule to further protect employees who are using these cleaning methods. Under proposed paragraph (j)(2)(iv), where employees use dry sweeping, brushing, or compressed air to clean berylliumcontaminated surfaces, the employer was required to provide respiratory protection and protective clothing and equipment and ensure that each employee use this protection in accordance with paragraphs (g) and (h) of this standard. As OSHA explained in the proposal, the failure to provide proper and adequate protection to those employees performing cleanup activities would defeat the purpose of the housekeeping practices required to control beryllium exposure. See 80 FR 47796. In its post-hearing comments, the AFL–CIO indicated support for this requirement. Specifically, the AFL–CIO argued that if dry housekeeping methods are permitted, ‘‘workers should be provided a N–95 respirator—or a higher level of protection as required based on the exposure—and personal protective clothing’’ (Document ID 1809, p. 2). After considering the record on this issue, OSHA concludes that requiring employers to provide respiratory protection and protective clothing and equipment in the limited situations where dry sweeping, brushing, or compressed air is used is essential to minimize exposure. Therefore, the Agency has included this provision in paragraph (j)(2)(iv) of the final standard for general industry. OSHA has also included a similar provision in paragraph (j)(2)(iv) of the final standards for construction and shipyards. Proposed paragraph (j)(2)(v) would have required employers to ensure that equipment used to clean beryllium from surfaces is handled and maintained in a manner that minimizes employee exposure and the reentrainment of beryllium into the workplace environment. Re-entrainment occurs when particles that have settled on surfaces become airborne and remain suspended in the air. Beryllium particles that have been disturbed from surfaces and re-entrained contribute to employee’s airborne beryllium exposure. Commenters generally supported the inclusion of this provision in the final rule. For example, E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2694 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Materion stated that preventing migration of beryllium requires ‘‘looking at all those migratory pathways where material can move around in an operation,’’ keeping the material as close to the source as possible, and keeping it off of people and off of surfaces (Document ID 1755, Tr. 150). The BHSC Task Group commented that HEPA vacuums ‘‘must be maintained per the manufacturer’s recommendations and oriented in such a manner that the exhaust side of the HEPA vacuum is not blowing hazardous dust into the work area’’ (Document ID 1655, p. 11). Among other things, the BHSC Task Group said this provision would cause employers to ensure that cleaning and maintenance of HEPAfiltered vacuum equipment is done carefully to avoid exposure to beryllium. This provision would also require employers to ensure that filter changes and bag and waste disposal be performed in a manner that minimizes the risk of employee exposure to airborne beryllium and accidentally dispersing beryllium back into the workplace environment. After carefully reviewing these comments, OSHA finds that the provisions of paragraph (j)(2)(v) are necessary to the protection of employees from the adverse health effects associated with beryllium exposure, and has decided to include this provision (with minor changes) in paragraph (j)(2)(v) of the final standards. OSHA notes that paragraph (j)(2)(v) complements paragraph (f)(1)(i)(F), which requires employers to establish and implement a written exposure control plan that includes procedures for minimizing the migration of beryllium. Paragraph (j)(3)(i) of the proposed rule would have required the employer to ensure that waste, debris, and materials visibly contaminated with beryllium and consigned for disposal were disposed of in sealed, impermeable enclosures, such as bags or containers. Paragraph (j)(3)(ii) would have further required such bags or containers to be labeled in accordance with paragraph (m)(3) of the proposed rule. Finally, paragraph (j)(3)(iii) of the proposed rule would have required materials designated for recycling that are visibly contaminated with beryllium to be either cleaned to remove visible particulate, or placed in sealed, impermeable enclosures, such as bags or containers, that are labeled in accordance with paragraph (m)(3) of the proposed rule. OSHA intended these provisions to protect and inform workers who may be exposed to beryllium when handling waste or recycled materials. As VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 discussed in the NPRM, alerting employers and employees who are involved in disposal to the potential hazards of beryllium exposure will better enable them to implement protective measures (80 FR 47771). OSHA reasoned that employers and employees should be similarly alerted if handling materials designated for recycling that have not been cleaned of visible particulate. The proposed requirements to use impermeable enclosures and/or clean materials of visible particulate were intended to reduce employees’ risk of beryllium sensitization from dermal contact with beryllium in handling waste materials or materials designated for recycling. The options provided to employers in proposed paragraph (j)(3)(iii) were intended to allow employers flexibility to facilitate the recycling process. In the NPRM, OSHA asked for feedback on proposed paragraph (j)(3) (80 FR 47574). A number of stakeholders responded. For example, NFFS argued that: [t]he sections regulating the manner in which waste product is labeled, packaged and shipped have already been regulated by both the [Environmental Protection Agency (EPA) (e.g. treatment, recycling and reuse of waste materials) and the DoT (e.g. shipping and placarding requirements, shipping containers for hazardous materials). Additionally, scrap and process coproducts in the non-ferrous foundry industry are treated as products and provided with appropriate labeling and SDS information as required by OSHA and the GHS/Hazard Communication standard. Requiring the non-ferrous casting industry to treat our process coproducts the same as waste and debris streams contradicts the requirements of the EPA and DoT regarding the identification, processing, packing, handling and transportation requirements of these materials’’ (Document ID 1678, p. 5). OSHA’s requirement for warning labels must be consistent with the Hazard Communication Standard. Therefore, OSHA is not convinced that these are barriers to appropriately warning downstream users of beryllium contamination. In the Hazard Communication Standard (HCS), OSHA has carefully defined when other Agencies have jurisdiction for labeling requirements such as EPA and the Department of Transportation (DOT). Additionally, as OSHA further explainsed in the Summary and Explanation for paragraph (m), Communication of hazards, OSHA intends for the hazard communication requirements in the final standards to be substantively as consistent as possible with the HCS, while including additional specific requirements needed to protect employees exposed to beryllium, in order to avoid duplicative PO 00000 Frm 00226 Fmt 4701 Sfmt 4700 administrative burden on employers who must comply with both the HCS and this rule. To that end, OSHA allows employers to include the information required by these beryllium standards on the labels created to comply with the HCS. Thus, if NFFS’s members are already supplying labels that conform to the HCS, they can add the berylliumspecific information to the existing labels. OSHA deems this information is warranted and would not contradict or cast doubt on the other information required on the label. Some commenters, including USW, generally agreed with OSHA’s proposed disposal and recycling requirements (e.g., Document ID 1680, p. 6). Materion noted that a similar provision appeared in Materion and the USW’s joint draft model standard (Document ID 1681, p. 12). In addition, Materion argued that OSHA should not require that all material to be recycled be decontaminated regardless of perceived surface cleanliness or require that all material disposed or discarded be in enclosures regardless of perceived surface cleanliness (Document ID 1681, p. 12). The company maintained that this requirement would be technologically and economically infeasible and extremely costly in many regards, particularly with regard to surface residue from abrasive blasting (Document ID 1681, p. 12). As discussed below, OSHA has decided for the construction and shipyard standards not to require decontamination or enclosure of materials designated for recycling or disposal due in part to concerns about the feasibility of such requirements in these sectors. However, many other stakeholders argued in favor of cleaning or enclosing all beryllium-contaminated materials designated for recycling and enclosing such materials destined for disposal. For example, the BHSC Task Group, NJH, the National Institute for Occupational Safety and Health, Southern Company, NFFS, AIHA, NABTU, and ORCHSE disagreed with the proposal’s use of the term ‘‘visible’’ when determining whether the provisions for containment and labeling included in proposed paragraph (j)(3) should apply to materials designated for recycling or disposal (e.g., Document ID 1664, p. 7; 1671, Attachment 1, p. 7; 1668, p. 6; 1678, p. 5; 1686, p. 2; 1679, p. 10; 1691, p. 5). NJH and ORCHSE recommended that OSHA require all materials designated for recycling ‘‘be decontaminated regardless of perceived surface cleanliness’’ (Document ID 1664, p. 7; 1691, p. 5). NJH added that ‘‘particles may not be visible to the naked eye’’ and ‘‘[d]econtaminating all E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations materials ensures that exposure is minimized.’’ It also recommended that materials designated for disposal be discarded per local hazardous waste regulations (Document ID 1664, p. 7). ORCHSE argued that for the protection of municipal and commercial disposal workers, materials discarded from beryllium work areas should be in bags or other containers (Document ID 1691, p. 5). NFFS asserted that ‘‘visibly contaminated,’’ ‘‘cleaned to remove visible particulate,’’ and ‘‘sealed, impermeable enclosures’’ are vague terms (Document ID 1678, p. 5). As discussed previously in the Summary and Explanation for paragraph (h), Personal protective clothing and equipment, in this preamble, OSHA finds that ‘‘visibly contaminated’’ is a subjective trigger for most purposes in the final standards, and dermal contact with beryllium can cause beryllium sensitization even if the beryllium is not visible to the naked eye. OSHA therefore agrees with the commenters who criticized the use of ‘‘visibly contaminated.’’ (see, e.g. Document ID 1686, p. 1). The Agency intends that waste, debris, and materials be disposed of as specified in paragraph (j)(3) regardless of particulate visibility. However, OSHA does not intend for this requirement to extend to articles containing beryllium that are outside of the scope the standard, but to beryllium dust generated during processing. Similarly, materials designated for recycling must be cleaned to remove particulate or placed in sealed, impermeable enclosures, such as bags or containers, and labeled in accordance with paragraph (m)(3) of the standards, regardless of particulate visibility. To make this intention clear to employers, OSHA has removed the terms ‘‘visibly’’ and ‘‘visible’’ from paragraph (j)(3) of the final standard for general industry, and has replaced them with ‘‘as free as practicable.’’ OSHA discusses the meaning of ‘‘as free as practicable’’ and addresses comments on this phrase in this Summary and Explanation of paragraph (j), Housekeeping. OSHA also agrees with ORCHSE that materials discarded from beryllium work areas in general industry should be in bags or other containers for the protection of municipal and commercial disposal workers (Document ID 1691, p. 5). However, OSHA disagrees with NFFS’s comment that ‘‘sealed, impermeable enclosures’’ is problematically vague (Document ID 1678, p. 5). OSHA intends this term to be broad and the provision performance-oriented, so as to allow employers in a variety of industries flexibility to decide what type of VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 enclosures (e.g., bags or other containers) are best suited to their workplace and the nature of the beryllium-containing materials they are disposing or designating for reuse outside the facility. OSHA finds that the terms ‘‘sealed’’ and ‘‘impermeable’’ are commonly understood and should not cause employers confusion. OSHA intends these terms to mean that the enclosures selected should not allow the materials they contain to escape the enclosures under normal conditions of use. In addition, the BHSC Task Group stated that certain berylliumcontaminated items should not be considered for recycling. According to the BHSC Task Group, only materials scheduled for use within beryllium regulated areas at other facilities, and not by the general public, should be recycled. The BHSC Task Group recommended surface wipe sampling to determine whether items should be decontaminated again and should be resampled prior to recycling; otherwise, if not meeting established limits, they should be disposed of according to ‘‘appropriate waste management practices’’ (Document ID 1655, p. 13). After careful consideration, OSHA has decided not to adopt the BHSC Task Group’s suggestion. The Agency finds that the requirement to either clean and label or enclose and label berylliumcontaminated or containing materials designated for recycling should provide protection for later recipients of these items, as discussed in more detail below. In addition to the previously discussed changes to the proposed rule, which were directly related to comments received by OSHA, the Agency has made several changes to better implement and communicate the intention of paragraph (j)(3). First, OSHA has modified the provisions of paragraph (j)(3) to state that it applies to materials that contain beryllium as well as materials contaminated with beryllium. OSHA finds that employers and employees who work with materials that were recycled or discarded by other facilities should be made aware of any beryllium-containing materials they process. Provisions to ensure awareness of beryllium in materials received from other facilities aid employers who otherwise might not know they are required to comply with the beryllium standard, and employees who otherwise might not be appropriately protected or adequately informed about potential beryllium exposures in their workplace. Second, the requirements of (j)(3) regarding labeling materials designated for recycling have been modified. While PO 00000 Frm 00227 Fmt 4701 Sfmt 4700 2695 the proposed rule required materials designated for recycling to be labeled in accordance with paragraph (m)(3) only if employers choose to enclose rather than clean them, the final standards require employers to label materials designated for recycling in either case. This modification, like OSHA’s addition of the reference to beryllium-containing materials discussed above, ensures that employers and employees who work with materials that were recycled by other facilities are aware of any beryllium-containing materials they process. OSHA also modified the requirements of proposed paragraph (j)(3) for the construction and shipyard sectors. Paragraph (j)(3) of the construction and shipyard standards requires employers who transfer materials containing beryllium to another party for use or disposal to provide the recipient with a copy of the warning described in paragraph (m)(3) of the standards, for the same reasons this requirement was retained in the final general industry standard. However, employers in construction and shipyards are not required to place beryllium-containing materials in sealed, impermeable enclosures for use or disposal by other entities. OSHA made this change from paragraph (j)(3) of the general industry standard because the Agency believes that spent media from abrasive blasting operations will constitute the great majority of beryllium-containing materials designated for disposal or recycling in construction and shipyards and it is generally not practical for employers to enclose spent blasting media in sealed, impermeable bags or containers, because of the large volume of waste material generated in these operations OSHA finds that requiring employers in construction and shipyards to include a warning label on beryllium-containing materials designated for disposal or reuse, but not requiring them to seal such materials in impermeable enclosure, appropriately informs recipients of the potential hazards of handling the materials without imposing impractical containment requirements on these employers. In addition, these separate requirements for construction and shipyards are responsive to Materion’s concern regarding the technological and economic feasibility of cleaning or enclosing materials contaminated with surface residue from abrasive blasting. In summary, paragraph (j)(3)(i) of the final standard for general industry requires that items containing or contaminated with beryllium and designated for disposal be disposed of E:\FR\FM\09JAR2.SGM 09JAR2 2696 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations in sealed, impermeable bags or other sealed, impermeable containers, and requires these containers to be marked with warning labels in accordance with paragraph (m)(3) of the standards. Paragraph (j)(3)(ii) of the final standard for general industry requires materials designated for recycling that contain or are contaminated with beryllium be cleaned to be as free as practicable of surface beryllium contamination and labeled in accordance with paragraph (m)(3) of this standard, or to be placed in sealed, impermeable enclosures, such as bags or containers, that are so labeled. Paragraph (j)(3) of the construction and shipyard standards requires employers who transfer materials containing beryllium to another party for use or disposal to provide the recipient with a copy of the warning described in paragraph (m)(3) of these standards. The term ‘‘use’’ is intended to include recycling, as well as any other use the recipient may make of the berylliumcontaining materials. Finally, USW and Materion requested that OSHA make it clear that this provision does not apply to berylliumcontaining scrap metals being reused within the facility (Document ID 1680, p. 6; 1661 p. 12). USW offered the example of copper beryllium machine turnings being utilized within the same facility. The union explained: ‘‘In this example, it would not make sense to require cleaning or enclosing because they are either very clean to start with or have a thin coating of machining coolant. Requiring them to be cleaned before reuse in the facility might actually lead to greater worker exposures’’ (Document ID 1680, p. 6). OSHA did not intend to require employers to clean or enclose materials designated for reuse elsewhere in the same facility. Therefore, OSHA clarifies that paragraph (j)(3)(ii)’s requirements do not apply to scrap metals designated for reuse within the same facility. asabaliauskas on DSK3SPTVN1PROD with PROPOSALS (k) Medical Surveillance Paragraph (k) of the final standards sets forth requirements for the medical surveillance provisions. The paragraph specifies which employees must be offered medical surveillance, as well as the frequency and content of medical examinations. It also sets forth the information that the licensed physician and CBD diagnostic center is to provide to the employee and employer. Many of the provisions in the final standards are substantively consistent with the 2012 joint draft recommended standard by Materion Corporation (Materion) and the United Steelworkers (USW) (Document ID 0754). VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 The purposes of medical surveillance for beryllium are: (1) To identify beryllium-related adverse health effects so that appropriate intervention measures can be taken; (2) to determine if an employee has any condition that might make him or her more sensitive to beryllium exposure; and (3) to determine the employee’s fitness to use personal protective equipment such as respirators. The inclusion of medical surveillance in these final standards is consistent with section 6(b)(7) of the OSH Act (29 U.S.C. 655(b)(7)), which requires that, where appropriate, medical surveillance programs be included in OSHA health standards to aid in determining whether the health of employees is adversely affected by exposure to the hazards addressed by the standard. Almost all other OSHA health standards, such as Chromium (VI) (29 CFR 1910.1026), Methylene Chloride (29 CFR 1910.1052), Cadmium (29 CFR 1910.1027), and Respirable Crystalline Silica (29 CFR 1910.1053), have also included medical surveillance requirements and OSHA finds that a medical surveillance requirement is appropriate for the beryllium standards because of the health risks resulting from exposure. General. Consistent with the proposed standards, paragraph (k)(1)(i) of the final standards, requires employers to make medical surveillance available at no cost, and at a reasonable time and place, for each employee who meets a trigger for medical surveillance. As in previous OSHA standards, the ‘‘no cost, and at a reasonable time and place’’ requirement in the final beryllium standards is intended to encourage employee participation. Under this requirement, if participation requires travel away from the worksite, the employer will be required to bear the cost of travel, and employees will have to be paid for time spent taking medical examinations, including travel time. OSHA clarifies that employees of beryllium vendors who qualify for benefits under the Energy Employees Occupational Illness Compensation Program Act (EEOICPA) (42 U.S.C. 7384–7385s–15) and its implementing regulations (20 CFR part 30) may also qualify for medical surveillance benefits under this final standard. Medical benefits provided to covered employees for covered beryllium diseases under the EEOICPA program are paid for by the federal government. Employees covered by both the EEOICPA program and this final standard will not be required to choose between the programs. Rather, these dual-coverage employees may undergo medical examinations where they can PO 00000 Frm 00228 Fmt 4701 Sfmt 4700 receive the services and/or treatment covered under both programs. Treatment and services for covered beryllium disease of a covered beryllium employee under the EEOICPA program will be paid for by the federal government to the extent that the services provided are covered under the EEOICPA program. If this final standard requires services or treatment that are not covered by the EEOICPA program, the employer will be required to pay for these additional services. OSHA received numerous comments during the public comment period regarding the inclusion of the medical surveillance provision for the beryllium standard. Most comments supported inclusion of medical screening or surveillance in the final beryllium standard, including those from National Safety Council (NSC), Materion, National Jewish Health (NJH), North America’s Building Trades Union (NABTU), USW, the American College of Occupational and Environmental Medicine (ACOEM), the American Thoracic Society (ATS), the American Federation of Labor and Congress of Industrial Organizations (AFL–CIO), ORCHSE Strategies (ORCHSE), the National Institute of Occupational Safety and Health (NIOSH), and Public Citizen (e.g., Document ID 1612, p. 3; 1661, p. 10; 1664, pp. 1, 8; 1679, pp. 11– 12; 1681, pp. 13–14; 1685, p. 4; 1688, p. 2; 1689, pp. 13–14; 1691, Attachment 1, pp. 5–13; 1725, p. 33; 1964, p. 3). No commenters opposed the inclusion of a medical surveillance requirement. In support of medical surveillance, the AFL–CIO and others indicated that medical surveillance is essential in screening for sensitization and preventing CBD (Document ID 1658, p. 3; 1689, p. 13). As noted in Section V, Health Effects, employees in the early stages of beryllium disease are often asymptomatic, and as a result, medical surveillance is critical to identify those employees who may benefit from interventions such as removal from exposure. ATS also commented that medical surveillance helps to identify those with sensitization and potentially CBD, as well as to define the risk of various work exposures, jobs, and tasks (Document ID 1688, p. 3). Commenter Evan Shoemaker said surveillance could ‘‘inform employers that workplace controls and safeguards need updating’’ (Document ID 1658, p. 3). NJH commented that early disease detection, before symptoms occur, is the cornerstone for managing work-related disease (Document ID 1806, pp. 2–3). Studies highlighted by NJH show that medical surveillance could be important for identifying workers that might E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations benefit from removal from exposure. Those studies show that rates of CBD development in sensitized workers are lower for short-term than long term workers (1.4% versus 9.1% in a study by Henneberger et al., 2001, Document ID 1313). Other studies it cited showed improvements in gas exchange and radiography with decreased peak air concentrations of beryllium (Sprince et al., 1978, as cited in Document ID 1806) and improvements in lung function in most patients after stopping beryllium exposures (Sood et al., 2004, Document ID 1331). NJH also submitted evidence showing that once employees do develop symptoms, the knowledge that the symptoms are caused by CBD could lead to treatment to improve outcome (Document ID 1806, pp. 2–3). NJH found that identifying disease at an early stage allows the use of inhaled corticosteroids for mild symptoms, which it found to be effective for reducing expected levels of lung function decline and improving lung function and cough in employees with lower lung function (Document ID 1811, Attachment 8). Early detection of beryllium disease and identification of employees who would benefit from oral corticosteroid treatment before fibrosis develops can result in regression of signs and symptoms and possibly prevent progression of the disease (Marchand-Adam et al., 2008, Document ID 0370; 80 FR 47588). NJH concluded that early detection of beryllium disease allows for exposures to be decreased and symptoms to be treated at the earliest time point, which can result in decreases in medication doses, side effects, and risk of disease progression. In paragraphs (k)(1)(i)(A)–(C) of the proposal, OSHA specified that employers must ‘‘make medical surveillance as required by this paragraph available’’ for each employee: (1) Who has worked in a regulated area for more than 30 days in the last 12 months; (2) showing signs or symptoms of CBD, such as shortness of breath after a short walk or climbing stairs, persistent dry cough, chest pain, or fatigue; or (3) exposed to beryllium during an emergency. OSHA requested comments on these triggers and also presented alternatives to expand eligibility for medical surveillance to a broader group of employees (80 FR 47565, 47571, 47576). Under Regulatory Alternative #14, medical surveillance would have been available to employees who are exposed to beryllium above the proposed permissible exposure limit (PEL), including employees exposed for fewer than 30 days per year. Regulatory Alternative #15 would have expanded VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 eligibility for medical surveillance to employees who are exposed to beryllium above the proposed action level, including employees exposed for fewer than 30 days per year.39 OSHA requested comment on these alternatives. OSHA received numerous comments related to each of the proposed triggers. First, a number of stakeholders commented on the proposed trigger of working in a regulated area, i.e., an area in the workplace where an employee’s exposure exceeds, or can reasonably be expected to exceed, either the PEL or the short-term exposure limit (STEL), for more than 30 days in a 12-month period. For example, NIOSH argued that employees exposed above an action level of 0.1 mg/m3 for 30 days a year should be eligible for medical surveillance because ‘‘substantial risk for [sensitization] and [chronic beryllium disease (CBD)] exists even at the [a]ction [l]evel’’ (Document ID 1725, p. 32; 1755, Tr. 40). Public Citizen also advocated for an action level trigger based on risk of sensitization below the proposed PEL, arguing that triggering medical surveillance at the PEL, where significant risk remains, would be inconsistent with other OSHA health standards (Document ID 1964, p. 3). Public Citizen asked OSHA to consider the feasibility of making medical surveillance available to employees exposed at any level of beryllium for any duration of time (Document ID 1964, p. 3). ATS and NJH supported expanding medical surveillance to all employees exposed to beryllium in beryllium work areas (above or below the action level), because of remaining significant risk at the PEL and because exposure monitoring is sporadic and may not always reflect higher exposures (Document ID 1664, p. 1; 1688, pp. 2, 4). Lisa Maier, M.D., from NJH further indicated that medical surveillance should be offered to these employees, regardless of the amount of time they spend in the work areas (Document ID 1756, Tr. 101–103). To support this recommendation, NJH referenced three studies (Henneberger et al., 2001, 39 OSHA also proposed Regulatory Alternative #21, which would have extended eligibility for medical surveillance to all employees in shipyards, construction, and general industry who meet the criteria of proposed paragraph (k)(1) (or any of the alternative criteria under consideration). However, under Regulatory Alternative #21, all other provisions of the standard would have been in effect only for employers and employees that fell within the scope of the proposed rule. As discussed in the Summary and Explanation for paragraph (a), Scope and application, OSHA has decided to expand the proposal’s scope to cover construction and shipyards. Therefore, Regulatory Alternative #21 is moot. PO 00000 Frm 00229 Fmt 4701 Sfmt 4700 2697 Document ID 1313; Schuler et al., 2005, (0919); and Taiwao et al, 2008, (1264)) that examine relationships between beryllium exposure and development of sensitization and CBD. NJH stated that exposure levels as low as 0.01 mg/m3 were associated with the development of sensitization and disease (Document ID 1720; 1756, Tr. 93–94). NJH also presented evidence showing that some individuals are genetically susceptible to developing beryllium sensitization and CBD (e.g., Maier et al., 2003, Document ID 0484; 1720, p. 3). The National Supplemental Screening Program (NSSP), an organization that provides medical screening for former Department of Energy workers, and ACOEM supported an action level trigger, including for employees exposed for less than 30 days a year (Document ID 1677, p. 3; 1685, p. 4; 1756, Tr. 83–84). However, Lee Newman, MD, who represented ACOEM at the public hearing, testified that he personally felt that medical surveillance should be offered to anyone who has worked in a beryllium work area with measurable beryllium exposures (Document ID 1756, Tr. 84). Dr. Newman stated that his personal opinion was based upon his ‘‘30 years of experience of working with people [exposed to beryllium’’ and ‘‘the studies that [he and his colleagues] have done’’ (Document ID 1756, Tr. 84). In contrast, Materion argued medical surveillance should be triggered by exposures above the PEL because Johnson et al. (2001) (Document ID 1505) concluded that 2.0 mg/m3 is sufficient to protect employees from developing clinical CBD, most recent scientific studies suggest that 0.2 mg/m3 is sufficient to protect against CBD, and the coke oven emissions standard and formaldehyde standards trigger medical surveillance at the PEL (Document ID 1661, p. 10). NGK Metals Corporation (NGK) was also opposed to setting the medical surveillance trigger at the action level, claiming that this would be burdensome, costly, and cause distress in employees who receive false positive results (Document ID 1663, p. 5). The Department of Defense (DOD) argued that medical surveillance should be triggered above the PEL to monitor the effectiveness of engineering controls and respiratory protection (Document ID 1684, Attachment 2, p. 1–9). Based on the comments and other record evidence, OSHA finds that triggering medical surveillance at the action level of 0.1 mg/m3 better addresses residual significant risk and varying susceptibility of employees that can result in sensitization and CBD at lower exposure levels. OSHA disagrees E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2698 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations with Materion that a PEL trigger for medical surveillance is sufficiently protective because OSHA’s own risk assessment shows significant risk remaining at the action level and PEL (see Section VI, Risk Assessment). In addition, OSHA is aware of individuals who are genetically predisposed to developing beryllium sensitization and CBD at beryllium levels that would not cause disease in other individuals (See Section V, Health Effects). As a result, OSHA is concerned that a PEL trigger is not sufficient to identify disease at an early stage in employees who are genetically susceptible to developing disease. Moreover, OSHA finds that an action level trigger for medical surveillance encourages employers to maintain exposures below that level, which in turns provides reasonable assurance that exposures will not exceed the PEL on days when exposures are not measured (See Summary and Explanation for paragraphs (b), Definitions, and (d), Exposure Assessment). Therefore, an action level trigger in these standards is also appropriate to address stakeholder concerns, such as those raised by ATS and NJH, that exposure assessments might underestimate actual exposures due to variability in exposure levels or other factors. Medical surveillance triggered by the action level is the norm for OSHA health standards. Materion noted two exceptions, observing that medical surveillance is not triggered at the action level in standards for formaldehyde and coke oven emissions. However, the Coke Oven Emissions standard does not include an action level, and the trigger for medical surveillance is employment in a regulated area, which is a discretely identified area on or around the coke oven battery, for at least 30 days a year (29 CFR 1910.1029). Significantly, the Coke Oven Emissions standard requires employers to assure that no employee in the regulated area is exposed to coke oven emissions at concentrations greater than the PEL (29 CFR 1910.1029(c)). Therefore, the trigger in the Coke Oven Emissions standard, which would include employees who are exposed to levels no higher than the PEL for at least 30 days per year, is more protective than a requirement that does not trigger medical surveillance until exposures exceed the PEL for 30 days a year. With the exception of formaldehyde, OSHA standards trigger medical surveillance at exposure levels at or below the PEL, and typically at the action level. In sum, OSHA is persuaded that a lower trigger for medical surveillance is necessary because of the remaining VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 health risk at both the action level and PEL. However, OSHA is not persuaded by those commenters who advocated triggering medical surveillance below the action level, in part, because nearly everyone in the general population is potentially exposed to beryllium as it is a naturally occurring compound in rocks and soil. In addition, the lack of conclusive evidence of non-industrialrelated beryllium-related disease in the record suggests there is a level of exposure at which the risk of developing beryllium-related disease becomes negligible, but OSHA does not have information to precisely determine that level. As a result, offering medical surveillance to all potentially exposed employees would result in some lowrisk employees receiving medical examinations when they have very little likelihood of benefiting from those examinations. OSHA is especially concerned by this because some medical examination components, such as the BeLPT, are invasive. In addition, OSHA finds that triggering surveillance at a level that is achievable for some employers is important because it provides employers with an incentive to keep exposures low to avoid the costs of providing medical surveillance. Employees benefit from those lower exposures because it reduces their risk of developing disease. Triggering medical surveillance at any level of exposure eliminates the incentive to keep exposures low and thus may be counterproductive to protecting employees. In conclusion, an action level trigger is appropriate because it is a level at which risks are measurable and found to be lower than at the PEL, especially for employees who may be more susceptible to developing disease. The action level is achievable for many employers, and those employers are likely to maintain exposures below the action level to avoid the costs associated with exposure assessments and offering medical surveillance. Maintaining exposures below the action level also benefits employees because it decreases the chances that exposures will not exceed the PEL on a day on which exposure assessments are not conducted, and it lowers the risk of developing disease. For those reasons, an action level trigger is appropriate in the beryllium standard, consistent with the majority of OSHA standards. Comments were also received on the 30-day duration as part of the medical surveillance trigger. NIOSH supported it (Document ID 1725, p. 32; 1755, Tr. 40). However, NJH, NSSP, and ACOEM did not support OSHA’s proposed duration trigger of more than 30 days a year, PO 00000 Frm 00230 Fmt 4701 Sfmt 4700 stating that eligible employees exposed less than 30 days a year should be offered medical surveillance (Document ID 1664, p. 9; 1677, p. 3; 1685, p. 4). Other stakeholders did not support extending medical surveillance to employees exposed for fewer than 30 days per year. For example, DOD commented that ‘‘[w]hile it is conceivable that workers can be sensitized to beryllium after brief exposures, it is unlikely that infrequent, brief exposures will cause either sensitization or chronic beryllium disease’’ (Document ID 1684, Attachment 2, p. 1–2). After careful consideration of these comments and other evidence in the record, OSHA finds that maintaining the 30-day exposure-duration trigger is appropriate in the final standards because the Agency’s risk assessment shows increasing risk of health effects from exposure at increasing cumulative exposures, which considers both exposure level and duration (See Section VI, Risk Assessment). OSHA finds that a 30-day trigger is a reasonable benchmark for capturing increasing risk from cumulative effects caused by repeated exposures. Including a 30-day exposure-duration trigger also maintains consistency with other OSHA standards, such as Chromium (VI) (29 CFR 1910.1026), Cadmium (29 CFR 1910.1027), Lead (29 CFR 1910.1025), Asbestos (29 CFR 1910.1001), and Respirable Crystalline Silica (29 CFR 1910.1053). As discussed in more detail below, OSHA notes that the triggers in final paragraphs (k)(1)(i)(B) and (C) may address employees who could be at risk, even though they may not have had repeated exposures. Therefore, OSHA has decided to revise the first proposed medical surveillance trigger to require the offering of medical surveillance based on exposures at or above the action level, rather than the PEL (i.e, work in a regulated area). But the Agency will retain the 30-day-per-year-exposureduration trigger. In addition, OSHA has chosen to revise the proposed trigger to require employers to make medical surveillance available to each employee ‘‘who is or is reasonably expected to be exposed . . . for more than 30 days a year,’’ rather than waiting for the 30th day of exposure to occur. OSHA made this revision because the proposed provision, in combination with paragraph (k)(2)(i)(A), may not have resulted in timely medical examinations for new employees who are not exposed to beryllium concentrations above the action level every day. For example, a new employee exposed to beryllium once per week would not receive a E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations medical examination until being employed for up to 34 weeks. As noted below, several stakeholders commented that a medical exam should be offered before or within 30 days of placement (e.g., Document ID 1664, p. 7; 1685, p. 4, 1689, p. 13). OSHA agrees that a medical examination should be conducted shortly after placement to allow the employee to find out if he or she has any condition that may make him or her more sensitive to beryllium exposure. For these reasons, paragraph (k)(1)(i)(A) of the final standards require that employers make medical surveillance available to each employee who is or is reasonably expected to be exposed above the action level for more than 30 days per year. The proposal’s ‘‘regulated area’’ trigger corresponded to setting the trigger at the PEL, and so has been superseded by the final rule’s action level trigger. The elimination of the ‘‘regulated area’’ trigger may also affect whether employees exposed above the short-term exposure limit (STEL) receive medical surveillance. As noted above and discussed extensively in the Summary and Explanation for paragraph (e), the proposed standard defined the term ‘‘regulated area’’ to mean an area that the employer must demarcate, including temporary work areas where maintenance or non-routine tasks are performed, where an employee’s exposure exceeds, or can reasonably be expected to exceed, either of the permissible exposure limits (PELs). Proposed paragraphs (c) and (e) made clear that this definition included both the proposed 8-hour TWA PEL and the proposed STEL. Because the revised trigger in final paragraph (k)(1)(i)(A) focuses on the action level, rather than working in a regulated area, it does not directly require medical surveillance for employees who are exposed above the STEL, provided their airborne exposure levels do not exceed the action level for more than 30 days per year. However, as explained in Chapter IV– Section 15 of the Final Economic Analysis and discussed in the Summary and Explanation for paragraph (c), Permissible Exposure Limits (PELs), the occurrence of one or more short-term exposures to elevated airborne concentration during a work shift can substantially increase a worker’s 8-hour TWA exposure. For example, the TWA exposure of a worker who is exposed to a background level at the final action level of 0.1 mg/m3 will be 0.16 mg/m3 if that worker is exposed to a single 15minute period at an exposure level just above 2.0 mg/m3, the final STEL. Therefore, OSHA finds that the revised action level trigger will frequently VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 address the STEL component of the proposed trigger because when exposures exceed the STEL, it is very likely that the action level will also be exceeded, thus triggering medical surveillance. Signs or Symptoms. Proposed paragraph (k)(1)(i)(B)) required employers to ‘‘make medical surveillance as required by this paragraph available’’ to each employee showing signs or symptoms of CBD, such as shortness of breath after a short walk or climbing stairs, persistent dry cough, chest pain, or fatigue. As OSHA explained in the proposal, a sign-orsymptoms trigger is necessary, in part, because beryllium sensitization and CBD could develop in employees who are especially sensitive to beryllium, may have been unknowingly exposed, or may have been exposed to greater amounts than the exposure assessment suggests. A signs-or-symptoms trigger was also included in the draft standard submitted by Materion and USW (Document ID 0754). One commenter, ORCHSE, argued that a symptom trigger should only apply to confirmed positive, i.e., sensitized, employees because the types of symptoms listed are non-specific for CBD and would require employers to offer medical surveillance to employees who were never exposed to beryllium (Document ID 1691, Attachment 1, pp. 5–6). However, the majority of the stakeholders who opined on the signsor-symptoms trigger supported its inclusion in the final rule. For example, NJH, ATS, and NIOSH supported a symptom trigger for medical surveillance (Document ID 1664, p. 4, 8; 1688, p. 3; 1725, p. 32). ACOEM and NJH indicated that skin symptoms should trigger medical examinations for employees exposed to beryllium (Document ID 1664, p. 4; 1685, p. 4). NJH and ACOEM also offered examples of specific symptoms or signs of skin disease, including rashes or nodules and dermatitis that is unresponsive to treatment but responsive to removal from exposure (Document ID 1664, pp. 4, 8; 1688, p. 3; 1725, p. 32). In addition, United Kingdom defense contractor, AWE, indicated that it allows its employees with ‘‘insignificant likelihood of exposure’’ to undergo a medical examination if they report symptoms (Document ID 1651, p. 10). After carefully considering these comments, OSHA reaffirms its preliminary finding that the proposed signs-or-symptoms trigger serves as a valuable complement to the use of airborne exposure triggers as a mechanism for initiating medical surveillance. A signs-or-symptoms PO 00000 Frm 00231 Fmt 4701 Sfmt 4700 2699 trigger is appropriate for employees covered by the standard because the risk of material impairment of health remains significant at the action level (see Section VI, Risk Assessment). Consequently, even employees exposed at the action level for fewer than 30 days in a year may be at risk of developing CBD and other beryllium-related diseases and adverse health effects. In addition, beryllium sensitization and CBD could develop in employees who are especially sensitive to beryllium, may have been unknowingly exposed, or may have been exposed to greater amounts than the exposure assessment suggests. By requiring covered employers to make a medical exam available when an employee exhibits signs or symptoms, the final standard protects all employees who may have developed CBD, including employees who have been exposed to beryllium in an emergency or for less than 30 days above the action level. OSHA also finds that signs or symptoms of beryllium-related health effects other than CBD should also trigger medical surveillance (see Section V, Health Effects). As noted by NJH and ACOEM, these signs or symptoms can be indicative of beryllium-related skin disease or a sign of exposure that could lead to sensitization. For example, dermatitis that is unresponsive to treatment but responsive to removal from exposure may be a sign of a beryllium-related health effect. Other skin symptoms, such as reddened, elevated or fluid-filled lesions following contact with soluble beryllium compounds and ulceration or granulomas from soluble or poorly soluble beryllium compounds entering through cuts or scrapes, can also be a sign of a beryllium-related health effect (See Section V, Health Effects). Therefore, OSHA has revised paragraph (k)(1)(i)(B) to include signs or symptoms of other beryllium-related health effects. OSHA disagrees with ORCHSE’s recommendation that the final standards apply this trigger only to employees who have been confirmed positive, i.e., are sensitized, for several reasons. First, limiting the sign-or-symptoms trigger in this way could prevent sensitized employees from finding out that they are sensitized. For example, as noted above, individuals who are genetically predisposed can develop beryllium sensitization and CBD at beryllium levels that would not cause disease in other individuals. Such an employee could conceivably become sensitized and develop CBD without meeting the action level or 30-day exposure trigger. Because this hypothetical employee would not otherwise be entitled to E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2700 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations medical surveillance, he or she might not know that they are sensitized. If this employee began suffering from signs or symptoms of CBD, he or she would not be entitled to medical surveillance under ORCHSE’s proposal, precisely because they are not entitled to the BeLPT that would detect sensitization and then entitle them to further medical surveillance. Second, as discussed in more detail below, under the final standards, employers do not automatically find out whether their employees have been confirmed positive. If an employee chooses not to inform his or her employer of this fact, the employer may never find out. See paragraphs (k)(6) and (k)(7) of the final standards. Third, OSHA recognizes that signs and symptoms associated with adverse health effects of beryllium such as CBD and skin sensitization may be nonspecific (i.e., they may be caused by factors other than beryllium exposure). However, it is important to realize the context in which signs and symptoms are expected to be used in medical surveillance. Signs and symptoms are generally expected to be self-reported by employees who could potentially be exposed to beryllium and as such are not intended to serve as a means for diagnosing adverse health effects or determining their causality. Rather, they serve as a useful signal that an employee may be suffering from a beryllium exposure-related health effect. Once these signals are recognized, the employee should be offered medical surveillance and see a PLHCP who can, with sufficient information about the employee’s duties, potential exposures, and medical and work histories (as required by this standard and discussed later), make determinations about the beryllium-related effects, provide medical treatment, and make other referrals or recommendations where necessary. However, ORCHSE’s comment does raise the concern that the non-specific signs and symptoms listed in the proposal, i.e., shortness of breath after a short walk or climbing stairs, persistent dry cough, chest pain, or fatigue, might cause the employer to offer medical surveillance to employees experiencing signs or symptoms that are not related to beryllium exposure. OSHA understands that many of these nonspecific symptoms can have various causes unrelated to beryllium exposure. For example, a dry cough could be related to a respiratory infection or allergies. On the other hand, the symptoms listed in the proposal can also be symptoms of CBD where they are recurring or persistent. Therefore, VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 OSHA has removed the specific examples of signs or symptoms of CBD that were included in the proposal. OSHA finds that removing these examples makes it less likely that this will be misinterpreted to require medical surveillance for employees experiencing signs or symptoms not related to beryllium exposure. OSHA also clarifies that signs or symptoms that are indicative of CBD or other beryllium-related effects are typically persistent or recurring. Finally, OSHA emphasizes that although this provision requires employers to offer medical surveillance if persistent or recurring symptoms related to CBD or other berylliumrelated health effects are reported to or observed by the employer (e.g., if an employee ‘‘shows’’ a persistent cough), it is not intended to force employers to survey their workforce, make diagnoses, or determine causality. Self-reporting by employees is supported by the training required under paragraph (m)(4)(ii) on the health hazards of beryllium and the signs and symptoms of CBD, and the medical surveillance and medical removal requirements of the final standard in paragraphs (k) and (l). Section 11(c) of the OSH Act gives employees the right to report suspected work-related health effects and prohibits employers from retaliating against employees for exercising this right. Separately, OSHA’s Recordkeeping Rule gives employees the right to report work-related illnesses such as CBD or other beryllium-related health effects, and Section 1904.35(b)(1)(iv) of that rule prohibits retaliation against employees for reporting these health effects. Emergencies. Proposed paragraph (k)(1)(i)(C) required employers to offer medical surveillance to employees exposed during an emergency. Although an emergency trigger for medical surveillance was not included in the joint draft recommended standard by Materion and USW, none of the comments on the proposal objected to its inclusion in the final rule (Document ID 0754). At least one commenter, NJH, supported a trigger for employees exposed in an emergency (Document ID 1664, p. 4). OSHA agrees with NJH that such a trigger is appropriate because emergency situations involve uncontrolled releases of airborne beryllium, and the significant exposures that can occur in these situations justify a requirement for medical surveillance. Therefore, OSHA has decided to include this provision as part of the final standards in paragraph (k)(1)(i)(C). As in the proposal, medical surveillance triggered by airborne exposures in PO 00000 Frm 00232 Fmt 4701 Sfmt 4700 emergency situations must be offered regardless of the airborne concentrations of beryllium to which these employees are routinely exposed in the workplace. The requirement for medical examinations after airborne exposure in an emergency is consistent with several other OSHA health standards, including the standards for Chromium (VI) (29 CFR 1910.1026), Methylenedianiline (29 CFR 1910.1050), 1,3-Butadiene (29 CFR 1910.1051), and Methylene Chloride (29 CFR 1910.1052). Periodic medical surveillance. As noted above, OSHA asked stakeholders to opine on which employees should be included in medical surveillance and, as discussed in more detail below, on the appropriate frequency for examinations (e.g., 80 FR 47574, 47541). Several stakeholders, including Ameren Corporation (Ameren), NSSP, and ATS, submitted pre-hearing comments supporting the provision of continuing medical surveillance to employees who are confirmed positive (Document ID 1675, p. 16; 1677, p. 6; 1688, p. 3). For example, ATS commented that once an employee is sensitized, continued medical surveillance should be offered to determine if progression to CBD occurs (Document ID 1688, p. 3). Similarly, Ameren commented that sensitized employees should have the opportunity for further surveillance based on the recommendations of a pulmonologist (Document ID 1677, p. 6). OSHA agrees that an employee who is confirmed positive should continue to receive medical surveillance to determine if progression from sensitization to CBD occurs and to monitor the severity of disease if progression does occur. As discussed below, the standards provide for medical surveillance every 2 years in certain cases, such as when the employee continues to be exposed above the action level for more than 30 days a year, when the employee continues to have signs or symptoms of CBD or other beryllium-related health effects, or when an employee is exposed to beryllium during an emergency. However, under these first three triggers, periodic surveillance would end if an employee no longer met those triggers. Thus, an employee who was confirmed positive and no longer meets these triggers might not qualify for medical surveillance again until he or she develops signs or symptoms of disease. This gap in coverage is especially concerning considering the potentially long lag time between sensitization and the development of CBD and the benefits of early detection (see Section V, Health Effects). E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations To allow for continued medical surveillance to this limited group of high risk employees who would not otherwise be eligible for periodic examinations, OSHA has added final paragraph (k)(1)(i)(D), which requires that medical surveillance be made available when the most recent written medical opinion to the employer recommends continued medical surveillance. Under final paragraphs (k)(6) and (k)(7), the written opinion must contain a recommendation for continued periodic medical surveillance if the employee is confirmed positive or diagnosed with CBD, and the employee provides written authorization. Under these provisions, the employer will only receive the recommendation for continued periodic medical surveillance with the employee’s written consent. However, even where the employee provides his or her written consent, the written opinion must not include any specific findings or diagnoses that led to the recommendation for continued surveillance. Instead, the licensed physician or CBD diagnostic center’s written opinion would simply recommend continued periodic medical surveillance. As discussed in more detail below, OSHA chose this method to convey the need for continued medical evaluations for employees who are confirmed positive or diagnosed with CBD, while protecting the employee’s privacy by not revealing to the employer the specific finding that triggered the recommendation for continuing medical examinations. OSHA notes that although this requirement was not included in either the proposed standard or the joint draft recommended standard by Materion and USW (Document ID 0754), proposed paragraph (k)(1)(i)(D) (discussed below) would have allowed for limited medical surveillance (i.e., low dose computerized tomography (LDCT)) for certain high risk individuals. Low dose computerized tomography (LDCT). The proposal included a trigger to provide LDCT to some employees who met certain criteria regarding exposure levels, exposure duration, and age. The requirement is now included under paragraph (k)(3)(ii)(F) as a test that can be selected by the PLHCP for employees based on certain risk factors. A full discussion of LDCT scans and the reasons for this change is included below under the discussion of medical examination contents. Licensed physicians. Proposed paragraph (k)(1)(ii) required that the employer ensure that all medical examinations and procedures required by the standard are performed by or under the direction of a licensed VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 physician. OSHA chose to require licensed physicians, as opposed to the broader category of PLHCPs, to oversee medical surveillance in this standard, and to provide certain services required by this standard (see, e.g., proposed paragraphs (k)(1)(ii) and (k)(5)). OSHA has in the past allowed a PLHCP to perform all aspects of medical surveillance, regardless of whether the PLHCP is a licensed physician (see OSHA’s standards regulating Chromium (VI) (29 CFR 1910.1026) and Respirable Crystalline Silica (29 CFR 1910.1053)). As explained in the NPRM, OSHA proposed that a licensed physician perform some of the requirements of paragraph (k) in response to Materion and USW’s 2012 joint draft recommended standard (80 FR 47797). OSHA preliminarily found that this requirement struck an appropriate balance between ensuring that a licensed physician supervises the overall care of the employee, while giving the employer the flexibility to retain the services of a variety of qualified licensed health care professionals to perform certain other services required by paragraph (k). However, the Agency specifically requested stakeholder comment on this proposed requirement (80 FR 47575, 47797). OSHA received comments on this subject from a variety of stakeholders, including public health officials and representatives from industry and labor. ATS stated that due to the complex nature of CBD and sensitization, including multi-organ involvement and atypical presentations, all medical procedures should be carried out by or under the direction a licensed physician (Document ID 1688, p. 4). Similar support for medical procedures to be carried out by or under the direction of a licensed physician was expressed by NJH, Ameren, NSSP, NIOSH, and ACOEM (Document ID 1664, p. 8; 1675, p. 18; 1677, p. 7; 1755, Tr. 27; 1756, Tr. 82). Materion commented that in the joint draft recommended standard, Materion and USW intended for a licensed physician to perform certain critical aspects of medical surveillance such as diagnosis and preparation of the written medical opinion (Document ID 1661, Attachment 2, p. 7). NABTU commented that medical and nursing experts supervise medical screening of Department of Energy workers in a program that is administered by the Center for Construction Research and Training (CPWR) (Document ID 1679, p. 10). OSHA recognizes that the requirement for a licensed physician to provide oversight and some services PO 00000 Frm 00233 Fmt 4701 Sfmt 4700 2701 required under the standard departs from policy in recent standards, such as Chromium (VI) (29 CFR 1910.1026) and Respirable Crystalline Silica (29 CFR 1910.1053). In the recently promulgated Respirable Crystalline Silica standard, OSHA allowed medical services to be provided by a PLHCP, defined as an individual whose legally permitted scope of practice (i.e., license, registration, or certification) allows him or her to independently provide or be delegated the responsibility to provide some or all of the particular health services required under the rule (81 FR 16818). To ensure competency while increasing flexibility for employers, OSHA found it appropriate to allow any healthcare professional to perform medical examinations and procedures made available under the standard when he or she is licensed by state law to provide those services. In the case of respirable crystalline silica, such a decision was justified because the record did not provide convincing evidence that such a requirement was not appropriate, and some stakeholders expressed concerns that healthcare professionals might be limited in certain geographical locations (81 FR 16818). In contrast to the silica rulemaking record, the beryllium rulemaking record shows support for a licensed physician to oversee and perform certain functions of medical surveillance and lacks evidence showing that licensed physicians may be limited in certain areas. As a result, OSHA is requiring in final paragraph (k)(1)(ii) that the employer ensure that all medical examinations and procedures required by the standard are performed by, or under the direction of, a licensed physician. In the case of the beryllium standard, OSHA finds this requirement strikes an appropriate balance between ensuring that a licensed physician supervises the overall care of the employee, while giving the employer the flexibility to retain the services of a variety of qualified licensed health care professionals to perform certain other services required by paragraph (k). Therefore, final paragraph (k)(1)(ii) requires the employer to ensure that all medical examinations and procedures required by the standard are performed by, or under the direction of a licensed physician. Frequency. Proposed paragraph (k)(2) specified when and how frequently medical examinations were to be offered to those employees covered by the medical surveillance program. Under proposed paragraph (k)(2)(i)(A), employers would have been required to provide each employee with a medical examination within 30 days after E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2702 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations determining that the employee had worked in a regulated area for more than 30 days in the past 12 months, unless the employee had received a medical examination provided in accordance with this standard within the previous 12 months. Under proposed paragraphs (k)(2)(i)(B) employers would have been required to provide medical examinations to employees exposed to beryllium during an emergency, and to those showing signs or symptoms of CBD, within 30 days of the employer becoming aware that these employees met those criteria. As noted above, a number of stakeholders supported a baseline examination. For example, ACOEM recommended that the criteria for inclusion in the medical surveillance program be revised to clearly indicate a baseline examination and BeLPT for employees assigned to regulated areas (Document ID 1685, p. 4). Similarly, NABTU and AFL–CIO commented that medical screening of employees should be done before they start working in a beryllium area (Document ID 1679, p. 12; 1689, p. 13). NJH also recommended a BeLPT at the beginning of employment but stated that some of their clients do the exams within 30 days to not influence hiring practices (Document ID 1664, p. 7). Ameren and NSSP commented that 30 days from initial assignment is a reasonable period to provide an examination; however, NSSP recommended a baseline BeLPT at the time of employment, while Ameren indicated that a baseline BeLPT should be at the employer’s discretion based on employment history (Document ID 1675, pp. 15–16; 1677, p. 6). These comments run contrary to the proposed requirement allowing employers to withhold offering medical surveillance until after more than 30 days of exposure. OSHA is persuaded that it is appropriate to trigger medical surveillance within 30 days after making the determinations described in final paragraphs (k)(2)(i)(A) and (B). As a result of changes made to final paragraph (k)(1)(i)(A), the initial exam required under final paragraph (k)(2)(i)(A) is now triggered within 30 days after the employer determines that the employee is or is reasonably expected to be exposed at or above the action level for more than 30 days of year. This revised trigger for medical surveillance in the final beryllium standard is consistent with Ameren and NSSP recommendations to provide an exam within 30 days of initial assignment. OSHA finds that it is a reasonable period to offer medical surveillance because new employees are VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 not likely to experience signs of beryllium exposure during that time, and it provides employers with administrative convenience because it gives them time to make the appointment, in addition to maintaining consistency with most OSHA standards, such as the Respirable Crystalline Silica (29 CFR 1910.1053). In response to Ameren’s comment, OSHA acknowledges that an employee who was not previously exposed to beryllium would not be at risk for sensitization. However, an employer may not have a complete occupational exposure history to rule out prior beryllium exposure of the employee, and the employee may not be aware that he or she was exposed. OSHA considers a baseline BeLPT within 30 days of when the employer determines that the employee is reasonably expected to be exposed for more than 30 days a year to be prudent to rule out sensitization in an employee who may have previously been exposed to beryllium unknowingly. Providing a baseline examination is also consistent with the joint draft recommended standard by Materion and USW, which recommended that medical surveillance including a BeLPT be made available to employees who are expected to meet the trigger for medical surveillance (Document ID 0754, pp. 7–8). Final paragraph (k)(2)(i)(A) also differs from the proposal in that in the proposed paragraph the employer did not have to offer an examination if the employee had received an equivalent examination within the last 12 months. In the final rule, this was increased to two years to align that provision with the frequency of periodic examinations, which is every two years in the final standards. The reason why frequency of periodic examinations was changed from every year to every two years is discussed below. In sum, paragraph (k)(2)(i)(A) requires the employer to make a medical examination available to employees who meet the criteria of paragraph (k)(1)(i)(A), unless the employee received a medical examination provided in accordance with the standard, within the last two years. As noted above, proposed paragraph (k)(2)(i)(B) would have required employers to provide medical examinations to employees exposed to beryllium during an emergency, and to those who are showing signs or symptoms of CBD, within 30 days of the employer becoming aware that these employees meet the criteria of proposed paragraph (k)(1)(i)(B) or (C), regardless of whether these employees received an exam in the previous 2 years. OSHA is PO 00000 Frm 00234 Fmt 4701 Sfmt 4700 not aware of any comments from stakeholders about the time period to offer medical examinations following a report of symptoms or exposure in an emergency; however the 30-day requirement to offer medical examinations to employees experiencing signs or symptoms was included in the joint draft proposal by Materion and USW (Document ID 0754, p. 7). Moreover, OSHA finds that the 30day trigger is administratively convenient for post-emergency surveillance as well as after CBD signs or symptoms (and other berylliumrelated effects like rashes) are reported, insofar as it is consistent with other OSHA standards and with other triggers in the beryllium standards. OSHA is therefore retaining paragraph (k)(2)(i)(B), as proposed, in the final rule. Proposed paragraph (k)(2)(ii) would have required employers to provide an examination annually (after the first examination is made available) to employees who continue to meet the criteria of proposed paragraph (k)(1)(i)(A) or (B). The Agency requested comment on the frequency of this medical surveillance (80 FR 47574). Ameren agreed with the proposed frequency of annual examinations, and USW commented that the proposed medical surveillance requirements would allow for timely detection of sensitization and health outcomes (Document ID 1675, p. 16; 1681, p. 13). AWE commented that it offers annual spirometry testing to its employees with ‘‘significant likelihood for exposure’’ (Document ID 1615, p. 10). DOD also provides annual medical surveillance for its beryllium-exposed employees (Document ID 1684, Attachment 2, p. 1– 5). NIOSH commented that OSHA should require an annual questionnaire for symptoms (Document ID 1725, p. 32). However, other commenters argued that annual surveillance was not routinely required. For example, NJH and ACOEM supported offering medical examinations to eligible employees every two years (Document ID 1664, p. 4; 1685, p. 4); NJH indicated that after initial testing, biennial medical surveillance is adequate to identify any new cases of sensitization that may develop in the workplace. In addition, NJH, NSSP, and NGK were opposed to annual BeLPTs (Document ID 1664, p. 4; 1677, p. 3; 1663, p. 5). ATS and NIOSH recommended examinations every 1 to 3 years for sensitized individuals to determine if progression is occurring (Document ID 1688, p. 3; 1725, pp. 2, 32). Finally, NABTU agreed with the proposed frequency for screening but noted that Department of Energy E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations workers participating in a medical screening program administered by CPWR are examined every three years (Document ID 1679, pp. 10–12). After careful consideration of the record on this issue, OSHA agrees with commenters like NJH who recommended that a BeLPT every two years is appropriate. In addition, based on its review of beryllium health effects, which shows that CBD generally progresses slowly (See Section V, Health Effects), the Agency finds that a twoyear frequency period is also appropriate for the remaining parts of the medical examinations. This twoyear period is consistent with NJH’s suggestion to offer medical examinations biennially after the initial exam and with ATS and NIOSH’s recommendations for examinations every 1 to 3 years for sensitized individuals. However, OSHA disagrees with NIOSH that a yearly questionnaire for symptoms is needed because the standards already permit employees to receive medical surveillance by selfreporting signs and symptoms of CBD. To align the requirements for BeLPTs with the medical and work history, the physical examination, and pulmonary function testing, OSHA is requiring that all those components of the examination be offered every two years. OSHA concludes that this approach is more convenient for employers to administer, while maintaining adequate protection of employees. Offering examinations every two years accomplishes the main goals of medical surveillance for employees exposed to beryllium, which are to detect beryllium sensitization before employees develop CBD, and to diagnose CBD and other adverse health effects at an early stage. Requiring examinations to be offered every two years also strikes a reasonable balance between the resources required to provide surveillance and the need to diagnose health effects at an early stage to allow for interventions. In addition, OSHA finds that it is appropriate to extend the requirement for biennial surveillance under final paragraph (k)(2)(ii) for employees who continue to meet the criteria of final paragraph (k)(1)(i)(D), i.e., each employee whose most recent written medical opinion required by paragraph (k)(6) or (k)(7) recommends periodic medical surveillance. As discussed above, the recommendation for continued medical surveillance is based on a confirmed positive finding or a diagnosis of CBD. Employees such as those who are confirmed positive benefit from periodic surveillance to determine if sensitization progresses to VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 CBD and monitor possible CBD progression. Finally, OSHA revised proposed paragraph (k)(2)(ii) to specify that medical examinations were to be made available ‘‘at least’’ every two years. This change clarifies OSHA’s intent that the employer need not wait precisely two years to make medical surveillance available to employees who continue to meet the criteria of (k)(1)(A), (B), or (D) of this standard. Under the final standards, employees exposed in an emergency, who are covered by paragraph (k)(1)(i)(C), are not included in the biennial examination requirement unless they also meet the criteria of paragraph (k)(1)(i)(A) or (B), because OSHA expects that most effects of airborne exposure will be detected during the medical examination provided within 30 days of the emergency, pursuant to paragraph (k)(2)(i)(A). This is consistent with the proposal. An exception to this is beryllium sensitization, which OSHA finds may result from exposure in an emergency, but may not be detected within 30 days of the emergency. OSHA received no comments on this issue. To address possible delayed sensitization in employees exposed in an emergency, final paragraph (k)(3)(ii)(E) requires biennial BeLPTs for employees who have not been confirmed positive, including those exposed in emergencies. This paragraph is discussed in more detail later in this section of the preamble. Proposed paragraph (k)(2)(iii) required the employer to offer a medical examination at the termination of employment, if the departing employee met any of the criteria of proposed paragraphs (k)(1)(i)(A), (B), or (C) at the time the employee’s employment was terminated. This proposed requirement was waived if the employer provided the departing employee with an exam during the six months prior to the date of termination. OSHA explained that the provision of an exam at termination was intended to ensure that no employee terminates employment while carrying a detectable, but undiagnosed, health condition related to beryllium exposure (80 FR 47798). A similar provision was included in the draft joint recommended standard by Materion and USW (Document ID 0754, p. 8). Commenters generally supported the inclusion of this provision in the final standard. NJH and NSSP agreed with the proposed requirement to perform a BeLPT at the time of termination and Ameren stated that a BeLPT is not needed if the employee was tested within the last six months (Document ID 1664, p. 7; 1675, p. 16; 1677, p. 6). PO 00000 Frm 00235 Fmt 4701 Sfmt 4700 2703 However, NABTU indicated that the BeLPT need not be repeated if the employee’s last test was done within the previous 60 days because the experience of their medical professionals indicates that a different test result is unlikely to occur within that time period (Document ID 1805, Attachment 1, p. 5). After considering these comments, OSHA reaffirms its preliminary decision to require employers to make medical surveillance available at the time of termination to eligible employers. Final paragraph (k)(2)(iii) requires the employer to make a medical examination available to each employee who meets the criteria of final paragraph (k)(1)(i)—the action level/30-dayexposure based trigger, shows signs or symptoms of CBD, or is exposed during an emergency—at the termination of employment, unless the employee received an exam meeting the requirements of the standards within the last 6 months. OSHA also finds that it is appropriate to extend the requirement to employees who meet the criteria of final paragraph (k)(1)(i)(D), i.e., each employee whose most recent written medical opinion required by paragraph (k)(6) or (k)(7) recommends periodic medical surveillance. Like the other employees covered by this provision, those employees could potentially have beryllium-related disease that was not present or detectable at their last examination or that has advanced. As indicated in the proposal, OSHA finds that providing a BeLPT at the time of termination, unless the employee was tested within the last six months or the employee was confirmed positive, is important to ensure that no employee is unknowingly sensitized at the time he or she leaves the job. In addition, OSHA finds that the other components of the examination, such as a medical and work history, the physical examination, and lung function testing are also important to determine if an employee may have developed physical signs of disease or if existing disease may have progressed since the last examination. OSHA disagrees with NABTU that another BeLPT should be conducted if the employee’s last BeLPT was done more than two months ago. Requiring another BeLPT if the employee has not had one within the past six months is an abundantly cautious approach considering that public health officials, such as NJH, recommend a BeLPT every two years, since that time period is considered adequate to identify any new cases of sensitization that may develop in the workplace (Document ID 1664, p. 4). Therefore, OSHA concludes that E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2704 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations offering a BeLPT at termination, if the employee has not had one in the past six months, is an approach that adequately protects the employee’s health. Contents of Examination. Proposed paragraph (k)(3) detailed the contents of the examination. Proposed paragraph (k)(3)(i) required the employer to ensure that the PLHCP advised the employee of the risks and benefits of participating in the medical surveillance program and the employee’s right to opt out of any or all parts of the medical examination. As OSHA explained in the proposal, the benefits of participating in medical surveillance may include early detection of adverse health effects, and aiding intervention efforts to prevent or treat disease. However, there may also be risks associated with medical testing for some conditions, such as radiation risks from CT scans for lung cancer (80 FR 47798). The employer must make sure the PLHCP communicates those risks to the employee. This requirement was included in the draft proposed rule submitted to the Agency by Materion and USW (Document ID 0754, p. 8). In the absence of public comments on this issue, the requirement remains substantively unchanged from the proposal in final paragraph (k)(3)(i). OSHA did, however, make one minor change to clarify the intent of this provision. Under the final standards, the PLHCP who advises the employee must be the PLCHP who is conducting the examination. Proposed paragraphs (k)(3)(ii)(A)–(D) specified that the medical examination must consist of: A medical and work history, with emphasis on past and present exposure, smoking history, and any history of respiratory dysfunction; a physical examination with emphasis on the respiratory system; a physical examination for skin breaks and wounds; and a pulmonary function test, performed in accordance with guidelines established by the American Thoracic Society including forced vital capacity (FVC) and a forced expiratory volume in one second (FEV1). Exam contents under the proposal also included a standardized BeLPT and, in some cases, a computerized tomography (CT) scan, both of which are discussed in more detail below. OSHA asked for comment on the contents of the medical surveillance exam in the proposal (80 FR 47574). Among other things, the Agency asked whether the required tests were appropriate, if additional tests should be included, and whether the skin should be examined for signs and symptoms of beryllium exposure or other medical issues, as well as for VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 breaks and wounds. Stakeholders from the medical community and industry responded to OSHA’s request for comment on the proposed contents for medical examinations. Ameren, NSSP, and NABTU agreed with the tests that OSHA proposed, including skin examinations (Document ID 1675, p. 16; 1677, p. 6; 1679, p. 12). ORCHESE was opposed to examining the skin for wounds and breaks because although skin injuries could allow for increased beryllium absorption, they are temporary conditions that could heal within days, thus making the finding observed during the exam irrelevant (Document ID 1691, Attachment 1, p. 7). NIOSH and ATS supported medical and work histories or questionnaires, but neither they nor NJH supported routine physical examinations and lung function testing of beryllium exposed employees (Document ID 1664, p. 8; 1688 p. 3; 1725, p. 32). ATS and NIOSH commented that physical examinations and lung function testing are not effective for identifying sensitization or CBD. NJH recommended that physical examinations and pulmonary function tests be offered to employees who do not have CBD but are experiencing symptoms, while NIOSH said that required tests should be determined by the PLHCP, based on responses to the questionnaire. Lung function (spirometry) testing is the only type of examination that AWE routinely does on its employees with ‘‘significant likelihood for exposure’’ (Document ID 1615, p. 10). DOD includes a history, physical exam, a chest X-ray, and spirometry in its surveillance program, and agreed that the skin should be examined (Document ID 1684, Attachment 2, p. 1–5). 3M agreed that an employee’s fitness to wear a respirator should be evaluated, but they argued that incorporating requirements of the medical evaluation under the respiratory protection program (29 CFR 1910.134(e)) would be a better tool for evaluating fitness to wear a respirator than the proposed medical surveillance requirements. In support of this statement, it asserted that pulmonary function tests are a poor predictor for fitness to wear a respirator (Document ID 1625, pp. 3–5). OSHA recognizes, as ATS, NIOSH, and NJH commented, that physical examinations and lung function testing are not effective for detecting sensitization or CBD. However, OSHA still finds that these tests should be included as part of medical surveillance examinations of beryllium exposed workers because they accomplish important goals of medical surveillance PO 00000 Frm 00236 Fmt 4701 Sfmt 4700 as part of an occupational health program. As indicated above, the major purposes of medical surveillance for beryllium-exposed employees go beyond identifying disease and include identifying conditions that put employees at increased risk from beryllium exposure and determining the employee’s fitness to use personal protective equipment such as respirators. The medical examination for beryllium complements the medical evaluation under the respiratory protection program that must still be conducted before an employee is fitted for a respirator or uses the respirator in the workplace (29 CFR 1910.134(e)(1)). Physical examinations and lung function tests are objective measures that are valuable in accomplishing the goals of medical surveillance for beryllium and to determine fitness to use personal protective equipment. For example, listening to heart and lung sounds with a stethoscope and conducting lung function testing might identify an impairment in an employee who is not experiencing symptoms but might be at risk with use of a negative pressure respirator. Such impairments in employees lacking symptoms may not be identified in the medical evaluation for respirator use, which typically involves administering a questionnaire and may not involve an examination. Another example of how the required tests under the beryllium standard accomplish goals of medical surveillance is that an employee who is found to have a loss in lung function can be warned that lung function loss can be compounded if that employee develops CBD. Skin examinations are also important because skin rashes could be a sign of dermal sensitization or also a sign that exposures that put the employee at risk of becoming sensitized have occurred. However, OSHA agrees with ORCHESE that conditions such as breaks and wounds are temporary and has therefore revised the proposed paragraph so that final paragraph (k)(3)(ii)(C) requires a physical examination for skin rashes, rather than an examination for breaks and wounds. OSHA notes that PLHCPs will nonetheless detect skin injuries during the skin examination, and when doing so can take that as an opportunity to educate the employee on the importance of using protective clothing, because beryllium absorption can be increased through broken skin. OSHA also revised proposed paragraph (k)(3)(ii)(A), which would have required, among other things, ‘‘a medical and work history, with emphasis on past and present exposure’’ so that final paragraph (k)(3)(ii)(A) E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations includes emphasis on past and present airborne exposure to or dermal contact with beryllium. OSHA added dermal contact to this list because, as noted by NJH and ACOEM, dermal contact can result in skin effects and sensitization (Document ID 1664, p. 5, 1685, p. 3). As discussed in Section V, Health Effects, dermal contact with beryllium can lead to respiratory and dermal sensitization and it is therefore an appropriate factor to consider as part of the medical and work history. With these changes, final paragraphs (k)(3)(ii)(A)–(D) require the medical examination to include: (1) Medical and work history, with emphasis on past and present airborne exposure to or dermal contact with beryllium, smoking history, and any history of respiratory dysfunction; (2) a physical examination with emphasis on the respiratory system; (3) a physical examination for skin rashes; and (4) a pulmonary function test, performed in accordance with guidelines established by the ATS including forced vital capacity (FVC) and a forced expiratory volume in one second (FEV1). Under proposed paragraph (k)(3)(ii)(E), an employee would have been offered a BeLPT or an equivalent test at the first examination, and then at least every two years after the first examination, unless the employee was confirmed positive. As OSHA explained in the preamble to the proposal, the proposed requirement to test for beryllium sensitization was intended to apply whether or not an employee was otherwise entitled to a medical examination in a given year (80 FR 47799). For example, for an employee exposed during an emergency who would have normally been entitled to 1 exam within 30 days of the emergency but not annual exams thereafter, the employer would still have been required to provide this employee with a test for beryllium sensitization every 2 years. OSHA further explained that this proposed biennial requirement would have applied until the employee was confirmed positive. The Agency preliminarily found that the biennial testing required under proposed paragraph (k)(3)(ii)(E) was adequate to monitor employees at risk of developing sensitization while being sufficiently affordable for employers. The record showed strong support for use of BeLPT, with limited exceptions. NIOSH supported the BeLPT to identify sensitized employees, citing recent evidence that the BeLPT has a sensitivity of 66 to 86% and a specificity of >99%, which it stated is superior or comparable to other common medical screening test (Document ID 1725, pp. 32–33). In VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 responding to comparisons of the BeLPT against World Health Organization (WHO) (Wilson) criteria (see next paragraph), NIOSH concluded that current evidence supports the use of the BeLPT to benefit both the individual employee and to identify improvements that could be made in work areas to prevent other workers from becoming sensitized (Document ID 1725, p. 33). BeLPT is also supported by or used in medical screening by medical authorities, unions, and industry stakeholders including Materion, NJH, Ameren, NSSP, USW, ACOEM, ATS, and ORCHSE (Document ID 1661, Attachment 2, pp. 7–8; 1664, p. 4; 1675, p. 16; 1677, pp. 5–6; 1681, p. 25; 1685, p. 4; 1688, p. 3; 1691, Attachment 1, p. 12). Ameren also commented that a BeLPT should be provided for employees diagnosed with sarcoidosis because of the potential for a misdiagnosis of CBD (Document ID 1675, p. 16). USW supported periodic BeLPTs because workers with a history of exposure remain at risk in the future (Document ID 1681, pp. 13–14). NJH supported biennial BeLPTs, which is consistent with the draft joint recommended standard by Materion and USW (Document ID 0754; 1664, p. 4). In contrast, based on a false positive rate reported in a review done by AWE in 1990, AWE commented that it does not routinely use BeLPT in its medical surveillance program (Document ID 1615, p. 11). DOD did not support the BeLPT, arguing that it has not been shown to meet WHO guidelines as a screening tool (often referred to as the Wilson Criteria, which evaluates factors such as reliability of the assay and its usefulness to identify disease at an early stage in which treatment would be beneficial) (Document ID 1958, p. 8). After carefully considering these comments, OSHA agrees with NIOSH that the BeLPT is appropriate based on its sensitivity and low false positive rate that is comparable or superior to other screening tests. Unlike DOD, OSHA finds that the BeLPT does meet a number of the Wilson criteria because it is an acceptable, reliable test that allows for a serious disease to be diagnosed at an early stage, when employees with symptoms could benefit from treatment, or in the case of occupational exposures, interventions such as removal from exposure. OSHA agrees with Ameren that a BeLPT is an important component for diagnosing lung disease in beryllium-exposed employees to prevent a misdiagnosis. And OSHA reaffirms that it is important to conduct the BeLPT at least every two years to screen for beryllium sensitization, until the employee is confirmed positive. As PO 00000 Frm 00237 Fmt 4701 Sfmt 4700 2705 in the proposal, the biennial requirement to test for beryllium sensitization applies regardless of whether an employee is otherwise entitled to a medical examination in a given year. OSHA concludes that this continuing requirement is important because sensitization can occur after exposures end. OSHA finds that in general, the biennial testing required under paragraph (k)(3)(ii)(E) is adequate to monitor employees that have the potential to develop sensitization while being sufficiently affordable for employers. However, one change to this provision compared to the proposed standard is to allow the test to be offered ‘‘at least’’ every two years, rather than every two years as proposed. This change clarifies OSHA’s intent that the employer need not wait precisely two years to make the BeLPT available to employees. Final paragraph (3)(ii)(E) contains a number of other differences compared to the proposed requirements. Consistent with the definition in the proposed standards, the proposed paragraph considered two abnormal test results necessary to confirm a finding of beryllium sensitization when using the BeLPT (‘‘confirmed positive’’). Therefore, the proposal would have required that the BeLPT be repeated within one month of an employee receiving a single abnormal result. As discussed in more detail in the Summary and Explanation for paragraph (b), Definitions, commenters including ACOEM and ATS indicated that retesting should also be done following borderline BeLPT results, and as ACOEM noted, one borderline and one positive test or three borderline tests have a high predictive value for sensitization (Document ID 1685, p. 4; 1688, p. 2). In response to such comments, OSHA changed the definition of confirmed positive to two abnormal test results, an abnormal test result and a borderline test result, or three borderline test results. Therefore, to make this paragraph consistent with the revised definition, the text was changed to indicate that a follow-up BeLPT must be offered within 30 days for results that are ‘‘other than normal’’ unless the employee has been confirmed positive. This language makes it clear that not only abnormal BeLPT results, but also borderline BeLPT results must be followed up according to the definition for confirmed positive. When an other than normal result is obtained, testing is to be repeated within 30 days, unless the employee is confirmed positive. This means that follow-up can stop as soon as it is determined that the E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2706 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations employee is confirmed positive (e.g., after receiving an abnormal and borderline test or three borderline tests). The proposed paragraph indicated that the requirement for a repeat BeLPT was waived if a more reliable and accurate test were to become available that could confirm beryllium sensitization based on one test result. OSHA requested comments on the availability of more reliable and accurate tests than the BeLPT for identifying beryllium sensitization (80 FR 47575). ORCHSE took issue with the statement that retesting would not be required if a more reliable and accurate test became available that could confirm beryllium sensitization based on one test result. It interpreted the statement to mean that an employee who tested positive would not receive a second BeLPT or second test that is more reliable and accurate than the BeLPT, leaving the employee with only one abnormal test that was unconfirmed (Document ID 1691; Attachment 1, pp. 7–8). To streamline the paragraph and avoid misunderstandings of the Agency’s intent, OSHA removed the language waiving a second confirmatory test if a more accurate and reliable test became available that did not require retesting for confirmation of sensitization. Instead, final paragraph (k)(3)(E) requires a standardized BeLPT or equivalent test, upon the first examination and at least every two years thereafter, unless the employee is confirmed positive. If the results of the BeLPT are other than normal, a followup BeLPT must be offered within 30 days, unless the employee has been confirmed positive. This revision clarifies that only other than normal BeLPT results must be followed up within 30 days. Because the paragraph refers to follow-up testing for other than normal ‘‘BeLPT’’ results, the requirement would not apply to a more accurate and reliable test that would not require an abnormal result to be confirmed. OSHA acknowledges that the ‘‘more accurate and reliable’’ alternative remains hypothetical as there are currently no tests for beryllium sensitization that allow for a confirmed diagnosis of sensitization based on one test. However, if developed and validated as described below, such a test would be an improvement because it would eliminate the need for an employee to go back to have blood drawn a second and possible third time. OSHA’s intent was to allow the current BeLPT requirement to be replaced with a more accurate and reliable test that would not require retesting to confirm VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 sensitization, if such a test were ever developed. To clarify the Agency’s intent, final paragraph (k)(3)(ii)(E) now specifies that a standardized BeLPT ‘‘or equivalent test’’ is to be offered. OSHA considers an ‘‘equivalent test’’ to be a test that would accurately identify sensitization based on one test result. Thus, the original intent of that requirement is unchanged, but OSHA clarifies that an ‘‘equivalent test’’ could also be a validated test that is superior to the BeLPT for other reasons. For example, NJH commented that alternative tests to the BeLPT are being developed that could require less blood and less sample manipulation and provide earlier results (Document ID 1664, p. 9). NJH commented on validating tests for beryllium sensitization that might be superior to a BeLPT (Document ID 1664, p. 9). It noted that validation could occur in a College of American Pathologists (CAP)/Clinical Laboratory Improvement Amendments (CLIA) laboratory. Once the assay is determined to be robust and reproducible, clinical validation should then be performed using samples from patients known to be sensitized and from unexposed controls. OSHA agrees and as explained in the Summary and Explanation for paragraph (b), Definitions, before any test could be considered ‘‘equivalent’’ to a BeLPT for identifying sensitization but based on a single test result, the test must undergo rigorous validation to ensure that it has comparable or increased sensitivity, specificity, and positive predictive value within one test result than the BeLPT. OSHA also recommends that before any test for sensitization is considered equivalent to a BeLPT, it should be widely accepted by authoritative sources, such as CDC/ NIOSH, ACOEM, and ATS, based on the validation criteria described above. Such an approach is conceptually consistent with that in the draft recommended standard by Materion and USW that required the CDC to approve a more reliable test that could eliminate the need to confirm a positive finding. The joint draft recommended standard by Materion and USW required that the BeLPT be performed in a laboratory licensed by the CDC (Document ID 0754). In contrast, OSHA’s proposed provision did not require that a BeLPT be conducted by a laboratory that was licensed or accredited. OSHA requested comment on whether testing should be performed by a laboratory accredited by an organization such as CLIA (80 FR 47575). Commenters including NJH, Ameren, NSSP, Materion and USW, ACOEM, and ORCHSE supported the inclusion of a PO 00000 Frm 00238 Fmt 4701 Sfmt 4700 requirement that laboratories performing BeLPT be accredited by CAP and/or CLIA (Document ID 1664, pp. 8, 9; 1675, p. 19; 1677, p. 7; 1680, p. 7; 1685, p. 5; 1691, Attachment 1, p. 13). For example, NJH commented that a CAP/CLIA certification represents the standard for oversight for clinical testing to ensure proper quality control and testing (Document ID 1664, p. 9). ACOEM further added that those laboratories should undergo periodic proficiency testing (Document ID 1685, p. 5). Materion and USW also recommended that all laboratories that conduct BeLPT have a standard procedure and algorithm and that their BeLPT be approved by the FDA, but that these issues should not delay promulgation of the rule (Document ID 1680, p. 7). However, NJH indicated that while it would be preferable, standardization of interpretation algorithms across laboratories is challenging because it is influenced by many variables such as serum and reagent lots, sample quality, use of round versus flat bottomed plates, and technician skill (Document ID 1664, p. 8). NSSP commented that all current BeLPT laboratories have certifications from CAP and/or another accreditation organization approved under CLIA and have participated in inter-laboratory split specimen testing (Document ID 1677, p. 7). After reviewing these comments and the remainder of the record on this issue, OSHA is convinced that requiring that the BeLPT be conducted by CAP/ CLIA-certified laboratories would improve quality of BeLPT results. Based on comments from NSSP, all laboratories conducting BeLPTs are currently accredited. OSHA therefore finds that accredited laboratories are currently available and including such a requirement in the standards would not delay promulgation of the rule. The Agency also finds that CAP/CLIA certification helps improve proficiency in terms of obtaining accurate results that are appropriately interpreted and ensures that quality control procedures are followed. Therefore, to improve the accuracy and reliability of BeLPTs, the standards require that samples be analyzed by a laboratory certified under CAP/CLIA guidelines to perform the BeLPT. As a result of the changes discussed above, final paragraph (k)(3)(E) specifies that the examination must include a standardized BeLPT or equivalent test, upon the first examination and at least every two years thereafter, unless the employee is confirmed positive. If the results of the BeLPT are other than normal, a follow-up BeLPT must be E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations offered within 30 days, unless the employee has been confirmed positive. Samples must be analyzed by a laboratory certified under the College of American Pathologists (CAP)/Clinical Laboratory Improvement Amendments (CLIA) guidelines to perform the BeLPT. Proposed paragraph (k)(3)(ii)(F) would have required a CT scan to be offered to employees who had been exposed to beryllium at concentrations above 0.2 mg/m3 for more than 30 days in a 12-month period for 5 years or more. As OSHA explained in the preamble, the five years of exposure did not need to be consecutive (80 FR 47799). As with the requirement for sensitization testing explained above, the CT scan would have been required to be offered to an employee who met the criteria of paragraph (k)(1)(i)(D) without regard to whether the employee was otherwise required to receive a medical exam in a given year. OSHA explained that the CT scan would have been offered to employees who met the criteria of paragraph (k)(1)(i)(D) for the first time beginning on the start-up date of this standard, or 15 years after the employee’s first exposure to beryllium above 0.2 mg/m3 for more than 30 days in a 12-month period, whichever was later. OSHA proposed the requirement for CT screening based in part on the Agency’s consideration of the draft recommended standard submitted by industry and union stakeholders (Document ID 0754, p. 8). OSHA requested comment on the proposed CT scan requirements, as part of the content of the medical examinations (80 FR 47574). In addition, OSHA asked stakeholders to opine on two regulatory alternatives related to CT scans: (1) Regulatory Alternative #18, which would have dropped the CT scan requirement from the proposed rule, and (2) Regulatory Alternative #19, which would have increased the frequency of periodic CT scans from biennial to annual scans (80 FR 47571). A number of stakeholders responded to the Agency’s request for comments on the proposed CT scan requirements. Two such commenters, Public Citizen and NJH, referenced criteria for lowdose CT lung cancer screening set forth by the U.S. Preventive Services Task Force (USPSTF), an independent, volunteer panel of national experts in prevention and evidence-based medicine (Document ID 1664, p. 4; 1964, p. 4). In December, 2013, the USPSTF recommended annual screening for lung cancer with LDCT for adults aged 55 to 80 years with a 30pack-year smoking history and who either currently smoke or have quit VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 within the past 15 years. Under USPSTF’s criteria, screening should be discontinued once a person has not smoked for 15 years or develops a health problem that substantially limits life expectancy or the ability or willingness to have curative lung surgery (Moyer et al., 2014, Document ID 1791). The USPSTF recommendation was based on the findings of the National Lung Cancer Screening Trial (NLST), which was a large study of the effectiveness of using x-ray and LDCT screening for early detection of lung cancer. The NLST enrolled asymptomatic men and women (n = 53,454), aged 55 to 74, that were current smokers or former smokers within the last 15 years and had a smoking history of at least 30 pack-years. The participants underwent annual lung cancer screening with either LDCT or chest radiography for three years. The results showed a statistically significant 20-percent relative reduction in lung cancer mortality with LDCT screening (Aberle, et al., 2011, Document ID 1701). However, the trial also showed that LDCT screening results in a high falsepositive rate; 24.2 percent of the total LDCT screening tests were classified as positive, with 96.4 percent of these positive results ultimately being false positives. In addition, 39.1 percent of the 26,722 (or about 10,450) participants in the LDCT screening group had at least one positive screening result out of three LDCT scans during the study (Alberle, et al., 2011, Document ID 1701). Given that only 649 cancers were diagnosed after a positive screening test, and assuming that each of these cancers was in a different participant, it follows that only 6.2 percent of those with at least one positive test were ultimately diagnosed with lung cancer. This means that 36.7 percent of participants in the LDCT screening group had at least one false positive result. Most positive initial screening results in the NLST— many of which were false positives— were followed up with a diagnostic evaluation that included further imaging and, infrequently, invasive procedures (Alberle, et al., 2011, Document ID 1701). Given these findings, the USPSTF noted, in its recommendation for lung cancer screening for high-risk individuals, the importance of shared decision making. The USPSTF advised: Shared decision making is important for the population for whom screening is recommended. The benefit of screening varies with risk because persons who are at higher risk because of smoking history or other risk factors are more likely to benefit. Screening cannot prevent most lung cancer PO 00000 Frm 00239 Fmt 4701 Sfmt 4700 2707 deaths, and smoking cessation remains essential. Lung cancer screening has substantial harms, most notably the risk for false-positive results and incidental findings that lead to a cascade of testing and treatment that may result in more harms, including the anxiety of living with a lesion that may be cancer. Overdiagnosis of lung cancer and the risks of radiation are real harms, although their magnitude is uncertain. The decision to begin screening should be the result of a thorough discussion of the possible benefits, limitations, and known and uncertain harms (Moyer, et al., 2014, Document ID 1791, p. 333). In addition to the USPSTF, several other organizations have recommended similar lung cancer screening protocols for high-risk individuals, including the American Cancer Society, American College of Chest Physicians, American Society of Clinical Oncology, American Lung Association, National Comprehensive Cancer Network, and the American Association for Thoracic Surgery. Each organization’s specific screening recommendations are summarized by the U.S. Centers for Disease Control and Prevention: https:// www.cdc.gov/cancer/lung/pdf/ guidelines.pdf. With regard to occupational exposure, OSHA is not aware of any definitive recommendations based on a large, well-conducted, randomized, controlled study examining the benefit of lung cancer screening with LDCT among occupationally-exposed workers. In its pre-hearing comments, NIOSH noted that the screened population must be at sufficiently high risk for lung cancer in order to assure that the benefit of LDCT screening for early detection exceeds the harm (Document ID 1671, Attachment 1, p. 8). NIOSH cited a report by the Finnish Institute of Occupational Health (FIOH) that recommended LDCT screening in asbestos-exposed individuals if their personal combination of risk factors, particularly smoking history, yields a risk for lung cancer equal to that needed for entry into the NLST. NIOSH noted that the absolute risk for lung cancer in the NLST and the threshold absolute risk for lung cancer proposed by FIOH as a trigger for LDCT screening was 1.34% over 6 years (Document ID 1671, Attachment 1, p. 8). OSHA also received comments in the record pointing to the LDCT lung cancer screening recommendations of the National Comprehensive Cancer Network (NCCN), a nonprofit alliance of 27 cancer centers (Document ID 1805, Attachment 1; Document ID 1959). In addition to recommending screening for individuals (current smokers or former smokers that have quit within the last 15 years) who are 55 to 74 years of age E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2708 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations with a smoking history of at least 30 pack-years, the NCCN recommended LDCT screening for individuals age 50 years or older with a smoking history of at least 20 pack-years and with one or more additional risk factors; these risk factors include a history of COPD or pulmonary fibrosis, a history of cancer, a family history of lung cancer, radon exposure, or occupational exposure to the carcinogens asbestos, arsenic, beryllium, cadmium, chromium, nickel, silica, or diesel fumes (Document ID 1815, Attachment 39). Like the USPSTF, NCCN noted that individuals who qualify under these LDCT screening recommendations should engage in shared decision making with their physician and discuss the benefits and harms of LDCT screening for lung cancer (Document ID 1815, Attachment 39). Thus, the studies and recommendations discussed above indicate that age and smoking history are crucial risk factors that determine when the benefits of LDCT screening are likely to outweigh the risks from radiation exposure and false-positive results. The radiation exposure received from periodic LDCT scans increases the risk of lung and breast cancer, as well as leukemia. Public Citizen estimated the risk of these cancers that could result when workers are screened as described in OSHA’s proposed rule (Document ID 1964, pp. 4–6). Public Citizen also estimated the total radiation dose received to range from 900 to 2,400 mrems, depending on age at which screening begins. The excess cancer risks resulting from these exposures, based on Public Citizen’s use of the National Academies BIER VII report, ranged from 3.7 to 29.9 deaths per 1,000 workers for solid organ cancers, and from 0.5 to 2.3 deaths per 1,000 for leukemia (Document ID 1964, p. 6). These risk estimates are comparable to OSHA’s estimated lung cancer mortality risk resulting from exposure to beryllium at the PEL of 0.2 mg/m3 over a working life (see Section VI, Risk Assessment). False-positive results carry the risk of additional radiation exposure from repeat scans, as well as unnecessary anxiety for the workers and his or her family, unnecessary invasive procedures that may have risks of medical complications, and unnecessary medical expenses (Document ID 1806, pp. 1–2; 1964, pp. 7–8). A number of rulemaking participants agreed that the lung cancer risks from beryllium exposure are, for the vast majority of workers, unlikely to be so high that LDCT screening would be beneficial, including NJH, ATS, ORCHSE, NIOSH, Public Citizen, NGK, VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 and the Aluminum Association (Document ID 1664, pp. 1, 4; 1688, p. 2; 1691, Attachment 1, p. 1; 1671, Attachment 1, pp. 8–9; 1964, p. 4; 1663, p. 3; 1666, pp. 3–4). For example, NJH commented that the risk of lung cancer associated with exposure to beryllium at the final rule’s PEL of 0.2 mg/m3 was likely to be lower than that from the radiation exposure received from LDCT screening, particularly for workers under age 50 (Document ID 1664, p. 4). NJH also stated that the majority of beryllium-exposed workers are former smokers and many would not fit the criteria for the USPSTF recommendations (Document ID 1664, p. 4). ORCHSE argued that ‘‘[e]xtrapolation of the results of the non-occupational National Lung Screening Trial for implementation in the occupational setting is premature, and fraught with a number of potential issues and concerns [e.g., overdiagnosis, false positives, radiation dose, follow-on invasive procedures and attendant complications]. The requisite 30 pack-year trigger recommended for screening is associated with risks orders of magnitude higher than that associated with beryllium exposure’’ (Document ID 1691, Attachment 1, p. 1). Similarly, in post-hearing comment, Public Citizen remarked that it would be a ‘‘dangerous mistake’’ to provide LDCT screening for the majority of non-smoking berylliumexposed workers who are at low risk for lung cancer and thus would not benefit from such screening (Document ID 1964, p. 10). The suggestion that beryllium exposure alone would lead to lung cancer risks too low to warrant LDCT screening was illustrated by NIOSH in an analysis of risk information. NIOSH used the mortality study by SchubauerBerigan et al. (2011 b, Document ID 0521) to estimate the exposure levels to beryllium that would result in a risk level at least as high as that suggested by FIOH as a trigger for LDCT screening (i.e., an absolute increased risk of 1.34 percent over a 6-year period). To reach risk levels of this magnitude, NIOSH found that a 40-year-old would have had to have been exposed to a mean daily weighted average exposure of 12 mg/m3 to achieve a lung cancer risk level sufficient to justify LDCT, and a 50-yearold worker would have had to have been exposed to a mean daily weighted average exposure of 2 mg/m3, a daily exposure equal to the previous PEL. It was not possible for NIOSH to estimate the required level of beryllium exposure necessary above age 60 to reach a risk level equal to that suggested by FIOH because the background rate of lung PO 00000 Frm 00240 Fmt 4701 Sfmt 4700 cancer already exceeded that level. Although there are uncertainties around the NIOSH estimates (for example, use of 10-year rather than 6-year age intervals, which would understate the required level of beryllium exposure), OSHA finds that the NIOSH analysis demonstrates that LDCT screening would benefit non-smoking workers exposed to beryllium only where the workers were exposed to very high concentrations of beryllium, i.e., levels at and above the previous PEL. Many of the rulemaking commenters who objected to the proposed requirement for LDCT screening also believed that the absence of any studies showing the effectiveness of LDCT screening on beryllium-exposed workers was further reason not to require LDCT screening based only on a history of beryllium exposure (Document ID 1664, p. 1; 1688, p. 2; 1691, Attachment 1, p. 1; 1756, pp. 123–125; 1806, pp. 1–2). For example, Dr. Newman, who represented ACOEM at the public hearing, in response to a question testified that . . . we don’t have any data on beryllium— specifically looking at beryllium workers with the cluster of risk factors [i.e., smoking plus Be exposure] that you’ve described. And I think that absent that it means that there is more of a question mark around . . . how far should OSHA go at this point with low dose CT (Document ID 1756, pp. 124–125). In contrast to these commenters, inclusion of LDCT screening into the final rule was supported by USW in written comments and at the informal public hearing. Sara Brooks of the USW commented that The proposed inclusion of a low dose CT scan as part of medical surveillance is entirely justified. The low dose CT scan can effectively detect lung cancer at an early stage and has been demonstrated to reduce lung cancer mortality among high risk individuals. Since lung cancer is recognized as an outcome caused by beryllium exposure, inclusion of the low dose CT scan in the proposed rule is appropriate (Document ID 1681, Attachment 1, p. 14). Dr. Steven Markowitz of the City University of New York, testifying on behalf of USW, supported OSHA requiring LDCT screening for berylliumexposed workers, citing the NLST finding that screening reduced lung cancer mortality by 20 percent. He also noted that [t]he use of LDCT is rapidly increasing because of just how common lung cancer is. And this is an effective non-invasive technique. And that there can really [be] a display of leadership by including LDCT now in the proposed medical standard for beryllium (Document ID 1755, Tr. 110). E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations In post-hearing comment, Dr. Markowitz suggested limiting the proposal’s requirement to apply to workers age 50 or more, and pointed out that this was consistent with OSHA’s past practice (i.e., medical surveillance requirements under the Cadmium standard, 29 CFR 1910.1027) and with NCCN recommendations (Document ID 1959, p. 1). Second, he argued that the assertion that LDCT should not be included in the rule based on the lack of studies showing efficacy of LDCT on beryllium-exposures workers was ‘‘without merit’’ (Document ID 1959, p. 1). He pointed out that many of the risk factors used by the medical community as a basis for recommending LDCT (e.g., family medical history, presence of chronic obstructive lung disease) lack empirical evidence relating the effectiveness of LDCT to the presence of these risk factors. Thus, Dr. Markowitz argued that ‘‘[t]he decision to undergo (by the individual) or to recommend (by the physician) LDCT for lung cancer screening is based on that individual’s overall level of risk of lung cancer, not on the particular mix and magnitude of individual risk factors that constitute overall risk’’ (Document ID 1959, p. 1). He also argued that because cancers caused by beryllium exposure are similar to the types of lung cancers from other causes, beryllium exposure is not more or less amenable to LDCT screening than are smoking history or other risk factors (Document ID 1959, p. 2). Dr. Markowitz concluded that the absence of studies on beryllium-exposed workers and LDCT screening ‘‘should not be a decisive factor in determining whether LDCT should be included in the final OSHA standard on beryllium.’’ (Document ID 1959, p. 3). OSHA agrees in general that beryllium exposure should be considered as a risk factor when deciding whether LDCT screening is appropriate, and agrees that it is not appropriate to wait for specific studies to be conducted before considering that a history of beryllium exposure should be factored into a decision to undergo LDCT screening. This is, in fact, consistent with the NCCN’s criteria for LDCT screening that include occupational exposures along with age, smoking history, and other risk factors. However, LDCT screening is not triggered under these criteria based on occupational exposures and age alone; there must also be a history of smoking (albeit a lower trigger than when considering only age and smoking). As discussed above, there is no evidence in the record that exposure to beryllium alone at the level used in the proposal VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 to trigger LDCT screening results in a cancer risk sufficiently high to warrant LDCT screening. For the final rule, OSHA considered increasing the threshold of beryllium exposure such that LDCT screening would be triggered at much higher exposures to beryllium (e.g., average exposure above 2 mg/m3 for over several years), as was suggested by the NIOSH analysis. OSHA rejected this approach for three reasons. First, as pointed out by ORCHSE (Document ID 1691, Attachment 1, p. 6), it is unlikely that exposure records would be available for many workers to show that the trigger was met, except where workers had long employment tenure with their present employer. Second, establishing such a high exposure trigger for LDCT screening would, in fact, exclude workers with a history of lesser beryllium exposure even when other risk factors are present such that LDCT would be beneficial. Finally, OSHA is reluctant to fix a hard exposure trigger in the standard given that, as pointed out by USW, LDCT technology is likely to advance and increase the efficacy of screening to where screening becomes beneficial for those with lesser risk of lung cancer than is reflected by current recommendations. Therefore, OSHA concludes that the best approach is to require LDCT screening for beryllium-exposed workers based on the recommendation of the physician conducting or overseeing the medical examination, after all relevant risk factors have been considered, and has accordingly reflected this approach in the final standards. For these reasons, paragraph (k)(3)(ii)(F) of the final standards requires the medical examination to include an LDCT scan, when recommended by the PLHCP after considering the employee’s history of exposure to beryllium along with other risk factors, such as smoking history, family medical history, age, sex, and presence of existing lung disease. The seventh and final item required as part of the medical examination under the proposal was any other test deemed appropriate by the PLHCP. OSHA explained that other types of tests and examinations not mentioned in this standard, including X-ray, arterial blood gas, diffusing capacity, and oxygen desaturation during exercise, may also be useful in evaluating the effects of beryllium exposure (80 FR 47799). In addition, OSHA noted that medical examinations that include more invasive testing, such as bronchoscopy, alveolar lavage, and transbronchial biopsy, have been demonstrated to provide additional PO 00000 Frm 00241 Fmt 4701 Sfmt 4700 2709 valuable medical information. The Agency preliminarily found that the PLHCP was in the best position to decide which medical tests are necessary for each individual examined. Although a requirement for other tests deemed appropriate by the PLCHP was not included in the draft joint recommended standard by Materion and USW (Document ID 0754), similar requirements have been included in previous OSHA health standards, such as Chromium (VI) (29 CFR 1910.1026) and Respirable Crystalline Silica (29 CFR 1910.1053). No stakeholders objected to the proposal’s requirement that the medical examination include other tests deemed appropriate by the PLHCP. However, some commenters offered examples of tests that might be useful in certain situations. For example, for employees diagnosed with CBD, NJH recommended that the test battery include pulmonary function tests including diffusing capacity, exercise tolerance tests, chest X-ray or CT scan, bronchoscopy with lavage and biopsy, and bronchoalveolar lavage BeLPT (Document ID 1806, p. 12). After reviewing the comments on this issue, OSHA reaffirms that allowing the PLHCP to select other tests is appropriate because there are no particular tests—beyond those listed in paragraph (k)(3)(ii)(A)–(E)—that are necessarily applicable to all employees covered by the medical surveillance requirements. This provision gives the examining PLHCP the flexibility to determine additional tests deemed to be appropriate for individual employees. While the tests conducted under this paragraph are for screening purposes, diagnostic tests may be necessary to address a specific medical complaint or finding related to beryllium exposure or the PLHCP may decide that the test battery needs to be expanded once an employee has been diagnosed with CBD. Although the tests suggested by NJH have been demonstrated to provide additional valuable medical information, OSHA considers the PLHCP to be in the best position to decide if any additional medical tests, especially the more invasive tests, are necessary for each individual examined. Under this provision, if a PLHCP decides another test related to beryllium exposure is medically indicated, the employer must make it available. OSHA intends the phrase ‘‘deemed appropriate’’ to mean that additional tests requested by the PLHCP must be both related to beryllium exposure and medically necessary, based on the findings of the medical examination. E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2710 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Information Provided to the PLHCP. Proposed paragraph (k)(4) detailed which information must be provided to the PHLCP. Specifically, the proposed standard required the employer to ensure the examining PLHCP has a copy of the standard, and to provide to the examining PLHCP the following information, if known to the employer: A description of the employee’s former and current duties that relate to the employee’s occupational exposure ((k)(4)(i)); the employee’s former and current levels of occupational exposure ((k)(4)(ii)); a description of any personal protective clothing and equipment, including respirators, used by the employee, including when and for how long the employee has used that clothing and equipment ((k)(4)(iii)); and information the employer has obtained from previous medical examinations provided to the employee, that is currently within the employer’s control, if the employee provides a medical release of the information ((k)(4)(iv)). A similar requirement was contained in the draft joint recommended standard by Materion and USW (Document ID 0754, p. 8). However, Materion and USW’s standard did not require written authorization from the employee for the employer to release medical information to the PLHCP. OSHA has included similar provisions, with the exception of the employee’s medical release, in previous OSHA standards, such as Chromium (VI) (29 CFR 1910.1026) and Respirable Crystalline Silica (29 CFR 1910.1053). OSHA did not receive any comments on the proposed requirement to provide information to the PLHCP. Therefore, the Agency is including it in the final standards with three modifications. First, OSHA has updated paragraph (k)(4)(i) to require the employer to provide a description of the employee’s former and current duties that relate to both the employee’s airborne exposure to and dermal contact with beryllium, instead of merely requiring the provision of information related to airborne exposures, as in the proposal. As indicated above with regard to the medical examination’s medical and work history requirements, OSHA finds that this change is appropriate because the record indicates that dermal contact with beryllium can lead to respiratory and dermal sensitization. Second, OSHA revised the requirement that the employer obtain a ‘‘medical release’’ before providing the PLHCP with information from records of employment-related medical examinations. ORCHSE recommended that paragraph (k)(4)(iv) be revised to indicate that the requirement to provide VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 medical information to the PLHCP be waived if the employee refuses to sign a medical release (Document ID 1691, Attachment 1, pp. 10–11). After considering this comment, OSHA finds that a change to the provision is not needed because the employer can demonstrate a good faith effort in meeting this requirement by documenting the employee’s refusal to provide a medical release. However, the Agency has chosen to use the phrase ‘‘written consent’’ instead of ‘‘medical release’’ in the final standards. This non-substantive change brings the language in this provision in line with the language used in final paragraphs (k)(6) and (k)(7), discussed below. Third, OSHA revised the provision to indicate that the employer must ensure that the same information provided to the PLHCP is also provided to the agreed-upon CBD diagnostic center, if an evaluation is required under paragraph (k)(7) of this standard. OSHA made this change because the CBD diagnostic center will need the same information as the PLHCP in order to effectively evaluate the employee. OSHA concludes that making this information available to the PLHCP and CBD diagnostic center will aid in the evaluation of the employee’s health as it relates to the employee’s assigned duties and fitness to use personal protective equipment, including respirators, when necessary. Providing the PLHCP and CBD diagnostic center with exposure monitoring results, as required under paragraph (k)(4)(ii), will assist them in determining if an employee is likely to be at risk of adverse effects from airborne beryllium exposure at work and indicate that information in the written medical report for the employee. A well-documented exposure history will also assist the PLCHP in determining if a condition (e.g., dermatitis, decreased lung function) may be related to beryllium exposure. Written medical reports and opinions. Paragraph (k)(5) of the proposed standard provided for the licensed physician to give a written medical opinion to the employer, but relied on the employer to give the employee a copy of that opinion; thus, there was no difference between information the employer and employee received. The final standards differentiate the types of information the employer and employee receive by including two separate paragraphs within the medical surveillance section that require a written medical report to go to the employee, and a more limited written medical opinion to go to the employer. The former requirement is in paragraph (k)(5) of the final standards; the latter PO 00000 Frm 00242 Fmt 4701 Sfmt 4700 requirement is in paragraph (k)(6) of the final standards. This summary and explanation for those paragraphs first discusses the proposed requirements and general comments received in response during the rulemaking. OSHA then explains in this subsection of the preamble its decision in response to these comments to change from the proposed requirement for a single opinion to go to both the employee and employer and replace it with two separate and distinct requirements: (1) A full report for the employee, which includes medical findings, any recommendations on the employee’s use of respirators, protective clothing, or equipment or limitations on airborne exposure to beryllium, and any recommendations for referral to a CBD diagnostic center, continued periodic surveillance, and medical removal; and (2) an opinion for the employer, which focuses primarily on any recommended limitations on respirator, protective clothing, or equipment use, and with the employee’s consent, recommendations for referral to a CBD diagnostic center, continued periodic surveillance, and medical removal. The ensuing two subsections will then discuss the specific requirements and the record comments and testimony relating to those specific requirements. Proposed paragraphs (k)(5)(i)(A)–(C) would have required the employer to obtain from the licensed physician a written medical opinion containing: (1) The licensed physician’s opinion as to whether the employee has any detected medical condition that would place the employee at increased risk of CBD from further airborne exposure to beryllium; (2) any recommended limitations on the employee’s airborne exposure to beryllium, including the use and limitations of protective clothing or equipment, including respirators; and (3) a statement that the PLHCP explained the results of the medical examination to the employee, including tests conducted, any medical conditions related to airborne exposure that require further evaluation or treatment, and any special provisions related to use of protective clothing or equipment. Proposed paragraph (k)(5)(ii) would have required the employer to ensure that neither the licensed physician nor any other PLCHP revealed to the employer specific findings or diagnoses unrelated to airborne beryllium exposure or contact with soluble beryllium compounds. Finally, proposed paragraph (k)(5)(iii) would have required the employer to provide the employee with a copy of the opinion within two weeks of receiving it. E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations OSHA asked stakeholders to consider what if any information the PLHCP should give to the employer. Specifically, the Agency asked whether it should revise the medical surveillance provisions of the proposed standard to allow employees to choose what, if any, medical information goes to the employer from the PLHCP. For example, OSHA explained, the employer could instead be required to obtain a certification from the PLHCP stating (1) when the examination took place, (2) that the examination complied with the standard, and (3) that the PLHCP provided the licensed physician’s written medical opinion to the employee. Such an approach would require the employee to provide written consent for the medical opinion or any other medical information about the employee to be sent to the employer. OSHA asked stakeholders to comment on the relative merits of the proposed standard’s requirement that employers obtain the PLHCP’s written opinion or an alternative that would provide employees with greater discretion over the information that goes to employers. OSHA also asked that commenters explain the basis for their position and the potential impacts of such an approach (80 FR 47575). OSHA received a number of comments related to the proposed provisions and the issues raised. Many of these comments related to the proposed contents of the PLHCP’s written medical opinion and its transmission to the employer. Some commenters offered suggestions to address privacy concerns regarding the content of the proposed licensed physician’s written medical opinion and the proposed requirement that the opinion be given to the employer instead of the employee. For example, David Weissman, M.D., the director of the Respiratory Health Division at NIOSH, objected to providing a specific diagnosis to employers and urged OSHA to adopt a policy consistent with the International Code of Ethics for Occupational Health Professionals established by the International Commission on Occupational Health (Document ID 1725, p. 33; 1815, Attachment 82). The policy recommends reporting only information on fitness for work and medically related limitations to management. NIOSH, AFL–CIO, and NABTU also recommended the ACOEM guidance on confidentiality as a model for the types of information submitted to the employer (Document ID 1679, p. 13; 1689, p. 14; 1725, p. 33). The ACOEM guidelines state: VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 Physicians should disclose their professional opinion to both the employer and the employee when the employee has undergone a medical assessment for fitness to perform a specific job. However, the physician should not provide the employer with specific medical details or diagnoses unless the employee has given his or her permission (Document ID 1815, Attachment 60, p. 1). Exceptions to this recommendation listed under the ACOEM guidelines include health and safety concerns. Dr. Weissman also expressed concerns about employers’ ability to ensure the confidentiality of the medical information obtained from workers (Document ID 1725, pp. 33–34). He argued that if OSHA were to require diagnoses of beryllium sensitization to be shared with employers, provisions would be needed to ensure that sensitive information was protected (Document ID 1725, p. 34). He maintained that ‘‘[s]uch provisions are especially needed because employers are not necessarily covered entities under the Health Insurance Portability and Accountability Act (HIPPAA) Privacy Rule’’ (Document ID 1725, p. 34). In fact, some employers who commented during the silica rulemaking expressed concerns about having to maintain confidential medical information (81 FR 16832). Commenters representing employee interests also objected to giving the opinion to the employer, and offered solutions. For example, AFL–CIO fellow Mary Kathryn Fletcher testified that OSHA should consider the MSHA requirements for black lung, which requires health care providers to give their opinion directly to the employee (Document ID 1756, Tr. 201–202; 30 CFR 90.3). OSHA has accounted for stakeholder privacy concerns in devising the medical disclosure requirements in the rule. OSHA understands that the need to inform employers about a licensed physician’s recommendations on work limitations associated with an employee’s exposure to beryllium must be balanced against the employee’s privacy interests. As discussed in further detail below, OSHA finds it appropriate to distinguish between the licensed physician’s recommendations and the underlying medical reasons for those recommendations. In doing so, OSHA intends for the licensed physician to limit disclosure to the employer to what the employer needs to know to protect the employee, which does not include an employee’s diagnosis. OSHA concludes that the employer primarily needs to know about any PO 00000 Frm 00243 Fmt 4701 Sfmt 4700 2711 recommended work-related limitations or recommendations without conveying the medical reasons for the limitations. Thus, consistent with the weight of opinion in this rulemaking record and with evolving notions about where the balance between preventive health policy and patient privacy is properly struck, OSHA is taking a more privacyand consent-based approach regarding the contents of the licensed physician’s written medical opinion for the employer. The approach is similar to the approach that OSHA took in the recently promulgated Respirable Crystalline Silica standard, but more privacy-based compared to the proposed beryllium requirements and OSHA standards promulgated before the Respirable Crystalline Silica standard. These changes, which are reflected in paragraph (k)(6) of the standards, and the comments that led to these changes, are more fully discussed below. Reinforcing the privacy concerns, stakeholders testified about job loss concerns when employees are diagnosed with an illness. For example, NABTU’s Chris Trahan testified that workers in the construction industry get laid off if an employer finds out they are ill (Document ID 1756, Tr. 237–238). Mike Wright, Director of the Environmental Health and Safety Department, USW, testified that he has repeatedly seen employers fire employees who are in the early stages of occupational disease (Document ID 1751, p. 284). Dr. Weissman testified that if medical results are given directly to the employer, employees may fear that it would result in loss of their jobs and that would discourage them from participating in medical surveillance (Document ID 1755, Tr. 47–48). In commenting on a proposed standard provision that required an employer to get a signed release before sending medical information to a PLHCP, ORCHSE expressed concerns that employees are not compelled to sign releases (Document ID 1691, p. 10). The ORCHSE comment suggests that employees are reluctant to automatically have their medical information shared with medical professionals, much less their own employers. These comments mirror concerns voiced in the recent silica rulemaking. As part of that rulemaking, Dr. Weissman testified that fear of medical information being shared with employers is one of the biggest reasons that miners give for not participating in medical surveillance, and a number of employees testified that they would not participate in medical surveillance that lacked both employee confidentiality and anti- E:\FR\FM\09JAR2.SGM 09JAR2 2712 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS retaliation and discrimination protection (81 FR 16831–16832). In addition, the Construction Industry Safety Coalition commented that some employers might refuse to hire an employee with silicosis for fear that they would be held liable or have to offer workers’ compensation if the disease progressed (81 FR 16832)). A number of stakeholders, including Southern Company, Ameren, and NSSP highlighted the importance of reporting beryllium-related findings to the employer for reasons such as evaluating the effectiveness of workplace programs and making workplace changes to protect employees (Document ID 1668, p. 7; 1675, p. 18; 1677, p. 7). NJH reflected similar views and also indicated that the employer would need medical information for medical followup and removal and to help the employee file for workers’ compensation (Document ID 1664, p. 8). Materion opposed withholding medical information from employers. It commented that Materion has a cooperative process where employees are involved in problem identification and resolution, and when an employee is diagnosed with sensitization or CBD, senior and safety personnel conduct an investigation (Document ID 1755, Tr. 172–173; 1807, pp. 4–5). It indicated that the approach has resulted in improvements aimed at preventing other workers from developing CBD in the future (Document ID 1807, pp. 4–5). Although USW agreed that patient confidentiality is essential, it argued in comments submitted before the hearing that the employer needs certain information to comply with the standard, identify over-exposures, and accommodate the needs of affected employees; it commented that the proposed rule struck the appropriate balance by giving the employer needed information while prohibiting the reporting of medical findings not related to beryllium exposure (Document ID 1681, p. 26). However, at the hearings USW presented a slightly different view, as Mike Wright testified: So in this circumstance, we’d like the employer to know that there’s an operation that has caused illness. In a union setting, we can usually protect people, but we only represent a fraction of the workforce. In a nonunion setting, and even in the union setting, people who report an occupational illness put their jobs at peril. So we tend to resolve that dilemma in terms of privacy (Document ID 1756, Tr. 285). When questioned how privacy concerns could be balanced with improving the work environment, Dr. Weissman testified that medical providers could provide aggregated VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 medical data to employers that would let employers know there may be a problem but not identify the specific employees affected (Document ID 1755, Tr. 47–49). He also said that employers could foster a strong culture of safety so that employees would be more likely to share medical findings. Dr. Maier, from NJH, suggested a similar approach of analyzing combined data based on job task with employees de-identified (Document ID 1756, p. 145). However, Terry Civic, Director of Safety Health and Regulatory Affairs from Materion, and Dr. Newman argued that such an approach may not be able to maintain employee confidentiality in many cases, such as when very few employees are involved with a process or are employed by a small company (Document ID 1755, Tr. 173–174; 1756, Tr. 145). Mr. Wright presented another view when he testified that risk can be determined in many ways, including air sampling and analyses of work processes. He went on to say that waiting for an employee to get sick is the least effective way of determining risk (Document ID 1756, Tr. 284–285). Chris Trahan of NABTU expressed similar thoughts in her testimony (Document ID 1756, Tr. 240). Rebecca Reindel, Senior Safety and Health Specialist from AFL–CIO, added: Employers don’t need to hear about a disease in order to implement engineering controls. It’s unlikely that a disease is necessarily going to trigger engineering controls more than what OSHA requires in its standards (Document ID 1756, Tr. 240). OSHA acknowledges that identifying workers with beryllium-related disease has led to an increased understanding of exposures related to beryllium disease and development of controls to protect workers, and OSHA recognizes the efforts of employers who have promoted a strong health and safety culture and contributed to the knowledge on beryllium. However, OSHA also recognizes that many employees may fear possible repercussions of the release of medical information to their employers. Moreover, OSHA agrees with commenters who said that employers should be basing their actions on exposure assessments and implementing controls, and it encourages employers to regularly evaluate their beryllium programs. The standards for beryllium require employers to review and evaluate the written exposure control plan if the employer is notified that an employee is eligible for medical removal, is referred to a CBD diagnostic center, or shows signs or symptoms associated with PO 00000 Frm 00244 Fmt 4701 Sfmt 4700 airborne exposure to or dermal contact with beryllium (paragraph (f)(1)(ii)(B)). OSHA also encourages analyses of aggregated data when employers have the resources to do that and are able to maintain employee confidentially, which is not always possible. However, in the case where an employee may have disease related to beryllium exposure and the employer is effectively implementing controls to maintain exposures within the PEL, the only further action required by the employer would be to follow the licensed physician’s recommendations to protect the employee who may be especially sensitive to exposure and may need special accommodations such as continuing medical examinations at a CBD diagnostic center or medical removal if requested by the employee. The employer does not need the specific health findings that contributed to those recommendations. OSHA examined a number of other factors in determining what the possible outcomes could be of not providing medical findings to employers. One possible outcome is that employers would not be able to report or record illness according to OSHA’s standard on recording and reporting occupational injuries and illnesses (29 CFR 1904). OSHA notes that if employees do not participate in medical surveillance because of discrimination or retaliation fears, illnesses associated with beryllium would also generally not be identified. Although not disclosing medical information to employers appears inconsistent with the objective of recording illnesses, the net effect of that decision to guard employee privacy is improving employee protections due to more employees participating in medical surveillance. An additional possible outcome relating to what information goes to the employer is that withholding information, such as conditions that might place an employee at risk of health impairment with further exposure, may leave employers with no medical basis to aid in the placement of employees. For example, DOD opposed withholding medical information from employers because the information lets the employer know if the worker can continue to work without undue risk (Document ID 1684, Attachment 2, pp. 1–7). However, in the recent silica rulemaking, a number of stakeholders commented that because of the significance of job loss or modifications, employees that are able to perform work duties should make their own decisions on whether to continue working and that such decisions should be made with guidance from the PLHCP (81 FR E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 16833). OSHA finds that this is also true for beryllium-exposed employees. As a result of participating in medical surveillance, those employees will receive information about any health condition they have that might put them at further risk with exposure to beryllium and allow them to make employment choices to benefit their health. Such an approach is not inconsistent with Materion’s approach of letting employees make some employment decisions after learning that they are sensitized or have CBD, although Materion strongly supports providing employers with sensitization information (Document ID 1807, pp. 4– 5; Attachment 6, pp. 75–76). At Materion, the confirmed positive finding is reported to management so an investigation can be conducted, and the Materion Medical Director informs the employee about the rates of progression from sensitization to CBD based on Materion’s most recent epidemiological data. If the employee is diagnosed with CBD by his or her personal pulmonologist, the employee can choose to provide the information to Materion’s Medical Director. Materion reported that employees ‘‘often do [disclose their diagnosis of CBD] in choosing to apply for Materion benefits under its CBD policy’’ (Document ID 1807, p. 4). Under the CBD policy, employees who are physically able to perform the job are given the choice of remaining in their current job, taking a job with lower beryllium exposures, or receiving benefits for 12 months. OSHA agrees with Materion’s approach of letting employees decide how to proceed if they are confirmed positive or diagnosed with CBD, but disagrees that the employer must receive specific health findings before that can happen. In review of this evidence, OSHA concludes that if employees decide to make employment changes to protect their health, there are ways to communicate recommended limitations or medical removal, without revealing the specific medical finding leading to those recommendations. Because of evolving views on medical privacy, such as those set forth in ACOEM’s Confidentiality Guidelines, OSHA does not find that medical reasons for limitations or medical removal should be automatically reported to employers. In addition, providing confidential medical information to all employers presents challenges in some cases. Unlike Materion, many employers do not have medical departments and may not therefore be aware of medical privacy laws or have the resources to VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 maintain medical records under strict confidentiality. Another factor that OSHA considered was the value of giving health information to all employers, when some companies, such as small businesses, may not have in-house health and safety personnel to answer employee questions or emphasize the importance of protective measures, such as work practices or proper use of respirators. In such cases, employees are not likely to benefit from having their medical findings given to employers, who may have no deeper knowledge about health risks than the employee. OSHA expects that the training required under the standards will give employees knowledge to understand protective measures recommended by the PLHCP, and will make it more likely they will authorize PLHCP recommendations to be disclosed to the employer. As was the case in the silica rulemaking, OSHA agrees that employees exposed to beryllium have the most at stake in terms of their health and employability, and they should not have to choose between continued employment and the health benefits offered by medical surveillance, which they are entitled to under the OSH Act. OSHA agrees that employees should make employment decisions, following discussions with the PLHCP that include the risks of continued exposure. Before that can happen, however, employees need to have confidence that participation in medical surveillance will not threaten their livelihoods. After considering the various viewpoints expressed during the rulemaking on these issues, OSHA concludes that the best way to maximize employee participation in medical surveillance, therefore promoting the protective and preventative purposes of this rule, is by limiting required disclosures of information to the employer to only the bare minimum of what the employer needs to know to protect employee health—recommended restrictions on respirator and protective clothing and equipment use and, only with consent of the employee, the licensed physician’s recommended limitations on airborne exposure to beryllium and recommendations for evaluation at a CBD diagnostic center, continued medical surveillance, and removal from airborne exposure to beryllium. Thus, OSHA views this consent-based approach to reporting of medical surveillance findings critical to the ultimate success of this provision, which will be measured not just in the participation rate, but in the benefits to participating employees—early detection of beryllium-related disease so PO 00000 Frm 00245 Fmt 4701 Sfmt 4700 2713 that employees can make decisions to mitigate adverse health effects and to possibly retard progression of the disease. In sum, OSHA concludes that the record offers compelling evidence for modifying the proposed content of the licensed physician’s written medical opinion for the employer. The evidence includes employee privacy concerns, as well as evidence on the limited utility for giving specific medical findings to employers. OSHA is particularly concerned that the proposed requirements would have led to many employees not participating in medical surveillance and thus not receiving its benefits. OSHA therefore has limited the information to be given to the employer under this rule, but is requiring that the employee receive a separate written medical report with more detailed medical information. The requirements for the type of information provided to the employer are consistent with those in the Respirable Crystalline Silica standard (29 CFR 1910.1053), but are different from requirements in the majority of OSHA standards that were promulgated before that standard. The requirements in other standards remain in effect for those standards. The requirements for this rule are based on the evidence obtained during this rulemaking for beryllium, in particular that many employees, especially those who are not represented by a labor union or who work in a company that does not foster a strong health and safety culture, would not take advantage of medical surveillance without stronger privacy protections. Licensed Physician’s written medical report for the employee. OSHA did not propose a separate report given directly by the licensed physician to the employee, but as discussed in detail above, several commenters requested that a report containing medical information be given to the employee only. OSHA agrees and in response to those comments, final paragraph (k)(5) requires the employer to ensure that the PLHCP explains the results of the medical examination and that the licensed physician provides the employee with a written medical report within 45 days of the examination (including any follow-up BeLPT required under paragraph (k)(3)(ii)(E) of this standard). In other words, the examination does not end (and trigger the 45-day disclosure period) until all of the follow-up BeLPTs have been administered. This deadline is consistent with the deadline for the licensed physician’s written medical E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2714 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations opinion for the employer, which is discussed below. The contents of the licensed physician’s written medical report for the employee are set forth in final paragraphs (k)(5)(i)–(v). They include: The results of the medical examination, including any medical condition(s), such as CBD or beryllium sensitization (i.e., the employee is confirmed positive, as is defined in paragraph (b) of the standard), that may place the employee at increased risk from further airborne exposure; any medical conditions related to airborne exposure that require further evaluation or treatment; any recommendations on the employee’s use of respirators, protective clothing, or equipment; and any recommended limitations on airborne beryllium exposure. If the employee is confirmed positive or diagnosed with CBD, the written medical report must also contain any recommendations for referral to a CBD diagnostic center, continued medical surveillance, and medical removal from airborne beryllium exposures, as described in paragraph (l) of the standard. Paragraph (l) specifies that medical removal applies only to work scenarios where airborne exposures exceed the action level. Paragraph (k)(5)(iii) also states that the licensed physician may recommend evaluations at a CBD diagnostic center based on any other reason deemed appropriate. For example, the physician might recommend an evaluation at a CBD diagnostic center because he or she suspects that results from the BeLPT are questionable based on signs or symptoms in the employee or other clinical findings that are consistent with CBD and wants a specialist in beryllium disease to examine the employee. However, OSHA notes that recommendations for referrals for evaluations at CBD diagnostic centers under this standard should only be given for health-related reasons that pertain to beryllium. The health-related information in the licensed physician’s written medical report for the employee is generally consistent with the proposed written medical opinion for the employer, with a few notable exceptions. The proposal required the written medical opinion to indicate ‘‘whether the employee had any medical condition that would place the employee at increased risk of CBD from further [airborne] exposure.’’ Although including a statement in the opinion that ‘‘the employee has a medical condition that places him or her at increased risk of CBD’’ implies that the employee is sensitized to beryllium, the proposal did not require VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 that a specific finding such as ‘‘confirmed beryllium sensitization’’ be included in the opinion. Because only the employee will be receiving the written medical report, the written medical report will include any specific diagnoses, such as CBD or beryllium sensitization. OSHA added ‘‘CBD’’ as a condition to be included in the written medical report to the employee because employees who have CBD may be at risk of increased progression of the disease if they continue to be exposed. Including a confirmed positive finding or CBD diagnosis will also give the employee a record of his or her eligibility for medical removal. An additional change from the proposed to final requirement is that the proposed phrase of ‘‘would place the employee at risk of CBD from further [airborne] exposure’’ was changed to ‘‘may place the employee at increased risk from further airborne exposure.’’ The change of the word ‘‘would’’ to ‘‘may’’ was for clarification because the word ‘‘would’’ implies a certainty that does not exist. The phrase ‘‘risk of CBD’’ was also changed to ‘‘risk’’ to clarify that risks may be increased by conditions other than CBD-related disease. For example, the employee may have lung function loss related to a disease such as chronic obstructive pulmonary disease and that lung function loss might be compounded if the employee develops CBD. As noted in the introduction to the Summary and Explanation, the word ‘‘airborne’’ was included as a modifier to the term ‘‘exposure’’ in many cases in the final standards to clarify that OSHA did not intend a change from the proposal. In this provision, OSHA included the term ‘‘airborne’’ to reaffirm its intent that the report must discuss any detected medical conditions that may place the employee at increased risk from further airborne exposure, rather than dermal exposure. OSHA finds that this distinction is appropriate because it is inhalation exposure and not dermal contact that increases the risk of CBD development in a sensitized employee or increases the risk of progression in an employee who has CBD. (For this same reason the word ‘‘airborne’’ was added to final paragraph (k)(5)(ii)(B).) Finally, the proposed phrase ‘‘including the use and limitations of protective clothing and equipment, including respirators’’ was changed to ‘‘use of respirators, protective clothing or equipment’’ in final paragraph (k)(5)(ii)(A). That change reflected an edit to remove superfluous language and the intent of that requirement has not changed. OSHA intends this provision to cover situations where the physician PO 00000 Frm 00246 Fmt 4701 Sfmt 4700 might have recommendations on the use of respirators, protective clothing or equipment in general, e.g., that the employee should wear long sleeves to limit the possibility of dermal exposure. OSHA also intends for the provision to address recommended limitations on an employee’s use of respirators, protective clothing or equipment, e.g., that the employee cannot safely wear a negative pressure respirator. In addition to these changes, OSHA added a number of recommendations that the licensed physician is to include in the written medical report to the employee if the employee is confirmed positive or diagnosed with CBD: (1) Referral for an evaluation at a CBD diagnostic center (paragraph (k)(5)(iii)), (2) continued medical surveillance (paragraph (k)(5)(iv)), and (3) medical removal from airborne exposure to beryllium as described in paragraph (l) (paragraph (k)(5)(v). Aside from a confirmed positive or CBD diagnosis, if otherwise deemed appropriate by the licensed physician, the written medical report must also contain a referral for an evaluation at the CBD diagnostic center. Each of these recommendations reflects another requirement of the final standard. For example, proposed paragraph (k)(6)(i) and (ii) indicated that an evaluation at a CBD diagnostic center was to occur when an employee was confirmed positive and agreed to the examination. OSHA updated the requirement to make it clear that an evaluation at a CBD diagnostic center should not be limited to employees who have been confirmed positive and want to find out if they have CBD, and should be extended to employees already diagnosed with CBD. Such employees would benefit from having a pulmonologist familiar with beryllium disease select appropriate tests to monitor progression of the disease. OSHA therefore expanded the trigger for referral to a CBD diagnostic center to include CBD in addition to sensitization in final paragraphs (k)(5)(iii), (k)(6)(iii), and paragraph (k)(7)(i). The referral for continued medical surveillance for employees who are confirmed positive or have been diagnosed with CBD reflects the addition of paragraph (k)(1)(i)(D) that allows employees whose most recent medical opinion required by paragraph (k)(6) or (k)(7) recommends periodic medical surveillance to continue receiving medical examinations, even if they do not qualify under any other trigger; a more detailed discussion is included under the summary and explanation for final paragraph (k)(1)(i)(D). E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Finally, the triggers for a medical removal recommendation in paragraph (k)(5)(v) reflect the triggers under paragraph (l)(1)(i) and are discussed in more detail in the summary and explanation for final paragraph (l), medical removal protection. OSHA added these recommendations to the written medical report to make it clear to the licensed physician and employee that each of these recommendations is to occur when an employee is confirmed positive or diagnosed with CBD. A similar approach is applied in the Respirable Crystalline Silica standard, where the PLHCP is to include a statement that the employee should be examined by a specialist if that employee has X-ray evidence of silicosis. The requirements for the healthrelated information to be included in the written medical report for the employee are consistent with the overall goals of medical surveillance: To identify beryllium-related adverse health effects so that the employee can consider appropriate steps to manage his or her health; to let the employee know if he or she can be exposed to beryllium in the workplace without increased risk of experiencing adverse health effects; and to determine the employee’s fitness to use respirators. By providing the licensed physician’s written medical report to employees, those who might be at increased risk of health impairment from airborne beryllium exposure will be able to consider interventions (i.e., health management strategies) with guidance from the licensed physician. Such strategies might include employment choices to limit airborne exposures or using a respirator for additional protection. The requirement for a verbal explanation from the PLHCP in paragraph (k)(5) allows the employee to confidentially ask questions or discuss concerns with the PLHCP. It also allows the PLHCP to inform the employee about any non-occupationally related health conditions so that the employee can follow-up as needed with his or her personal healthcare provider at the employee’s expense. The requirement for a written medical report ensures that the employee receives a record of all findings. Employees would also be able to provide the written medical report to future health care providers. Licensed physician’s written medical opinion for the employer. As discussed in detail above, some commenters objected to OSHA’s proposed content for the written medical opinion for the employer based on employee privacy concerns. OSHA shares these privacy VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 concerns and is thus revising the contents of the written medical opinion. In developing the contents of the written medical opinion for the employer, OSHA considered what type of information needs to be included to provide employers with information to protect employee health, while at the same time protecting employee privacy as much as possible. NIOSH commented that the employer should only be provided with information on the employee’s fitness for duty, in addition to restrictions and eligibility for medical removal benefits, as applicable (Document ID 1725, page pp. 33–34). AFL–CIO recommended that OSHA use the language from the respirable crystalline silica rule promulgated in March of 2016, and referred OSHA to the final brief it submitted for the silica rulemaking since the justifications for increased confidentiality apply to beryllium (Document ID 1809, p. 1; 1786). In the silica standard, OSHA required that only limitations on respirator use be included in the written medical opinion without the employee’s consent. The decision was largely influence by physician testimony that giving the employer information on an employee’s ability to use a respirator, but not specific medical information, strikes the appropriate balance between the employee’s privacy and the employer’s right to know because employees who are not fit to wear a respirator and then do so can be at risk of sudden incapacitation or death (81 FR 16835; see also Document ID 1786; pp. 89–90; 1805, Attachment 2, p. 133). Based on the record evidence, OSHA has determined that for the beryllium standards, the written medical opinion for the employer must contain only the date of the examination, a statement that the examination has met the requirements of this standard, and any recommended limitations on the employee’s use of respirators, protective clothing, and equipment; and a statement that the PLHCP explained the results of the examination to the employee, including any tests conducted, any medical conditions related to airborne exposure that require further evaluation or treatment, and any special provisions for use of personal protective clothing or equipment. These requirements are set forth in paragraph (k)(6)(i) of the standards. OSHA is persuaded to include recommended limitations on the employee’s use of respirators, protective clothing, and equipment, with no other medically-related information, in the written medical opinion for the employer without further consent from the employee. The Agency notes that PO 00000 Frm 00247 Fmt 4701 Sfmt 4700 2715 the limitation on respirator use is consistent with information provided to the employer under the Respiratory Protection standard (29 CFR 1910.134). OSHA concludes that only providing information on respirator and protective clothing and equipment limitations in the written medical opinion for the employer is consistent with the ACOEM confidentiality guidelines that address the reporting of health and safety concerns to the employer (Document ID 1815, Attachment 60, p. 1). The date and statement about the examination meeting the requirements of this standard are to provide both the employer and employee with evidence that compliance with the medical surveillance requirements are current. Employees will be able to show this opinion to future employers to demonstrate that they have received the medical examination. Paragraph (k)(6)(ii) states that if the employee provides written authorization, the written medical opinion for the employer must also contain any recommended limitations on the employee’s airborne exposure to beryllium. Paragraphs (i)(6)(iii)–(v) state that if an employee is confirmed positive or diagnosed with CBD and the employee provides written authorization, the written opinion must also contain recommendations for evaluation at a CBD diagnostic center, continued medical surveillance, and medical removal from airborne exposure to beryllium as described in paragraph (l). If otherwise deemed appropriate by the licensed physician and the employee authorizes the information to be included in the written medical opinion, the opinion must also contain a referral for an evaluation at the CBD diagnostic center. As noted above, referrals for evaluations at CBD diagnostic centers under this standard should only be given for health-related reasons that pertain to beryllium. OSHA intends for this provision to allow the employee to give authorizations for the written medical opinion for the employer to contain only the referral for evaluation at a CBD diagnostic center, only the recommendation for continued periodic surveillance, or only the recommendation for medical removal, or both. This will allow employees to choose one or more options that best fit their needs. For example, an employee may choose to only let the employer know that he or she wants continued medical surveillance but not at the CBD diagnostic center because he or she is satisfied with the care provided by the current PLHCP. In another case, an employee may decide that he or she E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2716 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations wants only the recommendation for evaluation at a CBD diagnostic center reported to the employer because the employer wants to be evaluated by someone who is more specialized in beryllium disease before making any major employment decisions. In a third case, the employee may only want the recommendation for removal from airborne exposure reported to the employer because the employee is very concerned about his or her health and wants to be immediately removed without an evaluation at the CBD diagnostic center. OSHA expects that the written authorization could easily be accomplished through the use of a form that allows the employee to check, initial, or otherwise indicate which (if any) of these items discussed above the employee wishes to be included in the written medical opinion for the employer. OSHA concludes that allowing the employee to decide what if any additional information can be reported to the employer is warranted based on the seriousness and irreversibility of beryllium disease and the major impact that the decision may have on the employee’s health and employment. OSHA is convinced that routinely including recommended limitations on airborne exposure, evaluations at a CBD diagnostic center, and especially medical removal in the written medical opinion for the employer absent employee consent could adversely affect employees’ willingness to participate in medical surveillance. The requirements for this paragraph are consistent with recommendations to let employees make their own health decisions. OSHA stresses that information given to the employer should not include an underlying diagnosis—only the specific recommendation or referral called for under the standards. OSHA considers this a reasonable approach that balances the need to maintain employee confidentiality with the employer’s need to know that it may want to reevaluate its beryllium program. Reporting that a referral or medical removal is recommended, when authorized by the employee, allows the employer to reevaluate its written exposure control plan, as required under paragraph (f)(1)(ii)(B). OSHA finds that this new format for the licensed physician’s medical opinion for beryllium will better address concerns of ORCHSE, who feared it would be in violation if the written medical opinion for the employer included information that OSHA proposed the licensed physician or PLHCP not report to the employer, such as an unrelated diagnosis VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 (Document ID 1691, p. 11). OSHA finds that removing the prohibition on unrelated diagnoses and instead specifying the only information that is to be included in the written medical opinion for the employer remedies this concern because it makes the contents of the opinion easier to understand and less subject to misinterpretation. OSHA recognizes that some employees might be exposed to multiple OSHA-regulated substances at levels that trigger medical surveillance and requirements for written opinions. For example, Newport News Shipbuilding indicated that their employees already undergo medical surveillance for arsenic (Document ID 1657, p. 2). The licensed physician can opt to prepare one written medical opinion for the employer for each employee that addresses the requirements of all relevant standards, as noted in preambles for past rulemakings, such as Chromium (VI) (71 FR 10100, 10365 (2/ 28/06)). However, the combined written medical opinion for the employer must include the information required under each relevant OSHA standard. For example, if the PLHCP opts to combine written medical opinions for an employee exposed to both inorganic arsenic and beryllium, then the combined opinion to the employer must contain the information required by paragraphs (n)(6)(i) of the inorganic arsenic standard (29 CFR 1910.1018) and the information required by paragraphs (k)(6)(i) (and paragraphs (k)(6)(ii)–(v) with written authorization from the employee) of the beryllium standards. NABTU noted that the black lung rule for coal miners protects confidentiality by prohibiting mine operators from requiring miners to provide a copy of their medical information (Document ID 1679, p. 13; 30 CFR 90.3). NABTU requested that the beryllium rule protect confidentiality by prohibiting employers from asking employees or the PLHCP for medical information (Document ID 1679, p. 13). Consistent with the Respirable Crystalline Silica standard, OSHA is not including such a prohibition in the beryllium standard because employers may have legitimate reasons for requesting medical information, such as BeLPT results. For example, employers might request such information for doing an investigation or helping employees file compensation claims. If employees are not concerned about discrimination or retaliation, or need the employer’s help in filing a claim, they could provide the health information to the employer. Paragraph (k)(6)(vi) requires the employer to ensure that employees receive a copy of PO 00000 Frm 00248 Fmt 4701 Sfmt 4700 the written medical opinion for the employer within 45 days of any medical examination (including any follow-up BeLPT required under paragraph (k)(3)(ii)(E) of this standard) performed for that employee. The reason for the 45day deadline to provide the written medical opinion is discussed below. OSHA is requiring that employees receive a copy of the written medical opinion for the employer, in addition to the written medical report, because they can present the written medical opinion as proof of a current medical examination to future employers. This is especially important in industries with high turnover because employees may work for more than one employer during a two-year period and this ensures that tests are not performed more frequently than required. On the topic of transient employment, NSC asked OSHA to consider workers employed by staffing agencies and assigned to multiple host employers and possibly employees of contractors to the host employer, who might not receive medical surveillance because of the transient nature of their employment (Document ID 1612, p. 3). OSHA’s July 15, 2014, memorandum titled Policy Background on the Temporary Worker Initiative indicates that both the host and staffing agency are responsible for the health and safety of temporary employees. For example, the policy memorandum indicates that host employers are well suited for assuming responsibility for compliance related to workplace hazards, while staffing agencies may be best positioned to provide medical surveillance. Under this policy, staffing agencies are expected to offer medical surveillance to eligible employees, and they could send a copy of the written medical opinion to the host employer so that the host employer would know about any limitations that might be recommended by the licensed physician. Similarly contract employers whose employees work at different job sites are expected to offer medical surveillance to their eligible employees. Also, OSHA revised the triggers for medical surveillance in paragraphs (k)(1)(i)(A) and (k)(2)(i)(A) so that employees must be offered medical surveillance within 30 days of when the employer determines they are reasonably expected to be exposed above the action level for 30 or more days a year. The revised trigger allows for more timely medical examinations than the proposed trigger, which would have allowed for the employee to be exposed for 30 days before the employer had to offer medical surveillance. As a result, more temporary workers who are E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations employed for short periods of time will meet the trigger for medical surveillance. As indicated above, the standards require that employers ensure that employees get a copy of the PLHCP’s written medical report and opinion and that they get a copy of the written opinion within 45 days of each medical examination (including any follow-up BeLPT required under paragraph (k)(3)(ii)(E) of this standard) (paragraphs (k)(5), (k)(6)(i), (k)(6)(vi)). By contrast, the proposed rule would have required that the employer obtain the licensed physician’s written medical opinion within 30 days of the medical examination and then provide a copy to the employee within 2 weeks after receiving it. NJH commented that 45 days is a better time period for notifying employers because it can take more than 2 weeks to process the BeLPT (Document ID 1664, p. 8). ORCHSE expressed concern about the 30-day timeline, stating that the employer would be in violation if the physician took more than 30 days to deliver the report (Document ID 1691, pp. 11–12). In light of NJH and ORCHSE’s comments, OSHA has revised the proposed 30-day timeline to allow for 45 days. OSHA expects that the new 45day period will give the licensed physician sufficient time to consider the results of any tests, including a followup BeLPT, done as part of the examination. OSHA finds that delivering the report to the employer within 45 days will still ensure that the employee and employer are informed in a timely manner and allows the employer to take any necessary protective measures within a reasonable time period. To ensure timely delivery of reports and opinions containing the correct information and demonstrate a good faith effort in meeting these requirements of the standard, the employer could inform licensed physicians about the time deadline and other requirements of the beryllium standard in a written agreement and follow up with the physician if there is concern about timely delivery or content of these documents. Because the licensed physician will be providing the employee with a copy of the written medical report, he or she could give the employee a copy of the written medical opinion at the same time. This would eliminate the need for the employer to give the employee a copy of the PLHCP’s written medical opinion for the employer, but the employer would still need to ensure timely delivery. OSHA has also revised this provision to account for the time to administer any follow-up BeLPT tests required VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 under paragraph (k)(3)(ii)(E) of these standards. As discussed above, if the results of the BeLPT are other than normal, paragraph (k)(3)(ii)(E) requires a follow-up BeLPT to be offered within 30 days, unless the employee has been confirmed positive. In order to allow for the licensed physician to consider BeLPT results and prepare the written medical opinion, the Agency must allow time for the BeLPT to be administered, processed, and interpreted. Therefore, OSHA has decided to require the employer to obtain a written medical opinion from the licensed physician within 45 days of the medical examination (including any follow-up BeLPT required under paragraph (k)(3)(ii)(E) of this standard). Evaluation at a CBD Diagnostic Center. OSHA proposed that within 30 days after an employer learned that an employee was confirmed positive, the licensed physician was to consult with the employee to discuss referral to a CBD diagnostic center that was mutually agreed upon by the employer and employee (proposed paragraph (k)(6)(i)). Following the consultation, if the employee decided to be clinically evaluated at a CBD diagnostic center, the employer was to provide the examination at no cost to the employee (proposed paragraph (k)(6)(ii)). OSHA asked stakeholders to comment on the proposed requirement for evaluation at a CBD diagnostic center, especially whether the requirements for mutual agreement by the employee and employer is necessary and appropriate and how the diagnostic center should be chosen if the employer and employee cannot agree. OSHA also asked whether the standard should specify that evaluation at a diagnostic center must be at a reasonable location (80 FR 47574–47575). The term CBD diagnostic center is defined in paragraph (b), Definitions, of the standards. As provided in paragraph (b) and explained in the Summary and Explanation, the CBD diagnostic center can be a hospital or other facility that has an on-site pulmonary specialist who can interpret biopsy pathology and bronchoalveolar lavage (BAL) results. The diagnostic center must also have onsite facilities that can do a clinical evaluation for CBD that includes pulmonary function testing according to ATS guidelines, transbronchial biopsy, and BAL, with the ability to transfer BAL samples to a laboratory for diagnostic evaluation within 24 hours. Ameren supported a specialist exam but asserted that an examination by a pulmonologist was sufficient and that the pulmonologist could be allowed to work with a CBD diagnostic center to PO 00000 Frm 00249 Fmt 4701 Sfmt 4700 2717 treat a sensitized employee (Document ID 1675, p. 17). Southern Company argued that rather than requiring an evaluation at a CBD diagnostic center, the standard should instead specify the types of exams required (Document ID 1668, pp. 2–3). DOD commented that employees should be referred to a board-certified pulmonologist who is capable of doing bronchoscopy, bronchial biopsy, and broncho-alveolar lavage (Document ID 1684, Attachment 2, p. 1–6), NSSP, NABTU, ACOEM, and ATS advocated for an examination at a CBD center for sensitized employees (Document ID 1677, p. 6; 1679, p. 12; 1685, p. 5; 1688, p. 3). OSHA is not persuaded by Southern Company’s argument that the final standards should detail specific tests for confirmed positive employees, instead of requiring an examination at a CBD diagnostic center. As described above, the types of evaluations required for an employee who has a confirmed positive finding or is diagnosed with CBD must be determined on a case-by-case basis, and therefore determining appropriate testing requires a pulmonologist with the expertise described in the definition for CBD diagnostic center. In addition, many of the procedures that a pulmonologist may recommend are invasive and therefore involve risks. As a result, these tests should only be performed by a pulmonologist familiar with beryllium disease at a facility that meets the definition of a CBD diagnostic center, after the pulmonologist has carefully considered the employee’s medical and occupational history. For these reasons, OSHA reaffirms that it is essential that eligible employees be evaluated at a CBD diagnostic center. Requiring that the diagnostic center be able to perform all the functions described under the Definitions section also makes the exam more convenient for the employer and the employee because the employee will not have to go to multiple facilities in order to undergo different procedures. Southern Company disagreed with the proposed requirement that both the employee and employer agree upon the CBD diagnostic center, asserting that the requirement could conflict with selection of a physician under workers’ compensation laws, because OSHA does not have a mechanism to settle disputes, and because similar requirements are not included in other OSHA standards (Document ID 1668, pp. 6–7). Ameren and ORCHSE also opposed the requirement for mutual agreement on a CBD diagnostic center and recommended that location be considered when the employee and employer cannot reach agreement E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2718 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations (Document ID 1675, p. 17; 1691, p. 10). NJH supported mutual agreement on the CBD diagnostic center between the employee and employer and stated that location, expertise of the center, and feasibility should all be accounted for when agreement cannot be reached (Document ID 1664, p. 8). OSHA acknowledges the concerns of these stakeholders, but maintains that the employee should be given a choice in the selection of a CBD diagnostic center because of the risks involved with procedures that the employee may have to undergo and because of the lifechanging decisions that the employee might have to make based on the results of the evaluation. The employer and employee should make a good faith effort to agree on a CBD diagnostic center that is acceptable to them both. In making the decision, the first consideration is identifying qualified CBD diagnostic centers. The next considerations in the decision should include requirements under other laws and geographical location. OSHA expects that once these criteria are considered, there will not be unlimited options, which will help the employee and employer come to a decision. Although OSHA was not convinced that changes needed to be made based on public comments, OSHA did find changes were required to make the final provision consistent with other requirements of the final standard. First, OSHA changed the trigger for referral to a CBD diagnostic center to include both confirmed positive and a CBD diagnosis for consistency with paragraphs (k)(5)(iii) and (k)(6)(iii). The reasoning for this change is described above in the discussion of paragraph (k)(5)(iii). Second, OSHA removed the requirement for a consultation between the physician and employee within 30 days after the employer learned that the employee was confirmed positive. Under paragraph (k)(6)(D), the employer already must ensure that the PLHCP explains findings to the employee, including conditions related to airborne beryllium exposures that require further evaluation or treatment within 30 days of the medical examination. The discussion about recommended referral can occur as part of that conversation, and OSHA does not find that a separate consultation with the physician or PLHCP is necessary. The third major change to this provision was detailing how the employer would be informed that the employee is eligible for an evaluation at a CBD diagnostic center. The change reflects updates made to paragraph (k)(6) to allow the employee more privacy and control over the type of VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 information the employer receives. Under final paragraph (k)(6), the employee must authorize the written medical opinion to contain recommendations for an evaluation at a CBD diagnostic center, and the licensed physician would then provide the employer that recommendation in the written medical opinion. Under paragraph (k)(5), the employee’s written medical report is to contain medical findings, including a confirmed positive test result and a CBD diagnosis. The report must also contain a referral for an evaluation at a CBD diagnostic center if the employee is confirmed positive or diagnosed with CBD or if the licensed physician otherwise deems it appropriate. The employee has the option of providing the employer with a copy of the written medical report indicating a confirmed positive finding or diagnosis of CBD, or recommending referral. OSHA is providing the option for a written medical report listing a confirmed positive finding or diagnoses of CBD to be offered as proof of eligibility for an evaluation at a CBD diagnostic center, in the event that a licensed physician did not recommend a referral to a CBD diagnostic center in either the written medical report or the written medical opinion. As the result of the changes discussed above, final paragraph (k)(7) requires that employers provide a no-cost evaluation at a CBD-diagnostic center that is mutually agreed upon by the employee and employer within 30 days of receiving a medical opinion that recommends the referral (paragraph (k)(7)(i)(A)) or within 30 days after the employee presents the employer with a written medical report indicating that the employee has been confirmed positive or diagnosed with CBD, or recommending referral to a CBD diagnostic center (paragraph (k)(7)(i)(B)). As is the case with the PLHCP’s examination, the employer is responsible for providing the employee with a medical examination at a CBD diagnostic center, at no cost, and at a reasonable time and place. Under paragraph (k)(7)(ii) of the standards the employer must ensure that the CBD diagnostic center explains medical findings to the employee and gives the employee a written medical report within 30 days of the examination. Like the licensed physician’s written medical report, the written medical report from the CBD diagnostic center must contain the results of the examination, including conditions such as sensitization or CBD that might increase the employee’s risk from airborne exposure to beryllium; any medical conditions related to PO 00000 Frm 00250 Fmt 4701 Sfmt 4700 beryllium that require further follow-up; any recommendations on the employee’s use of respirators, protective clothing, or equipment; and any recommended limitations on beryllium exposure. If the employee is confirmed positive or diagnosed with CBD, the written medical report must also contain recommendations for continued periodic medical surveillance and recommendations for removal from exposure to beryllium, as described in paragraph (l). The reasons why the CBD diagnostic center is to give the employee this information are the same as discussed above, under the requirements for the licensed physician’s written medical report for the employee. This provision was added to the final standards to ensure that the employee gets a written record from the CBD diagnostic center and to allow the employee to consult with the CBD diagnostic center about the findings. Paragraph (k)(7)(iii) requires that the CBD diagnostic center provides the employer with a written medical opinion within 30 days of the medical examination. The written medical opinion must contain the date of the examination, any recommended limitations on the employee’s use of respirators, protective clothing, or equipment, and a statement that a PLHCP explained the results of the medical examination to the employee. It must also contain a statement that the examination met the requirements of the standard, if a periodic examination was conducted for an employee who chooses examinations conducted at the CBD diagnostic center as specified under paragraph (7)(iv). If the employee provides written authorization, the written medical opinion for the employer must also contain any recommended limitations on the employee’s airborne exposure to beryllium. If an employee is confirmed positive or diagnosed with CBD and the employee provides written authorization, the written opinion must also contain recommendations for continued medical surveillance, and/or medical removal from exposure to beryllium, as described in paragraph (l). This provision was not in the proposed standard or the joint draft recommended standard by Materion and USW but was added to the final standards to allow for transmittal of CBD diagnostic center recommendations to the employer without revealing the specific medical reason for those recommendations. The structure parallels the written medical opinion from the licensed physician, which was developed based on stakeholder requests to increase confidentiality of E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations medical findings. A separate written medical opinion from the CBD diagnostic center is needed because the recommendations may differ from those of the licensed physician and usually comes from a different provider. For example, the employee may have wanted only a recommendation for evaluation at a CBD diagnostic center to be included on the written medical opinion from the physician, but, after evaluation at a CBD diagnostic center, may decide to include the recommendation for medical removal from exposure on the CBD diagnostic center’s written medical opinion. Paragraph (k)(7)(iv) requires the employer to ensure that each employee receives a copy of the written medical opinion from the CBD diagnostic center described in paragraph (k)(7) of this standard within 30 days of any medical examination performed for that employee. As discussed above with regard to paragraph (k)(6)(vi), requiring the provision of all written medical opinions to employees can permit employees to provide that information to future employers without divulging private medical information and also present the opinion as proof of a current examination that meets the requirements of the beryllium standard. The deadlines for submittal of the written medical opinion and report are shorter for the CBD diagnostic center (30 days) than the licensed physician (45 days). The reasoning is because CBD diagnostic centers are not expected to routinely conduct BeLPTs, which as noted above, take 2 weeks to process. They will not, therefore, be affected by the same time limitations as licensed physicians. In the NPRM, OSHA asked stakeholders to comment on whether sensitized employees should be given the opportunity to be examined at a CBD diagnostic center more than once and how frequently those employees should be evaluated (80 FR 47574). This provision was not included in the draft standard or the joint draft recommended standard by Materion and USW (Document ID 0754). NABTU commented that a sensitized employee should continue to be periodically evaluated at a CBD diagnostic center because it cannot be predicted when a sensitized employee will develop CBD (Document ID 1679, p. 12). NSSP, ACOEM, and ATS agreed with continued periodic surveillance at a CBD diagnostic center for sensitized employees (Document ID 1677, p. 6; 1685, p. 5; 1688, p. 3). ATS recommended that sensitized employees be evaluated every one to three years and NSSP recommended that the VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 original physician, CBD diagnostic center, and employee determine the frequency of medical examinations. Finally, Ameren stated that the standard should allow for follow-up based on pulmonologist recommendations (Document ID 1675, p. 16). OSHA agrees that continued evaluation at a CBD diagnostic center is appropriate for sensitized employees and employees diagnosed with CBD. Specialized evaluation is needed to determine the appropriate tests to monitor for possible progression from sensitization to CBD and to monitor the progression of CBD if it does occur. Therefore, after considering the record, OSHA added the requirement for continued evaluation at a CBD diagnostic center for these employees. This new requirement is contained in paragraph (k)(7)(v), which specifies that after an employee has received a clinical evaluation at a CBD diagnostic center described by paragraph (k)(7)(i) of the standards, the employee may choose to have any subsequent medical examinations for which the employee is eligible under paragraph (k) of this standard performed at a CBD diagnostic center. The evaluations must continue to be done at a CBD diagnostic center mutually agreed upon by the employee and employer and provided at no cost to the employee. To allow for continued medical surveillance for those employees who would not otherwise be entitled under (k)(1) or (k)(2), the employee must authorize the recommendation for continued periodic medical surveillance to be included in the most recent written medical opinion from the CBD diagnostic center (paragraph (k)(7)(iii)). Under paragraph (k)(2)(ii), the CBD diagnostic center can recommend continued surveillance every two years. OSHA is not including a provision for more frequent examinations because, as indicated above, surveillance done every two years is appropriate to monitor for sensitization and CBD progression in most employees. Proposed paragraph (k)(7) had required that employers were to convey the results of beryllium sensitization tests to OSHA for evaluation and analysis at the request of OSHA. The employer was to remove all personally identifiable information (e.g., names, social security numbers) before sending the results to OSHA. A similar provision was included in the joint draft recommended standard by Materion and USW. OSHA asked for comment on this provision, specifically if such a requirement would be burdensome for employers and whether it would be more appropriate to send the PO 00000 Frm 00251 Fmt 4701 Sfmt 4700 2719 information to other organizations (80 FR 47575). Some commenters did not support the inclusion of this requirement in the final rule. For example, Ameren commented that the proposed requirement would be burdensome because it would be cumbersome to get signed releases for this information (Document ID 1675, p. 20). ORCHSE also argued that employees would have a difficult time complying with this requirement because employees would not likely sign a release (Document ID 1691, p. 13). DOD also claimed that the requirement would be burdensome and said that it would be better to send the results to NIOSH but not routinely (Document 1684, Attachment 2, pp. 1–7–1–8). On the other hand, NJH supported this requirement because it believed the information would help OSHA identify industries where sensitization is occurring (Document ID 1664, p. 9). However, NJH added that small companies may need help complying with this requirement (Document ID 1664, p. 9). In addition, NJH and ATS recommended that the rule specify that employers routinely and systematically analyze medical screening results along with job and exposure data to identify employees who may be at risk of sensitization and working conditions contributing to sensitization and CBD risk (Document ID 1664, p. 8; 1688, 4). Consistent with the concerns of Ameren and ORCHSE regarding getting releases from employees, OSHA has given much thought to maintaining confidentiality of medical findings as discussed in detail above. As a result of changes made in the standards to enhance employee privacy, the Agency eliminated the proposed paragraph for the written medical opinion to the employer to include a statement about whether the employee had a condition that would put him or her at risk of developing CBD with further beryllium exposure. That provision suggested that the written medical opinion might include findings such as beryllium sensitization. In the final standard, it is explicit that the employer will not receive information about sensitization or CBD in the written medical opinion to the employer, and the employer will only receive that information when an employee presents the employer with the employee’s written medical report. As a result, many employers may not have that information to submit to OSHA or to otherwise conduct a systematic analysis of medical screening results. As discussed above, even if employers were provided aggregated medical findings, it may still be difficult E:\FR\FM\09JAR2.SGM 09JAR2 2720 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS to maintain confidentiality when companies are small or few employees are involved in a process. OSHA has other ways to obtain medical findings if needed. For example, as noted in the Summary and Explanation for paragraph (n), Recordkeeping, OSHA’s Access to Employee Exposure and Medical Records standard (29 CFR 1910.1020) requires employers to ensure that most employee medical records are retained for the duration of employment plus 30 years for employees employed more than one year, and requires that those records be made available to OSHA upon request (29 CFR 1910.1020 (d)(1)(i) and (e)(3)). OSHA therefore deleted proposed paragraph (k)(7) from the final standard. (l) Medical Removal Paragraph (l) of the standards for general industry, shipyards, and construction provide for medical removal protection (MRP). This paragraph applies only to workers with airborne exposure to beryllium at or above the action level who are diagnosed with CBD or confirmed positive and provide documentation of their diagnosis of CBD or confirmed positive status or a physician’s recommendations for removal from exposure to beryllium to their employers. Under this paragraph, employees must provide eligible employees with a choice of removal from exposure at or above the action level or remaining in their job with airborne exposure at or above the action level and wearing a respirator. If the employee chooses removal, the employer is required to remove the employee to comparable work in a work environment where the airborne exposure is below the action level, if such work is available. If comparable work is not available, the employer must maintain the employee’s base earnings, seniority, and other rights and benefits that existed at the time of removal for six months or until such time that comparable work described in paragraph (l)(3)(i) becomes available, whichever comes first. The employee’s earnings under MRP can be diminished by the amount of compensation received from certain other sources. OSHA included medical removal provisions in the proposed rule as a protective, preventative health mechanism that was intended to work in concert with the proposed medical surveillance provisions. As OSHA explained in the proposal, the Agency preliminarily found that medical removal is an important means of protecting employees who have become VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 sensitized or developed CBD, and is an appropriate means to enable them to avoid further exposure. See 80 FR 47802. The Agency further explained that the inclusion of MRP in the proposal was in keeping with the recommendation of beryllium health specialists in the medical community and with the draft recommended standard provided by union and industry stakeholders (Document ID 0754). OSHA solicited comments on the health effects that should trigger MRP and the proposed provisions for MRP. In addition, the Agency included several specific questions to guide stakeholders in their response, including whether beryllium sensitization and CBD are appropriate triggers for medical removal, whether there were other medical conditions or findings that should trigger medical removal, and the amount of time for which a removed employee’s benefits should be extended. OSHA also included questions regarding the costs and benefits of MRP (see 80 FR 47575). During the public comment periods and informal public hearing, numerous stakeholders submitted comments supporting the inclusion of MRP in this rulemaking (e.g., Document ID 1664, pp. 3–4, 9; 1680, pp. 1, 7; 1681, p. 14–15; 1683, p. 3; 1688, p. 2; 1689, pp. 8, 13– 14; 1690, pp. 1, 3–4; 1691, Attachment 1, pp. 13, 15; 1755, Tr. 26, 168; 1756, Tr. 142–143; 1809, p. 1; 1963, pp. 13– 14). The commenters who commented on the issue supported MRP in general terms; none opposed inclusion of MRP in the final rule. Some of these stakeholders noted that they supported MRP because it promotes participation in medical surveillance programs. For example, National Council on Occupational Safety and Health (National COSH) argued that MRP benefits are crucial to a successful medical surveillance program (Document ID 1690, pp. 3–4). National COSH maintained that ‘‘workers will not willingly participate in medical surveillance or disclose early signs and symptoms of disease if doing so means they lose their job and can no longer pay their bills. For this reason, an effective medical surveillance program for CBD must include . . . [MRP] benefits’’ (Document ID 1690, p. 3). NIOSH similarly argued that ‘‘[f]ear of job loss and associated loss of income and other benefits is an important barrier to translating medical screening and surveillance findings into secondary prevention. Inclusion of medical removal provisions is critical to addressing that barrier’’ (Document ID 1755, Tr. 26). The American Association PO 00000 Frm 00252 Fmt 4701 Sfmt 4700 for Justice agreed, observing that ‘‘MRP benefits are an essential tool to ensure that workers with signs and symptoms of disease step forward without fear of reprisal and seek medical advice’’ (Document ID 1683, p. 3). Other commenters indicated that the option for removal was necessary for workers’ health. For example, the USW argued that the inclusion of MRP is necessary to provide a safe and healthful workplace (Document ID 1963, p. 13). USW further commented that Section VIII (Significance of Risk) of the NPRM shows that existing evidence within the docket indicates that workers who are sensitized to beryllium or are in the early stages of chronic beryllium disease can significantly benefit from MRP (Document ID 1963, p. 13). National Jewish Health (NJH) generally agreed with USW’s opinion, stating that ‘‘removal from exposure is the best form of prevention’’ (Document ID 1664, p. 4). Other stakeholders indicated that the inclusion of a medical removal provision might lower exposures in the workplace as a whole. For example, USW testified that MRP provides employers with a financial incentive to keep beryllium exposures low (Document ID 1755, Tr. 167–68). Mike Wright from USW observed that this incentive helped to lower exposure levels in the context of the lead standard: But what really, I think, best protected workers was medical removal protection because employers did not want to pay people to stay at home until their blood leads got down. So I think if you look at the real benefits of MRP, it isn’t simply that it removes workers from exposure, who might be harmed by further exposure. It is that it really provides an incentive for employers to keep exposures low in the first place. And that’s been our experience (Document ID 1755, Tr. 167–68). After careful consideration of these comments, OSHA has decided to include MRP in the final standards. As noted by commenters, MRP serves three main interrelated purposes. First, it increases employee participation and confidence in the standards’ medical surveillance program. Under paragraph (k)(1)(i)(B), employers must offer medical examinations to employees showing signs or symptoms of CBD. The success of that program will depend in part on employees’ willingness to report their symptoms, submit to examinations, respond to questions, and comply with instructions. Guaranteeing comparable work or earnings, seniority, and other rights and benefits for a period of time can help allay an employee’s fear that a CBD diagnosis or E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations being confirmed positive will negatively affect earnings or career prospects. MRP encourages employees to report their symptoms and seek treatment, as OSHA has previously recognized when including medical removal in regulations governing the exposure to Lead (43 FR 52952, 52973, November 14, 1978), Benzene (52 FR 34460, 34557, September 11, 1987), and Cadmium (57 FR 42102, 42367–42368, September 14, 1992). This reasoning was also cited by the Department of Energy in support of the medical removal provisions of its Chronic Beryllium Disease Prevention Program, stating that the availability of medical removal benefits encourages worker participation and cooperation in medical surveillance (64 FR 68893). Second, by requiring the employer to remove employees with the highest risk of suffering material impairment of health (if the employee chooses removal), MRP may benefit sensitized employees and those with CBD. OSHA notes that there remains some scientific uncertainty regarding the effects of exposure cessation on the development of CBD among sensitized individuals and the progression from early-stage to late-stage CBD. For example, Steven Markowitz, MD, a medical consultant for USW, acknowledged during the informal public hearing that ‘‘there’s a paucity of evidence that removal from exposure results in improvement of CBD’’ (Document ID 1755, Tr. 101). Nonetheless, most members of the medical community support removal from beryllium exposure as a prudent step in the management of beryllium sensitization and CBD. As noted above, physicians at NJH recommend that individuals diagnosed with beryllium sensitization and CBD who continue to work in a beryllium industry should have exposure of no more than 0.01 micrograms per cubic meter of beryllium as an 8-hour TWA, which is 10 times below the action level of 0.1 micrograms per cubic meter (https:// www.nationaljewish.org/healthinfo/ conditions/beryllium-disease/ environment-management/) (Document ID 0637). Furthermore, OSHA received comments from Lisa Maier, MD and Margaret Mroz, MSPH from NJH during the public comment period supporting MRP for workers with sensitization or CBD (Document ID 1664; 1806, pp. 3– 4). Specifically, Ms. Mroz commented that ‘‘eliminating or reducing exposure can lead to improvement in symptoms’’ for beryllium workers and that ‘‘[r]emoval or reduction in exposure may prevent the development of CBD’’ (Document ID 1806, p. 3–4). And, during the informal public hearing, Dr. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 Lee Newman, testifying on behalf of the American College of Occupational and Environmental Medicine (ACOEM), commented that ‘‘removal from exposure is the right thing to do for somebody who is at a stage of being beryllium sensitized or any stage beyond that’’ (Document ID 1756, Tr. 143). Thus, even though CBD and sensitization are considered to be irreversible, OSHA finds removal may still benefit sensitized employees and those with CBD. Finally, MRP may provide employers with an additional incentive to keep employee exposures low. Precisely because MRP will impose additional costs on employers, MRP can increase the protection afforded workers by the beryllium standards not only directly by improving medical surveillance but also indirectly by providing employers with economic incentives to comply with other provisions of the standard. The costs of MRP are likely to decrease as employer compliance with other provisions of the standard increases. Employers who comply with other provisions of the standard may have to remove relatively few employees. With only a small number of employees requiring removal, complying employers are more likely to be able to find positions available to which removed employees can be transferred. By contrast, employers who make only cursory attempts to comply with the central provisions of these standards are likely to find that the greater their degree of noncompliance, the greater the number of employees requiring medical removal and the greater the associated MRP costs. Thus, as OSHA explained in the preambles to its substance-specific standards on Cadmium and Lead, the inclusion of MRP in a final rule can serve as a strong stimulus for employers to protect worker health and rewards employers who through innovation and creativity derive new ways of protecting worker health not contemplated by these standards (57 FR 42102, 42368 (Sep. 14, 1992); 43 FR 54354, 54450 (Nov. 21, 1978)). OSHA has the authority to include MRP in this standard. Indeed, the Court of Appeals for the D.C. Circuit recognized the Agency’s authority to adopt such provisions more than 35 years ago in its review of the Agency’s Lead standard (Lead I, 647 F.2d at 1229– 1236). There, the Court found that MRP ‘‘appears to lie well within the general range of OSHA’s powers,’’ and reasonable in the case of lead because it would help prevent impermissibly high blood lead levels and mitigate potential employee concerns about cooperating with the medical surveillance program PO 00000 Frm 00253 Fmt 4701 Sfmt 4700 2721 (Id. at 1232, 1237). And, in the three and a half decades since the Lead I decision, OSHA has adopted MRP in five other substance-specific health standards: Cadmium (29 CFR 1910.1027), Benzene (29 CFR 1910.1028), Formaldehyde (29 CFR 1910.1048), Methylenedianiline (29 CFR 1910.1050), and Methylene chloride (1910.1052). Paragraph (l)(1) of the proposed standard detailed the eligibility requirements for medical removal. The provision explained that an employee would be eligible for medical removal if he or she works in a job with exposure at or above the action level and is diagnosed with CBD or confirmed positive for sensitization. OSHA specifically asked for comments on whether beryllium sensitization and CBD are appropriate triggers for medical removal and whether there are other medical conditions or findings that should trigger medical removal. Stakeholders generally supported the proposed triggers. ORCHSE Strategies (ORCHSE) argued that confirmed beryllium sensitization and CBD are appropriate triggers for medical removal (Document ID 1691, Attachment 1, p. 15). ORCHSE explained that since CBD is a chronic, progressive lung disease with no known cure, it is imperative that signs of health impairment be found early and exposure be terminated to avoid further impairment (Document ID 1691, Attachment 1, p. 15). NJH also commented that confirmed beryllium sensitization and CBD are appropriate triggers for medical removal (Document ID 1664, p. 9). Ameren, North America’s Building Trades Unions (NABTU), Materion Corporation (Materion), and USW agreed (Document ID 1675, p. 20; 1679, p. 14; 1680, p. 7; 1681, pp. 14–15). USW commented that medical removal could prevent the progression of disease in workers diagnosed with sensitization or CBD (Document ID 1681, p. 15). However the Department of Defense argued that CBD but not beryllium sensitization is an appropriate trigger for medical removal and that sensitization is an appropriate trigger for advising employees about risk and requiring use of personal protective equipment if the employee chooses to return to work (Document ID 1684, Attachment 2, p. 1– 8). The American Federation of Labor and Congress of Industrial Organizations (AFL–CIO) indicated support for the action level exposure trigger (Document ID 1809, p. 1; 1809, Attachment 2, Tr. 930–931; 942–943). After reviewing the record on this issue, OSHA has decided that a CBD diagnosis and a confirmed positive test for sensitization are appropriate triggers for medical removal. OSHA disagrees E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2722 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations with the DOD and concludes that sensitization is an appropriate trigger for medical removal because removal from exposure may prevent the onset of CBD. Therefore, OSHA is retaining the triggers of both sensitization and CBD. Final paragraph (l)(1), consistent with the proposal, states that the employee is eligible for medical removal if the employee works in a job with exposure at or above the action level, but contains more specificity about the types of documentation that are submitted to the employer to demonstrate eligibility for medical removal. This change was made to track employee privacy protections included in the licensed physician’s medical opinion in paragraph (k)(6) and the CBD diagnostic center’s medical opinion in paragraph (k)(7)(iii). Under paragraphs (k)(5) and (k)(7)(ii), the standards now specify that the licensed physician or CBD diagnostic center provides only the employee a medical report that contains detailed medical findings, such as confirmed positive findings or a diagnosis of CBD. In cases where the employee is confirmed positive or diagnosed with CBD, the physician or CBD diagnostic center also includes recommendations for removal from exposure in the written medical report. However, under paragraphs (k)(6) and (k)(7)(iii), employers do not receive a written medical opinion that contains an employee’s medical information (other than any recommended limitations on the employee’s use of respirators) without the employee’s written consent. The written opinion to the employer may contain a recommendation for removal from exposure, without the medical reason for the recommendation, only if the employee authorizes that recommendation to be included in the opinion. This allows an employee who is eligible for medical removal and chooses that option to provide official documentation requesting removal, without disclosing a specific medical condition. Thus, paragraph (l)(1) allows an employee’s eligibility for removal to be established by four different types of documentation: • The employee may provide a (k)(5) or (k)(7)(ii) written medical report indicating a confirmed positive finding or diagnoses of CBD and recommending removal because of that finding or diagnosis. • The employee may provide a (k)(5) or (k)(7)(ii) written medical report in which the confirmed positive finding or diagnosis has been obscured or removed, but still contains the recommendation of removal because of that finding or diagnosis. An employee VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 might do this if, consistent with the approach of paragraph (k), the employee wishes to keep the details of the condition private. • The employee may provide any reliable medical documentation establishing a confirmed positive finding or diagnosis of CBD, regardless of whether it was issued in compliance with paragraph (k)(5). An employee might do this if, for example, the documentation predates this standard. This documentation would be a ‘‘written medical report’’ for purposes of (l)(1)(i)(A). • The employer receives a (k)(6) or (k)(7)(iii) written medical opinion recommending removal from the licensed physician or CBD diagnostic center. OSHA added the language ‘‘in accordance with paragraph (k)(5)(v) or (k)(7)(ii) of this standard’’ to (l)(1)(i)(B) and ‘‘in accordance with paragraph (k)(6)(v) or (k)(7)(iii) of the standard’’ to (l)(1)(ii) to be clear that medical removal is required under those provisions only when the removal recommendation is based on a confirmed positive finding or a diagnosis of CBD. Paragraph (l)(2) of the proposal laid out the options for employees who are eligible for MRP. Specifically, paragraph (l)(2) required eligible employees to choose removal, as described under paragraph (l)(3), or to remain in a job with exposure at or above the action level as long as they wear a respirator in accordance with paragraph (g) of this standard. While both ORCHSE and Public Citizen supported the MRP provision, neither supported making removal optional (Document ID 1691, Attachment 1, p. 13; 1756, Tr. 189). ORCHSE specifically stated that utilizing respiratory protection as a means of protecting workers violates the hierarchy of controls and removal is most prudent for worker protection (Document ID 1691, Attachment 1, p. 13). After careful consideration of these comments, OSHA has decided to allow employees to choose between removal and remaining in a job with airborne exposure at or above the action level, provided that the employee uses respiratory protection for exposures at or above the action level, as contemplated in the proposal. OSHA recognizes that removal may reduce the risk of the onset of CBD and lead to reduction of symptoms. However, CBD is unlike triggers for MRP in some other OSHA standards, such as lead and benzene, because CBD is not reversible. Thus, without the respirator option, mandatory removal would require that the employee switch careers PO 00000 Frm 00254 Fmt 4701 Sfmt 4700 permanently. OSHA believes the worker should be given a voice in such a fundamental life decision where the confirmed positive employee may be able to minimize the risk of CBD through the consistent and careful use of respiratory protection in a workplace where feasible controls are implemented to maintain exposures within the PEL. Indeed, mandatory permanent removal might lead workers to hide their symptoms or not seek treatment, which is directly contrary to the purpose of MRP. For these reasons, the Agency finds mandating removal is not appropriate in this rulemaking. Therefore, paragraph (l)(2) of the final standards requires employers to provide eligible employees with the employee’s choice of: (i) Removal as described in paragraph (l)(3) of these standards; or (ii) remaining in a job with airborne exposure at or above the action level, provided that the employee uses respiratory protection that complies with paragraph (g) of these standards whenever exposures are at or above the action level. Although paragraph (l)(2) of the final standards tracks OSHA’s intent as expressed in the proposal, the final provision contains several clarifying changes. First, final paragraph (l)(2) explicitly places the responsibility for providing the choices on the employer, while the proposal merely implied that the employer would do so. OSHA believes that this clarification eliminates the possibility of confusion. Second, final paragraph (l)(2)(ii) refers to paragraph (g) of these standards, instead of referring to the Respiratory Protection standard (29 CFR 1910.134). OSHA made this second change to bring this provision into line with a similar provision in paragraph (e) of the final standards; it does not affect the employer’s obligations as set forth in the proposed rule. Third, final paragraph (l)(2)(ii) expressly requires employers to ensure that employees use the respiratory protection whenever airborne exposures meet or exceed the action level. Again, this requirement was implied in the proposal, but OSHA believes that making the requirement express helps employers understand their obligations under these standards. Proposed paragraph (l)(3) contained requirements that would have applied if an eligible employee elected removal. Under the proposal, when an employee chooses removal, the employer would have been required to remove the employee to comparable work if such work was available. Proposed paragraph (l)(3)(i) explained that comparable work is a position for which the employee is already qualified or can be trained E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations within one month, in an environment where beryllium exposure is below the action level. As explained in the preamble to the proposal, this provision would not have required an employer to place an employee on paid leave under proposed paragraph (l)(3)(iii) if the employee refused comparable work offered under paragraph (l)(3)(i). If comparable work was not immediately available, paragraph (l)(3)(ii) of the proposal would have required the employer to place the employee on paid leave for six months or until comparable work becomes available, whichever occurs first. Proposed paragraph (l)(3)(ii) further explained that if comparable work became available before the end of the six month paid leave period, the employer would have been obligated to offer the open position to the employee. However, OSHA explained that if the employee declined the position, the employer would have had no further obligation to provide paid leave. Proposed paragraph (l)(3)(iii) would have continued a removed employee’s rights and benefits for six months, regardless of whether the employee was removed to comparable work or placed on paid leave. The six-month period would have begun when the employee was removed, which means either the day the employer transferred the employee to comparable work, or the day the employer placed the employee on paid leave. For this period, the provision would have required the employer to maintain the employee’s base earnings, seniority, and other rights and benefits of employment as they existed at the time of removal. OSHA explained that this provision is typical of medical removal provisions in other OSHA standards, such as Cadmium (29 CFR 1910.1027), Benzene (29 CFR 1910.1028), Formaldehyde (29 CFR 1910.1048), Methylenedianiline (29 CFR 1910.1050), and Methylene Chloride (29 CFR 1910.1052). As detailed above, there is widespread support among stakeholders for the inclusion of removal and wage protection for eligible employees in this rulemaking. The provisions included in the proposal were consistent with the recommendation of beryllium health specialists in the medical community and with the draft recommended standard provided by Materion and USW (Document ID 0754). However, not all commenters agreed with the proposed provisions. One commenter, NABTU, argued that ‘‘[i]f an employer who has placed an employee at risk cannot offer alternative employment [within six months], then a better solution would be to provide MRP until VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 the employee has obtained new and equivalent employment, provided that the employee is making a good faith effort at finding new employment [emphasis added].’’ (Document ID 1679, p. 15). OSHA is sympathetic to NABTU’s position—some employers, especially small employers, may lack the flexibility and resources to provide comparable positions for MRP-eligible employees (Document ID 0345, p. 24), and as a result, employees’ base earnings and benefits would only be maintained for a six-month period. However, OSHA also recognizes that the requirement to maintain the employee’s base earnings, seniority, and other rights and benefits that existed at the time of removal for even a six-month period may be difficult for some employers. After weighing these two concerns, OSHA finds that the requirement to provide medical removal protection for a six-month period strikes a reasonable balance between protecting employees and limiting the burden on employers. Therefore, OSHA has decided to retain these provisions in the final standard with minor edits, as follows. First, OSHA reorganized and edited paragraph (l)(3)(i) to clarify and emphasize the employer’s responsibilities. Like the proposed provision, final paragraph (l)(3) applies where an eligible employee chooses removal. If a comparable job is available where exposures to beryllium are below the action level, and the employee is qualified for that job or can be trained within one month, final paragraph (l)(3)(i) requires the employer to remove the employee to that job. Although each of these requirements was expressly stated in the NPRM in either the regulatory text or the preamble (80 FR 47802), OSHA has chosen to make its intent express in the final regulatory text. For example, the NPRM implied in regulatory text and explained in the preamble that an employer’s obligation under proposed paragraph (l)(3)(i) arose where comparable work was available, but the final text makes the trigger for this obligation explicit (see 80 FR 47802; proposed paragraph (l)(3)(ii) (which applied ‘‘if comparable work is not available)). Second, OSHA omitted the proposed requirement in paragraph (l)(3)(i) that ‘‘[t]he employee must accept comparable work if such work is available’’ from final paragraph (l)(3)(i). As stated in the preamble to the proposal, OSHA included this statement in proposed paragraph (l)(3)(i), in part, to make clear that if the employee declines an offer of comparable work, then the employer was not obligated to PO 00000 Frm 00255 Fmt 4701 Sfmt 4700 2723 place the employee on paid leave under paragraph (l)(3)(ii) (80 FR 47802). However, because OSHA regulates employers, this requirement is better expressed as a clarification to the employer’s responsibilities. OSHA concludes that the opening clause to proposed and final paragraphs (l)(3)(ii), which indicates that an employer’s obligation to maintain the employee’s base earnings, seniority, and other rights and benefits that existed at the time of removal arises ‘‘[i]f comparable work is not available’’ makes this sufficiently clear. Third, OSHA eliminated proposed paragraphs (l)(3)(iii), which stated that ‘‘whether the employee is removed to comparable work or placed on paid leave, the employer shall maintain for 6 months the employee’s base earnings, seniority, and other rights and benefits that existed at the time of removal.’’ In the final rule, proposed (l)(3)(iii)’s requirements have been incorporated into final paragraphs (l)(3)(i) and (ii). OSHA believes that this simplification will clarify the Agency’s intent. OSHA has also omitted the phrase ‘‘paid leave’’ from final paragraph (l)(3)(ii) because, with the incorporation of proposed paragraph (l)(3)(iii)’s temporal and benefits requirements into final paragraph (l)(3)(ii), it is unnecessary to specify what an employee who has been removed but is not working in a comparable job would be doing. In addition, OSHA wishes to give employers the flexibility to work with removed employees to create alternatives to merely placing the employee on paid leave. For example, employers might choose to offer the employee the opportunity to train for more than one month so that he or she could qualify for a different job. Provided that the employer otherwise complied with final paragraph (l)(3)(ii), such an arrangement would be permissible under the final standards. Finally, proposed paragraph (l)(4) provided that an employer’s obligation to provide MRP benefits to a removed employee would be reduced if, and to the extent that, the employee receives compensation from a publicly or employer-funded compensation program for earnings lost during the removal period, or receives income from another employer made possible by virtue of the employee’s removal. OSHA retained this requirement unchanged in final paragraph (l)(4). OSHA clarifies that benefits received under the Energy Employees Occupational Illness Compensation Program Act (EEOICPA) do not constitute wage replacement; therefore, EEOICPA benefits would not offset the employee’s MRP benefits. E:\FR\FM\09JAR2.SGM 09JAR2 2724 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS OSHA did not receive any comments specifically directed to this provision, but, as noted above, several stakeholders commented that they supported the MRP provisions contained in the proposal as a whole (i.e., Document ID 1664, pp. 3–4, 9; 1680, pp. 1, 7; 1681, pp. 14–15; 1683, p. 3; 1688, p. 2; 1689, pp. 8, 13–14; 1690, pp. 1, 3–4; 1691, Attachment 1, pp. 13, 15; 1755, Tr. 26, 168; 1756, Tr. 142–143; 1809, p. 1; 1963, pp. 13–14). After considering all comments and the record as a whole on MRP, OSHA finds that a provision for MRP is a necessary part of the final rule. As discussed above, MRP protects an employee’s rights and benefits during the first six months of removal, and OSHA structured the MRP provisions to provide for ways to reduce in certain circumstances an employer’s obligation to compensate employees for earnings lost. OSHA emphasizes, however, that MRP is not intended to serve as a workers’ compensation system. The primary reason the Agency is including MRP in this standard is to provide eligible employees a six-month period to adjust to the comparable work arrangement or to seek alternative employment, without any further exposure at or above the action level. The Agency finds that this provision accomplishes that goal while providing for allowing the employer to control costs in many cases. In addition, this provision is consistent with other standards such as Formaldehyde (29 CFR 1910.1048), Methylenedianiline (29 CFR 1910.1050), and Methylene Chloride (29 CFR 1910.1052). For the reasons discussed above, OSHA finds that maintaining the MRP provision, with the clarifying changes noted above, in the final rule provides workers the incentive to participate in the medical surveillance program and provides workers with sensitization or CBD the opportunity and means to minimize further exposure to beryllium. (m) Communication of Hazards Paragraph (m) of the standards for general industry, construction, and shipyards sets forth the employer’s obligations to comply with OSHA’s Hazard Communication Standard (HCS) (29 CFR 1910.1200) relative to beryllium, and to take additional steps to warn and train employees about the hazards of beryllium. Employees need to know about the hazards to which they are exposed, along with the associated protective measures, in order to understand how they can minimize potential health hazards. As part of an overall hazard communication program, training serves to explain and reinforce the information presented on labels and VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 safety data sheets (SDSs). These written forms of communication will be most effective when employees understand the information presented and are aware of how to avoid or minimize exposures, thereby reducing the possibility of experiencing adverse health effects. Several commenters, including Ameren Corporation (Ameren) and United Steelworkers (USW), generally supported inclusion of a hazard communication requirement in the beryllium standards (e.g., Document ID 1675, p. 7; 1681, p. 15). As a general matter, the HCS requires a comprehensive hazard evaluation and communication process, aimed at ensuring that the hazards of all chemicals are evaluated, and also requires that the information concerning chemical hazards and necessary protective measures is properly transmitted to employees. The HCS achieves this goal, in part, by requiring chemical manufacturers and importers to review available scientific evidence concerning the physical and health hazards of the chemicals they produce or import to determine if they are hazardous. For every chemical found to be hazardous, the chemical manufacturer or importer must develop a container label and an SDS, and provide both documents to downstream users of the chemical. All employers with employees exposed to hazardous chemicals must develop a hazard communication program and ensure that all containers of hazardous chemicals are labeled and employees are provided access to SDSs and are trained on the hazardous chemicals in their workplace. Because OSHA preliminarily found beryllium to be a hazardous chemical, the Agency determined that hazard communications provisions should be included in the proposal. OSHA intends for the hazard communication requirements in the final standards to be substantively as consistent as possible with the HCS, while including additional specific requirements needed to protect employees exposed to beryllium, in order to avoid duplicative administrative burden on employers who must comply with both the HCS and this rule. Proposed paragraph (m)(1)(i) required chemical manufacturers, importers, distributors, and employers to comply with all applicable requirements of the HCS (29 CFR 1910.1200) for beryllium. Stakeholders did not offer any comments on this provision. After reviewing the full record, including all available evidence, and as discussed in this preamble at Section V, Health PO 00000 Frm 00256 Fmt 4701 Sfmt 4700 Effects, and Section VI, Risk Assessment, OSHA finds that beryllium is a hazardous chemical for purposes of the HCS. Therefore, the Agency includes paragraph (m)(1)(i) of the final standards for general industry, construction, and shipyards to require chemical manufacturers, importers, distributors, and employers to comply with their duties under HCS. The final provision in these standards is substantively unchanged from the proposed provision. Paragraph (m)(1)(ii) of the proposal required employers to address at least the following, in classifying the hazards of beryllium: Cancer; lung effects (chronic beryllium disease and acute beryllium disease); beryllium sensitization; skin sensitization; and skin, eye, and respiratory tract irritation. According to the HCS, employers must classify hazards if they do not rely on the classifications of chemical manufacturers, importers, and distributors (see 29 CFR 1910.1200(d)(1)). Commenters did not object to this provision. Therefore, after considering the record, including the general comments in favor of the proposed hazard communications provisions and the evidence presented in Section V, Health Effects, and Section VI, Risk Assessment, regarding the enumerated hazards of exposure to beryllium, OSHA has decided to retain this proposed provision substantively unchanged in final paragraph (m)(1)(ii) of the standards for general industry and shipyards. However, OSHA has revised the language to bring it into conformity with other substance specific standards so it is clear that chemical manufacturers, importers, and distributors are among the entities required to classify the hazards of beryllium (See 77 FR 17748–50). OSHA has chosen not to include an equivalent requirement in the final standards for construction and shipyards since employers in construction and shipyards are downstream users of beryllium products (blasting media) and would not therefore be classifying chemicals (Chapter IV of the Final Economic Analysis). Proposed paragraph (m)(1)(iii) required employers to include beryllium in the hazard communication program established to comply with the HCS, and ensure that each employee has access to labels on containers and safety data sheets for beryllium and is trained in accordance with the HCS and paragraph (m)(4) of this section. Stakeholders did not object to any part of this provision. After reviewing the record, OSHA reaffirms that employees E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations exposed to beryllium need additional training and information. Therefore, OSHA has decided to include the approach set forth in the proposed rule in the final paragraph (m)(1)(iii) of the final standards for general industry and shipyards and final paragraph (m)(1)(ii) of the standard for construction. The final provisions are substantively unchanged from the proposal. Paragraph (m)(2)(i) of the proposed standard required employers to provide and display warning signs at each approach to a regulated area so that each employee is able to read and understand the signs and take necessary protective steps before entering the area. Proposed paragraph (m)(2)(ii) of the standards required employers to ensure that warning signs are legible and readily visible, and that they bear the following legend: asabaliauskas on DSK3SPTVN1PROD with PROPOSALS DANGER BERYLLIUM MAY CAUSE CANCER CAUSES DAMAGE TO LUNGS AUTHORIZED PERSONNEL ONLY WEAR RESPIRATORY PROTECTION AND PROTECTIVE CLOTHING AND EQUIPMENT IN THIS AREA A number of stakeholders offered opinions on these provisions. Some stakeholders, like the USW, supported the proposed provisions (e.g., Document ID 1681, p. 15). Other stakeholders offered specific critiques regarding the proposed required language for the signs. For example, NGK Metals Corporation (NGK) and Materion Corporation (Materion) strongly opposed having cancer warnings displayed on warning signs. These commenters requested that OSHA strike out the cancer warning based on the results of a recent study by Boffetta, et al. (2014) (Document ID 0403) that does not show an elevated risk of cancer to workers exposed to beryllium (Document ID 1663, p. 3; 0403; 1958, pp. 3–5). Materion added that the cancer warning masks the true risk, CBD, and that the wording on warning signs should be changed to ‘‘Causes Damage to Lungs’’ to reflect the true hazard (Document ID 1958, pp. 4–5). OSHA has decided to retain the hazard statement about cancer as a requirement for the warning signs. As discussed in this preamble at Section V, Health Effects, and Section VI, Risk Assessment, OSHA has reviewed the scientific literature for beryllium carcinogenicity, including the Boffeta study, and has concluded that beryllium is carcinogenic. The Agency’s finding is based on the best available epidemiological data, reflects evidence from animal and mechanistic research, and is consistent with the conclusions VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 of other government and public health organizations. Furthermore, the International Agency for Research on Cancer (IARC), National Toxicology Program (NTP), and American Conference of Governmental Industrial Hygienists (ACGIH) have all classified beryllium as a known human carcinogen (Document ID 0651; 0389, pp. 1–3; 1304; 0345, p. 4). In light of this evidence, OSHA finds the comments opposing the cancer warning language on signs unpersuasive. However, with regard to Materion’s suggested language, OSHA agrees that a warning that beryllium can cause damage to lungs is appropriate and retains that language, as proposed, in the final standards for general industry and shipyards. A few other stakeholders also suggested edits or additions to the proposed sign legend. For example, NGK recommended that the phrase, WEAR RESPIRATORY PROTECTION AND PROTECTIVE EQUIPMENT IN THIS AREA be changed to WEAR RESPIRATORY PROTECTION AND PROTECTIVE EQUIPMENT PRIOR TO ENTERING THIS AREA, on warning signs to emphasize that personal protective equipment (PPE) must be put on before entering the restricted work area (Document ID 1663, p. 3). OSHA agrees that employees need to don PPE prior to entering the regulated area, but finds the suggested language requiring respiratory protection and PPE ‘‘in this area’’ is sufficient to alert the workers to put their equipment and respirators on prior to entering the restricted work area. Therefore, OSHA has decided to retain the text ‘‘in this area’’ as stated in the final standards for general industry and shipyards. OSHA also notes that this language is consistent with the HCS and other previous health standards, such as Benzene (29 CFR 1910.1028). One stakeholder proposed a provision particular to shipyards. In hearing testimony, Ashlee Fitch of USW commented that warning signs ‘‘demarking abrasive blasting operations with beryllium-containing materials’’ should be posted (Document ID 1756, p. 245). OSHA has chosen not to incorporate this suggestion. The signs required by paragraph (m)(2) of this final rule are intended to serve as a warning to employees and others who may not be aware that they are entering a regulated area, and to remind them of the hazards of beryllium so that they take necessary protective steps before entering the area. These signs are also intended to supplement the training that employees must receive regarding the hazards of beryllium, since even trained employees need to be reminded of the locations of regulated areas and of the PO 00000 Frm 00257 Fmt 4701 Sfmt 4700 2725 precautions necessary before entering these dangerous areas (see paragraph (m)(4) of this rule and 29 CFR 1910.1200(h) for training requirements). OSHA does not believe it is necessary for the signs to denote the precise activity occurring within the regulated area in order to accomplish these goals. However, employers may choose to include additional information on the signs required under this rule, provided that the additional information included is not confusing or misleading and does not detract from required warnings. Thus, paragraph (m)(2)(i)) of the final standards for general industry and shipyards requires employers to provide and display warning signs at each approach to a regulated area so that each employee is able to read and understand the signs and take necessary protective steps before entering the area. Pursuant to final paragraph (m)(2)(ii), employers must ensure that these warning signs legible and readily visible and include the specified legend. The only alteration to the legend from the proposal is the addition of the words, ‘‘REGULATED AREA’’ following the word, ‘‘DANGER.’’ OSHA has not included these regulated area signage requirements in the final standard for construction, because the construction standard does not contain requirements for establishing regulated area and uses the competent person (paragraph (e) of the construction standard) to limit access to areas where exposures have the potential to be above the PEL. In summary, OSHA finds that the use of warning signs is important to make employees who are regularly scheduled to work at these sites aware of beryllium hazards, to alert employees who have limited access to these sites of beryllium hazards, and to warn those who do not require access to regulated areas to avoid those areas. Access must be limited to authorized personnel to ensure that those entering the area are adequately trained and equipped, and to limit exposure to those whose presence is absolutely necessary. By limiting access to authorized persons, employers can minimize employee exposure to beryllium in regulated areas and thereby minimize the number of employees who may require medical surveillance or may be subject to the other requirements associated with working in a regulated area. Proposed paragraph (m)(3) required that labels be affixed to all bags and containers of clothing, equipment, and materials visibly contaminated with beryllium. OSHA also included a requirement that the labels contain the following statement: DANGER E:\FR\FM\09JAR2.SGM 09JAR2 2726 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS CONTAINS BERYLLIUM MAY CAUSE CANCER CAUSES DAMAGE TO LUNGS AVOID CREATING DUST DO NOT GET ON SKIN The USW supported the proposal’s requirement that bags and containers storing materials visibly contaminated with beryllium have specific warning labels to alert workers of the dangers of beryllium exposure (Document ID 1681, p. 15). However, as discussed in the Summary and Explanation on paragraph (h) on personal protective clothing and equipment, several commenters objected to the use of the term ‘‘visibly contaminated.’’ For example, the NonFerrous Founder’s Society (NFFS) commented that the definition of ‘‘visibly contaminated with beryllium’’ was not provided in the proposed rule and was vague (Document ID 1679, p. 5). OSHA agrees that the term is ambiguous and has chosen to remove the term visibly from the final standards. OSHA has therefore relied on terminology that is commonly used in other substance specific standards for metals, such as Chromium (VI) (29 CFR 1910.1026). NGK also recommended that OSHA insert the word ‘‘particulate’’ (Document ID 1663, pp. 3–4). OSHA declines to adopt this suggestion. The addition of the term ‘‘particulate’’ is unnecessary and may cause confusion since the final standards cover beryllium in all forms, compounds, and mixtures. Several stakeholders also weighed in on other aspects of these provisions. For example, NGK and Materion offered comments on the proposed wording of the required labels, which restated their requests that the cancer warnings be struck from the proposed language (Document ID 1663, pp. 3–4; 1958, pp. 3–5). OSHA has decided to retain the cancer warning labeling requirements in the final rule for the reasons discussed in response to their comments on paragraph (m)(2) above. ORCHSE Strategies (ORCHSE) also commented on the labeling requirements of containers and bags in paragraph (m)(3). First, it argued that the provision would require the precautionary statements ‘‘Avoid creating dust’’ and ‘‘Do not get on skin’’ for all bags and containers which it maintained is inconsistent with the HCS precautionary statements (Document ID 1691, Attachment 1, p. 23). OSHA acknowledges that these ‘‘precautionary statements’’ are not from Appendix C of the HCS. However, OSHA is requiring alternate language for the unique situation for bags of contaminated clothing or equipment where workers handling these materials may not have VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 access to other more in-depth forms of information. The Agency is therefore requiring that employers place appropriate warning language on bags and containers containing berylliumcontaminated materials. This provision is consistent with other substancespecific health standards. Second, ORSCHSE argued that the proposed labeling requirements are inconsistent with the HCS. It stated that paragraph (m)(1) required compliance with the HCS, which covers warning labels for hazardous chemicals other than beryllium, ‘‘so using the same standard for beryllium labels would promote consistency throughout the workplace.’’ Therefore, it suggested that paragraph (m)(3) be deleted, because paragraph (m)(1) already requires observation of ‘‘all requirements’’ of the HCS. Additionally, ORCHSE commented that the HCS does not require labeling for carcinogens on bags and containers unless the concentration is 1% or more (Document ID 1691, Attachment 1, pp. 23–24). After considering these comments and the record on this issue, OSHA has decided to retain proposed paragraph (m)(3) with the minor alteration described above. The final provision, which appears in paragraph (m)(3) of the final standards for general industry and shipyards and paragraph (m)(2) of the final standard for construction, requires employers to label each bag and container of clothing, equipment, and materials contaminated with beryllium. The required label must, at a minimum, include the language specified in the proposal. The warning label language for the signal word (danger) and hazard statements (may cause cancer) are consistent with the GHS. However, OSHA has decided that the precautionary statements needed to be slightly different due to the nature of the exposure and the fact that sensitization can result from short term exposures (see Health Effects section V of this preamble). While ORCHSE correctly notes that the HCS contains a concentration cutoff (0.1% for category 1 carcinogens, and 1% for category 2 carcinogens), that cutoff is difficult to apply in the case of clothing or other material that has been contaminated with beryllium-containing dust. As a practical matter, it may be difficult to determine whether the cutoffs have been exceeded with dust contamination. Moreover, the cutoffs were developed for mixtures that are products and more homogeneous in nature, rather than materials contaminated with dust. If contaminated clothing or other materials are handled in a way that PO 00000 Frm 00258 Fmt 4701 Sfmt 4700 generates dust, exposures of concern might occur more readily than with homogenous mixtures of similar concentration. OSHA believes the clearer approach is to require all contaminated materials with a uniform labelling scheme, as it has for other substance-specific standards (e.g., Lead, 29 CFR 1910.1025; Cadmium, 29 CFR 1910.1027; Coke Oven Emissions, 29 CFR 1910.1029). Including this provision will ensure that downstream workers who might receive the contaminated material have notice of the contamination. As discussed in the summary and explanation for paragraph (b) the term ‘‘materials’’ includes waste, scrap, debris, and any other items contaminated with beryllium. The Agency finds that the final labeling requirements will help ensure that all affected employees, not only the employees of a particular employer, are apprised of the presence of berylliumcontaining materials and the hazardous nature of beryllium exposure. With this knowledge, employees can take steps to protect themselves through proper work practices established by their employers. Employees are also better able to alert their employers if they believe exposures or skin contamination can occur. Proposed paragraph (m)(4) contained requirements for employee information and training. The proposed provisions applied to each employee who is or can reasonably be expected to be exposed to airborne beryllium. ORCHSE strongly urged OSHA to rewrite this provision to align with the HCS training, arguing that ‘‘there is no need to include chemical hazard training requirements in a substance specific standard’’ (Document ID 1691, Attachment 1, p. 20). While OSHA agrees that the HCS is designed to cover all chemical hazards in the workplace, an employer may choose to train by specific chemical or by hazard. In this substance specific standard, OSHA find that employees need to be trained on the hazards specifically associated with beryllium, in addition to the training they receive under the HCS. These types of requirements are not uncommon in substance specific hazards. For example, the Lead standard requires annual training on the specific hazards associated with lead exposure (see 29 CFR 1910.1025 (l)(1)). Consequently, OSHA is not persuaded by ORCHSE that OSHA should substantially change the training provisions in the final rule. The Boeing Company (Boeing) suggested that OSHA add the text ‘‘within the scope of this standard’’ to the end of this requirement (Document ID 1667, p. 7). It contended that its E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations recommended language would ‘‘set a measurable boundary consistent with the scope of the standard,’’ while the proposal would create an ‘‘open ended boundary that would confuse compliance efforts.’’ OSHA has considered the suggestion but does not find Boeing’s argument persuasive. OSHA does not believe this adds additional clarity to employer on which employees should be trained. OSHA expects that once the employer is covered under the standard they are in the best position to determine who would be potentially exposed to beryllium. Additionally, this language is consistent with other substance specific standards, such as Benzene (29 CFR 1910.1028). NGK also commented on the proposed trigger. Specifically, it suggested the training requirements should be consistent with the lead standard (29 CFR 1910.1025(l)(1)(ii)) in that the training should be done for those workers exposed above the action level (Document ID 1663, p. 4). OSHA declines to adopt this suggestion. As discussed in Section V, Health Effects, and Section VI, Risk Assessment, risk of material impairment to health remains at exposure levels below the action level. Because of this risk, OSHA concludes that it is necessary and appropriate to train all employees who may be exposed to airborne beryllium at any level. The Agency finds that all such employees will benefit from this training. Therefore, OSHA is continuing to trigger the training requirements proposed in paragraph (m)(4)(i) based on airborne exposure, or anticipated exposure, at any level. The final provisions are contained in paragraph (m)(4)(i) of the standards for general industry and shipyards and paragraph (m)(3)(i) of the standard for construction. Proposed paragraph (m)(4)(i)(A) required employers to provide employees who are or can reasonably be expected to be exposed to airborne beryllium with information and training in accordance with the requirements of the HCS (29 CFR 1910.1200(h)), including specific information on beryllium as well as any other hazards addressed in the workplace hazard communication program. OSHA did not receive any objections to or comments on this provision. After a review of the rulemaking record, the Agency continues to believe that the provision of information and training in accordance with the HCS will benefit employees. For example, under the HCS, employers must provide their employees with information such as the location and availability of the written VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 hazard communication program, including lists of hazardous chemicals and safety data sheets, and the location of operations in their work areas where hazardous chemicals are present. The HCS also requires employers to train their employees on ways to detect the presence or release of hazardous chemicals in the work area, such as any monitoring conducted, the physical and health hazards of the chemicals in the work area, measures employees can take to protect themselves, and the details of the employer’s hazard communication program (29 CFR 1910.1200(h)(3)). Therefore, OSHA has included proposed paragraph (m)(4)(i)(A) substantively unchanged from the proposal in paragraph (m)(4)(i)(A) of the final standards for general industry and shipyards and paragraph (m)(3)(i)(A) of the final standard for construction. Proposed paragraphs (m)(4)(i)(B) and (C) specified when an employer’s obligation to train covered employees should begin and how often training should occur. Proposed paragraph (m)(4)(i)(B) required initial training by the time of initial assignment, which means before the employee’s first day of work in a job that could reasonably be expected to involve exposure to airborne beryllium. Under proposed paragraph (m)(4)(i)(C), employers were required to repeat training at least annually thereafter. USW supported the requirement of initial and annual training for workers who are or can be reasonably expected to be exposed to beryllium (Document ID 1681, p. 15). After reviewing the record on this topic, OSHA has decided to retain proposed paragraphs (m)(4)(i)(B) and (m)(4)(i)(C) in paragraph (m)(4)(i)(B) and (C) of the final standards for general industry and shipyards and paragraph (m)(3)(i)(B) and (C) of the final standard for construction. OSHA finds that initial training and annual retraining are necessary due to the serious and debilitating health effects of beryllium exposure, and for reinforcement of employees’ knowledge of those hazards. The initial training requirement is consistent with the HCS, which requires that employers provide employees with effective information and training on hazardous chemicals in their work area at the time of their initial assignment (29 CFR 1910.1200(h)(1)). In addition, while the triggers may be slightly different, the initial and annual training requirement are consistent with other OSHA standards such as those for Lead (29 CFR 1910.1025), Cadmium (29 CFR 1910.1027), Benzene (29 CFR 1910.1028), Coke Oven emissions (29 CFR 1910.1029), Cotton Dust (29 CFR PO 00000 Frm 00259 Fmt 4701 Sfmt 4700 2727 1910.1043), and 1,3-Butadiene (29 CFR 1910.1051). Proposed paragraph (m)(4)(ii) required the employer to ensure that each employee who is or can reasonably be expected to be exposed to airborne beryllium can demonstrate knowledge of nine enumerated categories of information. ORCHSE and NGK objected to this proposed requirement. ORCHSE suggested that OSHA replace ‘‘can demonstrate knowledge of’’ with ‘‘has been informed of’’ in paragraph (m)(4)(ii). ORCHSE also argued that employers can control what information they provide, but cannot control what information the employee retains, and a literal interpretation of the requirement that employees must ‘‘demonstrate knowledge of’’ the nine enumerated categories of information will result in citations whenever ‘‘any employee, at any moment, is unable to recite detail’’ on those topics (Document ID 1691, Attachment 1, pp. 21–23). Similarly, NGK commented that the requirement that employers must ensure that employees who may be exposed to beryllium can demonstrate knowledge of enumerated subjects should be replaced with a requirement that employers ensure employee participation in a training program, consistent with the lead standard (29 CFR 1910.1025(l)(1)(ii)) (Document ID 1663, p. 4). OSHA does not find these arguments persuasive. Because beryllium is a hazardous chemical with serious and debilitating health effects, it is imperative that employers can ensure that employees can demonstrate that they understand the material and have knowledge of the topics covered during the training sessions, as previously indicated. To adjust the text to read ‘‘has been informed of’’ or to require the employer to ensure employee participation in training will not ensure employee comprehension and consequently could lead to employees not understanding the health effects associated with beryllium exposure and safety concerns to protect themselves from exposure. This language would also be inconsistent with the HCS, which requires effective training which OSHA indicates must be in a manner which an employee comprehends. The Agency understands that employers would like more clarity on how to determine whether training requirements are met. However, OSHA has decided that the training requirements under the final beryllium standards, like those in HCS, are best accomplished when they are performance-oriented. But, as in past E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2728 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations standards, the Agency does offer some suggestions. First, although OSHA finds that the employer is in the best position to determine how the training can most effectively be accomplished, the Agency notes that hands-on training, videotapes, DVD or slide presentations, classroom instruction, informal discussions during safety meetings, written materials, or any combination of these methods may be appropriate. Second, to ensure that employees comprehend the material presented during training, it is critical that trainees have the opportunity to ask questions and receive answers if they do not fully understand the material that is presented to them. When videotape presentations or computer-based programs are used, this requirement may be met by having a qualified trainer available to address questions after the presentation, or providing a telephone hotline so that trainees will have direct access to a qualified trainer. Although it is important that employees be able to ask questions, OSHA finds that the employer is in the best position to determine whether the instructor must be available for questions during training or if an instructor or trainer can answer questions after the training session. Such performance-oriented requirements are intended to encourage employers to tailor training to the needs of their workplaces, thereby resulting in the most effective training program for each workplace. Third, in addition to being performance-oriented, these training requirements are also results-oriented. As discussed in the respirable crystalline silica standard, there are a variety of methods employers can use to determine whether employees have the requisite knowledge. For example, employers may choose to facilitate discussions of the required training subjects or administer written tests or oral quizzes. Any of these methods could alert an employer to an employee knowledge gap. Finally, OSHA has included a modification in the final standards that was prompted by ORCHSE and NGK’s questions. In the final standards (paragraph (m)(4)(ii) of the standards for general industry and shipyards and paragraph (m)(3)(ii) of the standard for construction), OSHA requires that the employer must ensure that employees demonstrate understanding, in addition to knowledge. As discussed above this is consistent with the HCS and emphasizes that it is not enough for an employee to simply be provided with the information; the employer must also VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 ensure that the employee understands the topics on which he or she is trained. This change is consistent with Assistant Secretary David Michaels’ memorandum to OSHA Regional Administrators (Document ID 1754, p. 2). The memorandum explains that because employees have varying educational levels, literacy, and language skills, training must be presented in a language, or languages, and at a level of understanding that accounts for these differences in order to ensure that employees understand the training. As stated by Assistant Secretary Michaels: [A]n employer must instruct its employees using both a language and vocabulary that the employees can understand. For example, if an employee does not speak or comprehend English, instruction must be provided in a language that the employee can understand. Similarly, if the employee’s vocabulary is limited, the training must account for that limitation. By the same token, if employees are not literate, telling them to read training materials will not satisfy the employer’s training obligation (Document ID 1754, p. 2). This may mean, for example, providing materials, instruction, or assistance in Spanish rather than or in addition to English if some of the employees being trained are Spanish-speaking and do not understand English. However, the employer is not required to provide training in the employee’s preferred language if the employee understands the language used for training. Finally, Boeing suggested that OSHA add the text ‘‘or equally as effective documentation’’ to paragraph (m)(4)(ii)(B), so that the employer could satisfy its obligations by ensuring that employees who are or can reasonably be expected to be exposed to airborne beryllium could demonstrate knowledge of ‘‘[t]he written exposure control plan, or equally as effective documentation, with emphasis on the location(s) of beryllium work areas, including any regulated areas, and the specific nature of operations that could result in employee exposure, especially employee exposure above the TWA PEL or STEL.’’ They contend that this added language would allow employers ‘‘to provide the required information through the use of existing processes instead of through the creation of a second redundant document’’ (Document ID 1667, p. 7). OSHA has considered Boeing’s suggestion but does not find its arguments persuasive. Paragraph (m)(4)(ii)(B) of the final standards specifically requires the employer to ensure that employees can demonstrate understanding and knowledge of the PO 00000 Frm 00260 Fmt 4701 Sfmt 4700 topics covered in the written control plan, not from a similar document. The suggested language makes it unclear whether the employee would get the appropriate training needed and still gain the same knowledge and understanding required by the beryllium standard. OSHA, therefore, has decided to retain paragraph (m)(4)(ii)(B)’s requirements from the proposed rule in these final standards. That said, employers are free to incorporate their current exposure control program into the written control program required by paragraph (f)(1) if their program meets the requirements of that paragraph. If they do so, and train their employees on that program, paragraph (m)(4)(ii)(B) requires no ‘‘second redundant document.’’ Proposed paragraph (m)(4)(ii)(A)–(I) specified the contents of training for employees who are or can reasonably be expected to be exposed to airborne beryllium. The proposed list required employers to ensure that employees can demonstrate knowledge of: (1) The health hazards associated with exposure to soluble beryllium compounds, including the signs and symptoms of CBD; (2) the written exposure control plan, with emphasis on the location(s) of beryllium work areas, including any regulated areas, and the specific nature operations that could result in employee exposure, especially employee exposure above the TWA PEL or STEL; (3) the purpose, proper selection, fitting, proper use, and limitations of personal protective clothing and equipment, including respirators; (4) applicable emergency procedures; (5) measures employees can take to protect themselves from exposure to beryllium and contact with soluble beryllium compounds, including personal hygiene practices; (6) the purpose and a description of the medical surveillance program required by paragraph (k) of this standard, including risks and benefits of each test to be offered; (7) the purpose and a description of the medical removal protection provided under paragraph (l) of this standard; (8) the contents of this standard; and (9) the employee’s right of access to records under the Records Access Standard (29 CFR 1910.1020). Stakeholders offered several comments on these proposed training topics. For example, ORCHSE commented that the employer should just ‘‘provide information and training as specified in the HCS’’ (Document 1691, Attachment 1, p. 23). OSHA has chosen not to adopt this suggestion because it finds that employees need training specific to beryllium and its hazards, not only the general training E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations required by the HCS on the hazards in the workplace. The Agency concludes that providing information and training on the topics proposed is essential to ensuring that employees are informed about the hazards attributed to beryllium exposures, the measures necessary to protect themselves, and the rights accorded to them under these standards. Stakeholder comments support OSHA’s finding that training will lead to better work practices and hazard avoidance. For example, in hearing testimony, Chris Trahan from North America’s Building Trades Unions (NABTU) commented that in construction, she does not ‘‘see a high level of awareness about hazards related to beryllium’’ (Document ID 1756, pp. 207–08). NABTU also commented that it ‘‘developed a survey to determine the level of awareness of beryllium hazards and knowledge of exposures among building trades trainers,’’ and found widespread ignorance of beryllium health risks even among survey respondents responsible for delivering hazard awareness training (Document ID 1679 p. 5). Ashlee Fitch from the USW testified that in her experience in abrasive blasting, there was no training specific to what the material contained, and ‘‘the health effects associated with . . . blasting media’’ were not discussed (Document ID 1756, p. 247). Thus, OSHA concludes that mandating information and training on the topics specific to beryllium as outlined in proposed paragraph (m)(4)(ii) is particularly important. In light of these comments, OSHA reaffirms its finding that all nine of the training topics listed in proposed paragraph (m)(4)(ii)(A)–(I) should be included in the final standards. The Agency has thus retained these topics in final paragraphs (m)(4)(ii)(A)–(I) of the standards for general industry and shipyards and paragraph (m)(3)(ii)(A)– (I) of the standard for construction, with minor alterations for consistency with triggers that were updated from the proposal to the final. For example, OSHA has changed the (m)(4)(ii)(A) from ‘‘contact with soluble beryllium’’ to ‘‘contact with beryllium.’’ OSHA is not mandating additional training for a competent person in paragraph (m) of the standards for construction. As discussed in more detail in the summary and explanation of Written Exposure Control Plan, the knowledge required by an individual implementing the written exposure control plan required by these standards already ensure a high level of competence. OSHA recognizes that there may be situations in which an VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 employee needs additional training in order to ensure that he or she has the knowledge, skill, and ability to be a designated competent person, but because of unique scenarios in the construction and shipyard environments, those training requirements would vary widely. OSHA concludes, therefore, that it is the employer’s responsibility to identify and provide any additional training that the competent person would need to implement the written exposure control plan. Proposed paragraph (m)(4)(iii) required employers to provide additional training when workplace changes (such as modification of equipment, tasks, or procedures) result in new or increased employee exposure that exceeds or can reasonably be expected to exceed either the TWA PEL or the STEL. OSHA did not receive any comments on this provision, and retains it in the final to ensure that employees are aware of new or additional hazards. This training must be provided at the time of (or prior to) the new or increased exposure, even if a year has not passed since the previous training. New training would be required under the standard if the employer changes work production operations or personnel in a way that would require equipment to be operated differently to avoid exposures above the TWA PEL or STEL. Additional training would also be required if employers introduce new production or personal protective equipment to employees who do not yet know how to properly use the new equipment. Misuse of either the new production equipment or PPE could result in new exposures above the TWA PEL or STEL. Similarly, employers must provide additional training before employees repair or upgrade engineering controls if exposures during these activities will exceed or can reasonably be expected to exceed either the TWA PEL or the STEL. OSHA has concluded that the additional training requirement in this final rule is essential because it ensures that employees are able to actively participate in protecting themselves under the conditions found in the workplace, even if those conditions change. Proposed paragraph (m)(4)(iv) required the employer to make a copy of the standard and its appendices readily available at no cost to each employee and designated employee representative(s). OSHA did not receive any comments on this provision, and the Agency has retained the requirement in paragraph (m)(4)(iv) of the standards for general industry and shipyards and paragraph (m)(3)(iv) of the standard for PO 00000 Frm 00261 Fmt 4701 Sfmt 4700 2729 construction. This is a common requirement in OSHA standards such as Chromium (VI) (29 CFR 1910.1026), Acrylonitrile (29 CFR 1910.1045), respirable crystalline silica (29 CFR 1910.1053), and Cotton Dust (29 CFR 1910.1043). The provision leaves employers free to determine the best way to make the standard available, which could include giving the employer a copy of the standard or placing a printed or electronic copy in a central location that the employees can easily access. In order to help ensure employees are protected against beryllium hazards, they need to be familiar with and have access to the beryllium standard applicable to their workplace (general industry, shipyard, or construction), and be aware of the employer’s obligations to comply with it. (n) Recordkeeping Paragraph (n) of the final standards for general industry, construction, and shipyards sets forth the employer’s obligation to comply with requirements to maintain records of air monitoring data, objective data, medical surveillance, and training. The recordkeeping requirements are in accordance with section 8(c) of the OSH Act (29 U.S.C. 657(c)), which authorizes OSHA to require employers to keep and make available records as necessary or appropriate for the enforcement of the Act or for developing information regarding the causes and prevention of occupational injuries and illnesses. The recordkeeping provisions are also consistent with OSHA’s Access to Employee Exposure and Medical Records (Records Access) standard at 29 CFR 1910.1020, which addresses access to employee exposure and medical records. As discussed in more detail below, the recordkeeping requirements in the final standards are similar to those included in the proposal. In the proposed rule, OSHA identified recordkeeping requirements for exposure measurements, historical monitoring data, objective data, medical surveillance, and training, and required employers to comply with Record Access standard requirements regarding access to and transfer of these records. Ameren Corporation (Ameren) expressed support for these requirements (Document ID 1675, p. 7). All other comments regarding the recordkeeping requirements focused on specific areas of the recordkeeping requirements and are discussed in the appropriate subject section. Proposed paragraph (n)(1)(i) required employers to maintain records of all E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2730 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations measurements taken to monitor employee exposure to beryllium as required by paragraph (d) of the standard. OSHA did not receive comments on this provision and has decided to retain it in the final rule, in part, because it will enable both employers and OSHA to ensure compliance with exposure assessment requirements under paragraph (d) of the standards. It will also allow employers to ascertain which of the final standards’ provisions that are triggered at various exposure levels apply to their employees. Thus, OSHA is retaining the proposed provision with one minor modification. Specifically, the Agency has added the words ‘‘make and’’ prior to ‘‘maintain’’ in order to clarify that the employer’s obligation is to create and preserve such records. This clarification has also been made for other records required by the final beryllium standards. The revised language is consistent with OSHA’s Records Access standard, which refers to employee exposure and medical records that are made or maintained (29 CFR 1910.1020(b)(3)). Proposed paragraph (n)(1)(ii) required that records of all measurements taken to monitor employee exposure include at least the following information: The date of measurement for each sample taken; the operation being monitored; the sampling and analytical methods used and evidence of their accuracy; the number, duration, and results of samples taken; the type of personal protective clothing and equipment, including respirators, worn by monitored employees at the time of monitoring; and the name, social security number, and job classification of each employee represented by the monitoring, indicating which employees were actually monitored. The Sampling and Analysis Subcommittee Task Group of the Beryllium Health and Safety Committee (BHSC Task Group) recommended that the recordkeeping provision should include the purpose and rationale for the sampling performed as this would show that the exposure monitoring requirements are being met (Document ID 1665, p. 2). After careful consideration, OSHA has decided not to require that records include the purpose and rationale for the sampling. The Agency points out that the purpose and rationale for the sampling performed are dictated by the exposure assessment provision in paragraph (d), which requires the employer to assess the airborne exposure of each employee who is or may reasonably be expected to be exposed to airborne beryllium in accordance with either a performance VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 option or the scheduled monitoring option. The air monitoring requirements described in paragraph (d) and the air monitoring data retention described in this section (paragraph (n)) provide adequate information to show whether the exposure monitoring requirements are being met. Furthermore, paragraphs (n)(1)(ii)(A)–(F) of the standards are generally consistent with other OSHA standards, such as respirable crystalline silica (29 CFR 1910.1053), chromium (VI) (29 CFR 1910.1026), and methylene chloride (29 CFR 1910.1052). OSHA received several comments regarding the requirement in paragraph (n)(1)(ii)(F) that the employer include employee social security numbers in exposure measurement records. The American Dental Association (ADA), the Boeing Company (Boeing), and ORCHSE Strategies (ORCHSE) cited employee privacy and identity theft concerns (Document ID 1597, p. 4 (pdf); 1667, pp. 7–8; 1691, Attachment 1, p. 19). Boeing and ORCHSE suggested the use of an identifier other than the social security number, such as an employee identification number or another unique personal identification number. The ADA recommended that employers with fewer than ten employees should not be required to include employee social security numbers in records required by the standard. It further stated that some state statutes ‘‘impose data security and breach notification requirements on those who collect social security numbers,’’ and in small businesses, ‘‘the risk to employees of identity theft outweighs the difficulty of identifying employee records’’ (Document ID 1597, p. 2–4 (pdf)). OSHA has considered these comments and decided to retain the requirement for including the employee’s social security number in the recordkeeping requirements of the rule. The requirement to use an employee’s social security number is a long-standing OSHA practice, because a social security number is unique to an individual, is retained for a lifetime, and does not change when an employee changes employers. The social security number is therefore a useful tool for evaluating an individual’s exposure over time, particularly where exposures are associated with chronic beryllium disease (CBD), which has a varying rate of progression during which time an employee may have several employers or had beryllium exposure sometime in the past. OSHA recognizes the privacy concerns expressed by commenters regarding this requirement, and understands the need to balance that interest against the public health PO 00000 Frm 00262 Fmt 4701 Sfmt 4700 interest in requiring the social security identifier. Instances of identity theft and breaches of personal privacy are widely reported and concerning. However, OSHA has concluded that this rule should adhere to the past, consistent practice of requiring employee social security numbers on exposure records mandated by every OSHA substancespecific health standard, and that any change to the Agency’s requirements for including employee social security numbers on exposure records should be comprehensive and apply to all OSHA standards, not just the standards for beryllium. OSHA is proposing to delete the requirement that employers include employee social security numbers in records required by its substancespecific standards in the Agency’s Standards Improvement Project—Phase IV (SIP–IV) proposed rule (81 FR 68504, 68526–68528 (10/4/16)). OSHA will revisit, if necessary, its decision to require employers to maintain employee social security numbers in beryllium records in light of the decision it makes in the SIP–IV rulemaking. In the meantime, OSHA has included the requirement to use and retain social security numbers in the final standards. The ADA also urged OSHA to pursue Regulatory Alternative #1b, which would exempt, except for recordkeeping purposes, operations where the employer can show that employee exposures will not meet or exceed the action level or exceed the STEL. It further argued under this option that OSHA should limit employers’ recordkeeping requirements to those records that show that employees’ exposure will not meet or exceed the action level or exceed the STEL (Document ID 1597, p. 3 (pdf)). It maintained that this is reasonable because the ‘‘employees are not at significant risk of exposure’’ and ‘‘the record retention period is onerous’’ (Document ID 1597, p. 3 (pdf)). OSHA disagrees with this suggestion for several reasons. First, the OSH Act states that standards adopted by OSHA must require employers maintain ‘‘accurate records of employee exposures to potentially toxic materials or harmful physical agents which are required to be monitored or measured under section 6.’’ OSH Act § 8(c)(3). Thus, on its face, the Act requires records of all exposure measurements required by the final standards to be maintained, not just high ones. The OSH Act also requires that employees have access to exposure records, (id.), and requiring the employer to maintain those records helps to fulfill that right. Further, as discussed in Section V, E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations Health Effects, and Section VII, Significant Risk, employees who are exposed below the action level may still be at risk. Maintaining records of those exposures may assist in the diagnosis of employee disease long after the exposure occurs. It also allows employees to have confidence that their exposures are within the requirements of the final standards, and valuable insights about exposure control methods may be gained through the review of exposure records, even those that are below the action level. In addition, as the Supreme Court noted in the Benzene case, air monitoring and medical testing, when done for employees exposed below the PEL, ‘‘keep a constant check on the validity of the assumptions made in developing’’ the PEL, giving a basis to lower the PEL if necessary. Benzene, 448 U.S. at 657–58. Requiring the employers to maintain those records furthers that purpose. Other OSHA substance-specific rules also require employee exposure records to be maintained, regardless of exposure level, such as the standards addressing exposure to respirable crystalline silica (29 CFR 1910.1053), methylene chloride (29 CFR 1910.1052), and chromium (VI) (29 CFR 1910.1026). Second, employee information and training requirements under paragraph (m) of the standards apply to each employee who is or can reasonably be expected to be exposed to airborne beryllium. As discussed in paragraph (m) of the Summary and Explanation in this preamble, OSHA finds that all employees who are or can be reasonably expected to be exposed in this manner will benefit from the specified forms of training. The creation and maintenance of training records will permit both OSHA and employers to ensure that the required training has occurred on schedule. Finally, OSHA notes that employers may reduce their recordkeeping burden in some cases by ensuring their employees are only exposed below the action level. For example, under paragraph (k), employers are required to offer medical surveillance those employees who meet certain exposure thresholds. By keeping exposures level below the action level, employers decrease the likelihood that their employees will fall into one of the enumerated groups. If employers do not have any employees covered by medical surveillance under paragraph (k), then they have no medical surveillance records to retain under these standards. As to the expense and difficulty of maintaining the records required under these standards, OSHA recognizes that there will be time, effort, and expense involved in maintaining medical VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 records. However, as stated earlier, OSHA expects that employers will have a system for maintaining these records, just as they do for their other business records. In addition, the Agency allows employers to use whatever method works best for them in meeting these requirements, paper or electronic (29 CFR 1910.1020(d)(2)). In summary, paragraph (n)(1)(ii) in the final standards is substantively unchanged from the proposed rule. However, OSHA has made one editorial modification to paragraph (n)(1)(ii)(B), which is to change ‘‘operation’’ to ‘‘task.’’ Both ‘‘task’’ and ‘‘operation’’ are commonly used in describing work. However, OSHA uses the term ‘‘task’’ throughout the rule, and the Agency is using ‘‘task’’ in the recordkeeping provision for consistency and to avoid any potential misunderstanding that could result from using a different term. This editorial change neither increases nor decreases an employer’s obligations as set forth in the proposed rule. The requirements of paragraph (n)(1)(ii) are generally consistent with those found in other OSHA standards, such as the standards for respirable crystalline silica (29 CFR 1910.1053), methylene chloride (29 CFR 1910.1052), and chromium (VI) (29 CFR 1910.1026). Proposed paragraph (n)(1)(iii) required the employer to maintain exposure records in accordance with OSHA’s Records Access standard, which specifies that exposure records must be maintained for 30 years (29 CFR 1910.1020(d)(1)(ii)). The Agency did not receive comment on this provision. However, OSHA has changed the requirement that the employer ‘‘maintain this record as required by’’ OSHA’s Records Access standard to ‘‘ensure that exposure records are maintained and made available in accordance with’’ that standard. OSHA believes that the language of the final standard more clearly conveys the Agency’s intent that in addition to maintaining records, employers must make records available to employees and others as specified in the Records Access standard. As noted above, this clarifying change is editorial and neither increases nor decreases an employer’s obligations as set forth in the proposed rule. This clarification has also been made for other records required by the final beryllium standards. Proposed paragraph (n)(2) contained the requirement to retain records of any historical monitoring data used to satisfy the proposed standard’s the initial monitoring requirements. As explained in the Summary and Explanation of paragraphs (b) and (d) in this preamble, the definition of the term PO 00000 Frm 00263 Fmt 4701 Sfmt 4700 2731 ‘‘objective data’’ in the final rule includes all information that demonstrates airborne exposure to beryllium associated with a particular product or material or a specific process, task, or activity. Historical data that reflects workplace conditions closely resembling or with a higher airborne exposure potential than the processes, types of material, control methods, work practices, and environmental conditions in the employer’s current operations would be considered objective data under the final rule. The requirement to keep records of objective data is addressed under a separate paragraph. Therefore, OSHA has chosen to delete the separate recordkeeping requirement for historical data. Proposed paragraph (n)(3) contained the requirements to keep accurate records of objective data. Proposed paragraph (n)(3)(i) required employers to establish and maintain accurate records of the objective data relied upon to satisfy the requirement for initial monitoring in proposed paragraph (d)(2). Under proposed paragraph (n)(3)(ii), the record was required to contain at least the following information: The data relied upon; the beryllium-containing material in question; the source of the data; a description of the operation exempted from initial monitoring and how the data supported the exemption; and other information demonstrating that the data met the requirements for objective data in accordance with paragraph (d)(2)(ii). OSHA did not receive comments regarding this provision, and the Agency finds that it should be included in the final rule. Since objective data may be used to exempt the employer from certain types of monitoring, as specified in paragraph (d), it is critical that the use of these types of data be carefully documented. Objective data are intended to provide the same degree of assurance that employee exposures have been correctly characterized as would exposure assessment. The specified content elements are required to ensure that the records are capable of demonstrating to OSHA a reasonable basis for the conclusions drawn by the employer from the objective data. Therefore, OSHA has included proposed paragraph (n)(3) as paragraph (n)(2) in the final standards, with minor alterations. Specifically, in the final standards, OSHA has changed paragraphs (n)(2)(ii)(D) to require the record to contain ‘‘[a] description of the process, task, or activity on which the objective data were based,’’ and paragraph (n)(2)(ii)(E) to require the E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2732 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations record to contain ‘‘[o]ther data relevant to the process, task, activity, material, or airborne exposure on which the objective data were based.’’ These changes are editorial, and intended to clarify the maintenance and availability of objective data records. They are only intended to aid employers in determining the precise information to be retained. They do not affect the employer’s obligations as set forth in the proposed rule. Proposed paragraph (n)(3)(iii) required the employer to maintain a record of objective data relied upon as required by the Records Access standard, which specifies that exposure records must be maintained for 30 years (29 CFR 1910.1020(d)(1)(ii)). The Agency did not receive comment on this provision. Objective data may include employee exposure records that must be maintained, and therefore, the Agency has retained it in the final standards as paragraph (n)(2)(iii). OSHA notes that this final provision, like all of the final provisions in this paragraph related to the Records Access standard, includes the non-substantive change from the proposed requirement to maintain the record as required by the Records Access standard, to the requirement to maintain and make available the record in accordance with the Records Access standard. OSHA’s reasons for this change are discussed above. Paragraph (n)(3) of the final standards, like paragraph (n)(4) of the proposal, addresses medical surveillance records. Under proposed paragraph (n)(4)(i), employers had to establish and maintain medical surveillance records for each employee covered by the medical surveillance requirements in paragraph (k) of the proposed standard. Proposed paragraph (n)(4)(ii) listed the categories of information that an employer was required to record: The employee’s name, social security number, and job classification; a copy of all licensed physicians’ written medical opinions; and a copy of the information provided to the PLHCP as required by paragraph (k)(4) of the proposed standard. The ADA and ORCHSE questioned the requirement that the employee’s social security number be included in medical surveillance records (Document ID 1597, pp. 2–4 (pdf); 1691, Attachment 1, p. 19). As noted above in the discussion on exposure measurement records, OSHA finds the privacy and security issues associated with the required use of social security numbers are of concern. However, for the same reasons discussed above, the Agency has decided to retain the requirement for use of social security numbers in medical records. OSHA is VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 examining the requirements for social security numbers separately from this rulemaking. Medical records document the results of medical surveillance and are especially important when an employee’s medical condition places him or her at increased risk of health impairment from further exposure to beryllium in the workplace. Furthermore, the records can be used by the Agency and others to identify illnesses and deaths that may be attributable to beryllium exposure, evaluate compliance programs, and assess the efficacy of the standards. OSHA concludes that medical surveillance records are necessary and appropriate for protection of employee health, enforcement of the standards, and development of information regarding the causes and prevention of occupational illnesses. Therefore, OSHA has decided to retain proposed paragraph (n)(4)(ii)’s requirements regarding medical surveillance records in paragraph (n)(3)(ii) of the final standards. However, OSHA has changed the requirement in proposed paragraph (n)(4)(ii)(B) that the record include copies of all licensed physicians’ written opinions to the requirement that the record include copies of all licensed physicians’ written medical opinions for each employee in paragraph (n)(3)(ii)(B) of the final standards. These changes are editorial and intended to clarify that employees are entitled to their own written medical opinion, not all written opinions. This change neither increases nor decreases an employer’s obligations as set forth in the proposed rule. Proposed paragraph (n)(4)(iii) required the employer to maintain employee medical records for at least the duration of the employee’s employment plus 30 years in accordance with OSHA’s Records Access Standard at 29 CFR 1910.1020(d)(1)(i). The ADA objected to this provision, arguing that the proposed retention period is onerous (Document ID 1597, p. 3 (pdf)). OSHA has considered this comment and concluded that the best approach is to maintain consistency with 29 CFR 1910.1020 and its required retention periods of (1) 30 years for exposure records and objective data, and (2) the duration of employment plus 30 years for medical surveillance records. It is necessary to keep medical records for these extended time periods because of the varying rate of progression for CBD and the long latency period between exposure and development of lung cancer. OSHA recognizes that in some cases, the latency period for berylliumrelated cancer may extend beyond 30 PO 00000 Frm 00264 Fmt 4701 Sfmt 4700 years. However, the Agency concludes that the retention periods specified in 29 CFR 1910.1020 represent a reasonable balance between the need to maintain records and the administrative burdens associated with maintaining those records for extended time periods. Because the 30-year, and the duration of employment plus 30-year, record retention requirements are currently included in 29 CFR 1910.1020, these time periods are consistent with longstanding Agency and employer practice. Other substance-specific rules are also subject to the retention requirements of 29 CFR 1910.1020, such as the standards addressing exposure to respirable crystalline silica (29 CFR 1910.1053), methylene chloride (29 CFR 1910.1052), and chromium (VI) (29 CFR 1910.1026). Thus, OSHA finds that the 30-year retention period is necessary and appropriate for exposure records, historical monitoring data, and objective data, and that the duration of employment plus 30-year retention period is necessary and appropriate for medical surveillance records. Therefore, OSHA has decided to include the retention periods provided by the Records Access standard in paragraph (n)(3)(iii) of the final standards. For the reasons discussed above, OSHA has added ‘‘and made available’’ after ‘‘maintained’’ in paragraph (n)(3)(iii) of the standards. Under the final standards, the employer is responsible for the maintenance of records in his or her possession. The employer is also responsible for ensuring the retention of records in the possession of the licensed physician (e.g., the written medical reports described in paragraph (n)(3) that are created pursuant to this rule’s medical surveillance requirements). This responsibility, which derives from 29 CFR 1910.1020(b), means that employers must ensure that the licensed physician retains a copy of medical records for the employee’s duration of employment plus 30 years. The employer can generally fulfill this obligation by including the retention requirement in its agreement with the licensed physician. The requirements are consistent with other OSHA health standards, such as Hexavalent Chromium (VI) (29 CFR 1910.1026), respirable crystalline silica (29 CFR 1910.1053), and Methylene Chloride (29 CFR 1910.1052). Paragraph (n)(4) of the final standards, like proposed paragraph (n)(5), addresses training records. Proposed paragraph (n)(5)(i) required employers to prepare records of any training required by these standards. At the completion of training, the employer E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations was required to prepare a record that included the name, social security number, and job classification of each employee trained; the date the training was completed; and the topic of the training. This record maintenance requirement also applied to records of annual retraining or additional training as described in paragraph (m)(4). The ADA and ORCHSE questioned the requirement that the employee’s social security number be included in training records (Document ID 1597, p. 2–4 (pdf); 1691, Attachment 1, p. 19). As noted above in the discussions on exposure measurement and medical surveillance records, OSHA finds the privacy and security issues associated with the required use of social security numbers are of concern. However, for the same reasons discussed above, the Agency has decided to retain the requirement for use of social security numbers in training records. As stated above, OSHA is examining the requirements for social security numbers separately from this rulemaking. In the meantime, OSHA has retained the social security requirement in the final standards. No other comments were received on this provision. Proposed paragraph (n)(5)(i) is now paragraph (n)(4)(i) in the final standards. Paragraph (n)(4)(i) in the final standards is substantively unchanged from the proposal. Proposed paragraph (n)(5)(ii) required employers to retain training records, including records of annual retraining or additional training required under these standards, for a period of three years after the completion of the training. North America’s Building Trades Unions (NABTU) commented that employers ‘‘must maintain documentation of [any] training’’ required for beryllium construction workers (Document ID 1679, p. 3). OSHA agrees. As noted above, OSHA finds that the creation and maintenance of training records will permit both OSHA and employers to ensure that the required training has occurred on schedule. Thus, the Agency has included this provision in the standard for construction, as well as the standards for general industry and shipyards. Proposed paragraph (n)(5)(ii) is now paragraph (n)(4)(ii) in the final standards, and is substantively unchanged from the proposal. The three-year time period is consistent with the Bloodborne Pathogens standard (29 CFR 1910.1030). Paragraph (n)(5) of the final standards, like proposed paragraph (n)(6), addresses access to records. Proposed paragraph (n)(6) required employers to make all records mandated by these VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 standards available for examination and copying to the Assistant Secretary, the Director of NIOSH, each employee, and each employee’s designated representative as stipulated by OSHA’s Records Access standard (29 CFR 1910.1020). OSHA did not receive comment on this provision, and includes it in the final standards to emphasize and ensure proper employee and government access to records. Paragraph (n)(6) of the final standards, like proposed paragraph (n)(7), addresses transfer of records. Proposed paragraph (n)(7) required that employers comply with the Records Access standard regarding the transfer of records. The requirements for the transfer of records are explained in 29 CFR 1910.1020(h), which instructs employers either to transfer records to successor employers or, if there is no successor employer, to inform employees of their access rights at least three months before the cessation of the employer’s business. OSHA did not receive comment on this provision, and includes it the final standards to help ensure consistent records access. (o) Dates Paragraph (o) of the standards for general industry, construction, and shipyards sets forth the effective date of the standards and the dates for compliance with their requirements. OSHA proposed that the final rule would become effective 60 days after its publication in the Federal Register, and that employer obligations to comply with most requirements of the final rule would begin 90 days after the effective date (150 days after publication of the final rule), while the requirements for establishing change rooms and implementing engineering controls would begin one year and two years after the effective date, respectively. Ameren, AFL–CIO, and United Steelworkers expressed support for the proposed effective and compliance dates (Document ID 1675, p. 7; 1681, Attachment 1, p. 15; 1689, p. 15). OSHA sets the effective date to allow sufficient time for employers to obtain the standard and read and understand its requirements. Unchanged from the proposal, paragraph (o)(1) provides that the standards will become effective on March 10, 2017. OSHA sets the compliance dates to allow sufficient time for employers to undertake the necessary planning and preparation for compliance with the various provisions of the standards. In addition to the default compliance date of 90 days that applied to most provisions, OSHA’s proposal included extended compliance dates for the PO 00000 Frm 00265 Fmt 4701 Sfmt 4700 2733 provisions that require the establishment of change rooms and the implementation of engineering controls in order to give affected employers sufficient time to design and construct change rooms where necessary, and to design, obtain, and install any required control equipment. In response to comments stating that more time is necessary to prepare for compliance, the compliance dates in the final rule have been extended from those proposed. Paragraph (o)(2) of the standards establishes the dates for compliance with the requirements of the standard. Several employers and industry representatives commented that the proposal’s default compliance date (90 days after the effective date) provided inadequate time to prepare for compliance. ORCHSE Strategies (ORCHSE) commented that an additional six months are needed ‘‘to make necessary changes to facilities, broad-based exposure assessments, and delineate work and regulated areas’’ (Document ID 1691, Attachment 1, p. 24). Also, the Boeing Company (Boeing) commented that the standard should require compliance two years after the effective date, explaining that ‘‘it will take, for a company of our size, between 1 and 2 years to accurately and comprehensively determine what our exposures are, prior to developing and implementing an exposure plan’’ (Document ID 1667, p. 8). The Sampling and Analysis Subcommittee Task Group of the Beryllium Health and Safety Committee (BHSC Task Group) also commented on the amount of time needed to comply with the ‘‘Accuracy of Measurement’’ requirement in paragraph (d)(1)(v) of the proposal, which has been renamed ‘‘Methods of sample analysis’’ and moved to paragraph (d)(5) in the final standards (Document ID 1665, p. 3). Specifically, BHSC Task Group expressed concern that laboratories would need to adopt newer analytical methods not widely used by the majority of analytical laboratories to perform beryllium measurements to the level of accuracy specified by the standard. BHSC Task Group acknowledges that although the OSHA rule does not require it, a Department of Energy requirement for accreditation that exists in their Beryllium Worker Safety and Health Program would drive laboratories to obtain accreditation by an external accrediting body to use these newer methods, which can take well over 150 days. (Document ID 1665, p. 3–4). OSHA rejects the reasoning behind BHSC Task Group’s concern on the amount of time needed to comply the accuracy of measurement E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2734 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations requirement, as the newer analytical methods for beryllium are available and, as pointed out by BHSC Task Group, OSHA does not require laboratories to be accredited in these methods to comply with the standards. Nonetheless, OSHA recognizes the concerns expressed by Boeing, ORCHSE, and BHSC Task Group that employers may need additional time to assess exposures and undertake the necessary planning and preparation for compliance with the obligations of the standards, and has determined that some of those concerns are reasonable. OSHA has therefore extended the final standards’ default compliance date, which applies to all provisions except for those with separate compliance dates under paragraphs (o)(2)(i) and (o)(2)(ii), to one year from the effective date. Paragraph (o)(2)(i) of the standards provides the date for compliance with the requirement in paragraph (i) to establish change rooms, and in the general industry standard, to provide showers. OSHA proposed a compliance date of one year after the effective date for establishing change rooms, but commenters indicated that more time was needed to modify their facilities. Boeing requested that the compliance date for establishing change rooms begin three years after the effective date, stating that ‘‘for large facilities, modifications such as showers, clothing storage and change rooms need a significant amount of time to be planned, designed, contracted, and constructed within operating factory sites’’ (Document ID 1667, p. 8). ORCHSE also indicated that additional time is needed to ‘‘make necessary changes to facilities’’ (Document ID 1691, Attachment 1, p. 24). OSHA expects that most employers will be able to establish change rooms and showers within a year of the effective date, but the Agency understands that some employers, both large and small, may need additional time to plan and construct these areas. OSHA is persuaded by the concerns expressed by the commenters that employers may need additional time to modify their facilities, and has extended the compliance date for the general industry standard’s change rooms and showers requirements to two years after the effective date. Providing an extended compliance date for establishing change rooms and providing showers is consistent with the approach taken in OSHA’s general industry standard for Cadmium (29 CFR 1910.1027(p)(2)(vi)(B)). The construction and shipyard standards do not require employers to VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 provide showers, but OSHA recognizes that construction and shipyard employers may also need additional time to plan and establish change rooms at construction sites and shipyard industry establishments. Change room facilities in these industries may be permanent or temporary, including mobile units that can be purchased or rented. OSHA has thus set the compliance date for the construction and shipyard standards’ requirement to establish change rooms to two years after the effective date. Paragraph (o)(2)(ii) of the standards provides the date for compliance with the requirements in paragraph (f) to implement engineering controls. OSHA proposed a compliance date of two years after the effective date for employers to comply with the engineering control requirements in paragraph (f). Boeing, however, commented that the compliance date for implementing engineering controls should be extended to four years after the effective date, explaining that ‘‘for large companies, exposure assessments and feasibility studies would have to be completed on a vast scale, and then engineering controls may have to be installed,’’ making four years ‘‘a reasonable time frame for these compliance measures’’ (Document ID 1667, pp. 8). The Non-Ferrous Founders’ Society (NFFS) also commented that a two-year implementation period was insufficient because it takes 12 to 24 months to obtain an Environmental Protection Agency (EPA) permit for changes to ventilation systems, and foundries cannot begin work to modify ventilation systems until they obtain a permit (Document ID 1756, Tr. 61–62). OSHA recognizes the concerns expressed by Boeing regarding the time needed to implement engineering controls, but does not agree that four years are needed to comply with the engineering control requirements. OSHA expects that many workplaces with beryllium will already have engineering controls in place for other hazardous materials that will need only modification or updating to comply with the final standards. For new installations, most types of engineering controls for working with materials such as beryllium are readily available. Furthermore, because beryllium is regulated under EPA rules as a ‘‘hazardous air pollutant’’ with a relatively low volume threshold for a permit requirement, foundries that already exhaust beryllium in any quantity would likely already be subjected to the permitting requirements. Therefore, OSHA predicts PO 00000 Frm 00266 Fmt 4701 Sfmt 4700 that any changes to ventilation systems to comply with the final beryllium standards would generally only be subject to routine reporting requirements or permit modifications. Cases that are unusually problematic, however, can be addressed through OSHA’s enforcement discretion if the employer can show that it has made good faith efforts to implement engineering controls, but has been unable to implement such controls due to the time needed for environmental permitting. However, OSHA acknowledges that some general industry, construction and shipyard employers may need more than two years to comply with the engineering control obligations in paragraph (f), including the need to update any permits before modifying ventilation systems, and has extended the standards’ compliance date for the engineering control requirements to three years from the effective date. OSHA has determined that setting a compliance date three years after the effective date will ensure that employers have sufficient time to complete the process of designing, obtaining, and installing the necessary control equipment. OSHA’s decision here to provide employers with an extended deadline for complying with engineering control requirements is consistent with what the Agency has done in health standards, including standards for respirable crystalline silica (29 CFR 1910.1053(l)), Chromium (VI) (29 CFR 1910.1026(n)(3), 29 CFR 1915.1026(l)(3), 29 CFR 1926.1126(l)(3)), and Cadmium (29 CFR 1910.1027(p)(2)(v)). Extending the compliance deadline for implementation of engineering controls will allow those firms that need extensive engineering controls time to adequately plan for and implement the controls, which will thus help to ensure that adequate protection is provided for workers. OSHA has also determined that the extension will have the ancillary benefit of limiting the economic impact of the rule by providing employers with additional time to plan for and absorb the costs associated with compliance. Based on its review of the rulemaking record, OSHA has concluded that employers will be able to implement engineering controls within the extended time frame that is established in the final rule. (p) Appendix A to 29 CFR 1910.1024— Control Strategies To Minimize Beryllium Exposure Appendix A to the final standard for general industry, 29 CFR 1910.1024, provides information to employers on E:\FR\FM\09JAR2.SGM 09JAR2 2735 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations control options that employers could use to comply with paragraph (f)(2)(i) of the final rule, which requires employers to ensure that at least one of the types of controls listed in paragraph (f)(2)(i) is in place to reduce airborne exposure for each operation in a beryllium work area that releases airborne beryllium. Appendix A is for informational and guidance purposes only and none of the statements in Appendix A should be construed as imposing a mandatory requirement on employers that is not otherwise imposed by the standard. In addition, this appendix is not intended to detract from any obligation that the rule imposes. The control strategies to minimize beryllium exposure were in Appendix B of the proposed rule, but proposed Appendix B has been redesignated as Appendix A in the final standard for general industry, following the deletion (discussed below) of proposed Appendix A. The information on control strategies presented in the appendix was derived from OSHA’s analysis of the technological feasibility of the PELs, presented in Chapter IV of the Final Economic Analysis. The content of Appendix A of the final standard for general industry remains unchanged from that contained in Appendix B of the proposal. The proposed rule also contained a non-mandatory appendix (designated in the proposal as Appendix A) that provided technical information on the BeLPT test. OSHA has determined that the information contained in proposed Appendix A is more suitable for separate guidance that will be issued in conjunction with the standards. OSHA will be able to more readily update this separate guidance to reflect technological advances and changes in recommendations from the medical community. Therefore, OSHA is not including proposed Appendix A in the final standards. OSHA has also not included any appendices in the final standards for construction and shipyards since OSHA has identified only one principle operation (abrasive blasting) in these sectors involving worker exposure to beryllium. List of Subjects in 29 CFR Parts 1910, 1915, and 1926 Beryllium, Cancer, Chemicals, Hazardous substances, Health, Occupational safety and health, Reporting and recordkeeping requirements. Authority and Signature This document was prepared under the direction of David Michaels, Ph.D., MPH, Assistant Secretary of Labor for Occupational Safety and Health, U.S. Department of Labor, 200 Constitution Avenue NW., Washington, DC 20210. The Agency issues the sections under the following authorities: 29 U.S.C. 653, 655, 657; 40 U.S.C. 3704; 33 U.S.C. 941; Secretary of Labor’s Order 1–2012 (77 FR 3912 (1/25/2012)); and 29 CFR part 1911. Signed at Washington, DC, on December 14, 2016. David Michaels, Assistant Secretary of Labor for Occupational Safety and Health. 1910, 1915, and 1926, of the Code of Federal Regulations is amended as follows: PART 1910—OCCUPATIONAL SAFETY AND HEALTH STANDARDS Subpart Z—[Amended] 1. The authority citation for subpart Z of part 1910 is revised to read as follows: ■ Authority: 29 U.S.C. 653, 655, 657) Secretary of Labor’s Order No. 12–71 (36 FR 8754), 8–76 (41 FR 25059), 9–83 (48 FR 35736), 1–90 (55 FR 9033), 6–96 (62 FR 111), 3–2000 (65 FR 50017), 5–2002 (67 FR 65008), 5–2007 (72 FR 31160), 4–2010 (75 FR 55355), or 1–2012 (77 FR 3912), 29 CFR part 1911; and 5 U.S.C. 553, as applicable. Section 1910.1030 also issued under Pub. L. 106–430, 114 Stat. 1901. Section 1910.1201 also issued under 49 U.S.C. 5101 et seq. 2. In § 1910.1000, paragraph (e): a. Amend Table Z–1—Limits on Air Contaminants, by revising the entry for ‘‘Beryllium and beryllium compounds (as Be)’’ and adding footnote 8. ■ b. Amend Table Z–2 by revising the entry for ‘‘Beryllium and beryllium compounds (Z37.29–1970)’’; and adding footnote d. The revisions read as follows: ■ ■ § 1910.1000 * Air contaminants. * * * * Amendments to Standards For the reasons set forth in the preamble, Chapter XVII of Title 29, parts TABLE Z–1—LIMITS FOR AIR CONTAMINANTS CAS No. (c) * * * * Beryllium and beryllium compounds (as Be); see 1910.1024 8 ....................... ppm (a) 1 7440–41–7 * 8 See * * mg/m3 (b) 1 Skin designation ........................ Substance * ........................ * ........................ * * * * * * * * * * * * Table Z–2 for the exposure limits for any operations or sectors where the exposure limits in § 1910.1024 are stayed or otherwise not in effect. asabaliauskas on DSK3SPTVN1PROD with PROPOSALS TABLE Z–2 8-hour time weighted average Substance Acceptable maximum peak above the acceptable ceiling average concentration for an 8-hr shift Acceptable ceiling concentration Concentration * * * Beryllium and beryllium compounds (Z37.29–1970) d ........................ VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00267 * 2 μg/m3 ............. Fmt 4701 Sfmt 4700 * 5 μg/m3 ............. E:\FR\FM\09JAR2.SGM * 25 μg/m3 ........... 09JAR2 Maximum duration * 30 minutes. 2736 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations TABLE Z–2—Continued 8-hour time weighted average Substance Acceptable ceiling concentration Acceptable maximum peak above the acceptable ceiling average concentration for an 8-hr shift Concentration * * * * * * Maximum duration * * * * * * * * standard applies to any operations or sectors for which the exposure limits in the beryllium standard, § 1910.1024, are stayed or is otherwise not in effect. d This * ■ * * * * 3. Add § 1910.1024 to read as follows: asabaliauskas on DSK3SPTVN1PROD with PROPOSALS § 1910.1024 Beryllium. (a) Scope and application. (1) This standard applies to occupational exposure to beryllium in all forms, compounds, and mixtures in general industry, except those articles and materials exempted by paragraphs (a)(2) and (a)(3) of this standard. (2) This standard does not apply to articles, as defined in the Hazard Communication standard (HCS) (§ 1910.1200(c)), that contain beryllium and that the employer does not process. (3) This standard does not apply to materials containing less than 0.1% beryllium by weight where the employer has objective data demonstrating that employee exposure to beryllium will remain below the action level as an 8-hour TWA under any foreseeable conditions. (b) Definitions. As used in this standard: Action level means a concentration of airborne beryllium of 0.1 micrograms per cubic meter of air (mg/m3) calculated as an 8-hour time-weighted average (TWA). Airborne exposure and airborne exposure to beryllium mean the exposure to airborne beryllium that would occur if the employee were not using a respirator. Assistant Secretary means the Assistant Secretary of Labor for Occupational Safety and Health, United States Department of Labor, or designee. Beryllium lymphocyte proliferation test (BeLPT) means the measurement of blood lymphocyte proliferation in a laboratory test when lymphocytes are challenged with a soluble beryllium salt. Beryllium work area means any work area containing a process or operation that can release beryllium where employees are, or can reasonably be expected to be, exposed to airborne beryllium at any level or where there is the potential for dermal contact with beryllium. CBD diagnostic center means a medical diagnostic center that has an VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 on-site pulmonary specialist and on-site facilities to perform a clinical evaluation for the presence of chronic beryllium disease (CBD). This evaluation must include pulmonary function testing (as outlined by the American Thoracic Society criteria), bronchoalveolar lavage (BAL), and transbronchial biopsy. The CBD diagnostic center must also have the capacity to transfer BAL samples to a laboratory for appropriate diagnostic testing within 24 hours. The on-site pulmonary specialist must be able to interpret the biopsy pathology and the BAL diagnostic test results. Chronic beryllium disease (CBD) means a chronic lung disease associated with airborne exposure to beryllium. Confirmed positive means the person tested has beryllium sensitization, as indicated by two abnormal BeLPT test results, an abnormal and a borderline test result, or three borderline test results. It also means the result of a more reliable and accurate test indicating a person has been identified as having beryllium sensitization. Director means the Director of the National Institute for Occupational Safety and Health (NIOSH), U.S. Department of Health and Human Services, or designee. Emergency means any uncontrolled release of airborne beryllium. High-efficiency particulate air (HEPA) filter means a filter that is at least 99.97 percent efficient in removing particles 0.3 micrometers in diameter. Objective data means information, such as air monitoring data from industry-wide surveys or calculations based on the composition of a substance, demonstrating airborne exposure to beryllium associated with a particular product or material or a specific process, task, or activity. The data must reflect workplace conditions closely resembling or with a higher airborne exposure potential than the processes, types of material, control methods, work practices, and environmental conditions in the employer’s current operations. Physician or other licensed health care professional (PLHCP) means an PO 00000 Frm 00268 Fmt 4701 Sfmt 4700 individual whose legally permitted scope of practice (i.e., license, registration, or certification) allows the individual to independently provide or be delegated the responsibility to provide some or all of the health care services required by paragraph (k) of this standard. Regulated area means an area, including temporary work areas where maintenance or non-routine tasks are performed, where an employee’s airborne exposure exceeds, or can reasonably be expected to exceed, either the time-weighted average (TWA) permissible exposure limit (PEL) or short term exposure limit (STEL). This standard means this beryllium standard, 29 CFR 1910.1024. (c) Permissible Exposure Limits (PELs)—(1) Time-weighted average (TWA) PEL. The employer must ensure that no employee is exposed to an airborne concentration of beryllium in excess of 0.2 mg/m3 calculated as an 8hour TWA. (2) Short-term exposure limit (STEL). The employer must ensure that no employee is exposed to an airborne concentration of beryllium in excess of 2.0 mg/m3 as determined over a sampling period of 15 minutes. (d) Exposure assessment—(1) General. The employer must assess the airborne exposure of each employee who is or may reasonably be expected to be exposed to airborne beryllium in accordance with either the performance option in paragraph (d)(2) or the scheduled monitoring option in paragraph (d)(3) of this standard. (2) Performance option. The employer must assess the 8-hour TWA exposure and the 15-minute short-term exposure for each employee on the basis of any combination of air monitoring data and objective data sufficient to accurately characterize airborne exposure to beryllium. (3) Scheduled monitoring option. (i) The employer must perform initial monitoring to assess the 8-hour TWA exposure for each employee on the basis of one or more personal breathing zone air samples that reflect the airborne E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations exposure of employees on each shift, for each job classification, and in each work area. (ii) The employer must perform initial monitoring to assess the short-term exposure from 15-minute personal breathing zone air samples measured in operations that are likely to produce airborne exposure above the STEL for each work shift, for each job classification, and in each work area. (iii) Where several employees perform the same tasks on the same shift and in the same work area, the employer may sample a representative fraction of these employees in order to meet the requirements of this paragraph (d)(3). In representative sampling, the employer must sample the employee(s) expected to have the highest airborne exposure to beryllium. (iv) If initial monitoring indicates that airborne exposure is below the action level and at or below the STEL, the employer may discontinue monitoring for those employees whose airborne exposure is represented by such monitoring. (v) Where the most recent exposure monitoring indicates that airborne exposure is at or above the action level but at or below the TWA PEL, the employer must repeat such monitoring within six months of the most recent monitoring. (vi) Where the most recent exposure monitoring indicates that airborne exposure is above the TWA PEL, the employer must repeat such monitoring within three months of the most recent 8-hour TWA exposure monitoring. (vii) Where the most recent (noninitial) exposure monitoring indicates that airborne exposure is below the action level, the employer must repeat such monitoring within six months of the most recent monitoring until two consecutive measurements, taken 7 or more days apart, are below the action level, at which time the employer may discontinue 8-hour TWA exposure monitoring for those employees whose exposure is represented by such monitoring, except as otherwise provided in paragraph (d)(4) of this standard. (viii) Where the most recent exposure monitoring indicates that airborne exposure is above the STEL, the employer must repeat such monitoring within three months of the most recent short-term exposure monitoring until two consecutive measurements, taken 7 or more days apart, are below the STEL, at which time the employer may discontinue short-term exposure monitoring for those employees whose exposure is represented by such monitoring, except as otherwise VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 provided in paragraph (d)(4) of this standard. (4) Reassessment of exposure. The employer must reassess airborne exposure whenever a change in the production, process, control equipment, personnel, or work practices may reasonably be expected to result in new or additional airborne exposure at or above the action level or STEL, or when the employer has any reason to believe that new or additional airborne exposure at or above the action level or STEL has occurred. (5) Methods of sample analysis. The employer must ensure that all air monitoring samples used to satisfy the monitoring requirements of paragraph (d) of this standard are evaluated by a laboratory that can measure beryllium to an accuracy of plus or minus 25 percent within a statistical confidence level of 95 percent for airborne concentrations at or above the action level. (6) Employee notification of assessment results. (i) Within 15 working days after completing an exposure assessment in accordance with paragraph (d) of this standard, the employer must notify each employee whose airborne exposure is represented by the assessment of the results of that assessment individually in writing or post the results in an appropriate location that is accessible to each of these employees. (ii) Whenever an exposure assessment indicates that airborne exposure is above the TWA PEL or STEL, the employer must describe in the written notification the corrective action being taken to reduce airborne exposure to or below the exposure limit(s) exceeded where feasible corrective action exists but had not been implemented when the monitoring was conducted. (7) Observation of monitoring. (i) The employer must provide an opportunity to observe any exposure monitoring required by this standard to each employee whose airborne exposure is measured or represented by the monitoring and each employee’s representative(s). (ii) When observation of monitoring requires entry into an area where the use of personal protective clothing or equipment (which may include respirators) is required, the employer must provide each observer with appropriate personal protective clothing and equipment at no cost to the observer and must ensure that each observer uses such clothing and equipment. (iii) The employer must ensure that each observer follows all other applicable safety and health procedures. (e) Beryllium work areas and regulated areas—(1) Establishment. (i) PO 00000 Frm 00269 Fmt 4701 Sfmt 4700 2737 The employer must establish and maintain a beryllium work area wherever the criteria for a ‘‘beryllium work area’’ set forth in paragraph (b) of this standard are met. (ii) The employer must establish and maintain a regulated area wherever employees are, or can reasonably be expected to be, exposed to airborne beryllium at levels above the TWA PEL or STEL. (2) Demarcation. (i) The employer must identify each beryllium work area through signs or any other methods that adequately establish and inform each employee of the boundaries of each beryllium work area. (ii) The employer must identify each regulated area in accordance with paragraph (m)(2) of this standard. (3) Access. The employer must limit access to regulated areas to: (i) Persons the employer authorizes or requires to be in a regulated area to perform work duties; (ii) Persons entering a regulated area as designated representatives of employees for the purpose of exercising the right to observe exposure monitoring procedures under paragraph (d)(7) of this standard; and (iii) Persons authorized by law to be in a regulated area. (4) Provision of personal protective clothing and equipment, including respirators. The employer must provide and ensure that each employee entering a regulated area uses: (i) Respiratory protection in accordance with paragraph (g) of this standard; and (ii) Personal protective clothing and equipment in accordance with paragraph (h) of this standard. (f) Methods of compliance—(1) Written exposure control plan. (i) The employer must establish, implement, and maintain a written exposure control plan, which must contain: (A) A list of operations and job titles reasonably expected to involve airborne exposure to or dermal contact with beryllium; (B) A list of operations and job titles reasonably expected to involve airborne exposure at or above the action level; (C) A list of operations and job titles reasonably expected to involve airborne exposure above the TWA PEL or STEL; (D) Procedures for minimizing crosscontamination, including preventing the transfer of beryllium between surfaces, equipment, clothing, materials, and articles within beryllium work areas; (E) Procedures for keeping surfaces as free as practicable of beryllium; (F) Procedures for minimizing the migration of beryllium from beryllium work areas to other locations within or outside the workplace; E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2738 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations (G) A list of engineering controls, work practices, and respiratory protection required by paragraph (f)(2) of this standard; (H) A list of personal protective clothing and equipment required by paragraph (h) of this standard; and (I) Procedures for removing, laundering, storing, cleaning, repairing, and disposing of berylliumcontaminated personal protective clothing and equipment, including respirators. (ii) The employer must review and evaluate the effectiveness of each written exposure control plan at least annually and update it, as necessary, when: (A) Any change in production processes, materials, equipment, personnel, work practices, or control methods results, or can reasonably be expected to result, in new or additional airborne exposure to beryllium; (B) The employer is notified that an employee is eligible for medical removal in accordance with paragraph (l)(1) of this standard, referred for evaluation at a CBD diagnostic center, or shows signs or symptoms associated with airborne exposure to or dermal contact with beryllium; or (C) The employer has any reason to believe that new or additional airborne exposure is occurring or will occur. (iii) The employer must make a copy of the written exposure control plan accessible to each employee who is, or can reasonably be expected to be, exposed to airborne beryllium in accordance with OSHA’s Access to Employee Exposure and Medical Records (Records Access) standard (§ 1910.1020(e)). (2) Engineering and work practice controls. (i) For each operation in a beryllium work area that releases airborne beryllium, the employer must ensure that at least one of the following is in place to reduce airborne exposure: (A) Material and/or process substitution; (B) Isolation, such as ventilated partial or full enclosures; (C) Local exhaust ventilation, such as at the points of operation, material handling, and transfer; or (D) Process control, such as wet methods and automation. (ii) An employer is exempt from using the controls listed in paragraph (f)(2)(i) of this standard to the extent that: (A) The employer can establish that such controls are not feasible; or (B) The employer can demonstrate that airborne exposure is below the action level, using no fewer than two representative personal breathing zone VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 samples taken at least 7 days apart, for each affected operation. (iii) If airborne exposure exceeds the TWA PEL or STEL after implementing the control(s) required by paragraph (f)(2)(i) of this standard, the employer must implement additional or enhanced engineering and work practice controls to reduce airborne exposure to or below the exposure limit(s) exceeded. (iv) Wherever the employer demonstrates that it is not feasible to reduce airborne exposure to or below the PELs by the engineering and work practice controls required by paragraphs (f)(2)(i) and (f)(2)(iii) of this standard, the employer must implement and maintain engineering and work practice controls to reduce airborne exposure to the lowest levels feasible and supplement these controls by using respiratory protection in accordance with paragraph (g) of this standard. (3) Prohibition of rotation. The employer must not rotate employees to different jobs to achieve compliance with the PELs. (g) Respiratory protection—(1) General. The employer must provide respiratory protection at no cost to the employee and ensure that each employee uses respiratory protection: (i) During periods necessary to install or implement feasible engineering and work practice controls where airborne exposure exceeds, or can reasonably be expected to exceed, the TWA PEL or STEL; (ii) During operations, including maintenance and repair activities and non-routine tasks, when engineering and work practice controls are not feasible and airborne exposure exceeds, or can reasonably be expected to exceed, the TWA PEL or STEL; (iii) During operations for which an employer has implemented all feasible engineering and work practice controls when such controls are not sufficient to reduce airborne exposure to or below the TWA PEL or STEL; (iv) During emergencies; and (v) When an employee who is eligible for medical removal under paragraph (l)(1) chooses to remain in a job with airborne exposure at or above the action level, as permitted by paragraph (l)(2)(ii) of this standard. (2) Respiratory protection program. Where this standard requires an employer to provide respiratory protection, the selection and use of such respiratory protection must be in accordance with the Respiratory Protection standard (§ 1910.134). (3) The employer must provide at no cost to the employee a powered airpurifying respirator (PAPR) instead of a negative pressure respirator when PO 00000 Frm 00270 Fmt 4701 Sfmt 4700 (i) Respiratory protection is required by this standard; (ii) An employee entitled to such respiratory protection requests a PAPR; and (iii) The PAPR provides adequate protection to the employee in accordance with paragraph (g)(2) of this standard. (h) Personal protective clothing and equipment—(1) Provision and use. The employer must provide at no cost, and ensure that each employee uses, appropriate personal protective clothing and equipment in accordance with the written exposure control plan required under paragraph (f)(1) of this standard and OSHA’s Personal Protective Equipment standards (subpart I of this part): (i) Where airborne exposure exceeds, or can reasonably be expected to exceed, the TWA PEL or STEL; or (ii) Where there is a reasonable expectation of dermal contact with beryllium. (2) Removal and storage. (i) The employer must ensure that each employee removes all berylliumcontaminated personal protective clothing and equipment at the end of the work shift, at the completion of tasks involving beryllium, or when personal protective clothing or equipment becomes visibly contaminated with beryllium, whichever comes first. (ii) The employer must ensure that each employee removes berylliumcontaminated personal protective clothing and equipment as specified in the written exposure control plan required by paragraph (f)(1) of this standard. (iii) The employer must ensure that each employee stores and keeps beryllium-contaminated personal protective clothing and equipment separate from street clothing and that storage facilities prevent crosscontamination as specified in the written exposure control plan required by paragraph (f)(1) of this standard. (iv) The employer must ensure that no employee removes berylliumcontaminated personal protective clothing or equipment from the workplace, except for employees authorized to do so for the purposes of laundering, cleaning, maintaining or disposing of beryllium-contaminated personal protective clothing and equipment at an appropriate location or facility away from the workplace. (v) When personal protective clothing or equipment required by this standard is removed from the workplace for laundering, cleaning, maintenance or disposal, the employer must ensure that E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations personal protective clothing and equipment are stored and transported in sealed bags or other closed containers that are impermeable and are labeled in accordance with paragraph (m)(3) of this standard and the HCS (§ 1910.1200). (3) Cleaning and replacement. (i) The employer must ensure that all reusable personal protective clothing and equipment required by this standard is cleaned, laundered, repaired, and replaced as needed to maintain its effectiveness. (ii) The employer must ensure that beryllium is not removed from personal protective clothing and equipment by blowing, shaking or any other means that disperses beryllium into the air. (iii) The employer must inform in writing the persons or the business entities who launder, clean or repair the personal protective clothing or equipment required by this standard of the potentially harmful effects of airborne exposure to and dermal contact with beryllium and that the personal protective clothing and equipment must be handled in accordance with this standard. (i) Hygiene areas and practices—(1) General. For each employee working in a beryllium work area, the employer must: (i) Provide readily accessible washing facilities in accordance with this standard and the Sanitation standard (§ 1910.141) to remove beryllium from the hands, face, and neck; and (ii) Ensure that employees who have dermal contact with beryllium wash any exposed skin at the end of the activity, process, or work shift and prior to eating, drinking, smoking, chewing tobacco or gum, applying cosmetics, or using the toilet. (2) Change rooms. In addition to the requirements of paragraph (i)(1)(i) of this standard, the employer must provide employees who work in a beryllium work area with a designated change room in accordance with this standard and the Sanitation standard (§ 1910.141) where employees are required to remove their personal clothing. (3) Showers. (i) The employer must provide showers in accordance with the Sanitation standard (§ 1910.141) where: (A) Airborne exposure exceeds, or can reasonably be expected to exceed, the TWA PEL or STEL; and (B) Beryllium can reasonably be expected to contaminate employees’ hair or body parts other than hands, face, and neck. (ii) Employers required to provide showers under paragraph (i)(3)(i) of this standard must ensure that each VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 employee showers at the end of the work shift or work activity if: (A) The employee reasonably could have had airborne exposure above the TWA PEL or STEL; and (B) Beryllium could reasonably have contaminated the employee’s hair or body parts other than hands, face, and neck. (4) Eating and drinking areas. Wherever the employer allows employees to consume food or beverages at a worksite where beryllium is present, the employer must ensure that: (i) Surfaces in eating and drinking areas are as free as practicable of beryllium; (ii) No employees enter any eating or drinking area with personal protective clothing or equipment unless, prior to entry, surface beryllium has been removed from the clothing or equipment by methods that do not disperse beryllium into the air or onto an employee’s body; and (iii) Eating and drinking facilities provided by the employer are in accordance with the Sanitation standard (§ 1910.141). (5) Prohibited activities. The employer must ensure that no employees eat, drink, smoke, chew tobacco or gum, or apply cosmetics in regulated areas. (j) Housekeeping—(1) General. (i) The employer must maintain all surfaces in beryllium work areas as free as practicable of beryllium and in accordance with the written exposure control plan required under paragraph (f)(1) and the cleaning methods required under paragraph (j)(2) of this standard; and (ii) The employer must ensure that all spills and emergency releases of beryllium are cleaned up promptly and in accordance with the written exposure control plan required under paragraph (f)(1) and the cleaning methods required under paragraph (j)(2) of this standard. (2) Cleaning methods. (i) The employer must ensure that surfaces in beryllium work areas are cleaned by HEPA-filtered vacuuming or other methods that minimize the likelihood and level of airborne exposure. (ii) The employer must not allow dry sweeping or brushing for cleaning surfaces in beryllium work areas unless HEPA-filtered vacuuming or other methods that minimize the likelihood and level of airborne exposure are not safe or effective. (iii) The employer must not allow the use of compressed air for cleaning beryllium-contaminated surfaces unless the compressed air is used in conjunction with a ventilation system designed to capture the particulates PO 00000 Frm 00271 Fmt 4701 Sfmt 4700 2739 made airborne by the use of compressed air. (iv) Where employees use dry sweeping, brushing, or compressed air to clean beryllium-contaminated surfaces, the employer must provide, and ensure that each employee uses, respiratory protection and personal protective clothing and equipment in accordance with paragraphs (g) and (h) of this standard. (v) The employer must ensure that cleaning equipment is handled and maintained in a manner that minimizes the likelihood and level of airborne exposure and the re-entrainment of airborne beryllium in the workplace. (3) Disposal. The employer must ensure that: (i) Materials designated for disposal that contain or are contaminated with beryllium are disposed of in sealed, impermeable enclosures, such as bags or containers, that are labeled in accordance with paragraph (m)(3) of this standard; and (ii) Materials designated for recycling that contain or are contaminated with beryllium are cleaned to be as free as practicable of surface beryllium contamination and labeled in accordance with paragraph (m)(3) of this standard, or placed in sealed, impermeable enclosures, such as bags or containers, that are labeled in accordance with paragraph (m)(3) of this standard. (k) Medical surveillance—(1) General. (i) The employer must make medical surveillance required by this paragraph available at no cost to the employee, and at a reasonable time and place, to each employee: (A) Who is or is reasonably expected to be exposed at or above the action level for more than 30 days per year; (B) Who shows signs or symptoms of CBD or other beryllium-related health effects; (C) Who is exposed to beryllium during an emergency; or (D) Whose most recent written medical opinion required by paragraph (k)(6) or (k)(7) of this standard recommends periodic medical surveillance. (ii) The employer must ensure that all medical examinations and procedures required by this standard are performed by, or under the direction of, a licensed physician. (2) Frequency. The employer must provide a medical examination: (i) Within 30 days after determining that: (A) An employee meets the criteria of paragraph (k)(1)(i)(A), unless the employee has received a medical examination, provided in accordance E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2740 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations with this standard, within the last two years; or (B) An employee meets the criteria of paragraph (k)(1)(i)(B) or (C). (ii) At least every two years thereafter for each employee who continues to meet the criteria of paragraph (k)(1)(i)(A), (B), or (D) of this standard. (iii) At the termination of employment for each employee who meets any of the criteria of paragraph (k)(1)(i) of this standard at the time the employee’s employment terminates, unless an examination has been provided in accordance with this standard during the six months prior to the date of termination. (3) Contents of examination. (i) The employer must ensure that the PLHCP conducting the examination advises the employee of the risks and benefits of participating in the medical surveillance program and the employee’s right to opt out of any or all parts of the medical examination. (ii) The employer must ensure that the employee is offered a medical examination that includes: (A) A medical and work history, with emphasis on past and present airborne exposure to or dermal contact with beryllium, smoking history, and any history of respiratory system dysfunction; (B) A physical examination with emphasis on the respiratory system; (C) A physical examination for skin rashes; (D) Pulmonary function tests, performed in accordance with the guidelines established by the American Thoracic Society including forced vital capacity (FVC) and forced expiratory volume in one second (FEV1); (E) A standardized BeLPT or equivalent test, upon the first examination and at least every two years thereafter, unless the employee is confirmed positive. If the results of the BeLPT are other than normal, a followup BeLPT must be offered within 30 days, unless the employee has been confirmed positive. Samples must be analyzed in a laboratory certified under the College of American Pathologists/ Clinical Laboratory Improvement Amendments (CLIA) guidelines to perform the BeLPT. (F) A low dose computed tomography (LDCT) scan, when recommended by the PLHCP after considering the employee’s history of exposure to beryllium along with other risk factors, such as smoking history, family medical history, sex, age, and presence of existing lung disease; and (G) Any other test deemed appropriate by the PLHCP. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 (4) Information provided to the PLHCP. The employer must ensure that the examining PLHCP (and the agreedupon CBD diagnostic center, if an evaluation is required under paragraph (k)(7) of this standard) has a copy of this standard and must provide the following information, if known: (i) A description of the employee’s former and current duties that relate to the employee’s airborne exposure to and dermal contact with beryllium; (ii) The employee’s former and current levels of airborne exposure; (iii) A description of any personal protective clothing and equipment, including respirators, used by the employee, including when and for how long the employee has used that personal protective clothing and equipment; and (iv) Information from records of employment-related medical examinations previously provided to the employee, currently within the control of the employer, after obtaining written consent from the employee. (5) Licensed physician’s written medical report for the employee. The employer must ensure that the employee receives a written medical report from the licensed physician within 45 days of the examination (including any follow-up BeLPT required under paragraph (k)(3)(ii)(E) of this standard) and that the PLHCP explains the results of the examination to the employee. The written medical report must contain: (i) A statement indicating the results of the medical examination, including the licensed physician’s opinion as to whether the employee has (A) Any detected medical condition, such as CBD or beryllium sensitization (i.e., the employee is confirmed positive, as defined in paragraph (b) of this standard), that may place the employee at increased risk from further airborne exposure, and (B) Any medical conditions related to airborne exposure that require further evaluation or treatment. (ii) Any recommendations on: (A) The employee’s use of respirators, protective clothing, or equipment; or (B) Limitations on the employee’s airborne exposure to beryllium. (iii) If the employee is confirmed positive or diagnosed with CBD or if the licensed physician otherwise deems it appropriate, the written report must also contain a referral for an evaluation at a CBD diagnostic center. (iv) If the employee is confirmed positive or diagnosed with CBD the written report must also contain a recommendation for continued periodic medical surveillance. PO 00000 Frm 00272 Fmt 4701 Sfmt 4700 (v) If the employee is confirmed positive or diagnosed with CBD the written report must also contain a recommendation for medical removal from airborne exposure to beryllium, as described in paragraph (l) of this standard. (6) Licensed physician’s written medical opinion for the employer. (i) The employer must obtain a written medical opinion from the licensed physician within 45 days of the medical examination (including any follow-up BeLPT required under paragraph (k)(3)(ii)(E) of this standard). The written medical opinion must contain only the following: (A) The date of the examination; (B) A statement that the examination has met the requirements of this standard; (C) Any recommended limitations on the employee’s use of respirators, protective clothing, or equipment; and (D) A statement that the PLHCP has explained the results of the medical examination to the employee, including any tests conducted, any medical conditions related to airborne exposure that require further evaluation or treatment, and any special provisions for use of personal protective clothing or equipment; (ii) If the employee provides written authorization, the written opinion must also contain any recommended limitations on the employee’s airborne exposure to beryllium. (iii) If the employee is confirmed positive or diagnosed with CBD or if the licensed physician otherwise deems it appropriate, and the employee provides written authorization, the written opinion must also contain a referral for an evaluation at a CBD diagnostic center. (iv) If the employee is confirmed positive or diagnosed with CBD and the employee provides written authorization, the written opinion must also contain a recommendation for continued periodic medical surveillance. (v) If the employee is confirmed positive or diagnosed with CBD and the employee provides written authorization, the written opinion must also contain a recommendation for medical removal from airborne exposure to beryllium, as described in paragraph (l) of this standard. (vi) The employer must ensure that each employee receives a copy of the written medical opinion described in paragraph (k)(6) of this standard within 45 days of any medical examination (including any follow-up BeLPT required under paragraph (k)(3)(ii)(E) of E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations this standard) performed for that employee. (7) CBD diagnostic center. (i) The employer must provide an evaluation at no cost to the employee at a CBD diagnostic center that is mutually agreed upon by the employer and the employee. The examination must be provided within 30 days of: (A) The employer’s receipt of a physician’s written medical opinion to the employer that recommends referral to a CBD diagnostic center; or (B) The employee presenting to the employer a physician’s written medical report indicating that the employee has been confirmed positive or diagnosed with CBD, or recommending referral to a CBD diagnostic center. (ii) The employer must ensure that the employee receives a written medical report from the CBD diagnostic center that contains all the information required in paragraph (k)(5)(i), (ii), (iv), and (v) of this standard and that the PLHCP explains the results of the examination to the employee within 30 days of the examination. (iii) The employer must obtain a written medical opinion from the CBD diagnostic center within 30 days of the medical examination. The written medical opinion must contain only the information in paragraph (k)(6)(i), as applicable, unless the employee provides written authorization to release additional information. If the employee provides written authorization, the written opinion must also contain the information from paragraphs (k)(6)(ii), (iv), and (v), if applicable. (iv) The employer must ensure that each employee receives a copy of the written medical opinion from the CBD diagnostic center described in paragraph (k)(7) of this standard within 30 days of any medical examination performed for that employee. (v) After an employee has received the initial clinical evaluation at a CBD diagnostic center described in paragraph (k)(7)(i) of this standard, the employee may choose to have any subsequent medical examinations for which the employee is eligible under paragraph (k) of this standard performed at a CBD diagnostic center mutually agreed upon by the employer and the employee, and the employer must provide such examinations at no cost to the employee. (l) Medical removal. (1) An employee is eligible for medical removal, if the employee works in a job with airborne exposure at or above the action level and either: (i) The employee provides the employer with: VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 (A) A written medical report indicating a confirmed positive finding or CBD diagnosis; or (B) A written medical report recommending removal from airborne exposure to beryllium in accordance with paragraph (k)(5)(v) or (k)(7)(ii) of this standard; or (ii) The employer receives a written medical opinion recommending removal from airborne exposure to beryllium in accordance with paragraph (k)(6)(v) or (k)(7)(iii) of this standard. (2) If an employee is eligible for medical removal, the employer must provide the employee with the employee’s choice of: (i) Removal as described in paragraph (l)(3) of this standard; or (ii) Remaining in a job with airborne exposure at or above the action level, provided that the employer provides, and ensures that the employee uses, respiratory protection that complies with paragraph (g) of this standard whenever airborne exposures are at or above the action level. (3) If the employee chooses removal: (i) If a comparable job is available where airborne exposures to beryllium are below the action level, and the employee is qualified for that job or can be trained within one month, the employer must remove the employee to that job. The employer must maintain for six months from the time of removal the employee’s base earnings, seniority, and other rights and benefits that existed at the time of removal. (ii) If comparable work is not available, the employer must maintain the employee’s base earnings, seniority, and other rights and benefits that existed at the time of removal for six months or until such time that comparable work described in paragraph (l)(3)(i) becomes available, whichever comes first. (4) The employer’s obligation to provide medical removal protection benefits to a removed employee shall be reduced to the extent that the employee receives compensation for earnings lost during the period of removal from a publicly or employer-funded compensation program, or receives income from another employer made possible by virtue of the employee’s removal. (m) Communication of hazards—(1) General. (i) Chemical manufacturers, importers, distributors, and employers must comply with all requirements of the HCS (§ 1910.1200) for beryllium. (ii) In classifying the hazards of beryllium, at least the following hazards must be addressed: Cancer; lung effects (CBD and acute beryllium disease); beryllium sensitization; skin PO 00000 Frm 00273 Fmt 4701 Sfmt 4700 2741 sensitization; and skin, eye, and respiratory tract irritation. (iii) Employers must include beryllium in the hazard communication program established to comply with the HCS. Employers must ensure that each employee has access to labels on containers of beryllium and to safety data sheets, and is trained in accordance with the requirements of the HCS (§ 1910.1200) and paragraph (m)(4) of this standard. (2) Warning signs. (i) Posting. The employer must provide and display warning signs at each approach to a regulated area so that each employee is able to read and understand the signs and take necessary protective steps before entering the area. (ii) Sign specification. (A) The employer must ensure that the warning signs required by paragraph (m)(2)(i) of this standard are legible and readily visible. (B) The employer must ensure each warning sign required by paragraph (m)(2)(i) of this standard bears the following legend: DANGER REGULATED AREA BERYLLIUM MAY CAUSE CANCER CAUSES DAMAGE TO LUNGS AUTHORIZED PERSONNEL ONLY WEAR RESPIRATORY PROTECTION AND PERSONAL PROTECTIVE CLOTHING AND EQUIPMENT IN THIS AREA (3) Warning labels. Consistent with the HCS (§ 1910.1200), the employer must label each bag and container of clothing, equipment, and materials contaminated with beryllium, and must, at a minimum, include the following on the label: DANGER CONTAINS BERYLLIUM MAY CAUSE CANCER CAUSES DAMAGE TO LUNGS AVOID CREATING DUST DO NOT GET ON SKIN (4) Employee information and training. (i) For each employee who has, or can reasonably be expected to have, airborne exposure to or dermal contact with beryllium: (A) The employer must provide information and training in accordance with the HCS (§ 1910.1200(h)); (B) The employer must provide initial training to each employee by the time of initial assignment; and (C) The employer must repeat the training required under this standard annually for each employee. (ii) The employer must ensure that each employee who is, or can reasonably be expected to be, exposed to airborne beryllium can demonstrate E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2742 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations knowledge and understanding of the following: (A) The health hazards associated with airborne exposure to and contact with beryllium, including the signs and symptoms of CBD; (B) The written exposure control plan, with emphasis on the location(s) of beryllium work areas, including any regulated areas, and the specific nature of operations that could result in airborne exposure, especially airborne exposure above the TWA PEL or STEL; (C) The purpose, proper selection, fitting, proper use, and limitations of personal protective clothing and equipment, including respirators; (D) Applicable emergency procedures; (E) Measures employees can take to protect themselves from airborne exposure to and contact with beryllium, including personal hygiene practices; (F) The purpose and a description of the medical surveillance program required by paragraph (k) of this standard including risks and benefits of each test to be offered; (G) The purpose and a description of the medical removal protection provided under paragraph (l) of this standard; (H) The contents of the standard; and (I) The employee’s right of access to records under the Records Access standard (§ 1910.1020). (iii) When a workplace change (such as modification of equipment, tasks, or procedures) results in new or increased airborne exposure that exceeds, or can reasonably be expected to exceed, either the TWA PEL or the STEL, the employer must provide additional training to those employees affected by the change in airborne exposure. (iv) Employee information. The employer must make a copy of this standard and its appendices readily available at no cost to each employee and designated employee representative(s). (n) Recordkeeping—(1) Air monitoring data. (i) The employer must make and maintain a record of all exposure measurements taken to assess airborne exposure as prescribed in paragraph (d) of this standard. (ii) This record must include at least the following information: (A) The date of measurement for each sample taken; VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 (B) The task that is being monitored; (C) The sampling and analytical methods used and evidence of their accuracy; (D) The number, duration, and results of samples taken; (E) The type of personal protective clothing and equipment, including respirators, worn by monitored employees at the time of monitoring; and (F) The name, social security number, and job classification of each employee represented by the monitoring, indicating which employees were actually monitored. (iii) The employer must ensure that exposure records are maintained and made available in accordance with the Records Access standard (§ 1910.1020). (2) Objective data. (i) Where an employer uses objective data to satisfy the exposure assessment requirements under paragraph (d)(2) of this standard, the employer must make and maintain a record of the objective data relied upon. (ii) This record must include at least the following information: (A) The data relied upon; (B) The beryllium-containing material in question; (C) The source of the objective data; (D) A description of the process, task, or activity on which the objective data were based; and (E) Other data relevant to the process, task, activity, material, or airborne exposure on which the objective data were based. (iii) The employer must ensure that objective data are maintained and made available in accordance with the Records Access standard (§ 1910.1020). (3) Medical surveillance. (i) The employer must make and maintain a record for each employee covered by medical surveillance under paragraph (k) of this standard. (ii) The record must include the following information about each employee: (A) Name, social security number, and job classification; (B) A copy of all licensed physicians’ written medical opinions for each employee; and (C) A copy of the information provided to the PLHCP as required by paragraph (k)(4) of this standard. PO 00000 Frm 00274 Fmt 4701 Sfmt 4700 (iii) The employer must ensure that medical records are maintained and made available in accordance with the Records Access standard (§ 1910.1020). (4) Training. (i) At the completion of any training required by this standard, the employer must prepare a record that indicates the name, social security number, and job classification of each employee trained, the date the training was completed, and the topic of the training. (ii) This record must be maintained for three years after the completion of training. (5) Access to records. Upon request, the employer must make all records maintained as a requirement of this standard available for examination and copying to the Assistant Secretary, the Director, each employee, and each employee’s designated representative(s) in accordance the Records Access standard (§ 1910.1020). (6) Transfer of records. The employer must comply with the requirements involving transfer of records set forth in the Records Access standard (§ 1910.1020). (o) Dates—(1) Effective date. This standard shall become effective March 10, 2017. (2) Compliance dates. All obligations of this standard commence and become enforceable on March 12, 2018, except: (i) Change rooms and showers required by paragraph (i) of this standard must be provided by March 11, 2019; and (ii) Engineering controls required by paragraph (f) of this standard must be implemented by March 10, 2020. (p) Appendix. Appendix A—Control Strategies to Minimize Beryllium Exposure of this standard is nonmandatory. Appendix A to § 1910.1024—Control Strategies To Minimize Beryllium Exposure (Non-Mandatory) Paragraph (f)(2)(i) of this standard requires employers to use one or more of the control methods listed in paragraph (f)(2)(i) to minimize worker exposure in each operation in a beryllium work area, unless the operation is exempt under paragraph (f)(2)(ii). This appendix sets forth a nonexhaustive list of control options that employers could use to comply with paragraph (f)(2)(i) for a number of specific beryllium operations. E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations 2743 TABLE A.1—EXPOSURE CONTROL RECOMMENDATIONS Operation Minimal control strategy * Application group Beryllium Oxide Forming (e.g., pressing, extruding). For pressing operations: .............................................................................................. (1) Install local exhaust ventilation (LEV) on oxide press tables, oxide feed drum breaks, press tumblers, powder rollers, and die set disassembly stations; (2) Enclose the oxide presses; and (3) Install mechanical ventilation (make-up air) in processing areas For extruding operations: (1) Install LEV on extruder powder loading hoods, oxide supply bottles, rod breaking operations, centerless grinders, rod laydown tables, dicing operations, surface grinders, discharge end of extrusion presses; (2) Enclose the centerless grinders; and (3) Install mechanical ventilation (make-up air) in processing areas. For medium and high gassing operations: .................................................................. (1) Perform operation with a hood having a maximum of one open side; and (2) Design process so as to minimize spills; if accidental spills occur, perform immediate cleanup. Primary Beryllium Production; Beryllium Oxide Ceramics and Composites. Chemical Processing Operations (e.g., leaching, pickling, degreasing, etching, plating). Finishing (e.g., grinding, sanding, polishing, deburring). Furnace Operations (e.g., Melting and Casting). Machining ............................. Mechanical Processing (e.g., material handling (including scrap), sorting, crushing, screening, pulverizing, shredding, pouring, mixing, blending). Metal Forming (e.g., rolling, drawing, straightening, annealing, extruding). asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Welding ................................ (1) Perform portable finishing operations in a ventilated hood. The hood should include both downdraft and backdraft ventilation, and have at least two sides and a top. (2) Perform stationary finishing operations using a ventilated and enclosed hood at the point of operation. The grinding wheel of the stationary unit should be enclosed and ventilated. (1) Use LEV on furnaces, pelletizer; arc furnace ingot machine discharge; pellet sampling; arc furnace bins and conveyors; beryllium hydroxide drum dumper and dryer; furnace rebuilding; furnace tool holders; arc furnace tundish and tundish skimming, tundish preheat hood, and tundish cleaning hoods; dross handling equipment and drums; dross recycling; and tool repair station, charge make-up station, oxide screener, product sampling locations, drum changing stations, and drum cleaning stations (2) Use mechanical ventilation (make-up air) in furnace building Use (1) LEV consistent with ACGIH® ventilation guidelines on deburring hoods, wet surface grinder enclosures, belt sanding hoods, and electrical discharge machines (for operations such as polishing, lapping, and buffing); (2) high velocity low volume hoods or ventilated enclosures on lathes, vertical mills, CNC mills, and tool grinding operations; (3) for beryllium oxide ceramics, LEV on lapping, dicing, and laser cutting; and (4) wet methods (e.g., coolants). (1) Enclose and ventilate sources of emission; (2) Prohibit open handling of materials; and (3) Use mechanical ventilation (make-up air) in processing areas (1) For rolling operations, install LEV on mill stands and reels such that a hood extends the length of the mill; (2) For point and chamfer operations, install LEV hoods at both ends of the rod; (3) For annealing operations, provide an inert atmosphere for annealing furnaces, and LEV hoods at entry and exit points; (4) For swaging operations, install LEV on the cutting head; (5) For drawing, straightening, and extruding operations, install LEV at entry and exit points; and (6) For all metal forming operations, install mechanical ventilation (make-up air) for processing areas. For fixed welding operations: ....................................................................................... (1) Enclose work locations around the source of fume generation and use local exhaust ventilation; and (2) Install close capture hood enclosure designed so as to minimize fume emission from the enclosure welding operation. For manual operations: (1) Use portable local exhaust and general ventilation Primary Beryllium Production; Beryllium Oxide Ceramics and Composites; Copper Rolling, Drawing and Extruding. Secondary Smelting; Fabrication of Beryllium Alloy Products; Dental Labs. Primary Beryllium Production; Beryllium Oxide Ceramics and Composites; Nonferrous Foundries; Secondary Smelting. Primary Beryllium Production; Beryllium Oxide Ceramics and Composites; Copper Rolling, Drawing, and Extruding; Precision Turned Products. Primary Beryllium Production; Beryllium Oxide Ceramics and Composites; Aluminum and Copper Foundries; Secondary Smelting. Primary Beryllium Production; Copper Rolling, Drawing, and Extruding; Fabrication of Beryllium Alloy Products. Primary Beryllium Production; Fabrication of Beryllium Alloy Products; Welding. * All LEV specifications should be in accordance with the ACGIH® Publication No. 2094, ‘‘Industrial Ventilation—A Manual of Recommended Practice’’ wherever applicable. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00275 Fmt 4701 Sfmt 4700 E:\FR\FM\09JAR2.SGM 09JAR2 2744 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations PART 1915—OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT 4. The authority citation for part 1915 is revised to read as follows: ■ Authority: 33 U.S.C. 941; 29 U.S.C. 653, 655, 657; Secretary of Labor’s Order No. 12– 71 (36 FR 8754); 8–76 (41 FR 25059), 9–83 (48 FR 35736), 1–90 (55 FR 9033), 6–96 (62 FR 111), 3–2000 (65 FR 50017), 5–2002 (67 FR 65008), 5–2007 (72 FR 31160), 4–2010 (75 FR 55355), or 1–2012 (77 FR 3912); 29 CFR part 1911; and 5 U.S.C. 553, as applicable. ‘‘Beryllium and beryllium compounds (as Be)’’ and adding footnote q. The revisions read as follows: * * * * * § 1915.1000 5. In § 1915.1000 amend Table Z— Shipyards, by revising the entry for ■ * * Air contaminants. * * * TABLE Z—SHIPYARDS Substance CAS No.d ppm a* * * * * Beryllium and beryllium compounds (as Be); see 1915.1024 (q) ................. 7440–41–7 * * * Skin designation * ........................ * * ............................ * * mg/m3 b* * 0.002 * * The PELs are 8-hour TWAs unless otherwise noted; a (C) designation denotes a ceiling limit. They are to be determined from breathing-zone air samples. a Parts of vapor or gas per million parts of contaminated air by volume at 25 °C and 760 torr. b Milligrams of substance per cubic meter of air. When entry is in this column only, the value is exact; when listed with a ppm entry, it is approximate. * * * * * * * d The CAS number is for information only. Enforcement is based on the substance name. For an entry covering more than one metal compound, measured as the metal, the CAS number for the metal is given—not CAS numbers for the individual compounds. * * * * * * * q This standard applies to any operations or sectors for which the beryllium standard, 1915.1024, is stayed or otherwise is not in effect. * ■ * * * * 6. Add § 1915.1024 to read as follows: asabaliauskas on DSK3SPTVN1PROD with PROPOSALS § 1915.1024 Beryllium. (a) Scope and application. (1) This standard applies to occupational exposure to beryllium in all forms, compounds, and mixtures in shipyards, except those articles and materials exempted by paragraphs (a)(2) and (a)(3) of this standard. (2) This standard does not apply to articles, as defined in the Hazard Communication standard (HCS) (29 CFR 1910.1200(c)), that contain beryllium and that the employer does not process. (3) This standard does not apply to materials containing less than 0.1% beryllium by weight where the employer has objective data demonstrating that employee exposure to beryllium will remain below the action level as an 8-hour TWA under any foreseeable conditions. (b) Definitions. As used in this standard: Action level means a concentration of airborne beryllium of 0.1 micrograms per cubic meter of air (mg/m3) calculated as an 8-hour time-weighted average (TWA). Airborne exposure and airborne exposure to beryllium mean the exposure to airborne beryllium that would occur if the employee were not using a respirator. Assistant Secretary means the Assistant Secretary of Labor for Occupational Safety and Health, United States Department of Labor, or designee. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 Beryllium lymphocyte proliferation test (BeLPT) means the measurement of blood lymphocyte proliferation in a laboratory test when lymphocytes are challenged with a soluble beryllium salt. CBD diagnostic center means a medical diagnostic center that has an on-site pulmonary specialist and on-site facilities to perform a clinical evaluation for the presence of chronic beryllium disease (CBD). This evaluation must include pulmonary function testing (as outlined by the American Thoracic Society criteria), bronchoalveolar lavage (BAL), and transbronchial biopsy. The CBD diagnostic center must also have the capacity to transfer BAL samples to a laboratory for appropriate diagnostic testing within 24 hours. The on-site pulmonary specialist must be able to interpret the biopsy pathology and the BAL diagnostic test results. Chronic beryllium disease (CBD) means a chronic lung disease associated with airborne exposure to beryllium. Confirmed positive means the person tested has beryllium sensitization, as indicated by two abnormal BeLPT test results, an abnormal and a borderline test result, or three borderline test results. It also means the result of a more reliable and accurate test indicating a person has been identified as having beryllium sensitization. Director means the Director of the National Institute for Occupational Safety and Health (NIOSH), U.S. Department of Health and Human Services, or designee. PO 00000 Frm 00276 Fmt 4701 Sfmt 4700 Emergency means any uncontrolled release of airborne beryllium. High-efficiency particulate air (HEPA) filter means a filter that is at least 99.97 percent efficient in removing particles 0.3 micrometers in diameter. Objective data means information, such as air monitoring data from industry-wide surveys or calculations based on the composition of a substance, demonstrating airborne exposure to beryllium associated with a particular product or material or a specific process, task, or activity. The data must reflect workplace conditions closely resembling or with a higher airborne exposure potential than the processes, types of material, control methods, work practices, and environmental conditions in the employer’s current operations. Physician or other licensed health care professional (PLHCP) means an individual whose legally permitted scope of practice (i.e., license, registration, or certification) allows the individual to independently provide or be delegated the responsibility to provide some or all of the health care services required by paragraph (k) of this standard. Regulated area means an area, including temporary work areas where maintenance or non-routine tasks are performed, where an employee’s airborne exposure exceeds, or can reasonably be expected to exceed, either the time-weighted average (TWA) permissible exposure limit (PEL) or short term exposure limit (STEL). E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations This standard means this beryllium standard, 29 CFR 1915.1024. (c) Permissible Exposure Limits (PELs)—(1) Time-weighted average (TWA) PEL. The employer must ensure that no employee is exposed to an airborne concentration of beryllium in excess of 0.2 mg/m3 calculated as an 8hour TWA. (2) Short-term exposure limit (STEL). The employer must ensure that no employee is exposed to an airborne concentration of beryllium in excess of 2.0 mg/m3 as determined over a sampling period of 15 minutes. (d) Exposure assessment—(1) General. The employer must assess the airborne exposure of each employee who is or may reasonably be expected to be exposed to airborne beryllium in accordance with either the performance option in paragraph (d)(2) or the scheduled monitoring option in paragraph (d)(3) of this standard. (2) Performance option. The employer must assess the 8-hour TWA exposure and the 15-minute short-term exposure for each employee on the basis of any combination of air monitoring data and objective data sufficient to accurately characterize airborne exposure to beryllium. (3) Scheduled monitoring option. (i) The employer must perform initial monitoring to assess the 8-hour TWA exposure for each employee on the basis of one or more personal breathing zone air samples that reflect the airborne exposure of employees on each shift, for each job classification, and in each work area. (ii) The employer must perform initial monitoring to assess the short-term exposure from 15-minute personal breathing zone air samples measured in operations that are likely to produce airborne exposure above the STEL for each work shift, for each job classification, and in each work area. (iii) Where several employees perform the same tasks on the same shift and in the same work area, the employer may sample a representative fraction of these employees in order to meet the requirements of paragraph (d)(3) of this standard. In representative sampling, the employer must sample the employee(s) expected to have the highest airborne exposure to beryllium. (iv) If initial monitoring indicates that airborne exposure is below the action level and at or below the STEL, the employer may discontinue monitoring for those employees whose airborne exposure is represented by such monitoring. (v) Where the most recent exposure monitoring indicates that airborne exposure is at or above the action level VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 but at or below the TWA PEL, the employer must repeat such monitoring within six months of the most recent monitoring. (vi) Where the most recent exposure monitoring indicates that airborne exposure is above the TWA PEL, the employer must repeat such monitoring within three months of the most recent 8-hour TWA exposure monitoring. (vii) Where the most recent (noninitial) exposure monitoring indicates that airborne exposure is below the action level, the employer must repeat such monitoring within six months of the most recent monitoring until two consecutive measurements, taken 7 or more days apart, are below the action level, at which time the employer may discontinue 8-hour TWA exposure monitoring for those employees whose exposure is represented by such monitoring, except as otherwise provided in paragraph (d)(4) of this standard. (viii) Where the most recent exposure monitoring indicates that airborne exposure is above the STEL, the employer must repeat such monitoring within three months of the most recent short-term exposure monitoring until two consecutive measurements, taken 7 or more days apart, are below the STEL, at which time the employer may discontinue short-term exposure monitoring for those employees whose exposure is represented by such monitoring, except as otherwise provided in paragraph (d)(4) of this standard. (4) Reassessment of exposure. The employer must reassess airborne exposure whenever a change in the production, process, control equipment, personnel, or work practices may reasonably be expected to result in new or additional airborne exposure at or above the action level or STEL, or when the employer has any reason to believe that new or additional airborne exposure at or above the action level or STEL has occurred. (5) Methods of sample analysis. The employer must ensure that all air monitoring samples used to satisfy the monitoring requirements of paragraph (d) of this standard are evaluated by a laboratory that can measure beryllium to an accuracy of plus or minus 25 percent within a statistical confidence level of 95 percent for airborne concentrations at or above the action level. (6) Employee notification of assessment results. (i) Within 15 working days after completing an exposure assessment in accordance with paragraph (d) of this standard, the employer must notify each employee whose airborne exposure is represented PO 00000 Frm 00277 Fmt 4701 Sfmt 4700 2745 by the assessment of the results of that assessment individually in writing or post the results in an appropriate location that is accessible to each of these employees. (ii) Whenever an exposure assessment indicates that airborne exposure is above the TWA PEL or STEL, the employer must describe in the written notification the corrective action being taken to reduce airborne exposure to or below the exposure limit(s) exceeded where feasible corrective action exists but had not been implemented when the monitoring was conducted. (7) Observation of monitoring. (i) The employer must provide an opportunity to observe any exposure monitoring required by this standard to each employee whose airborne exposure is measured or represented by the monitoring and each employee’s representative(s). (ii) When observation of monitoring requires entry into an area where the use of personal protective clothing or equipment (which may include respirators) is required, the employer must provide each observer with appropriate personal protective clothing and equipment at no cost to the observer and must ensure that each observer uses such clothing and equipment. (iii) The employer must ensure that each observer follows all other applicable safety and health procedures. (e) Regulated areas—(1) Establishment. The employer must establish and maintain a regulated area wherever employees are, or can reasonably be expected to be, exposed to airborne beryllium at levels above the TWA PEL or STEL. (2) Demarcation. The employer must identify each regulated area in accordance with paragraph (m)(2) of this standard. (3) Access. The employer must limit access to regulated areas to: (i) Persons the employer authorizes or requires to be in a regulated area to perform work duties; (ii) Persons entering a regulated area as designated representatives of employees for the purpose of exercising the right to observe exposure monitoring procedures under paragraph (d)(7) of this standard; and (iii) Persons authorized by law to be in a regulated area. (4) Provision of personal protective clothing and equipment, including respirators. The employer must provide and ensure that each employee entering a regulated area uses: (i) Respiratory protection in accordance with paragraph (g) of this standard; and E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2746 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations (ii) Personal protective clothing and equipment in accordance with paragraph (h) of this standard. (f) Methods of compliance—(1) Written exposure control plan. (i) The employer must establish, implement, and maintain a written exposure control plan, which must contain: (A) A list of operations and job titles reasonably expected to involve airborne exposure to or dermal contact with beryllium; (B) A list of operations and job titles reasonably expected to involve airborne exposure at or above the action level; (C) A list of operations and job titles reasonably expected to involve airborne exposure above the TWA PEL or STEL; (D) Procedures for minimizing crosscontamination; (E) Procedures for minimizing the migration of beryllium within or to locations outside the workplace; (F) A list of engineering controls, work practices, and respiratory protection required by paragraph (f)(2) of this standard; (G) A list of personal protective clothing and equipment required by paragraph (h) of this standard; and (H) Procedures for removing, laundering, storing, cleaning, repairing, and disposing of berylliumcontaminated personal protective clothing and equipment, including respirators. (ii) The employer must review and evaluate the effectiveness of each written exposure control plan at least annually and update it, as necessary, when: (A) Any change in production processes, materials, equipment, personnel, work practices, or control methods results, or can reasonably be expected to result, in new or additional airborne exposure to beryllium; (B) The employer is notified that an employee is eligible for medical removal in accordance with paragraph (l)(1) of this standard, referred for evaluation at a CBD diagnostic center, or shows signs or symptoms associated with airborne exposure to or dermal contact with beryllium; or (C) The employer has any reason to believe that new or additional airborne exposure is occurring or will occur. (iii) The employer must make a copy of the written exposure control plan accessible to each employee who is, or can reasonably be expected to be, exposed to airborne beryllium in accordance with OSHA’s Access to Employee Exposure and Medical Records (Records Access) standard (29 CFR 1910.1020(e)). (2) Engineering and work practice controls. (i) Where exposures are, or can VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 reasonably be expected to be, at or above the action level, the employer must ensure that at least one of the following is in place to reduce airborne exposure: (A) Material and/or process substitution; (B) Isolation, such as ventilated partial or full enclosures; (C) Local exhaust ventilation, such as at the points of operation, material handling, and transfer; or (D) Process control, such as wet methods and automation. (ii) An employer is exempt from using the controls listed in paragraph (f)(2)(i) of this standard to the extent that: (A) The employer can establish that such controls are not feasible; or (B) The employer can demonstrate that airborne exposure is below the action level, using no fewer than two representative personal breathing zone samples taken at least 7 days apart, for each affected operation. (iii) If airborne exposure exceeds the TWA PEL or STEL after implementing the control(s) required by (f)(2)(i), the employer must implement additional or enhanced engineering and work practice controls to reduce airborne exposure to or below the exposure limit(s) exceeded. (iv) Wherever the employer demonstrates that it is not feasible to reduce airborne exposure to or below the PELs by the engineering and work practice controls required by paragraphs (f)(2)(i) and (f)(2)(iii), the employer must implement and maintain engineering and work practice controls to reduce airborne exposure to the lowest levels feasible and supplement these controls by using respiratory protection in accordance with paragraph (g) of this standard. (3) Prohibition of rotation. The employer must not rotate employees to different jobs to achieve compliance with the PELs. (g) Respiratory protection—(1) General. The employer must provide respiratory protection at no cost to the employee and ensure that each employee uses respiratory protection: (i) During periods necessary to install or implement feasible engineering and work practice controls where airborne exposure exceeds, or can reasonably be expected to exceed, the TWA PEL or STEL; (ii) During operations, including maintenance and repair activities and non-routine tasks, when engineering and work practice controls are not feasible and airborne exposure exceeds, or can reasonably be expected to exceed, the TWA PEL or STEL; (iii) During operations for which an employer has implemented all feasible PO 00000 Frm 00278 Fmt 4701 Sfmt 4700 engineering and work practice controls when such controls are not sufficient to reduce airborne exposure to or below the TWA PEL or STEL; (iv) During emergencies; and (v) When an employee who is eligible for medical removal under paragraph (l)(1) chooses to remain in a job with airborne exposure at or above the action level, as permitted by paragraph (l)(2)(ii). (2) Respiratory protection program. Where this standard requires an employer to provide respiratory protection, the selection and use of such respiratory protection must be in accordance with the Respiratory Protection standard (29 CFR 1910.134). (3) The employer must provide at no cost to the employee a powered airpurifying respirator (PAPR) instead of a negative pressure respirator when (i) Respiratory protection is required by this standard; (ii) An employee entitled to such respiratory protection requests a PAPR; and (iii) The PAPR provides adequate protection to the employee in accordance with paragraph (g)(2) of this standard. (h) Personal protective clothing and equipment—(1) Provision and use. The employer must provide at no cost, and ensure that each employee uses, appropriate personal protective clothing and equipment in accordance with the written exposure control plan required under paragraph (f)(1) of this standard and OSHA’s Personal Protective Equipment standards for shipyards (subpart I of this part): (i) Where airborne exposure exceeds, or can reasonably be expected to exceed, the TWA PEL or STEL; or (ii) Where there is a reasonable expectation of dermal contact with beryllium. (2) Removal and storage. (i) The employer must ensure that each employee removes all berylliumcontaminated personal protective clothing and equipment at the end of the work shift, at the completion of tasks involving beryllium, or when personal protective clothing or equipment becomes visibly contaminated with beryllium, whichever comes first. (ii) The employer must ensure that each employee removes berylliumcontaminated personal protective clothing and equipment as specified in the written exposure control plan required by paragraph (f)(1) of this standard. (iii) The employer must ensure that each employee stores and keeps beryllium-contaminated personal E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations protective clothing and equipment separate from street clothing and that storage facilities prevent crosscontamination as specified in the written exposure control plan required by paragraph (f)(1) of this standard. (iv) The employer must ensure that no employee removes berylliumcontaminated personal protective clothing or equipment from the workplace, except for employees authorized to do so for the purposes of laundering, cleaning, maintaining or disposing of beryllium-contaminated personal protective clothing and equipment at an appropriate location or facility away from the workplace. (v) When personal protective clothing or equipment required by this standard is removed from the workplace for laundering, cleaning, maintenance or disposal, the employer must ensure that personal protective clothing and equipment are stored and transported in sealed bags or other closed containers that are impermeable and are labeled in accordance with paragraph (m)(3) of this standard and the HCS (29 CFR 1910.1200). (3) Cleaning and replacement. (i) The employer must ensure that all reusable personal protective clothing and equipment required by this standard is cleaned, laundered, repaired, and replaced as needed to maintain its effectiveness. (ii) The employer must ensure that beryllium is not removed from personal protective clothing and equipment by blowing, shaking or any other means that disperses beryllium into the air. (iii) The employer must inform in writing the persons or the business entities who launder, clean or repair the personal protective clothing or equipment required by this standard of the potentially harmful effects of airborne exposure to and dermal contact with beryllium and that the personal protective clothing and equipment must be handled in accordance with this standard. (i) Hygiene areas and practices—(1) General. For each employee required to use personal protective clothing or equipment by this standard, the employer must: (i) Provide readily accessible washing facilities in accordance with this standard and the Sanitation standard (§ 1915.88) to remove beryllium from the hands, face, and neck; and (ii) Ensure that employees who have dermal contact with beryllium wash any exposed skin at the end of the activity, process, or work shift and prior to eating, drinking, smoking, chewing tobacco or gum, applying cosmetics, or using the toilet. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 (2) Change rooms. In addition to the requirements of paragraph (i)(1)(i) of this standard, the employer must provide employees required to use personal protective clothing by this standard with a designated change room in accordance with the Sanitation standard (§ 1915.88) where employees are required to remove their personal clothing. (3) Eating and drinking areas. Wherever the employer allows employees to consume food or beverages at a worksite where beryllium is present, the employer must ensure that: (i) Surfaces in eating and drinking areas are as free as practicable of beryllium; (ii) No employees enter any eating or drinking area with personal protective clothing or equipment unless, prior to entry, surface beryllium has been removed from the clothing or equipment by methods that do not disperse beryllium into the air or onto an employee’s body; and (iii) Eating and drinking facilities provided by the employer are in accordance with the Sanitation standard (29 CFR 1915.88). (4) Prohibited activities. The employer must ensure that no employees eat, drink, smoke, chew tobacco or gum, or apply cosmetics in regulated areas. (j) Housekeeping—(1) General. (i) When cleaning beryllium-contaminated areas, the employer must follow the written exposure control plan required under paragraph (f)(1) of this standard; and (ii) The employer must ensure that all spills and emergency releases of beryllium are cleaned up promptly and in accordance with the written exposure control plan required under paragraph (f)(1). (2) Cleaning methods. (i) When cleaning beryllium-contaminated areas, the employer must ensure the use of HEPA-filtered vacuuming or other methods that minimize the likelihood and level of airborne exposure. (ii) The employer must not allow dry sweeping or brushing for cleaning in beryllium-contaminated areas unless HEPA-filtered vacuuming or other methods that minimize the likelihood and level of airborne exposure are not safe or effective. (iii) The employer must not allow the use of compressed air for cleaning in beryllium-contaminated areas unless the compressed air is used in conjunction with a ventilation system designed to capture the particulates made airborne by the use of compressed air. (iv) Where employees use dry sweeping, brushing, or compressed air PO 00000 Frm 00279 Fmt 4701 Sfmt 4700 2747 to clean in beryllium-contaminated areas, the employer must provide, and ensure that each employee uses, respiratory protection and personal protective clothing and equipment in accordance with paragraphs (g) and (h) of this standard. (v) The employer must ensure that cleaning equipment is handled and maintained in a manner that minimizes the likelihood and level of airborne exposure and the re-entrainment of airborne beryllium in the workplace. (3) Disposal. When the employer transfers materials containing beryllium to another party for use or disposal, the employer must provide the recipient with a copy of the warning described in paragraph (m)(3) of this standard. (k) Medical surveillance—(1) General. (i) The employer must make medical surveillance required by this paragraph available at no cost to the employee, and at a reasonable time and place, to each employee: (A) Who is or is reasonably expected to be exposed at or above the action level for more than 30 days per year; (B) Who shows signs or symptoms of CBD or other beryllium-related health effects; (C) Who is exposed to beryllium during an emergency; or (D) Whose most recent written medical opinion required by paragraph (k)(6) or (k)(7) recommends periodic medical surveillance. (ii) The employer must ensure that all medical examinations and procedures required by this standard are performed by, or under the direction of, a licensed physician. (2) Frequency. The employer must provide a medical examination: (i) Within 30 days after determining that: (A) An employee meets the criteria of paragraph (k)(1)(i)(A) of this standard, unless the employee has received a medical examination, provided in accordance with this standard, within the last two years; or (B) An employee meets the criteria of paragraph (k)(1)(i)(B) or (C) of this standard. (ii) At least every two years thereafter for each employee who continues to meet the criteria of paragraph (k)(1)(i)(A), (B), or (D) of this standard. (iii) At the termination of employment for each employee who meets any of the criteria of paragraph (k)(1)(i) of this standard at the time the employee’s employment terminates, unless an examination has been provided in accordance with this standard during the six months prior to the date of termination. E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2748 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations (3) Contents of examination. (i) The employer must ensure that the PLHCP conducting the examination advises the employee of the risks and benefits of participating in the medical surveillance program and the employee’s right to opt out of any or all parts of the medical examination. (ii) The employer must ensure that the employee is offered a medical examination that includes: (A) A medical and work history, with emphasis on past and present airborne exposure to or dermal contact with beryllium, smoking history, and any history of respiratory system dysfunction; (B) A physical examination with emphasis on the respiratory system; (C) A physical examination for skin rashes; (D) Pulmonary function tests, performed in accordance with the guidelines established by the American Thoracic Society including forced vital capacity (FVC) and forced expiratory volume in one second (FEV1); (E) A standardized BeLPT or equivalent test, upon the first examination and at least every two years thereafter, unless the employee is confirmed positive. If the results of the BeLPT are other than normal, a followup BeLPT must be offered within 30 days, unless the employee has been confirmed positive. Samples must be analyzed in a laboratory certified under the College of American Pathologists/ Clinical Laboratory Improvement Amendments (CLIA) guidelines to perform the BeLPT. (F) A low dose computed tomography (LDCT) scan, when recommended by the PLHCP after considering the employee’s history of exposure to beryllium along with other risk factors, such as smoking history, family medical history, sex, age, and presence of existing lung disease; and (G) Any other test deemed appropriate by the PLHCP. (4) Information provided to the PLHCP. The employer must ensure that the examining PLHCP (and the agreedupon CBD diagnostic center, if an evaluation is required under paragraph (k)(7) of this standard) has a copy of this standard and must provide the following information, if known: (i) A description of the employee’s former and current duties that relate to the employee’s airborne exposure to and dermal contact with beryllium; (ii) The employee’s former and current levels of airborne exposure; (iii) A description of any personal protective clothing and equipment, including respirators, used by the employee, including when and for how VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 long the employee has used that personal protective clothing and equipment; and (iv) Information from records of employment-related medical examinations previously provided to the employee, currently within the control of the employer, after obtaining written consent from the employee. (5) Licensed physician’s written medical report for the employee. The employer must ensure that the employee receives a written medical report from the licensed physician within 45 days of the examination (including any follow-up BeLPT required under paragraph (k)(3)(ii)(E) of this standard) and that the PLHCP explains the results of the examination to the employee. The written medical report must contain: (i) A statement indicating the results of the medical examination, including the licensed physician’s opinion as to whether the employee has (A) Any detected medical condition, such as CBD or beryllium sensitization (i.e., the employee is confirmed positive, as defined in paragraph (b) of this standard), that may place the employee at increased risk from further airborne exposure, and (B) Any medical conditions related to airborne exposure that require further evaluation or treatment. (ii) Any recommendations on: (A) The employee’s use of respirators, protective clothing, or equipment; or (B) Limitations on the employee’s airborne exposure to beryllium. (iii) If the employee is confirmed positive or diagnosed with CBD or if the licensed physician otherwise deems it appropriate, the written report must also contain a referral for an evaluation at a CBD diagnostic center. (iv) If the employee is confirmed positive or diagnosed with CBD the written report must also contain a recommendation for continued periodic medical surveillance. (v) If the employee is confirmed positive or diagnosed with CBD the written report must also contain a recommendation for medical removal from airborne exposure to beryllium, as described in paragraph (l). (6) Licensed physician’s written medical opinion for the employer. (i) The employer must obtain a written medical opinion from the licensed physician within 45 days of the medical examination (including any follow-up BeLPT required under paragraph (k)(3)(ii)(E) of this standard). The written medical opinion must contain only the following: (A) The date of the examination; PO 00000 Frm 00280 Fmt 4701 Sfmt 4700 (B) A statement that the examination has met the requirements of this standard; (C) Any recommended limitations on the employee’s use of respirators, protective clothing, or equipment; and (D) A statement that the PLHCP has explained the results of the medical examination to the employee, including any tests conducted, any medical conditions related to airborne exposure that require further evaluation or treatment, and any special provisions for use of personal protective clothing or equipment; (ii) If the employee provides written authorization, the written opinion must also contain any recommended limitations on the employee’s airborne exposure to beryllium. (iii) If the employee is confirmed positive or diagnosed with CBD or if the licensed physician otherwise deems it appropriate, and the employee provides written authorization, the written opinion must also contain a referral for an evaluation at a CBD diagnostic center. (iv) If the employee is confirmed positive or diagnosed with CBD and the employee provides written authorization, the written opinion must also contain a recommendation for continued periodic medical surveillance. (v) If the employee is confirmed positive or diagnosed with CBD and the employee provides written authorization, the written opinion must also contain a recommendation for medical removal from airborne exposure to beryllium, as described in paragraph (l). (vi) The employer must ensure that each employee receives a copy of the written medical opinion described in paragraph (k)(6) of this standard within 45 days of any medical examination (including any follow-up BeLPT required under paragraph (k)(3)(ii)(E) of this standard) performed for that employee. (7) CBD diagnostic center. (i) The employer must provide an evaluation at no cost to the employee at a CBD diagnostic center that is mutually agreed upon by the employer and the employee. The examination must be provided within 30 days of: (A) The employer’s receipt of a physician’s written medical opinion to the employer that recommends referral to a CBD diagnostic center; or (B) The employee presenting to the employer a physician’s written medical report indicating that the employee has been confirmed positive or diagnosed with CBD, or recommending referral to a CBD diagnostic center. E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations (ii) The employer must ensure that the employee receives a written medical report from the CBD diagnostic center that contains all the information required in paragraph (k)(5)(i), (ii), (iv), and (v) and that the PLHCP explains the results of the examination to the employee within 30 days of the examination. (iii) The employer must obtain a written medical opinion from the CBD diagnostic center within 30 days of the medical examination. The written medical opinion must contain only the information in paragraphs (k)(6)(i), as applicable, unless the employee provides written authorization to release additional information. If the employee provides written authorization, the written opinion must also contain the information from paragraphs (k)(6)(ii), (iv), and (v), if applicable. (iv) The employer must ensure that each employee receives a copy of the written medical opinion from the CBD diagnostic center described in paragraph (k)(7) of this standard within 30 days of any medical examination performed for that employee. (v) After an employee has received the initial clinical evaluation at a CBD diagnostic center described in paragraph (k)(7)(i) of this standard, the employee may choose to have any subsequent medical examinations for which the employee is eligible under paragraph (k) of this standard performed at a CBD diagnostic center mutually agreed upon by the employer and the employee, and the employer must provide such examinations at no cost to the employee. (l) Medical removal. (1) An employee is eligible for medical removal, if the employee works in a job with airborne exposure at or above the action level and either: (i) The employee provides the employer with: (A) A written medical report indicating a confirmed positive finding or CBD diagnosis; or (B) A written medical report recommending removal from airborne exposure to beryllium in accordance with paragraph (k)(5)(v) or (k)(7)(ii) of this standard; or (ii) The employer receives a written medical opinion recommending removal from airborne exposure to beryllium in accordance with paragraph (k)(6)(v) or (k)(7)(iii) of this standard. (2) If an employee is eligible for medical removal, the employer must provide the employee with the employee’s choice of: (i) Removal as described in paragraph (l)(3) of this standard; or VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 (ii) Remaining in a job with airborne exposure at or above the action level, provided that the employer provides, and ensures that the employee uses, respiratory protection that complies with paragraph (g) of this standard whenever airborne exposures are at or above the action level. (3) If the employee chooses removal: (i) If a comparable job is available where airborne exposures to beryllium are below the action level, and the employee is qualified for that job or can be trained within one month, the employer must remove the employee to that job. The employer must maintain for six months from the time of removal the employee’s base earnings, seniority, and other rights and benefits that existed at the time of removal. (ii) If comparable work is not available, the employer must maintain the employee’s base earnings, seniority, and other rights and benefits that existed at the time of removal for six months or until such time that comparable work described in paragraph (l)(3)(i) becomes available, whichever comes first. (4) The employer’s obligation to provide medical removal protection benefits to a removed employee shall be reduced to the extent that the employee receives compensation for earnings lost during the period of removal from a publicly or employer-funded compensation program, or receives income from another employer made possible by virtue of the employee’s removal. (m) Communication of hazards—(1) General. (i) Chemical manufacturers, importers, distributors, and employers must comply with all requirements of the HCS (29 CFR 1910.1200) for beryllium. (ii) Employers must include beryllium in the hazard communication program established to comply with the HCS. Employers must ensure that each employee has access to labels on containers of beryllium and to safety data sheets, and is trained in accordance with the requirements of the HCS (29 CFR 1910.1200) and paragraph (m)(4) of this standard. (2) Warning signs. (i) Posting. The employer must provide and display warning signs at each approach to a regulated area so that each employee is able to read and understand the signs and take necessary protective steps before entering the area. (ii) Sign specification. (A) The employer must ensure that the warning signs required by paragraph (m)(2)(i) of this standard are legible and readily visible. PO 00000 Frm 00281 Fmt 4701 Sfmt 4700 2749 (B) The employer must ensure each warning sign required by paragraph (m)(2)(i) of this standard bears the following legend: DANGER REGULATED AREA BERYLLIUM MAY CAUSE CANCER CAUSES DAMAGE TO LUNGS AUTHORIZED PERSONNEL ONLY WEAR RESPIRATORY PROTECTION AND PERSONAL PROTECTIVE CLOTHING AND EQUIPMENT IN THIS AREA (3) Warning labels. Consistent with the HCS (29 CFR 1910.1200), the employer must label each bag and container of clothing, equipment, and materials contaminated with beryllium, and must, at a minimum, include the following on the label: DANGER CONTAINS BERYLLIUM MAY CAUSE CANCER CAUSES DAMAGE TO LUNGS AVOID CREATING DUST DO NOT GET ON SKIN (4) Employee information and training. (i) For each employee who has, or can reasonably be expected to have, airborne exposure to or dermal contact with beryllium: (A) The employer must provide information and training in accordance with the HCS (29 CFR 1910.1200(h)); (B) The employer must provide initial training to each employee by the time of initial assignment; and (C) The employer must repeat the training required under this standard annually for each employee. (ii) The employer must ensure that each employee who is, or can reasonably be expected to be, exposed to airborne beryllium can demonstrate knowledge and understanding of the following: (A) The health hazards associated with airborne exposure to and contact with beryllium, including the signs and symptoms of CBD; (B) The written exposure control plan, with emphasis on the location(s) of any regulated areas, and the specific nature of operations that could result in airborne exposure, especially airborne exposure above the TWA PEL or STEL; (C) The purpose, proper selection, fitting, proper use, and limitations of personal protective clothing and equipment, including respirators; (D) Applicable emergency procedures; (E) Measures employees can take to protect themselves from airborne exposure to and contact with beryllium, including personal hygiene practices; (F) The purpose and a description of the medical surveillance program required by paragraph (k) of this E:\FR\FM\09JAR2.SGM 09JAR2 2750 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS standard including risks and benefits of each test to be offered; (G) The purpose and a description of the medical removal protection provided under paragraph (l) of this standard; (H) The contents of the standard; and (I) The employee’s right of access to records under the Records Access standard (29 CFR 1910.1020). (iii) When a workplace change (such as modification of equipment, tasks, or procedures) results in new or increased airborne exposure that exceeds, or can reasonably be expected to exceed, either the TWA PEL or the STEL, the employer must provide additional training to those employees affected by the change in airborne exposure. (iv) Employee information. The employer must make a copy of this standard and its appendices readily available at no cost to each employee and designated employee representative(s). (n) Recordkeeping—(1) Air monitoring data. (i) The employer must make and maintain a record of all exposure measurements taken to assess airborne exposure as prescribed in paragraph (d) of this standard. (ii) This record must include at least the following information: (A) The date of measurement for each sample taken; (B) The task that is being monitored; (C) The sampling and analytical methods used and evidence of their accuracy; (D) The number, duration, and results of samples taken; (E) The type of personal protective clothing and equipment, including respirators, worn by monitored employees at the time of monitoring; and (F) The name, social security number, and job classification of each employee represented by the monitoring, indicating which employees were actually monitored. (iii) The employer must ensure that exposure records are maintained and made available in accordance with the Records Access standard (29 CFR 1910.1020). (2) Objective data. (i) Where an employer uses objective data to satisfy the exposure assessment requirements under paragraph (d)(2) of this standard, the employer must make and maintain a record of the objective data relied upon. (ii) This record must include at least the following information: (A) The data relied upon; (B) The beryllium-containing material in question; (C) The source of the objective data; (D) A description of the process, task, or activity on which the objective data were based; and (E) Other data relevant to the process, task, activity, material, or airborne exposure on which the objective data were based. (iii) The employer must ensure that objective data are maintained and made available in accordance with the Records Access standard (29 CFR 1910.1020). (3) Medical surveillance. (i) The employer must make and maintain a record for each employee covered by medical surveillance under paragraph (k) of this standard. (ii) The record must include the following information about each employee: (A) Name, social security number, and job classification; (B) A copy of all licensed physicians’ written medical opinions for each employee; and (C) A copy of the information provided to the PLHCP as required by paragraph (k)(4) of this standard. (iii) The employer must ensure that medical records are maintained and made available in accordance with the Records Access standard (29 CFR 1910.1020). (4) Training. (i) At the completion of any training required by this standard, the employer must prepare a record that indicates the name, social security number, and job classification of each employee trained, the date the training was completed, and the topic of the training. (ii) This record must be maintained for three years after the completion of training. (5) Access to records. Upon request, the employer must make all records maintained as a requirement of this standard available for examination and copying to the Assistant Secretary, the Director, each employee, and each employee’s designated representative(s) in accordance the Records Access standard (29 CFR 1910.1020). (6) Transfer of records. The employer must comply with the requirements involving transfer of records set forth in the Records Access standard (29 CFR 1910.1020). (o) Dates—(1) Effective date. This standard shall become effective March 10, 2017. (2) Compliance dates. All obligations of this standard commence and become enforceable on March 12, 2018, except: (i) Change rooms required by paragraph (i) of this standard must be provided by March 11, 2019; and (ii) Engineering controls required by paragraph (f) of this standard must be implemented by March 10, 2020. PART 1926—SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Subpart D—Occupational Health and Environmental Controls 7. The authority citation for subpart D of part 1926 is revised to read as follows: ■ Authority: 40 U.S.C. 3704; 29 U.S.C. 653, 655, 657; Secretary of Labor’s Order No. 12– 71 (36 FR 8754), 8–76 (41 FR 25059), 9–83 (48 FR 35736), 1–90 (55 FR 9033), 6–96 (62 FR 111), 3–2000 (65 FR 50017), 5–2002 (67 FR 65008), 5–2007 (72 FR 31160), 4–2010 (75 FR 55355), or 1–2012 (77 FR 3912); 29 CFR part 1911; and 5 U.S.C. 553, as applicable. Section 1926.61 also issued under 49 U.S.C. 5101 et seq. Section 1926.62 also issued under 42 U.S.C. 4853. Section 1926.65 also issued under 126 of Public Law 99–499, 100 Stat. 1613. 8. In § 1926.55, amend appendix A by revising the entry for ‘‘Beryllium and beryllium compounds (as Be)’’ and adding footnote q. The revisions read as follows: ■ § 1926.55 Gases, vapors, fumes, dusts, and mists. * * * * * Appendix A to § 1926.55—1970 American Conference of Governmental Industrial Hygienists’ Threshold Limit Values of Airborne Contaminants THRESHOLD LIMIT VALUES OF AIRBORNE CONTAMINANTS FOR CONSTRUCTION Substance CAS No.d ppm a* * * * * Beryllium and beryllium compounds (as Be); see 1926.1124 (q) ................. 7440–41–7 * ........................ VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 PO 00000 Frm 00282 Fmt 4701 Sfmt 4700 E:\FR\FM\09JAR2.SGM mg/m 3b 09JAR2 Skin designation * * ............................ 0.002 2751 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations THRESHOLD LIMIT VALUES OF AIRBORNE CONTAMINANTS FOR CONSTRUCTION—Continued CAS No.d Substance * * * * ppm a* mg/m 3b * * Skin designation * of vapor or gas per million parts of contaminated air by volume at 25 °C and 760 torr. b Milligrams of substance per cubic meter of air. When entry is in this column only, the value is exact; when listed with a ppm entry, it is approximate. * * * * * * * d The CAS number is for information only. Enforcement is based on the substance name. For an entry covering more than one metal compound, measured as the metal, the CAS number for the metal is given—not CAS numbers for the individual compounds. * * * * * * * q This standard applies to any operations or sectors for which the beryllium standard, 1926.1124, is stayed or otherwise is not in effect. a Parts * * * * * Subpart Z—Toxic and Hazardous Substances 9. The authority for subpart Z of part 1926 is revised to read as follows: ■ Authority: 40 U.S.C. 3704; 29 U.S.C. 653, 655, 657; Secretary of Labor’s Order No. 12– 71 (36 FR 8754), 8–76 (41 FR 25059), 9–83 (48 FR 35736), 1–90 (55 FR 9033), 6–96 (62 FR 111), 3–2000 (65 FR 50017), 5–2002 (67 FR 65008), 5–2007 (72 FR 31160), 4–2010 (75 FR 55355), or 1–2012 (77 FR 3912); 29 CFR part 1911; and 5 U.S.C. 553, as applicable. 10. Add § 1926.1124 to read as follows: ■ asabaliauskas on DSK3SPTVN1PROD with PROPOSALS § 1926.1124 Beryllium. (a) Scope and application. (1) This standard applies to occupational exposure to beryllium in all forms, compounds, and mixtures in construction, except those articles and materials exempted by paragraphs (a)(2) and (a)(3) of this standard. (2) This standard does not apply to articles, as defined in the Hazard Communication standard (HCS) (29 CFR 1910.1200(c)), that contain beryllium and that the employer does not process. (3) This standard does not apply to materials containing less than 0.1% beryllium by weight where the employer has objective data demonstrating that employee exposure to beryllium will remain below the action level as an 8-hour TWA under any foreseeable conditions. (b) Definitions. As used in this standard: Action level means a concentration of airborne beryllium of 0.1 micrograms per cubic meter of air (mg/m3) calculated as an 8-hour time-weighted average (TWA). Airborne exposure and airborne exposure to beryllium mean the exposure to airborne beryllium that would occur if the employee were not using a respirator. Assistant Secretary means the Assistant Secretary of Labor for Occupational Safety and Health, United States Department of Labor, or designee. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 Beryllium lymphocyte proliferation test (BeLPT) means the measurement of blood lymphocyte proliferation in a laboratory test when lymphocytes are challenged with a soluble beryllium salt. CBD diagnostic center means a medical diagnostic center that has an on-site pulmonary specialist and on-site facilities to perform a clinical evaluation for the presence of chronic beryllium disease (CBD). This evaluation must include pulmonary function testing (as outlined by the American Thoracic Society criteria), bronchoalveolar lavage (BAL), and transbronchial biopsy. The CBD diagnostic center must also have the capacity to transfer BAL samples to a laboratory for appropriate diagnostic testing within 24 hours. The on-site pulmonary specialist must be able to interpret the biopsy pathology and the BAL diagnostic test results. Chronic beryllium disease (CBD) means a chronic lung disease associated with airborne exposure to beryllium. Competent person means an individual who is capable of identifying existing and foreseeable beryllium hazards in the workplace and who has authorization to take prompt corrective measures to eliminate or minimize them. The competent person must have the knowledge, ability, and authority necessary to fulfill the responsibilities set forth in paragraph (e) of this standard. Confirmed positive means the person tested has beryllium sensitization, as indicated by two abnormal BeLPT test results, an abnormal and a borderline test result, or three borderline test results. It also means the result of a more reliable and accurate test indicating a person has been identified as having beryllium sensitization. Director means the Director of the National Institute for Occupational Safety and Health (NIOSH), U.S. Department of Health and Human Services, or designee. Emergency means any uncontrolled release of airborne beryllium. High-efficiency particulate air (HEPA) filter means a filter that is at least 99.97 PO 00000 Frm 00283 Fmt 4701 Sfmt 4700 percent efficient in removing particles 0.3 micrometers in diameter. Objective data means information, such as air monitoring data from industry-wide surveys or calculations based on the composition of a substance, demonstrating airborne exposure to beryllium associated with a particular product or material or a specific process, task, or activity. The data must reflect workplace conditions closely resembling or with a higher airborne exposure potential than the processes, types of material, control methods, work practices, and environmental conditions in the employer’s current operations. Physician or other licensed health care professional (PLHCP) means an individual whose legally permitted scope of practice (i.e., license, registration, or certification) allows the individual to independently provide or be delegated the responsibility to provide some or all of the health care services required by paragraph (k) of this standard. This standard means this beryllium standard, 29 CFR 1926.1124. (c) Permissible Exposure Limits (PELs)—(1) Time-weighted average (TWA) PEL. The employer must ensure that no employee is exposed to an airborne concentration of beryllium in excess of 0.2 mg/m3 calculated as an 8hour TWA. (2) Short-term exposure limit (STEL). The employer must ensure that no employee is exposed to an airborne concentration of beryllium in excess of 2.0 mg/m3 as determined over a sampling period of 15 minutes. (d) Exposure assessment—(1) General. The employer must assess the airborne exposure of each employee who is or may reasonably be expected to be exposed to airborne beryllium in accordance with either the performance option in paragraph (d)(2) or the scheduled monitoring option in paragraph (d)(3) of this standard. (2) Performance option. The employer must assess the 8-hour TWA exposure and the 15-minute short-term exposure for each employee on the basis of any E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2752 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations combination of air monitoring data and objective data sufficient to accurately characterize airborne exposure to beryllium. (3) Scheduled monitoring option. (i) The employer must perform initial monitoring to assess the 8-hour TWA exposure for each employee on the basis of one or more personal breathing zone air samples that reflect the airborne exposure of employees on each shift, for each job classification, and in each work area. (ii) The employer must perform initial monitoring to assess the short-term exposure from 15-minute personal breathing zone air samples measured in operations that are likely to produce airborne exposure above the STEL for each work shift, for each job classification, and in each work area. (iii) Where several employees perform the same tasks on the same shift and in the same work area, the employer may sample a representative fraction of these employees in order to meet the requirements of paragraph (d)(3). In representative sampling, the employer must sample the employee(s) expected to have the highest airborne exposure to beryllium. (iv) If initial monitoring indicates that airborne exposure is below the action level and at or below the STEL, the employer may discontinue monitoring for those employees whose airborne exposure is represented by such monitoring. (v) Where the most recent exposure monitoring indicates that airborne exposure is at or above the action level but at or below the TWA PEL, the employer must repeat such monitoring within six months of the most recent monitoring. (vi) Where the most recent exposure monitoring indicates that airborne exposure is above the TWA PEL, the employer must repeat such monitoring within three months of the most recent 8-hour TWA exposure monitoring. (vii) Where the most recent (noninitial) exposure monitoring indicates that airborne exposure is below the action level, the employer must repeat such monitoring within six months of the most recent monitoring until two consecutive measurements, taken 7 or more days apart, are below the action level, at which time the employer may discontinue 8-hour TWA exposure monitoring for those employees whose exposure is represented by such monitoring, except as otherwise provided in paragraph (d)(4) of this standard. (viii) Where the most recent exposure monitoring indicates that airborne exposure is above the STEL, the VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 employer must repeat such monitoring within three months of the most recent short-term exposure monitoring until two consecutive measurements, taken 7 or more days apart, are below the STEL, at which time the employer may discontinue short-term exposure monitoring for those employees whose exposure is represented by such monitoring, except as otherwise provided in paragraph (d)(4) of this standard. (4) Reassessment of exposure. The employer must reassess airborne exposure whenever a change in the production, process, control equipment, personnel, or work practices may reasonably be expected to result in new or additional airborne exposure at or above the action level or STEL, or when the employer has any reason to believe that new or additional airborne exposure at or above the action level or STEL has occurred. (5) Methods of sample analysis. The employer must ensure that all air monitoring samples used to satisfy the monitoring requirements of paragraph (d) of this standard are evaluated by a laboratory that can measure beryllium to an accuracy of plus or minus 25 percent within a statistical confidence level of 95 percent for airborne concentrations at or above the action level. (6) Employee notification of assessment results. (i) Within 15 working days after completing an exposure assessment in accordance with paragraph (d) of this standard, the employer must notify each employee whose airborne exposure is represented by the assessment of the results of that assessment individually in writing or post the results in an appropriate location that is accessible to each of these employees. (ii) Whenever an exposure assessment indicates that airborne exposure is above the TWA PEL or STEL, the employer must describe in the written notification the corrective action being taken to reduce airborne exposure to or below the exposure limit(s) exceeded where feasible corrective action exists but had not been implemented when the monitoring was conducted. (7) Observation of monitoring. (i) The employer must provide an opportunity to observe any exposure monitoring required by this standard to each employee whose airborne exposure is measured or represented by the monitoring and each employee’s representative(s). (ii) When observation of monitoring requires entry into an area where the use of personal protective clothing or equipment (which may include respirators) is required, the employer PO 00000 Frm 00284 Fmt 4701 Sfmt 4700 must provide each observer with appropriate personal protective clothing and equipment at no cost to the observer. (iii) The employer must ensure that each observer follows all other applicable safety and health procedures. (e) Competent person. Wherever employees are, or can reasonably be expected to be, exposed to airborne beryllium at levels above the TWA PEL or STEL, the employer must designate a competent person to (1) Make frequent and regular inspections of job sites, materials, and equipment; (2) Implement the written exposure control plan under paragraph (f) of this standard; (3) Ensure that all employees use respiratory protection in accordance with paragraph (g) of this standard; and (4) Ensure that all employees use personal protective clothing and equipment in accordance with paragraph (h) of this standard. (f) Methods of compliance—(1) Written exposure control plan. (i) The employer must establish, implement, and maintain a written exposure control plan, which must contain: (A) A list of operations and job titles reasonably expected to involve airborne exposure to or dermal contact with beryllium; (B) A list of operations and job titles reasonably expected to involve airborne exposure at or above the action level; (C) A list of operations and job titles reasonably expected to involve airborne exposure above the TWA PEL or STEL; (D) Procedures for minimizing crosscontamination; (E) Procedures for minimizing the migration of beryllium within or to locations outside the workplace; (F) A list of engineering controls, work practices, and respiratory protection required by paragraph (f)(2) of this standard; (G) A list of personal protective clothing and equipment required by paragraph (h) of this standard; (H) Procedures for removing, laundering, storing, cleaning, repairing, and disposing of berylliumcontaminated personal protective clothing and equipment, including respirators; and (I) Procedures used to restrict access to work areas when airborne exposures are, or can reasonably be expected to be, above the TWA PEL or STEL, to minimize the number of employees exposed to airborne beryllium and their level of exposure, including exposures generated by other employers or sole proprietors. (ii) The employer must review and evaluate the effectiveness of each E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations written exposure control plan at least annually and update it, as necessary, when: (A) Any change in production processes, materials, equipment, personnel, work practices, or control methods results, or can reasonably be expected to result, in new or additional airborne exposure to beryllium; (B) The employer is notified that an employee is eligible for medical removal in accordance with paragraph (l)(1) of this standard, referred for evaluation at a CBD diagnostic center, or shows signs or symptoms associated with airborne exposure to or dermal contact with beryllium; or (C) The employer has any reason to believe that new or additional airborne exposure is occurring or will occur. (iii) The employer must make a copy of the written exposure control plan accessible to each employee who is, or can reasonably be expected to be, exposed to airborne beryllium in accordance with OSHA’s Access to Employee Exposure and Medical Records (Records Access) standard (29 CFR 1910.1020(e)). (2) Engineering and work practice controls. (i) Where exposures are, or can reasonably be expected to be, at or above the action level, the employer must ensure that at least one of the following is in place to reduce airborne exposure: (A) Material and/or process substitution; (B) Isolation, such as ventilated partial or full enclosures; (C) Local exhaust ventilation, such as at the points of operation, material handling, and transfer; or (D) Process control, such as wet methods and automation. (ii) An employer is exempt from using the controls listed in paragraph (f)(2)(i) of this standard to the extent that: (A) The employer can establish that such controls are not feasible; or (B) The employer can demonstrate that airborne exposure is below the action level, using no fewer than two representative personal breathing zone samples taken at least 7 days apart, for each affected operation. (iii) If airborne exposure exceeds the TWA PEL or STEL after implementing the control(s) required by paragraph (f)(2)(i) of this standard, the employer must implement additional or enhanced engineering and work practice controls to reduce airborne exposure to or below the exposure limit(s) exceeded. (iv) Wherever the employer demonstrates that it is not feasible to reduce airborne exposure to or below the PELs by the engineering and work practice controls required by paragraphs VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 (f)(2)(i) and (f)(2)(iii), the employer must implement and maintain engineering and work practice controls to reduce airborne exposure to the lowest levels feasible and supplement these controls by using respiratory protection in accordance with paragraph (g) of this standard. (3) Prohibition of rotation. The employer must not rotate employees to different jobs to achieve compliance with the PELs. (g) Respiratory protection—(1) General. The employer must provide respiratory protection at no cost to the employee and ensure that each employee uses respiratory protection: (i) During periods necessary to install or implement feasible engineering and work practice controls where airborne exposure exceeds, or can reasonably be expected to exceed, the TWA PEL or STEL; (ii) During operations, including maintenance and repair activities and non-routine tasks, when engineering and work practice controls are not feasible and airborne exposure exceeds, or can reasonably be expected to exceed, the TWA PEL or STEL; (iii) During operations for which an employer has implemented all feasible engineering and work practice controls when such controls are not sufficient to reduce airborne exposure to or below the TWA PEL or STEL; (iv) During emergencies; and (v) When an employee who is eligible for medical removal under paragraph (l)(1) chooses to remain in a job with airborne exposure at or above the action level, as permitted by paragraph (l)(2)(ii) of this standard. (2) Respiratory protection program. Where this standard requires an employer to provide respiratory protection, the selection and use of such respiratory protection must be in accordance with the Respiratory Protection standard (29 CFR 1910.134). (3) The employer must provide at no cost to the employee a powered airpurifying respirator (PAPR) instead of a negative pressure respirator when (i) Respiratory protection is required by this standard; (ii) An employee entitled to such respiratory protection requests a PAPR; and (iii) The PAPR provides adequate protection to the employee in accordance with paragraph (g)(2) of this standard. (h) Personal protective clothing and equipment—(1) Provision and use. The employer must provide at no cost, and ensure that each employee uses, appropriate personal protective clothing and equipment in accordance with the PO 00000 Frm 00285 Fmt 4701 Sfmt 4700 2753 written exposure control plan required under paragraph (f)(1) of this standard and OSHA’s Personal Protective and Life Saving Equipment standards for construction (29 CFR part 1926 Subpart E): (i) Where airborne exposure exceeds, or can reasonably be expected to exceed, the TWA PEL or STEL; or (ii) Where there is a reasonable expectation of dermal contact with beryllium. (2) Removal and storage. (i) The employer must ensure that each employee removes all berylliumcontaminated personal protective clothing and equipment at the end of the work shift, at the completion of tasks involving beryllium, or when personal protective clothing or equipment becomes visibly contaminated with beryllium, whichever comes first. (ii) The employer must ensure that each employee removes berylliumcontaminated personal protective clothing and equipment as specified in the written exposure control plan required by paragraph (f)(1) of this standard. (iii) The employer must ensure that each employee stores and keeps beryllium-contaminated personal protective clothing and equipment separate from street clothing and that storage facilities prevent crosscontamination as specified in the written exposure control plan required by paragraph (f)(1) of this standard. (iv) The employer must ensure that no employee removes berylliumcontaminated personal protective clothing or equipment from the workplace, except for employees authorized to do so for the purposes of laundering, cleaning, maintaining or disposing of beryllium-contaminated personal protective clothing and equipment at an appropriate location or facility away from the workplace. (v) When personal protective clothing or equipment required by this standard is removed from the workplace for laundering, cleaning, maintenance or disposal, the employer must ensure that personal protective clothing and equipment are stored and transported in sealed bags or other closed containers that are impermeable and are labeled in accordance with paragraph (m)(2) of this standard and the HCS (29 CFR 1910.1200). (3) Cleaning and replacement. (i) The employer must ensure that all reusable personal protective clothing and equipment required by this standard is cleaned, laundered, repaired, and replaced as needed to maintain its effectiveness. E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2754 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations (ii) The employer must ensure that beryllium is not removed from personal protective clothing and equipment by blowing, shaking or any other means that disperses beryllium into the air. (iii) The employer must inform in writing the persons or the business entities who launder, clean or repair the personal protective clothing or equipment required by this standard of the potentially harmful effects of airborne exposure to and dermal contact with beryllium and that the personal protective clothing and equipment must be handled in accordance with this standard. (i) Hygiene areas and practices—(1) General. For each employee required to use personal protective clothing or equipment by this standard, the employer must: (i) Provide readily accessible washing facilities in accordance with this standard and the Sanitation standard (§ 1926.51) to remove beryllium from the hands, face, and neck; and (ii) Ensure that employees who have dermal contact with beryllium wash any exposed skin at the end of the activity, process, or work shift and prior to eating, drinking, smoking, chewing tobacco or gum, applying cosmetics, or using the toilet. (2) Change rooms. In addition to the requirements of paragraph (i)(1)(i) of this standard, the employer must provide employees required to use personal protective clothing by this standard with a designated change room in accordance with this standard and the Sanitation standard (§ 1926.51) where employees are required to remove their personal clothing. (3) Eating and drinking areas. Wherever the employer allows employees to consume food or beverages at a worksite where beryllium is present, the employer must ensure that: (i) Surfaces in eating and drinking areas are as free as practicable of beryllium; (ii) No employees enter any eating or drinking area with personal protective clothing or equipment unless, prior to entry, surface beryllium has been removed from the clothing or equipment by methods that do not disperse beryllium into the air or onto an employee’s body; and (iii) Eating and drinking facilities provided by the employer are in accordance with the Sanitation standard (§ 1926.51). (4) Prohibited activities. The employer must ensure that no employees eat, drink, smoke, chew tobacco or gum, or apply cosmetics in work areas where VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 there is a reasonable expectation of exposure above the TWA PEL or STEL. (j) Housekeeping—(1) General. (i) When cleaning beryllium-contaminated areas, the employer must follow the written exposure control plan required under paragraph (f)(1) of this standard; (ii) The employer must ensure that all spills and emergency releases of beryllium are cleaned up promptly and in accordance with the written exposure control plan required under paragraph (f)(1) of this standard. (2) Cleaning methods. (i) When cleaning beryllium-contaminated areas, the employer must ensure the use of HEPA-filtered vacuuming or other methods that minimize the likelihood and level of airborne exposure. (ii) The employer must not allow dry sweeping or brushing for cleaning in beryllium-contaminated areas unless HEPA-filtered vacuuming or other methods that minimize the likelihood and level of airborne exposure are not safe or effective. (iii) The employer must not allow the use of compressed air for cleaning in beryllium-contaminated areas unless the compressed air is used in conjunction with a ventilation system designed to capture the particulates made airborne by the use of compressed air. (iv) Where employees use dry sweeping, brushing, or compressed air to clean in beryllium-contaminated areas, the employer must provide, and ensure that each employee uses, respiratory protection and personal protective clothing and equipment in accordance with paragraphs (g) and (h) of this standard. (v) The employer must ensure that cleaning equipment is handled and maintained in a manner that minimizes the likelihood and level of airborne exposure and the re-entrainment of airborne beryllium in the workplace. (3) Disposal. When the employer transfers materials containing beryllium to another party for use or disposal, the employer must provide the recipient with a copy of the warning described in paragraph (m)(2) of this standard. (k) Medical surveillance—(1) General. (i) The employer must make medical surveillance required by this paragraph available at no cost to the employee, and at a reasonable time and place, to each employee: (A) Who is or is reasonably expected to be exposed at or above the action level for more than 30 days per year; (B) Who shows signs or symptoms of CBD or other beryllium-related health effects; (C) Who is exposed to beryllium during an emergency; or PO 00000 Frm 00286 Fmt 4701 Sfmt 4700 (D) Whose most recent written medical opinion required by paragraph (k)(6) or (k)(7) recommends periodic medical surveillance. (ii) The employer must ensure that all medical examinations and procedures required by this standard are performed by, or under the direction of, a licensed physician. (2) Frequency. The employer must provide a medical examination: (i) Within 30 days after determining that: (A) An employee meets the criteria of paragraph (k)(1)(i)(A), unless the employee has received a medical examination, provided in accordance with this standard, within the last two years; or (B) An employee meets the criteria of paragraph (k)(1)(i)(B) or (C). (ii) At least every two years thereafter for each employee who continues to meet the criteria of paragraph (k)(1)(i)(A), (B), or (D) of this standard. (iii) At the termination of employment for each employee who meets any of the criteria of paragraph (k)(1)(i) of this standard at the time the employee’s employment terminates, unless an examination has been provided in accordance with this standard during the six months prior to the date of termination. (3) Contents of examination. (i) The employer must ensure that the PLHCP conducting the examination advises the employee of the risks and benefits of participating in the medical surveillance program and the employee’s right to opt out of any or all parts of the medical examination. (ii) The employer must ensure that the employee is offered a medical examination that includes: (A) A medical and work history, with emphasis on past and present airborne exposure to or dermal contact with beryllium, smoking history, and any history of respiratory system dysfunction; (B) A physical examination with emphasis on the respiratory system; (C) A physical examination for skin rashes; (D) Pulmonary function tests, performed in accordance with the guidelines established by the American Thoracic Society including forced vital capacity (FVC) and forced expiratory volume in one second (FEV1); (E) A standardized BeLPT or equivalent test, upon the first examination and at least every two years thereafter, unless the employee is confirmed positive. If the results of the BeLPT are other than normal, a followup BeLPT must be offered within 30 days, unless the employee has been E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations confirmed positive. Samples must be analyzed in a laboratory certified under the College of American Pathologists/ Clinical Laboratory Improvement Amendments (CLIA) guidelines to perform the BeLPT. (F) A low dose computed tomography (LDCT) scan, when recommended by the PLHCP after considering the employee’s history of exposure to beryllium along with other risk factors, such as smoking history, family medical history, sex, age, and presence of existing lung disease; and (G) Any other test deemed appropriate by the PLHCP. (4) Information provided to the PLHCP. The employer must ensure that the examining PLHCP (and the agreedupon CBD diagnostic center, if an evaluation is required under paragraph (k)(7) of this standard) has a copy of this standard and must provide the following information, if known: (i) A description of the employee’s former and current duties that relate to the employee’s airborne exposure to and dermal contact with beryllium; (ii) The employee’s former and current levels of airborne exposure; (iii) A description of any personal protective clothing and equipment, including respirators, used by the employee, including when and for how long the employee has used that personal protective clothing and equipment; and (iv) Information from records of employment-related medical examinations previously provided to the employee, currently within the control of the employer, after obtaining written consent from the employee. (5) Licensed physician’s written medical report for the employee. The employer must ensure that the employee receives a written medical report from the licensed physician within 45 days of the examination (including any follow-up BeLPT required under paragraph (k)(3)(ii)(E) of this standard) and that the PLHCP explains the results of the examination to the employee. The written medical report must contain: (i) A statement indicating the results of the medical examination, including the licensed physician’s opinion as to whether the employee has (A) Any detected medical condition, such as CBD or beryllium sensitization (i.e., the employee is confirmed positive, as defined in paragraph (b) of this standard), that may place the employee at increased risk from further airborne exposure, and (B) Any medical conditions related to airborne exposure that require further evaluation or treatment. VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 (ii) Any recommendations on: (A) The employee’s use of respirators, protective clothing, or equipment; or (B) Limitations on the employee’s airborne exposure to beryllium. (iii) If the employee is confirmed positive or diagnosed with CBD or if the licensed physician otherwise deems it appropriate, the written report must also contain a referral for an evaluation at a CBD diagnostic center. (iv) If the employee is confirmed positive or diagnosed with CBD the written report must also contain a recommendation for continued periodic medical surveillance. (v) If the employee is confirmed positive or diagnosed with CBD the written report must also contain a recommendation for medical removal from airborne exposure to beryllium, as described in paragraph (l). (6) Licensed physician’s written medical opinion for the employer. (i) The employer must obtain a written medical opinion from the licensed physician within 45 days of the medical examination (including any follow-up BeLPT required under paragraph (k)(3)(ii)(E) of this standard). The written medical opinion must contain only the following: (A) The date of the examination; (B) A statement that the examination has met the requirements of this standard; (C) Any recommended limitations on the employee’s use of respirators, protective clothing, or equipment; and (D) A statement that the PLHCP has explained the results of the medical examination to the employee, including any tests conducted, any medical conditions related to airborne exposure that require further evaluation or treatment, and any special provisions for use of personal protective clothing or equipment; (ii) If the employee provides written authorization, the written opinion must also contain any recommended limitations on the employee’s airborne exposure to beryllium. (iii) If the employee is confirmed positive or diagnosed with CBD or if the licensed physician otherwise deems it appropriate, and the employee provides written authorization, the written opinion must also contain a referral for an evaluation at a CBD diagnostic center. (iv) If the employee is confirmed positive or diagnosed with CBD and the employee provides written authorization, the written opinion must also contain a recommendation for continued periodic medical surveillance. PO 00000 Frm 00287 Fmt 4701 Sfmt 4700 2755 (v) If the employee is confirmed positive or diagnosed with CBD and the employee provides written authorization, the written opinion must also contain a recommendation for medical removal from airborne exposure to beryllium, as described in paragraph (l). (vi) The employer must ensure that each employee receives a copy of the written medical opinion described in paragraph (k)(6) of this standard within 45 days of any medical examination (including any follow-up BeLPT required under paragraph (k)(3)(ii)(E) of this standard) performed for that employee. (7) CBD diagnostic center. (i) The employer must provide an evaluation at no cost to the employee at a CBD diagnostic center that is mutually agreed upon by the employer and the employee. The examination must be provided within 30 days of: (A) The employer’s receipt of a physician’s written medical opinion to the employer that recommends referral to a CBD diagnostic center; or (B) The employee presenting to the employer a physician’s written medical report indicating that the employee has been confirmed positive or diagnosed with CBD, or recommending referral to a CBD diagnostic center. (ii) The employer must ensure that the employee receives a written medical report from the CBD diagnostic center that contains all the information required in paragraphs (k)(5)(i), (ii), (iv), and (v) of this standard and that the PLHCP explains the results of the examination to the employee within 30 days of the examination. (iii) The employer must obtain a written medical opinion from the CBD diagnostic center within 30 days of the medical examination. The written medical opinion must contain only the information in paragraph (k)(6)(i) of this standard, as applicable, unless the employee provides written authorization to release additional information. If the employee provides written authorization, the written opinion must also contain the information from paragraphs (k)(6)(ii), (iv), and (v), if applicable. (iv) The employer must ensure that each employee receives a copy of the written medical opinion from the CBD diagnostic center described in paragraph (k)(7) of this standard within 30 days of any medical examination performed for that employee. (v) After an employee has received the initial clinical evaluation at a CBD diagnostic center described in paragraph (k)(7)(i) of this standard, the employee may choose to have any subsequent E:\FR\FM\09JAR2.SGM 09JAR2 asabaliauskas on DSK3SPTVN1PROD with PROPOSALS 2756 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations medical examinations for which the employee is eligible under paragraph (k) of this standard performed at a CBD diagnostic center mutually agreed upon by the employer and the employee, and the employer must provide such examinations at no cost to the employee. (l) Medical removal. (1) An employee is eligible for medical removal, if the employee works in a job with airborne exposure at or above the action level and either: (i) The employee provides the employer with: (A) A written medical report indicating a confirmed positive finding or CBD diagnosis; or (B) A written medical report recommending removal from airborne exposure to beryllium in accordance with paragraph (k)(5)(v) or (k)(7)(ii) of this standard; or (ii) The employer receives a written medical opinion recommending removal from airborne exposure to beryllium in accordance with paragraph (k)(6)(v) or (k)(7)(iii) of this standard. (2) If an employee is eligible for medical removal, the employer must provide the employee with the employee’s choice of: (i) Removal as described in paragraph (l)(3) of this standard; or (ii) Remaining in a job with airborne exposure at or above the action level, provided that the employer provides, and ensures that the employee uses, respiratory protection that complies with paragraph (g) of this standard whenever airborne exposures are at or above the action level. (3) If the employee chooses removal: (i) If a comparable job is available where airborne exposures to beryllium are below the action level, and the employee is qualified for that job or can be trained within one month, the employer must remove the employee to that job. The employer must maintain for six months from the time of removal the employee’s base earnings, seniority, and other rights and benefits that existed at the time of removal. (ii) If comparable work is not available, the employer must maintain the employee’s base earnings, seniority, and other rights and benefits that existed at the time of removal for six months or until such time that comparable work described in paragraph (l)(3)(i) becomes available, whichever comes first. (4) The employer’s obligation to provide medical removal protection benefits to a removed employee shall be reduced to the extent that the employee receives compensation for earnings lost during the period of removal from a VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 publicly or employer-funded compensation program, or receives income from another employer made possible by virtue of the employee’s removal. (m) Communication of hazards—(1) General. (i) Chemical manufacturers, importers, distributors, and employers must comply with all requirements of the HCS (29 CFR 1910.1200) for beryllium. (ii) Employers must include beryllium in the hazard communication program established to comply with the HCS. Employers must ensure that each employee has access to labels on containers of beryllium and to safety data sheets, and is trained in accordance with the requirements of the HCS (29 CFR 1910.1200) and paragraph (m)(4) of this standard. (2) Warning labels. Consistent with the HCS (29 CFR 1910.1200), the employer must label each bag and container of clothing, equipment, and materials contaminated with beryllium, and must, at a minimum, include the following on the label: DANGER CONTAINS BERYLLIUM MAY CAUSE CANCER CAUSES DAMAGE TO LUNGS AVOID CREATING DUST DO NOT GET ON SKIN (3) Employee information and training. (i) For each employee who has, or can reasonably be expected to have, airborne exposure to or dermal contact with beryllium: (A) The employer must provide information and training in accordance with the HCS (29 CFR 1910.1200(h)); (B) The employer must provide initial training to each employee by the time of initial assignment; and (C) The employer must repeat the training required under this standard annually for each employee. (ii) The employer must ensure that each employee who is, or can reasonably be expected to be, exposed to airborne beryllium can demonstrate knowledge and understanding of the following: (A) The health hazards associated with airborne exposure to and dermal contact with beryllium, including the signs and symptoms of CBD; (B) The written exposure control plan, with emphasis on the specific nature of operations that could result in airborne exposure, especially airborne exposure above the TWA PEL or STEL; (C) The purpose, proper selection, fitting, proper use, and limitations of personal protective clothing and equipment, including respirators; (D) Applicable emergency procedures; PO 00000 Frm 00288 Fmt 4701 Sfmt 4700 (E) Measures employees can take to protect themselves from airborne exposure to and dermal contact with beryllium, including personal hygiene practices; (F) The purpose and a description of the medical surveillance program required by paragraph (k) of this standard including risks and benefits of each test to be offered; (G) The purpose and a description of the medical removal protection provided under paragraph (l) of this standard; (H) The contents of the standard; and (I) The employee’s right of access to records under the Records Access standard (29 CFR 1910.1020). (iii) When a workplace change (such as modification of equipment, tasks, or procedures) results in new or increased airborne exposure that exceeds, or can reasonably be expected to exceed, either the TWA PEL or the STEL, the employer must provide additional training to those employees affected by the change in airborne exposure. (iv) Employee information. The employer must make a copy of this standard and its appendices readily available at no cost to each employee and designated employee representative(s). (n) Recordkeeping—(1) Air monitoring data. (i) The employer must make and maintain a record of all exposure measurements taken to assess airborne exposure as prescribed in paragraph (d) of this standard. (ii) This record must include at least the following information: (A) The date of measurement for each sample taken; (B) The task that is being monitored; (C) The sampling and analytical methods used and evidence of their accuracy; (D) The number, duration, and results of samples taken; (E) The type of personal protective clothing and equipment, including respirators, worn by monitored employees at the time of monitoring; and (F) The name, social security number, and job classification of each employee represented by the monitoring, indicating which employees were actually monitored. (iii) The employer must ensure that exposure records are maintained and made available in accordance with the Records Access standard (29 CFR 1910.1020). (2) Objective data. (i) Where an employer uses objective data to satisfy the exposure assessment requirements under paragraph (d)(2) of this standard, the employer must make and maintain E:\FR\FM\09JAR2.SGM 09JAR2 Federal Register / Vol. 82, No. 5 / Monday, January 9, 2017 / Rules and Regulations asabaliauskas on DSK3SPTVN1PROD with PROPOSALS a record of the objective data relied upon. (ii) This record must include at least the following information: (A) The data relied upon; (B) The beryllium-containing material in question; (C) The source of the objective data; (D) A description of the process, task, or activity on which the objective data were based; and (E) Other data relevant to the process, task, activity, material, or airborne exposure on which the objective data were based. (iii) The employer must ensure that objective data are maintained and made available in accordance with the Records Access standard (29 CFR 1910.1020). (3) Medical surveillance. (i) The employer must make and maintain a record for each employee covered by medical surveillance under paragraph (k) of this standard. (ii) The record must include the following information about each employee: VerDate Sep<11>2014 21:46 Jan 06, 2017 Jkt 241001 (A) Name, social security number, and job classification; (B) A copy of all licensed physicians’ written medical opinions for each employee; and (C) A copy of the information provided to the PLHCP as required by paragraph (k)(4) of this standard. (iii) The employer must ensure that medical records are maintained and made available in accordance with the Records Access standard (29 CFR 1910.1020). (4) Training. (i) At the completion of any training required by this standard, the employer must prepare a record that indicates the name, social security number, and job classification of each employee trained, the date the training was completed, and the topic of the training. (ii) This record must be maintained for three years after the completion of training. (5) Access to records. Upon request, the employer must make all records maintained as a requirement of this PO 00000 Frm 00289 Fmt 4701 Sfmt 9990 2757 standard available for examination and copying to the Assistant Secretary, the Director, each employee, and each employee’s designated representative(s) in accordance the Records Access standard (29 CFR 1910.1020). (6) Transfer of records. The employer must comply with the requirements involving transfer of records set forth in the Records Access standard (29 CFR 1910.1020). (o) Dates—(1) Effective date. This standard shall become effective March 10, 2017. (2) Compliance dates. All obligations of this standard commence and become enforceable on March 12, 2018, except: (i) Change rooms required by paragraph (i) of this standard must be provided by March 11, 2019; and (ii) Engineering controls required by paragraph (f) of this standard must be implemented by March 10, 2020. [FR Doc. 2016–30409 Filed 1–6–17; 8:45 am] BILLING CODE 4510–26–P E:\FR\FM\09JAR2.SGM 09JAR2

Agencies

[Federal Register Volume 82, Number 5 (Monday, January 9, 2017)]
[Rules and Regulations]
[Pages 2470-2757]
From the Federal Register Online via the Government Publishing Office [www.gpo.gov]
[FR Doc No: 2016-30409]



[[Page 2469]]

Vol. 82

Monday,

No. 5

January 9, 2017

Part II





Department of Labor





-----------------------------------------------------------------------





Occupational Safety and Health Administration





-----------------------------------------------------------------------





29 CFR Parts 1910, 1915, and 1926





Occupational Exposure to Beryllium; Final Rule

Federal Register / Vol. 82 , No. 5 / Monday, January 9, 2017 / Rules 
and Regulations

[[Page 2470]]


-----------------------------------------------------------------------

DEPARTMENT OF LABOR

Occupational Safety and Health Administration

29 CFR Parts 1910, 1915, and 1926

[Docket No. OSHA-H005C-2006-0870]
RIN 1218-AB76


Occupational Exposure to Beryllium

AGENCY: Occupational Safety and Health Administration (OSHA), 
Department of Labor.

ACTION: Final rule.

-----------------------------------------------------------------------

SUMMARY: The Occupational Safety and Health Administration (OSHA) is 
amending its existing standards for occupational exposure to beryllium 
and beryllium compounds. OSHA has determined that employees exposed to 
beryllium at the previous permissible exposure limits face a 
significant risk of material impairment to their health. The evidence 
in the record for this rulemaking indicates that workers exposed to 
beryllium are at increased risk of developing chronic beryllium disease 
and lung cancer. This final rule establishes new permissible exposure 
limits of 0.2 micrograms of beryllium per cubic meter of air (0.2 
[mu]g/m\3\) as an 8-hour time-weighted average and 2.0 [mu]g/m\3\ as a 
short-term exposure limit determined over a sampling period of 15 
minutes. It also includes other provisions to protect employees, such 
as requirements for exposure assessment, methods for controlling 
exposure, respiratory protection, personal protective clothing and 
equipment, housekeeping, medical surveillance, hazard communication, 
and recordkeeping.
    OSHA is issuing three separate standards--for general industry, for 
shipyards, and for construction--in order to tailor requirements to the 
circumstances found in these sectors.

DATES: Effective date: The final rule becomes effective on March 10, 
2017.
    Compliance dates: Compliance dates for specific provisions are set 
in Sec.  1910.1024(o) for general industry, Sec.  1915.1024(o) for 
shipyards, and Sec.  1926.1124(o) for construction. There are a number 
of collections of information contained in this final rule (see Section 
IX, OMB Review under the Paperwork Reduction Act of 1995). 
Notwithstanding the general date of applicability that applies to all 
other requirements contained in the final rule, affected parties do not 
have to comply with the collections of information until the Department 
of Labor publishes a separate document in the Federal Register 
announcing the Office of Management and Budget has approved them under 
the Paperwork Reduction Act.

ADDRESSES: In accordance with 28 U.S.C. 2112(a), the Agency designates 
Ann Rosenthal, Associate Solicitor of Labor for Occupational Safety and 
Health, Office of the Solicitor of Labor, Room S-4004, U.S. Department 
of Labor, 200 Constitution Avenue NW., Washington, DC 20210, to receive 
petitions for review of the final rule.

FOR FURTHER INFORMATION CONTACT: For general information and press 
inquiries, contact Frank Meilinger, Director, Office of Communications, 
Room N-3647, OSHA, U.S. Department of Labor, 200 Constitution Avenue 
NW., Washington, DC 20210; telephone (202) 693-1999; email 
meilinger.francis2@dol.gov.
    For technical inquiries, contact William Perry or Maureen Ruskin, 
Directorate of Standards and Guidance, Room N-3718, OSHA, U.S. 
Department of Labor, 200 Constitution Avenue NW., Washington, DC 20210; 
telephone (202) 693-1950.

SUPPLEMENTARY INFORMATION: The preamble to the rule on occupational 
exposure to beryllium follows this outline:

I. Executive Summary
II. Pertinent Legal Authority
III. Events Leading to the Final Standards
IV. Chemical Properties and Industrial Uses
V. Health Effects
VI. Risk Assessment
VII. Significance of Risk
VIII. Summary of the Final Economic Analysis and Final Regulatory 
Flexibility Analysis
IX. OMB Review Under the Paperwork Reduction Act of 1995
X. Federalism
XI. State-Plan States
XII. Unfunded Mandates Reform Act
XIII. Protecting Children From Environmental Health and Safety Risks
XIV. Environmental Impacts
XV. Consultation and Coordination With Indian Tribal Governments
XVI. Summary and Explanation of the Standards
    Introduction
    (a) Scope and Application
    (b) Definitions
    (c) Permissible Exposure Limits (PELs)
    (d) Exposure Assessment
    (e) Beryllium Work Areas and Regulated Areas (General Industry); 
Regulated Areas (Maritime); and Competent Person (Construction)
    (f) Methods of Compliance
    (g) Respiratory Protection
    (h) Personal Protective Clothing and Equipment
    (i) Hygiene Areas and Practices
    (j) Housekeeping
    (k) Medical Surveillance
    (l) Medical Removal
    (m) Communication of Hazards
    (n) Recordkeeping
    (o) Dates
    (p) Appendix A (General Industry)
Authority and Signature
Amendments to Standards

Citation Method

    In the docket for the beryllium rulemaking, found at https://www.regulations.gov, every submission was assigned a document 
identification (ID) number that consists of the docket number (OSHA-
H005C-2006-0870) followed by an additional four-digit number. For 
example, the document ID number for OSHA's Preliminary Economic 
Analysis and Initial Regulatory Flexibility Analysis is OSHA-H005C-
2006-0870-0426. Some document ID numbers include one or more 
attachments, such as the National Institute for Occupational Safety and 
Health (NIOSH) prehearing submission (see Document ID OSHA-H005C-2006-
0870-1671).
    When citing exhibits in the docket, OSHA includes the term 
``Document ID'' followed by the last four digits of the document ID 
number, the attachment number or other attachment identifier, if 
applicable, page numbers (designated ``p.'' or ``Tr.'' for pages from a 
hearing transcript). In a citation that contains two or more document 
ID numbers, the document ID numbers are separated by semi-colons. In 
some sections, such as Section V, Health Effects, author names and year 
of study publication are included before the document ID number in a 
citation, for example: (Deubner et al., 2011, Document ID 0527). Where 
multiple exhibits are listed with author names and year of study 
publication, document ID numbers after the first are in parentheses, 
for example: (Elder et al., 2005, Document ID 1537; Carter et al., 2006 
(1556); Refsnes et al., 2006 (1428)).

I. Executive Summary

    This final rule establishes new permissible exposure limits (PELs) 
for beryllium of 0.2 micrograms of beryllium per cubic meter of air 
(0.2 [mu]g/m\3\) as an 8-hour time-weighted average (TWA) and 2.0 
[mu]g/m\3\ as a short-term exposure limit (STEL) determined over a 
sampling period of 15 minutes. In addition to the PELs, the rule 
includes provisions to protect employees such as requirements for 
exposure assessment, methods for controlling exposure, respiratory 
protection, personal protective clothing and equipment, housekeeping, 
medical surveillance, hazard communication, and recordkeeping. OSHA is 
issuing three separate standards--for general

[[Page 2471]]

industry, for shipyards, and for construction--in order to tailor 
requirements to the circumstances found in these sectors. There are, 
however, numerous common elements in the three standards.
    The final rule is based on the requirements of the Occupational 
Safety and Health Act (OSH Act) and court interpretations of the Act. 
For health standards issued under section 6(b)(5) of the OSH Act, OSHA 
is required to promulgate a standard that reduces significant risk to 
the extent that it is technologically and economically feasible to do 
so. See Section II, Pertinent Legal Authority, for a full discussion of 
OSH Act legal requirements.
    OSHA has conducted an extensive review of the literature on adverse 
health effects associated with exposure to beryllium. OSHA has also 
developed estimates of the risk of beryllium-related diseases, assuming 
exposure over a working lifetime, at the preceding PELs as well as at 
the revised PELs and action level. Comments received on OSHA's 
preliminary analysis, and the Agency's final findings, are discussed in 
Section V, Health Effects, Section VI, Risk Assessment, and Section 
VII, Significance of Risk. OSHA finds that employees exposed to 
beryllium at the preceding PELs are at an increased risk of developing 
chronic beryllium disease (CBD) and lung cancer. As discussed in 
Section VII, OSHA concludes that exposure to beryllium constitutes a 
significant risk of material impairment to health and that the final 
rule will substantially lower that risk. The Agency considers the level 
of risk remaining at the new TWA PEL to still be significant. However, 
OSHA did not adopt a lower TWA PEL because the Agency could not 
demonstrate technological feasibility of a lower TWA PEL. The Agency 
has adopted the STEL and ancillary provisions of the rule to further 
reduce the remaining significant risk.
    OSHA's examination of the technological and economic feasibility of 
the rule is presented in the Final Economic Analysis and Regulatory 
Flexibility Analysis (FEA), and is summarized in Section VIII of this 
preamble. OSHA concludes that the final PELs are technologically 
feasible for all affected industries and application groups. Thus, OSHA 
concludes that engineering and work practice controls will be 
sufficient to reduce and maintain beryllium exposures to the new PELs 
or below in most operations most of the time in the affected 
industries. For those few operations within an industry or application 
group where compliance with the PELs cannot be achieved even when 
employers implement all feasible engineering and work practice 
controls, use of respirators will be required.
    OSHA developed quantitative estimates of the compliance costs of 
the rule for each of the affected industry sectors. The estimated 
compliance costs were compared with industry revenues and profits to 
provide a screening analysis of the economic feasibility of complying 
with the rule and an evaluation of the economic impacts. Industries 
with unusually high costs as a percentage of revenues or profits were 
further analyzed for possible economic feasibility issues. After 
performing these analyses, OSHA finds that compliance with the 
requirements of the rule is economically feasible in every affected 
industry sector.
    The final rule includes several major changes from the proposed 
rule as a result of OSHA's analysis of comments and evidence received 
during the comment periods and public hearings. The major changes are 
summarized below and are fully discussed in Section XVI, Summary and 
Explanation of the Standards. OSHA also presented a number of 
regulatory alternatives in the Notice of Proposed Rulemaking (80 FR 
47566, 47729-47748 (8/7/2015). Where the Agency received substantive 
comments on a regulatory alternative, those comments are also discussed 
in Section XVI. A full discussion of all regulatory alternatives can be 
found in Chapter VIII of the Final Economic Analysis (FEA).
    Scope. OSHA proposed to cover occupational exposures to beryllium 
in general industry, with an exemption for articles and an exemption 
for materials containing less than 0.1% beryllium by weight. OSHA has 
made a final determination to cover exposures to beryllium in general 
industry, shipyards, and construction under the final rule, and to 
issue separate standards for each sector. The final rule also provides 
an exemption for materials containing less than 0.1% beryllium by 
weight only where the employer has objective data demonstrating that 
employee exposure to beryllium will remain below the action level of 
0.1 [mu]g/m\3\ as an 8-hour TWA under any foreseeable conditions.
    Exposure Assessment. The proposed rule would have required periodic 
exposure monitoring annually where employee exposures are at or above 
the action level but at or below the TWA PEL; no periodic monitoring 
would have been required where employee exposures exceeded the TWA PEL. 
The final rule specifies that exposure monitoring must be repeated 
within six months where employee exposures are at or above the action 
level but at or below the TWA PEL, and within three months where 
employee exposures are above the TWA PEL or STEL. The final rule also 
includes provisions allowing the employer to discontinue exposure 
monitoring where employee exposures fall below the action level and 
STEL. In addition, the final rule includes a new provision that allows 
employers to assess employee exposures using any combination of air 
monitoring data and objective data sufficient to accurately 
characterize airborne exposure to beryllium (i.e., the ``performance 
option'').
    Beryllium Work Areas. The proposed rule would have required the 
employer to establish and maintain a beryllium work area wherever 
employees are, or can reasonably be expected to be, exposed to airborne 
beryllium, regardless of the level of exposure. As discussed in the 
Summary and Explanation section of this preamble, OSHA has narrowed the 
definition of beryllium work area in the final rule from the proposal. 
The final rule now limits the requirement to work areas containing a 
process or operation that can release beryllium where employees are, or 
can reasonably be expected to be, exposed to airborne beryllium at any 
level. The final rule expands the exposure requirement to include work 
areas containing a process or operation where there is potential dermal 
contact with beryllium based on comments from public health experts 
that relying solely on airborne exposure omits the potential 
contribution of dermal exposure to total exposure. See the Summary and 
Explanation section of this preamble for a full discussion of the 
relevant comments and reasons for changes from the proposed standard. 
Beryllium work areas are not required under the standards for shipyards 
and construction.
    Respiratory Protection. OSHA has added a provision in the final 
rule requiring the employer to provide a powered air-purifying 
respirator (PAPR) instead of a negative pressure respirator where 
respiratory protection is required by the rule and the employee 
requests a PAPR, provided that the PAPR provides adequate protection.
    Personal Protective Clothing and Equipment. The proposed rule would 
have required use of protective clothing and equipment where employee 
exposure exceeds, or can reasonably be expected to exceed the TWA PEL 
or STEL; where employees' clothing or skin may become visibly 
contaminated with beryllium; and where employees'

[[Page 2472]]

skin can reasonably be expected to be exposed to soluble beryllium 
compounds. The final rule requires use of protective clothing and 
equipment where employee exposure exceeds, or can reasonably be 
expected to exceed the TWA PEL or STEL; or where there is a reasonable 
expectation of dermal contact with beryllium.
    Medical Surveillance. The exposure trigger for medical examinations 
has been revised from the proposal. The proposed rule would have 
required that medical examinations be offered to each employee who has 
worked in a regulated area (i.e., an area where an employee's exposure 
exceeds, or can reasonably be expected to exceed, the TWA PEL or STEL) 
for more than 30 days in the last 12 months. The final rule requires 
that medical examinations be offered to each employee who is or is 
reasonably expected to be exposed at or above the action level for more 
than 30 days per year. A trigger to offer periodic medical surveillance 
when recommended by the most recent written medical opinion was also 
added the final rule. Under the final rule, the licensed physician 
recommends continued periodic medical surveillance for employees who 
are confirmed positive for sensitization or diagnosed with CBD. The 
proposed rule also would have required that medical examinations be 
offered annually; the final rule requires that medical examinations be 
offered at least every two years.
    The final medical surveillance provisions have been revised to 
provide enhanced privacy for employees. The rule requires the employer 
to obtain a written medical opinion from a licensed physician for 
medical examinations provided under the rule but limits the information 
provided to the employer to the date of the examination, a statement 
that the examination has met the requirements of the standard, any 
recommended limitations on the employee's use of respirators, 
protective clothing, and equipment, and a statement that the results of 
the exam have been explained to the employee. The proposed rule would 
have required that such opinions contain additional information, 
without requiring employee authorization, such as the physician's 
opinion as to whether the employee has any detected medical condition 
that would place the employee at increased risk of CBD from further 
exposure, and any recommended limitations upon the employee's exposure 
to beryllium. In the final rule, the written opinion provided to the 
employer will only include recommended limitations on the employee's 
exposure to beryllium, referral to a CBD diagnostic center, a 
recommendation for continued periodic medical surveillance, or a 
recommendation for medical removal if the employee provides written 
authorization. The final rule requires a separate written medical 
report provided to the employee to include this additional information, 
as well as detailed information related to the employee's health.
    The proposed rule would have required that the licensed physician 
provide the employer with a written medical opinion within 30 days of 
the examination. The final rule requires that the licensed physician 
provide the employee with a written medical report and the employer 
with a written medical opinion within 45 days of the examination, 
including any follow-up beryllium lymphocyte proliferation test 
(BeLPTs).
    The final rule also adds requirements for the employer to provide 
the CBD diagnostic center with the same information provided to the 
physician or other licensed health care professional who administers 
the medical examination, and for the CBD diagnostic center to provide 
the employee with a written medical report and the employer with a 
written medical opinion. Under the final standard, employees referred 
to a CBD diagnostic center can choose to have future evaluations 
performed there. A requirement that laboratories performing BeLPTs be 
certified was also added to the final rule.
    The proposed rule would have required that employers provide low 
dose computed tomography (LDCT) scans to employees who met certain 
exposure criteria. The final rule requires LDCT scans when recommended 
by the physician or other licensed healthcare professional 
administering the medical exam, after considering the employee's 
history of exposure to beryllium along with other risk factors.
    Dates. OSHA proposed an effective date 60 days after publication of 
the rule; a date for compliance with all provisions except change rooms 
and engineering controls of 90 days after the effective date; a date 
for compliance with change room requirements, which was one year after 
the effective date; and a date for compliance with engineering control 
requirements of two years after the effective date.
    OSHA has revised the proposed compliance dates. The final rule is 
effective 60 days after publication. All obligations for compliance 
commence one year after the effective date, with two exceptions: The 
obligation for change rooms and showers commences two years after the 
effective date; and the obligation for engineering controls commences 
three years after the effective date.\1\
---------------------------------------------------------------------------

    \1\ Note that the main analysis of costs and benefits presented 
in this FEA does not take into account the lag in effective dates 
but, instead, assumes that the rule takes effect in Year 1. To 
account for the lag in effective dates, OSHA has provided in the 
sensitivity analysis in Chapter VII of the FEA an estimate of its 
separate effects on costs and benefits relative to the main 
analysis. This analysis, which appears in Table VII-16 of the FEA, 
indicates that if employers delayed implementation of all provisions 
until legally required, and no benefits occurred until all 
provisions went into effect, this would decrease the estimated costs 
by 3.9 percent; the estimated benefits by 8.5 percent, and the 
estimated net benefits of the standard by 9.2 percent (to $442 
million).
---------------------------------------------------------------------------

    Under the OSH Act's legal standard directing OSHA to set health 
standards based on findings of significant risk of material impairment 
and technological and economic feasibility, OSHA does not use cost-
benefit analysis to determine the PEL or other aspects of the rule. It 
does, however, determine and analyze costs and benefits for its own 
informational purposes and to meet certain Executive Order 
requirements, as discussed in Section VIII, Summary of the Final 
Economic Analysis and Final Regulatory Flexibility Analysis and in the 
FEA. Table I-1--which is derived from material presented in Section 
VIII of this preamble--provides a summary of OSHA's best estimate of 
the costs and benefits of the rule using a discount rate of 3 percent. 
As shown, the rule is estimated to prevent 90 fatalities and 46 new 
cases of CBD annually once the full effects are realized, and the 
estimated cost of the rule is $73.9 million annually. Also as shown in 
Table I-1, the discounted monetized benefits of the rule are estimated 
to be $560.9 annually, and the rule is estimated to generate net 
benefits of approximately $487 annually; however, there is a great deal 
of uncertainty in those benefits due to assumptions made about dental 
workers' exposures and reductions; see Section VIII of this preamble. 
As that section shows, benefits significantly exceed costs regardless 
of how dental workers' exposures are treated.

 Table I-1--Annualized Benefits, Costs and Net Benefits of OSHA's Final
                           Beryllium Standard
                 [3 Percent discount rate, 2015 dollars]
------------------------------------------------------------------------
 
------------------------------------------------------------------------
Annualized Costs:
  Control Costs.........................................     $12,269,190
  Rule Familiarization..................................         180,158
  Exposure Assessment...................................      13,748,676
  Regulated Areas.......................................         884,106

[[Page 2473]]

 
  Beryllium Work Areas..................................         129,648
  Medical Surveillance..................................       7,390,958
  Medical Removal.......................................       1,151,058
  Written Exposure Control Plan.........................       2,339,058
  Protective Work Clothing & Equipment..................       1,985,782
  Hygiene Areas and Practices...........................       2,420,584
  Housekeeping..........................................      22,763,595
  Training..............................................       8,284,531
  Respirators...........................................         320,885
                                                         ---------------
      Total Annualized Costs (Point Estimate)...........     $73,868,230
Annual Benefits: Number of Cases Prevented:
  Fatal Lung Cancers (Midpoint Estimate)................               4
  Fatal Chronic Beryllium Disease.......................              86
  Beryllium-Related Mortality...........................              90
  Beryllium Morbidity...................................              46
  Monetized Annual Benefits (Midpoint Estimate).........    $560,873,424
Net Benefits:
  Net Benefits..........................................    $487,005,194
------------------------------------------------------------------------
Sources: US DOL, OSHA, Directorate of Standards and Guidance, Office of
  Regulatory Analysis.

II. Pertinent Legal Authority

    The purpose of the Occupational Safety and Health Act (29 U.S.C. 
651 et seq.) (``the Act'' or ``the OSH Act''), is ``to assure so far as 
possible every working man and woman in the Nation safe and healthful 
working conditions and to preserve our human resources'' (29 U.S.C. 
651(b)). To achieve this goal Congress authorized the Secretary of 
Labor (``the Secretary'') ``to set mandatory occupational safety and 
health standards applicable to businesses affecting interstate 
commerce'' (29 U.S.C. 651(b)(3); see 29 U.S.C. 654(a) (requiring 
employers to comply with OSHA standards), 655(a) (authorizing summary 
adoption of existing consensus and federal standards within two years 
of the Act's enactment), and 655(b) (authorizing promulgation, 
modification or revocation of standards pursuant to notice and 
comment)). The primary statutory provision relied upon by the Agency in 
promulgating health standards is section 6(b)(5) of the Act; other 
sections of the OSH Act, however, authorize the Occupational Safety and 
Health Administration (``OSHA'') to require labeling and other 
appropriate forms of warning, exposure assessment, medical 
examinations, and recordkeeping in its standards (29 U.S.C. 655(b)(5), 
655(b)(7), 657(c)).
    The Act provides that in promulgating standards dealing with toxic 
materials or harmful physical agents, such as beryllium, the Secretary 
``shall set the standard which most adequately assures, to the extent 
feasible, on the basis of the best available evidence, that no employee 
will suffer material impairment of health or functional capacity even 
if such employee has regular exposure to the hazard dealt with by such 
standard for the period of his working life'' (29 U.S.C. 655(b)(5)). 
Thus, ``[w]hen Congress passed the Occupational Safety and Health Act 
in 1970, it chose to place pre-eminent value on assuring employees a 
safe and healthful working environment, limited only by the feasibility 
of achieving such an environment'' (American Textile Mfrs. Institute, 
Inc. v. Donovan, 452 US 490, 541 (1981) (``Cotton Dust'')).
    OSHA proposed this new standard for beryllium and beryllium 
compounds and conducted its rulemaking pursuant to section 6(b)(5) of 
the Act ((29 U.S.C. 655(b)(5)). The preceding beryllium standard, 
however, was adopted under the Secretary's authority in section 6(a) of 
the OSH Act (29 U.S.C. 655(a)), to adopt national consensus and 
established Federal standards within two years of the Act's enactment 
(see 29 CFR 1910.1000 Table Z-1). Any rule that ``differs substantially 
from an existing national consensus standard'' must ``better effectuate 
the purposes of this Act than the national consensus standard'' (29 
U.S.C. 655(b)(8)). Several additional legal requirements arise from the 
statutory language in sections 3(8) and 6(b)(5) of the Act (29 U.S.C. 
652(8), 655(b)(5)). The remainder of this section discusses these 
requirements, which OSHA must consider and meet before it may 
promulgate this occupational health standard regulating exposure to 
beryllium and beryllium compounds.

Material Impairment of Health

    Subject to the limitations discussed below, when setting standards 
regulating exposure to toxic materials or harmful physical agents, the 
Secretary is required to set health standards that ensure that ``no 
employee will suffer material impairment of health or functional 
capacity. . .'' (29 U.S.C. 655(b)(5)). ``OSHA is not required to state 
with scientific certainty or precision the exact point at which each 
type of [harm] becomes a material impairment'' (AFL-CIO v. OSHA, 965 
F.2d 962, 975 (11th Cir. 1992)). Courts have also noted that OSHA 
should consider all forms and degrees of material impairment--not just 
death or serious physical harm (AFL-CIO, 965 F.2d at 975). Thus the 
Agency has taken the position that ``subclinical'' health effects, 
which may be precursors to more serious disease, can be material 
impairments of health that OSHA should address when feasible (43 FR 
52952, 52954 (11/14/78) (Lead Preamble)).

Significant Risk

    Section 3(8) of the Act requires that workplace safety and health 
standards be ``reasonably necessary or appropriate to provide safe or 
healthful employment'' (29 U.S.C. 652(8)). The Supreme Court, in its 
decision on OSHA's benzene standard, interpreted section 3(8) to mean 
that before promulgating any standard, the Secretary must evaluate 
whether ``significant risk[ ]'' exists under current conditions and to 
then determine whether that risk can be ``eliminated or lessened'' 
through regulation (Indus. Union Dep't, AFL-CIO v. Am. Petroleum Inst., 
448 U.S. 607, 642 (1980) (plurality opinion) (``Benzene'')). The 
Court's holding is consistent with evidence in the legislative record, 
with regard to section 6(b)(5) of the Act (29 U.S.C. 655(b)(5)), that 
Congress intended the Agency to regulate unacceptably severe 
occupational hazards, and not ``to establish a utopia free from any 
hazards'' or to address risks comparable to those that exist in 
virtually any occupation or workplace (116 Cong. Rec. 37614 (1970), 
Leg. Hist. 480-82). It is also consistent with Section 6(g) of the OSH 
Act, which states that, in determining regulatory priorities, ``the 
Secretary shall give due regard to the urgency of the need for 
mandatory safety and health standards for particular industries, 
trades, crafts, occupations, businesses, workplaces or work 
environments'' (29 U.S.C. 655(g)).
    The Supreme Court in Benzene clarified that ``[i]t is the Agency's 
responsibility to determine, in the first instance, what it considers 
to be a `significant' risk'' (Benzene, 448 U.S. at 655), and that it 
was not the Court's responsibility to ``express any opinion on the . . 
. difficult question of what factual determinations would warrant a 
conclusion that significant risks are present which make promulgation 
of a new standard reasonably necessary or appropriate'' (Benzene, 448 
U.S. at 659). The Court stated, however, that the section 6(f) (29 
U.S.C. 655(b)(f)) substantial evidence standard applicable to OSHA's 
significant risk determination does not require the Agency ``to support 
its finding that a significant risk exists with anything approaching 
scientific certainty'' (Benzene, 448 U.S. at 656). Rather, OSHA may 
rely on ``a body of reputable scientific thought'' to which 
``conservative assumptions in interpreting the data . . . '' may be 
applied, ``risking error on the side of

[[Page 2474]]

overprotection'' (Benzene, 448 U.S. at 656; see also United 
Steelworkers of Am., AFL-CIO-CLC v. Marshall, 647 F.2d 1189, 1248 (D.C. 
Cir. 1980) (``Lead I'') (noting the Benzene court's application of this 
principle to carcinogens and applying it to the lead standard, which 
was not based on carcinogenic effects)). OSHA may thus act with a 
``pronounced bias towards worker safety'' in making its risk 
determinations (Bldg & Constr. Trades Dep't v. Brock, 838 F.2d 1258, 
1266 (D.C. Cir. 1988) (``Asbestos II'').
    The Supreme Court further recognized that what constitutes 
``significant risk'' is ``not a mathematical straitjacket'' (Benzene, 
448 U.S. at 655) and will be ``based largely on policy considerations'' 
(Benzene, 448 U.S. at 655 n. 62). The Court gave the following example:

    If . . . the odds are one in a billion that a person will die 
from cancer by taking a drink of chlorinated water, the risk clearly 
could not be considered significant. On the other hand, if the odds 
are one in a thousand that regular inhalation of gasoline vapors 
that are 2% benzene will be fatal, a reasonable person might well 
consider the risk significant . . . (Benzene, 448 U.S. at 655).

Following Benzene, OSHA has, in many of its health standards, 
considered the one-in-a-thousand metric when determining whether a 
significant risk exists. Moreover, as ``a prerequisite to more 
stringent regulation'' in all subsequent health standards, OSHA has, 
consistent with the Benzene plurality decision, based each standard on 
a finding of significant risk at the ``then prevailing standard'' of 
exposure to the relevant hazardous substance (Asbestos II, 838 F.2d at 
1263). The Agency's final risk assessment is derived from existing 
scientific and enforcement data and its final conclusions are made only 
after considering all evidence in the rulemaking record. Courts 
reviewing the validity of these standards have uniformly held the 
Secretary to the significant risk standard first articulated by the 
Benzene plurality and have generally upheld the Secretary's significant 
risk determinations as supported by substantial evidence and ``a 
reasoned explanation for his policy assumptions and conclusions'' 
(Asbestos II, 838 F.2d at 1266).
    Once OSHA makes its significant risk finding, the ``more stringent 
regulation'' (Asbestos II, 838 F.2d at 1263) it promulgates must be 
``reasonably necessary or appropriate'' to reduce or eliminate that 
risk, within the meaning of section 3(8) of the Act (29 U.S.C. 652(8)) 
and Benzene (448 U.S. at 642) (see Asbestos II, 838 F.2d at 1269). The 
courts have interpreted section 6(b)(5) of the OSH Act as requiring 
OSHA to set the standard that eliminates or reduces risk to the lowest 
feasible level; as discussed below, the limits of technological and 
economic feasibility usually determine where the new standard is set 
(see UAW v. Pendergrass, 878 F.2d 389, 390 (D.C. Cir. 1989)). In 
choosing among regulatory alternatives, however, ``[t]he determination 
that [one standard] is appropriate, as opposed to a marginally [more or 
less protective] standard, is a technical decision entrusted to the 
expertise of the agency . . . '' (Nat'l Mining Ass'n v. Mine Safety and 
Health Admin., 116 F.3d 520, 528 (D.C. Cir. 1997)) (analyzing a Mine 
Safety and Health Administration standard under the Benzene significant 
risk standard). In making its choice, OSHA may incorporate a margin of 
safety even if it theoretically regulates below the lower limit of 
significant risk (Nat'l Mining Ass'n, 116 F.3d at 528 (citing American 
Petroleum Inst. v. Costle, 665 F.2d 1176, 1186 (D.C. Cir. 1982))).

Working Life Assumption

    The OSH Act requires OSHA to set the standard that most adequately 
protects employees against harmful workplace exposures for the period 
of their ``working life'' (29 U.S.C. 655(b)(5)). OSHA's longstanding 
policy is to define ``working life'' as constituting 45 years; thus, it 
assumes 45 years of exposure when evaluating the risk of material 
impairment to health caused by a toxic or hazardous substance. This 
policy is not based on empirical data that most employees are exposed 
to a particular hazard for 45 years. Instead, OSHA has adopted the 
practice to be consistent with the statutory directive that ``no 
employee'' suffer material impairment of health ``even if'' such 
employee is exposed to the hazard for the period of his or her working 
life (see 74 FR 44796 (8/31/09)). OSHA's policy was given judicial 
approval in a challenge to an OSHA standard that lowered the 
permissible exposure limit (PEL) for asbestos (Asbestos II, 838 F.2d at 
1264-1265). In that case, the petitioners claimed that the median 
duration of employment in the affected industry sectors was only five 
years. Therefore, according to petitioners, OSHA erred in assuming a 
45-year working life in calculating the risk of health effects caused 
by asbestos exposure. The D.C. Circuit disagreed, stating ``[e]ven if 
it is only the rare worker who stays with asbestos-related tasks for 45 
years, that worker would face a 64/1000 excess risk of contracting 
cancer; Congress clearly authorized OSHA to protect such a worker'' 
(Asbestos II, 838 F.2d at 1264-1265). OSHA might calculate the health 
risks of exposure, and the related benefits of lowering the exposure 
limit, based on an assumption of a shorter working life, such as 25 
years, but such estimates are for informational purposes only.

Best Available Evidence

    Section 6(b)(5) of the Act requires OSHA to set standards ``on the 
basis of the best available evidence'' and to consider the ``latest 
available scientific data in the field'' (29 U.S.C. 655(b)(5)). As 
noted above, the Supreme Court, in its Benzene decision, explained that 
OSHA must look to ``a body of reputable scientific thought'' in making 
its material harm and significant risk determinations, while noting 
that a reviewing court must ``give OSHA some leeway where its findings 
must be made on the frontiers of scientific knowledge'' (Benzene, 448 
U.S. at 656).
    The courts of appeals have afforded OSHA similar latitude to issue 
health standards in the face of scientific uncertainty. The Second 
Circuit, in upholding the vinyl chloride standard, stated: ``[T]he 
ultimate facts here in dispute are `on the frontiers of scientific 
knowledge', and, though the factual finger points, it does not 
conclude. Under the command of OSHA, it remains the duty of the 
Secretary to act to protect the workingman, and to act even in 
circumstances where existing methodology or research is deficient'' 
(Society of the Plastics Industry, Inc. v. OSHA, 509 F.2d 1301, 1308 
(2d Cir. 1975) (quoting Indus. Union Dep't, AFL-CIO v. Hodgson, 499 
F.2d 467, 474 (D.C. Cir. 1974) (``Asbestos I''))). The D.C. Circuit, in 
upholding the cotton dust standard, stated: ``OSHA's mandate 
necessarily requires it to act even if information is incomplete when 
the best available evidence indicates a serious threat to the health of 
workers'' (Am. Fed'n of Labor & Cong. of Indus. Orgs. v. Marshall, 617 
F.2d 636, 651 (D.C. Cir. 1979), aff'd in part and vacated in part on 
other grounds, American Textile Mfrs. Inst., Inc. v. Donovan, 452 U.S. 
490 (1981)). When there is disputed scientific evidence in the record, 
OSHA must review the evidence on both sides and ``reasonably resolve'' 
the dispute (Pub. Citizen Health Research Grp. v. Tyson, 796 F.2d 1479, 
1500 (D.C. Cir. 1986)). The Court in Public Citizen further noted that, 
where ``OSHA has the expertise we lack and it has exercised that 
expertise by carefully reviewing the scientific data,'' a dispute 
within the scientific community is not occasion for the reviewing court 
to take sides about which view is correct (Pub. Citizen Health Research 
Grp., 796 F.2d

[[Page 2475]]

at 1500) or for OSHA or the courts to `` `be paralyzed by debate 
surrounding diverse medical opinions' '' (Pub. Citizen Health Research 
Grp., 796 F.2d at 1497 (quoting H.R. Rep. No. 91-1291, 91st Cong., 2d 
Sess. 18 (1970), reprinted in Legislative History of the Occupational 
Safety and Health Act of 1970 at 848 (1971))). Provided the Agency gave 
adequate notice in the proposal's preamble discussion of potential 
regulatory alternatives that the Secretary would be considering one or 
more stated options for regulation, OSHA is not required to prefer the 
option in the text of the proposal over a given regulatory alternative 
that was addressed in the rulemaking if substantial evidence in the 
record supports inclusion of the alternative in the final standard. See 
Owner-Operator Independent Drivers Ass'n, Inc. v. Federal Motor Carrier 
Safety Admin., 494 F.3d 188, 209 (D.C. Cir. 2007) (notice by agency 
concerning modification of sleeper-berth requirements for truck drivers 
was sufficient because proposal listed several options and asked a 
question regarding the details of the one option that ultimately 
appeared in final rule); Kooritzky v. Reich, 17 F.3d 1509, 1513 (D.C. 
Cir. 1994) (noting that a final rule need not match a proposed rule, as 
long as ``the agency has alerted interested parties to the possibility 
of the agency's adopting a rule different than the one proposed'' and 
holding that agency failed to comply with notice and comment 
requirements when ``preamble in July offered no clues of what was to 
come in October'').

Feasibility

    The OSH Act requires that, in setting a standard, OSHA must 
eliminate the risk of material health impairment ``to the extent 
feasible'' (29 U.S.C. 655(b)(5)). The statutory mandate to consider the 
feasibility of the standard encompasses both technological and economic 
feasibility; these analyses have been done primarily on an industry-by-
industry basis (Lead I, 647 F.2d at 1264, 1301). The Agency has also 
used application groups, defined by common tasks, as the structure for 
its feasibility analyses (Pub. Citizen Health Research Grp. v. OSHA, 
557 F.3d 165, 177-179 (3d Cir. 2009)). The Supreme Court has broadly 
defined feasible as ``capable of being done'' (Cotton Dust, 452 U.S. at 
509-510).
    Although OSHA must set the most protective PEL that the Agency 
finds to be technologically and economically feasible, it retains 
discretion to set a uniform PEL even when the evidence demonstrates 
that certain industries or operations could reasonably be expected to 
meet a lower PEL. OSHA health standards generally set a single PEL for 
all affected employers; OSHA exercised this discretion most recently in 
its final rules on occupational exposure to Chromium (VI) (71 FR 10100, 
10337-10338 (2/28/2006) and Respirable Crystalline Silica (81 FR 16285, 
16576-16575 (3/25/2016); see also 62 FR 1494, 1575 (1/10/97) (methylene 
chloride)). In its decision upholding the chromium (VI) standard, 
including the uniform PEL, the Court of Appeals for the Third Circuit 
addressed this issue as one of deference, stating ``OSHA's decision to 
select a uniform exposure limit is a legislative policy decision that 
we will uphold as long as it was reasonably drawn from the record'' 
(Chromium (VI), 557 F.3d at 183 (3d Cir. 2009)); see also Am. Iron & 
Steel Inst. v. OSHA, 577 F.2d 825, 833 (3d Cir. 1978)). OSHA's reasons 
for choosing one chromium (VI) PEL, rather than imposing different PELs 
on different application groups or industries, included: Multiple PELs 
would create enforcement and compliance problems because many 
workplaces, and even workers, were affected by multiple categories of 
chromium (VI) exposure; discerning individual PELs for different groups 
of establishments would impose a huge evidentiary burden on the Agency 
and unnecessarily delay implementation of the standard; and a uniform 
PEL would, by eliminating confusion and simplifying compliance, enhance 
worker protection (Chromium (VI), 557 F.3d at 173, 183-184). The Court 
held that OSHA's rationale for choosing a uniform PEL, despite evidence 
that some application groups or industries could meet a lower PEL, was 
reasonably drawn from the record and that the Agency's decision was 
within its discretion and supported by past practice (Chromium (VI), 
557 F.3d at 183-184).

Technological Feasibility

    A standard is technologically feasible if the protective measures 
it requires already exist, can be brought into existence with available 
technology, or can be created with technology that can reasonably be 
expected to be developed (Lead I, 647 F.2d at 1272; Amer. Iron & Steel 
Inst. v. OSHA, 939 F.2d 975, 980 (D.C. Cir. 1991) (``Lead II'')). 
OSHA's standards may be ``technology forcing,'' i.e., where the Agency 
gives an industry a reasonable amount of time to develop new 
technologies, OSHA is not bound by the ``technological status quo'' 
(Lead I, 647 F.2d at 1264). While the test for technological 
feasibility is normally articulated in terms of the ability of 
employers to decrease exposures to the PEL, provisions such as exposure 
measurement requirements must also be technologically feasible (see 
Forging Indus. Ass'n v. Sec'y of Labor, 773 F.2d 1436, 1453 (4th Cir. 
1985)).
    In its Lead decisions, the D.C. Circuit described OSHA's obligation 
to demonstrate the technological feasibility of reducing occupational 
exposure to a hazardous substance.

    [W]ithin the limits of the best available evidence . . . OSHA 
must prove a reasonable possibility that the typical firm will be 
able to develop and install engineering and work practice controls 
that can meet the PEL in most of its operations . . . The effect of 
such proof is to establish a presumption that industry can meet the 
PEL without relying on respirators . . . Insufficient proof of 
technological feasibility for a few isolated operations within an 
industry, or even OSHA's concession that respirators will be 
necessary in a few such operations, will not undermine this general 
presumption in favor of feasibility. Rather, in such operations 
firms will remain responsible for installing engineering and work 
practice controls to the extent feasible, and for using them to 
reduce . . . exposure as far as these controls can do so (Lead I, 
647 F.2d at 1272).

Additionally, the D.C. Circuit explained that ``[f]easibility of 
compliance turns on whether exposure levels at or below [the PEL] can 
be met in most operations most of the time . . .'' (Lead II, 939 F.2d 
at 990).
    Courts have given OSHA significant deference in reviewing its 
technological feasibility findings. ``So long as we require OSHA to 
show that any required means of compliance, even if it carries no 
guarantee of meeting the PEL, will substantially lower . . . exposure, 
we can uphold OSHA's determination that every firm must exploit all 
possible means to meet the standard'' (Lead I, 647 F.2d at 1273). Even 
in the face of significant uncertainty about technological feasibility 
in a given industry, OSHA has been granted broad discretion in making 
its findings (Lead I, 647 F.2d at 1285). ``OSHA cannot let workers 
suffer while it awaits . . . scientific certainty. It can and must make 
reasonable [technological feasibility] predictions on the basis of 
`credible sources of information,' whether data from existing plants or 
expert testimony'' (Lead I, 647 F.2d at 1266 (quoting Am. Fed'n of 
Labor & Cong. of Indus. Orgs., 617 F.2d at 658)). For example, in Lead 
I, the D.C. Circuit allowed OSHA to use, as best available evidence, 
information about new and expensive industrial smelting processes that 
had not yet been adopted in the U.S. and would require the rebuilding 
of plants (Lead I, 647 F.2d at 1283-1284). Even under circumstances 
where

[[Page 2476]]

OSHA's feasibility findings were less certain and the Agency was 
relying on its ``legitimate policy of technology forcing,'' the D.C. 
Circuit approved of OSHA's feasibility findings when the Agency granted 
lengthy phase-in periods to allow particular industries time to comply 
(Lead I, 647 F.2d at 1279-1281, 1285).
    OSHA is permitted to adopt a standard that some employers will not 
be able to meet some of the time, with employers limited to challenging 
feasibility at the enforcement stage (Lead I, 647 F.2d at 1273 & n. 
125; Asbestos II, 838 F.2d at 1268). Even when the Agency recognized 
that it might have to balance its general feasibility findings with 
flexible enforcement of the standard in individual cases, the courts of 
appeals have generally upheld OSHA's technological feasibility findings 
(Lead II, 939 F.2d at 980; see Lead I, 647 F.2d at 1266-1273; Asbestos 
II, 838 F.2d at 1268). Flexible enforcement policies have been approved 
where there is variability in measurement of the regulated hazardous 
substance or where exposures can fluctuate uncontrollably (Asbestos II, 
838 F.2d at 1267-1268; Lead II, 939 F.2d at 991). A common means of 
dealing with the measurement variability inherent in sampling and 
analysis is for the Agency to add the standard sampling error to its 
exposure measurements before determining whether to issue a citation 
(e.g., 51 FR 22612, 22654 (06/20/86) (Asbestos Preamble)).

Economic Feasibility

    In addition to technological feasibility, OSHA is required to 
demonstrate that its standards are economically feasible. A reviewing 
court will examine the cost of compliance with an OSHA standard ``in 
relation to the financial health and profitability of the industry and 
the likely effect of such costs on unit consumer prices . . .'' (Lead 
I, 647 F.2d at 1265 (omitting citation)). As articulated by the D.C. 
Circuit in Lead I, ``OSHA must construct a reasonable estimate of 
compliance costs and demonstrate a reasonable likelihood that these 
costs will not threaten the existence or competitive structure of an 
industry, even if it does portend disaster for some marginal firms'' 
(Lead I, 647 F.2d at 1272). A reasonable estimate entails assessing 
``the likely range of costs and the likely effects of those costs on 
the industry'' (Lead I, 647 F.2d at 1266). As with OSHA's consideration 
of scientific data and control technology, however, the estimates need 
not be precise (Cotton Dust, 452 U.S. at 528-29 & n. 54) as long as 
they are adequately explained. Thus, as the D.C. Circuit further 
explained:

    Standards may be economically feasible even though, from the 
standpoint of employers, they are financially burdensome and affect 
profit margins adversely. Nor does the concept of economic 
feasibility necessarily guarantee the continued existence of 
individual employers. It would appear to be consistent with the 
purposes of the Act to envisage the economic demise of an employer 
who has lagged behind the rest of the industry in protecting the 
health and safety of employees and is consequently financially 
unable to comply with new standards as quickly as other employers. 
As the effect becomes more widespread within an industry, the 
problem of economic feasibility becomes more pressing (Asbestos I, 
499 F.2d. at 478).

OSHA standards therefore satisfy the economic feasibility criterion 
even if they impose significant costs on regulated industries so long 
as they do not cause massive economic dislocations within a particular 
industry or imperil the very existence of the industry (Lead II, 939 
F.2d at 980; Lead I, 647 F.2d at 1272; Asbestos I, 499 F.2d. at 478). 
As with its other legal findings, OSHA ``is not required to prove 
economic feasibility with certainty, but is required to use the best 
available evidence and to support its conclusions with substantial 
evidence'' ((Lead II, 939 F.2d at 980-981) (citing Lead I, 647 F.2d at 
1267)).
    Because section 6(b)(5) of the Act explicitly imposes the ``to the 
extent feasible'' limitation on the setting of health standards, OSHA 
is not permitted to use cost-benefit analysis to make its standards-
setting decisions (29 U.S.C. 655(b)(5)).

    Congress itself defined the basic relationship between costs and 
benefits, by placing the ``benefit'' of worker health above all 
other considerations save those making attainment of this 
``benefit'' unachievable. Any standard based on a balancing of costs 
and benefits by the Secretary that strikes a different balance than 
that struck by Congress would be inconsistent with the command set 
forth in Sec.  6(b)(5) (Cotton Dust, 452 U.S. at 509).

Thus, while OSHA estimates the costs and benefits of its proposed and 
final rules, these calculations do not form the basis for the Agency's 
regulatory decisions; rather, they are performed to ensure compliance 
with requirements such as those in Executive Orders 12866 and 13563.

Structure of OSHA Health Standards

    OSHA's health standards traditionally incorporate a comprehensive 
approach to reducing occupational disease. OSHA substance-specific 
health standards generally include the ``hierarchy of controls,'' 
which, as a matter of OSHA's preferred policy, mandates that employers 
install and implement all feasible engineering and work practice 
controls before respirators may be used. The Agency's adherence to the 
hierarchy of controls has been upheld by the courts (ASARCO, Inc. v. 
OSHA, 746 F.2d 483, 496-498 (9th Cir. 1984); Am. Iron & Steel Inst. v. 
OSHA, 182 F.3d 1261, 1271 (11th Cir. 1999)). In fact, courts view the 
legal standard for proving technological feasibility as incorporating 
the hierarchy: ``OSHA must prove a reasonable possibility that the 
typical firm will be able to develop and install engineering and work 
practice controls that can meet the PEL in most of its operations. . . 
. The effect of such proof is to establish a presumption that industry 
can meet the PEL without relying on respirators'' (Lead I, 647 F.2d at 
1272).
    The reasons supporting OSHA's continued reliance on the hierarchy 
of controls, as well as its reasons for limiting the use of 
respirators, are numerous and grounded in good industrial hygiene 
principles (see discussion in Section XVI. Summary and Explanation of 
the Standards, Methods of Compliance). The hierarchy of controls 
focuses on removing harmful airborne materials at their source ``to 
prevent atmospheric contamination'' to which the employee would be 
exposed, rather than relying on the proper functioning of a respirator 
as the primary means of protecting the employee (see 29 CFR 1910.134, 
1910.1000(e), 1926.55(b)).
    In health standards such as this one, the hierarchy of controls is 
augmented by ancillary provisions. These provisions work with the 
hierarchy of controls and personal protective equipment requirements to 
provide comprehensive protection to employees in affected workplaces. 
Such provisions typically include exposure assessment, medical 
surveillance, hazard communication, and recordkeeping.
    The OSH Act compels OSHA to require all feasible measures for 
reducing significant health risks (29 U.S.C. 655(b)(5); Pub. Citizen 
Health Research Grp., 796 F.2d at 1505 (``if in fact a STEL [short-term 
exposure limit] would further reduce a significant health risk and is 
feasible to implement, then the OSH Act compels the agency to adopt it 
(barring alternative avenues to the same result)''). When there is 
significant risk below the PEL, the D.C. Circuit indicated that OSHA 
should use its regulatory authority to impose additional requirements 
on employers when those requirements will result in

[[Page 2477]]

a greater than de minimis incremental benefit to workers' health 
(Asbestos II, 838 F.2d at 1274). The Supreme Court alluded to a similar 
issue in Benzene, pointing out that ``in setting a permissible exposure 
level in reliance on less-than-perfect methods, OSHA would have the 
benefit of a backstop in the form of monitoring and medical testing'' 
(Benzene, 448 U.S. at 657). OSHA concludes that the ancillary 
provisions in this final standard provide significant benefits to 
worker health by providing additional layers and types of protection to 
employees exposed to beryllium and beryllium compounds.

III. Events Leading to the Final Standards

    The first occupational exposure limit for beryllium was set in 1949 
by the Atomic Energy Commission (AEC), which required that beryllium 
exposure in the workplaces under its jurisdiction be limited to 2 
[micro]g/m\3\ as an 8-hour time-weighted average (TWA), and 25 
[micro]g/m\3\ as a peak exposure never to be exceeded (Document ID 
1323). These exposure limits were adopted by all AEC installations 
handling beryllium, and were binding on all AEC contractors involved in 
the handling of beryllium.
    In 1956, the American Industrial Hygiene Association (AIHA) 
published a Hygienic Guide which supported the AEC exposure limits. In 
1959, the American Conference of Governmental Industrial Hygienists 
(ACGIH[supreg]) also adopted a Threshold Limit Value (TLV[supreg]) of 2 
[micro]g/m\3\ as an 8-hour TWA (Borak, 2006). In 1970, ANSI issued a 
national consensus standard for beryllium and beryllium compounds (ANSI 
Z37.29-1970). The standard set a permissible exposure limit (PEL) for 
beryllium and beryllium compounds at 2 [micro]g/m\3\ as an 8-hour TWA; 
5 [micro]g/m\3\ as an acceptable ceiling concentration; and 25 
[micro]g/m\3\ as an acceptable maximum peak above the acceptable 
ceiling concentration for a maximum duration of 30 minutes in an 8-hour 
shift (Document ID 1303).
    In 1971, OSHA adopted, under Section 6(a) of the Occupational 
Safety and Health Act of 1970, and made applicable to general industry, 
the ANSI standard (Document ID 1303). Section 6(a) provided that in the 
first two years after the effective date of the Act, OSHA was to 
promulgate ``start-up'' standards, on an expedited basis and without 
public hearing or comment, based on national consensus or established 
Federal standards that improved employee safety or health. Pursuant to 
that authority, in 1971, OSHA promulgated approximately 425 PELs for 
air contaminants, including beryllium, derived principally from Federal 
standards applicable to government contractors under the Walsh-Healey 
Public Contracts Act, 41 U.S.C. 35, and the Contract Work Hours and 
Safety Standards Act (commonly known as the Construction Safety Act), 
40 U.S.C. 333. The Walsh-Healey Act and Construction Safety Act 
standards, in turn, had been adopted primarily from ACGIH[supreg]'s 
TLV[supreg]s as well as several from United States of America Standards 
Institute (USASI) [later the American National Standards Institute 
(ANSI)].
    The National Institute for Occupational Safety and Health (NIOSH) 
issued a document entitled Criteria for a Recommended Standard: 
Occupational Exposure to Beryllium (Criteria Document) in June 1972 
with Recommended Exposure Limits (RELs) of 2 [micro]g/m\3\ as an 8-hour 
TWA and 25 [micro]g/m\3\ as an acceptable maximum peak above the 
acceptable ceiling concentration for a maximum duration of 30 minutes 
in an 8-hour shift. OSHA reviewed the findings and recommendations 
contained in the Criteria Document along with the AEC control 
requirements for beryllium exposure. OSHA also considered existing data 
from animal and epidemiological studies, and studies of industrial 
processes of beryllium extraction, refinement, fabrication, and 
machining. In 1975, OSHA asked NIOSH to update the evaluation of the 
existing data pertaining to the carcinogenic potential of beryllium. In 
response to OSHA's request, the Director of NIOSH stated that, based on 
animal data and through all possible routes of exposure including 
inhalation, ``beryllium in all likelihood represents a carcinogenic 
risk to man.''
    In October 1975, OSHA proposed a new beryllium standard for all 
industries based on information from studies finding that beryllium 
caused cancer in animals (40 FR 48814 (10/17/75)). Adoption of this 
proposal would have lowered the 8-hour TWA exposure limit from 2 
[micro]g/m\3\ to 1 [micro]g/m\3\. In addition, the proposal included 
ancillary provisions for such topics as exposure monitoring, hygiene 
facilities, medical surveillance, and training related to the health 
hazards from beryllium exposure. The rulemaking was never completed.
    In 1977, NIOSH recommended an exposure limit of 0.5 [micro]g/m\3\ 
and identified beryllium as a potential occupational carcinogen. In 
December 1998, ACGIH published a Notice of Intended Change for its 
beryllium exposure limit. The notice proposed a lower TLV of 0.2 
[micro]g/m\3\ over an 8-hour TWA based on evidence of CBD and 
sensitization in exposed workers. Then in 2009, ACGIH adopted a revised 
TLV for beryllium that lowered the TWA to 0.05 [mu]g/m\3\ (inhalable) 
(see Document ID 1755, Tr. 136).
    In 1999, the Department of Energy (DOE) issued a Chronic Beryllium 
Disease Prevention Program (CBDPP) Final Rule for employees exposed to 
beryllium in its facilities (Document ID 1323). The DOE rule set an 
action level of 0.2 [mu]g/m\3\, and adopted OSHA's PEL of 2 [mu]g/m\3\ 
or any more stringent PEL OSHA might adopt in the future (10 CFR 
850.22; 64 FR 68873 and 68906, Dec. 8, 1999).
    Also in 1999, OSHA was petitioned by the Paper, Allied-Industrial, 
Chemical and Energy Workers International Union (PACE) (Document ID 
0069) and by Dr. Lee Newman and Ms. Margaret Mroz, from the National 
Jewish Health (NJH) (Document ID 0069), to promulgate an Emergency 
Temporary Standard (ETS) for beryllium in the workplace. In 2001, OSHA 
was petitioned for an ETS by Public Citizen Health Research Group and 
again by PACE (Document ID 0069). In order to promulgate an ETS, the 
Secretary of Labor must prove (1) that employees are exposed to grave 
danger from exposure to a hazard, and (2) that such an emergency 
standard is necessary to protect employees from such danger (29 U.S.C. 
655(c) [6(c)]). The burden of proof is on the Department and because of 
the difficulty of meeting this burden, the Department usually proceeds 
when appropriate with ordinary notice and comment [section 6(b)] 
rulemaking rather than a 6(c) ETS. Thus, instead of granting the ETS 
requests, OSHA instructed staff to further collect and analyze research 
regarding the harmful effects of beryllium in preparation for possible 
section 6(b) rulemaking.
    On November 26, 2002, OSHA published a Request for Information 
(RFI) for ``Occupational Exposure to Beryllium'' (Document ID 1242). 
The RFI contained questions on employee exposure, health effects, risk 
assessment, exposure assessment and monitoring methods, control 
measures and technological feasibility, training, medical surveillance, 
and impact on small business entities. In the RFI, OSHA expressed 
concerns about health effects such as chronic beryllium disease (CBD), 
lung cancer, and beryllium sensitization. OSHA pointed to studies 
indicating that even short-term exposures below OSHA's PEL of 2 
[micro]g/m\3\ could lead to CBD. The RFI also cited studies describing 
the relationship between beryllium sensitization and CBD (67 FR at 
70708). In addition,

[[Page 2478]]

OSHA stated that beryllium had been identified as a carcinogen by 
organizations such as NIOSH, the International Agency for Research on 
Cancer (IARC), and the Environmental Protection Agency (EPA); and 
cancer had been evidenced in animal studies (67 FR at 70709).
    On November 15, 2007, OSHA convened a Small Business Advocacy 
Review Panel for a draft proposed standard for occupational exposure to 
beryllium. OSHA convened this panel under Section 609(b) of the 
Regulatory Flexibility Act (RFA), as amended by the Small Business 
Regulatory Enforcement Fairness Act of 1996 (SBREFA) (5 U.S.C. 601 et 
seq.).
    The Panel included representatives from OSHA, the Solicitor's 
Office of the Department of Labor, the Office of Advocacy within the 
Small Business Administration, and the Office of Information and 
Regulatory Affairs of the Office of Management and Budget. Small Entity 
Representatives (SERs) made oral and written comments on the draft rule 
and submitted them to the panel.
    The SBREFA Panel issued a report on January 15, 2008 which included 
the SERs' comments. SERs expressed concerns about the impact of the 
ancillary requirements such as exposure monitoring and medical 
surveillance. Their comments addressed potential costs associated with 
compliance with the draft standard, and possible impacts of the 
standard on market conditions, among other issues. In addition, many 
SERs sought clarification of some of the ancillary requirements such as 
the meaning of ``routine'' contact or ``contaminated surfaces.''
    OSHA then developed a draft preliminary beryllium health effects 
evaluation (Document ID 1271) and a draft preliminary beryllium risk 
assessment (Document ID 1272), and in 2010, OSHA hired a contractor to 
oversee an independent scientific peer review of these documents. The 
contractor identified experts familiar with beryllium health effects 
research and ensured that these experts had no conflict of interest or 
apparent bias in performing the review. The contractor selected five 
experts with expertise in such areas as pulmonary and occupational 
medicine, CBD, beryllium sensitization, the Beryllium Lymphocyte 
Proliferation Test (BeLPT), beryllium toxicity and carcinogenicity, and 
medical surveillance. Other areas of expertise included animal 
modeling, occupational epidemiology, biostatistics, risk and exposure 
assessment, exposure-response modeling, beryllium exposure assessment, 
industrial hygiene, and occupational/environmental health engineering.
    Regarding the preliminary health effects evaluation, the peer 
reviewers concluded that the health effect studies were described 
accurately and in sufficient detail, and OSHA's conclusions based on 
the studies were reasonable (Document ID 1210). The reviewers agreed 
that the OSHA document covered the significant health endpoints related 
to occupational beryllium exposure. Peer reviewers considered the 
preliminary conclusions regarding beryllium sensitization and CBD to be 
reasonable and well presented in the draft health evaluation section. 
All reviewers agreed that the scientific evidence supports 
sensitization as a necessary condition in the development of CBD. In 
response to reviewers' comments, OSHA made revisions to more clearly 
describe certain sections of the health effects evaluation. In 
addition, OSHA expanded its discussion regarding the BeLPT.
    Regarding the preliminary risk assessment, the peer reviewers were 
highly supportive of the Agency's approach and major conclusions 
(Document ID 1210). The peer reviewers stated that the key studies were 
appropriate and their selection clearly explained in the document. They 
regarded the preliminary analysis of these studies to be reasonable and 
scientifically sound. The reviewers supported OSHA's conclusion that 
substantial risk of sensitization and CBD were observed in facilities 
where the highest exposure generating processes had median full-shift 
exposures around 0.2 [micro]g/m\3\ or higher, and that the greatest 
reduction in risk was achieved when exposures for all processes were 
lowered to 0.1 [micro]g/m\3\ or below.
    In February 2012, the Agency received for consideration a draft 
recommended standard for beryllium (Materion and USW, 2012, Document ID 
0754). This draft standard was the product of a joint effort between 
two stakeholders: Materion Corporation, a leading producer of beryllium 
and beryllium products in the United States, and the United 
Steelworkers, an international labor union representing workers who 
manufacture beryllium alloys and beryllium-containing products in a 
number of industries. They sought to craft an OSHA-like model beryllium 
standard that would have support from both labor and industry. OSHA has 
considered this proposal along with other information submitted during 
the development of the Notice of Proposed Rulemaking (NPRM) for 
beryllium. As described in greater detail in the Introduction to the 
Summary and Explanation of the final rule, there was substantial 
agreement between the submitted joint standard and the OSHA proposed 
standard.
    On August 7, 2015, OSHA published its NPRM in the Federal Register 
(80 FR 47565 (8/7/15)). In the NPRM, the Agency made a preliminary 
determination that employees exposed to beryllium and beryllium 
compounds at the preceding PEL face a significant risk to their health 
and that promulgating the proposed standard would substantially reduce 
that risk. The NPRM (Section XVIII) also responded to the SBREFA Panel 
recommendations, which OSHA carefully considered, and clarified the 
requirements about which SERs expressed confusion. OSHA also discussed 
the regulatory alternatives recommended by the SBREFA Panel in NPRM, 
Section XVIII, and in the PEA (Document ID 0426).
    The NPRM invited interested stakeholders to submit comments on a 
variety of issues and indicated that OSHA would schedule a public 
hearing upon request. Commenters submitted information and suggestions 
on a variety of topics. In addition, in response to a request from the 
Non-Ferrous Founders' Society, OSHA scheduled an informal public 
hearing on the proposed rule. The Agency invited interested persons to 
participate by providing oral testimony and documentary evidence at the 
hearing. OSHA also welcomed presentation of data and documentary 
evidence that would provide the Agency with the best available evidence 
to use in determining whether to develop a final rule.
    The public hearing was held in Washington, DC on March 21 and 22, 
2016. Administrative Law Judge William Colwell presided over the 
hearing. The Agency heard testimony from several organizations, such as 
public health groups, the Non-Ferrous Founders' Society, other industry 
representatives, and labor unions. Following the hearing, participants 
who had filed notices of intent to appear were allowed 30 days--until 
April 21, 2016--to submit additional evidence and data, and an 
additional 15 days--until May 6, 2016--to submit final briefs, 
arguments, and summations (Document ID 1756, Tr. 326).
    In 2016, in an action parallel to OSHA's rulemaking, DOE proposed 
to update its action level to 0.05 [mu]g/m\3\ (81 FR 36704-36759, June 
7, 2016). The DOE action level triggers workplace precautions and 
control measures such as periodic monitoring, exposure

[[Page 2479]]

reduction or minimization, regulated areas, hygiene facilities and 
practices, respiratory protection, protective clothing and equipment, 
and warning signs (Document ID 1323; 10 CFR 850.23(b)). Unlike OSHA's 
PEL, however, DOE's selection of an action level is not required to 
meet statutory requirements of technological and economic feasibility.
    In all, the OSHA rulemaking record contains over 1,900 documents, 
including all the studies OSHA relied on in its preliminary health 
effects and risk assessment analyses, the hearing transcript and 
submitted testimonies, the joint Materion-USW draft proposed standard, 
and the pre- and post-hearing comments and briefs. The final rule on 
occupational exposure to beryllium and beryllium compounds is thus 
based on consideration of the entire record of this rulemaking 
proceeding, including materials discussed or relied upon in the 
proposal, the record of the hearing, and all written comments and 
exhibits timely received. Based on this comprehensive record, OSHA 
concludes that employees exposed to beryllium and beryllium compounds 
are at significant risk of material impairment of health, including 
chronic beryllium disease and lung cancer. The Agency concludes that 
the PEL of 0.2 [mu]g/m\3\ reduces the significant risks of material 
impairments of health posed to workers by occupational exposure to 
beryllium and beryllium compounds to the maximum extent that is 
technologically and economically feasible. OSHA's substantive 
determinations with regard to the comments, testimony, and other 
information in the record, the legal standards governing the decision-
making process, and the Agency's analysis of the data resulting in its 
assessments of risks, benefits, technological and economic feasibility, 
and compliance costs are discussed elsewhere in this preamble. More 
technical or complex issues are discussed in greater detail in the 
background documents referenced in this preamble.

IV. Chemical Properties and Industrial Uses

Chemical and Physical Properties

    Beryllium (Be; CAS Number 7440-41-7) is a silver-grey to greyish-
white, strong, lightweight, and brittle metal. It is a Group IIA 
element with an atomic weight of 9.01, atomic number of 4, melting 
point of 1,287 [deg]C, boiling point of 2,970 [deg]C, and a density of 
1.85 at 20 [deg]C (Document ID 0389, p. 1). It occurs naturally in 
rocks, soil, coal, and volcanic dust (Document ID 1567, p. 1). 
Beryllium is insoluble in water and soluble in acids and alkalis. It 
has two common oxidation states, Be(0) and Be(+2). There are several 
beryllium compounds with unique CAS numbers and chemical and physical 
properties. Table IV-1 describes the most common beryllium compounds.

                                               Table IV-1--Properties of Beryllium and Beryllium Compounds
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                  Synonyms  and     Molecular    Melting point
         Chemical name              CAS No.        trade  names      weight         ([deg]C)         Description      Density  (g/cm3)     Solubility
--------------------------------------------------------------------------------------------------------------------------------------------------------
Beryllium metal...............       7440-41-7  Beryllium;             9.0122  1287.............  Grey, close-       1.85 (20 [deg]C).  Soluble in most
                                                 beryllium-9,                                      packed,                               dilute acids
                                                 beryllium                                         hexagonal,                            and alkali;
                                                 element;                                          brittle metal.                        decomposes in
                                                 beryllium                                                                               hot water;
                                                 metallic.                                                                               insoluble in
                                                                                                                                         mercury and
                                                                                                                                         cold water.
Beryllium chloride............       7787-47-5  Beryllium               79.92  399.2............  Colorless to       1.899 (25 [deg]C)  Soluble in
                                                 dichloride.                                       slightly yellow;                      water, ethanol,
                                                                                                   orthorhombic,                         diethyl ether
                                                                                                   deliques-cent                         and pyridine;
                                                                                                   crystal.                              slightly
                                                                                                                                         soluble in
                                                                                                                                         benzene, carbon
                                                                                                                                         disulfide and
                                                                                                                                         chloroform;
                                                                                                                                         insoluble in
                                                                                                                                         acetone,
                                                                                                                                         ammonia, and
                                                                                                                                         toluene.
Beryllium fluoride............       7787-49-7  Beryllium               47.01  555..............  Colorless or       1.986............  Soluble in
                                  (12323-05-6)   difluoride.                                       white,                                water, sulfuric
                                                                                                   amorphous,                            acid, mixture
                                                                                                   hygroscopic                           of ethanol and
                                                                                                   solid.                                diethyl ether;
                                                                                                                                         slightly
                                                                                                                                         soluble in
                                                                                                                                         ethanol;
                                                                                                                                         insoluble in
                                                                                                                                         hydrofluoric
                                                                                                                                         acid.
Beryllium hydroxide...........      13327-32-7  Beryllium                43.3  138 (decomposes    White, amorphous,  1.92.............  Soluble in hot
                                   (1304-49-0)   dihydroxide.                   to beryllium       amphoteric                            concentrated
                                                                                oxide).            powder.                               acids and
                                                                                                                                         alkali;
                                                                                                                                         slightly
                                                                                                                                         soluble in
                                                                                                                                         dilute alkali;
                                                                                                                                         insoluble in
                                                                                                                                         water.
Beryllium sulfate.............      13510-49-1  Sulfuric acid,         105.07  550-600 [deg]C     Colorless crystal  2.443............  Forms soluble
                                                 beryllium salt                 (decomposes to                                           tetrahydrate in
                                                 (1:1).                         beryllium oxide).                                        hot water;
                                                                                                                                         insoluble in
                                                                                                                                         cold water.
Beryllium sulfate tetrhydrate.       7787-56-6  Sulfuric acid;         177.14  100 [deg]C.......  Colorless,         1.713............  Soluble in
                                                 beryllium salt                                    tetragonal                            water; slightly
                                                 (1:1),                                            crystal.                              soluble in
                                                 tetrahydrate.                                                                           concentrated
                                                                                                                                         sulfuric acid;
                                                                                                                                         insoluble in
                                                                                                                                         ethanol.
Beryllium Oxide...............       1304-56-9  Beryllia;               25.01  2508-2547 [deg]C.  Colorless to       3.01 (20 [deg]C).  Soluble in
                                                 beryllium                                         white, hexagonal                      concentrated
                                                 monoxide                                          crystal or                            acids and
                                                 thermalox TM.                                     amorphous,                            alkali;
                                                                                                   amphoteric                            insoluble in
                                                                                                   powder.                               water.
Beryllium carbonate...........       1319-43-3  Carbonic acid,         112.05  No data..........  White powder.....  No data..........  Soluble in acids
                                                 beryllium salt,                                                                         and alkali;
                                                 mixture with                                                                            insoluble in
                                                 beryllium                                                                               cold water;
                                                 hydroxide.                                                                              decomposes in
                                                                                                                                         hot water.
Beryllium nitrate trihydrate..       7787-55-5  Nitric acid,           187.97  60...............  White to faintly   1.56.............  Very soluble in
                                                 beryllium salt,                                   yellowish,                            water and
                                                 trihydrate.                                       deliquescent                          ethanol.
                                                                                                   mass.
Beryllium phosphate...........      13598-15-7  Phosphoric acid,       104.99  No data..........  Not reported.....  Not reported.....  Slightly soluble
                                                 beryllium salt                                                                          in water.
                                                 (1:1).
--------------------------------------------------------------------------------------------------------------------------------------------------------
ATSDR, 2002.


[[Page 2480]]

    The physical and chemical properties of beryllium were realized 
early in the 20th century, and it has since gained commercial 
importance in a wide range of industries. Beryllium is lightweight, 
hard, spark resistant, non-magnetic, and has a high melting point. It 
lends strength, electrical and thermal conductivity, and fatigue 
resistance to alloys (Document ID 0389, p. 1). Beryllium also has a 
high affinity for oxygen in air and water, which can cause a thin 
surface film of beryllium oxide to form on the bare metal, making it 
extremely resistant to corrosion. These properties make beryllium 
alloys highly suitable for defense, nuclear, and aerospace applications 
(Document ID 1342, pp. 45, 48).
    There are approximately 45 mineralized forms of beryllium. In the 
United States, the predominant mineral form mined commercially and 
refined into pure beryllium and beryllium alloys is bertrandite. 
Bertrandite, while containing less than 1% beryllium compared to 4% in 
beryl, is easily and efficiently processed into beryllium hydroxide 
(Document ID 1342, p. 48). Imported beryl is also converted into 
beryllium hydroxide as the United States has very little beryl that can 
be economically mined (Document ID 0616, p. 28).

Industrial Uses

    Materion Corporation (Materion), formerly called Brush Wellman, is 
the only producer of primary beryllium in the United States. Beryllium 
is used in a variety of industries, including aerospace, defense, 
telecommunications, automotive, electronic, and medical specialty 
industries. Pure beryllium metal is used in a range of products such as 
X-ray transmission windows, nuclear reactor neutron reflectors, nuclear 
weapons, precision instruments, rocket propellants, mirrors, and 
computers (Document ID 0389, p. 1). Beryllium oxide is used in 
components such as ceramics, electrical insulators, microwave oven 
components, military vehicle armor, laser structural components, and 
automotive ignition systems (Document ID 1567, p. 147). Beryllium oxide 
ceramics are used to produce sensitive electronic items such as lasers 
and satellite heat sinks.
    Beryllium alloys, typically beryllium/copper or beryllium/aluminum, 
are manufactured as high beryllium content or low beryllium content 
alloys. High content alloys contain greater than 30% beryllium. Low 
content alloys are typically less than 3% beryllium. Beryllium alloys 
are used in automotive electronics (e.g., electrical connectors and 
relays and audio components), computer components, home appliance 
parts, dental appliances (e.g., crowns), bicycle frames, golf clubs, 
and other articles (Document ID 0389, p. 2; 1278, p. 182; 1280, pp. 1-
2; 1281, pp. 816, 818). Electrical components and conductors are 
stamped and formed from beryllium alloys. Beryllium-copper alloys are 
used to make switches in automobiles (Document ID 1280, p. 2; 1281, p. 
818) and connectors, relays, and switches in computers, radar, 
satellite, and telecommunications equipment (Document ID 1278, p. 183). 
Beryllium-aluminum alloys are used in the construction of aircraft, 
high resolution medical and industrial X-ray equipment, and mirrors to 
measure weather patterns (Document ID 1278, p. 183). High content and 
low content beryllium alloys are precision machined for military and 
aerospace applications. Some welding consumables are also manufactured 
using beryllium.
    Beryllium is also found as a trace metal in materials such as 
aluminum ore, abrasive blasting grit, and coal fly ash. Abrasive 
blasting grits such as coal slag and copper slag contain varying 
concentrations of beryllium, usually less than 0.1% by weight. The 
burning of bituminous and sub-bituminous coal for power generation 
causes the naturally occurring beryllium in coal to accumulate in the 
coal fly ash byproduct. Scrap and waste metal for smelting and refining 
may also contain beryllium. A detailed discussion of the industries and 
job tasks using beryllium is included in the Preliminary Economic 
Analysis (Document ID 0385, 0426).
    Occupational exposure to beryllium can occur from inhalation of 
dusts, fume, and mist. Beryllium dusts are created during operations 
where beryllium is cut, machined, crushed, ground, or otherwise 
mechanically sheared. Mists can also form during operations that use 
machining fluids. Beryllium fume can form while welding with or on 
beryllium components, and from hot processes such as those found in 
metal foundries.
    Occupational exposure to beryllium can also occur from skin, eye, 
and mucous membrane contact with beryllium particulate or solutions.

V. Health Effects

Overview of Findings and Supportive Comments

    As discussed in detail throughout this section (section V, Final 
Health Effects) and in Section VI, Final Quantitative Risk Assessment 
and Significance of Risk, OSHA finds, based upon the best available 
evidence in the record, that exposure to soluble and poorly soluble 
forms of beryllium are associated with several adverse health outcomes 
including sensitization, chronic beryllium disease, acute beryllium 
disease and lung cancer.
    The findings and conclusions in this section are consistent with 
those of the National Academies of Sciences (NAS), the World Health 
Organization's International Agency for Research on Cancer (IARC), the 
U.S. Department of Health and Human Services' (HHS) National Toxicology 
Program (NTP), the National Institute for Occupational Safety and 
Health (NIOSH), the Agency for Toxic Substance and Disease Registry 
(ATSDR), the European Commission on Health, Safety and Hygiene at Work, 
and many other organizations and individuals, as evidenced in the 
rulemaking record and further discussed below. Other scientific 
organizations and governments have recognized the strong body of 
scientific evidence pointing to the health risks of exposure to 
beryllium and have deemed it necessary to take action to reduce those 
risks. In 1999, the Department of Energy (DOE) updated its airborne 
beryllium concentration action level to 0.2 [mu]g/m\3\ (Document ID 
1323). In 2009, the American Conference of Governmental Industrial 
Hygienists (ACGIH), a professional society that has been recommending 
workplace exposure limits for six decades, revised its Threshold Limit 
Value (TLV) for beryllium and beryllium-containing compounds to 0.05 
[mu]g/m\3\ (Document ID 1304).
    In finalizing this Health Effects preamble section for the final 
rule, OSHA updated the preliminary Health Effects section published in 
the NPRM based on the stakeholder response received by the Agency 
during the public comment period and public hearing. OSHA also 
corrected several non-substantive errors that were published in the 
NPRM as well as those identified by NIOSH and Materion including 
several minor organizational changes made to sections V.D.3 and V.E.2.b 
(Document ID 1671, pp. 10-11; 1662, pp. 3-5). A section titled ``Dermal 
Effects'' was added to V.F.5 based on comments received by the American 
Thoracic Society (ATS), National Jewish Health, and the National 
Supplemental Screening Program (Document ID 1688, p. 2; 1664, p. 5; 
1677, p. 3). Additionally, the Agency responded to relevant stakeholder 
comments contained in specific sections.
    In developing its review of the preliminary health effects from 
beryllium exposure and assessment of risk for the NPRM, OSHA prepared a

[[Page 2481]]

pair of draft documents, entitled ``Occupation Exposure to Beryllium: 
Preliminary Health Effects Evaluation'' (OSHA, 2010, Document ID 1271) 
and ``Preliminary Beryllium Risk Assessment'' (OSHA, 2010, Document ID 
1272), that underwent independent scientific peer review in accordance 
with the Office of Management and Budget's (OMB) Information Quality 
Bulletin for Peer Review. Eastern Research Group, Inc. (ERG), under 
contract with OSHA, selected five highly qualified experts with 
collective expertise in occupational epidemiology, occupational 
medicine, toxicology, immunology, industrial hygiene, and risk 
assessment methodology.\2\ The peer reviewers responded to 27 questions 
that covered the accuracy, completeness, and understandability of key 
studies and adverse health endpoints as well as questions regarding the 
adequacy, clarity and reasonableness of the risk analysis (ERG, 2010; 
Document ID 1270).
---------------------------------------------------------------------------

    \2\ The five selected peer reviewers were John Balmes, MD, 
University of California-San Francisco; Patrick Breysse, Ph.D., 
Johns Hopkins University, Bloomberg School of Public Health; Terry 
Gordon, Ph.D., New York University School of Medicine; Milton 
Rossman, MD, University of Pennsylvania School of Medicine; Kyle 
Steenland, Ph.D., Emory University, Rollins School of Public Health.
---------------------------------------------------------------------------

    Overall, the peer reviewers found that the OSHA draft health 
effects evaluation described the studies in sufficient detail, 
appropriately addressed their strengths and limitations, and drew 
scientifically sound conclusions. The peer reviewers were also 
supportive of the Agency's preliminary risk assessment approach and the 
major conclusions. OSHA provided detailed responses to reviewer 
comments in its publication of the NPRM (80 FR 47646-47652, 8/7/2015). 
Revisions to the draft health effects evaluation and preliminary risk 
assessment in response to the peer review comments were reflected in 
sections V and VI of the same publication (80 FR 47581-47646, 8/7/
2015). OSHA received public comment and testimony on the Health Effects 
and Preliminary Risk Assessment sections published in the NPRM, which 
are discussed in this preamble.
    The Agency received a wide variety of stakeholder comments and 
testimony for this rulemaking on issues related to the health effects 
and risk of beryllium exposure. Statements supportive of OSHA's Health 
Effects section include comments from NIOSH, the National Safety 
Council, the American Thoracic Society (ATS), Representative Robert C. 
``Bobby'' Scott, Ranking Member of Committee on Education and the 
Workforce, the U.S. House of Representatives, national labor 
organizations (American Federation of Labor--Congress of Industrial 
Organizations (AFL-CIO), North American Building Trades Unions (NABTU), 
United Steelworkers (USW), Public Citizen, ORCHSE, experts from 
National Jewish Health (Lisa Maier, MD and Margaret Mroz, MSPH), the 
American Association for Justice, and the National Council for 
Occupational Safety and Health.
    For example, NIOSH commented in its prepared written hearing 
testimony:

    OSHA has appropriately identified and documented all critical 
health effects associated with occupational exposure to beryllium 
and has appropriately focused its greatest attention on beryllium 
sensitization (BeS), chronic beryllium disease (CBD) and lung cancer 
. . .

NIOSH went on to say that sensitization was more than a test result 
with little meaning. It relates to a condition in which the immune 
system is able to recognize and adversely react to beryllium in a way 
that increases the risk of developing CBD. NIOSH agrees with OSHA that 
sensitization is a functional change that is necessary in order to 
proceed along the pathogenesis to serious lung disease.
    The National Safety Council, a congressionally chartered nonprofit 
safety organization, also stated that ``beryllium represents a serious 
health threat resulting from acute or chronic exposures.'' (Document ID 
1612, p. 5). Representative Robert C. ``Bobby'' Scott, Ranking Member 
of Committee on Education and the Workforce, the U.S. House of 
Representatives, submitted a statement recognizing that the evidence 
strongly supports the conclusion that sensitization can occur from 
exposure to soluble and poorly soluble forms of beryllium (Document ID 
1672, p. 3).
    OSHA also received supporting statements from ATS and ORCHSE on the 
inclusion of beryllium sensitization, CBD, skin disease, and lung 
cancer as major adverse health effects associated with beryllium 
exposure (Document ID 1688, p. 7; 1691, p. 14). ATS specifically 
stated:

. . . the ATS supports the inclusion of beryllium sensitization, 
CBD, and skin disease as the major adverse health effects associated 
with exposure to beryllium at or below 0.1 [mu]g/m\3\ and acute 
beryllium disease at higher exposures based on the currently 
available epidemiologic and experimental studies. (Document ID 1688, 
p. 2)

In addition, OSHA received supporting comments from labor organizations 
representing workers exposed to beryllium. The AFL-CIO, NABTU, and USW 
submitted comments supporting the inclusion of beryllium sensitization, 
CBD and lung cancer as health effects from beryllium exposure (Document 
ID 1689, pp. 1, 3; 1679, p. 6; 1681, p. 19). AFL-CIO commented that 
``[t]he proposal is based on extensive scientific and medical evidence 
. . .'' and ``[b]eryllium exposure causes immunological sensitivity, 
CBD and lung cancer. These health effects are debilitating, progressive 
and irreversible. Workers are exposed to beryllium through respiratory, 
dermal and gastrointestinal routes.'' (Document ID 1689, pp. 1, 3). 
Comments submitted by USW state that ``OSHA has correctly identified, 
and comprehensively documented the material impairments of health 
resulting from beryllium exposure.'' (Document ID 1681, p. 19).
    Dr. Lisa Maier and Ms. Margaret Mroz of National Jewish Health 
testified about the health effects of beryllium in support of the 
beryllium standard:

    We know that chronic beryllium disease often will not manifest 
clinically until irreversible lung scarring has occurred, often 
years after exposure, with a latency of 20 to 30 years as discussed 
yesterday. Much too late to make changes in the work place. We need 
to look for early markers of health effects, cast the net widely to 
identify cases of sensitization and disease, and use screening 
results in concert with exposure sampling to identify areas of 
increased risk that can be modified in the work place. (Document ID 
1756, Tr. 102; 1806).

American Association for Justice noted that:

    Unlike many toxins, there is no threshold below which no worker 
will become sensitized to beryllium. Worker sensitization to 
beryllium is a precursor to CBD, but not cancer. The symptoms of 
chronic beryllium disease (CBD) are part of a continuum of disease 
that is progressive in nature. Early recognition of and treatment 
for CBD may lead to a lessening of symptoms and may prevent the 
disease from progressing further. Symptoms of CBD may occur at 
exposure levels well below the proposed permissible exposure limit 
of .2 [micro]g/m\3\ and even below the action level of .1 [micro]g/
m\3\. OSHA has clear authority to regulate health effects across the 
entire continuum of disease to protect workers. We applaud OSHA for 
proposing to do so. (Document ID 1683, pp. 1-2).

National Committee for Occupational Safety and Health support OSHA 
findings of health effects due to beryllium exposure (1690, p. 1). 
Comments from Public Citizen also support OSHA findings: ``Beryllium is 
toxic at extremely low levels and exposure can result in BeS, an immune 
response that eventually can lead to an autoimmune granulomatous lung 
disease known as CBD. BeS is a necessary prerequisite to the 
development of CBD, with OSHA's

[[Page 2482]]

NPRM citing studies showing that 31-49 percent of all sensitized 
workers were diagnosed with CBD after clinical evaluations. Beryllium 
also is a recognized carcinogen that can cause lung cancer.'' (Document 
ID 1670, p.2).
    In addition to the comments above and those noted throughout this 
Health Effects section, Materion submitted their correspondence to the 
National Academies (NAS) regarding the company's assessment of the NAS 
beryllium studies and their correspondence to NIOSH regarding the 
Cummings 2009 study (Document 1662, Attachments) to OSHA. For the NAS 
study, Materion included a series of comments regarding studies 
included in the NAS report. OSHA has reviewed these comments and found 
that the comments submitted to the NAS critiquing their review of the 
health effects of beryllium were considered and incorporated where 
appropriate. For the NIOSH study Materion included comments regarding 2 
cases of acute beryllium disease evaluated in a study published by 
Cummings et al., 2009. NIOSH also dealt with the comments from Materion 
as they found appropriate. However, none of the changes recommended by 
Materion to the NAS or NIOSH altered the overall findings or 
conclusions from either study. OSHA has taken the Materion comments 
into account in the review of these documents. OSHA found them not to 
be sufficient to discount either the findings of the NAS or NIOSH.

Introduction

    Beryllium-associated health effects, including acute beryllium 
disease (ABD), beryllium sensitization (also referred to in this 
preamble as ``sensitization''), chronic beryllium disease (CBD), and 
lung cancer, can lead to a number of highly debilitating and life-
altering conditions including pneumonitis, loss of lung capacity 
(reduction in pulmonary function leading to pulmonary dysfunction), 
loss of physical capacity associated with reduced lung capacity, 
systemic effects related to pulmonary dysfunction, and decreased life 
expectancy (NIOSH, 1972, Document ID 1324, 1325, 1326, 1327, 1328; 
NIOSH, 2011 (0544)).
    This Health Effects section presents information on beryllium and 
its compounds, the fate of beryllium in the body, research that relates 
to its toxic mechanisms of action, and the scientific literature on the 
adverse health effects associated with beryllium exposure, including 
ABD, sensitization, CBD, and lung cancer. OSHA considers CBD to be a 
progressive illness with a continuous spectrum of symptoms ranging from 
no symptomatology at its earliest stage following sensitization to mild 
symptoms such as a slight almost imperceptible shortness of breath, to 
loss of pulmonary function, debilitating lung disease, and, in many 
cases, death. This section also discusses the nature of these 
illnesses, the scientific evidence that they are causally associated 
with occupational exposure to beryllium, and the probable mechanisms of 
action with a more thorough review of the supporting studies.
A. Beryllium and Beryllium Compounds--Particle Characterization
1. Particle Physical/Chemical Properties
    Beryllium has two oxidative states: Be(0) and Be(2\+\) (Agency for 
Toxic Substance and Disease Registry (ATSDR) 2002, Document ID 1371). 
It is likely that the Be(2\+\) state is the most biologically reactive 
and able to form a bond with peptides leading to it becoming antigenic 
(Snyder et al., 2003) as discussed in more detail in the Beryllium 
Sensitization section below. Beryllium has a high charge-to-radius 
ratio, forming various types of ionic bonds. In addition, beryllium has 
a strong tendency for covalent bond formation (e.g., it can form 
organometallic compounds such as Be(CH3)2 and 
many other complexes) (ATSDR, 2002, Document ID 1371; Greene et al., 
1998 (1519)). However, it appears that few, if any, toxicity studies 
exist for the organometallic compounds. Additional physical/chemical 
properties, such as solubility, for beryllium compounds that may be 
important in their biological response are summarized in Table 1 below. 
Solubility (as discussed in biological fluids in Section V.A.2.A below) 
is an important factor in evaluating the biological response to 
beryllium. For comparative purposes, water solubility is used in Table 
1. The International Chemical Safety Cards lists water solubility as a 
way to standardize solubility values among particles and fibers. The 
information contained within Table 1 was obtained from the 
International Chemical Safety Cards (ICSC) for beryllium metal (ICSC 
0226, Document ID 0438), beryllium oxide (ICSC 1325, Document ID 0444), 
beryllium sulfate (ICSC 1351, Document ID 0443), beryllium nitrate 
(ICSC 1352, Document ID 0442), beryllium carbonate (ICSC 1353, Document 
ID 0441), beryllium chloride (ICSC 1354, Document ID 0440), beryllium 
fluoride (ICSC 1355, Document ID 0439) and from the hazardous substance 
data bank (HSDB) for beryllium hydroxide (CASRN: 13327-32-7), and 
beryllium phosphate (CASRN: 13598-15-7, Document ID 0533). Additional 
information on chemical and physical properties as well as industrial 
uses for beryllium can be found in this preamble at Section IV, 
Chemical Properties and Industrial Uses.

                                Table 1--Beryllium Characteristics and Properties
----------------------------------------------------------------------------------------------------------------
                                                                                                  Solubility in
        Compound name                 Chemical formula          Molecular      Acute physical      water at 20
                                                                   mass           hazards             [deg]C
----------------------------------------------------------------------------------------------------------------
Beryllium Metal..............  Be............................          9.0  Combustible; Finely  None.
                                                                             dispersed
                                                                             particles--Explosi
                                                                             ve.
Beryllium Oxide..............  BeO...........................         25.0  Not combustible or   Very sparingly
                                                                             explosive.           soluble.
Beryllium Carbonate..........  Be2CO3(OH)/Be2CO5 H2..........       181.07  Not combustible or   None.
                                                                             explosive.
Beryllium Sulfate............  BeSO4.........................        105.1  Not combustible or   Slightly
                                                                             explosive.           soluble.
Beryllium Nitrate............  BeN2O6/Be(NO3)2...............        133.0  Enhances combustion  Very soluble
                                                                             of other             (1.66 x 10\6\
                                                                             substances.          mg/L).
Beryllium Hydroxide..........  Be(OH)2.......................         43.0  Not reported.......  Slightly
                                                                                                  soluble 0.8 x
                                                                                                  10\-4\ mol/L
                                                                                                  (3.44 mg/L).
Beryllium Chloride...........  BeCl2.........................         79.9  Not combustible or   Soluble.
                                                                             explosive.
Beryllium Fluoride...........  BeF2..........................         47.0  Not combustible or   Very soluble.
                                                                             explosive.
Beryllium Phosphate..........  Be3(PO4)2.....................        271.0  Not reported.......  Soluble.
----------------------------------------------------------------------------------------------------------------


[[Page 2483]]

    Beryllium shows a high affinity for oxygen in air and water, 
resulting in a thin surface film of beryllium oxide on the bare metal. 
If the surface film is disturbed, it may become airborne and cause 
respiratory tract exposure or dermal exposure (also referred to as 
dermal contact). The physical properties of solubility, particle 
surface area, and particle size of some beryllium compounds are 
examined in more detail below. These properties have been evaluated in 
many toxicological studies. In particular, the properties related to 
the calcination (firing temperatures) and differences in crystal size 
and solubility are important aspects in their toxicological profile.
2. Factors Affecting Potency and Effect of Beryllium Exposure
    The effect and potency of beryllium and its compounds, as for any 
toxicant, immunogen, or immunotoxicant, may be dependent upon the 
physical state in which they are presented to a host. For occupational 
airborne materials and surface contaminants, it is especially critical 
to understand those physical parameters in order to determine the 
extent of exposure to the respiratory tract and skin since these are 
generally the initial target organs for either route of exposure.
    For example, solubility has an important part in determining the 
toxicity and bioavailability of airborne materials as well. Respiratory 
tract retention and skin penetration are directly influenced by the 
solubility and reactivity of airborne material. Large particles may 
have less of an effect in the lung than smaller particles due to 
reduced potential to stay airborne, to be inhaled, or be deposited 
along the respiratory tract. In addition, once inhalation occurs 
particle size is critical in determining where the particle will 
deposit along the respiratory tract.
    These factors may be responsible, at least in part, for the process 
by which beryllium sensitization progresses to CBD in exposed workers. 
Other factors influencing beryllium-induced toxicity include the 
surface area of beryllium particles and their persistence in the lung. 
With respect to dermal contact or exposure, the physical 
characteristics of the particle are also important since they can 
influence skin absorption and bioavailability. This section addresses 
certain physical characteristics (i.e., solubility, particle size, 
particle surface area) that influence the toxicity of beryllium 
materials in occupational settings.
a. Solubility
    Solubility has been shown to be an important determinant of the 
toxicity of airborne materials, influencing the deposition and 
persistence of inhaled particles in the respiratory tract, their 
bioavailability, and the likelihood of presentation to the immune 
system. A number of chemical agents, including metals that contact and 
penetrate the skin, are able to induce an immune response, such as 
sensitization (Boeniger, 2003, Document ID 1560; Mandervelt et al., 
1997 (1451)). Similar to inhaled agents, the ability of materials to 
penetrate the skin is also influenced by solubility because dermal 
absorption may occur at a greater rate for soluble materials than 
poorly soluble materials (Kimber et al., 2011, Document ID 0534). In 
post-hearing comments, NIOSH explained:

    In biological systems, solubility is used to describe the rate 
at which a material will undergo chemical clearance and dissolve in 
a fluid (airway lining, inside phagolysomes) relative to the rate of 
mechanical clearance. For example, in the lung a ``poorly soluble'' 
material is one that dissolves at a rate slower than the rate of 
mechanical removal via the mucociliary escalator. Examples of poorly 
soluble forms of beryllium are beryllium silicates, beryllium oxide, 
and beryllium metal and alloys (Deubner et al. 2011; Huang et al. 
2011; Duling et al. 2012; Stefaniak et al. 2006, 201la, 2012). A 
highly soluble material is one that dissolves at a rate faster than 
mechanical clearance. Examples of highly soluble forms of beryllium 
are beryllium fluoride, beryllium sulfate, and beryllium chloride. 
(Document ID 1660-A2, p. 9).

This section reviews the relevant information regarding solubility, its 
importance in a biological matrix and its relevance to sensitization 
and beryllium lung disease. The weight of evidence presented below 
suggests that both soluble and poorly soluble forms of beryllium can 
induce a sensitization response and result in progression of lung 
disease.
    Beryllium salts, including the chloride (BeCl2), 
fluoride (BeF2), nitrate (Be(NO3)2), 
phosphate (Be3 (PO4)2), and sulfate 
(tetrahydrate) (BeSO4 [middot] 4H2O) salts, are 
all water soluble. However, soluble beryllium salts can be converted to 
less soluble forms in the lung (Reeves and Vorwald, 1967, Document ID 
1309). According to an EPA report, aqueous solutions of the soluble 
beryllium salts are acidic as a result of the formation of 
Be(OH2)4 2\+\, the tetrahydrate, which will react 
to form poorly soluble hydroxides or hydrated complexes within the 
general physiological range of pH values (between 5 and 8) (EPA, 1998, 
Document ID 1322). This may be an important factor in the development 
of CBD since lower-soluble forms of beryllium have been shown to 
persist in the lung for longer periods of time and persistence in the 
lung may be needed in order for this disease to occur (NAS, 2008, 
Document ID 1355).
    Beryllium oxide (BeO), hydroxide (Be(OH)2), carbonate 
(Be2 CO3 (OH)2), and sulfate 
(anhydrous) (BeSO4) are either insoluble, slightly soluble, 
or considered to be sparingly or poorly soluble (almost insoluble or 
having an extremely slow rate of dissolution and most often referred to 
as poorly soluble in more recent literature). The solubility of 
beryllium oxide, which is prepared from beryllium hydroxide by 
calcining (heating to a high temperature without fusing in order to 
drive off volatile chemicals) at temperatures between 500 and 1,750 
[deg]C, has an inverse relationship with calcination temperature. 
Although the solubility of the low-fired crystals can be as much as 10 
times that of the high-fired crystals, low-fired beryllium oxide is 
still only sparingly soluble (Delic, 1992, Document 1547). In a study 
that measured the dissolution kinetics (rate to dissolve) of beryllium 
compounds calcined at different temperatures, Hoover et al., compared 
beryllium metal to beryllium oxide particles and found them to have 
similar solubilities. This was attributed to a fine layer of beryllium 
oxide that coats the metal particles (Hoover et al., 1989, Document ID 
1510). A study conducted by Deubner et al. (2011) determined ore 
materials to be more soluble than beryllium oxide at pH 7.2 but similar 
in solubility at pH 4.5. Beryllium hydroxide was more soluble than 
beryllium oxide at both pHs (Deubner et al., 2011, Document ID 0527).
    Investigators have also attempted to determine how biological 
fluids can dissolve beryllium materials. In two studies, poorly soluble 
beryllium, taken up by activated phagocytes, was shown to be ionized by 
myeloperoxidases (Leonard and Lauwerys, 1987, Document ID 1293; 
Lansdown, 1995 (1469)). The positive charge resulting from ionization 
enabled the beryllium to bind to receptors on the surface of cells such 
as lymphocytes or antigen-presenting cells which could make it more 
biologically active (NAS, 2008, Document ID 1355). In a study utilizing 
phagolysosomal-simulating fluid (PSF) with a pH of 4.5, both beryllium 
metal and beryllium oxide dissolved at a greater rate than that 
previously reported in water or SUF (simulant fluid) (Stefaniak et al., 
2006, Document ID 1398), and the rate of dissolution of the multi-
constituent (mixed) particles

[[Page 2484]]

was greater than that of the single-constituent beryllium oxide powder. 
The authors speculated that copper in the particles rapidly dissolves, 
exposing the small inclusions of beryllium oxide, which have higher 
specific surface areas (SSA) and therefore dissolve at a higher rate. A 
follow-up study by the same investigational team (Duling et al., 2012, 
Document ID 0539) confirmed dissolution of beryllium oxide by PSF and 
determined the release rate was biphasic (initial rapid diffusion 
followed by a latter slower surface reaction-driven release). During 
the latter phase, dissolution half-times were 1,400 to 2,000 days. The 
authors speculated this indicated bertrandite was persistent in the 
lung (Duling et al., 2012, Document ID 0539).
    In a recent study investigating the dissolution and release of 
beryllium ions for 17 beryllium-containing materials (ore, hydroxide, 
metal, oxide, alloys, and processing intermediates) using artificial 
human airway epithelial lining fluid, Stefaniak et al. (2011) found 
release of beryllium ions within 7 days (beryl ore smelter dust). The 
authors calculated dissolution half-times ranging from 30 days 
(reduction furnace material) to 74,000 days (hydroxide). Stefaniak et 
al. (2011) speculated that despite the rapid mechanical clearance, 
billions of beryllium ions could be released in the respiratory tract 
via dissolution in airway lining fluid (ALF). Under this scenario, 
beryllium-containing particles depositing in the respiratory tract 
dissolving in ALF could provide beryllium ions for absorption in the 
lung and interact with immune cells in the respiratory tract (Stefaniak 
et al., 2011, Document ID 0537).
    Huang et al. (2011) investigated the effect of simulated lung fluid 
(SLF) on dissolution and nanoparticle generation and beryllium-
containing materials. Bertrandite-containing ore, beryl-containing ore, 
frit (a processing intermediate), beryllium hydroxide (a processing 
intermediate) and silica (used as a control), were equilibrated in SLF 
at two pH values (4.5 and 7.2) to reflect inter- and intra-cellular 
environments in the lung tissue. Concentrations of beryllium, aluminum, 
and silica ions increased linearly during the first 20 days in SLF, and 
rose more slowly thereafter, reaching equilibrium over time. The study 
also found nanoparticle formation (in the size range of 10-100 nm) for 
all materials (Huang et al., 2011, Document ID 0531).
    In an in vitro skin model, Sutton et al. (2003) demonstrated the 
dissolution of beryllium compounds (poorly soluble beryllium hydroxide, 
soluble beryllium phosphate) in a simulated sweat fluid (Document ID 
1393). This model showed beryllium can be dissolved in biological 
fluids and be available for cellular uptake in the skin. Duling et al. 
(2012) confirmed dissolution and release of ions from bertrandite ore 
in an artificial sweat model (pH 5.3 and pH 6.5) (Document ID 0539).
    In summary, studies have shown that soluble forms of beryllium 
readily dissolve into ionic components making them biologically 
available for dermal penetration and activation of immune cells 
(Stefaniak et al., 2011; Document ID 0537). Soluble forms can also be 
converted to less soluble forms in the lung (Reeves and Vorwald, 1967, 
Document ID 1309) making persistence in the lung a possibility and 
increasing the potential for development of CBD (see section V.D.2). 
Studies by Stefaniak et al. (2003, 2006, 2011, 2012) (Document ID 1347; 
1398; 0537; 0469), Huang et al. (2011), Duling et al. (2012), and 
Deubner et al. (2011) have demonstrated poorly soluble forms can be 
readily dissolved in biological fluids such as sweat, lung fluid, and 
cellular fluids. The dissolution of beryllium ions into biological 
fluids increases the likelihood of beryllium presentation to immune 
cells, thus increasing the potential for sensitization through dermal 
contact or lung exposure (Document ID 0531; 0539; 0527) (see section 
V.D.1).
    OSHA received comments from the Non-Ferrous Founders' Society 
(NFFS) contending that the scientific evidence does not support 
insoluble beryllium as a causative agent for sensitization and CBD 
(Document ID 1678, p. 6). The NFFS contends that insoluble beryllium is 
not carcinogenic or a sensitizer to humans, and argues that based on 
this information, OSHA should consider a bifurcated standard with 
separate PELs for soluble and poorly soluble beryllium and beryllium 
compounds and insoluble beryllium metallics (Document ID 1678, p. 7). 
As evidence supporting its conclusion, the NFFS cited a 2010 statement 
written by Dr. Christian Strupp commissioned by the beryllium industry 
(Document ID 1785, 1814), which reviewed selected studies to evaluate 
the toxic potential of beryllium metal and alloys (Document ID 1678, 
pp. 7). The Strupp and Furnes statement (2010) cited by the NFFS is the 
background material and basis of the Strupp (2011a and 2011b) studies 
in the docket (Document ID 1794; 1795). In response to Strupp 2011 (a 
and b), Aleks Stefaniak of NIOSH published a letter to the editor 
refuting some of the evidence presented by Strupp (2011a and b, 
Document ID 1794; 1795). The first study by Strupp (2011a) evaluated 
selected animal studies and concluded that beryllium metal was not a 
sensitizer. Stefaniak (2011) evaluated the validity of the Strupp 
(2011a) study of beryllium toxicity and noted numerous deficiencies, 
including deficiencies in the study design, improper administration of 
beryllium test compounds, and lack of proper controls (Document ID 
1793). In addition, Strupp (2011a) omitted numerous key animal and 
epidemiological studies demonstrating the potential of poorly soluble 
beryllium and beryllium metal as a sensitizing agent. One such study, 
Tinkle et al. (2003), demonstrated that topical application of poorly 
soluble beryllium induced skin sensitization in mice (Document ID 
1483). Comments from NIOSH and National Jewish Medical Center state 
that poorly soluble beryllium materials are capable of dissolving in 
sweat (Document ID 1755; 1756). After evaluating the scientific 
evidence from epidemiological and animal studies, OSHA finds, based on 
the best available evidence, that soluble and poorly soluble forms of 
beryllium and beryllium compounds are causative agents of sensitization 
and CBD.
b. Particle Size
    The toxicity of beryllium as exemplified by beryllium oxide is 
dependent, in part, on the particle size, with smaller particles (less 
than 10 [mu]m in diameter) able to penetrate beyond the larynx 
(Stefaniak et al., 2008, Document ID 1397). Most inhalation studies and 
occupational exposures involve quite small (less than 1-2 [mu]m in 
diameter) beryllium oxide particles that can penetrate to the pulmonary 
regions of the lung (Stefaniak et al., 2008, Document ID 1397). In 
inhalation studies with beryllium ores, particle sizes are generally 
much larger, with deposition occurring in several areas throughout the 
respiratory tract for particles less than 10 [mu]m in diameter.
    The temperature at which beryllium oxide is calcined influences its 
particle size, surface area, solubility, and ultimately its toxicity 
(Delic, 1992, Document ID 1547). Low-fired (500 [deg]C) beryllium oxide 
is predominantly made up of poorly crystallized small particles, while 
higher firing temperatures (1000-1750 [deg]C) result in larger particle 
sizes (Delic, 1992, Document ID 1547).
    In order to determine the extent to which particle size plays a 
role in the toxicity of beryllium in occupational settings, several key 
studies are reviewed and detailed below. The findings on particle size 
have been related, where possible, to work process

[[Page 2485]]

and biologically relevant toxicity endpoints of either sensitization or 
CBD.
    Numerous studies have been conducted evaluating the particle size 
generated during basic industrial and machining operations. In a study 
by Cohen et al. (1983), a multi-cyclone sampler was utilized to measure 
the size mass distribution of the beryllium aerosol at a beryllium-
copper alloy casting operation (Document ID 0540). Briefly, Cohen et 
al. (1983) found variable particle size generation based on the 
operations being sampled with particle size ranging from 3 to 16 [mu]m. 
Hoover et al. (1990) also found variable particle sizes being generated 
across different operations (Document ID 1314). In general, Hoover et 
al. (1990) found that milling operations generated smaller particle 
sizes than sawing operations. Hoover et al. (1990) also found that 
beryllium metal generated higher concentrations than metal alloys. 
Martyny et al. (2000) characterized generation of particle size during 
precision beryllium machining processes (Document ID 1053). The study 
found that more than 50 percent of the beryllium machining particles 
collected in the breathing zone of machinists were less than 10 [mu]m 
in aerodynamic diameter with 30 percent of those smaller particles 
being less than 0.6 [mu]m. A study by Thorat et al. (2003) found 
similar results with ore mixing, crushing, powder production and 
machining ranging from 5.0 to 9.5 [mu]m (Document ID 1389). Kent et al. 
(2001) measured airborne beryllium using size-selective samplers in 
five furnace areas at a beryllium processing facility (Document ID 
1361). A statistically significant linear trend was reported between 
the alveolar-deposited particle mass concentration and prevalence of 
CBD and sensitization in the furnace production areas. The study 
authors suggested that the concentration of alveolar-deposited 
particles (e.g., <3.5 [mu]m) may be a better predictor of sensitization 
and CBD than the total mass concentration of airborne beryllium.
    A recent study by Virji et al. (2011) evaluated particle size 
distribution, chemistry, and solubility in areas with historically 
elevated risk of sensitization and CBD at a beryllium metal powder, 
beryllium oxide, and alloy production facility (Document ID 0465). The 
investigators observed that historically, exposure-response 
relationships have been inconsistent when using mass concentration to 
identify process-related risk, possibly due to incomplete particle 
characterization. Two separate exposure surveys were conducted in March 
1999 and June-August 1999 using multi-stage personal impactor samplers 
(to determine particle size distribution) and personal 37 mm closed 
face cassette (CFC) samplers, both located in workers' breathing zones. 
One hundred and ninety eight time-weighted-average (TWA) personal 
impactor samples were analyzed for representative jobs and processes. A 
total of 4,026 CFC samples were collected over the collection period 
and analyzed for mass concentration, particle size, chemical content 
and solubility and compared to process areas with high risk of 
sensitization and CBD. The investigators found that total beryllium 
concentration varied greatly between workers and among process areas. 
Analysis of chemical form and solubility also revealed wide variability 
among process areas, but high risk process areas had exposures to both 
soluble and poorly soluble forms of beryllium. Analysis of particle 
size revealed most process areas had particles ranging from 5 to 14 
[micro]m mass median aerodynamic diameter (MMAD). Rank order 
correlating jobs to particle size showed high overall consistency 
(Spearman r = 0.84) but moderate correlation (Pearson r = 0.43). The 
investigators concluded that by considering more relevant aspects of 
exposure such as particle size distribution, chemical form, and 
solubility could potentially improve exposure assessments (Virji et 
al., 2011, Document ID 0465).
    To summarize, particle size influences deposition of beryllium 
particles in the lung, thereby influencing toxicity. Studies by 
Stefaniak et al. (2008) demonstrated that the majority of particles 
generated by beryllium processing operations were in the respirable 
range (less than 1-2 [mu]m) (Document ID 1397). However, studies by 
Virji et al. (2011) (Document ID 0465), Cohen et al. (1983) (Document 
ID 0540) and Hoover et al. (1990) (Document ID 1314) showed that some 
operations could generate particle sizes ranging from 3 to 16 [mu]m.
c. Particle Surface Area
    Particle surface area has been postulated as an important metric 
for beryllium exposure. Several studies have demonstrated a 
relationship between the inflammatory and tumorigenic potential of 
ultrafine particles and their increased surface area (Driscoll, 1996, 
Document ID 1539; Miller, 1995 (0523); Oberdorster et al., 1996 
(1434)). While the exact mechanism explaining how particle surface area 
influences its biological activity is not known, a greater particle 
surface area has been shown to increase inflammation, cytokine 
production, pro- and anti-oxidant defenses and apoptosis, which has 
been shown to increase the tumorigenic potential of poorly-soluble 
particles (Elder et al., 2005, Document ID 1537; Carter et al., 2006 
(1556); Refsnes et al., 2006 (1428)).
    Finch et al. (1988) found that beryllium oxide calcined at 
500[deg]C had 3.3 times greater specific surface area (SSA) than 
beryllium oxide calcined at 1000 [deg]C, although there was no 
difference in size or structure of the particles as a function of 
calcining temperature (Document ID 1317). The beryllium-metal aerosol 
(airborne beryllium particles), although similar to the beryllium oxide 
aerosols in aerodynamic size, had an SSA about 30 percent that of the 
beryllium oxide calcined at 1000 [deg]C. As discussed above, a later 
study by Delic (1992) found calcining temperatures had an effect on SSA 
as well as particle size (Document ID 1547).
    Several studies have investigated the lung toxicity of beryllium 
oxide calcined at different temperatures and generally have found that 
those calcined at lower temperatures have greater toxicity and effect 
than materials calcined at higher temperatures. This may be because 
beryllium oxide fired at the lower temperature has a loosely formed 
crystalline structure with greater specific surface area than the fused 
crystal structure of beryllium oxide fired at the higher temperature. 
For example, beryllium oxide calcined at 500 [deg]C has been found to 
have stronger pathogenic effects than material calcined at 1,000 
[deg]C, as shown in several of the beagle dog, rat, mouse and guinea 
pig studies discussed in the section on CBD pathogenesis that follows 
(Finch et al., 1988, Document ID 1495; Pol[aacute]k et al., 1968 
(1431); Haley et al., 1989 (1366); Haley et al., 1992 (1365); Hall et 
al., 1950 (1494)). Finch et al. have also observed higher toxicity of 
beryllium oxide calcined at 500 [deg]C, an observation they attribute 
to the greater surface area of beryllium particles calcined at the 
lower temperature (Finch et al., 1988, Document ID 1495). These authors 
found that the in vitro cytotoxicity to Chinese hamster ovary (CHO) 
cells and cultured lung epithelial cells of 500 [deg]C beryllium oxide 
was greater than that of 1,000 [deg]C beryllium oxide, which in turn 
was greater than that of beryllium metal. However, when toxicity was 
expressed in terms of particle surface area, the cytotoxicity of all 
three forms was similar. Similar results were observed in a study 
comparing the cytotoxicity of beryllium metal particles of various 
sizes to cultured rat alveolar macrophages, although specific surface

[[Page 2486]]

area did not entirely predict cytotoxicity (Finch et al., 1991, 
Document ID 1535).
    Stefaniak et al. (2003) investigated the particle structure and 
surface area of beryllium metal, beryllium oxide, and copper-beryllium 
alloy particles (Document ID 1347). Each of these samples was separated 
by aerodynamic size, and their chemical compositions and structures 
were determined with x-ray diffraction and transmission electron 
microscopy, respectively. In summary, beryllium-metal powder varied 
remarkably from beryllium oxide powder and alloy particles. The metal 
powder consisted of compact particles, in which SSA decreases with 
increasing surface diameter. In contrast, the alloys and oxides 
consisted of small primary particles in clusters, in which the SSA 
remains fairly constant with particle size. SSA for the metal powders 
varied based on production and manufacturing process with variations 
among samples as high as a factor of 37. Stefaniak et al. (2003) found 
lesser variation in SSA for the alloys or oxides (Document ID 1347). 
This is consistent with data from other studies summarized above 
showing that process may affect particle size and surface area. 
Particle size and/or surface area may explain differences in the rate 
of beryllium sensitization and CBD observed in some epidemiological 
studies. However, these properties have not been consistently 
characterized in most studies.
B. Kinetics and Metabolism of Beryllium
    Beryllium enters the body by inhalation, absorption through the 
skin, or ingestion. For occupational exposure, the airways and the skin 
are the primary routes of uptake.
1. Exposure Via the Respiratory System
    The respiratory tract, especially the lung, is the primary target 
of inhalation exposure in workers. Disposition (deposition and 
clearance) of the particle or droplet along the respiratory tract 
influences the biological response to the toxicant (Schlesinger et al., 
1997, Document ID 1290). Inhaled beryllium particles are deposited 
along the respiratory tract in a size dependent manner as described by 
the International Commission for radiological Protection (ICRP) model 
(Figure 1). In general, particles larger than 10 [mu]m tend to deposit 
in the upper respiratory tract or nasal region and do not appreciably 
penetrate lower in the tracheobronchial or pulmonary regions (Figure 
1). Particles less than 10 [mu]m increasingly penetrate and deposit in 
the tracheobronchial and pulmonary regions with peak deposition in the 
pulmonary region occurring below 5 [mu]m in particle diameter. The CBD 
pathology of concern is found in the pulmonary region. For particles 
below 1 [mu]m in particle diameter, regional deposition changes 
dramatically. Ultrafine particles (generally considered to be 100 nm or 
lower) have a higher rate of deposition along the entire respiratory 
system (ICRP model, 1994). However, due to the hygroscopic nature of 
soluble particles, deposition patterns may be slightly different with 
an enhanced preference for the tracheobronchial or bronchial region of 
the lung. Nonetheless, soluble particles are still capable of 
depositing in the pulmonary region (Schlesinger et al., 1997, Document 
ID 1290).
    Particles depositing in the lung and along the entire respiratory 
tract may encounter immunologic cells or may move into the vascular 
system where they are free to leave the lung and can contribute to 
systemic beryllium concentrations.
[GRAPHIC] [TIFF OMITTED] TR09JA17.000

    Beryllium is removed from the respiratory tract by various 
clearance mechanisms. Soluble beryllium is removed from the respiratory 
tract via absorption or chemical clearance (Schlesinger, 1997, Document 
ID 1290). Sparingly soluble or poorly soluble beryllium is removed via 
mechanical mechanisms and may remain in the

[[Page 2487]]

lungs for many years after exposure, as has been observed in workers 
(Schepers, 1962, Document ID 1414). Clearance mechanisms for sparingly 
soluble or poorly soluble beryllium particles include: In the nasal 
passage, sneezing, mucociliary transport to the throat, or dissolution; 
in the tracheobronchial region, mucociliary transport, coughing, 
phagocytosis, or dissolution; in the pulmonary or alveolar region, 
phagocytosis, movement through the interstitium (translocation), or 
dissolution (Schlesinger, 1997, Document ID 1290). Mechanical clearance 
mechanisms may occur slowly in humans, which is consistent with some 
animal and human studies. For example, subjects in the Beryllium Case 
Registry (BCR), which identifies and tracks cases of acute and chronic 
beryllium diseases, had elevated concentrations of beryllium in lung 
tissue (e.g., 3.1 [mu]g/g of dried lung tissue and 8.5 [mu]g/g in a 
mediastinal node) more than 20 years after termination of short-term 
(generally between 2 and 5 years) occupational exposure to beryllium 
(Sprince et al., 1976, Document ID 1405).
    Due to physiological differences, clearance rates can vary between 
humans and animal species (Schlesinger, 1997, Document ID 1290; Miller, 
2000 (1831)). However, clearance rates are also dependent upon the 
solubility, dose, and size of the inhaled beryllium compound. As 
reviewed in a WHO Report (2001) (Document ID 1282), more soluble 
beryllium compounds generally tend to be cleared from the respiratory 
system and absorbed into the bloodstream more rapidly than less soluble 
compounds (Van Cleave and Kaylor, 1955, Document ID 1287; Hart et al., 
1980 (1493); Finch et al., 1990 (1318)). Animal inhalation or 
intratracheal instillation studies administering soluble beryllium 
salts demonstrated significant absorption of approximately 20 percent 
of the initial lung burden with rapid dissolution of soluble compounds 
from the lung (Delic, 1992, Document ID 1547). Absorption of poorly 
soluble compounds such as beryllium oxide administered via inhalation 
or intratracheal instillation was slower and less significant (Delic, 
1992, Document ID 1547). Additional animal studies have demonstrated 
that clearance of poorly soluble beryllium compounds was biphasic: A 
more rapid initial mucociliary transport phase of particles from the 
tracheobronchial tree to the gastrointestinal tract, followed by a 
slower phase via translocation to tracheobronchial lymph nodes, 
alveolar macrophages uptake, and beryllium particles dissolution 
(Camner et al., 1977, Document ID 1558; Sanders et al., 1978 (1485); 
Delic, 1992 (1547); WHO, 2001 (1282)). Confirmatory studies in rats 
have shown the half-time for the rapid phase to be between 1 and 60 
days, while the slow phase ranged from 0.6 to 2.3 years. Studies have 
also shown that this process was influenced by the solubility of the 
beryllium compounds: Weeks/months for soluble compounds, months/years 
for poorly soluble compounds (Reeves and Vorwald, 1967; Reeves et al., 
1967; Rhoads and Sanders, 1985). Studies in guinea pigs and rats 
indicate that 40-50 percent of the inhaled soluble beryllium salts are 
retained in the respiratory tract. Similar data could not be found for 
the poorly soluble beryllium compounds or metal administered by this 
exposure route. (WHO, 2001, Document ID 1282; ATSDR, 2002 (1371).)
    Evidence from animal studies suggests that greater amounts of 
beryllium deposited in the lung may result in slower clearance times. 
Acute inhalation studies performed in rats and mice using a single dose 
of inhaled aerosolized beryllium metal showed that exposure to 
beryllium metal can slow particle clearance and induce lung damage in 
rats and mice (Finch et al., 1998, Document ID 1317; Haley et al., 1990 
(1314)). In another study, Finch et al. (1994) exposed male F344/N rats 
to beryllium metal at concentrations resulting in beryllium lung 
burdens of 1.8, 10, and 100 [mu]g. These exposure levels resulted in an 
estimated clearance half-life ranging from 250 to 380 days for the 
three concentrations. For mice (Finch et al., 1998, Document ID 1317), 
lung clearance half-lives were 91-150 days (for 1.7- and 2.6-[mu]g lung 
burden groups) or 360-400 days (for 12- and 34-[mu]g lung burden 
groups). While the lower exposure groups were quite different for rats 
and mice, the highest groups were similar in clearance half-lives for 
both species.
    Beryllium absorbed from the respiratory system was shown to 
distribute primarily to the tracheobronchial lymph nodes via the lymph 
system, bloodstream, and skeleton (Stokinger et al., 1953, Document ID 
1277; Clary et al., 1975 (1320); Sanders et al., 1975 (1486); Finch et 
al., 1990 (1318)). Studies in rats demonstrated accumulation of 
beryllium chloride in the skeletal system following intraperitoneal 
injection (Crowley et al., 1949, Document ID 1551; Scott et al., 1950 
(1413)) and accumulation of beryllium phosphate and beryllium sulfate 
in both non-parenchymal and parenchymal cells of the liver after 
intravenous administration in rats (Skilleter and Price, 1978, Document 
ID 1408). Studies have also demonstrated intracellular accumulation of 
beryllium oxide in bone marrow throughout the skeletal system after 
intravenous administration to rabbits (Fodor, 1977, Document ID 1532; 
WHO, 2001 (1282)). Trace amounts of beryllium have also been shown to 
be distributed throughout the body (WHO, 2001, Document ID 1282).
    Systemic distribution of the more soluble compounds was shown to be 
greater than that of the poorly soluble compounds (Stokinger et al., 
1953, Document ID 1277). Distribution has also been shown to be dose 
dependent in research using intravenous administration of beryllium in 
rats; small doses were preferentially taken up in the skeleton, while 
higher doses were initially distributed preferentially to the liver.
    Beryllium was later mobilized from the liver and transferred to the 
skeleton (IARC, 1993, Document ID 1342). A half-life of 450 days has 
been estimated for beryllium in the human skeleton (ICRP, 1960, 
Document ID 0248). This indicates the skeleton may serve as a 
repository for beryllium that may later be reabsorbed by the 
circulatory system, making beryllium available to the immunological 
system (WHO, 2001, Document ID 1282). In a recent review of the 
information, the American Conference of Governmental Industrial 
Hygienists (ACGIH, 2010) was not able to confirm the association 
between occupational inhalation and urinary excretion (Document ID 
1662, p. 4). However, IARC (2012) noted that an accidental exposure of 
25 people to beryllium dust reported in a study by Zorn et al. (1986) 
resulted in a mean serum concentration of 3.5 [mu]g/L one day after the 
exposure, which decreased to 2.4 [mu]g/L by day six. The IARC report 
concluded that beryllium from beryllium metal was biologically 
available for systemic distribution from the lung (IARC, 2012, Document 
ID 0650).
    Based on these studies, OSHA finds that the respiratory tract is a 
primary pathway for beryllium exposure. While particle size and surface 
area may contribute to the toxicity of beryllium, there is not 
sufficient evidence for OSHA to regulate based on size and surface 
area. However, the Agency finds that both soluble and poorly soluble 
forms of beryllium and beryllium compounds can contribute to exposure 
via the respiratory system and therefore can be causative agents of 
sensitization and CBD.

[[Page 2488]]

2. Dermal Exposure
    Beryllium compounds have been shown to cause skin irritation and 
sensitization in humans and certain animal models (Van Ordstrand et 
al., 1945, Document ID 1383; de Nardi et al., 1953 (1545); Nishimura, 
1966 (1435); Epstein, 1991 (0526); Belman, 1969 (1562); Tinkle et al., 
2003 (1483); Delic, 1992 (1547)). The Agency for Toxic Substances and 
Disease Registry (ATSDR) estimated that less than 0.1 percent of 
beryllium compounds are absorbed through the skin (ATSDR, 2002, 
Document ID 1371). However, even minute contact and absorption across 
the skin may directly elicit an immunological response resulting in 
sensitization (Deubner et al., 2001, Document ID 1543; Toledo et al., 
2011 (0522)). Studies by Tinkle et al. (2003) showed that penetration 
of beryllium oxide particles was possible ex vivo for human intact skin 
at particle sizes of less than or equal to 1[mu]m in diameter, as 
confirmed by scanning electron microscopy (Document ID 1483). Using 
confocal microscopy, Tinkle et al. demonstrated that surrogate 
fluorescent particles up to 1 [mu]m in size could penetrate the mouse 
epidermis and dermis layers in a model designed to mimic the flexing 
and stretching of human skin in motion. Other poorly soluble particles, 
such as titanium dioxide, have been shown to penetrate normal human 
skin (Tan et al., 1996, Document ID 1391) suggesting the flexing and 
stretching motion as a plausible mechanism for dermal penetration of 
beryllium as well. As earlier summarized, poorly soluble forms of 
beryllium can be solubilized in biological fluids (e.g., sweat) making 
them available for absorption through intact skin (Sutton et al., 2003, 
Document ID 1393; Stefaniak et al., 2011 (0537) and 2014 (0517); Duling 
et al., 2012 (0539)).
    Although its precise role remains to be elucidated, there is 
evidence that dermal exposure can contribute to beryllium 
sensitization. As early as the 1940s it was recognized that dermatitis 
experienced by workers in primary beryllium production facilities was 
linked to exposures to the soluble beryllium salts. Except in cases of 
wound contamination, dermatitis was rare in workers whose exposures 
were restricted to exposure to poorly soluble beryllium-containing 
particles (Van Ordstrand et al., 1945, Document ID 1383). Further 
investigation by McCord in 1951 (Document ID 1448) indicated that 
direct skin contact with soluble beryllium compounds, but not beryllium 
hydroxide or beryllium metal, caused dermal lesions (reddened, 
elevated, or fluid-filled lesions on exposed body surfaces) in 
susceptible persons. Curtis, in 1951, demonstrated skin sensitization 
to beryllium with patch testing using soluble and poorly soluble forms 
of beryllium in beryllium-na[iuml]ve subjects. These subjects later 
developed granulomatous skin lesions with the classical delayed-type 
contact dermatitis following repeat challenge (Curtis, 1951, Document 
ID 1273). These lesions appeared after a latent period of 1-2 weeks, 
suggesting a delayed allergic reaction. The dermal reaction occurred 
more rapidly and in response to smaller amounts of beryllium in those 
individuals previously sensitized (Van Ordstrand et al., 1945, Document 
ID 1383). Contamination of cuts and scrapes with beryllium can result 
in the beryllium becoming embedded within the skin causing an 
ulcerating granuloma to develop in the skin (Epstein, 1991, Document ID 
0526). Soluble and poorly soluble beryllium-compounds that penetrate 
the skin as a result of abrasions or cuts have been shown to result in 
chronic ulcerations and skin granulomas (Van Ordstrand et al., 1945, 
Document ID 1383; Lederer and Savage, 1954 (1467)). Beryllium 
absorption through bruises and cuts has been demonstrated as well 
(Rossman et al., 1991, Document ID 1332).
    In a study by Ivannikov et al. (1982) (as cited in Deubner et al., 
2001, Document ID 0023), beryllium chloride was applied directly to 
three different types of wounded skin: abrasions (superficial skin 
trauma), cuts (skin and superficial muscle trauma), and penetration 
wounds (deep muscle trauma). According to Deubner et al. (2001) the 
percentage of the applied dose systemically absorbed during a 24-hour 
exposure was significant, ranging from 7.8 percent to 11.4 percent for 
abrasions, from 18.3 percent to 22.9 percent for cuts, and from 34 
percent to 38.8 percent for penetration wounds (Deubner et al., 2001, 
Document ID 0023).
    A study by Deubner et al. (2001) concluded that exposure across 
damaged skin can contribute as much systemic loading of beryllium as 
inhalation (Deubner et al., 2001, Document ID 1543). Deubner et al. 
(2001) estimated dermal loading (amount of particles penetrating into 
the skin) in workers as compared to inhalation exposure. Deubner's 
calculations assumed a dermal loading rate for beryllium on skin of 
0.43 [mu]g/cm\2\, based on the studies of loading on skin after workers 
cleaned up (Sanderson et al.., 1999, Document ID 0474), multiplied by a 
factor of 10 to approximate the workplace concentrations and the very 
low absorption rate of beryllium into skin of 0.001 percent (taken from 
EPA estimates). As cited by Deubner et al. (2001), the EPA noted that 
these calculations did not take into account absorption of soluble 
beryllium salts that might occur across nasal mucus membranes, which 
may result from contact between contaminated skin and the nose (Deubner 
et al., 2001, Document ID 1543).
    A study conducted by Day et al. (2007) evaluated the effectiveness 
of a dermal protection program implemented in a beryllium alloy 
facility in 2002 (Document ID 1548). The investigators evaluated levels 
of beryllium in air, on workplace surfaces, on cotton gloves worn over 
nitrile gloves, and on the necks and faces of workers over a six day 
period. The investigators found a strong correlation between air 
concentrations determined from sampling data and work surface 
contamination at this facility. The investigators also found measurable 
levels of beryllium on the skin of workers as a result of work 
processes even from workplace areas promoted as ``visually clean'' by 
the company housekeeping policy. Importantly, the investigators found 
that the beryllium contamination could be transferred from body region 
to body region (e.g., hand to face, neck to face) demonstrating the 
importance of dermal protection measures since sensitization can occur 
via dermal exposure as well as respiratory exposure. The investigators 
demonstrated multiple pathways of exposure which could lead to 
sensitization, increasing risk for developing CBD (Day et al., 2007, 
Document ID 1548).
    The same group of investigators extended their work on 
investigating multiple exposure pathways contributing to sensitization 
and CBD (Armstrong et al., 2014, Document ID 0502). The investigators 
evaluated four different beryllium manufacturing and processing 
facilities to assess the contribution of various exposure pathways on 
worker exposure. Airborne, work surface and cotton glove beryllium 
concentrations were evaluated. The investigators found strong 
correlations between air and surface concentrations; glove and surface 
concentrations; and air and glove concentrations at this facility. This 
work supports findings from Day et al. (2007) (Document ID 1548) 
demonstrating the importance of airborne beryllium concentrations to 
surface contamination and dermal exposure even at exposures below the

[[Page 2489]]

preceding OSHA PEL (Armstrong et al., 2014, Document ID 0502).
    OSHA received comments regarding the potential for dermal 
penetration of poorly soluble particles. Materion contended there is no 
supporting evidence to suggest that insoluble or poorly soluble 
particles penetrate skin and stated:

. . . we were aware that, a hypothesis has been put forth which 
suggests that being sensitized to beryllium either through a skin 
wound or via penetration of small beryllium particles through intact 
skin could result in sensitization to beryllium which upon receiving 
a subsequent inhalation dose of airborne beryllium could result in 
CBD. However, there are no studies that skin absorption of insoluble 
beryllium results in a systemic effect. The study by Curtis, the 
only human study looking for evidence of a beryllium sensitization 
reaction occurring through intact human skin, found no sensitization 
reaction using insoluble forms of beryllium. (Document ID 1661, p. 
12).

OSHA disagrees with the assertion that no studies are available 
indicating skin absorption of poorly soluble (insoluble) beryllium. In 
addition to the study cited by Materion (Curtis, 1951, Document ID 
1273), OSHA reviewed numerous studies on the effects of beryllium 
solubility and dermal penetration (see section V. B. 2) including the 
Tinkle et al. (2003) (Document ID 1483) study which demonstrated the 
potential for poorly soluble beryllium particles to penetration skin 
using an ex vivo human skin model. While OSHA believes that these 
studies demonstrate poorly soluble beryllium can in fact penetrate 
intact skin, penetration through intact skin is not the only means for 
a person to become sensitized through skin contact with poorly soluble 
beryllium. During the informal hearing proceedings, NIOSH was asked 
about the role of poorly soluble beryllium in sensitizing workers to 
beryllium. Aleks Stefaniak, Ph.D., NIOSH, stated that ``intact skin 
naturally has a barrier that prevents moisture from seeping out of the 
body and things from getting into the body. Very few people actually 
have fully intact skin, especially in an industrial environment. So the 
skin barrier is often compromised, which would make penetration of 
particles much easier.'' (Document ID 1755, Tr. 36).
    As summarized above, poorly soluble beryllium particles have been 
shown to solubilize in biological fluids (e.g., sweat) releasing 
beryllium ions and making them available for absorption through intact 
skin (Sutton et al., 2003, Document ID 1393; Stefaniak et al. 2014 
(0517); Duling et al., 2012 (0539)). Epidemiological studies evaluating 
the effectiveness of PPE in facilities working with beryllium (with 
special emphasis on skin protection) have demonstrated a reduced rate 
of beryllium sensitization after implementation of this type of control 
(Day et al., 2007, Document ID 1548; Armstrong et al., 2014 (0502)). 
Dr. Stefaniak confirmed these findings:


    [T]he particles can actually dissolve when they're in contact 
with liquids on the skin, like sweat. So we've actually done a 
series of studies, using a simulant of sweat, but it had 
characteristics that very closely matched human sweat. We see in 
those studies that, in fact, beryllium particles, beryllium oxide, 
beryllium metal, beryllium alloys, all these sort of what we call 
insoluble forms actually do in fact dissolve very readily in analog 
of human sweat. And once beryllium is in an ionic form on the skin, 
it's actually very easy for it to cross the skin barrier. And that's 
been shown many, many times in studies that beryllium ions can cross 
the skin and induce sensitization. (Document ID 1755, Tr. 36-37).

    Based on information from various studies demonstrating that poorly 
soluble particles have the potential to penetrate skin, that skin as a 
barrier is rarely intact (especially in industrial settings), and that 
beryllium particles can readily dissolve in sweat and other biological 
fluids, OSHA finds that dermal exposure to poorly soluble beryllium can 
cause sensitization (Rossman, et al., 1991, Document ID 1332; Deubner 
et al., 2001 (1542); Tinkle et al., 2003 (1483); Sutton et al., 2003 
(1393); Stefaniak et al., 2011 (0537) and 2014 (0517); Duling et al., 
2012 (0539); Document ID 1755, Tr. 36-37).
3. Oral and Gastrointestinal Exposure
    According to the WHO Report (2001), gastrointestinal absorption of 
beryllium can occur by both the inhalation and oral routes of exposure 
(Document ID 1282). In the case of inhalation, a portion of the inhaled 
material is transported to the gastrointestinal tract by the 
mucociliary escalator or by the swallowing of the poorly soluble 
material deposited in the upper respiratory tract (Schlesinger, 1997, 
Document ID 1290). Animal studies have shown oral administration of 
beryllium compounds to result in very limited absorption and storage 
(as reviewed by U.S. EPA, 1998, Document ID 0661). Oral studies 
utilizing radio-labeled beryllium chloride in rats, mice, dogs, and 
monkeys, found the majority of the beryllium was unabsorbed by the 
gastrointestinal tract and was eliminated in the feces. In most 
studies, less than 1 percent of the administered radioactivity was 
absorbed into the bloodstream and subsequently excreted in the urine 
(Crowley et al., 1949, Document ID 1551; Furchner et al., 1973 (1523); 
LeFevre and Joel, 1986 (1464)). Research using soluble beryllium 
sulfate has shown that as the compound passes into the intestine, which 
has a higher pH than the stomach (approximate pH of 6 to 8 for the 
intestine, pH of 1 or 2 for the stomach), the beryllium is precipitated 
as the poorly soluble phosphate and is not absorbed (Reeves, 1965, 
Document ID 1430; WHO, 2001 (1282)).
    Further studies suggested that beryllium absorbed into the 
bloodstream is primarily excreted via urine (Crowley et al., 1949, 
Document ID 1551; Furchner et al., 1973 (1523); Scott et al., 1950 
(1413); Stiefel et al., 1980 (1288)). Unabsorbed beryllium is primarily 
excreted via the fecal route (Finch et al., 1990, Document ID 1318; 
Hart et al., 1980 (1493)). Parenteral administration in a variety of 
animal species demonstrated that beryllium was eliminated at much 
higher percentages in the urine than in the feces (Crowley et al., 
1949, Document ID 1551; Furchner et al., 1973 (1523); Scott et al., 
1950 (1413)). A study using percutaneous administration of soluble 
beryllium nitrate in rats demonstrated that more than 90 percent of the 
beryllium in the bloodstream was eliminated via urine (WHO, 2001, 
Document ID 1282). Greater than 99 percent of ingested beryllium 
chloride was excreted in the feces (Mullen et al., 1972, Document ID 
1442). A study of mice, rats, monkeys, and dogs given intravenously 
dosed with beryllium chloride determined elimination half-times to be 
between 890 to 1,770 days (2.4 to 4.8 years) (Furchner et al., 1973, 
Document ID 1523). In a comparison study, baboons and rats were 
instilled intratracheally with beryllium metal. Mean daily excretion 
rates were calculated as 4.6 x 10-5 percent of the dose 
administered in baboons and 3.1 x 10-5 percent in rats 
(Andre et al., 1987, Document ID 0351).
    In summary, animal studies evaluating the absorption, distribution 
and excretion of beryllium compounds found that, in general, poorly 
soluble beryllium compounds were not readily absorbed in the 
gastrointestinal tract and was mostly excreted via feces (Hart et al., 
1980, Document ID 1493; Finch et al., 1990 (1318); Mullen et al., 1972 
(1442)). Soluble beryllium compounds orally administered were partially 
cleared via urine; however, some soluble forms are precipitated in the 
gastrointestinal tract due to different pH values between the intestine 
and the stomach (Reeves, 1965, Document ID 1430). Intravenous 
administration of

[[Page 2490]]

poorly soluble beryllium compounds were distributed systemically 
through the lymphatics and stored in the skeleton for potential later 
release (Furchner et al., 1973, Document ID 1523). Therefore, while 
intravenous administration can lead to uptake, OSHA does not consider 
oral and gastrointestinal exposure to be a major route for the uptake 
of beryllium because poorly soluble beryllium is not readily absorbed 
in the gastrointestinal tract.
4. Metabolism
    Beryllium and its compounds may not be metabolized or 
biotransformed, but soluble beryllium salts may be converted to less 
soluble forms in the lung (Reeves and Vorwald, 1967, Document ID 1309). 
As stated earlier, solubility is an important factor for persistence of 
beryllium in the lung. Poorly soluble phagocytized beryllium particles 
can be dissolved into an ionic form by an acidic cellular environment 
and by myeloperoxidases or macrophage phagolysomal fluids (Leonard and 
Lauwerys, 1987, Document ID 1293; Lansdown, 1995 (1469); WHO, 2001 
(1282); Stefaniak et al., 2006 (1398)). The positive charge of the 
beryllium ion could potentially make it more biologically reactive 
because it may allow the beryllium to bind to a peptide or protein and 
be presented to the T cell receptor or antigen-presenting cell 
(Fontenot, 2000, Document ID 1531).
5. Conclusion For Particle Characterization and Kinetics and Metabolism 
of Beryllium
    The forms and concentrations of beryllium across the workplace vary 
substantially based upon location, process, production and work task. 
Many factors may influence the potency of beryllium including 
concentration, composition, structure, size, solubility and surface 
area of the particle.
    Studies have demonstrated that beryllium sensitization can occur 
via the skin or inhalation from soluble or poorly soluble beryllium 
particles. Beryllium must be presented to a cell in a soluble form for 
activation of the immune system (NAS, 2008, Document ID 1355), and this 
will be discussed in more detail in the section to follow. Poorly 
soluble beryllium can be solubilized via intracellular fluid, lung 
fluid and sweat to release beryllium ions (Sutton et al., 2003, 
Document ID 1393; Stefaniak et al., 2011(0537) and 2014(0517)). For 
beryllium to persist in the lung it needs to be poorly soluble. 
However, soluble beryllium has been shown to precipitate in the lung to 
form poorly soluble beryllium (Reeves and Vorwald, 1967, Document ID 
1309).
    Some animal and epidemiological studies suggest that the form of 
beryllium may affect the rate of development of BeS and CBD. Beryllium 
in an inhalable form (either as soluble or poorly soluble particles or 
mist) can deposit in the respiratory tract and interact with immune 
cells located along the entire respiratory tract (Scheslinger, 1997, 
Document ID 1290). Interaction and presentation of beryllium (either in 
ionic or particulate form) is discussed further in Section V.D.1.
C. Acute Beryllium Diseases
    Acute beryllium disease (ABD) is a relatively rapid onset 
inflammatory reaction resulting from breathing high airborne 
concentrations of beryllium. It was first reported in workers 
extracting beryllium oxide (Van Ordstrand et al., 1943, Document ID 
1383) and later reported by Eisenbud (1948) and Aub (1949) (as cited in 
Document ID 1662, p. 2). Since the Atomic Energy Commission's adoption 
of a maximum permissible peak occupational exposure limit of 25 [mu]g/
m\3\ for beryllium beginning in 1949, cases of ABD have been much 
rarer. According to the World Health Organization (2001), ABD is 
generally associated with exposure to beryllium levels at or above 100 
[mu]g/m\3\ and may be fatal in 10 percent of cases (Document ID 1282). 
However, cases of ABD have been reported with beryllium exposures below 
100 [micro]g/m\3\ (Cummings et al., 2009, Document ID 1550). The 
Cummings et al. (2009) study examined two cases of workers exposed to 
soluble and poorly soluble beryllium below 100 [micro]g/m\3\ using data 
obtained from company records. Cummings et al. (2009) also examined the 
possibility that an immune-mediated mechanism may exist for ABD as well 
as CBD and that ABD and CBD are on a pathological continuum since some 
patients would later develop CBD after recovering from ABD (ACCP, 1965, 
Document ID 1286; Hall, 1950 (1494); Cummings et al., 2009 (1550)).
    ABD involves an inflammatory or immune-mediated reaction that may 
include the entire respiratory tract, involving the nasal passages, 
pharynx, bronchial airways and alveoli. Other tissues including skin 
and conjunctivae may be affected as well. The clinical features of ABD 
include a nonproductive cough, chest pain, cyanosis, shortness of 
breath, low-grade fever and a sharp drop in functional parameters of 
the lungs. Pathological features of ABD include edematous distension, 
round cell infiltration of the septa, proteinaceous materials, and 
desquamated alveolar cells in the lung. Monocytes, lymphocytes and 
plasma cells within the alveoli are also characteristic of the acute 
disease process (Freiman and Hardy, 1970, Document ID 1527).
    Two types of acute beryllium disease have been characterized in the 
literature: A rapid and severe course of acute fulminating pneumonitis 
generally developing within 48 to 72 hours of a massive exposure, and a 
second form that takes several days to develop from exposure to lower 
concentrations of beryllium (still above the levels set by regulatory 
and guidance agencies) (Hall, 1950, Document ID 1494; DeNardi et al., 
1953 (1545); Newman and Kreiss, 1992 (1440)). Evidence of a dose-
response relationship to the concentration of beryllium is limited 
(Eisenbud et al., 1948, Document ID 0490; Stokinger, 1950 (1484); 
Sterner and Eisenbud, 1951 (1396)). Recovery from either type of ABD is 
generally complete after a period of several weeks or months (DeNardi 
et al., 1953, Document ID 1545). However, deaths have been reported in 
more severe cases (Freiman and Hardy, 1970, Document ID 1527). 
According to the BCR, in the United States, approximately 17 percent of 
ABD patients developed CBD (BCR, 2010). The majority of ABD cases 
occurred between 1932 and 1970 (Eisenbud, 1982, Document ID 1254; 
Middleton, 1998 (1445)). ABD is extremely rare in the workplace today 
due to more stringent exposure controls implemented following 
occupational and environmental standards set in 1970-1971 (ACGIH, 1971, 
Document ID 0543; ANSI, 1970 (1303); OSHA, 1971, see 39 FR 23513; EPA, 
1973 (38 FR 8820)).
    Materion submitted post-hearing comments regarding ABD (Document ID 
1662, p. 2; Attachment A, p. 1). Materion contended that only soluble 
forms of beryllium have been demonstrated to produce ABD at exposures 
above 100 [micro]g/m\3\ because cases of ABD were only found in workers 
exposed to beryllium during beryllium extraction processes which always 
contain soluble beryllium (Document ID 1662, pp. 2, 3). Citing 
communications between Marc Kolanz (Materion) and Dr. Eisenbud, 
Materion noted that when Mr. Kolanz asked Dr. Eisenbud if he ever 
``observed an acute reaction to beryllium that did not involve the 
beryllium extraction process and exposure to soluble salts of 
beryllium,'' Dr. Eisenbud responded that ``he did not know of a case 
that was not either directly associated with

[[Page 2491]]

exposure to soluble compounds or where the work task or operation would 
have been free from exposure to soluble beryllium compounds from 
adjacent operations.'' (Document ID 1662, p. 3). OSHA acknowledges that 
workers with ABD may have been exposed to a combination of soluble and 
poorly soluble beryllium. This alone, however, cannot completely 
exclude poorly soluble beryllium as a causative or contributing agent 
of ABD. The WHO (2001) has concluded that both ABD and CBD results from 
exposure to both soluble and insoluble forms of beryllium. In addition, 
the European Commission has classified poorly soluble beryllium and 
beryllium oxide as acute toxicity categories 2 and 3 (Document ID 1669, 
p. 2).
    Additional comments from Materion regarding ABD criticized the 
study by Cummings et al. (2009), stating that it ``incompletely 
explained the source of the workers exposures, which resulted in the 
use of a misleading statement that, `None of the measured air samples 
exceeded 100 [mu]g/m\3\ and most were less than 10 [mu]g/m\3\.' '' 
(Document ID 1662, p. 3). Materion argues that the Cummings et al. 
study is not valid because workers in that study ``had been involved 
with high exposures to soluble beryllium salts caused by upsets during 
the chemical extraction of beryllium.'' (Document ID 1662, pp. 3-4). In 
response, NIOSH written testimony explained that the measurements in 
the study ``were collected in areas most likely to be sources of high 
beryllium exposures in processes, but were not personal breathing zone 
measurements in the usual sense.'' (Document ID 1725, p. 3). ``Cummings 
et al. (2009) made every effort to overestimate (rather than 
underestimate) exposure,'' including ``select[ing] the highest time 
weighted average (TWA) value from the work areas or activities 
associated with a worker's job and tenure'' and not adjusting for 
``potential protective effects of respirators, which were reportedly 
used for some tasks and during workplace events potentially associated 
with uncontrolled higher exposures.'' Even so, ``the available TWA data 
did not exceed 100 [mu]g/m\3\ even on days with evacuations.'' 
(Document ID 1725, p. 3). Furthermore, OSHA notes that, the discussion 
in Cummings et al. (2009) stated, ``we cannot rule out the possibility 
of unusually elevated airborne concentrations of beryllium that went 
unmeasured.'' (Document ID 1550, p. 5).
    In response to Materion's contention that OSHA should eliminate the 
section on ABD because this disease is no longer a concern today 
(Document ID 1661, p. 2), OSHA notes that the discussion on ABD is 
included for thoroughness in review of the health effects caused by 
exposure to beryllium. As indicated above, the Agency acknowledges that 
ABD is extremely rare, but not non-existent, in workplaces today due to 
the more stringent exposure controls implemented since OSHA's inception 
(OSHA, 1971, see 39 FR 23513).
D. Beryllium Sensitization and Chronic Beryllium Disease
    This section provides an overview of the immunology and 
pathogenesis of BeS and CBD, with particular attention to the role of 
skin sensitization, particle size, beryllium compound solubility, and 
genetic variability in individuals' susceptibility to beryllium 
sensitization and CBD.
    Chronic beryllium disease (CBD), formerly known as ``berylliosis'' 
or ``chronic berylliosis,'' is a granulomatous disorder primarily 
affecting the lungs. CBD was first described in the literature by Hardy 
and Tabershaw (1946) as a chronic granulomatous pneumonitis (Document 
ID 1516). It was proposed as early as 1951 that CBD could be a chronic 
disease resulting from sensitization to beryllium (Sterner and 
Eisenbud, 1951, Document ID 1396; Curtis, 1959 (1273); Nishimura, 1966 
(1435)). However, for a time, there remained some controversy as to 
whether CBD was a delayed-onset hypersensitivity disease or a toxicant-
induced disease (NAS, 2008, Document ID 1355). Wide acceptance of CBD 
as a hypersensitivity lung disease did not occur until bronchoscopy 
studies and bronchoalveolar lavage (BAL) studies were performed 
demonstrating that BAL cells from CBD patients responded to beryllium 
challenge (Epstein et al., 1982, Document ID 0436; Rossman et al., 1988 
(0476); Saltini et al., 1989 (1351)).
    CBD shares many clinical and histopathological features with 
pulmonary sarcoidosis, a granulomatous lung disease of unknown 
etiology. These similarities include such debilitating effects as 
airway obstruction, diminishment of physical capacity associated with 
reduced lung function, possible depression associated with decreased 
physical capacity, and decreased life expectancy. Without appropriate 
information, CBD may be difficult to distinguish from sarcoidosis. It 
is estimated that up to 6 percent of all patients diagnosed with 
sarcoidosis may actually have CBD (Fireman et al., 2003, Document ID 
1533; Rossman and Kreider, 2003 (1423)). Among patients diagnosed with 
sarcoidosis in which beryllium exposure can be confirmed, as many as 40 
percent may actually have CBD (Muller-Quernheim et al., 2005, Document 
ID 1262; Cherry et al., 2015 (0463)).
    Clinical signs and symptoms of CBD may include, but are not limited 
to, a simple cough, shortness of breath or dypsnea, fever, weight loss 
or anorexia, skin lesions, clubbing of fingers, cyanosis, night sweats, 
cor pulmonale, tachycardia, edema, chest pain and arthralgia. Changes 
or loss of pulmonary function also occur with CBD such as decrease in 
vital capacity, reduced diffusing capacity, and restrictive breathing 
patterns. The signs and symptoms of CBD constitute a continuum of 
symptoms that are progressive in nature with no clear demarcation 
between any stages in the disease (Pappas and Newman, 1993, Document ID 
1433; Rossman, 1996 (1283); NAS, 2008 (1355)). These symptoms are 
consistent with the CBD symptoms described during the public hearing by 
Dr. Kristin Cummings of NIOSH and Dr. Lisa Maier of National Jewish 
Health (Document ID 1755, Tr. 70-71; 1756, Tr. 105-107).
    Besides these listed symptoms from CBD patients, there have been 
reported cases of CBD that remained asymptomatic (Pappas and Newman, 
1993, Document ID 1433; Muller-Querheim, 2005 (1262); NAS, 2008 (1355); 
NIOSH, 2011 (0544)). Asymptomatic CBD refers to those patients that 
have physiological changes upon clinical evaluation yet exhibit no 
outward signs or symptoms (also referred to as subclinical CBD).
    Unlike ABD, CBD can result from inhalation exposure to beryllium at 
levels below the preceding OSHA PEL, can take months to years after 
initial beryllium exposure before signs and symptoms of CBD occur 
(Newman 1996, Document ID 1283, 2005 (1437) and 2007 (1335); 
Henneberger, 2001 (1313); Seidler et al., 2012 (0457); Schuler et al., 
2012 (0473)), and may continue to progress following removal from 
beryllium exposure (Newman, 2005, Document ID 1437; Sawyer et al., 2005 
(1415); Seidler et al., 2012 (0457)). Patients with CBD can progress to 
a chronic obstructive lung disorder resulting in loss of quality of 
life and the potential for decreased life expectancy (Rossman, et al., 
1996, Document ID 1425; Newman et al., 2005 (1437)). The National 
Academy of Sciences (NAS) report (2008) noted the general lack of 
published studies on progression of CBD from an early asymptomatic 
stage to functionally significant lung disease (NAS, 2008, Document ID 
1355). The report emphasized that risk factors and

[[Page 2492]]

time course for clinical disease have not been fully delineated. 
However, for people now under surveillance, clinical progression from 
sensitization and early pathological lesions (i.e., granulomatous 
inflammation) prior to onset of symptoms to symptomatic disease appears 
to be slow, although more follow-up is needed (NAS, 2008, Document ID 
1355). A study by Newman (1996) emphasized the need for prospective 
studies to determine the natural history and time course from beryllium 
sensitization and asymptomatic CBD to full-blown disease (Newman, 1996, 
Document ID 1283). Drawing from his own clinical experience, Dr. Newman 
was able to identify the sequence of events for those with symptomatic 
disease as follows: Initial determination of beryllium sensitization; 
gradual emergence of chronic inflammation of the lung; pathologic 
alterations with measurable physiologic changes (e.g., pulmonary 
function and gas exchange); progression to a more severe lung disease 
(with extrapulmonary effects such as clubbing and cor pulmonale in some 
cases); and finally death in some cases (reported between 5.8 to 38 
percent) (NAS, 2008, Document ID 1355; Newman, 1996 (1283)).
    In contrast to some occupationally related lung diseases, the early 
detection of chronic beryllium disease may be useful since treatment of 
this condition can lead not only to regression of the signs and 
symptoms, but also may prevent further progression of the disease in 
certain individuals (Marchand-Adam et al., 2008, Document ID 0370; NAS, 
2008 (1355)). The management of CBD is based on the hypothesis that 
suppression of the hypersensitivity reaction (i.e., granulomatous 
process) will prevent the development of fibrosis. However, once 
fibrosis has developed, therapy cannot reverse the damage.
    A study by Pappas and Newman (1993) observed that patients with 
known prior beryllium exposure and identified as confirmed positive for 
beryllium sensitization through the beryllium lymphocyte proliferation 
test (BeLPT) screening were evaluated for physiological changes in the 
lung. Pappas and Newman categorized the patients as being either 
``clinically identified,'' meaning they had known physiological 
abnormalities (e.g., abnormal chest radiogram, respiratory symptoms) or 
``surveillance-identified,'' meaning they had BeLPT positive results 
with no reported symptoms, to differentiate state of disease 
progression. Physiological changes were identified by three factors: 
(1) Reduced tolerance to exercise; (2) abnormal pulmonary function test 
during exercise; (3) abnormal arterial blood gases during exercise. Of 
the patients identified as ``surveillance identified,'' 52 percent had 
abnormal exercise physiologies while 87 percent of the ``clinically 
identified'' patients had abnormal physiologies (Pappas and Newman, 
1993, Document ID 1433). During the public hearing, Dr. Newman noted 
that:

. . . one of the sometimes overlooked points is that in that study . 
. . the majority of people who were found to have early stage 
disease already had physiologic impairment. So before the x-ray or 
the CAT scan could find it the BeLPT had picked it up, we had made a 
diagnosis of pathology in those people, and their lung function 
tests--their measures of gas exchange, were already abnormal. Which 
put them on our watch list for early and more frequent monitoring so 
that we could observe their worsening and then jump in with 
treatment at the earliest appropriate time. So there is advantage of 
having that early diagnosis in terms of the appropriate tracking and 
appropriate timing of treatment. (Document ID 1756, p. 112).

    OSHA was unable to find any controlled studies to determine the 
optimal treatment for CBD (see Rossman, 1996, Document ID 1425; NAS 
2008 (1355); Sood, 2009 (0456)), and none were added to the record 
during the public comment period. Management of CBD is generally 
modeled after sarcoidosis treatment. Oral corticosteroid treatment can 
be initiated in patients with evidence of disease (either by 
bronchoscopy or other diagnostic measures before progression of disease 
or after clinical signs of pulmonary deterioration occur). This 
includes treatment with other anti-inflammatory agents (NAS, 2008. 
Document ID 1355; Maier et al., 2012 (0461); Salvator et al., 2013 
(0459)) as well. It should be noted, however, that treatment with 
corticosteroids has side-effects of their own that need to be measured 
against the possibility of progression of disease (Gibson et al., 1996, 
Document ID 1521; Zaki et al., 1987 (1374)). Alternative treatments 
such as azathioprine and infliximab, while successful at treating 
symptoms of CBD, have been demonstrated to have side effects as well 
(Pallavicino et al., 2013, Document ID 0630; Freeman, 2012 (0655)).
1. Development of Beryllium Sensitization
    Sensitization to beryllium is an essential step for worker 
development of CBD. Sensitization to beryllium can result from 
inhalation exposure to beryllium (Newman et al., 2005, Document ID 
1437; NAS, 2008 (1355)), as well as from skin exposure to beryllium 
(Curtis, 1951, Document ID 1273; Newman et al., 1996 (1439); Tinkle et 
al., 2003 (1483); Rossman, et al., 1991, (1332); Deubner et al., 2001 
(1542); Tinkle et al., 2003 (1483); Sutton et al., 2003 (1393); 
Stefaniak et al., 2011 (0537) and 2014 (0517); Duling et al., 2012 
(0539); Document ID 1755, Tr. 36-37). Representative Robert C. 
``Bobby'' Scott, Ranking Member of Committee on Education and the 
Workforce, the U.S. House of Representatives, provided comments to the 
record stating that ``studies have demonstrated that beryllium 
sensitization, an indicator of immune response to beryllium, can occur 
from both soluble and poorly soluble beryllium particles.'' (Document 
ID 1672, p. 3).
    Sensitization is currently detected using the BeLPT (a laboratory 
blood test) described in section V.D.5. Although there may be no 
clinical symptoms associated with beryllium sensitization, a sensitized 
worker's immune system has been activated to react to beryllium 
exposures such that subsequent exposure to beryllium can progress to 
serious lung disease (Kreiss et al., 1996, Document ID 1477; Newman et 
al., 1996 (1439); Kreiss et al., 1997 (1360); Kelleher et al., 2001 
(1363); Rossman, 2001 (1424); Newman et al., 2005 (1437)). Since the 
pathogenesis of CBD involves a beryllium-specific, cell-mediated immune 
response, CBD cannot occur in the absence of sensitization (NAS, 2008, 
Document ID 1355). The expert peer reviewers agreed that the scientific 
evidence supported sensitization as a necessary condition and an early 
endpoint in the development of CBD (ERG, 2010, Document ID 1270, pp. 
19-21). Dr. John Balmes remarked that the ``scientific evidence 
reviewed in the [Health Effects] document supports consideration of 
beryllium sensitization as an early endpoint and as a necessary 
condition in the development of CBD.'' Dr. Patrick Breysee stated that 
``there is strong scientific consensus that sensitization is a key 
first step in the progression of CBD.'' Dr. Terry Gordon stated that 
``[a]s discussed in the draft [Health Effects] document, beryllium 
sensitization should be considered as an early endpoint in the 
development of CBD.'' Finally, Dr. Milton Rossman agreed ``that 
sensitization is necessary for someone to develop CBD and should be 
considered a condition/risk factor for the development of CBD.'' 
Various factors, including genetic susceptibility, have been shown to 
influence risk of developing sensitization and CBD (NAS 2008, Document 
ID 1355) and will be discussed later in this section.

[[Page 2493]]

    While various mechanisms or pathways may exist for beryllium 
sensitization, the most plausible mechanisms supported by the best 
available and most current science are discussed below. Sensitization 
occurs via the formation of a beryllium-protein complex (an antigen) 
that causes an immunological response. In some instances, onset of 
sensitization has been observed in individuals exposed to beryllium for 
only a few months (Kelleher et al., 2001, Document ID 1363; Henneberger 
et al., 2001 (1313)). This suggests the possibility that relatively 
brief, short-term beryllium exposures may be sufficient to trigger the 
immune hypersensitivity reaction. Several studies (Newman et al., 2001, 
Document ID 1354; Henneberger et al., 2001 (1313); Rossman, 2001 
(1424); Schuler et al., 2005 (0919); Donovan et al., 2007 (0491), 
Schuler et al., 2012 (0473)) have detected a higher prevalence of 
sensitization among workers with less than one year of employment 
compared to some cross-sectional studies which, due to lack of 
information regarding initial exposure, cannot determine time of 
sensitization (Kreiss et al., 1996, Document ID 1477; Kreiss et al., 
1997 (1360)). While only very limited evidence has described humoral 
changes in certain patients with CBD (Cianciara et al., 1980, Document 
ID 1553), clear evidence exists for an immune cell-mediated response, 
specifically the T-cell (NAS, 2008, Document ID 1355). Figure 2 
delineates the major steps required for progression from beryllium 
contact to sensitization to CBD.
[GRAPHIC] [TIFF OMITTED] TR09JA17.001

    Beryllium presentation to the immune system is believed to occur 
either by direct presentation or by antigen processing. It has been 
postulated that beryllium must be presented to the immune system in an 
ionic form for cell-mediated immune activation to occur (Kreiss et al., 
2007, Document ID 1475). Some soluble forms of beryllium are readily 
presented, since the soluble beryllium form disassociates into its 
ionic components. However, for poorly soluble forms, dissolution may 
need to occur. A study by Harmsen et al. (1986) suggested that a 
sufficient rate of dissolution of small amounts of poorly soluble 
beryllium compounds might occur in the lungs to allow persistent

[[Page 2494]]

low-level beryllium presentation to the immune system (Document ID 
1257). Stefaniak et al. (2006 and 2012) reported that poorly soluble 
beryllium particles phagocytized by macrophages were dissolved in 
phagolysomal fluid (Stefaniak et al., 2006, Document ID 1398; Stefaniak 
et al., 2012 (0469)) and that the dissolution rate stimulated by 
phagolysomal fluid was different for various forms of beryllium 
(Stefaniak et al., 2006, Document ID 1398; Duling et al., 2012 (0539)). 
Several studies have demonstrated that macrophage uptake of beryllium 
can induce aberrant apoptotic processes leading to the continued 
release of beryllium ions which will continually stimulate T-cell 
activation (Sawyer et al., 2000, Document ID 1417; Sawyer et al., 2004 
(1416); Kittle et al., 2002 (0485)). Antigen processing can be mediated 
by antigen-presenting cells (APC). These may include macrophages, 
dendritic cells, or other antigen-presenting cells, although this has 
not been well defined in most studies (NAS, 2008, Document ID 1355).
    Because of their strong positive charge, beryllium ions have the 
ability to haptenate and alter the structure of peptides occupying the 
antigen-binding cleft of major histocompatibility complex (MHC) class 
II on antigen-presenting cells (APC). The MHC class II antigen-binding 
molecule for beryllium is the human leukocyte antigen (HLA) with 
specific alleles (e.g., HLA-DP, HLA-DR, HLA-DQ) associated with the 
progression to CBD (NAS, 2008, Document ID 1355; Yucesoy and Johnson, 
2011 (0464); Petukh et al., 2014 (0397)). Several studies have also 
demonstrated that the electrostatic charge of HLA may be a factor in 
binding beryllium (Snyder et al., 2003, Document ID 0524; Bill et al., 
2005 (0499); Dai et al., 2010 (0494)). The strong positive ionic charge 
of the beryllium ion would have a strong attraction for the negatively 
charged patches of certain HLA alleles (Snyder et al., 2008, Document 
ID 0471; Dai et al., 2010 (0494); Petukh et al., 2014 (0397)). 
Alternatively, beryllium oxide has been demonstrated to bind to the MHC 
class II receptor in a neutral pH. The six carboxylates in the amino 
acid sequence of the binding pocket provide a stable bond with the Be-
O-Be molecule when the pH of the substrate is neutral (Keizer et al., 
2005, Document ID 0455). The direct binding of BeO may eliminate the 
biological requirement for antigen processing or dissolution of 
beryllium oxide to activate an immune response.
    Once the beryllium-MHC-APC complex is established, the complex 
binds to a T-cell receptor (TCR) on a na[iuml]ve T-cell which 
stimulates the proliferation and accumulation of beryllium-specific 
CD4\+\ (cluster of differentiation 4\+\) T-cells (Saltini et al., 1989, 
Document ID 1351 and 1990 (1420); Martin et al., 2011 (0483)) as 
depicted in Figure 3. Fontenot et al. (1999) demonstrated that 
diversely different variants of TCR were expressed by CD4\+\ T-cells in 
peripheral blood cells of CBD patients. However, the CD4\+\ T-cells 
from the lung were more homologous in expression of TCR variants in CBD 
patients, suggesting clonal expansion of a subset of T-cells in the 
lung (Fontenot et al., 1999, Document ID 0489). This may also indicate 
a pathogenic potential for subsets of T-cell clones expressing this 
homologous TCR (NAS, 2008, Document ID 1355). Fontenot et al. (2006) 
(Document ID 0487) reported beryllium self-presentation by HLA-DP 
expressing BAL CD4\+\ T-cells. According the NAS report, BAL T-cell 
self-presentation in the lung granuloma may result in cell death, 
leading to oligoclonality (only a few clones) of the T-cell population 
characteristic of CBD (NAS, 2008, Document ID 1355).

[[Page 2495]]

[GRAPHIC] [TIFF OMITTED] TR09JA17.002

    As CD4\+\ T-cells proliferate, clonal expansion of various subsets 
of the CD4\+\ beryllium specific T-cells occurs (Figure 3). In the 
peripheral blood, the beryllium-specific CD4\+\ T cells require co-
stimulation with a co-stimulant CD28 (cluster of differentiation 28). 
During the proliferation and differentiation process CD4\+\ T-cells 
secrete pro-inflammatory cytokines that may influence this process 
(Sawyer et al., 2004, Document ID 1416; Kimber et al., 2011 (0534)).
    In summary, OSHA concludes that sensitization is a necessary and 
early functional change in the immune system that leads to the 
development of CBD.
2. Development of CBD
    The continued presence of residual beryllium in the lung leads to a 
T-cell maturation process. A large portion of beryllium-specific CD4\+\ 
T cells were shown to cease expression of CD28 mRNA and protein, 
indicating these cells no longer required co-stimulation with the CD28 
ligand (Fontenot et al., 2003, Document ID 1529). This change in 
phenotype correlated with lung inflammation (Fontenot et al., 2003, 
Document ID 1529). While these CD4\+\ independent cells continued to 
secrete cytokines necessary for additional recruitment of inflammatory 
and immunological cells, they were less proliferative and less 
susceptible to cell death compared to the CD28 dependent cells 
(Fontenot et al., 2005, Document ID 1528; Mack et al., 2008 (1460)). 
These beryllium-specific CD4\+\ independent cells are considered to be 
mature memory effector cells (Ndejembi et al., 2006, Document ID 0479; 
Bian et al., 2005 (0500)). Repeat exposure to beryllium in the lung 
resulting in a mature population of T cell development independent of 
co-stimulation by CD28 and development of a population of T effector 
memory cells (Tem cells) may be one of the mechanisms that 
lead to the more severe reactions observed specifically in the lung 
(Fontenot et al., 2005, Document ID 1528).
    CD4\+\ T cells created in the sensitization process recognize the 
beryllium antigen, and respond by proliferating and secreting cytokines 
and inflammatory mediators, including IL-2, IFN-[gamma], and TNF-
[alpha] (Tinkle et al., 1997, Document ID 1387; Tinkle et al., 1997 
(1388); Fontenot et al., 2002 (1530)) and MIP-1[alpha] and GRO-1 (Hong-
Geller, 2006, Document ID 1511). This also results in the accumulation 
of various types of inflammatory cells including mononuclear cells 
(mostly CD4\+\ T cells) in the BAL fluid (Saltini et al., 1989, 
Document ID 1351, 1990 (1420)).
    The development of granulomatous inflammation in the lung of CBD 
patients has been associated with the accumulation of beryllium 
responsive CD4\+\ Tem cells in BAL fluid (NAS, 2008, 
Document ID 1355). The subsequent release of pro-inflammatory 
cytokines, chemokines and reactive oxygen species by these cells may 
lead to migration of additional inflammatory/immune cells and the 
development of a microenvironment that contributes to the development 
of CBD (Sawyer et al., 2005, Document ID 1415; Tinkle et al., 1996 
(0468); Hong-Geller et al., 2006 (1511); NAS, 2008 (1355)).
    The cascade of events described above results in the formation of a 
noncaseating granulomatous lesion. Release of cytokines by the 
accumulating T cells leads to the formation of granulomatous lesions 
that are characterized by an outer ring of histiocytes surrounding non-
necrotic tissue with embedded multi-nucleated giant cells (Saltini et 
al., 1989, Document ID 1351, 1990 (1420)).
    Over time, the granulomas spread and can lead to lung fibrosis and 
abnormal

[[Page 2496]]

pulmonary function, with symptoms including a persistent dry cough and 
shortness of breath (Saber and Dweik, 2000, Document ID 1421). Fatigue, 
night sweats, chest and joint pain, clubbing of fingers (due to 
impaired oxygen exchange), loss of appetite or unexplained weight loss, 
and cor pulmonale have been experienced in certain patients as the 
disease progresses (Conradi et al., 1971, Document ID 1319; ACCP, 1965 
(1286); Kriebel et al., 1988, Document ID 1292; Kriebel et al., 1988 
(1473)). While CBD primarily affects the lungs, it can also involve 
other organs such as the liver, skin, spleen, and kidneys (ATSDR, 2002, 
Document ID 1371).
    As previously mentioned, the uptake of beryllium may lead to an 
aberrant apoptotic process with rerelease of beryllium ions and 
continual stimulation of beryllium-responsive CD4\+\ cells in the lung 
(Sawyer et al., 2000, Document ID 1417; Kittle et al., 2002 (0485); 
Sawyer et al., 2004 (1416)). Several research studies suggest apoptosis 
may be one mechanism that enhances inflammatory cell recruitment, 
cytokine production and inflammation, thus creating a scenario for 
progressive granulomatous inflammation (Palmer et al., 2008, Document 
ID 0478; Rana, 2008 (0477)). Macrophages and neutrophils can 
phagocytize beryllium particles in an attempt to remove the beryllium 
from the lung (Ding, et al., 2009, Document ID 0492)). Multiple studies 
(Sawyer et al., 2004, Document ID 1416; Kittle et al., 2002 (0485)) 
using BAL cells (mostly macrophages and neutrophils) from patients with 
CBD found that in vitro stimulation with beryllium sulfate induced the 
production of TNF-[alpha] (one of many cytokines produced in response 
to beryllium), and that production of TNF-[alpha] might induce 
apoptosis in CBD and sarcoidosis patients (Bost et al., 1994, Document 
ID 1299; Dai et al., 1999 (0495)). The stimulation of CBD-derived 
macrophages by beryllium sulfate resulted in cells becoming apoptotic, 
as measured by propidium iodide. These results were confirmed in a 
mouse macrophage cell-line (p388D1) (Sawyer et al., 2000, Document ID 
1417). However, other factors, such as genetic factors and duration or 
level of exposure leading to a continued presence of beryllium in the 
lung, may influence the development of CBD and are outlined in the 
following sections V.D.3 and V.D.4.
    In summary, the persistent presence of beryllium in the lung of a 
sensitized individual creates a progressive inflammatory response that 
can culminate in the granulomatous lung disease, CBD.
3. Genetic and Other Susceptibility Factors
    Evidence from a variety of sources indicates genetic susceptibility 
may play an important role in the development of CBD in certain 
individuals, especially at levels low enough not to invoke a response 
in other individuals. Early occupational studies proposed that CBD was 
an immune reaction based on the high susceptibility of some individuals 
to become sensitized and progress to CBD and the lack of CBD in others 
who were exposed to levels several orders of magnitude higher (Sterner 
and Eisenbud, 1951, Document ID 1396). Recent studies have confirmed 
genetic susceptibility to CBD involves either, HLA variants, T-cell 
receptor clonality, tumor necrosis factor (TNF-[alpha]) polymorphisms 
and/or transforming growth factor-beta (TGF-[beta]) polymorphisms 
(Fontenot et al., 2000, Document ID 1531; Amicosante et al., 2005 
(1564); Tinkle et al., 1996 (0468); Gaede et al., 2005 (0486); Van Dyke 
et al., 2011 (1696); Silveira et al., 2012 (0472)).
    Potential sources of variation associated with genetic 
susceptibility have been investigated. Single Nucleotide Polymorphisms 
(SNPs) have been studied with regard to genetic variations associated 
with increased risk of developing CBD. SNPs are the most abundant type 
of human genetic variation. Polymorphisms in MHC class II and pro-
inflammatory genes have been shown to contribute to variations in 
immune responses contributing to the susceptibility and resistance in 
many diseases including auto-immunity, beryllium sensitization, and CBD 
(McClesky et al., 2009, as cited in Document ID 1808, p. 3). Specific 
SNPs have been evaluated as a factor in the Glu69 variant from the HLA-
DPB1 locus (Richeldi et al., 1993, Document ID 1353; Cai et al., 2000 
(0445); Saltini et al., 2001 (0448); Silviera et al., 2012 (0472); Dai 
et al., 2013 (0493)). Other SNPs lacking the Glu69 variant, such as 
HLA-DRPhe[beta]47, have also been evaluated for an association with CBD 
(Amicosante et al., 2005, Document ID 1564).
    HLA-DPB1 (one of 2 subtypes of HLA-DP) with a glutamic acid at 
amino position 69 (Glu69) has been shown to confer increased risk of 
beryllium sensitization and CBD (Richeldi et al., 1993, Document ID 
1353; Saltini et al., 2001 (0448); Amicosante et al., 2005 (1564); Van 
Dyke et al., 2011 (1696); Silveira et al., 2012 (0472)). In vitro human 
research has identified genes coding for specific protein molecules on 
the surface of the immune cells of sensitized individuals from a cohort 
of beryllium workers (McCanlies et al., 2004, Document ID 1449). The 
research identified the HLA-DPB1 (Glu69) allele that place carriers at 
greater risk of becoming sensitized to beryllium and developing CBD 
than those not carrying this allele (McCanlies et al., 2004, Document 
ID 1449). Fontenot et al. (2000) demonstrated that beryllium 
presentation by certain alleles of the class II human leukocyte 
antigen-DP (HLA-DP \3\) to CD4\+\ T cells is the mechanism underlying 
the development of CBD (Document ID 1531). Richeldi et al. (1993) 
reported a strong association between the MHC class II allele HLA-DPB 1 
and the development of CBD in beryllium-exposed workers from a Tucson, 
AZ facility (Document ID 1353). This marker was found in 32 of the 33 
workers who developed CBD, but in only 14 of 44 similarly exposed 
workers without CBD. The more common alleles of the HLA-DPB 1 
containing a variant of Glu69 are negatively charged at this site and 
could directly interact with the positively charged beryllium ion. 
Additional studies by Amicosante et al. (2005) (Document ID 1564) using 
blood lymphocytes derived from beryllium-exposed workers found a high 
frequency of this gene in those sensitized to beryllium. In a study of 
82 CBD patients (beryllium-exposed workers), Stubbs et al. (1996) 
(Document ID 1394) also found a relationship between the HLA-DP 1 
allele and beryllium sensitization. The glutamate-69 allele was present 
in 86 percent of sensitized subjects, but in only 48 percent of 
beryllium-exposed, non-sensitized subjects. Some variants of the HLA-
DPB1 allele convey higher risk of sensitization and CBD than others. 
For example, HLA-DPB1*0201 yielded an approximately 3-fold increase in 
disease outcome relative to controls; HLA-DPB1*1901 yielded an 
approximately 5-fold increase, and HLA-DPB1*1701 yielded an 
approximately 10-fold increase (Weston et al., 2005, Document ID 1345; 
Snyder et al., 2008 (0471)). Specifically, Snyder et al. (2008) found 
that variants of the Glu69 allele with the greatest negative charge may 
confer greater risk for developing CBD (Document ID 0471). The study by 
Weston et al. (2005) assigned odds ratios for specific alleles on the 
basis of previous studies discussed above (Document ID 1345). The 
researchers found a strong

[[Page 2497]]

correlation (88 percent) between the reported risk of CBD and the 
predicted surface electrostatic potential and charge of the isotypes of 
the genes. They were able to conclude that the alleles associated with 
the most negatively charged proteins carry the greatest risk of 
developing beryllium sensitization and CBD (Weston et al., 2005, 
Document ID 1345). This confirms the importance of beryllium charge as 
a key factor in its ability to induce an immune response.
---------------------------------------------------------------------------

    \3\ HLA-DP and HLA DPB1 alleles have been associated with 
genetic susceptibility for developing CBD. HLA-DP has 2 subtypes, 
HLA-DPA and HLA-DPB. HLA-DBP1 is involved with the Glu69 allele most 
associated with genetic susceptibility.
---------------------------------------------------------------------------

    In contrast, the HLA-DRB1 allele, which lacks Glu69, has also been 
shown to increase the risk of developing sensitization and CBD 
(Amicosante et al., 2005, Document ID 1564; Maier et al., 2003 (0484)). 
Bill et al. (2005) found that HLA-DR has a glutamic acid at position 71 
of the [beta] chain, functionally equivalent to the Glu69 of HLA-DP 
(Bill et al., 2005, Document ID 0499). Associations with BeS and CBD 
have also been reported with the HLA-DQ markers (Amicosante et al., 
2005, Document ID 1564; Maier et al., 2003 (0484)). Stubbs et al. also 
found a biased distribution of the MHC class II HLA-DR gene between 
sensitized and non-sensitized subjects. Neither of these markers was 
completely specific for CBD, as each study found beryllium 
sensitization or CBD among individuals without the genetic risk factor. 
While there remains uncertainty as to which of the MHC class II genes 
interact directly with the beryllium ion, antibody inhibition data 
suggest that the HLA-DR gene product may be involved in the 
presentation of beryllium to T lymphocytes (Amicosante et al., 2002, 
Document ID 1370). In addition, antibody blocking experiments revealed 
that anti-HLA-DP strongly reduced proliferation responses and cytokine 
secretion by BAL CD4 T cells (Chou et al., 2005, Document ID 0497). In 
the study by Chou (2005), anti-HLA-DR ligand antibodies mainly affected 
beryllium-induced proliferation responses with little impact on 
cytokines other than IL-2, thus implying that non-proliferating BAL CD4 
T cells may still contribute to inflammation leading to the progression 
of CBD (Chou et al., 2005, Document ID 0497).
    TNF alpha (TNF-[alpha]) polymorphisms and TGF beta (TGF-[beta]) 
polymorphisms have also been shown to confer a genetic susceptibility 
for developing CBD in certain individuals. TNF-[alpha] is a pro-
inflammatory cytokine that may be associated with a more progressive 
form of CBD (NAS, 2008). Beryllium exposure has been shown to 
upregulate transcription factors AP-1 and NF-[kappa]B (Sawyer et al., 
2007, as cited in Document ID 1355) inducing an inflammatory response 
by stimulating production of pro-inflammatory cytokines such as TNF-
[alpha] by inflammatory cells. Polymorphisms in the 308 position of the 
TNF-[alpha] gene have been demonstrated to increase production of the 
cytokine and increase severity of disease (Maier et al., 2001, Document 
ID 1456; Saltini et al., 2001 (0448); Dotti et al., 2004 (1540)). While 
a study by McCanlies et al. (2007) (Document ID 0482) of 886 beryllium 
workers (including 64 sensitized for beryllium and 92 with CBD) found 
no relationship between TNF-[alpha] polymorphism and sensitization or 
CBD, the National Academies of Sciences noted that ``discrepancies 
between past studies showing associations and the more recent studies 
may be due to misclassification, exposure differences, linkage 
disequilibrium between HLA-DRB1 and TNF-[alpha] genes, or statistical 
power.'' (NAS, 2008, Document ID 1355).
    Other genetic variations have been shown to be associated with 
increased risk of beryllium sensitization and CBD (NAS, 2008, Document 
ID 1355). These include TGF-[beta] (Gaede et al., 2005, Document ID 
0486), angiotensin-1 converting enzyme (ACE) (Newman et al., 1992, 
Document ID 1440; Maier et al., 1999 (1458)) and an enzyme involved in 
glutathione synthesis (glutamate cysteine ligase) (Bekris et al., 2006, 
as cited in Document ID 1355). McCanlies et al. (2010) evaluated the 
association between polymorphisms in a select group of interleukin 
genes (IL-1A; IL-1B, IL-1RN, IL-2, IL-9, IL-9R) due to their role in 
immune and inflammatory processes (Document ID 0481). The study 
evaluated SNPs in three groups of workers from large beryllium 
manufacturing facilities in OH and AZ. The investigators found a 
significant association between variants IL-1A-1142, IL-1A-3769 and IL-
1A-4697 and CBD but not between those variants and beryllium 
sensitization.
    In addition to the genetic factors which may contribute to the 
susceptibility and severity of disease, other factors such as smoking 
and sex may play a role in the development of CBD (NAS, 2008, Document 
ID 1355). A recent longitudinal cohort study by Mroz et al. (2009) of 
229 individuals identified with beryllium sensitization or CBD through 
workplace medical surveillance found that the prevalence of CBD among 
ever smokers was significantly lower than among never smokers (38.1 
percent versus 49.4 percent, p = 0.025). BeS subjects that never smoked 
were found to be more likely to develop CBD over the course of the 
study compared to current smokers (12.6 percent versus 6.4 percent, p = 
0.10). The authors suggested smoking may confer a protective effect 
against development of lung granulomas as has been demonstrated with 
hypersensitivity pneumonitis (Mroz et al., 2009, Document ID 1356).
4. Beryllium Sensitization and CBD in the Workforce
    Sensitization to beryllium is currently detected in the workforce 
with the beryllium lymphocyte proliferation test (BeLPT), a laboratory 
blood test developed in the 1980s, also referred to as the LTT 
(Lymphocyte Transformation Test) or BeLTT (Beryllium Lymphocyte 
Transformation Test). In this test, lymphocytes obtained from either 
bronchoalveolar lavage fluid (the BAL BeLPT) or from peripheral blood 
(the blood BeLPT) are cultured in vitro and exposed to beryllium 
sulfate to stimulate lymphocyte proliferation. The observation of 
beryllium-specific proliferation indicates beryllium sensitization. 
Hereafter, ``BeLPT'' generally refers to the blood BeLPT, which is 
typically used in screening for beryllium sensitization. This test is 
described in more detail in subsection D.5.b.
    CBD can be detected at an asymptomatic stage by a number of 
techniques including bronchoalveolar lavage and biopsy (Cordeiro et 
al., 2007, Document ID 1552; Maier, 2001 (1456)). Bronchoalveolar 
lavage is a method of ``washing'' the lungs with fluid inserted via a 
flexible fiberoptic instrument known as a bronchoscope, removing the 
fluid and analyzing the content for the inclusion of immune cells 
reactive to beryllium exposure, as described earlier in this section. 
Fiberoptic bronchoscopy can be used to detect granulomatous lung 
inflammation prior to the onset of CBD symptoms as well, and has been 
used in combination with the BeLPT to diagnose pre-symptomatic CBD in a 
number of recent screening studies of beryllium-exposed workers, which 
are discussed in the following section detailing diagnostic procedures. 
Of workers who were found to be sensitized and underwent clinical 
evaluation, 31 to 49 percent of them were diagnosed with CBD (Kreiss et 
al., 1993, Document ID 1479; Newman et al., 1996 (1283), 2005 (1437), 
2007 (1335); Mroz, 2009 (1356)), although some estimate that with 
increased surveillance that percentage could be much higher (Newman, 
2005, Document ID 1437; Mroz, 2009 (1356)). It has been estimated from 
ongoing surveillance studies of sensitized individuals with an average 
follow-up time of 4.5 years that

[[Page 2498]]

31 percent of beryllium-sensitized employees were estimated to progress 
to CBD (Newman et al., 2005, Document ID 1437). The study by Newman et 
al. (2005) was the first longitudinal study to assess the progression 
from beryllium sensitization to CBD in individuals undergoing clinical 
evaluation at National Jewish Medical and Research Center from 1988 
through 1998. Approximately 50 percent of sensitized individuals (as 
identified by BeLPT) had CBD at their initial clinical evaluation. The 
remaining 50 percent, or 76 individuals, without evidence of CBD were 
monitored at approximately two year intervals for indication of disease 
progression by pulmonary function testing, chest radiography (with 
International Labour Organization B reading), fiberoptic bronchoscopy 
with bronchoalveolar lavage, and transbronchial lung biopsy. Fifty-five 
of the 76 individuals were monitored with a range of two to five 
clinical evaluations each. The Newman et al. (2005) study found that 
CBD developed in 31 percent of individuals (17 of the 55) in a period 
ranging from 1.0 to 9.5 years (average 3.8 years). After an average of 
4.8 years (range 1.7 to 11.6 years) the remaining individuals showed no 
signs of progression to CBD. A study of nuclear weapons facility 
employees enrolled in an ongoing medical surveillance program found 
that the sensitization rate in exposed workers increased rapidly over 
the first 10 years of beryllium exposure and then more gradually in 
succeeding years. On the other hand, the rate of CBD pathology 
increased slowly over the first 15 years of exposure and then climbed 
more steeply following 15 to 30 years of beryllium exposure (Stange et 
al., 2001, Document ID 1403). The findings from these longitudinal 
studies of sensitized workers provide evidence of CBD progression over 
time from asymptomatic to symptomatic disease. One limitation for all 
these studies is lack of long-term follow-up. Newman suggested that it 
may be necessary to continue to monitor these workers in order to 
determine whether all sensitized workers will develop CBD (Newman et 
al., 2005, Document ID 1437).
    CBD has a clinical spectrum ranging from evidence of beryllium 
sensitization and granulomas in the lung with little symptomatology to 
loss of lung function and end stage disease, which may result in the 
need for lung transplantation and decreased life expectancy. 
Unfortunately, there are very few published clinical studies describing 
the full range and progression of CBD from the beginning to the end 
stages and very few of the risk factors for progression of disease have 
been delineated (NAS, 2008, Document ID 1355). OSHA requested 
additional information in the NPRM, but no additional studies were 
added during the public comment period. Clinical management of CBD is 
modeled after sarcoidosis where oral corticosteroid treatment is 
initiated in patients who have evidence of progressive lung disease, 
although progressive lung disease has not been well defined (NAS, 2008, 
Document ID 1355). In advanced cases of CBD, corticosteroids are the 
standard treatment (NAS, 2008, Document ID 1355). No comprehensive 
studies have been published measuring the overall effect of removal of 
workers from beryllium exposure on sensitization and CBD (NAS, 2008, 
Document ID 1355) although this has been suggested as part of an 
overall treatment regime for CBD (Mapel et al., 2002, as cited in 
Document ID 1850; Sood et al., 2004 (1331); Sood, 2009 (0456); Maier et 
al., 2012 (0461)). Expert testimony from Dr. Lee Newman and Dr. Lisa 
Maier agreed that while no studies exist on the efficacy of removal 
from beryllium exposure, it is medically prudent to reduce beryllium 
exposure once someone is sensitized (Document ID 1756, Tr. 142). Sood 
et al. reported that cessation of exposure can sometimes have 
beneficial effects on lung function (Sood et al., 2004, Document ID 
1331). However, this was based on anecdotal evidence from six patients 
with CBD, while this indicates a benefit of removal of patients from 
exposure, more research is needed to better determine the relationship 
between exposure duration and disease progression.
    Materion commented that sensitization should be defined as a test 
result indicating an immunological sensitivity to beryllium without 
identifiable adverse health effects or other signs of illness or 
disability. It went on to say that, for these reasons, sensitization is 
not on a pathological continuum with CBD (Document ID 1661, pp. 4-7). 
Other commenters disagreed. NIOSH addressed whether sensitization 
should be considered an adverse health effect and said the following in 
their written hearing testimony:

    Some have questioned whether BeS should be considered an adverse 
health effect. NIOSH views it as such, since it is a biological 
change in people exposed to beryllium that is associated with 
increased risk for developing CBD. BeS refers to the immune system's 
ability to recognize and react to beryllium. BeS is an antigen-
specific cell mediated immunity to beryllium, in which CD4+ T cells 
recognize a complex composed of beryllium ion, self-peptide, and 
major histocompatibility complex (MHC) Class II molecule on an 
antigen-presenting cell [Falta et al. (2013); Fontenot et al. 
(2016)]. BeS necessarily precedes CBD. Pathogenesis depends on the 
immune system's recognition of and reaction to beryllium in the 
lung, resulting in granulomatous lung disease. BeS can be detected 
with tests that assess the immune response, such as the beryllium 
lymphocyte proliferation test (BeLPT), which measures T cell 
activity in the presence of beryllium salts [Balmes et al. (2014)]. 
Furthermore, after the presence of BeS has been confirmed, periodic 
medical evaluation at 1-3 year intervals thereafter is required to 
assess whether BeS has progressed to CBD [Balmes et al. (2014)]. 
Thus, BeS is not just a test result, but an adverse health effect 
that poses risk of the irreversible lung disease CBD. (Document ID 
1725, p. 2)

    The American College of Occupational and Environmental Medicine 
(ACOEM) also commented that the term pathological ``continuum'' should 
only refer to signs and symptoms associated with CBD because some 
sensitized workers never develop CBD (Document ID 1685, p. 6). However, 
Dr. Newman, testifying on behalf of ACOEM, clarified that not all 
members of the ACOEM task force agreed:

    So I hope I'm reflecting to you the range and variety of 
outcomes relating to this. My own view is that it's on a continuum. 
I do want to reflect back that the divided opinion among people on 
the ACOEM task force was that we should call it a spectrum because 
not everybody is necessarily lock step into a continuum that goes 
from sensitization to fatality. (Document ID 1756, Tr. 133).

Lisa Maier, MD of National Jewish Health agreed with Dr. Newman 
(Document ID 1756, Tr. 133-134). Additionally, Dr. Weissman of NIOSH 
testified that sensitization is ``a biological change in people exposed 
to beryllium that is associated with increased risk for developing 
CBD'' and should be considered an adverse health effect (Document ID 
1755, Tr. 13).
    OSHA agrees that not every sensitized worker develops CBD, and that 
other factors such as extent of exposure, particulate characteristics, 
and genetic susceptibility influence the development and progression of 
disease. The mechanisms by which beryllium sensitization leads to CBD 
are described in earlier sections and are supported by numerous studies 
(Newman et al., 1996a, Document ID 1439; Newman et al., 2005 (1437); 
Saltini et al., 1989 (1351); Amicosante et al., 2005a (1564); 
Amicosante et al., 2006 (1465); Fontenot et al., 1999 (0489); Fontenot 
et al., 2005 (1528)). OSHA concludes that sensitization is an 
immunological condition that increases one's likelihood

[[Page 2499]]

of developing CBD. As such, sensitization is a necessary step along a 
continuum to clinical lung disease.
5. Human Epidemiological Studies
    This section describes the human epidemiological data supporting 
the mechanistic overview of beryllium-induced disease in workers. It 
has been divided into reviews of epidemiological studies performed 
prior to development and implementation of the BeLPT in the late 1980s 
and after wide use of the BeLPT for screening purposes. Use of the 
BeLPT has allowed investigators to screen for beryllium sensitization 
and CBD prior to the onset of clinical symptoms, providing a more 
sensitive and thorough analysis of the worker population. The 
discussion of the studies has been further divided by manufacturing 
processes that may have similar exposure profiles. Table A.1 in the 
Supplemental Information for the Beryllium Health Effects Section 
summarizes the prevalence of beryllium sensitization and CBD, range of 
exposure measurements, and other salient information from the key 
epidemiological studies (Document ID 1965).
    It has been well-established that beryllium exposure, either via 
inhalation or skin, may lead to beryllium sensitization, or, with 
inhalation exposure, may lead to the onset and progression of CBD. The 
available published epidemiological literature discussed below provides 
strong evidence of beryllium sensitization and CBD in workers exposed 
to airborne beryllium well below the preceding OSHA PEL of 2 [mu]g/
m\3\. Several studies demonstrate the prevalence of sensitization and 
CBD is related to the level of airborne exposure, including a cross-
sectional survey of employees at a beryllium ceramics plant in Tucson, 
AZ (Henneberger et al., 2001, Document ID 1313), case-control studies 
of workers at the Rocky Flats nuclear weapons facility (Viet et al., 
2000, Document ID 1344), and workers from a beryllium machining plant 
in Cullman, AL (Kelleher et al., 2001, Document ID 1363). The 
prevalence of beryllium sensitization also may be related to dermal 
exposure. An increased risk of CBD has been reported in workers with 
skin lesions, potentially increasing the uptake of beryllium (Curtis, 
1951, Document ID 1368; Johnson et al., 2001 (1505); Schuler et al., 
2005 (0919)). Three studies describe comprehensive preventive programs, 
which included expanded respiratory protection, dermal protection, and 
improved control of beryllium dust migration, that substantially 
reduced the rate of beryllium sensitization among new hires (Cummings 
et al., 2007; Thomas et al., 2009 (0590); Bailey et al., 2010 (0676); 
Schuler et al., 2012(0473)).
    Some of the epidemiological studies presented in this section 
suffer from challenges common to many published epidemiological 
studies: Limitations in study design (particularly cross-sectional); 
small sample size; lack of personal and/or short-term exposure data, 
particularly those published before the late 1990s; and incomplete 
information regarding specific chemical form and/or particle 
characterization. Challenges that are specific to beryllium 
epidemiological studies include: uncertainty regarding the contribution 
of dermal exposure; use of various BeLPT protocols; a variety of case 
definitions for determining CBD; and use of various exposure sampling/
assessment methods (e.g., daily weighted average (DWA), lapel 
sampling). Even with these limitations, the epidemiological evidence 
presented in this section clearly demonstrates that beryllium 
sensitization and CBD are continuing to occur from present-day 
exposures below OSHA's preceding PEL of 2 [mu]g/m\3\. The available 
literature also indicates that the rate of beryllium sensitization can 
be substantially lowered by reducing inhalation exposure and minimizing 
dermal contact.
a. Studies Conducted Prior to the BeLPT
    First reports of CBD came from studies performed by Hardy and 
Tabershaw (1946) (Document ID 1516). Cases were observed in industrial 
plants that were refining and manufacturing beryllium metal and 
beryllium alloys and in plants manufacturing fluorescent light bulbs 
(NAS, 2008, Document ID 1355). From the late 1940s through the 1960s, 
clusters of non-occupational CBD cases were identified around beryllium 
refineries in Ohio and Pennsylvania, and outbreaks in family members of 
beryllium factory workers were assumed to be from exposure to 
contaminated clothes (Hardy, 1980, Document ID 1514). It had been 
established that the risk of disease among beryllium workers was 
variable and generally rose with the levels of airborne concentrations 
(Machle et al., 1948, Document ID 1461). And while there was a 
relationship between air concentrations of beryllium and risk of 
developing disease both in and surrounding these plants, the disease 
rates outside the plants were higher than expected and not very 
different from the rate of CBD within the plants (Eisenbud et al., 
1949, Document ID 1284; Lieben and Metzner, 1959 (1343)). There 
remained considerable uncertainty regarding diagnosis due to lack of 
well-defined cohorts, modern diagnostic methods, or inadequate follow-
up. In fact, many patients with CBD may have been misdiagnosed with 
sarcoidosis (NAS, 2008, Document ID 1355).
    The difficulties in distinguishing lung disease caused by beryllium 
from other lung diseases led to the establishment of the BCR in 1952 to 
identify and track cases of ABD and CBD. A uniform diagnostic criterion 
was introduced in 1959 as a way to delineate CBD from sarcoidosis. 
Patient entry into the BCR required either: Documented past exposure to 
beryllium or the presence of beryllium in lung tissue as well as 
clinical evidence of beryllium disease (Hardy et al., 1967, Document ID 
1515); or any three of the six criteria listed below (Hasan and Kazemi, 
1974, Document ID 0451). Patients identified using the above criteria 
were registered and added to the BCR from 1952 through 1983 (Eisenbud 
and Lisson, 1983, Document ID 1296).
    The BCR listed the following criteria for diagnosing CBD (Eisenbud 
and Lisson, 1983, Document ID 1296):
    (1) Establishment of significant beryllium exposure based on sound 
epidemiologic history;
    (2) Objective evidence of lower respiratory tract disease and 
clinical course consistent with beryllium disease;
    (3) Chest X-ray films with radiologic evidence of interstitial 
fibronodular disease;
    (4) Evidence of restrictive or obstructive defect with diminished 
carbon monoxide diffusing capacity (DL CO) by physiologic 
studies of lung function;
    (5) Pathologic changes consistent with beryllium disease on 
examination of lung tissue; and
    (6) Presence of beryllium in lung tissue or thoracic lymph nodes.
    Prevalence of CBD in workers during the time period between the 
1940s and 1950s was estimated to be between 1-10% (Eisenbud and Lisson, 
1983, Document ID 1296). In a 1969 study, Stoeckle et al. presented 60 
case histories with a selective literature review utilizing the above 
criteria except that urinary beryllium was substituted for lung 
beryllium to demonstrate beryllium exposure. Stoeckle et al. (1969) 
were able to demonstrate corticosteroids as a successful treatment 
option in one case of confirmed CBD (Document ID 0447). This study also 
presented a 28 percent mortality rate from complications of CBD at the 
time of publication. However, even with the improved

[[Page 2500]]

methodology for determining CBD based on the BCR criteria, these 
studies suffered from lack of well-defined cohorts, modern diagnostic 
techniques or adequate follow-up.
b. Criteria for Beryllium Sensitization and CBD Case Definition 
Following the Development of the BeLPT
    The criteria for diagnosis of CBD have evolved over time as more 
advanced diagnostic technology, such as the blood BeLPT and BAL BeLPT, 
has become available. More recent diagnostic criteria have both higher 
specificity than earlier methods and higher sensitivity, identifying 
subclinical effects. Recent studies typically use the following 
criteria (Newman et al., 1989, Document ID 0196; Pappas and Newman, 
1993 (1433); Maier et al., 1999 (1458)):
    (1) History of beryllium exposure;
    (2) Histopathological evidence of non-caseating granulomas or 
mononuclear cell infiltrates in the absence of infection; and
    (3) Positive blood or BAL BeLPT (Newman et al., 1989, Document ID 
0196).
    The availability of transbronchial lung biopsy facilitates the 
evaluation of the second criterion, by making histopathological 
confirmation possible in almost all cases.
    A significant component for the identification of CBD is the 
demonstration of a confirmed abnormal BeLPT result in a blood or BAL 
sample (Newman, 1996, Document ID 1283). Since the development of the 
BeLPT in the 1980s, it has been used to screen beryllium-exposed 
workers for sensitization in a number of studies to be discussed below. 
The BeLPT is a non-invasive in vitro blood test that measures the 
beryllium antigen-specific T-cell mediated immune response and is the 
most commonly available diagnostic tool for identifying beryllium 
sensitization. The BeLPT measures the degree to which beryllium 
stimulates lymphocyte proliferation under a specific set of conditions, 
and is interpreted based upon the number of stimulation indices that 
exceed the normal value. The ``cut-off'' is based on the mean value of 
the peak stimulation index among controls plus 2 or 3 standard 
deviations. This methodology was modeled into a statistical method 
known as the ``least absolute values'' or ``statistical-biological 
positive'' method and relies on natural log modeling of the median 
stimulation index values (DOE, 2001, Document ID 0068; Frome, 2003 
(0462)). In most applications, two or more stimulation indices that 
exceed the cut-off constitute an abnormal test.
    Early versions of the BeLPT test had high variability, but the use 
of tritiated thymidine to identify proliferating cells has led to a 
more reliable test (Mroz et al., 1991, 0435; Rossman et al., 2001 
(1424)). In recent years, the peripheral blood test has been found to 
be as sensitive as the BAL assay, although larger abnormal responses 
have been observed with the BAL assay (Kreiss et al., 1993, Document ID 
1478; Pappas and Newman, 1993 (1433)). False negative results have also 
been observed with the BAL BeLPT in cigarette smokers who have marked 
excess of alveolar macrophages in lavage fluid (Kreiss et al., 1993, 
Document ID 1478). The BeLPT has also been a useful tool in animal 
studies to identify those species with a beryllium-specific immune 
response (Haley et al., 1994, Document ID 1364).
    Screenings for beryllium sensitization have been conducted using 
the BeLPT in several occupational surveys and surveillance programs, 
including nuclear weapons facilities operated by the Department of 
Energy (Viet et al., 2000, Document ID 1344; Stange et al., 2001 
(1403); DOE/HSS Report, 2006 (0664)), a beryllium ceramics plant in 
Arizona (Kreiss et al., 1996, Document ID 1477; Henneberger et al., 
2001 (1313); Cummings et al., 2007 (1369)), a beryllium production 
plant in Ohio (Kreiss et al., 1997, Document ID 1476; Kent et al., 2001 
(1112)), a beryllium machining facility in Alabama (Kelleher et al., 
2001, Document ID 1363; Madl et al., 2007 (1056)), a beryllium alloy 
plant (Schuler et al., 2005, Document ID 0473; Thomas et al., 2009 
(0590)), and another beryllium processing plant (Rosenman et al., 2005, 
Document ID 1352) in Pennsylvania. In most of these studies, 
individuals with an abnormal BeLPT result were retested and were 
identified as sensitized (i.e., confirmed positive) if the abnormal 
result was repeated.
    In order to investigate the reliability and laboratory variability 
of the BeLPT, Stange et al. (2004, Document ID 1402) studied the BeLPT 
by splitting blood samples and sending samples to two laboratories 
simultaneously for BeLPT analysis. Stange et al. found the range of 
agreement on abnormal (positive BeLPT) results was 26.2--61.8 percent 
depending upon the labs tested (Stange et al., 2004, Document ID 1402). 
Borak et al. (2006) contended that the positive predictive value (PPV) 
\4\ is not high enough to meet the criteria of a good screening tool 
(Document ID 0498). Middleton et al. (2008) used the data from the 
Stange et al. (2004) study to estimate the PPV and determined that the 
PPV of the BeLPT could be improved from 0.383 to 0.968 when an abnormal 
BeLPT result is confirmed with a second abnormal result (Middleton et 
al., 2008, Document ID 0480). In April 2006, the Agency for Toxic 
Substances and Disease Registry (ATSDR) convened an expert panel of 
seven physicians and scientists to discuss the BeLPT and to consider 
what algorithm should be used to interpret BeLPT results to establish 
beryllium sensitization (Middleton et al., 2008, Document ID 0480). The 
three criteria proposed by panel members were Criterion A (one abnormal 
BeLPT result establishes sensitization); Criterion B (one abnormal and 
one borderline result establish sensitization); and Criterion C (two 
abnormal results establish sensitization). Using the single-test 
outcome probabilities developed by Stange et al., the panel convened by 
ATSDR calculated and compared the sensitivity, specificity, and 
positive predictive values (PPVs) for each algorithm. The 
characteristics for each algorithm were as follows:
---------------------------------------------------------------------------

    \4\ PPV is the portion of patients with positive test result 
correctly diagnosed.

               Table 2--Characteristics of BeLPT Algorithms (Adapted from Middleton et al., (2008)
                             [Adapted from Middleton et al., 2008, Document ID 0480]
----------------------------------------------------------------------------------------------------------------
                                                                                    Criterion B
                                                                    Criterion A    (1 abnormal +    Criterion C
                                                                   (1 abnormal)    1 borderline)   (2 abnormal)
----------------------------------------------------------------------------------------------------------------
Sensitivity.....................................................           68.2%           65.7%           61.2%
Specificity.....................................................          98.89%          99.92%          99.98%
PPV at 1% prevalence............................................           38.3%           89.3%           96.8%
PPV at 10% prevalence...........................................           87.2%           98.9%           99.7%

[[Page 2501]]

 
False positives per 10,000......................................             111               8               2
----------------------------------------------------------------------------------------------------------------

    The Middleton et al. (2008) study demonstrated that confirmation of 
BeLPT results, whether as one abnormal and one borderline abnormal or 
as two abnormals, enhances the test's PPV and protects the persons 
tested from unnecessary and invasive medical procedures. In populations 
with a high prevalence of beryllium sensitization (i.e., 10 percent or 
more), however, a single test may be adequate to predict sensitization 
(Middleton et al., 2008, Document ID 0480).
    Still, there has been criticism regarding the reliability and 
specificity of the BeLPT as a screening tool and that the BeLPT has not 
been validated appropriately (Cher et al., 2006, as cited in Document 
ID 1678; Borak et al., 2006 (0498); Donovan et al., 2007 (0491); 
Document ID 1678, Attachment 1, p. 6). Even when a confirmational 
second test is performed, an apparent false positive can occur in 
people not occupationally exposed to beryllium (NAS, 2008, Document ID 
1355). An analysis of survey data from the general workforce and new 
employees at a beryllium manufacturer was performed to assess the 
reliability of the BeLPT (Donovan et al. 2007, Document ID 0491). 
Donovan et al. analyzed more than 10,000 test results from nearly 2400 
participants over a 12-year period. Donovan et al. found that 
approximately 2 percent of new employees had at least one positive 
BeLPT at the time of hire and 1 percent of new hires with no known 
occupational exposure were confirmed positive at the time of hire with 
two BeLPTs. However, this should not be considered unusual because 
there have been reported incidences of non-occupational and community-
based beryllium sensitization (Eisenbud et al., 1949, Document ID 1284; 
Leiben and Metzner, 1959 (1343); Newman and Kreiss, 1992 (1440); Maier 
and Rossman, 2008 (0598); NAS, 2008 (1355); Harber et al., 2014 (0415), 
Harber et al., 2014 (0421)).
    Materion objected to OSHA treating ``two or three uninterpretable 
or borderline abnormal BeLPT test results as confirmation of BeS for 
the purposes of the standard'' (Document ID 1808, p. 4). In order to 
address some criticism regarding the PPV of the BeLPT, Middleton et al. 
(2011) conducted another study to evaluate borderline results from 
BeLPT testing (Document ID 0399). Utilizing the common clinical 
algorithm with a criterion that accepted one abnormal result and one 
borderline result as establishing beryllium sensitization resulted in a 
PPV of 94.4 percent. This study also found that three borderline 
results resulted in a PPV of 91 percent. Both of these PPVs were based 
on a population prevalence of 2 percent. This study further 
demonstrates the value of borderline results in predicting beryllium 
sensitization using the BeLPT. OSHA finds that multiple, consistent 
borderline BeLPT results (as found with three borderline results) 
recognize a change in a person's immune system to beryllium exposure. 
In addition, a study by Harber et al. (2014) reexamined the algorithms 
to determine sensitization and CBD data using the BioBank data.\5\ The 
study suggested that changing the algorithm could potentially help 
distinguish sensitization from progression to CBD (Harber et al., 2014, 
Document ID 0363).
---------------------------------------------------------------------------

    \5\ BioBank is a repository of biological specimens and clinical 
data collected from beryllium-exposed Department of Energy workers 
and contractors.
---------------------------------------------------------------------------

    Materion further contended that ``[w]hile some refer to BeLPT 
testing as a `gold' standard for BeS, it is hardly `golden,' as 
numerous commentators have noted.'' (Document ID 1808, p. 4). NIOSH 
submitted testimony to OSHA comparing the use of the BeLPT for 
determining beryllium sensitization to other common medical screening 
tools such as mammography for breast cancer, tuberculin skin test for 
latent tuberculosis infection, prostate-specific antigen (PSA) for 
prostate cancer, and fecal occult blood testing for colon cancer. NIOSH 
stated that ``[a]lthough there is no gold standard test to identify 
beryllium sensitization, BeLPT has been estimated to have a sensitivity 
of 66-86% and a specificity of >99% for sensitization [Middleton et al. 
(2006)]. These values are comparable or superior to those of other 
common medical screening tests.'' (Document ID 1725, pp. 32-33). In 
addition, Dr. Maier of National Jewish Health stated during the public 
hearing that ``medical surveillance should rely on the BeLPT or a 
similar test if validated in the future, as it detects early and late 
beryllium health effects. It has been validated in many population-
based studies.'' (Document ID 1756, Tr. 103).
    Since there are currently no alternatives to the BeLPT in a 
beryllium sensitization screening program, many programs rely on a 
second test to confirm a positive result (NAS, 2008). Various expert 
organizations support the use of the BeLPT (with a second 
confirmational test) as a screening tool for beryllium sensitization 
and CBD. The American Thoracic Society (ATS), based on a systematic 
review of the literature, noted that ``the BeLPT is the cornerstone of 
medical surveillance'' (Balmes et al., 2014; Document ID 0364, pp. 1-
2). The use of the BeLPT in medical surveillance has been endorsed by 
the National Academies in their review of beryllium-related diseases 
and disease prevention programs for the U. S. Air Force (NAS, 2008, 
Document ID 1355). In 2011, NIOSH issued an alert ``Preventing 
Sensitization and Disease from Beryllium Exposure'' where the BeLPT is 
recommended as part of a medical screening and surveillance program 
(NIOSH, 2011, Document ID 0544). OSHA finds that the BeLPT is a useful 
and reliable test method that has been utilized in numerous studies and 
validated and improved through multiple studies.
    The epidemiological studies presented in this section utilized the 
BeLPT as either a surveillance tool or a screening tool for determining 
sensitization status and/or sensitization/CBD prevalence in workers for 
inclusion in the published studies. Most epidemiological studies have 
reported rates of sensitization and disease based on a single screening 
of a working population (``cross-sectional'' or ``population 
prevalence'' rates). Studies of workers in a beryllium machining plant 
and a nuclear weapons facility have included follow-up of the 
population originally screened, resulting in the detection of 
additional cases of sensitization over several years (Newman et al., 
2001, Document ID 1354; Stange et al., 2001 (1403)). Based on the 
studies above, as well as comments from NIOSH, ATS, and National Jewish 
Health, OSHA regards

[[Page 2502]]

the BeLPT as a reliable medical surveillance tool.
c. Beryllium Mining and Extraction
    Mining and extraction of beryllium usually involves the two major 
beryllium minerals, beryl (an aluminosilicate containing up to 4 
percent beryllium) and bertrandite (a beryllium silicate hydrate 
containing generally less than 1 percent beryllium) (WHO, 2001, 
Document ID 1282). The United States is the world leader in beryllium 
extraction and also leads the world in production and use of beryllium 
and its alloys (WHO, 2001, Document ID 1282). Most exposures from 
mining and extraction come in the form of beryllium ore, beryllium 
salts, beryllium hydroxide (NAS, 2008, Document ID 1355) or beryllium 
oxide (Stefaniak et al., 2008, Document ID 1397).
    Deubner et al. published a study of 75 workers employed at a 
beryllium mining and extraction facility in Delta, UT (Deubner et al., 
2001b, Document ID 1543). Of the 75 workers surveyed for sensitization 
with the BeLPT, three were identified as sensitized by an abnormal 
BeLPT result. One of those found to be sensitized was diagnosed with 
CBD. Exposures at the facility included primarily beryllium ore and 
salts. General area (GA), breathing zone (BZ), and personal lapel (LP) 
exposure samples were collected from 1970 to 1999. Jobs involving 
beryllium hydrolysis and wet-grinding activities had the highest air 
concentrations, with an annual median GA concentration ranging from 0.1 
to 0.4 [mu]g/m\3\. Median BZ concentrations were higher than either LP 
or GA concentrations. The average duration of exposure for beryllium 
sensitized workers was 21.3 years (27.7 years for the worker with CBD), 
compared to an average duration for all workers of 14.9 years. However, 
these exposures were less than either the Elmore, OH, or Tucson, AZ, 
facilities described below, which also had higher reported rates of BeS 
and CBD. A study by Stefaniak et al. (2008) demonstrated that beryllium 
was present at the mill in three forms: Mineral, poorly crystalline 
oxide, and hydroxide (Document ID 1397).
    There was no sensitization or CBD among those who worked only at 
the mine where exposure to beryllium resulted solely from working with 
bertrandite ore. The authors concluded that the results of this study 
indicated that beryllium ore and salts may pose less of a hazard than 
beryllium metal and beryllium hydroxide. These results are consistent 
with the previously discussed animal studies examining solubility and 
particle size.
d. Beryllium Metal Processing and Alloy Production
    Kreiss et al. (1997) conducted a study of workers at a beryllium 
production facility in Elmore, OH (Document ID 1360). The plant, which 
opened in 1953 and initially specialized in production of beryllium-
copper alloy, later expanded its operations to include beryllium metal, 
beryllium oxide, and beryllium-aluminum alloy production; beryllium and 
beryllium alloy machining; and beryllium ceramics production, which was 
moved to a different factory in the early 1980s. Production operations 
included a wide variety of jobs and processes, such as work in arc 
furnaces and furnace rebuilding, alloy melting and casting, beryllium 
powder processing, and work in the pebble plant. Non-production work 
included jobs in the analytical laboratory, engineering research and 
development, maintenance, laundry, production-area management, and 
office-area administration. While the publication refers to the use of 
respiratory protection in some areas, such as the pebble plant, the 
extent of its use across all jobs or time periods was not reported. Use 
of dermal PPE was not reported.
    The authors characterized exposures at the plant using industrial 
hygiene (IH) samples collected between 1980 and 1993. The exposure 
samples and the plant's formulas for estimating workers' DWA exposures 
were used, together with study participants' work histories, to 
estimate their cumulative and average beryllium exposure levels. 
Exposure concentrations reflected the high exposures found historically 
in beryllium production and processing. Short-term BZ measurements had 
a median of 1.4 [mu]g/m\3\, with 18.5 percent of samples exceeding 
OSHA's preceding permissible ceiling concentration of 5.0 [mu]g/m\3\. 
Particularly high beryllium concentrations were reported in the areas 
of beryllium powder production, laundry, alloy arc furnace 
(approximately 40 percent of DWA estimates over 2.0 [mu]g/m\3\) and 
furnace rebuild (28.6 percent of short-term BZ samples over the 
preceding OSHA permissible ceiling concentration of 5 [mu]g/m\3\). LP 
samples (n = 179), which were available from 1990 to 1992, had a median 
value of 1 [mu]g/m\3\.
    Of 655 workers employed at the time of the study, 627 underwent 
BeLPT screening. Blood samples were divided and split between two labs 
for analysis, with repeat testing for results that were abnormal or 
indeterminate. Thirty-one workers had an abnormal blood test result 
upon initial testing and at least one of two subsequent test results 
for each of those workers confirmed the worker as sensitized. These 
workers, together with 19 workers who had an initial abnormal result 
and one subsequent indeterminate result, were offered clinical 
evaluation for CBD including the BAL-BeLPT and transbronchial lung 
biopsy. Nine workers with an initial abnormal test followed by two 
subsequent normal tests were not clinically evaluated, although four 
were found to be sensitized upon retesting in 1995. Of 47 workers who 
proceeded with evaluation for CBD (3 of the 50 initial workers with 
abnormal results declined to participate), 24 workers were diagnosed 
with CBD based on evidence of granulomas on lung biopsy (20 workers) or 
on other findings consistent with CBD (4 workers) (Kreiss et al., 1997, 
Document ID 1360). After including five workers who had been diagnosed 
prior to the study, a total of 29 (4.6 percent of the 627 workers who 
underwent BeLPT screening) workers still employed at the time of the 
study were found to have CBD. In addition, the plant medical department 
identified 24 former workers diagnosed with CBD before the study.
    Kreiss et al. reported that the highest prevalence of sensitization 
and CBD occurred among workers employed in beryllium metal production, 
even though the highest airborne total mass concentrations of beryllium 
were generally among employees operating the beryllium alloy furnaces 
in a different area of the plant (Kreiss et al., 1997, Document ID 
1360). Preliminary follow-up investigations of particle size-specific 
sampling at five furnace sites within the plant determined that the 
highest respirable (i.e., particles <10 [mu]m in diameter as defined by 
the authors) and alveolar-deposited (i.e., particles <1 [mu]m in 
diameter as defined by the authors) beryllium mass and particle number 
concentrations, as collected by a general area impactor device, were 
measured at the beryllium metal production furnaces rather than the 
beryllium alloy furnaces (Kent et al., 2001, Document ID 1361; McCawley 
et al., 2001 (1357)). A statistically significant linear trend was 
reported between the above alveolar-deposited particle mass 
concentration and prevalence of CBD and sensitization in the furnace 
production areas. The authors concluded that alveolar-deposited 
particles may be a more relevant exposure metric for predicting the 
incidence of CBD or sensitization

[[Page 2503]]

than the total mass concentration of airborne beryllium.
    Bailey et al. (2010) (Document ID 0610) evaluated the effectiveness 
of a workplace preventive program in lowering incidences of 
sensitization at the beryllium metal, oxide, and alloy production plant 
studied by Kreiss et al. (1997) (Document ID 1360). The preventive 
program included use of administrative and PPE controls (e.g., improved 
training, skin protection and other PPE, half-mask or air-purified 
respirators, medical surveillance, improved housekeeping standards, 
clean uniforms) as well as engineering and administrative controls 
(e.g., migration controls, physical separation of administrative 
offices from production facilities) implemented over the course of five 
years.
    In a cross-sectional/longitudinal hybrid study, Bailey et al. 
compared rates of sensitization in pre-program workers to those hired 
after the preventive program began. Pre-program workers were surveyed 
cross-sectionally in 1993-1994, and again in 1999 using the BeLPT to 
determine sensitization and CBD prevalence rates. The 1999 cross-
sectional survey was conducted to determine if improvements in 
engineering and administrative controls were successful. However, 
results indicated no improvement in reducing rates of sensitization or 
CBD.
    An enhanced preventive program including particle migration 
control, respiratory and dermal protection, and process enclosure was 
implemented in 2000, with continuing improvements made to the program 
in 2001, 2002-2004, and 2005. Workers hired during this period were 
longitudinally surveyed for sensitization using the BeLPT. Both the 
pre-program and program survey of worker sensitization status utilized 
split-sample testing to verify positive test results using the BeLPT. 
Of the total 660 workers employed at the production plant, 258 workers 
participated from the pre-program group while 290 participated from the 
program group (206 partial program, 84 full program). Prevalence 
comparisons of the pre-program and program groups (partial and full) 
were performed by calculating prevalence ratios. A 95 percent 
confidence interval (95 percent CI) was derived using a cohort study 
method that accounted for the variance in survey techniques (cross-
sectional versus longitudinal) (Bailey et al., 2010). The sensitization 
prevalence of the pre-program group was 3.8 times higher (95 percent 
CI, 1.5-9.3) than the program group, 4.0 times higher (95 percent CI, 
1.4-11.6) than the partial program subgroup, and 3.3 times higher (95 
percent CI, 0.8-13.7) than the full program subgroup indicating that a 
comprehensive preventive program can reduce, but not eliminate, 
occurrence of sensitization among non-sensitized workers (Bailey et 
al., 2010, Document ID 0610).
    Rosenman et al. (2005) studied a group of several hundred workers 
who had been employed at a beryllium production and processing facility 
that operated in eastern Pennsylvania between 1957 and 1978 (Document 
ID 1352). Of 715 former workers located, 577 were screened for 
beryllium sensitization with the BLPT and 544 underwent chest 
radiography to identify cases of beryllium sensitization and CBD. 
Workers were reported to have exposure to beryllium dust and fume in a 
variety of chemical forms including beryl ore, beryllium metal, 
beryllium fluoride, beryllium hydroxide, and beryllium oxide.
    Rosenman et al. used the plant's DWA formulas to assess workers' 
full-shift exposure levels, based on IH data collected between 1957-
1962 and 1971-1976, to calculate exposure metrics including cumulative, 
average, and peak for each worker in the study (Document ID 1352). The 
DWA was calculated based on air monitoring that consisted of GA and 
short-term task-based BZ samples. Workers' exposures to specific 
chemical and physical forms of beryllium were assessed, including 
poorly soluble beryllium (metal and oxide), soluble beryllium (fluoride 
and hydroxide), mixed soluble and poorly soluble beryllium, beryllium 
dust (metal, hydroxide, or oxide), fume (fluoride), and mixed dust and 
fume. Use of respiratory or dermal protection by workers was not 
reported. Exposures in the plant were high overall. Representative 
task-based IH samples ranged from 0.9 [mu]g/m\3\ to 84 [mu]g/m\3\ in 
the 1960s, falling to a range of 0.5-16.7 [mu]g/m\3\ in the 1970s. A 
large number of workers' mean DWA estimates (25 percent) were above the 
preceding OSHA PEL of 2.0 [mu]g/m\3\, while most workers had mean DWA 
exposures between 0.2 and 2.0 [mu]g/m\3\ (74 percent) or below 0.02 
[mu]g/m\3\ (1 percent) (Rosenman et al., Table 11; revised erratum 
April, 2006, Document ID 1352).
    Blood samples for the BeLPT were collected from the former workers 
between 1996 and 2001 and were evaluated at a single laboratory. 
Individuals with an abnormal test result were offered repeat testing, 
and were classified as sensitized if the second test was also abnormal. 
Sixty workers with two positive BeLPTs and 50 additional workers with 
chest radiography suggestive of disease were offered clinical 
evaluation, including bronchoscopy with bronchial biopsy and BAL-BeLPT. 
Seven workers met both criteria. Only 56 (51 percent) of these workers 
proceeded with clinical evaluation, including 57 percent of those 
referred on the basis of confirmed abnormal BeLPT and 47 percent of 
those with abnormal radiographs (Document ID 1352).
    Of the 577 workers who were evaluated for CBD, 32 (5.5 percent) 
with evidence of granulomas were classified as ``definite'' CBD cases 
(as identified by bronchoscopy). Twelve (2.1 percent) additional 
workers with positive BAL-BeLPT or confirmed positive BeLPT and 
radiographic evidence of upper lobe fibrosis were classified as 
``probable'' CBD cases. Forty workers (6.9 percent) without upper lobe 
fibrosis who had confirmed abnormal BeLPT, but who were not biopsied or 
who underwent biopsy with no evidence of granuloma, were classified as 
sensitized without disease. It is not clear how many of those 40 
workers underwent biopsy. Another 12 (2.1 percent) workers with upper 
lobe fibrosis and negative or unconfirmed positive BeLPT were 
classified as ``possible'' CBD cases. Nine additional workers who were 
diagnosed with CBD before the screening were included in some parts of 
the authors' analysis (Document ID 1352).
    The authors reported a total prevalence of 14.5 percent for CBD 
(definite and probable) and sensitization. This rate, considerably 
higher than the overall prevalence of sensitization and disease in 
several other worker cohorts as described earlier in this section, 
reflects in part the very high exposures experienced by many workers 
during the plant's operation in the 1950s, 1960s and 1970s. A total of 
115 workers had mean DWAs above the preceding OSHA PEL of 2 [mu]g/m\3\. 
Of those, seven (6.0 percent) had definite or probable CBD and another 
13 (11 percent) were classified as sensitized without disease. The true 
prevalence of CBD in the group may be higher than reported, due to the 
low rate of clinical evaluation among sensitized workers (Document ID 
1352).
    Although most of the workers in this study had high exposures, 
sensitization and CBD also were observed within the small subgroup of 
participants believed to have relatively low beryllium exposures. 
Thirty-three cases of CBD and 24 additional cases of sensitization 
occurred among 339 workers with mean DWA exposures below OSHA's PEL of 
2.0 [mu]g/m\3\ (Rosenman et al., Table 11, erratum 2006, Document ID 
1352). Ten cases of sensitization and five cases of

[[Page 2504]]

CBD were found among office and clerical workers, who were believed to 
have low exposures (levels not reported).
    Follow-up time for sensitization screening of workers in this study 
who became sensitized during their employment had a minimum of 20 years 
to develop CBD prior to screening. In this sense the cohort is 
especially well suited to compare the exposure patterns of workers with 
CBD and those sensitized without disease, in contrast to several other 
studies of workers with only recent beryllium exposures. Rosenman et 
al. characterized and compared the exposures of workers with definite 
and probable CBD, sensitization only, and no disease or sensitization 
using chi-squared tests for discrete outcomes and analysis of variance 
(ANOVA) for continuous variables (cumulative, mean, and peak exposure 
levels). Exposure-response relationships were further examined with 
logistic regression analysis, adjusting for potential confounders 
including smoking, age, and beryllium exposure from outside of the 
plant. The authors found that cumulative, peak, and duration of 
exposure were significantly higher for workers with CBD than for 
sensitized workers without disease (p <0.05), suggesting that the risk 
of progressing from sensitization to CBD is related to the level or 
extent of exposure a worker experiences. The risk of developing CBD 
following sensitization appeared strongly related to exposure to poorly 
soluble forms of beryllium, which are cleared slowly from the lung and 
increase beryllium lung burden more rapidly than quickly mobilized 
soluble forms. Individuals with CBD had higher exposures to poorly 
soluble beryllium than those classified as sensitized without disease, 
while exposure to soluble beryllium was higher among sensitized 
individuals than those with CBD (Document ID 1352).
    Cumulative, mean, peak, and duration of exposure were found to be 
comparable for workers with CBD and workers without sensitization or 
CBD (``normal'' workers). Cumulative, peak, and duration of exposure 
were significantly lower for sensitized workers without disease than 
for normal workers. Rosenman et al. suggested that genetic 
predisposition to sensitization and CBD may have obscured an exposure-
response relationship in this study, and plan to control for genetic 
risk factors in future studies. Exposure misclassification from the 
1950s and 1960s may have been another limitation in this study, 
introducing bias that could have influenced the lack of exposure 
response. It is also unknown if the 25 percent who died from CBD-
related conditions may have had higher exposures (Document ID 1352).
    A follow-up was conducted of the cross-sectional study of a 
population of workers first evaluated by Kreiss et al. (1997) (Document 
ID 1360) and Rosenman et al. (2005) (Document ID 1352) by Schuler et 
al. (2012) (Document ID 0473), and in a companion study by Virji et al. 
(2012) (Document ID 0466). Schuler et al. evaluated the worker 
population employed in 1999 with six years or less work tenure in a 
cross-sectional study. The investigators evaluated the worker 
population by administering a work history questionnaire with a follow-
up examination for sensitization and CBD. A job-exposure matrix (JEM) 
was combined with work histories to create individual estimates of 
average, cumulative, and highest-job-related exposure for total, 
respirable, and sub-micron beryllium mass concentration. Of the 291 
eligible workers, 90.7 percent (264) participated in the study. 
Sensitization prevalence was 9.8 percent (26/264) with CBD prevalence 
of 2.3 percent (6/264). The investigators found a general pattern of 
increasing sensitization prevalence as the exposure quartile increased 
indicating an exposure-response relationship. The investigators found 
positive associations with both total and respirable mass concentration 
with sensitization (average and highest job) and CBD (cumulative). 
Increased sensitization prevalence was observed with metal oxide 
production alloy melting and casting, and maintenance. CBD was 
associated with melting and casting. The investigators summarized that 
both total and respirable mass concentration were relevant predictors 
of risk (Schuler et al., 2012, Document ID 0473).
    In the companion study by Virji et al. (2012), the investigators 
reconstructed historical exposure from 1994 to 1999 utilizing the 
personal sampling data collected in 1999 as baseline exposure estimates 
(BEE) (Document ID 0466). The study evaluated techniques for 
reconstructing historical data to evaluate exposure-response 
relationships for epidemiological studies. The investigators 
constructed JEMs using the BEE and estimates of annual changes in 
exposure for 25 different process areas. The investigators concluded 
these reconstructed JEMs could be used to evaluate a range of exposure 
parameters from total, respirable and submicron mass concentration 
including cumulative, average, and highest exposure.
e. Beryllium Machining Operations
    Newman et al. (2001) (Document ID 1354) and Kelleher et al. (2001) 
(Document ID 1363) studied a group of 235 workers at a beryllium metal 
machining plant. Since the plant opened in 1969, its primary operations 
have been machining and polishing beryllium metal and high-beryllium 
content composite materials, with occasional machining of beryllium 
oxide/metal matrix (`E-metal'), and beryllium alloys. Other functions 
include machining of metals other than beryllium; receipt and 
inspection of materials; acid etching; final inspection, quality 
control, and shipping of finished materials; tool making; and 
engineering, maintenance, administrative, and supervisory functions 
(Newman et al., 2001, Document ID 1354; Madl et al., 2007 (1056)). 
Machining operations, including milling, grinding, lapping, deburring, 
lathing, and electrical discharge machining (EDM) were performed in an 
open-floor plan production area. Most non-machining jobs were located 
in a separate, adjacent area; however, non-production employees had 
access to the machining area.
    Engineering and administrative controls, rather than PPE, were 
primarily used to control beryllium exposures at the plant (Madl et 
al., 2007, Document ID 1056). Based on interviews with long-standing 
employees of the plant, Kelleher et al. reported that work practices 
were relatively stable until 1994, when a worker was diagnosed with CBD 
and a new exposure control program was initiated. Between 1995 and 
1999, new engineering and work practice controls were implemented, 
including removal of pressurized air hoses and discouragement of dry 
sweeping (1995), enclosure of deburring processes (1996), mandatory 
uniforms (1997), and installation or updating of local exhaust 
ventilation (LEV) in EDM, lapping, deburring, and grinding processes 
(1998) (Madl et al., 2007, Document ID 1056). Throughout the plant's 
history, respiratory protection was used mainly for ``unusually large, 
anticipated exposures'' to beryllium (Kelleher et al., 2001, Document 
ID 1363), and was not routinely used otherwise (Newman et al., 2001, 
Document ID 1354).
    All workers at the plant participated in a beryllium disease 
surveillance program initiated in 1994, and were screened for beryllium 
sensitization with the BeLPT beginning in 1995. A BeLPT result was 
considered abnormal if two or more of six stimulation indices exceeded 
the normal range (see section

[[Page 2505]]

on BeLPT testing above), and was considered borderline if one of the 
indices exceeded the normal range. A repeat BeLPT was conducted for 
workers with abnormal or borderline initial results. Workers were 
identified as beryllium sensitized and referred for a clinical 
evaluation, including BAL and transbronchial lung biopsy, if the repeat 
test was abnormal. CBD was diagnosed upon evidence of sensitization 
with granulomas or mononuclear cell infiltrates in the lung tissue 
(Newman et al., 2001, Document ID 1354). Following the initial plant-
wide screening, plant employees were offered BeLPT testing at two-year 
intervals. Workers hired after the initial screening were offered a 
BeLPT within 3 months of their hire date, and at 2-year intervals 
thereafter (Madl et al., 2007, Document ID 1056).
    Kelleher et al. performed a nested case-control study of the 235 
workers evaluated in Newman et al. (2001) to evaluate the relationship 
between beryllium exposure levels and risk of sensitization and CBD 
(Kelleher et al., 2001, Document ID 1363). The authors evaluated 
exposures at the plant using IH samples they had collected between 1996 
and 1999, using personal cascade impactors designed to measure the mass 
of beryllium particles less than 6 [mu]m in diameter, particles less 
than 1 [mu]m in diameter, and total mass. The great majority of 
workers' exposures were below the preceding OSHA PEL of 2 [mu]g/m\3\. 
However, a few higher exposure levels were observed in machining jobs 
including deburring, lathing, lapping, and grinding. Based on a 
statistical comparison between their samples and historical data 
provided by the plant, the authors concluded that worker beryllium 
exposures across all time periods included in the study parameters 
(1981 to 1984, 1995 to 1997, and 1998 to 1999) could be approximated 
using the 1996-1999 data. They estimated workers' cumulative and 
``lifetime weighted'' (LTW) beryllium exposure based on the exposure 
samples they collected for each job in 1996-1999 and company records of 
each worker's job history.
    Twenty workers with beryllium sensitization or CBD (cases) were 
compared to 206 workers (controls) for the case-control analysis from 
the study evaluating workers originally conducted by Newman et al. Of 
the 20 workers composing the case group, thirteen workers were 
diagnosed with CBD based on lung biopsy evidence of granulomas and/or 
mononuclear cell infiltrates (11) or positive BAL results with evidence 
of lymphocytosis (2). The other seven were evaluated for CBD and found 
to be sensitized only. Nine of the remaining 215 workers first 
identified in original study (Newman et al., 2001, Document ID 1354) 
were excluded due to incomplete job history information, leaving 206 
workers in the control group.
    Kelleher et al.'s analysis included comparisons of the case and 
control groups' median exposure levels; calculation of odds ratios for 
workers in high, medium, and low exposure groups; and logistic 
regression testing of the association of sensitization or CBD with 
exposure level and other variables. Median cumulative exposures for 
total mass, particles less than 6 [mu]m in diameter, and particles less 
than 1 [mu]m in diameter were approximately three times higher among 
the cases than controls, although the relationships observed were not 
statistically significant (p values ~ 0.2). No clear difference between 
cases and controls was observed for the median LTW exposures. Odds 
ratios with sensitization and CBD as outcomes were elevated in high 
(upper third) and intermediate exposure groups relative to low (lowest 
third) exposure groups for both cumulative and LTW exposure, though the 
results were not statistically significant (p >0.1). In the logistic 
regression analysis, only machinist work history was a significant 
predictor of case status in the final model. Quantitative exposure 
measures were not significant predictors of sensitization or disease 
risk.
    Citing an 11.5 percent prevalence of beryllium sensitization or CBD 
among machinists as compared with 2.9 percent prevalence among workers 
with no machinist work history, the authors concluded that the risk of 
sensitization and CBD is increased among workers who machine beryllium. 
Although differences between cases and controls in median cumulative 
exposure did not achieve conventional thresholds for statistical 
significance, the authors noted that cumulative exposures were 
consistently higher among cases than controls for all categories of 
exposure estimates and for all particle sizes, suggesting an effect of 
cumulative exposure on risk. The levels at which workers developed CBD 
and sensitization were predominantly below OSHA's preceding PEL of 2 
[mu]g/m\3\, and no cases of sensitization or CBD were observed among 
workers with LTW exposure less than 0.02 [mu]g/m\3\. Twelve (60 
percent) of the 20 sensitized workers had LTW exposures >0.20 [mu]g/
m\3\.
    In 2007, Madl et al. published an additional study of 27 workers at 
the machining plant who were found to be sensitized or diagnosed with 
CBD between the start of medical surveillance in 1995 and 2005 (Madl et 
al., 2007, Document ID 1056). As previously described, workers were 
offered a BeLPT in the initial 1995 screening (or within 3 months of 
their hire date if hired after 1995) and at 2-year intervals after 
their first screening. Workers with two positive BeLPTs were identified 
as sensitized and offered clinical evaluation for CBD, including 
bronchoscopy with BAL and transbronchial lung biopsy. The criteria for 
CBD in this study were somewhat stricter than those used in the Newman 
et al. study, requiring evidence of granulomas on lung biopsy or 
detection of X-ray or pulmonary function changes associated with CBD, 
in combination with two positive BeLPTs or one positive BAL-BeLPT.
    Based on the history of the plant's control efforts and their 
analysis of historical IH data, Madl et al. identified three ``exposure 
control eras'': A relatively uncontrolled period from 1980-1995; a 
transitional period from 1996 to 1999; and a relatively well-controlled 
``modern'' period from 2000-2005. They found that the engineering and 
work practice controls instituted in the mid-1990s reduced workers' 
exposures substantially, with nearly a 15-fold difference in reported 
exposure levels between the pre-control and the modern period (Madl et 
al., 2007, Document ID 1056). Madl et al. estimated workers' exposures 
using LP samples collected between 1980 and 2005, including those 
collected by Kelleher et al., and work histories provided by the plant. 
As described more fully in the study, they used a variety of approaches 
to describe individual workers' exposures, including approaches 
designed to characterize the highest exposures workers were likely to 
have experienced. Their exposure-response analysis was based primarily 
on an exposure metric they derived by identifying the year and job of 
each worker's pre-diagnosis work history with the highest reported 
exposures. They used the upper 95th percentile of the LP samples 
collected in that job and year (in some cases supplemented with data 
from other years) to characterize the worker's upper-level exposures.
    Based on their estimates of workers' upper level exposures, Madl et 
al. concluded that sensitized workers or workers with CBD were likely 
to have been exposed to airborne beryllium levels greater than 0.2 
[mu]g/m\3\ as an 8-hour TWA at some point in their history of 
employment in the plant. Madl et al. also concluded that most 
sensitization and CBD cases were likely to have been exposed to levels 
greater than 0.4 [mu]g/m\3\

[[Page 2506]]

at some point in their work at the plant. Madl et al. did not 
reconstruct exposures for workers at the plant who were not sensitized 
and did not develop CBD and therefore could not determine whether non-
cases had upper-bound exposures lower than these levels. They found 
that upper-bound exposure estimates were generally higher for workers 
with CBD than for those who were sensitized but not diagnosed with CBD 
at the conclusion of the study (Madl et al., 2007, Document ID 1056). 
Because CBD is an immunological disease and beryllium sensitization has 
been shown to occur within a year of exposure for some workers, Madl et 
al. argued that their estimates of workers' short-term upper-bound 
exposures may better capture the exposure levels that led to 
sensitization and disease than estimates of long-term cumulative or 
average exposures such as the LTW exposure measure constructed by 
Kelleher et al. (Madl et al., 2007, Document ID 1056).
f. Beryllium Oxide Ceramics
    Kreiss et al. (1993) conducted a screening of current and former 
workers at a plant that manufactured beryllium ceramics from beryllium 
oxide between 1958 and 1975, and then transitioned to metalizing 
circuitry onto beryllium ceramics produced elsewhere (Document ID 
1478). Of the plant's 1,316 current and 350 retired workers, 505 
participated who had not previously been diagnosed with CBD or 
sarcoidosis, including 377 current and 128 former workers. Although 
beryllium exposure was not estimated quantitatively in this survey, the 
authors conducted a questionnaire to assess study participants' 
exposures qualitatively. Results showed that 55 percent of participants 
reported working in jobs with exposure to beryllium dust. Close to 25 
percent of participants did not know if they had exposure to beryllium, 
and just over 20 percent believed they had not been exposed.
    BeLPT tests were administered to all 505 participants in the 1989-
1990 screening period and evaluated at a single lab. Seven workers had 
confirmed abnormal BeLPT results and were identified as sensitized; 
these workers were also diagnosed with CBD based on findings of 
granulomas upon clinical evaluation. Radiograph screening led to 
clinical evaluation and diagnosis of two additional CBD cases, who were 
among three participants with initially abnormal BeLPT results that 
could not be confirmed on repeat testing. In addition, nine workers had 
been previously diagnosed with CBD, and another five were diagnosed 
shortly after the screening period, in 1991-1992.
    Eight of the 9 CBD cases identified in the screening population 
were hired before the plant stopped producing beryllium ceramics in 
1975, and were among the 216 participants who had reported having been 
near or exposed to beryllium dust. Particularly high CBD rates of 11.1 
to 15.8 percent were found among screening participants who had worked 
in process development/engineering, dry pressing, and ventilation 
maintenance jobs believed to have high or uncontrolled dust exposure. 
One case (0.6 percent) of CBD was diagnosed among the 171 study 
participants who had been hired after the plant stopped producing 
beryllium ceramics. Although this worker was hired eight years after 
the end of ceramics production, he had worked in an area later found to 
be contaminated with beryllium dust. The authors concluded that the 
study results suggested an exposure-response relationship between 
beryllium exposure and CBD, and recommended beryllium exposure control 
to reduce workers' risk of CBD.
    Kreiss et al. later published a study of workers at a second 
ceramics plant located in Tucson, AZ (Kreiss et al., 1996, Document ID 
1477), which since 1980 had produced beryllium ceramics from beryllium 
oxide powder manufactured elsewhere. IH measurements collected between 
1981 and 1992, primarily GA or short-term BZ samples and a few (<100) 
LP samples, were available from the plant. Airborne beryllium exposures 
were generally low. The majority of area samples were below the 
analytical detection limit of 0.1 [mu]g/m\3\, while LP and short-term 
BZ samples had medians of 0.3 [mu]g/m\3\. However, 3.6 percent of 
short-term BZ samples and 0.7 percent of GA samples exceeded 5.0 [mu]g/
m\3\, while LP samples ranged from 0.1 to 1.8 [mu]g/m\3\. Machining 
jobs had the highest beryllium exposure levels among job tasks, with 
short-term BZ samples significantly higher for machining jobs than for 
non-machining jobs (median 0.6 [mu]g/m\3\ vs. 0.3 [mu]g/m\3\, p = 
0.0001). The authors used DWA formulas provided by the plant to 
estimate workers' full-shift exposure levels, and to calculate 
cumulative and average beryllium exposures for each worker in the 
study. The median cumulative exposure was 591.7 mg-days/m\3\ and the 
median average exposure was 0.35 [mu]g/m\3\ as a DWA.
    One hundred thirty-six of the 139 workers employed at the plant at 
the time of the Kreiss et al. (1996) study underwent BeLPT screening 
and chest radiographs in 1992 (Document ID 1477). Blood samples were 
split between two laboratories. If one or both test results were 
abnormal, an additional sample was collected and split between the 
labs. Seven workers with an abnormal result on two draws were initially 
identified as sensitized. Those with confirmed abnormal BeLPTs or 
abnormal chest X-rays were offered clinical evaluation for CBD, 
including transbronchial lung biopsy and BAL BeLPT. CBD was diagnosed 
based on observation of granulomas on lung biopsy, in five of the six 
sensitized workers who accepted evaluation. An eighth case of 
sensitization and sixth case of CBD were diagnosed in one worker hired 
in October 1991 whose initial BeLPT was normal, but who was confirmed 
as sensitized and found to have lung granulomas less than two years 
later, after sustaining a beryllium-contaminated skin wound. The plant 
medical department reported 11 additional cases of CBD among former 
workers (Kreiss et al., 1996, Document ID 1477). The overall prevalence 
of sensitization in the plant was 5.9 percent, with a 4.4 percent 
prevalence of CBD.
    Kreiss et al. (1996) (Document ID 1477) reported that six (75 
percent) of the eight sensitized workers were exposed as machinists 
during or before the period October 1985-March 1988, when measurements 
were first available for machining jobs. The authors reported that 14.3 
percent of machinists were sensitized, compared to 1.2 percent of 
workers who had never been machinists (p <0.01). Workers' estimated 
cumulative and average beryllium exposures did not differ significantly 
for machinists and non-machinists, or for cases and non-cases. As in 
the previous study of the same ceramics plant published by Kreiss et 
al. in 1993 (Document ID 1478), one case of CBD was diagnosed in a 
worker who had never been employed in a production job. This worker was 
employed in office administration, a job with a median DWA of 0.1 
[mu]g/m\3\ (range 0.1-0.3 [mu]g/m\3\).
    In 1998, Henneberger et al. conducted a follow-up cross-sectional 
survey of 151 employees employed at the beryllium ceramics plant 
studied by Kreiss et al. (1996) (Henneberger et al., 2001, Document ID 
1313). All current plant employees were eligible for the study unless 
they had previously been diagnosed with CBD. The study tracked two sets 
of workers in presenting prevalence outcomes and exposure 
characterization. ``Short-term workers'' were those hired since the 
last plant survey in 1992. ``Long-term workers''

[[Page 2507]]

were those hired before 1992 and had a longer history of beryllium 
exposures. There were 74 short-term and 77 long-term workers in the 
survey (Henneberger et al., 2001, Document ID 1313).
    The authors estimated workers' cumulative, average, and peak 
beryllium exposures based on the plant's formulas for estimating job-
specific DWA exposures, participants' work histories, and area and 
short-term task-specific BZ samples collected from the start of full 
production at the plant in 1981 to 1998. The long-term workers, who 
were hired before the 1992 study was conducted, had generally higher 
estimated exposures (median--0.39 [mu]g/m\3\; mean--14.9 [mu]g/m\3\) 
than the short-term workers, who were hired after 1992 (median--0.28 
[mu]g/m\3\, mean--6.1 [mu]g/m\3\).
    Fifteen cases of sensitization were found in the 151 study 
participants (15/151; 9.9%), including seven among short-term (7/74; 
9.5%) and eight among long-term workers (8/77; 10.4%). There were eight 
cases of CBD (8/151; 5.3%) identified in the study. One sensitized 
short-term worker developed CBD (1/74; 1.4%). Seven of the eight 
sensitized long-term workers developed CBD (7/77; 9.1%). The other 
sensitized long-term worker declined to participate in the clinical 
evaluation.
    Henneberger et al. (2001) reported a higher prevalence of 
sensitization among long-term workers with ``high'' (greater than 
median) peak exposures compared to long-term workers with ``low'' 
exposures; however, this relationship was not statistically significant 
(Document ID 1313). No association was observed for average or 
cumulative exposures. The authors reported higher (but not 
statistically significant) prevalence of sensitization among short-term 
workers with ``high'' (greater than median) average, cumulative, and 
peak exposures compared to short-term workers with ``low'' exposures of 
each type.
    The cumulative incidence of sensitization and CBD was investigated 
in a cohort of 136 workers at the beryllium ceramics plant previously 
studied by the Kreiss and Henneberger groups (Schuler et al., 2008. 
Document ID 1291). The study cohort consisted of those who participated 
in the plant-wide BeLPT screening in 1992. Both current and former 
workers from this group were invited to participate in follow-up BeLPT 
screenings in 1998, 2000, and 2002-2003. A total of 106 of the 128 non-
sensitized individuals in 1992 participated in the 11-year follow-up. 
Sensitization was defined as a confirmed abnormal BeLPT based on the 
split blood sample-dual laboratory protocol described earlier. CBD was 
diagnosed in sensitized individuals based on pathological findings from 
transbronchial biopsy and BAL fluid analysis. The 11-year crude 
cumulative incidence of sensitization and CBD was 13 percent (14 of 
106) and 8 percent (9 of 106) respectively. The cumulative prevalence 
was about triple the point prevalences determined in the initial 1992 
cross-sectional survey. The corrected cumulative prevalences for those 
that ever worked in machining were nearly twice that for non-
machinists. The data illustrate the value of longitudinal medical 
screening over time to obtain a more accurate estimate of the 
occurrence of sensitization and CBD among an exposed working 
population.
    Following the 1998 survey, the company continued efforts to reduce 
exposures and risk of sensitization and CBD by implementing additional 
engineering, administrative, and PPE measures (Cummings et al., 2007, 
Document ID 1369). Respirator use was required in production areas 
beginning in 1999, and latex gloves were required beginning in 2000. 
The lapping area was enclosed in 2000, and enclosures were installed 
for all mechanical presses in 2001. Between 2000 and 2003, water-
resistant or water-proof garments, shoe covers, and taped gloves were 
incorporated to keep beryllium-containing fluids from wet machining 
processes off the skin. The new engineering measures did not appear to 
substantially reduce airborne beryllium levels in the plant. LP samples 
collected between 2000 and 2003 had a median of 0.18 [mu]g/m\3\ in 
production, similar to the 1994-1999 samples. However, respiratory 
protection requirements to control workers' airborne beryllium 
exposures were instituted prior to the 2000 sample collections, so 
actual exposure to the production workers may have been lower than the 
airborne beryllium levels indicate.
    To test the efficacy of the new measures instituted after 1998, in 
January 2000 the company began screening new workers for sensitization 
at the time of hire and at 3, 6, 12, 24, and 48 months of employment. 
These more stringent measures appear to have substantially reduced the 
risk of sensitization among new employees. Of 126 workers hired between 
2000 and 2004, 93 completed BeLPT testing at hire and at least one 
additional test at 3 months of employment. One case of sensitization 
was identified at 24 months of employment (1 percent of 126 workers). 
This worker had experienced a rash after an incident of dermal exposure 
to lapping fluid through a gap between his glove and uniform sleeve, 
indicating that he may have become sensitized via the skin. He was 
tested again at 48 months of employment, with an abnormal result.
    A second worker in the 2000-2004 group had two abnormal BeLPT tests 
at the time of hire, and a third had one abnormal test at hire and a 
second abnormal test at 3 months. Both had normal BeLPTs at 6 months, 
and were not tested thereafter. A fourth worker had one abnormal BeLPT 
result at the time of hire, a normal result at 3 months, an abnormal 
result at 6 months, and a normal result at 12 months. Four additional 
workers had one abnormal result during surveillance, which could not be 
confirmed upon repeat testing.
    Cummings et al. (2007) calculated two sensitization rates based on 
these screening results: (1) A rate using only the sensitized worker 
identified at 24 months, and (2) a rate including all four workers who 
had repeated abnormal results (Document ID 1369). They reported a 
sensitization incidence rate (IR) of 0.7 per 1,000 person-months to 2.7 
per 1,000 person-months for the workers hired between 2000 and 2004, 
using the sum of sensitization-free months of employment among all 93 
workers as the denominator.
    The authors also estimated an incidence rate (IR) of 5.6 per 1,000 
person-months for workers hired between 1993 and the 1998 survey. This 
estimated IR was based on one BeLPT screening, rather than BeLPTs 
conducted throughout the workers' employment. The denominator in this 
case was the total months of employment until the 1998 screening. 
Because sensitized workers may have been sensitized prior to the 
screening, the denominator may overestimate sensitization-free time in 
the legacy group, and the actual sensitization IR for legacy workers 
may be somewhat higher than 5.6 per 1,000 person-months. Based on 
comparison of the IRs, the authors concluded that the addition of 
respirator use, dermal protection, and particle migration control 
(housekeeping) improvements appeared to have reduced the risk of 
sensitization among workers at the plant, even though airborne 
beryllium levels in some areas of the plant had not changed 
significantly since the 1998 survey.
g. Copper-Beryllium Alloy Processing and Distribution
    Schuler et al. (2005) studied a group of 152 workers at a facility 
who processed copper-beryllium alloys and small quantities of nickel-
beryllium alloys and converted semi-finished alloy

[[Page 2508]]

strip and wire into finished strip, wire, and rod. Production 
activities included annealing, drawing, straightening, point and 
chamfer, rod and wire packing, die grinding, pickling, slitting, and 
degreasing. Periodically in the plant's history, it also performed salt 
baths, cadmium plating, welding and deburring. Since the late 1980s, 
rod and wire production processes have been physically segregated from 
strip metal production. Production support jobs included mechanical 
maintenance, quality assurance, shipping and receiving, inspection, and 
wastewater treatment. Administration was divided into staff primarily 
working within the plant and personnel who mostly worked in office 
areas (Schuler, et al., 2005, Document ID 0919). Workers' respirator 
use was limited, mostly to occasional tasks where high exposures were 
anticipated.
    Following the 1999 diagnosis of a worker with CBD, the company 
surveyed the workforce, offering all current employees BeLPT testing in 
2000 and offering sensitized workers clinical evaluation for CBD, 
including BAL and transbronchial biopsy. Of the facility's 185 
employees, 152 participated in the BeLPT screening. Samples were split 
between two laboratories, with additional draws and testing for 
confirmation if conflicting tests resulted in the initial draw. Ten 
participants (7 percent) had at least two abnormal BeLPT results. The 
results of nine workers who had abnormal BeLPT results from only one 
laboratory were not included because the authors believed the 
laboratory was experiencing technical problems with the test (Schuler 
et al., 2005, Document ID 0919). CBD was diagnosed in six workers (4 
percent) on evidence of pathogenic abnormalities (e.g., granulomas) or 
evidence of clinical abnormalities consistent with CBD based on 
pulmonary function testing, pulmonary exercise testing, and/or chest 
radiography. One worker diagnosed with CBD had been exposed to 
beryllium during previous work at another copper-beryllium processing 
facility.
    Schuler et al. (2005) evaluated airborne beryllium levels at the 
plant using IH samples collected between 1969 and 2000, including 4,524 
GA samples, 650 LP samples and 815 short-duration (3-5 min) high volume 
(SD-HV) BZ task-specific samples (Document ID 0919). Occupational 
exposures to airborne beryllium were generally low. Ninety-nine percent 
of all LP measurements were below the preceding OSHA PEL of 2.0 [mu]g/
m\3\ (8-hr TWA); 93 percent were below the new final OSHA PEL of 0.2 
[mu]g/m\3\ and the median value was 0.02 [mu]g/m\3\. The SD-HV BZ 
samples had a median value of 0.44 [mu]g/m\3\, with 90 percent below 
the preceding OSHA ceiling limit of 5.0 [mu]g/m\3\. The highest levels 
of beryllium exposure were found in rod and wire production, 
particularly in wire annealing and pickling, the only production job 
with a median personal sample measurement greater than 0.1 [mu]g/m\3\ 
(median 0.12 [mu]g/m\3\; range 0.01-7.8 [mu]g/m\3\) (Schuler et al., 
Table 4). These concentrations were significantly higher than the 
exposure levels in the strip metal area (median 0.02 [mu]g/m\3\, range 
0.01-0.72 [mu]g/m\3\), in production support jobs (median 0.02 [mu]g/
m\3\, range <0.01-0.33 [mu]g/m\3\), plant administration (median 0.02 
[mu]g/m\3\, range <0.01-0.11 [mu]g/m\3\), and office administration 
jobs (median 0.01 [mu]g/m\3\, range <0.01-0.06 [mu]g/m\3\).
    The authors reported that eight of the ten sensitized employees, 
including all six CBD cases, had worked in both major production areas 
during their tenure with the plant. The 7 percent prevalence (6 of 81 
workers) of CBD among employees who had ever worked in rod and wire was 
statistically significantly elevated compared with employees who had 
never worked in rod and wire (p <0.05), while the 6 percent prevalence 
(6 of 94 workers) among those who had worked in strip metal was not 
significantly elevated compared to workers who had never worked in 
strip metal (p > 0.1). Based on these results, together with the higher 
exposure levels reported for the rod and wire production area, Schuler 
et al. (2005) concluded that work in rod and wire was a key risk factor 
for CBD in this population. Schuler et al. also found a high prevalence 
(13 percent) of sensitization among workers who had been exposed to 
beryllium for less than a year at the time of the screening, a rate 
similar to that found by Henneberger et al. (2001) among beryllium 
ceramics workers exposed for one year or less (16 percent) (Henneberger 
et al., 2001, Document ID 1313). All four workers who were sensitized 
without disease had been exposed for 5 years or less; conversely, all 
six of the workers with CBD had first been exposed to beryllium at 
least five years prior to the screening (Schuler et al., 2005, Table 2, 
Document ID 0919).
    As has been seen in other studies, beryllium sensitization and CBD 
were found among workers who were typically exposed to low time-
weighted average airborne concentrations of beryllium. While jobs in 
the rod and wire area had the highest exposure levels in the plant, the 
median personal sample value was only 0.12 [mu]g/m\3\ as a DWA. 
However, workers may have occasionally been exposed to higher beryllium 
levels for short periods during specific tasks. A small fraction of 
personal samples recorded in rod and wire were above the preceding OSHA 
PEL of 2.0 [mu]g/m\3\, and half of workers with sensitization or CBD 
reported that they had experienced a ``high-exposure incident'' at some 
point in their work history (Schuler et al., 2005, Document ID 0919). 
The only group of workers with no cases of sensitization or CBD, a 
group of 26 office administration workers, was the group with the 
lowest recorded exposures (median personal sample 0.01 [mu]g/m\3\, 
range <0.01-0.06 [mu]g/m\3\).
    After the BeLPT screening was conducted in 2000, the company began 
implementing new measures to further reduce workers' exposure to 
beryllium (Thomas et al., 2009, Document ID 1061). Measures designed to 
minimize dermal contact with beryllium, including long-sleeve facility 
uniforms and polymer gloves, were instituted in production areas in 
2000. In 2001, the company installed LEV in die grinding and polishing. 
LP samples collected between June 2000 and December 2001 show reduced 
exposures plant-wide. Of 2,211 exposure samples collected, 98 percent 
were below 0.2 [mu]g/m\3\, and 59 percent below the limit of detection 
(LOD), which was either 0.02 [micro]g/m\3\ or 0.2 [micro]g/m\3\ 
depending on the method of sample analysis (Thomas et al., 2009). 
Median values below 0.03 [mu]g/m\3\ were reported for all processes 
except the wire annealing and pickling process. Samples for this 
process remained somewhat elevated, with a median of 0.1 [mu]g/m\3\. In 
January 2002, the plant enclosed the wire annealing and pickling 
process in a restricted access zone (RAZ), requiring respiratory 
protection in the RAZ and implementing stringent measures to minimize 
the potential for skin contact and beryllium transfer out of the zone. 
While exposure samples collected by the facility were sparse following 
the enclosure, they suggest exposure levels comparable to the 2000-2001 
samples in areas other than the RAZ. Within the RAZ, required use of 
powered air-purifying respirators indicates that actual respiratory 
exposure was negligible (Thomas et al., 2009, Document ID 1061).
    To test the efficacy of the new measures in preventing 
sensitization and CBD, in June 2000 the facility began an intensive 
BeLPT screening program for all new workers. The company screened 
workers at the time of hire; at intervals of 3, 6, 12, 24, and 48 
months;

[[Page 2509]]

and at 3-year intervals thereafter. Among 82 workers hired after 1999, 
three (3.7 percent) cases of sensitization were found. Two (5.4 
percent) of 37 workers hired prior to enclosure of the wire annealing 
and pickling process were found to be sensitized within 6 months of 
beginning work at the plant. One (2.2 percent) of 45 workers hired 
after the enclosure was confirmed as sensitized (Thomas et al., 2009, 
Document ID 1061).
    Thomas et al. (2009) calculated a sensitization IR of 1.9 per 1,000 
person-months for the workers hired after the exposure control program 
was initiated in 2000 (``program workers''), using the sum of 
sensitization-free months of employment among all 82 workers as the 
denominator (Thomas et al., 2009, Document ID 1061). They calculated an 
estimated IR of 3.8 per 1,000 person-months for 43 workers hired 
between 1993 and 2000 who had participated in the 2000 BeLPT screening 
(``legacy workers''). This estimated IR was based on one BeLPT 
screening, rather than BeLPTs conducted throughout the legacy workers' 
employment. The denominator in this case is the total months of 
employment until the 2000 screening. Because sensitized workers may 
have been sensitized prior to the screening, the denominator may 
overestimate sensitization-free time in the legacy group, and the 
actual sensitization IR for legacy workers may be somewhat higher than 
3.8 per 1,000 person-months. Based on comparison of the IRs and the 
prevalence rates discussed previously, the authors concluded that the 
combination of dermal protection, respiratory protection, housekeeping 
improvements and engineering controls implemented beginning in 2000 
appeared to have reduced the risk of sensitization among workers at the 
plant. However, they noted that the small size of the study population 
and the short follow-up time for the program workers suggested that 
further research is needed to confirm the program's efficacy (Thomas et 
al., 2009, Document ID 1061).
    Stanton et al. (2006) (Document ID 1070) conducted a study of 
workers in three different copper-beryllium alloy distribution centers 
in the United States. The distribution centers, consisting of one bulk 
products center established in 1963 and strip metal centers established 
in 1968 and 1972, sell products received from beryllium production and 
finishing facilities and small quantities of copper-beryllium, 
aluminum-beryllium, and nickel-beryllium alloy materials. Work at 
distribution centers does not require large-scale heat treatment or 
manipulation of material typical of beryllium processing and machining 
plants, but involves final processing steps that can generate airborne 
beryllium. Slitting, the main production activity at the two strip 
product distribution centers, generates low levels of airborne 
beryllium particles, while operations such as tensioning and welding 
used more frequently at the bulk products center can generate somewhat 
higher levels. Non-production jobs at all three centers included 
shipping and receiving, palletizing and wrapping, production-area 
administrative work, and office-area administrative work.
    Stanton et al. (2006) estimated workers' beryllium exposures using 
IH data from company records and job history information collected 
through interviews conducted by a company occupational health nurse 
(Document ID 1090). Stanton et al. evaluated airborne beryllium levels 
in various jobs based on 393 full-shift LP samples collected from 1996 
to 2004. Airborne beryllium levels at the plant were generally very 
low, with 54 percent of all samples at or below the LOD, which ranged 
from 0.02 to 0.1 [mu]g/m\3\. The authors reported a median of 0.03 
[mu]g/m\3\ and an arithmetic mean of 0.05 [mu]g/m\3\ for the 393 full-
shift LP samples, where samples below the LOD were assigned a value of 
half the applicable LOD. Median values for specific jobs ranged from 
0.01-0.07 [micro]g/m\3\ while geometric mean values for specific jobs 
ranged from 0.02-0.07 [micro]g/m\3\. All measurements were below the 
preceding OSHA PEL of 2.0 [mu]g/m\3\ and 97 percent were below the new 
final OSHA PEL of 0.2 [mu]g/m\3\. The study does not report use of 
respiratory or skin protection.
    Eighty-eight of the 100 workers (88 percent) employed at the three 
centers at the time of the study participated in screening for 
beryllium sensitization. Blood samples were collected between November 
2000 and March 2001 by the company's medical staff. Samples collected 
from employees of the strip metal centers were split and evaluated at 
two laboratories, while samples from the bulk product center workers 
were evaluated at a single laboratory. Participants were considered to 
be ``sensitized'' to beryllium if two or more BeLPT results, from two 
laboratories or from repeat testing at the same laboratory, were found 
to be abnormal. One individual was found to be sensitized and was 
offered clinical evaluation, including BAL and fiberoptic bronchoscopy. 
He was found to have lung granulomas and was diagnosed with CBD.
    The worker diagnosed with CBD had been employed at a strip metal 
distribution center from 1978 to 2000 as a shipper and receiver, 
loading and unloading trucks delivering materials from a beryllium 
production facility and to the distribution center's customers. 
Although the LP samples collected for his job between 1996 and 2000 
were generally low (n = 35, median 0.01 [micro]g/m\3\, range <0.02-0.13 
[micro]g/m\3\), it is not clear whether these samples adequately 
characterize his exposure conditions over the course of his work 
history. He reported that early in his work history, containers of 
beryllium oxide powder were transported on the trucks he entered. While 
he did not recall seeing any breaks or leaks in the beryllium oxide 
containers, some containers were known to have been punctured by 
forklifts on trailers used by the company during the period of his 
employment, and could have contaminated trucks he entered. With 22 
years of employment at the facility, this worker had begun beryllium-
related work earlier and performed it longer than about 90 percent of 
the study population (Stanton et al., 2006, Document ID 1090).
h. Nuclear Weapons Production Facilities and Cleanup of Former 
Facilities
    Primary exposure from nuclear weapons production facilities comes 
from beryllium metal and beryllium alloys. A study conducted by Kreiss 
et al. (1989) (Document ID 1480) documented sensitization and CBD among 
beryllium-exposed workers in the nuclear industry. A company medical 
department identified 58 workers with beryllium exposure among a work 
force of 500, of whom 51 (88 percent) participated in the study. 
Twenty-four workers were involved in research and development (R&D), 
while the remaining 27 were production workers. The R&D workers had a 
longer tenure with a mean time from first exposure of 21.2 years, 
compared to a mean time since first exposure of 5 years among the 
production workers. Six workers had abnormal BeLPT readings, and four 
were diagnosed with CBD. This study classified workers as sensitized 
after one abnormal BeLPT reading, so this resulted in an estimated 11.8 
percent prevalence of sensitization.
    Kreiss et al. (1993) expanded the work of Kreiss et al. (1989) 
(Document ID 1480) by performing a cross-sectional study of 895 current 
and former beryllium workers in the same nuclear weapons plant 
(Document ID 1479). Participants were placed in qualitative exposure 
groups (``no exposure,'' ``minimal exposure,'' ``intermittent

[[Page 2510]]

exposure,'' and ``consistent exposure'') based on questionnaire 
responses. Eighteen workers had abnormal BeLPT test results, with 12 
being diagnosed with CBD. Three additional sensitized workers (those 
with abnormal BeLPT results) developed CBD over the next 2 years. 
Sensitization occurred in all of the qualitatively defined exposure 
groups. Individuals who had worked as machinists were statistically 
overrepresented among beryllium-sensitized cases, compared with non-
cases. Cases were more likely than non-cases to report having had a 
measured overexposure to beryllium (p = 0.009), a factor which proved 
to be a significant predictor of sensitization in logistic regression 
analyses, as was exposure to beryllium prior to 1970. Beryllium 
sensitized cases were also significantly more likely to report having 
had cuts that were delayed in healing (p = 0.02). The authors concluded 
that both individual susceptibility to sensitization and exposure 
circumstance affect the development of beryllium sensitization and CBD.
    In 1991, the Beryllium Health Surveillance Program (BHSP) was 
established at the Rocky Flats Nuclear Weapons Facility to offer BeLPT 
screening to current and former employees who may have been exposed to 
beryllium (Stange et al., 1996, Document ID 0206). Participants 
received an initial BeLPT and follow-ups at one and three years. Based 
on histologic evidence of pulmonary granulomas and a positive BAL-
BeLPT, Stange et al. published a study of 4,397 BHSP participants 
tested from June 1991 to March 1995, including current employees (42.8 
percent) and former employees (57.2 percent). Twenty-nine cases of CBD 
and 76 cases of sensitization were identified. The sensitization rate 
for the population was 2.43 percent. Available exposure data included 
fixed airhead exposure samples collected between 1970 and 1988 (mean 
concentration 0.016 [micro]g/m\3\) and personal samples collected 
between 1984 and 1987 (mean concentration 1.04 [micro]g/m\3\). Cases of 
CBD and sensitization were noted in individuals in all jobs 
classifications, including those believed to involve minimal exposure 
to beryllium. The authors recommended ongoing surveillance for workers 
in all jobs with potential for beryllium exposure.
    Stange et al. (2001) extended the previous study, evaluating 5,173 
participants in the Rocky Flats BHSP who were tested between June 1991 
and December 1997 (Document ID 1403). Three-year serial testing was 
offered to employees who had not been tested for three years or more 
and did not show beryllium sensitization during the previous study. 
This resulted in 2,891 employees being tested. Of the 5,173 workers 
participating in the study, 172 were found to have abnormal BeLPT test 
results. Ninety-eight (3.33 percent) of the workers were found to be 
sensitized (confirmed abnormal BeLPT results) in the initial screening, 
conducted in 1991. Of these workers 74 were diagnosed with CBD, based 
on a history of beryllium exposure, evidence of non-caseating 
granulomas or mononuclear cell infiltrates on lung biopsy, and a 
positive BeLPT or BAL-BeLPT. A follow-up survey of 2,891 workers three 
years later identified an additional 56 sensitized workers and an 
additional seven cases of CBD. Sensitization and CBD rates were 
analyzed with respect to gender, building work locations, and length of 
employment. Historical employee data included hire date, termination 
date, leave of absences, and job title changes. Exposure to beryllium 
was determined by job categories and building or work area codes. In 
order to determine beryllium exposure for all participants in the 
study, personal beryllium air monitoring results were used, when 
available, from employees with the same job title or similar job. 
However, no quantitative exposure information was presented in the 
study. The authors conclude that for some individuals, exposure to 
beryllium at levels below the preceding OSHA PEL appears to cause 
sensitization and CBD.
    Viet et al. (2000) conducted a case-control study of the Rocky 
Flats worker population studied by Stange et al. (1996 and 2001, 
Document ID 0206 and 1403) to examine the relationship between 
estimated beryllium exposure level and risk of sensitization or CBD. 
The worker population included 74 beryllium-sensitized workers and 50 
workers diagnosed with CBD. Beryllium exposure levels were estimated 
based on fixed airhead samples from Building 444, the beryllium machine 
shop, where machine operators were considered to have the highest 
exposures at the Rocky Flats facility. These fixed air samples were 
collected away from the breathing zone of the machine operator and 
likely underestimated exposure. To estimate levels in other locations, 
these air sample concentrations were used to construct a job exposure 
matrix that included the determination of the Building 444 exposure 
estimates for a 30-year period; each subject's work history by job 
location, task, and time period; and assignment of exposure estimates 
to each combination of job location, task, and time period as compared 
to Building 444 machinists. The authors adjusted the levels observed in 
the machine shop by factors based on interviews with former workers. 
Workers' estimated mean exposure concentrations ranged from 0.083 
[micro]g/m\3\ to 0.622 [micro]g/m\3\. Estimated maximum air 
concentrations ranged from 0.54 [micro]g/m\3\ to 36.8 [micro]g/m\3\. 
Cases were matched to controls of the same age, race, gender, and 
smoking status (Viet et al., 2000, Document ID 1344).
    Estimated mean and cumulative exposure levels and duration of 
employment were found to be significantly higher for CBD cases than for 
controls. Estimated mean exposure levels were significantly higher for 
sensitization cases than for controls but no significant difference was 
observed for estimated cumulative exposure or duration of exposure. 
Similar results were found using logistic regression analysis, which 
identified statistically significant relationships between CBD and both 
cumulative and mean estimated exposure, but did not find significant 
relationships between estimated exposure levels and sensitization 
without CBD. Comparing CBD with sensitization cases, Viet et al. found 
that workers with CBD had significantly higher estimated cumulative and 
mean beryllium exposure levels than workers who were sensitized but did 
not have CBD.
    Johnson et al. (2001) conducted a review of personal sampling 
records and medical surveillance reports at an atomic weapons 
establishment in Cardiff, United Kingdom (Document ID 1505). The study 
evaluated airborne samples collected over the 36-year period of 
operation for the plant. Data included 367,757 area samples and 217,681 
personal lapel samples from 194 workers from 1981-1997. The authors 
estimated that over the 17 years of measurement data analyzed, airborne 
beryllium concentrations did exceed 2.0 [micro]g/m\3\, but due to the 
limitations with regard to collection times, it is difficult to assess 
the full reliability of this estimate. The authors noted that in the 
entire plant's history, only one case of CBD had been diagnosed. It was 
also noted that BeLPT had not been routinely conducted among any of the 
workers at this facility.
    Arjomandi et al. (2010) (Document ID 1275) conducted a cross-
sectional study of workers at a nuclear weapons research and 
development (R&D) facility to determine the risk of developing CBD in 
sensitized workers at facilities with exposures much lower than 
production plants (Document ID 1275). Of the 1,875 current or former 
workers at the R&D facility, 59 were determined to be

[[Page 2511]]

sensitized based on at least two positive BeLPTs (i.e., samples drawn 
on two separate occasions or on split samples tested in two separate 
DOE-approved laboratories) for a sensitization rate of 3.1 percent. 
Workers found to have positive BeLPTs were further evaluated in an 
Occupational Medicine Clinic between 1999 and 2005. Arjomandi et al. 
(2010) evaluated 50 of the sensitized workers who also had medical and 
occupational histories, physical examination, chest imaging with high-
resolution computed tomography (HRCT) (N = 49), and pulmonary function 
testing (nine of the 59 workers refused physical examinations so were 
not included in this study). Forty of the 50 workers chosen for this 
study underwent bronchoscopy for bronchoalveolar lavage and 
transbronchial biopsies in additional to the other testing. Five of the 
49 workers had CBD at the time of evaluation (based on histology or 
high-resolution computed tomography); three others had evidence of 
probable CBD; however, none of these cases were classified as severe at 
the time of evaluation. The rate of CBD at the time of study among 
sensitized individuals was 12.5 percent (5/40) for those using 
pathologic review of lung tissue, and 10.2 percent (5/49) for those 
using HRCT as a criteria for diagnosis. The rate of CBD among the 
entire population (5/1875) was 0.3 percent.
    The mean duration of employment at the facility was 18 years, and 
the mean latency period (from first possible exposure) to time of 
evaluation and diagnosis was 32 years. There was no available exposure 
monitoring in the breathing zone of workers at the facility, but the 
authors believed beryllium levels were relatively low (possibly less 
than 0.1 [mu]g/m\3\ for most jobs). There was not an apparent exposure-
response relationship for sensitization or CBD. The sensitization 
prevalence was similar across exposure categories and the CBD 
prevalence higher among workers with the lower-exposure jobs. The 
authors concluded that these sensitized workers, who were subjected to 
an extended duration of low potential beryllium exposures over a long 
latency period, had a low prevalence of CBD (Arjomandi et al., 2010, 
Document ID 1275).
i. Aluminum Smelting
    Bauxite ore, the primary source of aluminum, contains naturally 
occurring beryllium. Worker exposure to beryllium can occur at aluminum 
smelting facilities where aluminum extraction occurs via electrolytic 
reduction of aluminum oxide into aluminum metal. Characterization of 
beryllium exposures and sensitization prevalence rates were examined by 
Taiwo et al. (2010) in a study of nine aluminum smelting facilities 
from four different companies in the U.S., Canada, Italy, and Norway 
(Document ID 0621).
    Of the 3,185 workers determined to be potentially exposed to 
beryllium, 1,932 (60 percent) agreed to participate in a medical 
surveillance program between 2000 and 2006. The medical surveillance 
program included BeLPT analysis, confirmation of an abnormal BeLPT with 
a second BeLPT, and follow-up of all confirmed positive BeLPT results 
by a pulmonary physician to evaluate for progression to CBD.
    Eight-hour TWA exposures were assessed utilizing 1,345 personal 
samples collected from the 9 smelters. The personal beryllium samples 
obtained showed a range of 0.01-13.00 [mu]g/m\3\ TWA with an arithmetic 
mean of 0.25 [mu]g/m\3\ and geometric mean of 0.06 [mu]g/m\3\. Based on 
a survey of published studies, the investigators concluded that 
exposure levels to beryllium observed in aluminum smelters were similar 
to those seen in other industries that utilize beryllium. Of the 1,932 
workers surveyed by BeLPT, nine workers were diagnosed with 
sensitization (prevalence rate of 0.47 percent, 95% confidence interval 
= 0.21-0.88 percent) with 2 of these workers diagnosed with probable 
CBD after additional medical evaluations.
    The authors concluded that compared with beryllium-exposed workers 
in other industries, the rate of sensitization among aluminum smelter 
workers appears lower. The authors speculated that this lower observed 
rate could be related to a more soluble form of beryllium found in the 
aluminum smelting work environment as well as the consistent use of 
respiratory protection. However, the authors also speculated that the 
low participation rate of 60 percent may have underestimated the 
sensitization rate in this worker population.
    A study by Nilsen et al. (2010) also found a low rate of 
sensitization among aluminum workers in Norway. Three-hundred sixty-two 
workers and thirty-one control individuals were tested for beryllium 
sensitization based on the BeLPT. The results found that one (0.28%) of 
the smelter workers had been sensitized. No borderline results were 
reported. The exposures estimated in this plant were 0.1 [micro]g/m\3\ 
to 0.31 [micro]g/m\3\ (Nilsen et al., 2010, Document ID 0460).
6. Animal Models of CBD
    This section reviews the relevant animal studies supporting the 
biological mechanisms outlined above. In order for an animal model to 
be useful for investigating the mechanisms underlying the development 
of CBD, the model should include: The demonstration of a beryllium-
specific immune response; the formation of immune granulomas following 
inhalation exposure to beryllium; and progression of disease as 
observed in human disease. While exposure to beryllium has been shown 
to cause chronic granulomatous inflammation of the lung in animal 
studies using a variety of species, most of the granulomatous lesions 
were not immune-induced reactions (which would predominantly consist of 
T-cells or lymphocytes), but were foreign-body-induced reactions, which 
predominantly consist of macrophages and monocytes, with only a small 
numbers of lymphocytes. Although no single model has completely 
mimicked the disease process as it progresses in humans, animal studies 
have been useful in providing biological plausibility for the role of 
immunological alterations and lung inflammation and in clarifying 
certain specific mechanistic aspects of beryllium disease, such as 
sensitization and CBD. However, there is no dependable animal model 
that mimics all facets of the human response, and studies thus far have 
been limited by single dose experiments, too few animals, or 
abbreviated observation periods. Therefore, the utility of this data is 
limited. The following is a discussion of the most relevant animal 
studies regarding the mechanisms of sensitization and CBD development 
in humans. Table A.2 in the Supplemental Information for the Beryllium 
Health Effects Section summarizes species, route, chemical form of 
beryllium, dose levels, and pathological findings of the key studies 
(Document ID 1965).
    Harmsen et al. performed a study to assess whether the beagle dog 
could provide an adequate model for the study of beryllium-induced lung 
diseases (Harmsen et al., 1986, Document ID 1257). One group of dogs 
served as an air inhalation control group and four other groups 
received high (approximately 50 [mu]g/kg) and low (approximately 20 
[mu]g/kg) doses of beryllium oxide calcined at 500 [deg]C or 1,000 
[deg]C, administered as aerosols in a single exposure.\6\
---------------------------------------------------------------------------

    \6\ As discussed above, calcining temperature affects the 
solubility and SSA of beryllium particles. Those particles calcined 
at higher temperatures (e.g., 1,000 [deg]C) are less soluble and 
have lower SSA than particles calcined at lower temperatures (e.g., 
500 [deg]C). Solubility and SSA are factors in determining the toxic 
potential of beryllium compounds or materials.

---------------------------------------------------------------------------

[[Page 2512]]

    BAL content was collected at 30, 60, 90, 180, and 210 days after 
exposure, and lavage fluid and cellular content was evaluated for 
neutrophilic and lymphocytic infiltration. In addition, BAL cells were 
evaluated at the 210 day period to determine activation potential by 
phytohemagglutinin (PHA) or beryllium sulfate as mitogen. BAL 
neutrophils were significantly elevated only at 30 days with exposure 
to either dose of 500 [deg]C beryllium oxide. BAL lymphocytes were 
significantly elevated at all time points of the high dose of beryllium 
oxide. No significant effect of 1,000 [deg]C beryllium oxide exposure 
on mitogenic response of any lymphocytes was seen. In contrast, 
peripheral blood lymphocytes from the 500 [deg]C beryllium oxide 
exposed groups were significantly stimulated by beryllium sulfate 
compared with the phytohemagglutinin exposed cells. Only the BAL 
lymphocytes from animals exposed to the 500 [deg]C beryllium oxide 
responded to stimulation by either PHA or beryllium sulfate.
    In a series of studies, Haley et al. also found that the beagle dog 
models certain aspects of human CBD (Haley et al., 1989, 1991 and 1992; 
Document ID 1366, 1315, 1365. Briefly, dogs were exposed by inhalation 
to a single exposure to beryllium aerosol generated from beryllium 
oxide calcined at 500 [deg]C or 1,000 [deg]C for initial lung burdens 
of 17 or 50 [mu]g beryllium/kg body weight (Haley et al., 1989, 
Document ID 1366; 1991 (1315)). The dogs were monitored for lung 
pathologic effects, particle clearance, and immune sensitization of 
peripheral blood leukocytes. Lung retention was higher in the 1,000 
[deg]C treated beryllium oxide group (Haley et al., 1989, Document ID 
1366).
    Haley et al. (1989) described the bronchoalveolar lavage (BAL) and 
histopathological changes in dogs exposed as described above. One group 
of dogs underwent BAL for lung lymphocyte analysis at 3, 6, 7, 11, 15, 
18, and 22 months post exposure. The investigators found an increase in 
the percentage and numbers of lymphocytes in BAL fluid at 3 months 
post-exposure in dogs exposed to either dose of beryllium oxide 
calcined at 500 [deg]C and 1,000 [deg]C. Positive BeLPT results were 
observed with BAL lymphocytes only in the group with a high initial 
lung burden of the material calcined at 500 [deg]C at 3 and 6 month 
post exposure. Another group underwent histopathological examination at 
days 8, 32, 64, 180, and 365 (Haley et al., 1989, Document ID 1366; 
1991 (1315)). Histopathologic examination revealed peribronchiolar and 
perivascular lymphocytic histiocytic inflammation, peaking at 64 days 
after beryllium oxide exposure. Lymphocytes were initially well 
differentiated, but progressed to lymphoblastic cells and aggregated in 
lymphofollicular nodules or microgranulomas over time. Although there 
was considerable inter-animal variation, lesions were generally more 
severe in the dogs exposed to material calcined at 500 [deg]C. The 
investigators observed granulomatous lesions and lung lymphocyte 
responses consistent with those observed in humans with CBD, including 
perivascular and peribronchiolar infiltrates of lymphocytes and 
macrophages, progressing to microgranulomas with areas of granulomatous 
pneumonia and interstitial fibrosis. However, lesions declined in 
severity after 64 days post-exposure. The lesions found in dog lungs 
closely resembled those found in humans with CBD: Severe granulomas, 
lymphoblast transformation, increased pulmonary lymphocyte 
concentrations and variation in beryllium sensitivity. It was concluded 
that the canine model for CBD may provide insight into this disease.
    In a follow-up experiment, control dogs and those exposed to 
beryllium oxide calcined at 500 [deg]C were allowed to rest for 2.5 
years, and then re-exposed to filtered air (controls) or beryllium 
oxide calcined at 500 [deg]C (cases) for an initial lung burden target 
of 50 [mu]g beryllium oxide/kg body weight (Haley et al., 1992, 
Document ID 1365). Immune responses of blood and BAL lymphocytes, as 
well as lung lesions in dogs sacrificed 210 days post-exposure, were 
compared with results following the initial exposure. The severity of 
lung lesions was comparable under both conditions, suggesting that a 
2.5-year interval was sufficient to prevent cumulative pathologic 
effects in beagle dogs.
    In a comparison study of dogs and monkeys, Conradi et al. (1971) 
exposed animals via inhalation to an average aerosol to either 0, 3,300 
or 4,380 [mu]g/m\3\ of beryllium as beryllium oxide calcined at 1,400 
[deg]C for 30 minutes, once per month for 3 months (Document ID 1319). 
Conradi et al. found no changes in the histological or ultrastructure 
of the lung of animals exposed to beryllium versus control animals. 
This was in contrast to previous findings reported in other studies 
cited by Conradi et al. The investigators speculated that the 
differences may be due in part to calcination temperature or follow-up 
time after initial exposure. The findings from Haley et al. (1989, 
Document ID 1366; 1991 (1915); and 1992 (1365)) as well as Harmsen et 
al. (1986, Document ID 1257) suggest that the beagle model for 
sensitization of CBD is more closely related to the human response that 
other species such as the monkey (and those reviewed in Table A2 of the 
Supplemental Information for the Beryllium Health Effects Section).
    A 1994 study by Haley et al. comparing the potential toxicity of 
beryllium oxide versus beryllium metal showed that instillation of both 
beryllium oxide and beryllium metal induced an immune response in 
monkeys. Briefly, male cynomolgus monkeys were exposed to either 
beryllium metal or beryllium oxide calcined at 500 [deg]C via 
intrabronchiolar instillation as a saline suspension. Lymphocyte counts 
in BAL fluid were observed through bronchoalveolar lavage at 14, 30, 
60, 90, and 120 days post exposure, and were found to be significantly 
increased in monkeys exposed to beryllium metal on post-exposure days 
14, 30, 60, and 90, and in monkeys exposed to beryllium oxide on post-
exposure day 30 and 60. Histological examination of lung tissue 
revealed that monkeys exposed to beryllium metal developed interstitial 
fibrosis, Type II cell hyperplasia with increased lymphocytes 
infiltration, and lymphocytic mantles accumulating around alveolar 
macrophages. Similar but much less severe lesions were observed in 
beryllium-oxide-exposed monkeys. Only monkeys exposed to beryllium 
metal had positive BAL BeLPT results (Haley et al., 1994, Document ID 
1364).
    As discussed earlier in this Health Effects section, at the 
cellular level, beryllium dissolution may be necessary in order for 
either a dendritic cell or a macrophage to present beryllium as an 
antigen to induce the cell-mediated CBD immune reactions (NAS, 2008, 
Document ID 1355). Several studies have shown that low-fired beryllium 
oxide, which is predominantly made up of poorly crystallized small 
particles, is more immunologically reactive than beryllium oxide 
calcined at higher firing temperatures that result in less reactivity 
due to increasing crystal size (Stefaniak et al., 2006, Document ID 
1398). As discussed previously, Haley et al. (1989, Document ID 1366) 
found more severe lung lesions and a stronger immune response in beagle 
dogs receiving a single inhalation exposure to beryllium oxide calcined 
at 500 [deg]C than in dogs receiving an equivalent initial lung burden 
of beryllium oxide calcined at 1,000 [deg]C. Haley et al. found that 
beryllium oxide calcined at 1,000 [deg]C

[[Page 2513]]

elicited little local pulmonary immune response, whereas the much more 
soluble beryllium oxide calcined at 500 [deg]C produced a beryllium-
specific, cell-mediated immune response in dogs (Haley et al., 1989, 
Document ID 1366 and 1991 (1315)).
    In a later study, beryllium metal appeared to induce a greater 
toxic response than beryllium oxide following intrabronchiolar 
instillation in cynomolgus monkeys, as evidenced by more severe lung 
lesions, a larger effect on BAL lymphocyte counts, and a positive 
response in the BeLPT with BAL lymphocytes only after exposure to 
beryllium metal (Haley et al., 1994, Document ID 1364). A study by 
Mueller and Adolphson (1979) observed that an oxide layer can develop 
on beryllium-metal surfaces after exposure to air (Mueller and 
Adolphson, 1979, Document ID 1260). According to the NAS report, 
Harmesen et al (1994) suggested that the presence of beryllium metal 
could lead to persistent exposures of small amounts beryllium oxide 
sufficient for presentation to the immune system (NAS, 2008, Document 
ID 1355).
    Genetic studies in humans led to the creation of an animal model 
containing different human HLA-DP alleles inserted into FVB/N mice for 
mechanistic studies of CBD. Three strains of genetically engineered 
mice (transgenic mice) were created that conferred different risks for 
developing CBD based on human studies (Weston et al., 2005, Document ID 
1345; Snyder et al., 2008 (0471)): (1) The HLA-DPB1*0401 transgenic 
strain, where the transgene codes for lysine residue at the 69th 
position of the B-chain conferred low risk of CBD; (2) the HLA-
DPB1*0201 mice, where the transgene codes for glutamic acid residue at 
the 69th position of the B-chain conferred medium risk of CBD; and (3) 
the HLA-DPB1*1701 mice, where the transgene codes for glutamic acid at 
the 69th position of the B-chain but coded for a more negatively 
charged protein to confer higher risk of CBD (Tarantino-Hutchinson et 
al., 2009, Document ID 0536).
    In order to validate the transgenic model, Tarantino-Hutchison et 
al. challenged the transgenic mice along with seven different inbred 
mouse strains to determine the susceptibility and sensitivity to 
beryllium exposure. Mice were dermally exposed with either saline or 
beryllium, then challenged with either saline or beryllium (as 
beryllium sulfate) using the MEST protocol (mouse ear-swelling test). 
The authors determined that the high risk HLA-DPB1*1701 transgenic 
strain responded 4 times greater (as measured via ear swelling) than 
control mice and at least 2 times greater than other strains of mice. 
The findings correspond to epidemiological study results reporting an 
enhanced CBD odds ratio for the HLA-DPB1*1701 in humans (Weston et al., 
2005, Document ID 1345; Snyder et al., 2008 (0471)). Transgenic mice 
with the genes corresponding to the low and medium odds ratio study did 
not respond significantly over the control group. The authors concluded 
that while HLA-DPB1*1701 is important to beryllium sensitization and 
progression to CBD, other genetic and environmental factors contribute 
to the disease process as well.
7. Beryllium Sensitization and CBD Conclusions
    There is substantial evidence that skin and inhalation exposure to 
beryllium may lead to sensitization (section V.D.1) and that inhalation 
exposure, or skin exposure coupled with inhalation exposure, may lead 
to the onset and progression of CBD (section V.D.2). These conclusions 
are supported by extensive human studies (section V.D.5). While all 
facets of the biological mechanism for this complex disease have yet to 
be fully elucidated, many of the key events in the disease sequence 
have been identified and described in the earlier sections (sections 
V.D.1-5). Sensitization is considered to be a necessary first step to 
the onset of CBD (NAS, 2008, Document ID 1355; ERG, 2010 (1270)). 
Sensitization is the process by which the immune system recognizes 
beryllium as a foreign substance and responds in a manner that may lead 
to development of CBD. It has been documented that a substantial 
proportion of sensitized workers exposed to airborne beryllium can 
progress to CBD (Rosenman et al., 2005, Document ID 1352; NAS, 2008 
(1355); Mroz et al., 2009 (1356)). Animal studies, particularly in dogs 
and monkeys, have provided supporting evidence for T cell lymphocyte 
proliferation in the development of granulomatous lung lesions after 
exposure to beryllium (Harmsen et al., 1986, Document ID 1257; Haley et 
al., 1989 (1366), 1992 (1365), 1994 (1364)). The animal studies have 
also provided important insights into the roles of chemical form, 
genetic susceptibility, and residual lung burden in the development of 
beryllium lung disease (Harmsen et al., 1986, Document ID 1257; Haley 
et al., 1992 (1365); Tarantino-Hutchison et al., 2009 (0536)). The 
evidence supports sensitization as an early functional change that 
allows the immune system to recognize and adversely react to beryllium. 
As such, OSHA regards beryllium sensitization as a necessary first step 
along a continuum that can culminate in clinical lung disease.
    The epidemiological evidence presented in section V.D.5 
demonstrates that sensitization and CBD are continuing to occur from 
exposures below OSHA's preceding PEL. The prevalence of sensitization 
among beryllium-exposed workers, as measured by the BeLPT and reported 
in 16 surveys of occupationally exposed cohorts reviewed by the Agency, 
ranged from 0.3 to 14.5 percent (Deubner et al., 2001, Document ID 
1543; Kreiss et al., 1997 (1360); Rosenman et al., 2005 (1352); Schuler 
et al., 2012 (0473); Bailey et al., 2010 (0676); Newman et al., 2001 
(1354); OSHA, 2014 (1589); Kreiss et al., 1996 (1477); Henneberger et 
al., 2001 (0589); Cummings et al., 2007 (1369); Schuler et al., 2005 
(0919); Thomas et al., 2009 (1061); Kreiss et al., 1989 (1480); 
Arjomandi et al., 2010 (1275); Taiwo et al., 2011 (0621); Nilson et 
al., 2010 (0460)). The lower prevalence estimates (0.3 to 3.7 percent) 
were from facilities known to have implemented respiratory protection 
programs and have lower personal exposures (Cummings et al., 2007, 
Document ID 1369; Thomas et al., 2009 (1061); Bailey et al., 2010 
(0676); Taiwo et al, 2011 (0621), Nilson et al., 2010 (0460); Arjomandi 
et al., 2010 (1275)). Thirteen of the surveys also evaluated workers 
for CBD and reported prevalences of CBD ranging from 0.1 to 7.8 
percent. The cohort studies cover workers across many different 
industries and processes as discussed in section V.D.5. Several studies 
show that incidence of sensitization among workers can be reduced by 
reducing inhalation exposure and that minimizing skin exposure may 
serve to further reduce sensitization (Cummings et al., 2007, Document 
ID 1369; Thomas et al., 2009 (1061); Bailey et al., 2010 (0676)). The 
risk assessment further discusses the effectiveness of interventions to 
reduce beryllium exposures and the risk of sensitization and CBD (see 
section VI of this preamble, Risk Assessment).
    Longitudinal studies of sensitized workers found early signs of 
asymptomatic CBD that can progress to clinical disease in some 
individuals. One study found that 31 percent of beryllium-exposed 
sensitized employees progressed to CBD with an average follow-up time 
of 3.8 years (Newman, 2005, Document ID 1437). However, Newman (2005) 
went on to suggest that if follow-up times were much longer, the rate 
of progression from

[[Page 2514]]

sensitization to CBD could be much higher. Mroz et al. (2009) (Document 
ID 1356) conducted a longitudinal study between 1982 and 2002 in which 
they followed 171 cases of CBD and 229 cases of sensitization initially 
evaluated through workforce medical surveillance by National Jewish 
Health. All study subjects had abnormal BeLPTs upon study entry and 
were then clinically evaluated and treated for CBD. Over the 20-year 
study period, 22 sensitized individuals went on to develop CBD which 
was an incidence of 8.8 percent (i.e., 22 cases out of 251 sensitized, 
calculated by adding those 22 cases to the 229 initially classified as 
sensitized). The findings from this study indicated that the average 
span of time from initial beryllium exposure to CBD diagnosis for those 
22 workers was 24 years (Mroz et al., 2009, Document ID 1356).
    A study of sensitized workers believed to have been exposed to low 
levels of airborne beryllium metal (e.g., 0.01 [micro]g/m\3\ or less) 
at a nuclear weapons research and development facility were clinically 
evaluated between 1999 and 2005 (Arjomandi et al., 2010, Document ID 
1275). Five of 49 sensitized workers (10.2 percent incidence) were 
found to have pathology consistent with CBD. The CBD was asymptomatic 
and had not progressed to clinical disease. The mean duration of 
employment among workers in the study was 18 years with mean latency of 
32 years to time of CBD diagnosis (Arjomandi et al., 2010, Document ID 
1275). This suggests that some sensitized individuals can develop CBD 
even from low levels of beryllium exposure. Another study of nuclear 
weapons facility employees enrolled in an ongoing medical surveillance 
program found that sensitization rate among exposed workers was highest 
over the first 10 years of beryllium exposure while onset of CBD 
pathology was greatest following 15 to 30 years of exposure (Stange et 
al., 2001, Document ID 1403). This indicates length of exposure may 
play a role in further development of the disease. OSHA concludes from 
the study evidence that the persistent presence of beryllium in the 
lungs of sensitized workers can lead to a progression of CBD over time 
from an asymptomatic stage to serious clinical disease.
E. Beryllium Lung Cancer Section
    Beryllium exposure is associated with a variety of adverse health 
effects, including lung cancer. The potential for beryllium and its 
compounds to cause cancer has been previously assessed by various other 
agencies (EPA, ATSDR, NAS, NIEHS, and NIOSH), with each agency 
identifying beryllium as a potential carcinogen. In addition, IARC did 
an extensive evaluation in 1993 (Document ID 1342) and reevaluation in 
April 2009 (IARC, 2012, Document ID 0650). In brief, IARC determined 
beryllium and its compounds to be carcinogenic to humans (Group 1 
category), while EPA considers beryllium to be a probable human 
carcinogen (EPA, 1998, Document ID 0661), and the National Toxicology 
Program (NTP) classifies beryllium and its compounds as known 
carcinogens (NTP, 2014, Document ID 0389). OSHA has conducted an 
independent evaluation of the carcinogenic potential of beryllium and 
these compounds. The following is a summary of the studies used to 
support the Agency's finding that beryllium and its compounds are human 
carcinogens.
1. Genotoxicity Studies
    Genotoxicity can be an important indicator for screening the 
potential of a material to induce cancer and an important mechanism 
leading to tumor formation and carcinogenesis. In a review conducted by 
the National Academy of Science, beryllium and its compounds have 
tested positively in nearly 50 percent of the genotoxicity studies 
conducted without exogenous metabolic activity. However, they were 
found to be non-genotoxic in most bacterial assays (NAS, 2008, Document 
ID 1355).
    Non-mammalian test systems (generally bacterial assays) are often 
used to identify genotoxicity of a compound. In bacteria studies 
evaluating beryllium sulfate for mutagenicity, all studies performed 
utilizing the Ames assay (Simmon, 1979, Document ID 0434; Dunkel et 
al., 1981 (0432); Arlauskas et al., 1985 (0454); Ashby et al., 1990 
(0437)) and other bacterial assays (E. coli pol A (Rosenkranz and 
Poirer, 1979, Document ID 1426); E. coli WP2 uvrA (Dunkel et al., 1981, 
Document ID 0432), as well as those utilizing Saccharomyces cerevisiae 
(Simmon, 1979, Document ID 0434)) were reported as negative, with the 
exception of results reported for Bacillus subtilis rec assay (Kada et 
al., 1980, Document ID 0433; Kanematsu et al., 1980 (1503)). Beryllium 
nitrate was also reported as negative in the Ames assay (Tso and Fung, 
1981, Document ID 0446; Kuroda et al., 1991 (1471)) but positive in a 
Bacillus subtilis rec assay (Kuroda et al., 1991, Document ID 1471). In 
addition, beryllium chloride was reported as negative using the Ames 
assay (Ogawa et al., 1987, as cited in Document ID 1341, p. 112; Kuroda 
et al., 1991 (1471)) and other bacterial assays (E. coli WP2 uvrA 
(Rossman et al., 1984, Document ID 0431), as well as the Bacillus 
subtilis rec assay (Nishioka, 1975, Document ID 0449)) and failed to 
induce SOS DNA repair in E. coli (Rossman et al., 1984, Document ID 
0431). Positive results for beryllium chloride were reported for 
Bacillus subtilis rec assay using spores (Kuroda et al., 1991, Document 
ID 1471) as well as increased mutations in the lacI gene of E. coli 
KMBL 3835 (Zakour and Glickman, 1984, Document ID 1373). Beryllium 
oxide was reported to be negative in the Ames assay and Bacillus 
subtilis rec assays (Kuroda et al., 1991, Document ID 1471; EPA, 1998 
(0661)).
    Mutations using in vitro mammalian systems were also evaluated. 
Beryllium chloride induced mutations in V79 and CHO cultured cells 
(Miyaki et al., 1979, Document ID 0450; Hsie et al., 1978 (0427); 
Vegni-Talluri and Guiggiani, 1967 (1382)), and beryllium sulfate 
induced clastogenic alterations, producing breakage or disrupting 
chromosomes in mammalian cells (Brooks et al., 1989, Document ID 0233; 
Larramendy et al., 1981 (1468); Gordon and Bowser, 2003 (1520)). 
However, beryllium sulfate did not induce unscheduled DNA synthesis in 
primary rat hepatocytes and was not mutagenic when injected 
intraperitoneally in adult mice in a host-mediated assay using 
Salmonella typhimurium (Williams et al., 1982). Positive results were 
found for beryllium chloride when evaluating the hprt gene in Chinese 
hamster lung V79 cells (Miyaki et al., 1979, Document ID 0450).
    Data from in vivo genotoxicity testing of beryllium are limited. 
Beryllium metal was found to induce methylation of the p16 gene in the 
lung tumors of rats exposed to beryllium metal (Swafford et al., 1997, 
Document ID 1392) (described in more detail in section V.E.3). A study 
by Nickell-Brady et al., (1994) found that beryllium sulfate (1.4 and 
2.3 g/kg, 50 percent and 80 percent of median lethal dose) administered 
by gavage did not induce micronuclei in the bone marrow of CBA mice. 
However, a marked depression of red blood cell production was 
suggestive of bone marrow toxicity, which was evident 24 hours after 
dosing. No mutations were seen in p53 or c-raf-1 and only weak 
mutations were detected in K-ras in lung carcinomas from F344/N rats 
given a single nose-only exposure to beryllium metal (described in more 
detail in section V. E. 3) (Nickell-Brady et al., 1994, Document ID 
1312). On the other hand, beryllium chloride evaluated in a mouse model 
indicated increased DNA strand breaks and the formation of micronuclei

[[Page 2515]]

in bone marrow (Attia et al., 2013, Document ID 0501).
    In summary, genetic mutations have been observed in mammalian 
systems (in vitro and in vivo) with beryllium chloride, beryllium 
sulfate, and beryllium metal in a number of studies (Miyaki et al., 
1979, Document ID 0450; Hsie et al., 1978 (0427); Vegni-Talluri and 
Guiggiani, 1967 (1382); Brooks et al., 1989 (0233); Larramendy et al., 
1981 (1468); Miyaki et al., 1979 (0450); Swafford et al., 1997 (1392); 
Attia et al., 2013 (0501); EPA, 1998 (0661); Gordon and Bowser, 2003 
(1520)). However, most studies utilizing non-mammalian test systems 
(either with or without metabolic activity) have found that beryllium 
chloride, beryllium nitrate, beryllium sulfate, and beryllium oxide did 
not induce gene mutations, with the exception of Kada et al. (1980, 
Document ID 0433) (Kanematsu et al.,1980, Document ID 1503; Kuroda et 
al., 1991 (1471)).
2. Human Epidemiological Studies
    This section describes the human epidemiological data supporting 
the mechanistic overview of beryllium-induced lung cancer in workers. 
It has been divided into reviews of epidemiological studies by industry 
and beryllium form. The epidemiological studies utilizing data from the 
BCR, in general, focus on workers mainly exposed to soluble forms of 
beryllium. Those studies evaluating the epidemiological evidence by 
industry or process are, in general, focused on exposures to poorly 
soluble or mixed (soluble and poorly soluble) compounds. Table A.3 in 
the Supplemental Information for the Beryllium Health Effects Section 
summarizes the important features and characteristics of each study 
discussed herein (Document ID 1965).
a. Beryllium Case Registry (BCR)
    Two studies evaluated participants in the BCR (Infante et al., 
1980, Document ID 1507; Steenland and Ward, 1991 (1400)). Infante et 
al. (1980) evaluated the mortality patterns of white male participants 
in the BCR diagnosed with non-neoplastic respiratory symptoms of 
beryllium disease. Of the 421 cases evaluated, 7 of the participants 
had died of lung cancer. Six of the deaths occurred more than 15 years 
after initial beryllium exposure. The duration of exposure for 5 of the 
7 participants with lung cancer was less than 1 year, with the time 
since initial exposure ranging from 12 to 29 years. One of the 
participants was exposed for 4 years with a 26-year interval since the 
initial exposure. Exposure duration for one participant diagnosed with 
pulmonary fibrosis could not be determined; however, it had been 32 
years since the initial exposure. Based on BCR records, the 
participants were classified as being in the acute respiratory group 
(i.e., those diagnosed with acute respiratory illness at the time of 
entry in the registry) or the chronic respiratory group (i.e., those 
diagnosed with pulmonary fibrosis or some other chronic lung condition 
at the time of entry into the BCR). The 7 participants with lung cancer 
were in the BCR because of diagnoses of acute respiratory illness. For 
only one of those individuals was initial beryllium exposure less than 
15 years prior. Only 1 of the 6 (with greater than 15 years since 
initial exposure to beryllium) had been diagnosed with chronic 
respiratory disease. The study did not report exposure concentrations 
or smoking habits. The authors concluded that the results from this 
cohort agreed with previous animal studies and with epidemiological 
studies demonstrating an increased risk of lung cancer in workers 
exposed to beryllium.
    Steenland and Ward (1991) (Document ID 1400) extended the work of 
Infante et al. (1980) (Document ID 1507) to include females and to 
include 13 additional years of follow-up. At the time of entry in the 
BCR, 93 percent of the women in the study, but only 50 percent of the 
men, had been diagnosed with CBD. In addition, 61 percent of the women 
had worked in the fluorescent tube industry and 50 percent of the men 
had worked in the basic manufacturing industry with confirmed beryllium 
exposure. A total of 22 males and 6 females died of lung cancer. Of the 
28 total deaths from lung cancer, 17 had been exposed to beryllium for 
less than 4 years and 11 had been exposed for greater than 4 years. The 
study did not report exposure concentrations. Survey data collected in 
1965 provided information on smoking habits for 223 cohort members (32 
percent), on the basis of which the authors suggested that the rate of 
smoking among workers in the cohort may have been lower than U.S. 
rates. The authors concluded that there was evidence of increased risk 
of lung cancer in workers exposed to beryllium and then diagnosed with 
beryllium disease (ABD and CBD).
b. Beryllium Manufacturing and/or Processing Plants (Extraction, 
Fabrication, and Processing)
    Several epidemiological cohort studies have reported excess lung 
cancer mortality among workers employed in U.S. beryllium production 
and processing plants during the 1930s to 1960s.
    Bayliss et al. (1971) (Document ID 1285) performed a nested cohort 
study of 7,948 former workers from the beryllium processing industry 
who were employed from 1942-1967. Information for the workers was 
collected from the personnel files of participating companies. Of the 
7,948 employees, a cause of death was known for 753 male workers. The 
number of observed lung cancer deaths was 36 compared to 34.06 expected 
for a standardized mortality ratio (SMR) of 1.06. When evaluated by the 
number of years of employment, 24 of the 36 men were employed for less 
than 1 year in the industry (SMR = 1.24), 8 were employed for 1 to 5 
years (SMR 1.40), and 4 were employed for more than 5 years (SMR = 
0.54). Half of the workers who died from lung cancer began employment 
in the beryllium production industry prior to 1947. When grouped by job 
classification, over two thirds of the workers with lung cancer were in 
production-related jobs while the rest were classified as office 
workers. The authors concluded that while the lung cancer mortality 
rates were the highest of all other mortality rates, the SMR for lung 
cancer was still within range of the expected based on death rates in 
the United States. The limitations of this study included the lack of 
information regarding exposure concentrations, smoking habits, and the 
age and race of the participants.
    Mancuso (1970, Document ID 1453; 1979, (0529); 1980 (1452)) and 
Mancuso and El-Attar (1969) (Document ID 1455) performed a series of 
occupational cohort studies on a group of workers (primarily white 
males) employed in the beryllium manufacturing industry during 1937-
1948. The cohort identified in Mancuso and El-Attar (1969) was a study 
of 3,685 workers (primarily white males) while Mancuso (1970, 1976, 
1980) continued the study follow-up with 3266 workers due to several 
limitations in identifying specific causes for mortality as identified 
in Mancuso and El-Attar (1969). The beryllium production facilities 
were located in Ohio and Pennsylvania and the records for the 
employees, including periods of employment, were obtained from the 
Social Security Administration. These studies did not include analyses 
of mortality by job title or exposure category (exposure data was taken 
from a study by Zielinsky et al., 1961 (as cited in Mancuso, 1970)). In 
addition, there were no exposure concentrations estimated or 
adjustments for smoking. The estimated duration of employment ranged 
from less than 1 year to greater than 5 years. In the most recent study 
(Mancuso, 1980), employees from the

[[Page 2516]]

viscose rayon industry served as a comparison population. There was a 
significant excess of lung cancer deaths based on the total number of 
80 observed lung cancer mortalities at the end of 1976 compared to an 
expected number of 57.06 based on the comparison population resulting 
in an SMR of 1.40 (p <0.01) (Mancuso, 1980). There was a statistically 
significant excess in lung cancer deaths for the shortest duration of 
employment (<12 months, p <0.05) and the longest duration of employment 
(>49 months, p <0.01). Based on the results of this study, the author 
concluded that the ability of beryllium to induce cancer in workers 
does not require continuous exposure and that it is reasonable to 
assume that the amount of exposure required to produce lung cancer can 
occur within a few months of initial exposure regardless of the length 
of employment.
    Wagoner et al. (1980) (Document ID 1379) expanded the work of 
Mancuso (1970, Document ID 1453; 1979 (0529); 1980 (1452)) using a 
cohort of 3,055 white males from the beryllium extraction, processing, 
and fabrication facility located in Reading, Pennsylvania. The men 
included in the study worked at the facility sometime between 1942 and 
1968, and were followed through 1976. The study accounted for length of 
employment. Other factors accounted for included age, smoking history, 
and regional lung cancer mortality. Forty-seven members of the cohort 
died of lung cancer compared to an expected 34.29 based on U.S. white 
male lung cancer mortality rates (p <.05). The results of this cohort 
showed an excess risk of lung cancer in beryllium-exposed workers at 
each duration of employment (<5 years and >=5 years), with a 
statistically significant excess noted at <5 years of employment and a 
>=25-year interval since the beginning of employment (p <0.05). The 
study was criticized by two epidemiologists (MacMahon, 1978, Document 
ID 0107; Roth, 1983 (0538)), by a CDC Review Committee appointed to 
evaluate the study (as cited in Document ID 0067), and by one of the 
study's coauthors (Bayliss, 1980, Document ID 0105) for inadequate 
discussion of possible alternative explanations of excess lung cancer 
in the cohort. The specific issues identified include the use of 1965-
1967 U.S. white male lung cancer mortality rates to generate expected 
numbers of lung cancers in the period 1968-1975 (which may 
underestimate the expected number of lung cancer deaths for the cohort) 
and inadequate adjustment for smoking.
    One occupational nested case-control study evaluated lung cancer 
mortality in a cohort of 3,569 male workers employed at a beryllium 
alloy production plant in Reading, PA, from 1940 to 1969 and followed 
through 1992 (Sanderson et al., 2001, Document ID 1250). There were a 
total of 142 known lung cancer cases and 710 controls. For each lung 
cancer death, 5 age- and race-matched controls were selected by 
incidence density sampling. Confounding effects of smoking were 
evaluated. Job history and historical air measurements at the plant 
were used to estimate job-specific beryllium exposures from the 1930s 
to 1990s. Calendar-time-specific beryllium exposure estimates were made 
for every job and used to estimate workers' cumulative, average, and 
maximum exposures. Because of the long period of time required for the 
onset of lung cancer, an ``exposure lag'' was employed to discount 
recent exposures less likely to contribute to the disease.
    The largest and most comprehensive study investigated the mortality 
experience of 9,225 workers employed in 7 different beryllium 
processing plants over a 30-year period (Ward et al., 1992, Document ID 
1378). The workers at the two oldest facilities (i.e., Lorain, OH, and 
Reading, PA) were found to have significant excess lung cancer 
mortality relative to the U.S. population. The workers at these two 
plants were believed to have the highest exposure levels to beryllium. 
Ward et al. (1992) performed a retrospective mortality cohort study of 
9,225 male workers employed at seven beryllium processing facilities, 
including the Ohio and Pennsylvania facilities studied by Mancuso and 
El-Attar (1969) (Document ID 1455), Mancuso (1970, Document ID 1453; 
1979 (0529); 1980 (1452)), and Wagoner et al. (1980) (Document ID 
1379). The men were employed for no less than 2 days between January 
1940 and December 1969. Medical records were followed through 1988. At 
the end of the study 61.1 percent of the cohort was known to be living 
and 35.1 percent was known to be deceased. The duration of employment 
ranged from 1 year or less to greater than 10 years with the largest 
percentage of the cohort (49.7 percent) employed for less than one 
year, followed by 1 to 5 years of employment (23.4 percent), greater 
than 10 years (19.1 percent), and 5 to 10 years (7.9 percent). Of the 
3,240 deaths, 280 observed deaths were caused by lung cancer compared 
to 221.5 expected deaths, yielding a statistically significant SMR of 
1.26 (p <0.01). Information on the smoking habits of 15.9 percent of 
the cohort members, obtained from a 1968 Public Health Service survey 
conducted at four of the plants, was used to calculate a smoking-
adjusted SMR of 1.12, which was not statistically significant. The 
number of deaths from lung cancer was also examined by decade of hire. 
The authors reported a relationship between earlier decades of hire and 
increased lung cancer risk.
    A different analysis of the lung cancer mortality in this cohort 
using various local reference populations and alternate adjustments for 
smoking generally found smaller, non-significant rates of excess 
mortality among the beryllium-exposed employees (Levy et al., 2002, 
Document ID 1463). Both cohort studies (Levy et al., 2002, Document ID 
1463; Ward et al., 1992 (1378)) are limited by a lack of job history 
and air monitoring data that would allow investigation of mortality 
trends with different levels and durations of beryllium exposure. The 
majority of employees at the Lorain, OH, and Reading, PA, facilities 
were employed for a relatively short period of less than one year.
    Levy et al. (2002) (Document ID 1463) questioned the results of 
Ward et al. (1992) (Document ID 1378) and performed a reanalysis of the 
Ward et al. data. The Levy et al. reanalysis differed from the Ward et 
al. analysis in the following significant ways. First, Levy et al. 
(2002) (Document ID 1463) examined two alternative adjustments for 
smoking, which were based on (1) a different analysis of the American 
Cancer Society (ACS) data used by Ward et al. (1992) (Document ID 1378) 
for their smoking adjustment, or (2) results from a smoking/lung cancer 
study of veterans. Second, Levy et al. (2002) also examined the impact 
of computing different reference rates derived from information about 
the lung cancer rates in the cities in which most of the workers at two 
of the plants lived (Document ID 1463). Finally, Levy et al. (2002) 
considered a meta-analytical approach to combining the results across 
beryllium facilities (Document ID 1463). For all of the alternatives 
Levy et al. (2002) (Document ID 1463) considered, except the meta-
analysis, the facility-specific and combined SMRs derived were lower 
than those reported by Ward et al. (1992) (Document ID 1378). Only the 
SMR for the Lorain, OH, facility remained statistically significantly 
elevated in some reanalyses. The SMR obtained when combining over the 
plants was not statistically significant in eight of the nine 
approaches they examined, leading

[[Page 2517]]

Levy et al. (2002) (Document ID 1463) to conclude that there was little 
evidence of statistically significant elevated SMRs in those plants. 
This study was not included in the synthesis of epidemiological studies 
assessed by IARC due to several methodological limitations (IARC, 2012, 
Document ID 0650).
    The EPA Integrated Risk Information System (IRIS), IARC, and 
California EPA Office of Environmental Health Hazard Assessment (OEHHA) 
all based their cancer assessments on the Ward et al. 1992 study, with 
supporting data concerning exposure concentrations from Eisenbud and 
Lisson (1983) (Document ID 1296) and NIOSH (1972) (Document ID 0560), 
who estimated that the lower-bound estimate of the median exposure 
concentration exceeded 100 [micro]g/m\3\ and found that concentrations 
in excess of 1,000 [micro]g/m\3\ were common. The IRIS cancer risk 
assessment recalculated expected lung cancers based on U.S. white male 
lung cancer rates (including the period 1968-1975) and used an 
alternative adjustment for smoking. In addition, one individual with 
lung cancer, who had not worked at the plant, was removed from the 
cohort. After these adjustments were made, an elevated rate of lung 
cancer was still observed in the overall cohort (46 cases vs. 41.9 
expected cases). However, based on duration of employment or interval 
since beginning of employment, neither the total cohort nor any of the 
subgroups had a statistically significant increase in lung cancer 
deaths (EPA, 1987, Document ID 1295). Based on its evaluation of this 
and other epidemiological studies, the EPA characterized the human 
carcinogenicity data then available as ``limited'' but ``suggestive of 
a causal relationship between beryllium exposure and an increased risk 
of lung cancer'' (EPA, 1998, Document ID 0237). The EPA report includes 
quantitative estimates of risk that were derived using the information 
presented in Wagoner et al. (1980), the expected lung cancers 
recalculated by the EPA, and bounds on presumed exposure levels.
    Sanderson et al. (2001) (Document ID 1419) estimated the 
cumulative, average, and maximum beryllium exposure concentration for 
the 142 known lung cancer cases to be 46.06  9.3[micro]g/
m\3\-days, 22.8  3.4 [micro]g/m\3\, and 32.4  
13.8 [micro]g/m\3\, respectively. The lung cancer mortality rate was 
1.22 (95 percent CI = 1.03 - 1.43). Exposure estimates were lagged by 
10 and 20 years in order to account for exposures that did not 
contribute to lung cancer because they occurred after the induction of 
cancer. In the 10- and 20-year lagged exposures the geometric mean 
tenures and cumulative exposures of the lung cancer mortality cases 
were higher than the controls. In addition, the geometric mean and 
maximum exposures of the workers were significantly higher than 
controls when the exposure estimates were lagged 10 and 20 years (p 
<0.01).
    Results of a conditional logistic regression analysis indicated 
that there was an increased risk of lung cancer in workers with higher 
exposures when dose estimates were lagged by 10 and 20 years (Sanderson 
et al., 2001, Document ID 1419). There was also a lack of evidence that 
confounding factors such as smoking affected the results of the 
regression analysis. The authors noted that there was considerable 
uncertainty in the estimation of exposure in the 1940s and 1950s and 
the shape of the dose-response curve for lung cancer (Sanderson et al., 
2001, Document ID 1419). Another analysis of the study data using a 
different statistical method did not find a significantly greater 
relative risk of lung cancer with increasing beryllium exposures (Levy 
et al., 2007). The average beryllium air levels for the lung cancer 
cases were estimated to be an order of magnitude above the preceding 8-
hour OSHA TWA PEL (2 [mu]g/m\3\) and roughly two orders of magnitude 
higher than the typical air levels in workplaces where beryllium 
sensitization and pathological evidence of CBD have been observed. IARC 
evaluated this reanalysis in 2012 and found the study introduced a 
downward bias into risk estimates (IARC, 2012, Document ID 0650). NIOSH 
comments in the rulemaking docket support IARC's finding (citing 
Schubauer-Berigan et al., 2007; Hein et al., 2009, 2011; Langholz and 
Richardson 2009; Wacholder 2009) (Document ID 1671, Attachment 1, p. 
10).
    Schubauer-Berigan et al. (2008) (Document ID 1350) reanalyzed data 
from the Sanderson et al. (2001) nested case-control study of 142 lung 
cancer cases in the Reading, PA, beryllium processing plant. This 
dataset was reanalyzed using conditional (stratified by case age) 
logistic regression. Independent adjustments were made for potential 
confounders of birth year and hire age. Average and cumulative 
exposures were analyzed using the values reported in the original 
study. The objective of the reanalysis was to correct for the known 
differences in smoking rates by birth year. In addition, the authors 
evaluated the effects of age at hire to determine differences observed 
by Sanderson et al. in 2001 (Document ID 1419). The effect of birth 
cohort adjustment on lung cancer rates in beryllium-exposed workers was 
evaluated by adjusting in a multivariable model for indicator variables 
for the birth cohort quartiles.
    Unadjusted analyses showed little evidence of lung cancer risk 
associated with beryllium occupational exposure using cumulative 
exposure until a 20-year lag was used. Adjusting for either birth 
cohort or hire age attenuated the risk for lung cancer associated with 
cumulative exposure. Using a 10- or 20-year lag in workers born after 
1900 also showed little evidence of lung cancer risk, while those born 
prior to 1900 did show a slight elevation in risk. Unlagged and lagged 
analysis for average exposure showed an increase in lung cancer risk 
associated with occupational exposure to beryllium. The finding was 
consistent for either workers adjusted or unadjusted for birth cohort 
or hire age. Using a 10-year lag for average exposure showed a 
significant effect by birth cohort.
    Schubauer-Berigan et al. stated that the reanalysis indicated that 
differences in the hire ages among cases and controls, first noted by 
Deubner et al. (2001) (Document ID 0109) and Levy et al. (2007) 
(Document ID 1462), were primarily due to the fact that birth years 
were earlier among controls than among cases, resulting from much lower 
baseline risk of lung cancer for men born prior to 1900 (Schubauer-
Berigan et al., 2008, Document ID 1350). The authors went on to state 
that the reanalysis of the previous NIOSH case-control study suggested 
the relationship observed previously between cumulative beryllium 
exposure and lung cancer was greatly attenuated by birth cohort 
adjustment.
    Hollins et al. (2009) (Document ID 1512) re-examined the weight of 
evidence of beryllium as a lung carcinogen in a recent publication. 
Citing more than 50 relevant papers, the authors noted the 
methodological shortcomings examined above, including lack of well-
characterized historical occupational exposures and inadequacy of the 
availability of smoking history for workers. They concluded that the 
increase in potential risk of lung cancer was observed among those 
exposed to very high levels of beryllium and that beryllium's 
carcinogenic potential in humans at these very high exposure levels was 
not relevant to today's industrial settings. IARC performed a similar 
re-evaluation in 2009 (IARC, 2012, Document ID 0650) and found that the 
weight of evidence for beryllium lung carcinogenicity, including the 
animal studies described below, still warranted a Group I 
classification, and that

[[Page 2518]]

beryllium should be considered carcinogenic to humans.
    Schubauer-Berigan et al. (2011) (Document ID 1266) extended their 
analysis from a previous study estimating associations between 
mortality risk and beryllium exposure to include workers at 7 beryllium 
processing plants. The study followed the mortality incidences of 9,199 
workers from 1940 through 2005 at the 7 beryllium plants. JEMs were 
developed for three plants in the cohort: The Reading plant, the 
Hazleton plant, and the Elmore plant. The last is described in Couch et 
al. 2010. Including these JEMs substantially improved the evidence base 
for evaluating the carcinogenicity of beryllium, and this change 
represents more than an update of the beryllium cohort. Standardized 
mortality ratios (SMRs) were estimated based on U.S. population 
comparisons for lung, nervous system and urinary tract cancers, chronic 
obstructive pulmonary disease (COPD), chronic kidney disease, and 
categories containing chronic beryllium disease (CBD) and cor 
pulmonale. Associations with maximum and cumulative exposure were 
calculated for a subset of the workers.
    Overall mortality in the cohort compared with the U.S. population 
was elevated for lung cancer (SMR 1.17; 95% CI 1.08 to 1.28), COPD (SMR 
1.23; 95% CI 1.13 to 1.32), and the categories containing CBD (SMR 
7.80; 95% CI 6.26 to 9.60) and cor pulmonale (SMR 1.17; 95% CI 1.08 to 
1.26) (Schubauer-Berigan et al., 2011, Document ID 1266). Mortality 
rates for most diseases of interest increased with time since hire. For 
the category including CBD, rates were substantially elevated compared 
to the U.S. population across all exposure groups. Workers whose 
maximum beryllium exposure was >=10 [mu]g/m\3\ had higher rates of lung 
cancer, urinary tract cancer, COPD and the category containing cor 
pulmonale than workers with lower exposure. These studies showed strong 
associations for cumulative exposure (when short-term workers were 
excluded), maximum exposure, or both. Significant positive trends with 
cumulative exposure were observed for nervous system cancers (p = 
0.0006) and, when short-term workers were excluded, lung cancer (p = 
0.01), urinary tract cancer (p = 0.003), and COPD (p <0.0001).
    The authors concluded that the findings from this reanalysis 
reaffirmed that lung cancer and CBD are related to beryllium exposure. 
The authors went on to suggest that beryllium exposures may be 
associated with nervous system and urinary tract cancers and that 
cigarette smoking and other lung carcinogens were unlikely to explain 
the increased incidences in these cancers. The study corrected an error 
that was discovered in the indirect smoking adjustment initially 
conducted by Ward et al., concluding that cigarette smoking rates did 
not differ between the cohort and the general U.S. population. No 
association was found between cigarette smoking and either cumulative 
or maximum beryllium exposure, making it very unlikely that smoking was 
a substantial confounder in this study (Schubauer-Berigan et al., 2011, 
Document ID 1266).
    A study by Boffetta et al. (2014, Document ID 0403) and an abstract 
by Boffetta et al., (2015, Document ID 1661, Attachment 1) were 
submitted by Materion for Agency consideration (Document ID 1661, p. 
3). Briefly, Boffetta et al. investigated lung cancer and other 
diseases in a cohort of 4,950 workers in four beryllium manufacturing 
facilities. Based on available process information from the facilities, 
the cohort of workers included only those working with poorly soluble 
beryllium. Workers having potential for soluble beryllium exposure were 
excluded from the study. Boffetta et al. reported a slight increase in 
lung cancer rates among workers hired prior to 1960, but the increase 
was reported as not statistically significant. Bofetta et al. (2014) 
indicated that ``[t]his study confirmed the lack of an increase in 
mortality from lung cancer and nonmalignant respiratory diseases 
related to [poorly] soluble beryllium compounds'' (Document ID 0403, p. 
587). OSHA disagrees, and a more detailed analysis of the Boffetta et 
al. (2014, Document ID 0403) study is provided in the Risk Assessment 
section (VI) of this preamble. The Boffetta et al. (2015, Document ID 
1661, Attachment 1) study cited by Materion was an abstract to the 48th 
annual Society of Epidemiological Research conference and does not 
provide sufficient information for OSHA to consider.
    To summarize, most of the epidemiological studies reviewed in this 
section show an elevated lung cancer rate in beryllium-exposed workers 
compared to control groups. While exposure data was incomplete in many 
studies inferences can be made based on industry profiles. 
Specifically, studies reviewing excess lung cancer in workers 
registered in the BCR found an elevated lung cancer rate in those 
patients identified as having acute beryllium disease (ABD). ABD 
patients are most closely associated with exposure to soluble forms of 
beryllium (Infante et al., 1980, Document ID 1507; Steenland and Ward, 
1991 (1348)). Industry profiles in processing and extraction indicate 
that most exposures would be due to poorly soluble forms of beryllium. 
Excess lung cancer rates were observed in workers in industries 
associated with extraction and processing (Schubauer-Berigan et al., 
2008, Document ID 1350; Schubauer-Berigan et al. 2011 (1266, 1815 
Attachment 105); Ward et al., 1992 (1378); Hollins et al., 2009 (1512); 
Sanderson et al., 2001 (1419); Mancuso et al., 1980 (1452); Wagoner et 
al., 1980 (1379)). During the public comment period NIOSH noted that:

. . . in Table 1 of Ward et al. (1992), all three of these beryllium 
plants were engaged in operations associated with both soluble and 
[poorly soluble] forms of beryllium. Industrial hygienists from 
NIOSH [Sanderson et al. (2001); Couch et al. (2011)] and elsewhere 
[Chen (2001); Rosenman et al. (2005)] created job-exposure matrices 
(JEMs), which estimated the form of beryllium exposure (soluble, 
consisting of beryllium salts; [poorly soluble], consisting of 
beryllium metal, alloys, or beryllium oxide; and mixed forms) 
associated with each job, department and year combination at each 
plant. Unpublished evaluations of these JEM estimates linked to the 
employee work histories in the NIOSH risk assessment study 
[Schubauer-Berigan et al., 2011b, Document ID 0521] show that the 
vast majority of beryllium work-time at all three of these 
facilities was due to either [poorly] soluble or mixed chemical 
forms. In fact, [poorly] soluble beryllium was the largest single 
contributor to work-time (for beryllium exposure of known solubility 
class) at the three facilities across most time periods . . . . 
Therefore, the strong and consistent exposure-response pattern that 
was observed in the published NIOSH studies was very likely 
associated with exposure to [poorly] soluble as well as soluble 
forms of beryllium. (Document ID 1725, p. 9)

    Taken collectively, the Agency finds that the epidemiological data 
presented in the reviewed studies provides sufficient evidence to 
demonstrate carcinogenicity in humans of both soluble and poorly 
soluble forms of beryllium.
3. Animal Cancer Studies
    This section reviews the animal literature used to support the 
findings for beryllium-induced lung cancer. Early animal studies 
revealed that some beryllium compounds are carcinogenic when inhaled 
(ATSDR, 2002, Document ID 1371). Lung tumors have been induced via 
inhalation and intratracheal administration of beryllium to rats and 
monkeys, and osteosarcomas have been induced via intravenous and 
intramedullary (inside the bone) injection of beryllium in rabbits and 
mice. In addition to lung cancer,

[[Page 2519]]

osteosarcomas have been produced in mice and rabbits exposed to various 
beryllium salts by intravenous injection or implantation into the bone 
(NTP, 1999, Document ID 1341: IARC, 2012 (0650)). While not completely 
understood, experimental studies in animals (in vitro and in vivo) have 
found that a number of mechanisms are likely involved in beryllium-
induced carcinogenicity, including chronic inflammation, genotoxicity, 
mitogenicity, oxidative stress, and epigenetic changes.
    In an inhalation study assessing the potential tumorigenicity of 
beryllium, Schepers et al. (1957) (Document ID 0458) exposed 115 albino 
Sherman and Wistar rats (male and female) via inhalation to 0.0357 mg 
beryllium/m\3\ (1 [gamma] beryllium/ft\3\) \7\ as an aqueous aerosol of 
beryllium sulfate for 44 hours/week for 6 months, and observed the rats 
for 18 months after exposure. Three to four control rats were killed 
every two months for comparison purposes. Seventy-six lung 
neoplasms,\8\ including adenomas, squamous-cell carcinomas, acinous 
adenocarcinomas, papillary adenocarcinomas, and alveolar-cell 
adenocarcinomas, were observed in 52 of the rats exposed to the 
beryllium sulfate aerosol. Adenocarcinomas were the most numerous. 
Pulmonary metastases tended to localize in areas with foam cell 
clustering and granulomatosis. No neoplasia was observed in any of the 
control rats. The incidence of lung tumors in exposed rats is presented 
in the following Table 3:
---------------------------------------------------------------------------

    \7\ Schepers et al. (1957) reported concentrations in [gamma] 
Be/ft\3\; however, [gamma]/ft\3\ is no longer a common unit. 
Therefore, the concentration was converted to mg/m\3\.
    \8\ While a total of 89 tumors were observed or palpated at the 
time of autopsy in the BeSO4-exposed animals, only 76 
tumors are listed as histologically neoplastic. Only the new growths 
identified in single midcoronal sections of both lungs were 
recorded.

       Table 3--Neoplasm Analysis, Based on Schepers et al. (1957)
------------------------------------------------------------------------
                    Neoplasm                       Number    Metastases
------------------------------------------------------------------------
Adenoma........................................         18             0
Squamous carcinoma.............................          5             1
Acinous adenocarcinoma.........................         24             2
Papillary adenocarcinoma.......................         11             1
Alveolar-cell adenocarcinoma...................          7             0
Mucigenous tumor...............................          7             1
Endothelioma...................................          1             0
Retesarcoma....................................          3             3
                                                ------------------------
    Total......................................         76             8
------------------------------------------------------------------------

    Schepers (1962) (Document ID 1414) reviewed 38 existing beryllium 
studies that evaluated seven beryllium compounds and seven mammalian 
species. Beryllium sulfate, beryllium fluoride, beryllium phosphate, 
beryllium alloy (BeZnMnSiO4), and beryllium oxide were 
proven to be carcinogenic. Ten varieties of tumors were observed, with 
adenocarcinoma being the most common variety.
    In another study, Vorwald and Reeves (1959) (Document ID 1482) 
exposed Sherman albino rats via the inhalation route to aerosols of 
0.006 mg beryllium/m\3\ as beryllium oxide and 0.0547 mg beryllium/m\3\ 
as beryllium sulfate for 6 hours/day, 5 days/week for an unspecified 
duration. Lung tumors (single or multifocal) were observed in the 
animals sacrificed following 9 months of daily inhalation exposure. The 
histologic pattern of the cancer was primarily adenomatous; however, 
epidermoid and squamous cell cancers were also observed. Infiltrative, 
vascular, and lymphogenous extensions often developed with secondary 
metastatic growth in the tracheobronchial lymph nodes, the mediastinal 
connective tissue, the parietal pleura, and the diaphragm.
    In the first of two articles, Reeves et al. (1967) investigated the 
carcinogenic process in lungs resulting from chronic (up to 72 weeks) 
beryllium sulfate inhalation (Document ID 1310). One hundred fifty male 
and female Sprague Dawley C.D. strain rats were exposed to beryllium 
sulfate aerosol at a mean atmospheric concentration of 34.25 [mu]g 
beryllium/m\3\ (with an average particle diameter of 0.12 [micro]m). 
Prior to initial exposure and again during the 67-68 and 75-76 weeks of 
life, the animals received prophylactic treatments of tetracycline-HCl 
to combat recurrent pulmonary infections.
    The animals entered the exposure chamber at 6 weeks of age and were 
exposed 7 hours per day/5 days per week for up to 2,400 hours of total 
exposure time. An equal number of unexposed controls were held in a 
separate chamber. Three male and three female rats were sacrificed 
monthly during the 72-week exposure period. Mortality due to 
respiratory or other infections did not appear until 55 weeks of age, 
and 87 percent of all animals survived until their scheduled 
sacrifices.
    Average lung weight towards the end of exposure was 4.25 times 
normal with progressively increasing differences between control and 
exposed animals. The increase in lung weight was accompanied by notable 
changes in tissue texture with two distinct pathological processes--
inflammatory and proliferative. The inflammatory response was 
characterized by marked accumulation of histiocytic elements forming 
clusters of macrophages in the alveolar spaces. The proliferative 
response progressed from early epithelial hyperplasia of the alveolar 
surfaces, through metaplasia (after 20-22 weeks of exposure), anaplasia 
(cellular dedifferentiation) (after 32-40 weeks of exposure), and 
finally to lung tumors.
    Although the initial proliferative response occurred early in the 
exposure period, tumor development required considerable time. Tumors 
were first identified after nine months of beryllium sulfate exposure, 
with rapidly increasing rates of incidence until tumors were observed 
in 100 percent of exposed animals by 13 months. The 9-to-13-month 
interval is consistent with earlier studies. The tumors showed a high 
degree of local invasiveness. No tumors were observed in control rats. 
All 56 tumors studied appeared to be alveolar adenocarcinomas and 3 
were ``fast-growing'' tumors that reached a very large size 
comparatively early. About one-third of the tumors showed small foci 
where the histologic pattern differed. Most of the early tumor foci 
appeared to be alveolar rather than bronchiolar, which is consistent 
with the expected pathogenesis, since permanent deposition of beryllium 
was more likely on the alveolar epithelium rather than on the 
bronchiolar epithelium. Female rats appeared to have an increased 
susceptibility to beryllium exposure. Not only did they have a higher 
mortality (control males [n = 8], exposed males [n = 9] versus control 
females [n = 4], exposed females [n = 17]) and body weight loss than 
male rats, but the three ``fast-growing'' tumors occurred in females.
    In the second article, Reeves et al. (1967) (Document ID 1309) 
described the rate of accumulation and clearance of beryllium sulfate 
aerosol from the same experiment (Reeves et al., 1967) (Document ID 
1310). At the time of the monthly sacrifice, beryllium assays were 
performed on the lungs, tracheobronchial lymph nodes, and blood of the 
exposed rats. The pulmonary beryllium levels of rats showed a rate of 
accumulation which

[[Page 2520]]

decreased during continuing exposure and reached a plateau (defined as 
equilibrium between deposition and clearance) of about 13.5 [mu]g 
beryllium for males and 9 [mu]g beryllium for females in whole lungs 
after approximately 36 weeks. Females were notably less efficient than 
males in utilizing the lymphatic route as a method of clearance, 
resulting in slower removal of pulmonary beryllium deposits, lower 
accumulation of the inhaled material in the tracheobronchial lymph 
nodes, and higher morbidity and mortality.
    There was no apparent correlation between the extent and severity 
of pulmonary pathology and total lung load. However, when the beryllium 
content of the excised tumors was compared with that of surrounding 
nonmalignant pulmonary tissues, the former showed a notable decrease 
(0.50  0.35 [mu]g beryllium/gram versus 1.50  
0.55 [mu]g beryllium/gram). This was believed to be largely a result of 
the dilution factor operating in the rapidly growing tumor tissue. 
However, other factors, such as lack of continued local deposition due 
to impaired respiratory function and enhanced clearance due to high 
vascularity of the tumor, may also have played a role. The portion of 
inhaled beryllium retained in the lungs for a longer duration, which is 
in the range of one-half of the original pulmonary load, may have 
significance for pulmonary carcinogenesis. This pulmonary beryllium 
burden becomes localized in the cell nuclei and may be an important 
factor in eliciting the carcinogenic response associated with beryllium 
inhalation.
    Groth et al. (1980) (Document ID 1316) conducted a series of 
experiments to assess the carcinogenic effects of beryllium, beryllium 
hydroxide, and various beryllium alloys. For the beryllium metal/alloys 
experiment, 12 groups of 3-month-old female Wistar rats (35 rats/group) 
were used. All rats in each group received a single intratracheal 
injection of either 2.5 or 0.5 mg of one of the beryllium metals or 
beryllium alloys as described in Table 3 below. These materials were 
suspended in 0.4 cc of isotonic saline followed by 0.2 cc of saline. 
Forty control rats were injected with 0.6 cc of saline. The geometric 
mean particle sizes varied from 1 to 2 [micro]m. Rats were sacrificed 
and autopsied at various intervals ranging from 1 to 18 months post-
injection.

                        Table 4--Summary of Beryllium Dose, Based on Groth et al. (1980)
                                               [Document ID 1316]
----------------------------------------------------------------------------------------------------------------
                                                  Percent other    Total Number      Compound
          Form of Be              Percent Be        compounds     rats autopsied     dose(mg)       Be dose(mg)
----------------------------------------------------------------------------------------------------------------
Be metal.....................  100.............  None...........              16             2.5             2.5
                                                                              21             0.5             0.5
Passivated Be metal..........  99..............  0.26% Chromium.              26             2.5             2.5
                                                                              20             0.5             0.5
BeAl alloy...................  62..............  38% Aluminum...              24             2.5            1.55
                                                                              21             0.5             0.3
BeCu alloy...................  4...............  96% Copper.....              28             2.5             0.1
                                                                              24             0.5            0.02
BeCuCo alloy.................  2.4.............  0.4% Cobalt....              33             2.5            0.06
                                                 96% Copper.....              30             0.5           0.012
BeNi alloy...................  2.2.............  97.8% Nickel...              28             2.5           0.056
                                                                              27             0.5           0.011
----------------------------------------------------------------------------------------------------------------

Lung tumors were observed only in rats exposed to beryllium metal, 
passivated beryllium metal, and beryllium-aluminum alloy. Passivation 
refers to the process of removing iron contamination from the surface 
of beryllium metal. As discussed, metal alloys may have a different 
toxicity than beryllium alone. Rats exposed to 100 percent beryllium 
exhibited relatively high mortality rates, especially in the groups 
where lung tumors were observed. Nodules varying from 1 to 10 mm in 
diameter were also observed in the lungs of rats exposed to beryllium 
metal, passivated beryllium metal, and beryllium-aluminum alloy. These 
nodules were suspected of being malignant.
    To test this hypothesis, transplantation experiments involving the 
suspicious nodules were conducted in nine rats. Seven of the nine 
suspected tumors grew upon transplantation. All transplanted tumor 
types metastasized to the lungs of their hosts. Lung tumors were 
observed in rats injected with both the high and low doses of beryllium 
metal, passivated beryllium metal, and beryllium-aluminum alloy. No 
lung tumors were observed in rats injected with the other compounds. Of 
a total of 32 lung tumors detected, most were adenocarcinomas and 
adenomas; however, two epidermoid carcinomas and at least one poorly 
differentiated carcinoma were observed. Bronchiolar alveolar cell 
tumors were frequently observed in rats injected with beryllium metal, 
passivated beryllium metal, and beryllium-aluminum alloy. All stages of 
cuboidal, columnar, and squamous cell metaplasia were observed on the 
alveolar walls in the lungs of rats injected with beryllium metal, 
passivated beryllium metal, and beryllium-aluminum alloy. These lesions 
were generally reduced in size and number or absent from the lungs of 
animals injected with the other alloys (BeCu, BeCuCo, BeNi).
    The extent of alveolar metaplasia could be correlated with the 
incidence of lung cancer. The incidences of lung tumors in the rats 
that received 2.5 mg of beryllium metal, and 2.5 and 0.5 mg of 
passivated beryllium metal, were significantly different (p <=0.008) 
from controls. When autopsies were performed at the 16-to-19-month 
interval, the incidence (2/6) of lung tumors in rats exposed to 2.5 mg 
of beryllium-aluminum alloy was statistically significant (p = 0.004) 
when compared to the lung tumor incidence (0/84) in rats exposed to 
BeCu, BeNi, and BeCuCo alloys, which contained much lower 
concentrations of Be (Groth et al., 1980, Document ID 1316).
    Finch et al. (1998b) (Document ID 1367) investigated the 
carcinogenic effects of inhaled beryllium on heterozygous TSG-p53 
knockout (p53 +/-) mice and wild-type (p53+/+) mice. 
Knockout mice can be valuable tools in determining the role played by 
specific genes in the toxicity of a material of interest, in this case 
beryllium. Equal numbers of approximately 10-week-old male and female 
mice were used for this study. Two exposure groups were used to provide 
dose-response information on lung carcinogenicity. The maximum initial 
lung burden (ILB) target of 60 [mu]g

[[Page 2521]]

beryllium was based on previous acute inhalation exposure studies in 
mice. The lower exposure target level of 15 [mu]g was selected to 
provide a lung burden significantly less than the high-level group, but 
high enough to yield carcinogenic responses. Mice were exposed in 
groups to beryllium metal or to filtered air (controls) via nose-only 
inhalation. The specific exposure parameters are presented in Table 4 
below. Mice were sacrificed 7 days post exposure for ILB analysis, and 
either at 6 months post exposure (n = 4-5 mice per group per gender) or 
when 10 percent or less of the original population remained (19 months 
post exposure for p53 +/- knockout and 22.5 months post 
exposure for p53+/+ wild-type mice). The sacrifice time was extended in 
the study because a significant number of lung tumors were not observed 
at 6 months post exposure.

                          Table 5--Summary of Animal Data, Based on Finch et al. (1998)
                                               [Document ID 1367]
----------------------------------------------------------------------------------------------------------------
                                                                                                     Number of
                                         Target                       Mean daily                    mice  with 1
                   Mean exposure     beryllium lung    Number of       exposure        Mean ILB     or more lung
 Mouse strain      concentration         burden           mice         duration        ([mu]g)      tumors/total
                    ([mu]g Be/L)         ([mu]g)                       (minutes)                       number
                                                                                                      examined
----------------------------------------------------------------------------------------------------------------
Knockout (p53   34                   15              30             112 (single)    NA             0/29
 +/-)           36                   60              30             139             NA             4/28
Wild-type (p53  34                   15              6              112 (single)    12  4      0/28
                                                                                    54  6
Knockout (p53   NA (air)             Control         30             60-180          NA             0/30
 +/-)                                                                (single)
----------------------------------------------------------------------------------------------------------------

    Lung burdens of beryllium measured in wild-type mice at 7 days post 
exposure were approximately 70-90 percent of target levels. No 
exposure-related effects on body weight were observed in mice; however, 
lung weights and lung-to-body-weight ratios were somewhat elevated in 
60 [mu]g target ILB p53 +/- knockout mice compared to 
controls (0.05 +/- knockout mice and beryllium exposure 
tended to decrease survival time in both groups. The incidence of 
beryllium-induced lung tumors was marginally higher in the 60 [mu]g 
target ILB p53 +/- knockout mice compared to 60 [mu]g target 
ILB p53+/+ wild-type mice (p= 0.056). The incidence of lung tumors in 
the 60 [mu]g target ILB p53 +/- knockout mice was also 
significantly higher than controls (p = 0.048). No tumors developed in 
the control mice, 15 [mu]g target ILB p53 +/- knockout mice, 
or 60 [mu]g target ILB p53+/+ wild-type mice throughout the length of 
the study. Most lung tumors in beryllium-exposed mice were squamous 
cell carcinomas, three of four of which were poorly circumscribed and 
all of which were associated with at least some degree of granulomatous 
pneumonia. The study results suggest that having an inactivated p53 
allele is associated with lung tumor progression in p53 +/- 
knockout mice. This is based on the significant difference seen in the 
incidence of beryllium-induced lung neoplasms for the p53 
+/- knockout mice compared with the p53 \+/+\ wild-type 
mice. The authors conclude that since there was a relatively late onset 
of tumors in the beryllium-exposed p53 +/- knockout mice, a 
6-month bioassay in this mouse strain might not be an appropriate model 
for lung carcinogenesis (Finch et al., 1998, Document ID 1367).
    During the public comment period Materion submitted correspondence 
from Dr. Finch speculating on the reason for the less-robust lung 
cancer response observed in mice (versus that observed in rats) 
(Document ID 1807, Attachment 11, p. 1). Materion contended that this 
was support for their assertion of evidence that ``directly contradicts 
the claims that beryllium metal causes cancer in animals'' (Document ID 
1807, p. 6). OSHA reviewed this correspondence and disagrees with 
Materion's assertion. While Dr. Finch did suggest that the mouse lung 
cancer response was less robust, it was still present. Dr. Finch went 
on to suggest that while the rat has a more profound neutrophilic 
response (typical of a ``foreign body response), the mouse has a lung 
response more typical of humans (neutrophilic and lymphocytic) 
(Document ID 1807, Attachment 11, p. 1).
    Nickell-Brady et al. (1994) investigated the development of lung 
tumors in 12-week-old F344/N rats after a single nose-only inhalation 
exposure to beryllium aerosol, and evaluated whether beryllium lung 
tumor induction involves alterations in the K-ras, p53, and c-raf-1 
genes (Document ID 1312). Four groups of rats (30 males and 30 females 
per group) were exposed to different mass concentrations of beryllium 
(Group 1: 500 mg/m\3\ for 8 min; Group 2: 410 mg/m\3\ for 30 min; Group 
3: 830 mg/m\3\ for 48 min; Group 4: 980 mg/m\3\ for 39 min). The 
beryllium mass median aerodynamic diameter was 1.4 [mu]m 
([sigma]g= 1.9). The mean beryllium lung burdens for each 
exposure group were 40, 110, 360, and 430 [mu]g, respectively.
    To examine genetic alterations, DNA isolation and sequencing 
techniques (PCR amplification and direct DNA sequence analysis) were 
performed on wild-type rat lung tissue (i.e., control samples) along 
with two mouse lung tumor cell lines containing known K-ras mutations, 
12 carcinomas induced by beryllium (i.e., experimental samples), and 12 
other formalin-fixed specimens. Tumors appeared in beryllium-exposed 
rats by 14 months, and 64 percent of exposed rats developed lung tumors 
during their lifetime. Lungs frequently contained multiple tumor sites, 
with some of the tumors greater than 1 cm. A total of 24 tumors were 
observed. Most of the tumors (n = 22) were adenocarcinomas exhibiting a 
papillary pattern characterized by cuboidal or columnar cells, although 
a few had a tubular or solid pattern. Fewer than 10 percent of the 
tumors were adenosquamous (n = 1) or squamous cell (n = 1) carcinomas.
    No transforming mutations of the K-ras gene (codons 12, 13, or 61) 
were detected by direct sequence analysis in any of the lung tumors 
induced by beryllium. However, using a more sensitive sequencing 
technique (PCR enrichment restriction fragment length polymorphism 
(RFLP) analysis) resulted in the detection of K-ras codon 12 GGT to GTT 
transversions in 2 of 12 beryllium-induced adenocarcinomas. No p53 or 
c-raf-1 alterations were observed in any of the tumors induced by 
beryllium exposure (i.e., no differences observed between beryllium-
exposed and control rat tissues). The authors note that the results 
suggest that

[[Page 2522]]

activation of the K-ras proto-oncogene is both a rare and late event, 
possibly caused by genomic instability during the progression of 
beryllium-induced rat pulmonary adenocarcinomas. It is unlikely that 
the K-ras gene plays a role in the carcinogenicity of beryllium. The 
results also indicate that p53 mutation is unlikely to play a role in 
tumor development in rats exposed to beryllium.
    Belinsky et al. (1997) reviewed the findings by Nickell-Brady et 
al. (1994) (Document ID 1312) to further examine the role of the K-ras 
and p53 genes in lung tumors induced in the F344 rat by non-mutagenic 
(non-genotoxic) exposures to beryllium. Their findings are discussed 
along with the results of other genomic studies that look at 
carcinogenic agents that are either similarly non-mutagenic or, in 
other cases, mutagenic. The authors concluded that the identification 
of non-ras transforming genes in rat lung tumors induced by non-
mutagenic exposures, such as beryllium, as well as mutagenic exposures 
will help define some of the mechanisms underlying cancer induction by 
different types of DNA damage.
    The inactivation of the p16 INK4a(p16) gene is a contributing 
factor in disrupting control of the normal cell cycle and may be an 
important mechanism of action in beryllium-induced lung tumors. 
Swafford et al. (1997) investigated the aberrant methylation and 
subsequent inactivation of the p16 gene in primary lung tumors induced 
in F344/N rats exposed to known carcinogens via inhalation (Document ID 
1392). The research involved a total of 18 primary lung tumors that 
developed after exposing rats to five agents, one of which was 
beryllium. In this study, only one of the 18 lung tumors was induced by 
beryllium exposure; the majority of the other tumors were induced by 
radiation (x-rays or plutonium-239 oxide). The authors hypothesized 
that if p16 inactivation plays a central role in development of non-
small-cell lung cancer, then the frequency of gene inactivation in 
primary tumors should parallel that observed in the corresponding cell 
lines. To test the hypothesis, a rat model for lung cancer was used to 
determine the frequency and mechanism for inactivation of p16 in 
matched primary lung tumors and derived cell lines. The methylation-
specific PCR (MSP) method was used to detect methylation of p16 
alleles. The results showed that the presence of aberrant p16 
methylation in cell lines was strongly correlated with absent or low 
expression of the gene. The findings also demonstrated that aberrant 
p16 CpG island methylation, an important mechanism in gene silencing 
leading to the loss of p16 expression, originates in primary tumors.
    Building on the rat model for lung cancer and associated findings 
from Swafford et al. (1997) (Document ID 1392), Belinsky et al. (2002) 
(Document ID 1300) conducted experiments in 12-week-old F344/N rats 
(male and female) to determine whether beryllium-induced lung tumors 
involve inactivation of the p16 gene and estrogen receptor [alpha] (ER) 
gene. Rats received a single nose-only inhalation exposure to beryllium 
aerosol at four different exposure levels. The mean lung burdens 
measured in each exposure group were 40, 110, 360, and 430 [mu]g. The 
methylation status of the p16 and ER genes was determined by MSP. A 
total of 20 tumors detected in beryllium-exposed rats were available 
for analysis of gene-specific promoter methylation. Three tumors were 
classified as squamous cell carcinomas and the others were determined 
to be adenocarcinomas. Methylated p16 was present in 80 percent (16/
20), and methylated ER was present in one-half (10/20), of the lung 
tumors induced by exposure to beryllium. Additionally, both genes were 
methylated in 40 percent of the tumors. The authors noted that four 
tumors from beryllium-exposed rats appeared to be partially methylated 
at the p16 locus. Bisulfite sequencing of exon 1 of the ER gene was 
conducted on normal lung DNA and DNA from three methylated, beryllium-
induced tumors to determine the density of methylation within amplified 
regions of exon 1 (referred to as CpG sites). Two of the three 
methylated, beryllium-induced lung tumors showed extensive methylation, 
with more than 80 percent of all CpG sites methylated.
    The overall findings of this study suggest that inactivation of the 
p16 and ER genes by promoter hypermethylation are likely to contribute 
to the development of lung tumors in beryllium-exposed rats. The 
results showed a correlation between changes in p16 methylation and 
loss of gene transcription. The authors hypothesize that the mechanism 
of action for beryllium-induced p16 gene inactivation in lung tumors 
may be inflammatory mediators that result in oxidative stress. The 
oxidative stress damages DNA directly through free radicals or 
indirectly through the formation of 8-hydroxyguanosine DNA adducts, 
resulting primarily in a single-strand DNA break.
    Wagner et al. (1969) (Document ID 1481) studied the development of 
pulmonary tumors after intermittent daily chronic inhalation exposure 
to beryllium ores in three groups of male squirrel monkeys. One group 
was exposed to bertrandite ore, a second to beryl ore, and the third 
served as unexposed controls. Each of these three exposure groups 
contained 12 monkeys. Monkeys from each group were sacrificed after 6, 
12, or 23 months of exposure. The 12-month sacrificed monkeys (n = 4 
for bertrandite and control groups; n = 2 for beryl group) were 
replaced by a separate replacement group to maintain a total animal 
population approximating the original numbers and to provide a source 
of confirming data for biologic responses that might arise following 
the ore exposures. Animals were exposed to bertrandite and beryl ore 
concentrations of 15 mg/m\3\, corresponding to 210 [mu]g beryllium/m\3\ 
and 620 [mu]g beryllium/m\3\ in each exposure chamber, respectively. 
The parent ores were reduced to particles with geometric mean diameters 
of 0.27 [mu]m ( 2.4) for bertrandite and 0.64 [mu]m ( 2.5) for beryl. Animals were exposed for approximately 6 hours/
day, 5 days/week. The histological changes in the lungs of monkeys 
exposed to bertrandite and beryl ore exhibited a similar pattern. The 
changes generally consisted of aggregates of dust-laden macrophages, 
lymphocytes, and plasma cells near respiratory bronchioles and small 
blood vessels. There were, however, no consistent or significant 
pulmonary lesions or tumors observed in monkeys exposed to either of 
the beryllium ores. This is in contrast to the findings in rats exposed 
to beryl ore and to a lesser extent bertrandite, where atypical cell 
proliferation and tumors were frequently observed in the lungs. The 
authors hypothesized that the rats' greater susceptibility may be 
attributed to the spontaneous lung disease characteristic of rats, 
which might have interfered with lung clearance.
    As previously described, Conradi et al. (1971) investigated changes 
in the lungs of monkeys and dogs two years after intermittent 
inhalation exposure to beryllium oxide calcined at 1,400 [deg]C 
(Document ID 1319). Five adult male and female monkeys (Macaca irus) 
weighing between 3 and 5.75 kg were used in the study. The study 
included two control monkeys. Beryllium concentrations in the 
atmosphere of whole-body exposed monkeys varied between 3.30 and 4.38 
mg/m\3\. Thirty-minute exposures occurred once a month for three 
months, with beryllium oxide concentrations increasing at each exposure 
interval. Lung tissue was investigated using electron microscopy

[[Page 2523]]

and morphometric methods. Beryllium content in portions of the lungs of 
five monkeys was measured two years following exposure by emission 
spectrography. The reported concentrations in monkeys (82.5, 143.0, and 
112.7 [mu]g beryllium per 100 gm of wet tissue in the upper lobe, lower 
lobe, and combined lobes, respectively) were higher than those in dogs. 
No neoplastic or granulomatous lesions were observed in the lungs of 
any exposed animals and there was no evidence of chronic proliferative 
lung changes after two years.
    To summarize, animal studies show that multiple forms of beryllium, 
when inhaled or instilled in the respiratory tract of rats, mice, and 
monkeys, lead to increased incidence of lung tumors. Animal studies 
have demonstrated a consistent scenario of beryllium exposure resulting 
in chronic pulmonary inflammation and tumor formation at levels below 
overload conditions (Groth et al., 1980, Document ID 1316; Finch et 
al., 1998 (1367); Nickel-Brady et al., 1994 (1312)). The animal studies 
support the human epidemiological evidence and contributed to the 
findings of the NTP, IARC, and others that beryllium and beryllium-
containing material should be regarded as known human carcinogens. The 
beryllium compounds found to be carcinogenic in animals include both 
soluble beryllium compounds, such as beryllium sulfate and beryllium 
hydroxide, as well as poorly soluble beryllium compounds, such as 
beryllium oxide and beryllium metal. The doses that produce tumors in 
experimental animal are fairly large and also lead to chronic pulmonary 
inflammation. The exact tumorigenic mechanism for beryllium is unclear 
and a number of mechanisms are likely involved, including chronic 
inflammation, genotoxicity, mitogenicity, oxidative stress, and 
epigenetic changes.
4. In Vitro Studies
    The exact mechanism by which beryllium induces pulmonary neoplasms 
in animals remains unknown (NAS 2008, Document ID 1355). Keshava et al. 
(2001) performed studies to determine the carcinogenic potential of 
beryllium sulfate in cultured mammalian cells (Document ID 1362). 
Joseph et al. (2001) investigated differential gene expression to 
understand the possible mechanisms of beryllium-induced cell 
transformation and tumorigenesis (Document ID 1490). Both 
investigations used cell transformation assays to study the cellular/
molecular mechanisms of beryllium carcinogenesis and assess 
carcinogenicity. Cell lines were derived from tumors developed in nude 
mice injected subcutaneously with non-transformed BALB/c-3T3 cells that 
were morphologically transformed in vitro with 50-200 [mu]g beryllium 
sulfate/ml for 72 hours. The non-transformed cells were used as 
controls.
    Keshava et al. (2001) found that beryllium sulfate is capable of 
inducing morphological cell transformation in mammalian cells and that 
transformed cells are potentially tumorigenic (Document ID 1362). A 
dose-dependent increase (9-41 fold) in transformation frequency was 
noted. Using differential polymerase chain reaction (PCR), gene 
amplification was investigated in six proto-oncogenes (K-ras, c-myc, c-
fos, c-jun, c-sis, erb-B2) and one tumor suppressor gene (p53). Gene 
amplification was found in c-jun and K-ras. None of the other genes 
tested showed amplification. Additionally, Western blot analysis showed 
no change in gene expression or protein level in any of the genes 
examined. Genomic instability in both the non-transformed and 
transformed cell lines was evaluated using random amplified polymorphic 
DNA fingerprinting (RAPD analysis). Using different primers, 5 of the 
10 transformed cell lines showed genomic instability when compared to 
the non-transformed BALB/c-3T3 cells. The results indicate that 
beryllium sulfate-induced cell transformation might, in part, involve 
gene amplification of K-ras and c-jun and that some transformed cells 
possess neoplastic potential resulting from genomic instability.
    Using the Atlas mouse 1.2 cDNA expression microarrays, Joseph et 
al. (2001) studied the expression profiles of 1,176 genes belonging to 
several different functional categories after beryllium sulfate 
exposure in a mouse cell line (Document ID 1490). Compared to the 
control cells, expression of 18 genes belonging to two functional 
groups (nine cancer-related genes and nine DNA synthesis, repair, and 
recombination genes) was found to be consistently and reproducibly 
different (at least 2-fold) in the tumor cells. Differential gene 
expression profile was confirmed using reverse transcription-PCR with 
primers specific to the differentially expressed genes. Two of the 
differentially expressed genes (c-fos and c-jun) were used as model 
genes to demonstrate that the beryllium-induced transcriptional 
activation of these genes was dependent on pathways of protein kinase C 
and mitogen-activated protein kinase and independent of reactive oxygen 
species in the control cells. These results indicate that beryllium-
induced cell transformation and tumorigenesis are associated with up-
regulated expression of the cancer-related genes (such as c-fos, c-jun, 
c-myc, and R-ras) and down-regulated expression of genes involved in 
DNA synthesis, repair, and recombination (such as MCM4, MCM5, PMS2, 
Rad23, and DNA ligase I).
    In summary, in vitro studies have been used to evaluate the 
neoplastic potential of beryllium compounds and the possible underlying 
mechanisms. Both Keshava et al. (2001) (Document ID 1362) and Joseph et 
al. (2001) (Document ID 1490) have found that beryllium sulfate induced 
a number of onco-genes (c-fos, c-jun, c-myc, and R-ras) and down-
regulated genes responses for normal cellular function and repair 
(including those involved in DNA synthesis, repair, and recombination).
5. Lung Cancer Conclusions
    OSHA has determined that substantial evidence in the record 
indicates that beryllium compounds should be regarded as occupational 
lung carcinogens. Many well-respected scientific organizations, 
including IARC, NTP, EPA, NIOSH, and ACGIH, have reached similar 
conclusions with respect to the carcinogenicity of beryllium.
    While some evidence exists for direct-acting genotoxicity as a 
possible mechanism for beryllium carcinogenesis, the weight of evidence 
suggests that an indirect mechanism, such as inflammation or other 
epigenetic changes, may be responsible for most tumorigenic activity of 
beryllium in animals and humans (IARC, 2012, Document ID 0650). 
Inflammation has been postulated to be a key contributor to many 
different forms of cancer (Jackson et al., 2006; Pikarsky et al., 2004; 
Greten et al., 2004; Leek, 2002). In fact, chronic inflammation may be 
a primary factor in the development of up to one-third of all cancers 
(Ames et al., 1990; NCI, 2010).
    In addition to a T-cell-mediated immunological response, beryllium 
has been demonstrated to produce an inflammatory response in animal 
models similar to the response produced by other particles (Reeves et 
al., 1967, Document ID 1309; Swafford et al., 1997 (1392); Wagner et 
al., 1969 (1481)), possibly contributing to its carcinogenic potential. 
Studies conducted in rats have demonstrated that chronic inhalation of 
materials similar in solubility to beryllium results in increased 
pulmonary inflammation,

[[Page 2524]]

fibrosis, epithelial hyperplasia, and, in some cases, pulmonary 
adenomas and carcinomas (Heinrich et al., 1995, Document ID 1513; NTP, 
1993 (1333); Lee et al., 1985 (1466); Warheit et al., 1996 (1377)). 
This response is generally referred to as an ``overload'' response and 
is specific to particles of low solubility with a low order of 
toxicity, which are non-mutagenic and non-genotoxic (i.e., poorly 
soluble particles like titanium dioxide and non-asbestiform talc); this 
response is observed only in rats (Carter et al., 2006, Document ID 
1556). ``Overload'' is described in ECETOC (2013) as inhalation of high 
concentrations of low solubility particles resulting in lung burdens 
that impair particle clearance mechanisms (ECETOC, 2013 as cited in 
Document ID 1807, Attachment 10, p. 3 (pdf p. 87)). Substantial data 
indicate that tumor formation in rats after exposure to some poorly 
soluble particles at doses causing marked, chronic inflammation is due 
to a secondary mechanism unrelated to the genotoxicity (or lack 
thereof) of the particle itself. Because these specific particles 
(i.e., titanium dioxide and non-asbestiform talc) exhibit no 
cytotoxicity or genotoxicity, they are considered to be biologically 
inert (ECETOC, 2013; see Document ID 1807, Attachment 10, p. 3 (pdf p. 
87)). Animal studies, as summarized above, have demonstrated a 
consistent scenario of beryllium exposure resulting in chronic 
pulmonary inflammation below an overload scenario. NIOSH submitted 
comments describing the findings from a low-dose study of beryllium 
metal among male and female F344 rats (Document ID 1960, p. 11). The 
study by Finch et al. (2000) indicated lung tumor rates of 4, 4, 12, 
50, 61, and 91 percent in animals with beryllium metal lung burdens of 
0, 0.3, 1, 3, 10, and 50 [mu]g respectively (Finch et al., 2000 as 
cited in Document ID 1960, p. 11). NIOSH noted the lung burden levels 
were much lower than those from previous studies, such as a 1998 Finch 
et al. study with initial lung burdens of 15 and 60 [mu]g (Document ID 
1960, p. 11). Based on evidence from mammalian studies of the 
mutagenicity and genotoxicity of beryllium (as described in above in 
section V.E.1) and the evidence of tumorigenicity at lung burden levels 
well below overload, OSHA concludes that beryllium particles are not 
poorly soluble particles like titanium dioxide and non-asbestiform 
talc.
    It has been hypothesized that the recruitment of neutrophils during 
the inflammatory response and subsequent release of oxidants from these 
cells play an important role in the pathogenesis of rat lung tumors 
(Borm et al., 2004, Document ID 1559; Carter and Driscoll, 2001 (1557); 
Carter et al., 2006 (1556); Johnston et al., 2000 (1504); Knaapen et 
al., 2004 (1499); Mossman, 2000 (1444)). This is one potential 
carcinogenic pathway for beryllium particles. Inflammatory mediators, 
acting at levels below overload doses as characterized in many of the 
studies summarized above, have been shown to play a significant role in 
the recruitment of cells responsible for the release of reactive oxygen 
and hydrogen species. These species have been determined to be highly 
mutagenic as well as mitogenic, inducing a proliferative response 
(Ferriola and Nettesheim, 1994, Document ID 0452; Coussens and Werb, 
2002 (0496)). The resultant effect is an environment rich for 
neoplastic transformations and the progression of fibrosis and tumor 
formation. This is consistent with findings from the National Cancer 
Institute, which has estimated that one-third of all cancers may be due 
to chronic inflammation (NCI, 2010, Document ID 0532). However, an 
inflammation-driven contribution to the neoplastic transformation does 
not imply no risk at levels below inflammatory response; rather, the 
overall weight of evidence suggests a mechanism of an indirect 
carcinogen at levels where inflammation is seen. While tumorigenesis 
secondary to inflammation is one reasonable mode of action, other 
plausible modes of action independent of inflammation (e.g., 
epigenetic, mitogenic, reactive oxygen mediated, indirect genotoxicity, 
etc.) may also contribute to the lung cancer associated with beryllium 
exposure. As summarized above, animal studies have consistently 
demonstrated beryllium exposure resulting in chronic pulmonary 
inflammation below overload conditions in multiple species (Groth et 
al., 1980, Document ID 1316; Finch et al., 1998 (1367); Nickel-Brady et 
al., 1994 (1312)). While OSHA recognizes chronic inflammation as one 
potential pathway to carcinogencity the Agency finds that other 
carcinogenic pathways such as genotoxicity and epigenetic changes may 
also contribute to beryllium-induced carcinogenesis.
    During the public comment period OSHA received several comments on 
the carcinogenicity of beryllium. The NFFS agreed with OSHA that ``the 
science is quite clear in linking these soluble Beryllium compounds'' 
to lung cancer (Document ID 1678, p. 6). It also, however, contended 
that there is considerable scientific dispute regarding the 
carcinogenicity of beryllium metal (i.e., poorly soluble beryllium), 
citing findings by the EU's REACH Beryllium Commission (later clarified 
as the EU Beryllium Science and Technology Association) (Document ID 
1785, p. 1; Document ID 1814) and a study by Strupp and Furnes (2010) 
(Document ID 1678, pp. 6-7, and Attachment 1). Materion, similarly, 
commented that ``[a] report conclusion during the recent review of the 
European Cancer Directive for the European Commission stated regarding 
beryllium: `There was little evidence for any important health impact 
from current or recent past exposures in the EU' '' (Document ID 1958, 
p. 4).
    The contentions of both Materion and NFFS regarding scientific 
findings from the EU is directly contradicted by the document submitted 
to the docket by the European Commission on Health, Safety and Hygiene 
at Work, discussed above. This document states that the European 
Chemicals Agency (ECHA) has determined that all forms of beryllium 
(soluble and poorly soluble) are carcinogenic (Category 1B) with the 
exception of aluminum beryllium silicates (which have not been 
allocated a classification) (Document ID 1692, pp. 2-3).
    OSHA also disagrees with NFFS's other contention that there is a 
scientific dispute regarding the carcinogenicity of poorly soluble 
forms of beryllium. In coming to the conclusion that all forms of 
beryllium and beryllium compounds are carcinogenic, OSHA independently 
evaluated the scientific literature, including the findings of 
authoritative entities such as NIOSH, NTP, EPA, and IARC (see section 
V.E). The evidence from human, animal, and mechanistic studies together 
demonstrates that both soluble and poorly soluble beryllium compounds 
are carcinogenic (see sections V.E.2, V.E.3, V.E.4). The well-respected 
scientific bodies mentioned above came to the same conclusion: That 
both soluble and poorly soluble beryllium compounds are carcinogenic to 
humans.
    As supporting documentation the NFFS submitted an ``expert 
statement'' by Strupp and Furnes (2010), which reviews the 
toxicological and epidemiological information regarding beryllium 
carcinogenicity. Based on select information in the scientific 
literature on lung cancer, the Strupp and Furnes (2010) study concluded 
that there was insufficient evidence in humans and animals to conclude 
that insoluble (poorly soluble) beryllium was carcinogenic (Document ID 
1678, Attachment 1, pp. 21-23). Strupp and Furnes (2010) asserted that 
this was based on criteria established under

[[Page 2525]]

Annex VI of Directive 67/548/EEC which establishes criteria for 
classification and labelling of hazardous substances under the UN 
Globally Harmonized System of Classification and Labelling of Chemicals 
(GHS). OSHA reviewed the Strupp and Furnes (2010) ``expert statement'' 
submitted by NFFS and found it to be unpersuasive. Its review of the 
epidemiological evidence mischaracterized the findings from the NIOSH 
cohort and the nested case-control studies (Ward et al., 1992; 
Sanderson et al., 2001; Schubauer-Berigan et al., 2008) and 
misunderstood the methods commonly used to analyze occupational cohort 
studies (Document ID 1725, pp. 27-28).
    The Strupp and Furnes statement also did not include the more 
recent studies by Schubauer-Berigan et al. (2011, Document ID 1815, 
Attachment 105, 2011 (0626)), which demonstrated elevated rates for 
lung cancer (SMR 1.17; 95% CI 1.08 to 1.28) in a study of 7 beryllium 
processing plants. In addition, Strupp and Furnes did not consider 
expert criticism from IARC on the studies by Levy et al. (2007) and 
Deubner et al., (2007), which formed the basis of their findings. NIOSH 
submitted comments that stated:

    The Strupp (2011b) review of the epidemiological evidence for 
lung carcinogenicity of beryllium contained fundamental 
mischaracterizations of the findings of the NIOSH cohort and nested 
case-control studies (Ward et al. 1992; Sanderson et al. 2001; 
Schubauer-Berigan et al. 2008), as well as an apparent 
misunderstanding of the methods commonly used to analyze 
occupational cohort studies (Document ID 1960, Attachment 2, p. 10).

As further noted by NIOSH:

    Strupp's epidemiology summary mentions two papers that were 
critical of the Sanderson et al. (2001) nested case-control study. 
The first of these, Levy et al. (2007a), was a re-analysis that 
incorporated a nonstandard method of selecting control subjects and 
the second, Deubner et al. (2007), was a simulation study designed 
to evaluate Sanderson's study design. Both of these papers have 
themselves been criticized for using faulty methods (Schubauer-
Berigan et al. 2007; Kriebel, 2008; Langholz and Richardson, 2008); 
however, Strupp's coverage of this is incomplete. (Document ID 1960, 
Attachment 2, Appendix, p. 19).

    NIOSH went on to state that while the Sanderson et al. (2001) used 
standard accepted methods for selecting the control group, the Deubner 
et al. (2007) study limited control group eligibility and failed to 
adequately match control and case groups (Document ID 1960, Attachment 
2, Appendix, pp. 19-20). NIOSH noted that an independent analysis 
published by Langholz and Richardson (2009) and Hein et al., (2009) (as 
cited in Document ID 1960, Attachment 2, Appendix, p. 20) found that 
Levy et al.'s method of eliminating controls from the study had the 
effect of ``always produc[ing] downwardly biased effect estimates and 
for many scenarios the bias was substantial.'' (Document ID 1960, 
Attachment 2, Appendix, p. 20). NIOSH went on to cite numerous errors 
in the studies cited by Strupp (2011) (Document ID 1794, 1795).\9\ OSHA 
finds NIOSH's criticisms of the Strupp (2011) studies as well as their 
criticism of studies by Levy et al., 2007 and Deubner et al., 2007 to 
be reliable and credible.
---------------------------------------------------------------------------

    \9\ Strupp and Furnes was the background information for the 
Strupp (2011) publications (Document ID, Attachment 2, Appendix, p. 
20).
---------------------------------------------------------------------------

    The Strupp and Furnes (2010) statement provided insufficient 
information on the extraction of beryllium metal for OSHA to fully 
evaluate the merit of the studies regarding potential genotoxicity of 
poorly soluble beryllium (Document ID 1678, Attachment 1, pp. 18-20). 
In addition, Strupp and Furnes did not consider the peer-reviewed 
published studies evaluating the genotoxicity of beryllium metal (see 
section V.E.1 and V.E.2).
    In coming to the conclusion that the evidence is insufficient for 
classification under GHS, Strupp and Furnes failed to consider the full 
weight of evidence in their evaluation using the criteria set forth 
under Annex VI of Directive 67/548/EEC which establishes criteria for 
classification and labelling of hazardous substances under the UN 
Globally Harmonized System of Classification and Labelling of Chemicals 
(GHS) (Document ID 1678, attachment 1, pp. 21-23). Thus, the Agency 
concludes that the Strupp and Furnes statement does not constitute the 
best available scientific evidence for the evaluation of whether poorly 
soluble forms of beryllium cause cancer.
    Materion also submitted comments indicating there is an ongoing 
scientific debate regarding the relevance of the rat lung tumor 
response to humans with respect to poorly soluble beryllium compounds 
(Document ID 1807, Attachment 10, pp. 1-3 (pdf pp. 85-87)), Materion 
contended that the increased lung cancer risk in beryllium-exposed 
animals is due to a particle overload phenomenon, in which lung 
clearance of beryllium particles initiates a non-specific neutrophilic 
response that results in intrapulmonary lung tumors. The materials 
cited by Materion as supportive of its argument--Obedorster (1995), a 
2009 working paper to the UN Subcommittee on the Globally Harmonized 
System of Classification and Labelling of Chemicals (citing ILSI (2000) 
as supporting evidence for poorly soluble particles), Snipes (1996), 
the Health Risk Assessment Guidance for Metals, ICMM (2007), and ECETOC 
(2013)--discuss the inhalation of high exposure levels of poorly 
soluble particles in rats and the relevance of these studies to the 
human carcinogenic response (Document ID 1807, Attachment 10, pp. 1-3 
(pdf pp. 85-87)). Using particles such as titanium dioxide, carbon 
black, non-asbestiform talc, coal dust, and diesel soot as models, ILSI 
(2000) and ECETOC (2013) describe studies that have demonstrated that 
chronic inhalation of poorly soluble particles can result in pulmonary 
inflammation, fibrosis, epithelial cell hyperplasia, and adenomas and 
carcinomas in rats at exposure levels that exceed lung clearance 
mechanisms (the ``overload'' phenomenon) (ILSI (2000) \10\, p. 2, as 
cited in Document ID 1807, Attachment 10, pp. 1-3 (pdf pp. 85-87)).
---------------------------------------------------------------------------

    \10\ It is important to note that the ILSI report states that in 
interpreting data from rat studies alone, ``in the absence of 
mechanistic data to the contrary it must be assumed that the rat 
model can identify potential hazards to humans'' (ILSI, 2000, p. 2, 
as cited in Document ID 1807, Attachment 10, p. 1 (pdf p. 85)). The 
report by Oberdorster has similar language to the ILSI report (see 
Document ID 1807, Attachment 10, pp. 1, 3 (pdf pp. 85, 87). It 
should also be noted that the working paper to the UN Subcommittee 
on the Globally Harmonized System of Classification and Labelling of 
Chemicals, which cited ILSI (2000), was not adopted and has not been 
included in any revision to the GHS (https://www.unece.org/fileadmin/DAM/trans/doc/2009/ac10c4/ST-SG-AC10-C4-34e.pdf).
---------------------------------------------------------------------------

    However, these expert reports indicate that the ``overload'' 
phenomenon caused by biologically inert particles (poorly soluble 
particles of low cytotoxicity for which there is no evidence of 
genotoxicity) is relevant only to the rat species. (Document ID 1807, 
Attachment 10, pp. 1-3 (pdf pp. 85-87)). OSHA finds that this model is 
not in keeping with the data presented for beryllium for several 
reasons. First, beryllium has been shown to be a ``biologically 
active'' particle due to its ability to induce an immune response in 
multiple species including humans, has been shown to be genotoxic in 
certain mammalian test systems, and induces epigenetic changes (e.g. 
DNA methylation) (as described in detail in sections V. D. 6, V.E.1, 
V.E.3 and V.E.4). Second, beryllium has been shown to produce lung 
tumors after inhalation or instillation in several animal species, 
including rats, mice, and monkeys (Finch et al., 1998, Document ID 
1367; Schepers et al., 1957 (0458) and 1962 (1414); Wagner et al., 1969 
(1481); Belinsky et al., 2002 (1300); Groth et al.,

[[Page 2526]]

1980 (1316); Vorwald and Reeves, 1957 (1482); Nickell-Brady et al., 
1994 (1312); Swafford et al., 1997 (1392); IARC, 2012 (1355)). In 
addition, poorly soluble beryllium has been demonstrated to produce 
chronic inflammation at levels below overload (Groth et al., 1980, 
Document ID 1316; Nickell-Brady et al., 1994 (1312); Finch et al., 1998 
(1367); Finch et al., 2000 (as cited in Document ID 1960, p. 11)).
    In addition, IARC and NAS performed an extensive review of the 
available animal studies and their findings were supportive of the OSHA 
findings of carcinogenicity (IARC, 2012, Document ID 0650; NAS, 2008 
(1355)). OSHA performed an independent evaluation as outlined in 
section V.E.3 and found sufficient evidence of tumor formation in 
multiple species (rats, mice, and monkeys) after inhalation at levels 
below overload conditions. The Agency has found evidence supporting the 
hypothesis that multiple mechanisms may be at work in the development 
of cancer in experimental animals and humans and cannot dismiss the 
roles of inflammation (neutrophilic and T-cell mediated), genotoxicity, 
and epigenetic factors (see section V.E.1, V.E. 3, V.E.4). After 
evaluating the best scientific evidence available from epidemiological 
and animal studies (see section V.E) OSHA concludes the weight of 
evidence supports a mechanistic finding that both soluble and poorly 
soluble forms of beryllium and beryllium-containing compounds are 
carcinogenic.

F. Other Health Effects

    Past studies on other health effects have been thoroughly reviewed 
by several scientific organizations (NTP, 1999, Document ID 1341; EPA, 
1998 (0661); ATSDR, 2002 (1371); WHO, 2001 (1282); HSDB, 2010 (0533)). 
These studies include summaries of animal studies, in vitro studies, 
and human epidemiological studies associated with cardiovascular, 
hematological, hepatic, renal, endocrine, reproductive, ocular and 
mucosal, and developmental effects. High-dose exposures to beryllium 
have been shown to have an adverse effect upon a variety of organs and 
tissues in the body, particularly the liver. The adverse systemic 
effects on humans mostly occurred prior to the introduction of 
occupational and environmental standards set in 1970-1972 OSHA, 1971, 
see 39 FR 23513; EPA, 1973 (38 FR 8820)). (OSHA, 1971, see 39 FR 23513; 
ACGIH, 1971 (0543); ANSI, 1970 (1303)) and EPA, 1973 (38 FR 8820) and 
therefore are less relevant today than in the past. The available data 
is fairly limited. The hepatic, cardiovascular, renal, and ocular and 
mucosal effects are briefly summarized below. Health effects in other 
organ systems listed above were only observed in animal studies at very 
high exposure levels and are, therefore, not discussed here. During the 
public comment period OSHA received comments suggesting that OSHA add 
dermal effects to this section. Therefore, dermal effects have been 
added, below, and are also discussed in the section on kinetics and 
metabolism (section V.B.2).
1. Hepatic Effects
    Beryllium has been shown to accumulate in the liver and a 
correlation has been demonstrated between beryllium content and hepatic 
damage. Different compounds have been shown to distribute differently 
within the hepatic tissues. For example, in one study, beryllium 
phosphate accumulated almost exclusively within sinusoidal (Kupffer) 
cells of the liver, while beryllium sulfate was found mainly in 
parenchymal cells. Conversely, beryllium sulphosalicylic acid complexes 
were rapidly excreted (Skilleter and Paine, 1979, Document ID 1410).
    According to a few autopsies, beryllium-laden livers had central 
necrosis, mild focal necrosis and inflammation, as well as, 
occasionally, beryllium granuloma (Sprince et al., 1975, Document ID 
1405).
2. Cardiovascular Effects
    Severe cases of CBD can result in cor pulmonale, which is 
hypertrophy of the right heart ventricle. In a case history study of 17 
individuals exposed to beryllium in a plant that manufactured 
fluorescent lamps, autopsies revealed right atrial and ventricular 
hypertrophy (Hardy and Tabershaw, 1946, Document ID 1516). It is not 
likely that these cardiac effects were due to direct toxicity to the 
heart, but rather were a response to impaired lung function. However, 
an increase in deaths due to heart disease or ischemic heart disease 
was found in workers at a beryllium manufacturing facility (Ward et 
al., 1992, Document ID 1378). Additionally, a study by Schubauer-
Berigan et al. (2011) found an increase in mortality due to cor 
pulmonale in a follow-up study of workers at seven beryllium processing 
plants who were exposed to beryllium levels near the preceding OSHA PEL 
of 2.0 [mu]g/m\3\ (Schubauer-Berigan et al., 2011, Document ID 1266).
    Animal studies performed in monkeys indicate heart enlargement 
after acute inhalation exposure to 13 mg beryllium/m\3\ as beryllium 
hydrogen phosphate, 0.184 mg beryllium/m\3\ as beryllium fluoride, or 
0.198 mg beryllium/m\3\ as beryllium sulfate (Schepers, 1957, Document 
ID 0458). Decreased arterial oxygen tension was observed in dogs 
exposed to 30 mg beryllium/m\3\ as beryllium oxide for 15 days (HSDB, 
2010, Document ID 0533), 3.6 mg beryllium/m\3\ as beryllium oxide for 
40 days (Hall et al., 1950, Document ID 1494), and 0.04 mg beryllium/
m\3\ as beryllium sulfate for 100 days (Stokinger et al., 1950, 
Document ID 1484). These are thought to be indirect effects on the 
heart due to pulmonary fibrosis and toxicity, which can increase 
arterial pressure and restrict blood flow.
3. Renal Effects
    Renal or kidney stones have been found in severe cases of CBD that 
resulted from high levels of beryllium exposure. Renal stones 
containing beryllium occurred in about 10 percent of patients affected 
by high exposures (Barnett et al., 1961, Document ID 0453). The ATSDR 
reported that 10 percent of the CBD cases found in the BCR reported 
kidney stones. In addition, an excess of calcium in the blood and urine 
was frequently found in patients with CBD (ATSDR, 2002, Document ID 
1371).
4. Ocular and Mucosal Effects
    Soluble and poorly soluble beryllium compounds have been shown to 
cause ocular irritation in humans (VanOrdstrand et al., 1945, Document 
ID 1383; De Nardi et al., 1953 (1545); Nishimura, 1966 (1435); Epstein, 
1991 (0526); NIOSH, 1994 (1261). In addition, soluble and poorly 
soluble beryllium has been shown to induce acute conjunctivitis with 
corneal maculae and diffuse erythema (HSDB, 2010, Document ID 0533).
    The mucosa (mucosal membrane) is the moist lining of certain 
tissues/organs including the eyes, nose, mouth, lungs, and the urinary 
and digestive tracts. Soluble beryllium salts have been shown to be 
directly irritating to mucous membranes (HSDB, 2010, Document ID 0533).
5. Dermal Effects
    Several commenters suggested OSHA add dermal effects to this Health 
Effects section. National Jewish Health noted that rash and 
granulomatous reactions of the skin still occur in occupational 
settings (Document ID 1664, p. 5). The National Supplemental Screening 
Program also recommended including skin conditions such as dermatitis 
and nodules (Document ID 1677, p. 3). The American Thoracic Society 
also recommended including ``beryllium sensitization, CBD, and skin 
disease as the major adverse health effects

[[Page 2527]]

associated with exposure to beryllium at or below 0.1 [mu]g/m\3\ and 
acute beryllium disease at higher exposures based on the currently 
available epidemiologic and experimental studies'' (Document ID 1688, 
p. 2). OSHA agrees and has included dermal effects in this section of 
the final preamble.
    As summarized in Epstein (1991), skin exposure to soluble beryllium 
compounds (mainly beryllium fluoride but also beryllium metal which may 
contain beryllium fluoride) resulted in irritant dermatitis with 
inflammation, and local edema. Beryllium oxide, beryllium alloys and 
nearly pure beryllium metal did not produce such responses in the skin 
of workers (Epstein, 1991, Document ID 0526). Skin lacerations or 
abrasions contaminated with soluble beryllium can lead to skin 
ulcerations (Epstein, 1991, Document ID 0526). Soluble and poorly 
soluble beryllium-compounds that penetrate the skin as a result of 
abrasions or cuts have been shown to result in chronic ulcerations and 
skin granulomas (VanOrdstrand et al., 1945, Document ID 1383; Lederer 
and Savage, 1954 (1467)). However, ulcerating granulomatous formation 
of the skin is generally associated with poorly soluble forms of 
beryllium (Epstein, 1991, Document ID 0526). Beryllium, beryllium oxide 
and other soluble and poorly soluble forms of beryllium have been 
classified as a skin irritant (category 2) in accordance with the EU 
Classification, Labelling and Packaging Regulation (Document ID 1669, 
p. 2). Contact dermatitis (skin hypersensitivity) was observed in some 
individuals exposed via skin to soluble forms of beryllium, especially 
individuals with a dermal irritant response (Epstein, 1991, Document ID 
0526). Contact allergy has been observed in workers exposed to 
beryllium chloride (Document ID 0522).
G. Summary of Conclusions Regarding Health Effects
    Through careful analysis of the best available scientific 
information outlined in this section, OSHA has determined that 
beryllium and beryllium-containing compounds can cause sensitization, 
CBD, and lung cancer. The Agency has determined through its review and 
evaluation of the studies outlined in section V.A.2 of this health 
effects section that skin and inhalation exposure to beryllium can lead 
to sensitization; and inhalation exposure, or skin exposure coupled 
with inhalation, can cause onset and progression of CBD. In addition, 
the Agency's review and evaluation of the studies outlined in section 
V.E. of this health effects section led to a finding that inhalation 
exposure to beryllium and beryllium-containing materials can cause lung 
cancer.
1. OSHA's Evaluation of the Evidence Finds That Beryllium Causes 
Sensitization Below the Preceding PEL and Sensitization is a Precursor 
to CBD
    Through the biological and immunological processes outlined in 
section V.B. of the Health Effects, the Agency has concluded that the 
scientific evidence supports the following mechanisms for the 
development of sensitization and CBD.
     Inhaled beryllium and beryllium-containing materials able 
to be retained and solubilized in the lungs have the ability to 
initiate sensitization and facilitate CBD development (section V.B.5). 
Genetic susceptibility may play a role in the development of 
sensitization and progression to CBD in certain individuals.
     Beryllium compounds that dissolve in biological fluids, 
such as sweat, can penetrate intact skin and initiate sensitization 
(section V.A.2; V.B). Phagosomal fluid and lung fluid have the capacity 
to dissolve beryllium compounds in the lung (section V.A.2a).
     Sensitization occurs through a T-cell mediated process 
with both soluble and poorly soluble beryllium and beryllium-containing 
compounds through direct antigen presentation or through further 
antigen processing in the skin or lung. T-cell mediated responses, such 
as sensitization, are generally regarded as long-lasting (e.g., not 
transient or readily reversible) immune conditions (section V.D.1).
     Beryllium sensitization and CBD are adverse events along a 
pathological continuum in the disease process with sensitization being 
the necessary first step in the progression to CBD (section V.D).
     Particle characteristics such as size, solubility, surface 
area, and other properties may play a role in the rate of development 
of beryllium sensitization and CBD. However, there is currently not 
sufficient information to delineate the biological role these 
characteristics may play.
     Animal studies have provided supporting evidence for T-
cell proliferation in the development of granulomatous lung lesions 
after beryllium exposure (sections V.D.2; V.D.6).
     Since the pathogenesis of CBD involves a beryllium-
specific, cell-mediated immune response, CBD cannot occur in the 
absence of beryllium sensitization (section V.D.1). While no clinical 
symptoms are associated with sensitization, a sensitized worker is at 
risk of developing CBD when inhalation exposure to beryllium has 
occurred. Epidemiological evidence that covers a wide variety of 
beryllium compounds and industrial processes demonstrates that 
sensitization and CBD are continuing to occur at present-day exposures 
below OSHA's preceding PEL (sections V.D.4; V.D.5 and section VI of 
this preamble).
     OSHA considers CBD to be a progressive illness with a 
continuous spectrum of symptoms ranging from its earliest asymptomatic 
stage following sensitization through to full-blown CBD and death 
(section V.D.7).
     Genetic variabilities appear to enhance risk for 
developing sensitization and CBD in some groups (section V.D.3).
    In addition, epidemiological studies outlined in section V.D.5 have 
demonstrated that efforts to reduce exposures have succeeded in 
reducing the frequency of sensitization and CBD.
2. OSHA's Evaluation of the Evidence Has Determined Beryllium To Be a 
Human Carcinogen
    OSHA conducted an evaluation of the available scientific 
information regarding the carcinogenic potential of beryllium and 
beryllium-containing compounds (section V.E). Based on the weight of 
evidence and plausible mechanistic information obtained from in vitro 
and in vivo animal studies as well as clinical and epidemiological 
investigations, the Agency has determined that beryllium and beryllium-
containing materials are properly regarded as human carcinogens. This 
information is in accordance with findings from IARC, NTP, EPA, NIOSH, 
and ACGIH (section V.E). Key points from this analysis are summarized 
briefly here.
     Epidemiological cohort studies have reported statistically 
significant excess lung cancer mortality among workers employed in U.S. 
beryllium production and processing plants during the 1930s to 1970s 
(section V.E.2).
     Significant positive associations were found between lung 
cancer mortality and both average and cumulative beryllium exposures 
when appropriately adjusted for birth cohort and short-term work status 
(section V.E.2).
     Studies in which large amounts of different beryllium 
compounds were inhaled or instilled in the respiratory tracts in 
multiple species of laboratory animals resulted in an increased

[[Page 2528]]

incidence of lung tumors (section V.E.3).
     Authoritative scientific organizations, such as the IARC, 
NTP, and EPA, have classified beryllium as a known or probable human 
carcinogen (section V.E).
    While OSHA has determined there is sufficient evidence of beryllium 
carcinogenicity, the Agency acknowledges that the exact tumorigenic 
mechanism for beryllium has yet to be determined. A number of 
mechanisms are likely involved, including chronic inflammation, 
genotoxicity, mitogenicity, oxidative stress, and epigenetic changes 
(section V.E.3).
     Studies of beryllium-exposed animals have consistently 
demonstrated chronic pulmonary inflammation after exposure (section 
V.E.3). Substantial data indicate that tumor formation in certain 
animals after inhalation exposure to poorly soluble particles at doses 
causing marked, chronic inflammation is due to a secondary mechanism 
unrelated to the genotoxicity of the particles (section V.E.5).
     A review conducted by the NAS (2008) (Document ID 1355) 
found that beryllium and beryllium-containing compounds tested positive 
for genotoxicity in nearly 50 percent of studies without exogenous 
metabolic activity, suggesting a possible direct-acting mechanism may 
exist (section V.E.1) as well as the potential for epigenetic changes 
(section V.E.4).
    Other health effects are discussed in sections F of the Health 
Effects Section and include hepatic, cardiovascular, renal, ocular, and 
mucosal effects. The adverse systemic effects from human exposures 
mostly occurred prior to the introduction of occupational and 
environmental standards set in 1970-1973 (ACGIH, 1971, Document ID 
0543; ANSI, 1970 (1303); OSHA, 1971, see 39 FR 23513; EPA, 1973 (38 FR 
8820)) and therefore are less relevant.

VI. Risk Assessment

    To promulgate a standard that regulates workplace exposure to toxic 
materials or harmful physical agents, OSHA must first determine that 
the standard reduces a ``significant risk'' of ``material impairment.'' 
Section 6(b)(5) of the OSH Act, 29 U.S.C. 655(b). The first part of 
this requirement, ``significant risk,'' refers to the likelihood of 
harm, whereas the second part, ``material impairment,'' refers to the 
severity of the consequences of exposure. Section II, Pertinent Legal 
Authority, of this preamble addresses the statutory bases for these 
requirements and how they have been construed by the Supreme Court and 
federal courts of appeals.
    It is OSHA's practice to evaluate risk to workers and determine the 
significance of that risk based on the best available evidence. Using 
that evidence, OSHA identifies material health impairments associated 
with potentially hazardous occupational exposures, assesses whether 
exposed workers' risks are significant, and determines whether a new or 
revised rule will substantially reduce these risks. As discussed in 
Section II, Pertinent Legal Authority, when determining whether a 
significant risk exists OSHA considers whether there is a risk of at 
least one-in-a-thousand of developing amaterial health impairment from 
a working lifetime of exposure at the prevailing OSHA standard 
(referred to as the ``preceding standard'' or ``preceding TWA PEL'' in 
this preamble). For this purpose, OSHA generally assumes that a term of 
45 years constitutes a working life. The Supreme Court has found that 
OSHA is not required to support its finding of significant risk with 
scientific certainty, but may instead rely on a body of reputable 
scientific thought and may make conservative assumptions (i.e., err on 
the side of protecting the worker) in its interpretation of the 
evidence (see Section II, Pertinent Legal Authority).
    For single-substance standards governed by section 6(b)(5) of the 
OSH Act, 29 U.S.C. 655(b)(5), OSHA sets a permissible exposure limit 
(PEL) based on its risk assessment as well as feasibility 
considerations. These health and risk determinations are made in the 
context of a rulemaking record in which the body of evidence used to 
establish material impairment, assess risks, and identify affected 
worker population, as well as the Agency's preliminary risk assessment, 
are placed in a public rulemaking record and subject to public comment. 
Final determinations regarding the standard, including final 
determinations of material impairment and risk, are thus based on 
consideration of the entire rulemaking record.
    OSHA's approach for the risk assessment for beryllium incorporates 
both: (1) A review of the literature on populations of workers exposed 
to beryllium at and below the preceding time-weighted average 
permissible exposure limit (TWA PEL) of 2 [mu]g/m\3\; and (2) OSHA's 
own analysis of a data set of beryllium-exposed machinists. The 
Preliminary Risk Assessment included in the NPRM evaluated risk at 
several alternate TWA PELs that the Agency was considering (1 [mu]g/
m\3\, 0.5 [mu]g/m\3\, 0.2 [mu]g/m\3\, and 0.1 [mu]g/m\3\), as well as 
OSHA's preceding TWA PEL of 2 [mu]g/m\3\. OSHA's risk assessment relied 
on available epidemiological studies to evaluate the risk of 
sensitization and CBD for workers exposed to beryllium at and below the 
preceding TWA PEL and the effectiveness of exposure control programs in 
reducing risk. OSHA also conducted a statistical analysis of the 
exposure-response relationship for sensitization and CBD at the 
preceding PEL and alternate PELs the Agency was considering. For this 
analysis, OSHA used data provided by National Jewish Health (NJH), a 
leading medical center specializing in the research and treatment of 
CBD, on a population of workers employed at a beryllium machining plant 
in Cullman, AL. The review of the epidemiological studies and OSHA's 
own analysis both show significant risk of sensitization and CBD among 
workers exposed at and below the preceding TWA PEL of 2 [mu]g/m\3\. 
They also show substantial reduction in risk where employers 
implemented a combination of controls, including stringent control of 
airborne beryllium levels and additional measures, such as respirators 
and dermal personal protective equipment (PPE) to further protect 
workers against dermal contact and airborne beryllium exposure.
    To evaluate lung cancer risk, OSHA relied on a quantitative risk 
assessment published in 2011 by Schubauer-Berigan et al. (Document ID 
1265). Schubauer-Berigan et al. found that lung cancer risk was 
strongly and significantly related to mean, cumulative, and maximum 
measures of workers' exposure; the authors predicted significant risk 
of lung cancer at the preceding TWA PEL, and substantial reductions in 
risk at the alternate PELs OSHA considered in the proposed rule, 
including the final TWA PEL of 0.2 [mu]g/m\3\ (Schubauer-Berigan et 
al., 2011).
    OSHA requested input on the preliminary risk assessment presented 
in the NPRM, and received comments from a variety of public health 
experts and organizations, unions, industrial organizations, individual 
employers, and private citizens. While many comments supported OSHA's 
general approach to the risk assessment and the conclusions of the risk 
assessment, some commenters raised specific concerns with OSHA's 
analytical methods or recommended additional studies for OSHA's 
consideration. Comments about the risk assessment as a whole are 
reviewed here, while comments on specific aspects of the risk 
assessment are addressed in the relevant sections throughout the 
remainder of

[[Page 2529]]

this chapter and in the background document, Risk Analysis of the NJH 
Data Set from the Beryllium Machining Facility in Cullman, Alabama--CBD 
and Sensitization (OSHA, 2016), which can be found in the rulemaking 
docket (docket number OSHA-H005C-2006-0870) at www.regulations.gov. 
Following OSHA's review of all the comments submitted on the 
preliminary risk assessment, and its incorporation of suggested changes 
to the risk assessment, where appropriate, the Agency reaffirms its 
conclusion that workers' risk of material impairment of health from 
beryllium exposure at the preceding PEL of 2 [mu]g/m\3\ is significant, 
and is substantially reduced but still significant at the new PEL of 
0.2 [mu]g/m\3\ (see this preamble at Section VII, Significance of 
Risk).
    The comments OSHA received on its preliminary risk analysis 
generally supported OSHA's overall approach and conclusions. NIOSH 
indicated that OSHA relied on the best available evidence in its risk 
assessment and concurred with ``OSHA's careful review of the available 
literature on [beryllium sensitization] and CBD, OSHA's recognition of 
dermal exposure as a potential pathway for sensitization, and OSHA's 
careful approach to assessing risk for [beryllium sensitization] and 
CBD'' (Document ID 1725, p. 3). NIOSH agreed with OSHA's approach to 
the preliminary lung cancer risk assessment (Document ID 1725, p. 7) 
and the selection of a 2011 analysis (Schubauer-Berigan et al., 2011, 
Document ID 1265) as the basis of that risk assessment (Document ID 
1725, p. 7). NIOSH further supported OSHA's preliminary conclusions 
regarding the significance of risk of material health impairment at the 
preceding TWA PEL of 2 [mu]g/m\3\, and the substantial reduction of 
such risk at the new TWA PEL of 0.2 [mu]g/m\3\ (Document ID 1725, p. 
3). Finally, NIOSH agreed with OSHA's preliminary conclusion that 
compliance with the new PEL would lessen but not eliminate risk to 
exposed workers, noting that OSHA likely underestimated the risks of 
beryllium sensitization and CBD (Document ID 1725, pp. 3-4).
    Other commenters also agreed with the general approach and 
conclusions of OSHA's preliminary risk assessment. NJH, for example, 
determined that ``OSHA performed a thorough assessment of risk for 
[beryllium sensitization], CBD and lung cancer using all available 
studies and literature'' (Document ID 1664, p. 5). Dr. Kenny Crump and 
Ms. Deborah Proctor commented, on behalf of beryllium producer 
Materion, that they ``agree with OSHA's conclusion that there is a 
significant risk (>1/1000 risk of CBD) at the [then] current PEL, and 
that risk is reduced at the proposed PEL (0.2 [mu]g/m\3\) in 
combination with stringent measures (ancillary provisions) to reduce 
worker's exposures'' (Document ID 1660, p. 2). They further stated that 
OSHA's ``finding is evident based on the available literature . . . and 
the prevalence data [OSHA] presented for the Cullman facility'' 
(Document ID 1660, p. 2).
    OSHA also received comments objecting to OSHA's conclusions 
regarding risk of lung cancer from beryllium exposure and suggesting 
additional published analyses for OSHA's consideration (e.g., Document 
ID 1659; 1661, pp. 1-3). One comment critiqued the statistical 
exposure-response model OSHA presented as one part of its preliminary 
risk analysis for sensitization and CBD (Document ID 1660). These 
comments are discussed and addressed in the remainder of this chapter.

A. Review of Epidemiological Literature on Sensitization and Chronic 
Beryllium Disease

    As discussed in the Health Effects section, studies of beryllium-
exposed workers conducted using the beryllium lymphocyte proliferation 
test (BeLPT) have found high rates of beryllium sensitization and CBD 
among workers in many industries, including at some facilities where 
exposures were primarily below OSHA's preceding PEL of 2 [mu]g/m\3\ 
(e.g., Kreiss et al., 1993, Document ID 1478; Henneberger et al., 2001 
(1313); Schuler et al., 2005 (0919); Schuler et al., 2012 (0473)). In 
the mid-1990s, some facilities using beryllium began to aggressively 
monitor and reduce workplace exposures. In the NPRM, OSHA reviewed 
studies of workers at four plants where several rounds of BeLPT 
screening were conducted before and after implementation of new 
exposure control methods. These studies provide the best available 
evidence on the effectiveness of various exposure control measures in 
reducing the risk of sensitization and CBD. The experiences of these 
plants--a copper-beryllium processing facility in Reading, PA, a 
ceramics facility in Tucson, AZ, a beryllium processing facility in 
Elmore, OH, and a machining facility in Cullman, AL--show that 
comprehensive exposure control programs that used engineering controls 
to reduce airborne exposure to beryllium, required the use of 
respiratory protection, controlled dermal contact with beryllium using 
PPE, and employed stringent housekeeping methods to keep work areas 
clean and prevent transfer of beryllium between work areas, sharply 
curtailed new cases of sensitization among newly-hired workers. In 
contrast, efforts to prevent sensitization and CBD by using engineering 
controls to reduce workers' beryllium exposures to median levels around 
0.2 [mu]g/m\3\, with no corresponding emphasis on PPE, were less 
effective than comprehensive exposure control programs implemented more 
recently. OSHA also reviewed additional, but more limited, information 
on the occurrence of sensitization and CBD among workers with low-level 
beryllium exposures at nuclear facilities and aluminum smelting plants. 
A summary discussion of the experiences at all of these facilities is 
provided in this section. Additional discussion of studies on these 
facilities and several other studies of sensitization and CBD among 
beryllium-exposed workers is provided in Section V, Health Effects.
    The Health Effects section also discusses OSHA's findings and the 
supporting evidence concerning the role of particle characteristics and 
beryllium compound solubility in the development of sensitization and 
CBD among beryllium-exposed workers. First, it finds that respirable 
particles small enough to reach the deep lung are responsible for CBD. 
However, larger inhalable particles that deposit in the upper 
respiratory tract may lead to sensitization. Second, it finds that both 
soluble and poorly soluble forms of beryllium are able to induce 
sensitization and CBD. Poorly soluble forms of beryllium that persist 
in the lung for longer periods may pose greater risk of CBD while 
soluble forms may more easily trigger immune sensitization. Although 
particle size and solubility may influence the toxicity of beryllium, 
the available data are too limited to reliably account for these 
factors in the Agency's estimates of risk.
1. Reading, PA, Plant
    Schuler et al. (2005, Document ID 0919) and Thomas et al. (2009, 
Document ID 0590) conducted studies of workers at a copper-beryllium 
processing facility in Reading, PA. Exposures at this plant were 
believed to be low throughout its history due to both the low 
percentage of beryllium in the metal alloys used and the relatively low 
exposures found in general area samples collected starting in 1969 
(sample median <=0.1 [mu]g/m\3\, 97% < 0.5 [mu]g/m\3\) (Schuler et al., 
2005). Ninety-nine percent of personal lapel sample measurements were 
below the preceding OSHA TWA PEL of 2 [mu]g/m\3\; 93 percent were below 
the new TWA

[[Page 2530]]

PEL of 0.2 [mu]g/m\3\ (Schuler et al., 2005). Schuler et al. (2005) 
screened 152 workers at the facility with the BeLPT in 2000. The 
reported prevalences of sensitization (6.5 percent) and CBD (3.9 
percent) showed substantial risk at this facility, even though airborne 
exposures were primarily below both the preceding and final TWA 
PELs.\11\ The only group of workers with no cases of sensitization or 
CBD, a group of 26 office administration workers, was the group with 
the lowest recorded exposures (median personal sample 0.01 [mu]g/m\3\, 
range <0.01-0.06 [mu]g/m\3\ (Schuler et al., 2005).
---------------------------------------------------------------------------

    \11\ Although OSHA reports percentages to indicate the risks of 
sensitization and CBD in this section, the benchmark OSHA typically 
uses to demonstrate significant risk, as discussed in Pertinent 
Legal Authority, is greater than or equal to 1 in 1,000 workers. One 
in 1,000 workers is equivalent to 0.1 percent. Therefore, any value 
of 0.1 percent or higher when reporting occurrence of a health 
effect is considered by OSHA to indicate a significant risk.
---------------------------------------------------------------------------

    After the initial BeLPT screening was conducted in 2000, the 
company began implementing new measures to further reduce workers' 
exposure to beryllium (Thomas et al. 2009, Document ID 0590). 
Requirements designed to minimize dermal contact with beryllium, 
including long-sleeve facility uniforms and polymer gloves, were 
instituted in production areas in 2000-2002. In 2001, the company 
installed local exhaust ventilation (LEV) in die grinding and polishing 
operations (Thomas et al., 2009, Figure 1). Personal lapel samples 
collected between June 2000 and December 2001, showed reduced exposures 
plant-wide (98 percent were below 0.2 [mu]g/m\3\). Median, arithmetic 
mean, and geometric mean values less than or equal to 0.03 [mu]g/m\3\ 
were reported in this period for all processes except one, a wire 
annealing and pickling process. Samples for this process remained 
elevated, with a median of 0.1 [mu]g/m\3\ (arithmetic mean of 0.127 
[mu]g/m\3\, geometric mean of 0.083 [mu]g/m\3\) (Thomas et al., 2009, 
Table 3). In January 2002, the company enclosed the wire annealing and 
pickling process in a restricted access zone (RAZ). Beginning in 2002, 
the company required use of powered air-purifying respirators (PAPRs) 
in the RAZ, and implemented stringent measures to minimize the 
potential for skin contact and beryllium transfer out of the zone, such 
as requiring RAZ workers to shower before leaving the zone (Thomas et 
al., 2009, Figure 1). While exposure samples collected by the facility 
were sparse following the enclosure, they suggest exposure levels 
comparable to the 2000-2001 samples in areas other than the RAZ (Thomas 
et al., 2009, Table 3). The authors reported that outside the RAZ, 
``the vast majority of employees do not wear any form of respiratory 
protection due to very low airborne beryllium concentrations'' (Thomas 
et al., 2009, p. 122).
    To test the efficacy of the new measures in preventing 
sensitization and CBD, in June 2000 the facility began an intensive 
BeLPT screening program for all new workers (Thomas et al., 2009, 
Document ID 0590). Among 82 workers hired after 1999, three cases of 
sensitization were found (3.7 percent). Two (5.4 percent) of 37 workers 
hired prior to enclosure of the wire annealing and pickling process, 
which had been releasing beryllium into the surrounding area, were 
found to be sensitized within 3 and 6 months of beginning work at the 
plant. One (2.2 percent) of 45 workers hired after the enclosure was 
built was confirmed as sensitized. From these early results comparing 
the screening conducted on workers hired before 2000 and those hired in 
2000 and later, especially following the enclosure of the RAZ, it 
appears that the greatest reduction in sensitization risk (to one 
sensitized worker, or 2.2 percent) was achieved after workers' 
exposures were reduced to below 0.1 [mu]g/m\3\ and PPE to prevent 
dermal contact was instituted (Thomas et al., 2009).
2. Tucson, AZ, Plant
    Kreiss et al. (1996, Document ID 1477), Cummings et al. (2007, 
Document ID 1369), and Henneberger et al. (2001, Document ID 1313) 
conducted studies of workers at a beryllia ceramics plant in Tucson, 
Arizona. Kreiss et al. (1996) screened 136 workers at this plant with 
the BeLPT in 1992. Full-shift area samples collected between 1983 and 
1992 showed primarily low airborne beryllium levels at this facility 
(76 percent of area samples were at or below 0.1 [mu]g/m\3\ and less 
than 1 percent exceeded 2 [mu]g/m\3\). 4,133 short-term breathing zone 
measurements collected between 1981 and 1992 had a median of 0.3 [mu]g/
m\3\. A small set (75) of personal lapel samples collected at the plant 
beginning in 1991 had a median of 0.2 [mu]g/m\3\ and ranged from 0.1 to 
1.8 [mu]g/m\3\ (arithmetic and geometric mean values not reported) 
(Kreiss et al., 1996).
    Kreiss et al. reported that eight (5.9 percent) of the 136 workers 
tested in 1992 were sensitized, six (4.4 percent) of whom were 
diagnosed with CBD. One sensitized worker was one of 13 administrative 
workers screened, and was among those diagnosed with CBD. Exposures of 
administrative workers were not well characterized, but were believed 
to be among the lowest in the plant. Personal lapel samples taken on 
administrative workers during the 1990s were below the detection limit 
at the time, 0.2 [mu]g/m\3\ (Cummings et al., 2007, Document ID 1369).
    Following the 1992 screening, the facility reduced exposures in 
machining areas (for example, by enclosing additional machines and 
installing additional exhaust ventilation), resulting in median 
exposures of 0.2 [mu]g/m\3\ in production jobs and 0.1 [mu]g/m\3\ in 
production support jobs (Cummings et al., 2007). In 1998, a second 
screening found that 7 out of 74 tested workers hired after the 1992 
screening (9.5 percent) were sensitized, one of whom was diagnosed with 
CBD. All seven of these sensitized workers had been employed at the 
plant for less than two years (Henneberger et al., 2001, Document ID 
1313, Table 3). Of 77 Tucson workers hired prior to 1992 who were 
tested in 1998, 8 (10.4 percent) were sensitized and 7 of these (9.7 
percent) were diagnosed with CBD (Henneberger et al., 2001).
    Following the 1998 screening, the company continued efforts to 
reduce exposures, along with risk of sensitization and CBD, by 
implementing additional engineering and administrative controls and a 
comprehensive PPE program which included the use of respiratory 
protection (1999) and latex gloves (2000) (Cummings et al., 2007, 
Document ID 1369). Enclosures were installed for various beryllium-
releasing processes by 2001. Between 2000 and 2003, water-resistant or 
water-proof garments, shoe covers, and taped gloves were incorporated 
to keep beryllium-containing fluids from wet machining processes off 
the skin. To test the efficacy of the new measures instituted after 
1998, in January 2000 the company began screening new workers for 
sensitization at the time of hire and at 3, 6, 12, 24, and 48 months of 
employment. These more stringent measures appear to have substantially 
reduced the risk of sensitization among new employees. Of 97 workers 
hired between 2000 and 2004, one case of sensitization was identified 
(1 percent) (Cummings et al., 2007).
3. Elmore, OH, Plant
    Kreiss et al. (1997, Document ID 1360), Bailey et al. (2010, 
Document ID 0676), and Schuler et al. (2012, Document ID 0473) 
conducted studies of workers at a beryllium metal, alloy, and oxide 
production plant in Elmore, Ohio. Workers participated in several 
plant-wide BeLPT surveys beginning in 1993-1994 (Kreiss et al., 1997; 
Schuler et al., 2012) and in a series of screenings

[[Page 2531]]

for workers hired in 2000 and later, conducted beginning in 2000 
(Bailey et al., 2010).
    Exposure levels at the plant between 1984 and 1993 were 
characterized using a mixture of general area, short-term breathing 
zone, and personal lapel samples (Kreiss et al., 1997, Document ID 
1360). Kreiss et al. reported that the median area samples for various 
work areas ranged from 0.1 to 0.7 [micro]g/m\3\, with the highest 
values in the alloy arc furnace and alloy melting-casting areas. 
Personal lapel samples were available from 1990-1992, and showed high 
exposures overall (median value of 1.0 [micro]g/m\3\), with very high 
exposures for some processes. Kreiss et al. reported median sample 
values from the personal lapel samples of 3.8 [micro]g/m\3\ for 
beryllium oxide production, 1.75 [micro]g/m\3\ for alloy melting and 
casting, and 1.75 [micro]g/m\3\ for the arc furnace. The authors 
reported that 43 (6.9 percent) of 627 workers tested in 1993-1994 were 
sensitized. 29 workers (including 5 previously identified) were 
diagnosed with CBD (29/632, or 4.6 percent) (Kreiss et al., 1997).
    In 1996-1999, the company took further steps to reduce workers' 
beryllium exposures, including enclosure of some beryllium-releasing 
processes, establishment of restricted-access zones, and installation 
or updating of certain engineering controls (Bailey et al., 2010, 
Document ID 0676, Tables 1-2). Beginning in 1999, all new employees 
were required to wear loose-fitting PAPRs in manufacturing buildings. 
Skin protection became part of the protection program for new employees 
in 2000, and glove use was required in production areas and for 
handling work boots beginning in 2001. By 2001, either half-mask 
respirators or PAPRs were required throughout the production facility 
(type determined by airborne beryllium levels) and respiratory 
protection was required for roof work and during removal of work boots 
(Bailey et al., 2010).
    Beginning in 2000, newly hired workers were offered periodic BeLPT 
testing to evaluate the effectiveness of the new exposure control 
program implemented by the company (Bailey et al., 2010). Bailey et al. 
compared the occurrence of beryllium sensitization and disease among 
258 employees who began work at the Elmore plant between January 15, 
1993 and August 9, 1999 (the ``pre-program group'') with that of 290 
employees who were hired between February 21, 2000 and December 18, 
2006, and were tested at least once after hire (the ``program group''). 
They found that, as of 1999, 23 (8.9 percent) of the pre-program group 
were sensitized to beryllium. Six (2.1 percent) of the program group 
had confirmed abnormal results on their final round of BeLPTs, which 
occurred in different years for different employees. This four-fold 
reduction in sensitization suggests that beryllium-exposed workers' 
risk of sensitization (and therefore of CBD, which develops only 
following sensitization) can be much reduced by the combination of 
process controls, respiratory protection requirements, and PPE 
requirements applied in this facility. Because most of the workers in 
the study had been employed at the facility for less than two years, 
and CBD typically develops over a longer period of time (see section V, 
Health Effects), Bailey et al. did not report the incidence of CBD 
among the sensitized workers (Bailey et al., 2010). Schuler et al. 
(2012, Document ID 0473) published a study examining beryllium 
sensitization and CBD among short-term workers at the Elmore, OH plant, 
using exposure estimates created by Virji et al. (2012, Document ID 
0466). The study population included 264 workers employed in 1999 with 
up to 6 years tenure at the plant (91 percent of the 291 eligible 
workers). By including only short-term workers, Virji et al. were able 
to construct participants' exposures with more precision than was 
possible in studies involving workers exposed for longer durations and 
in time periods with less exposure sampling. A set of 1999 exposure 
surveys and employee work histories was used to estimate employees' 
long-term lifetime weighted (LTW) average, cumulative, and highest-job-
worked exposures for total, respirable, and submicron beryllium mass 
concentrations (Schuler et al., 2012; Virji et al., 2012).
    As reported by Schuler et al. (2012), the overall prevalence of 
sensitization was 9.8 percent (26/264). Sensitized workers were offered 
further evaluation for CBD. Twenty-two sensitized workers consented to 
clinical testing for CBD via transbronchial biopsy. Although follow-up 
time was too short (at most 6 years) to fully evaluate CBD in this 
group, 6 of those sensitized were diagnosed with CBD (2.3 percent, 6/
264). Schuler et al. (2012) found 17 cases of sensitization (8.6%) 
within the first 3 quartiles of LTW average exposure (198 workers with 
LTW average total mass exposures lower than 1.1 [micro]g/m\3\) and 4 
cases of CBD (2.2%) within those first 3 quartiles (183 workers with 
LTW average total mass exposures lower than 1.07 [micro]g/m\3\)\12\ The 
authors found 3 cases (4.6%) of sensitization among 66 workers with 
total mass LTW average exposures below 0.1 [micro]g/m\3\, and no cases 
of sensitization among workers with total mass LTW average exposures 
below 0.09 [micro]g/m\3\, suggesting that beryllium-exposed workers' 
risk can be much reduced or eliminated by reducing airborne exposures 
to average levels below 0.1 [micro]g/m\3\.
---------------------------------------------------------------------------

    \12\ The total number of workers Schuler et al. reported in 
their table of LTW average quartiles for sensitization differs from 
the total number of workers reported in their table of LTW average 
quartiles for CBD. The table for CBD appeared to exclude 20 workers 
with sensitization and no CBD.
---------------------------------------------------------------------------

    Schuler et al. (2012, Document ID 0473) then used logistic 
regression to explore the relationship between estimated beryllium 
exposure and sensitization and CBD. For beryllium sensitization, the 
logistic models by Schuler et al. showed elevated odds ratios (OR) for 
LTW average (OR 1.48) and highest job (OR 1.37) exposure for total mass 
exposure; the OR for cumulative exposure was smaller (OR 1.23) and 
borderline statistically significant (95 percent CI barely included 
unity).\13\ Relationships between sensitization and respirable exposure 
estimates were similarly elevated for LTW average (OR 1.37) and highest 
job (OR 1.32) exposures. Among the submicron exposure estimates, only 
highest job (OR 1.24) had a 95 percent CI that just included unity for 
sensitization. For CBD, elevated odds ratios were observed only for the 
cumulative exposure estimates and were similar for total mass and 
respirable exposure (total mass OR 1.66, respirable OR 1.68). 
Cumulative submicron exposure showed an elevated, borderline 
significant odds ratio (OR 1.58). The odds ratios for average exposure 
and highest-exposed job were not statistically significantly elevated. 
Schuler et al. concluded that both total and respirable mass 
concentrations of beryllium exposure were relevant predictors of risk 
for beryllium sensitization and CBD. Average and highest job exposures 
were predictive of risk for sensitization, while cumulative exposure 
was predictive of risk for CBD (Schuler et al., 2012).
---------------------------------------------------------------------------

    \13\ An odds ratio (OR) is a measure of association between an 
exposure and an outcome. The OR represents the odds that an outcome 
will occur given a particular exposure, compared to the odds of the 
outcome occurring in the absence of that exposure.
---------------------------------------------------------------------------

    Materion submitted comments supporting OSHA's use of the Schuler et 
al. (2012) study as a basis for the final TWA PEL of 0.2 [micro]g/m\3\. 
Materion stated that ``the best available evidence to establish a risk-
based OEL [occupational exposure limit] is the study conducted by NIOSH 
and presented in Schuler 2012. The exposure assessment in

[[Page 2532]]

Schuler et al. was based on a highly robust workplace monitoring 
dataset and the study provides improved data for determining OELs'' 
(Document ID 1661, pp. 9-10). Materion also submitted an unpublished 
manuscript documenting an analysis it commissioned, entitled ``Derived 
No-Effect Levels for Occupational Beryllium Exposure Using Cluster 
Analysis and Benchmark Dose Modeling'' (Proctor et al., Document ID 
1661, Attachment 5). In this document, Proctor et al. used data from 
Schuler et al. 2012 to develop a Derived No-Effect Level (DNEL) for 
beryllium measured as respirable beryllium, total mass of beryllium, 
and inhalable beryllium.\14\ OSHA's beryllium standard measures 
beryllium as total mass; thus, the results for total mass are most 
relevant to OSHA's risk analysis for the beryllium standard. The 
assessment reported a DNEL of 0.14 [micro]g/m\3\ for total mass 
beryllium (Document ID 1661, Attachment 5, p. 16). Materion commented 
that this finding ``add[s] to the body of evidence that supports the 
fact that OSHA is justified in lowering the existing PEL to 0.2 
[micro]g/m\3\'' (Document ID 1661, p. 11).
---------------------------------------------------------------------------

    \14\ Derived No-Effect Level (DNEL) is used in REACH 
quantitative risk characterizations to mean the level of exposure 
above which humans should not be exposed. It is intended to 
represent a safe level of exposure for humans., REACH is the 
European Union's regulation on Registration, Evaluation, 
Authorization and Restriction of Chemicals.
---------------------------------------------------------------------------

    Proctor et al. characterized the DNEL of 0.14 [micro]g/m\3\ as 
``inherently conservative because average exposure metrics were used to 
determine DNELs, which are limits not [to] be exceeded on a daily 
basis'' (Document ID 1661, Attachment 5, p. 22). Materion referred to 
the DNELs derived by Proctor et al. as providing an ``additional margin 
of safety'' for similar reasons (Document ID 1661, p. 11).
    Consistent with NIOSH comments discussed in the next paragraph, 
OSHA disagrees with this characterization of the DNEL as representing a 
``no effect level'' for CBD or as providing a margin of safety for 
several reasons. The DNEL from Proctor et al. is based on CBD findings 
among a short-term worker population and thus cannot represent the risk 
presented to workers who are exposed over a working lifetime. Proctor 
et al. noted that it is ``important to consider that these data are 
from relatively short-term exposures [median tenure 20.9 months] and 
are being used to support DNELs for lifetime occupational exposures,'' 
but considered the duration of exposure to be sufficient because ``CBD 
can develop with latency as short as 3 months of exposure, and . . . 
the risk of CBD declines over time'' (Document ID 1661, Attachment 5, 
p. 19). In stating this, Procter et al. cite studies by Newman et al. 
(2001, Document ID 1354) and Harber et al. (2009, as cited in Document 
ID 1661). Newman et al. (2001) studied a group of workers in a 
machining plant with job tenures averaging 11.7 years, considerably 
longer than the worker cohort from the study used by Procter et al., 
and identified new cases of CBD from health screenings conducted up to 
4 years after an initial screening. Harber et al., (2009) developed an 
analytic model of disease progression from beryllium exposure and found 
that, although the rate at which new cases of CBD declined over time, 
the overall proportion of individuals with CBD increased over time from 
initial exposure (see Figure 2 of Haber et al., 2009). Furthermore, the 
study used by Proctor et al. to derive the DNEL, Schuler et al. (2012), 
did report finding that the risk of CBD increased with cumulative 
exposure to beryllium, as summarized above. Therefore, OSHA is not 
convinced that a ``no effect level'' for beryllium that is based on the 
health experience of workers with a median job tenure of 20.9 months 
can represent a ``no-effect level'' for workers exposed to beryllium 
for as long as 45 years.
    NIOSH commented on the results of Proctor et al.'s analysis and the 
underlying data set, noting several features of the dataset that are 
common to the beryllium literature, such as uncertain date of 
sensitization or onset of CBD and no ``background'' rate of beryllium 
sensitization or CBD, that make statistical analyses of the data 
difficult and add uncertainty to the derivation of a DNEL (Document ID 
1725, p. 5). NIOSH also noted that risk of CBD may be underestimated in 
the underlying data set if workers with CBD were leaving employment 
due, in part, to adverse health effects (``unmeasured survivor bias'') 
and estimated that as much as 30 percent of the cohort could have been 
lost over the 6-year testing period (Document ID 1725, p. 5). NIOSH 
concluded that Proctor et al.'s analysis ``does not contribute to the 
risk assessment for beryllium workers'' (Document ID 1725, p. 5). OSHA 
agrees with NIOSH that the DNEL identified by Proctor et al. cannot be 
considered a reliable estimate of a no-effect level for beryllium.
4. Cullman, AL, Plant
    Newman et al. (2001, Document ID 1354), Kelleher et al. (2001, 
Document ID 1363), and Madl et al. (2007, Document ID 1056) studied 
beryllium workers at a precision machining facility in Cullman, 
Alabama. After a case of CBD was diagnosed at the plant in 1995, the 
company began BeLPT screenings to identify workers at risk of CBD and 
implemented engineering and administrative controls designed to reduce 
workers' beryllium exposures in machining operations. Newman et al. 
(2001) conducted a series of BeLPT screenings of workers at the 
facility between 1995 and 1999. The authors reported 22 (9.4 percent) 
sensitized workers among 235 tested, 13 of whom were diagnosed with CBD 
within the study period. Personal lapel samples collected between 1980 
and 1999 indicate that median exposures were generally well below the 
preceding PEL (<=0.35 [micro]g/m\3\ in all job titles except 
maintenance (median 3.1 [micro]g/m\3\ during 1980-1995) and gas 
bearings (1.05 [micro]g/m\3\ during 1980-1995)).
    Between 1995 and 1999, the company built enclosures around several 
beryllium-releasing operations; installed or updated LEV for several 
machining departments; replaced pressurized air hoses and dry sweeping 
with wet methods and vacuum systems for cleaning; changed the layout of 
the plant to keep beryllium-releasing processes close together; limited 
access to the production area of the plant; and required the use of 
company uniforms. Madl et al. (2007, Document ID 1056) reported that 
engineering and work process controls, rather than personal protective 
equipment, were used to limit workers' exposure to beryllium. In 
contrast to the Reading and Tucson plants, gloves were not required at 
this plant. Personal lapel samples collected extensively between 1996 
and 1999 in machining and non-machining jobs had medians of 0.16 
[micro]g/m\3\ and 0.08 [micro]g/m\3\, respectively (Madl et al., 2007, 
Table IV). At the time that Newman et al. reviewed the results of BeLPT 
screenings conducted in 1995-1999, a subset of 60 workers had been 
employed at the plant for less than a year and had therefore benefitted 
to some extent from the controls described above. Four (6.7 percent) of 
these workers were found to be sensitized, of whom two were diagnosed 
with CBD and one with probable CBD (Newman et al., 2001, Document ID 
1354). The later study by Madl. et al. reported seven sensitized 
workers who had been hired between 1995 and 1999, of whom four had 
developed CBD as of 2005 (2007, Table II) (total number of workers 
hired between 1995 and 1999 not reported).
    Beginning in 2000 (after the implementation of controls between 
1997 and 1999), exposures in all jobs at the machining facility were 
reduced to

[[Page 2533]]

extremely low levels (Madl et al., 2007, Document ID 1056). Personal 
lapel samples collected between 2000 and 2005 had a median of 0.12 
[micro]g/m\3\ or less in all machining and non-machining processes 
(Madl. et al., 2007, Table IV). Only one worker hired after 1999 became 
sensitized (Madl et al. 2007, Table II). The worker had been employed 
for 2.7 years in chemical finishing, which had the highest median 
exposure of 0.12 [micro]g/m\3\ (medians for other processes ranged from 
0.02 to 0.11 [micro]g/m\3\); Madl et al. 2007, Table II). This result 
from Madl et al. (2007) suggests that beryllium-exposed workers' risk 
of sensitization can be much reduced by steps taken to reduce workers' 
airborne exposures in this facility, including enclosure of beryllium-
releasing processes, LEV, wet methods and vacuum systems for cleaning, 
and limiting worker access to production areas.
    The Cullman, AL facility was also the subject of a case-control 
study published by Kelleher et al. in 2001 (Document ID 1363). After 
the diagnosis of a case of CBD at the plant in 1995, NJH researchers, 
including Kelleher, worked with the plant to conduct the medical 
surveillance program mentioned above, using the BeLPT to screen workers 
biennially for beryllium sensitization and offering sensitized workers 
further evaluation for CBD (Kelleher et al., 2001). Concurrently, 
research was underway by Martyny et al. to characterize the particle 
size distribution of beryllium exposures generated by processes at this 
plant (Martyny et al., 2000, Document ID 1358). Kelleher et al. used 
the dataset of 100 personal lapel samples collected by Martyny et al. 
and other NJH researchers to characterize exposures for each job in the 
plant. Detailed work history information gathered from plant data and 
worker interviews was used in combination with job exposure estimates 
to characterize cumulative and LTW average beryllium exposures for 
workers in the surveillance program. In addition to cumulative and LTW 
average exposure estimates based on the total mass of beryllium 
reported in their exposure samples, Kelleher et al. calculated 
cumulative and LTW average estimates based specifically on exposure to 
particles <6 [mu]m and particles <1 [mu]m in diameter. To analyze the 
relationship between exposure level and risk of sensitization and CBD, 
Kelleher et al. performed a case-control analysis using measures of 
both total beryllium exposure and particle size-fractionated exposure. 
The results, however, were inconclusive, probably due to the relatively 
small size of the dataset (Kelleher et al., 2001).
5. Aluminum Smelting Plants
    Taiwo et al. (2008, Document ID 0621; 2010 (0583) and Nilsen et al. 
(2010, Document ID 0460) studied the relationship between beryllium 
exposure and adverse health effects among workers at aluminum smelting 
plants. Taiwo et al. (2008) studied a population of 734 employees at 4 
aluminum smelters located in Canada (2), Italy (1), and the United 
States (1). In 2000, a company-wide beryllium exposure limit of 0.2 
[mu]g/m\3\ and an action level of 0.1 [mu]g/m\3\, expressed as 8-hour 
TWAs, and a short-term exposure limit (STEL) of 1.0 [mu]g/m\3\ (15-
minute sample) were instituted at these plants. Sampling to determine 
compliance with the exposure limit began at all four smelters in 2000. 
Table VI-1 below, adapted from Taiwo et al. (2008), shows summary 
information on samples collected from the start of sampling through 
2005.

                             Table VI-1--Exposure Sampling Data By Plant--2000-2005
----------------------------------------------------------------------------------------------------------------
                                                                                    Arithmetic
                     Smelter                      Number samples  Median ([mu]g/   mean ([mu]g/   Geometric mean
                                                                       m\3\)           m\3\)       ([mu]g/m\3\)
----------------------------------------------------------------------------------------------------------------
Canadian smelter 1..............................             246            0.03            0.09            0.03
Canadian smelter 2..............................             329            0.11            0.29            0.08
Italian smelter.................................              44            0.12            0.14            0.10
US smelter......................................             346            0.03            0.26            0.04
----------------------------------------------------------------------------------------------------------------
Adapted from Taiwo et al., 2008, Document ID 0621, Table 1.

    All employees potentially exposed to beryllium levels at or above 
the action level for at least 12 days per year, or exposed at or above 
the STEL 12 or more times per year, were offered medical surveillance, 
including the BeLPT (Taiwo et al., 2008). Table VI-2 below, adapted 
from Taiwo et al. (2008), shows test results for each facility between 
2001 and 2005.

                                  Table VI-2--BeLPT Results By Plant--2001-2005
----------------------------------------------------------------------------------------------------------------
                                                                                     Abnormal
                     Smelter                         Employees        Normal           BeLPT         Confirmed
                                                      tested                       (unconfirmed)    sensitized
----------------------------------------------------------------------------------------------------------------
Canadian smelter 1..............................             109             107               1               1
Canadian smelter 2..............................             291             290               1               0
Italian smelter.................................              64              63               0               1
US smelter......................................             270             268               2               0
----------------------------------------------------------------------------------------------------------------
Adapted from Taiwo et al., 2008, Document ID 0621, Table 2

    The two workers with confirmed beryllium sensitization were offered 
further evaluation for CBD. Both were diagnosed with CBD, based on 
broncho-alveolar lavage (BAL) results in one case and pulmonary 
function tests, respiratory symptoms, and radiographic evidence in the 
other.
    In 2010, Taiwo et al. (Document ID 0583) published a study of 
beryllium-exposed workers from four companies, with a total of nine 
smelting operations. These workers included some of the workers from 
the 2008 study. 3,185 workers were determined to be ``significantly 
exposed'' to beryllium and invited to participate in BeLPT screening. 
Each company used different

[[Page 2534]]

criteria to determine ``significant'' exposure, and the criteria 
appeared to vary considerably (Taiwo et al., 2010); thus, it is 
difficult to compare rates of sensitization across companies in this 
study. 1932 workers, about 60 percent of invited workers, participated 
in the program between 2000 and 2006, of whom 9 were determined to be 
sensitized (.4 percent). The authors stated that all nine workers were 
referred to a respiratory physician for further evaluation for CBD. Two 
were diagnosed with CBD (.1 percent), as described above (see Taiwo et 
al., 2008).
    In general, there appeared to be a low level of sensitization and 
CBD among employees at the aluminum smelters studied by Taiwo et al. 
(2008; 2010). This is striking in light of the fact that many of the 
employees tested had worked at the smelters long before the institution 
of exposure limits for beryllium at some smelters in 2000. However, the 
authors noted that respiratory and dermal protection had been used at 
these plants to protect workers from other hazards (Taiwo et al., 
2008).
    A study by Nilsen et al. (2010, Document ID 0460) of aluminum 
workers in Norway also found a low rate of sensitization. In the study, 
362 workers and 31 control individuals received BeLPT testing for 
beryllium sensitization. The authors found one sensitized worker (0.28 
percent). No borderline results were reported. The authors reported 
that exposure measurements in this plant ranged from 0.1 [mu]g/m\3\ to 
0.31 [mu]g/m\3\ (Nilsen et al., 2010) and that respiratory protection 
was in use, as was the case in the smelters studied by Taiwo et al. 
(2008; 2010).
6. Nuclear Weapons Facilities
    Viet et al. (2000, Document ID 1344) and Arjomandi et al. (2010, 
Document ID 1275) evaluated beryllium-exposed nuclear weapons workers. 
In 2000, Viet et al. published a case-control study of participants in 
the Rocky Flats Beryllium Health Surveillance Program (BHSP), which was 
established in 1991 to screen workers at the Department of Energy's 
Rocky Flats, CO, nuclear weapons facility for beryllium sensitization 
and evaluate sensitized workers for CBD. The program, which the authors 
reported had tested over 5,000 current and former Rocky Flats employees 
for sensitization, had identified a total of 127 sensitized individuals 
as of 1994 when Viet et al. initiated their study; 51 of these 
sensitized individuals had been diagnosed with CBD.
    Using subjects from the BHSP, Viet et al. (2000) matched a total of 
50 CBD cases to 50 controls who tested negative for beryllium 
sensitization and had the same age ( 3 years), gender, race 
and smoking status, and were otherwise randomly selected from the 
database. Using the same matching criteria, 74 sensitized workers who 
were not diagnosed with CBD were matched to 74 control individuals from 
the BHSP database who tested negative for beryllium sensitization.
    Viet et al. (2000) developed exposure estimates for the cases and 
controls based on daily fixed airhead (FAH) beryllium air samples 
collected in one of 36 buildings at Rocky Flats where beryllium was 
used, the Building 444 Beryllium Machine Shop. Annual mean FAH samples 
in Building 444 collected between 1960 and 1988 ranged from a low of 
0.096 [mu]g/m\3\ (1988) to a high of 0.622 [mu]g/m\3\ (1964) (Viet et 
al., 2000, Table II). Because exposures in this shop were better 
characterized than in other buildings, the authors developed estimates 
of exposures for all workers based on samples from Building 444. The 
authors' statistical analysis of the resulting data set included 
conditional logistic regression analysis, modeling the relationship 
between risk of each health outcome and individuals' log-transformed 
cumulative exposure estimate (CEE) and mean exposure estimate (MEE). 
These coefficients corresponded to odds ratios of 6.9 and 7.2 per 10-
fold increase in exposure, respectively. Risk of sensitization without 
CBD did not show a statistically significant relationship with log-CEE 
(coef = 0.111, p = 0.32), but showed a nearly-significant relationship 
with log-MEE (coef = 0.230, p = 0.097). Viet et al. found highly 
statistically significant relationships between log-CEE and risk of CBD 
(coef = 0.837, p = 0.0006) and between log-MEE (coef = 0.855, p = 
0.0012) and risk of CBD, indicating that risk of CBD increases with 
exposure level.
    Arjomandi et al. (2010) published a study of 50 sensitized workers 
from a nuclear weapons research and development facility who were 
evaluated for CBD. Quantitative exposure estimates for the workers were 
not presented; however, the authors characterized their likely 
exposures as low (possibly below 0.1 [mu]g/m\3\ for most jobs). In 
contrast to the studies of low-exposure populations discussed 
previously, this group had much longer follow-up time (mean time since 
first exposure = 32 years) and length of employment at the facility 
(mean of 18 years).
    Five of the 50 evaluated workers (10 percent) were diagnosed with 
CBD based on histology or high-resolution computed tomography. An 
additional three (who had not undergone full clinical evaluation for 
CBD) were identified as probable CBD cases, bringing the total 
prevalence of CBD and probable CBD in this group to 16 percent. OSHA 
notes that this prevalence of CBD among sensitized workers is lower 
than the prevalence of CBD that has been observed in some other worker 
groups known to have exposures exceeding the action level of 0.1 [mu]g/
m\3\. For example, as discussed above, Newman et al. (2001, Document ID 
1354) reported 22 sensitized workers, 13 of whom (59 percent) were 
diagnosed with CBD within the study period. Comparison of these results 
suggests that controlling respiratory exposure to beryllium may reduce 
risk of CBD among already-sensitized workers as well as reducing risk 
of CBD via prevention of sensitization. However, it also demonstrates 
that some workers in low-exposure environments can become sensitized 
and then develop CBD.
7. Conclusions
    The published literature on beryllium sensitization and CBD 
discussed above shows that risk of both health effects can be 
significant in workplaces in compliance with OSHA's preceding PEL 
(e.g., Kreiss et al., 1996, Document ID 1477; Henneberger et al., 2001 
(1313); Newman et al., 2001 (1354); Schuler et al., 2005 (0919), 2012 
(0473); Madl et al., 2007 (1056)). For example, in the Tucson beryllia 
ceramics plant discussed above, Kreiss et al. (1996) reported that 8 
(5.9 percent) of the 136 workers tested in 1992 were sensitized, 6 (4.4 
percent) of whom were diagnosed with CBD. In addition, of 77 Tucson 
workers hired prior to 1992 who were tested in 1998, 8 (10.4 percent) 
were sensitized and 7 of these (9.7 percent) were diagnosed with CBD 
(Henneberger et al., 2001, Document ID 1313). Full-shift area samples 
showed airborne beryllium levels below the preceding PEL (76 percent of 
area samples collected between 1983 and 1992 were at or below 0.1 
[mu]g/m\3\ and less than 1 percent exceeded 2 [mu]g/m\3\; short-term 
breathing zone measurements collected between 1981 and 1992 had a 
median of 0.3 [mu]g/m\3\; personal lapel samples collected at the plant 
beginning in 1991 had a median of 0.2 [mu]g/m\3\) (Kreiss et al., 
1996).
    Results from the Elmore, OH beryllium metal, alloy, and oxide 
production plant and Cullman, AL machining facility also showed 
significant risk of sensitization and CBD

[[Page 2535]]

among workers with exposures below the preceding TWA PEL. Schuler et 
al. (2012, Document ID 0473) found 17 cases of sensitization (8.6%) 
among Elmore, OH workers within the first three quartiles of LTW 
average exposure (198 workers with LTW average total mass exposures 
lower than 1.1 [mu]g/m\3\) and 4 cases of CBD (2.2%) within the first 
three quartiles of LTW average exposure (183 workers with LTW average 
total mass exposures lower than 1.07 [mu]g/m\3\; note that follow-up 
time of up to 6 years for all study participants was very short for 
development of CBD). At the Cullman, AL machining facility, Newman et 
al. (2001, Document ID 1354) reported 22 (9.4 percent) sensitized 
workers among 235 tested in 1995-1999, 13 of whom were diagnosed with 
CBD. Personal lapel samples collected between 1980 and 1999 indicate 
that median exposures were generally well below the preceding PEL 
(<=0.35 [mu]g/m\3\ in all job titles except maintenance (median 3.1 
[mu]g/m\3\ during 1980-1995) and gas bearings (1.05 [mu]g/m\3\ during 
1980-1995)).
    There is evidence in the literature that although risk will be 
reduced by compliance with the new TWA PEL, significant risk of 
sensitization and CBD will remain in workplaces in compliance with 
OSHA's new TWA PEL of 0.2 [mu]g/m\3\ and could extend down to the new 
action level of 0.1 [mu]g/m\3\, although there is less information and 
therefore greater uncertainty with respect to significant risk from 
airborne beryllium exposures at and below the action level. For 
example, Schuler et al. (2005, Document ID 0919) reported substantial 
prevalences of sensitization (6.5 percent) and CBD (3.9 percent) among 
152 workers at the Reading, PA facility who had BeLPT screening in 
2000. These results showed significant risk at this facility, even 
though airborne exposures were primarily below both the preceding and 
final TWA PELs due to the low percentage of beryllium in the metal 
alloys used (median general area samples <=0.1 [mu]g/m\3\, 97% <=0.5 
[mu]g/m\3\); 93% of personal lapel samples were below the new TWA PEL 
of 0.2 [mu]g/m\3\). The only group of workers with no cases of 
sensitization or CBD, a group of 26 office administration workers, was 
the group with exposures below the new action level of 0.1 [mu]g/m\3\ 
(median personal sample 0.01 [mu]g/m\3\, range <0.01-0.06 [mu]g/m\3\ 
(Schuler et al., 2005). The Schuler et al. (2012, Document ID 0473) 
study of short-term workers in the Elmore, OH facility found 3 cases 
(4.6%) of sensitization among 66 workers with total mass LTW average 
exposures below 0.1 [mu]g/m\3\; 3 of these workers had LTW average 
exposures of approximately 0.09 [mu]g/m\3\.
    Furthermore, cases of sensitization and CBD continued to arise in 
the Cullman, AL machining plant after control measures implemented 
beginning in 1995 brought median airborne exposures below 0.2 [mu]g/
m\3\ (personal lapel samples between 1996 and 1999 in machining jobs 
had a median of 0.16 [mu]g/m\3\ and 0.08 [mu]g/m\3\ in non-machining 
jobs) (Madl et al., 2007, Document ID 1056, Table IV). At the time that 
Newman et al. (2001, Document ID 1354) reviewed the results of BeLPT 
screenings conducted in 1995-1999, a subset of 60 workers had been 
employed at the plant for less than a year and had therefore benefitted 
to some extent from the exposure reductions. Four (6.7 percent) of 
these workers were found to be sensitized, two of whom were diagnosed 
with CBD and one with probable CBD (Newman et al., 2001). A later study 
by Madl. et al. (2007, Document ID 1056) reported seven sensitized 
workers who had been hired between 1995 and 1999, of whom four had 
developed CBD as of 2005 (Table II; total number of workers hired 
between 1995 and 1999 not reported).
    The experiences of several facilities in developing effective 
industrial hygiene programs have shown the importance of minimizing 
both airborne exposure and dermal contact to effectively reduce risk of 
sensitization and CBD. Exposure control programs that have used a 
combination of engineering controls and PPE to reduce workers' airborne 
exposure and dermal contact have substantially lowered risk of 
sensitization among newly hired workers.\15\ Of 97 workers hired 
between 2000 and 2004 in the Tucson, AZ plant after the introduction of 
mandatory respirator use in production areas beginning in 1999 and 
mandatory use of latex gloves beginning in 2000, one case of 
sensitization was identified (1 percent) (Cummings et al., 2007, 
Document ID 1369). In Elmore, OH, where all workers were required to 
wear respirators and skin PPE in production areas beginning in 2000-
2001, the estimated prevalence of sensitization among workers hired 
after these measures were put in place was around 2 percent (Bailey et 
al., 2010, Document ID 0676). In the Reading, PA facility, only one 
(2.2 percent) of 45 workers hired after workers' exposures were reduced 
to below 0.1 [mu]g/m\3\ and PPE to prevent dermal contact was 
instituted was sensitized (Thomas et al., 2009, Document ID 0590). And, 
in the aluminum smelters discussed by Taiwo et al. (2008, Document ID 
0621), where available exposure samples from four plants indicated 
median beryllium levels of about 0.1 [mu]g/m\3\ or below (measured as 
an 8-hour TWA) and workers used respiratory and dermal protection, 
confirmed cases of sensitization were rare (zero or one case per 
location).
---------------------------------------------------------------------------

    \15\ As discussed in Section V, Health Effects, beryllium 
sensitization can occur from dermal contact with beryllium. Studies 
conducted in the 1950s by Curtis et al. showed that soluble 
beryllium particles could cause beryllium hypersensitivity (Curtis, 
1951, Document ID 1273; NAS, 2008, Document ID 1355). Tinkle et al. 
established that 0.5- and 1.0-[mu]m particles can penetrate intact 
human skin surface and reach the epidermis, where beryllium 
particles would encounter antigen-presenting cells and initiate 
sensitization (Tinkle et al., 2003, Document ID 1483). Tinkle et al. 
further demonstrated that beryllium oxide and beryllium sulfate, 
applied to the skin of mice, generate a beryllium-specific, cell-
mediated immune response similar to human beryllium sensitization.
---------------------------------------------------------------------------

    OSHA recognizes that the studies on recent programs to reduce 
workers' risk of sensitization and CBD were conducted on populations 
with very short exposure and follow-up time. Therefore, they could not 
adequately address the question of how frequently workers who become 
sensitized in environments with extremely low airborne exposures 
(median <0.1 [mu]g/m\3\) develop CBD. Clinical evaluation for CBD was 
not reported for sensitized workers identified in the studies examining 
the post-2000, very low-exposed worker cohorts in Tucson, Reading, and 
Elmore (Cummings et al. 2007, Document ID 1369; Thomas et al. 2009 
(0590); Bailey et al. 2010 (0676)). In Cullman, however, two of the 
workers with CBD had been employed for less than a year and worked in 
jobs with very low exposures (median 8-hour personal sample values of 
0.03-0.09 [mu]g/m\3\) (Madl et al., 2007, Document ID 1056, Table III). 
The body of scientific literature on occupational beryllium disease 
also includes case reports of workers with CBD who are known or 
believed to have experienced minimal beryllium exposure, such as a 
worker employed only in shipping at a copper-beryllium distribution 
center (Stanton et al., 2006, Document ID 1070), and workers employed 
only in administration at a beryllium ceramics facility (Kreiss et al., 
1996, Document ID 1477). Therefore, there is some evidence that cases 
of CBD can occur in work environments where beryllium exposures are 
quite low.
8. Community-Acquired CBD
    In the NPRM, OSHA discussed an additional source of information on 
low-level beryllium exposure and CBD: Studies of community-acquired 
chronic beryllium disease (CA-CBD) in residential areas surrounding 
beryllium

[[Page 2536]]

production facilities. The literature on CA-CBD, including the Eisenbud 
(1949, Document ID 1284), Leiben and Metzner (1959, Document ID 1343), 
and Maier et al. (2008, Document ID 0598) studies, documents cases of 
CBD among individuals exposed to airborne beryllium at concentrations 
below the new PEL. OSHA included a review of these studies in the NPRM 
as a secondary source of information on risk of CBD from low-level 
beryllium exposure. However, the available studies of CA-CBD have 
important limitations. These case studies do not provide information on 
how frequently individuals exposed to very low airborne levels develop 
CBD. In addition, the reconstructed exposure estimates for CA-CBD cases 
are less reliable than the exposure estimates for working populations 
reviewed in the previous sections. The literature on CA-CBD therefore 
was not used by OSHA as a basis for its quantitative risk assessment 
for CBD, and the Agency did not receive any comments or testimony on 
this literature. Nevertheless, these case reports and the broader CA-
CBD literature indicate that individuals exposed to airborne beryllium 
below the final TWA PEL can develop CBD (e.g., Leiben and Metzner, 
1959; Maier et al., 2008).

B. OSHA's Prevalence Analysis for Sensitization and CBD

    OSHA evaluated exposure and health outcome data on a population of 
workers employed at the Cullman machining facility as one part of the 
Agency's Preliminary Risk Analysis presented in the NPRM. A summary of 
OSHA's preliminary analyses of these data, a discussion of comments 
received on the analyses and OSHA's responses to these comments, as 
well as a summary OSHA's final quantitative analyses, are presented in 
the remainder of this section. A more detailed discussion of the data, 
background information on the facility, and OSHA's analyses appears in 
the background document OSHA has placed in the record (Risk Analysis of 
the NJH Data Set from the Beryllium Machining Facility in Cullman, 
Alabama--CBD and Sensitization, OSHA, 2016).
    NJH researchers, with consent and information provided by the 
Cullman facility, compiled a dataset containing employee work 
histories, medical diagnoses, and air sampling results and provided it 
to OSHA for analysis. OSHA's contractors from Eastern Research Group 
(ERG) gathered additional information about work operations and 
conditions at the plant, developed exposure estimates for individual 
workers in the dataset, and helped to conduct quantitative analyses of 
the data to inform OSHA's risk assessment (Document ID tbd).
1. Worker Exposure Reconstruction
    The work history database contains job history records for 348 
workers. ERG calculated cumulative and average exposure estimates for 
each worker in the database. Cumulative exposure was calculated as,
[GRAPHIC] [TIFF OMITTED] TR09JA17.003

where e(i) is the exposure level for job (i), and t(i) is the time 
spent in job (i). Cumulative exposure was divided by total exposure 
time to estimate each worker's long-term average exposure. These 
exposures were computed in a time-dependent manner for the statistical 
modeling.\16\ For workers with beryllium sensitization or CBD, exposure 
estimates excluded exposures following diagnosis.
---------------------------------------------------------------------------

    \16\ Each worker's exposure was calculated at each time that 
BeLPT testing was conducted.
---------------------------------------------------------------------------

    Workers who were employed for long time periods in jobs with low-
level exposures tend to have low average and cumulative exposures due 
to the way these measures are constructed, incorporating the worker's 
entire work history. As discussed in the Health Effects chapter, 
higher-level exposures or short-term peak exposures such as those 
encountered in machining jobs may be highly relevant to risk of 
sensitization. However, individuals' beryllium exposure levels and 
sensitization status are not continuously monitored, so it is not known 
exactly when workers became sensitized or what their ``true'' peak 
exposures leading up to sensitization were. Only a rough approximation 
of the upper levels of exposure a worker experienced is possible. ERG 
attempted to represent workers' highest exposures by constructing a 
third type of exposure estimate reflecting the exposure level 
associated with the highest-exposure job (HEJ) and time period 
experienced by each worker. This exposure estimate (HEJ), the 
cumulative exposure estimate, and the average exposure were used in the 
quartile analysis and statistical analyses presented below.
2. Prevalence of Sensitization and CBD
    In the database provided to OSHA, 7 workers were reported as 
sensitized only (that is, sensitized with no known development of CBD). 
Sixteen workers were listed as sensitized and diagnosed with CBD upon 
initial clinical evaluation. Three workers, first shown to be 
sensitized only, were later diagnosed with CBD. Tables VI-3, VI-4, and 
VI-5 below present the prevalence of sensitization and CBD cases across 
several categories of LTW average, cumulative, and HEJ exposure. 
Exposure values were grouped by quartile. For this analysis, OSHA 
excluded 8 workers with no job title listed in the data set (because 
their exposures could not be estimated); 7 workers whose date of hire 
was before 1969 (because this indicates they worked in the company's 
previous plant, for which no exposure measurements were available); and 
14 workers who had zero exposure time in the data set, perhaps 
indicating that they had been hired but had not come to work at 
Cullman. After these exclusions, a total of 319 workers remained. None 
of the excluded workers were identified as having beryllium 
sensitization or CBD.
    Note that all workers with CBD are also sensitized. Thus, the 
columns ``Total Sensitized'' and ``Total %'' refer to all sensitized 
workers in the dataset, including workers with and without a diagnosis 
of CBD.

                            Table VI-3--Prevalence of Sensitization and CBD by LTW Average Exposure Quartile in NJH Data Set
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                            Sensitized                         Total
           LTW average exposure  ([mu]g/m\3\)               Group size         only             CBD         sensitized      Total  (%)       CBD  (%)
--------------------------------------------------------------------------------------------------------------------------------------------------------
0.0-0.080...............................................              91               1               1               2             2.2             1.0
0.081-0.18..............................................              73               2               4               6             8.2             5.5
0.19-0.51...............................................              77               0               6               6             7.8             7.8
0.51-2.15...............................................              78               4               8              12            15.4            10.3
                                                         =================

[[Page 2537]]

                                                         =================
--------------------------------------------------------------------------------------------------------------------------------------------------------


                             Table VI-4--Prevalence of Sensitization and CBD by Cumulative Exposure Quartile in NJH Data Set
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                            Sensitized                         Total
         Cumulative  exposure  ([mu]g/m\3\-yrs)             Group size         only             CBD         sensitized      Total  (%)       CBD  (%)
--------------------------------------------------------------------------------------------------------------------------------------------------------
0.0-0.147...............................................              81               2               2               4             4.9             2.5
0.148-1.467.............................................              79               0               2               2             2.5             2.5
1.468-7.008.............................................              79               3               8              11            13.9             8.0
7.009-61.86.............................................              80               2               7               9            11.3             8.8
                                                         -----------------------------------------------------------------------------------------------
    Total...............................................             319               7              19              26            8.2%            6.0%
--------------------------------------------------------------------------------------------------------------------------------------------------------


                        Table VI-5--Prevalence of Sensitization and CBD by Highest-Exposed Job Exposure Quartile in NJH Data Set
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                            Sensitized                         Total
               HEJ exposure  ([mu]g/m\3\)                   Group size         only             CBD         sensitized      Total  (%)       CBD  (%)
--------------------------------------------------------------------------------------------------------------------------------------------------------
0.0-0.086...............................................              86               1               0               1             1.2             0.0
0.091-0.214.............................................              81               1               6               7             8.6             7.4
0.387-0.691.............................................              76               2               9              11            14.5            11.8
0.954-2.213.............................................              76               3               4               7             9.2             5.3
                                                         -----------------------------------------------------------------------------------------------
    Total...............................................             319               7              19              26             8.2             6.0
--------------------------------------------------------------------------------------------------------------------------------------------------------

    Table VI-3 shows increasing prevalence of total sensitization and 
CBD with increasing LTW average exposure. The lowest prevalence of 
sensitization and CBD was observed among workers with average exposure 
levels less than or equal to 0.08 [mu]g/m\3\, where two sensitized 
workers (2.2 percent), including one case of CBD (1.0 percent), were 
found. The sensitized worker in this category without CBD had worked at 
the facility as an inspector since 1972, one of the lowest-exposed jobs 
at the plant. Because the job was believed to have very low exposures, 
it was not sampled prior to 1998. Thus, estimates of exposures in this 
job are based on data from 1998-2003 only. It is possible that 
exposures earlier in this worker's employment history were somewhat 
higher than reflected in his estimated average exposure. The worker 
diagnosed with CBD in this group had been hired in 1996 in production 
control, and had an estimated average exposure of 0.08 [mu]g/m\3\. This 
worker was diagnosed with CBD in 1997.
    The second quartile of LTW average exposure (0.081-0.18 [mu]g/m\3\) 
shows a marked rise in overall prevalence of beryllium-related health 
effects, with 6 workers sensitized (8.2 percent), of whom 4 (5.5 
percent) were diagnosed with CBD. Among 6 sensitized workers in the 
third quartile (0.19-0.51 [mu]g/m\3\), all were diagnosed with CBD (7.8 
percent). Another increase in prevalence is seen from the third to the 
fourth quartile, with 12 cases of sensitization (15.4 percent), 
including eight (10.3 percent) diagnosed with CBD.
    The quartile analysis of cumulative exposure also shows generally 
increasing prevalence of sensitization and CBD with increasing 
exposure. As shown in Table VI-4, the lowest prevalences of CBD and 
sensitization are in the first two quartiles of cumulative exposure 
(0.0-0.147 [mu]g/m\3\-yrs, 0.148-1.467 [mu]g/m\3\-yrs). The upper bound 
on this cumulative exposure range, 1.467 [mu]g/m\3\-yrs, is the 
cumulative exposure that a worker would have if exposed to beryllium at 
a level of 0.03 [mu]g/m\3\ for a working lifetime of 45 years; 0.15 
[mu]g/m\3\ for ten years; or 0.3 [mu]g/m\3\ for five years. These 
exposure levels are in the range of those OSHA was interested in 
evaluating for purposes of this rulemaking.
    A sharp increase in prevalence of sensitization and CBD occurs in 
the third quartile (1.468-7.008 [mu]g/m\3\-yrs), with roughly similar 
levels of both in the highest group (7.009-61.86 [mu]g/m\3\-yrs). 
Cumulative exposures in the third quartile would be experienced by a 
worker exposed for 45 years to levels between 0.03 and 0.16 [mu]g/m\3\, 
for 10 years to levels between 0.15 and 0.7 [mu]g/m\3\, or for 5 years 
to levels between 0.3 and 1.4 [mu]g/m\3\.
    When workers' exposures from their highest-exposed job are 
considered, the exposure-response pattern is similar to that for LTW 
average exposure in the lower quartiles. In Table VI-5, the lowest 
prevalence is observed in the first quartile (0.0-0.086 [mu]g/m\3\), 
with sharply rising prevalence from first to second and second to third 
exposure quartiles. The prevalence of sensitization and CBD in the top 
quartile (0.954-2.213 [mu]g/m\3\) decreases relative to the third, with 
levels similar to the overall prevalence in the dataset. Many workers 
in the highest exposure quartiles are long-time employees, who were 
hired during the early years of the shop when exposures were highest. 
One possible explanation for the drop in prevalence in the highest 
exposure quartiles is that other highly-exposed workers from early 
periods may have developed CBD and left the plant before sensitization 
testing began in 1995 (i.e., the healthy worker survivor effect).
    The results of this prevalence analysis support OSHA's conclusion 
that maintaining exposure levels below the new TWA PEL will help to 
reduce risk

[[Page 2538]]

of beryllium sensitization and CBD, and that maintaining exposure 
levels below the action level can further reduce risk of beryllium 
sensitization and CBD. However, risk of both sensitization and CBD 
remains even among the workers with the lowest airborne exposures in 
this data set.

C. OSHA's Statistical Modeling for Sensitization and CBD

1. OSHA's Preliminary Analysis of the NJH Data Set
    In the course of OSHA's development of the proposed rule, OSHA's 
contractor (ERG) also developed a statistical analysis using the NJH 
data set and a discrete time proportional hazards analysis (DTPHA). 
This preliminary analysis predicted significant risks of both 
sensitization (96-394 cases per 1,000, or 9.6-39.4 percent) and CBD 
(44-313 cases per 1,000, or 4.4-31.3 percent) at the preceding TWA PEL 
of 2 [mu]g/m\3\ for an exposure duration of 45 years (90 [mu]g/m\3\-
yr). The predicted risks of 8.2-39.9 cases of sensitization per 1,000 
(0.8-3.9 percent) and 3.6 to 30.0 cases of CBD per 1,000 (0.4-3 
percent) were approximately 10-fold less, but still significant, for a 
45-year exposure at the new TWA PEL of 0.2 [mu]g/m\3\ (9 [mu]g/m\3\-
yr).
    In interpreting the risk estimates, OSHA took into consideration 
limitations in the preliminary statistical analysis, primarily study 
size-related constraints. Consequently, as discussed in the NPRM, OSHA 
did not rely on the preliminary statistical analysis for its 
significance of risk determination or to develop its benefits analysis. 
The Agency relied primarily on the previously-presented analysis of the 
epidemiological literature and the prevalence analysis of the Cullman 
data for its preliminary significance of risk determination, and on the 
prevalence analysis for its preliminary estimate of benefits. Although 
OSHA did not rely on the results of the preliminary statistical 
analysis for its findings, the Agency presented the DTPHA in order to 
inform the public of its results, explain its limitations, and solicit 
public comment on the Agency's approach.
    Dr. Kenny Crump and Ms. Deborah Proctor submitted comments on 
OSHA's preliminary risk assessment (Document ID 1660). Crump and 
Proctor agreed with OSHA's review of the epidemiological literature and 
the prevalence analysis presented previously in this section. They 
stated, ``we agree with OSHA's conclusion that there is a significant 
risk (>1/1000 risk of CBD) at the [then] current PEL, and that risk is 
reduced at the [then] proposed PEL (0.2 [mu]g/m\3\) in combination with 
stringent measures (ancillary provisions) to reduce worker's exposures. 
This finding is evident based on the available literature, as described 
by OSHA, and the prevalence data presented for the Cullman facility'' 
(Document ID 1660, p. 2). They also presented a detailed evaluation of 
the statistical analysis of the Cullman data presented in the NPRM, 
including a critique of OSHA's modeling approach and interpretation and 
suggestions for alternate analyses. However, they emphasized that the 
new beryllium rule should not be altered or delayed due to their 
comments regarding the statistical model (Document ID 1660, p. 2).
    After considering comments on this preliminary model, OSHA 
instructed its contractor to change the statistical analysis to address 
technical concerns and to incorporate suggestions from Crump and 
Proctor, as well as NIOSH (Document ID 1660; 1725). OSHA reviews and 
addresses these comments on the preliminary statistical analysis and 
provides a presentation of the final statistical analysis in the 
background document (Risk Analysis of the NJH Data Set from the 
Beryllium Machining Facility in Cullman, Alabama--CBD and 
Sensitization, OSHA, 2016). The results of the final statistical 
analysis are summarized here.
2. OSHA's Final Statistical Analysis of the NJH Data Set
    As noted above, Dr. Roslyn Stone of University of Pittsburgh School 
of Public Health reanalyzed for OSHA the Cullman data set in order to 
address concerns raised by Crump and Proctor (Document ID 1660). The 
reanalysis uses a Cox proportional hazards model instead of the DTPHA. 
The Cox model, a regression method for survival data, provides an 
estimate of the hazard ratio (HR) and its confidence interval.\17\ Like 
the DTPHA, the Cox model can accommodate time-dependent data; however, 
the Cox model has an advantage over the DTPHA for OSHA's purpose of 
estimating risk to beryllium-exposed workers in that it does not 
estimate different ``baseline'' rates of sensitization and CBD for 
different years. Time-specific risk sets were constructed to 
accommodate the time-dependent exposures. P-values were based on 
likelihood ratio tests (LRTs), with p-values <0.05 considered to be 
statistically significant.
---------------------------------------------------------------------------

    \17\ The hazard ratio is an estimate of the ratio of the hazard 
rate in the exposed group to that of the control group.
---------------------------------------------------------------------------

    As in the preliminary statistical analysis, Dr. Stone used 
fractional polynomials \18\ to check for possible nonlinearities in the 
exposure-response models, and checked the effects of age and smoking 
habits using data on birth year and smoking (current, former, never) 
provided in the Cullman data set. Data on workers' estimated exposures 
and health outcomes through 2005 were included in the reanalysis.\19\ 
The 1995 risk set (e.g., analysis of cases of sensitization and CBD 
identified in 1995) was excluded from all models in the reanalysis so 
as not to analyze long-standing (prevalent) cases of sensitization and 
CBD together with newly arising (incident) cases of sensitization and 
CBD. Finally, Dr. Stone used the testing protocols provided in the 
literature on the Cullman study population to determine the years in 
which each employee was scheduled to be tested, and excluded employees 
from the analysis for years in which they were not scheduled to be 
tested (Newman et al., 2001, Document ID 1354).
---------------------------------------------------------------------------

    \18\ Fractional polynomials are linear combinations of 
polynomials that provide flexible shapes of exposure response.
    \19\ Data from 2003 to 2005 were excluded in some previous 
analyses due to uncertainty in some employees' work histories. OSHA 
accepted the.Crump and Proctor recommendation that these data should 
be included, so as to treat uncertain exposure estimates 
consistently in the reanalysis (data prior to the start of sampling 
in 1980 were included in the previous analysis and most models in 
the reanalysis).
---------------------------------------------------------------------------

    In the reanalysis of the NJH data set, the HR for sensitization 
increased significantly with increasing LTW average exposure (HR = 
2.92, 95% CI = 1.51-5.66, p = 0.001; note that HRs are rounded to the 
second decimal place). Cumulative exposure was also a statistically 
significant predictor for beryllium sensitization, although it was not 
as strongly related to sensitization as LTW average exposure (HR = 
1.04, 95% CI 1.00-1.07, p = 0.03). The HR for CBD increased 
significantly with increasing cumulative exposure (HR = 1.04, 95% CI = 
1.01-1.08, p = 0.02). The HR for CBD increased somewhat with increasing 
LTW average exposure, but this increase was not significant at the 0.05 
level (HR = 2.25, 95% CI = 0.94-5.35, p = 0.07).
    None of the analyses Dr. Stone performed to check for 
nonlinearities in exposure-response or the effects of smoking or age 
substantially impacted the results of the analyses for beryllium 
sensitization or CBD. The sensitivity analysis recommended by Crump and 
Proctor, excluding workers hired prior to 1980 (see Document ID 1660, 
p. 11), did not substantially impact the results

[[Page 2539]]

of the analyses for beryllium sensitization, but did affect the results 
for CBD. The HR for CBD using cumulative exposure dropped to slightly 
below 1 and was not statistically significant following exclusion of 
workers hired before 1980 (HR 0.96, 95% CI 0.81-1.13, p = 0.6). OSHA 
discusses this result further in the background document, concluding 
that the reduced follow-up time for CBD in the subcohort hired in 1980 
or later, in combination with genetic risk factors that may attenuate 
both exposure-response and disease latency in some people, may explain 
the lack of significant exposure-response observed in this sensitivity 
analysis.
    Because LTW average exposure was most strongly associated with 
beryllium sensitization, OSHA used the final model for LTW average 
exposure to estimate risk of sensitization at the preceding TWA PEL, 
the final TWA PEL, and several alternate TWA PELs it considered. 
Similarly, because cumulative exposure was most strongly associated 
with CBD, OSHA used the final model for cumulative exposure to estimate 
risk of CBD at the preceding, final, and alternate TWA PELs. In 
calculating these risks, OSHA used a small, fixed estimate of 
``baseline'' risk (i.e., risk of sensitization or CBD among persons 
with no known exposure to beryllium), as suggested by Crump and Proctor 
(Document ID 1660) and NIOSH (Document ID 1725). Table VI-6 presents 
the risk estimates for sensitization and the corresponding 95 percent 
confidence intervals using two different fixed ``background'' rates of 
sensitization, 1 percent and 0.5 percent. Table VI-7 presents the risk 
estimates for sensitization and the corresponding 95 percent confidence 
intervals using a fixed ``background'' rate of CBD of 0.5 percent. The 
corresponding interval is based on the uncertainty in the exposure 
coefficient (i.e., the predicted values based on the 95 percent 
confidence limits for the exposure coefficient). Since the Cox 
proportional hazards model does not estimate a baseline risk, this 95 
percent interval fully represents statistical uncertainty in the risk 
estimates.

Table VI-6--Predicted Cases of Sensitization per 1,000 Workers Exposed at the Preceding and Alternate PELs Based
    on Cox Proportional Hazards Model, LTW Average Exposure Metric, With Corresponding Interval Based on the
                                    Uncertainty in the Exposure Coefficient.
                                      [1 Percent and 0.5 percent baselines]
----------------------------------------------------------------------------------------------------------------
                                                     Estimated                       Estimated
          Exposure level  ([mu]g/m\3\)              cases/1000,       95% CI        cases/1000,       95% CI
                                                   .5% baseline                     1% baseline
----------------------------------------------------------------------------------------------------------------
2.0.............................................           42.75     11.4-160.34           85.49    22.79-320.69
1.0.............................................           14.62      7.55-28.31           29.24     15.10-56.63
0.5.............................................            8.55      6.14-11.90           17.10     12.29-23.80
0.2.............................................            6.20       5.43-7.07           12.39     10.86-14.15
0.1.............................................            5.57       5.21-5.95           11.13     10.42-11.89
----------------------------------------------------------------------------------------------------------------


 Table VI-7--Predicted Cases of CBD per 1,000 Workers Exposed at the Preceding and Alternative PELs Based on Cox Proportional Hazards Model, Cumulative
                            Exposure Metric, with Corresponding Interval Based on the Uncertainty in the Exposure Coefficient
                                                                 [0.5 percent baseline]
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                           Exposure Duration
                                              ----------------------------------------------------------------------------------------------------------
                                                        5 years                    10 years                   20 years                  45 years
         Exposure level ([mu]g/m\3\)          ----------------------------------------------------------------------------------------------------------
                                                Cumulative    Estimated                  Estimated                  Estimated                 Estimated
                                               ([mu]g/m\3\-  cases/1000   [mu]g/m\3\-   cases/1000   [mu]g/m\3\-   cases/1000   [mu]g/m\3\-   cases/1000
                                                   yrs)        95% CI         yrs         95% CI         yrs         95% CI         yrs         95% CI
--------------------------------------------------------------------------------------------------------------------------------------------------------
2.0..........................................         10.0         7.55          20.0        11.39          40.0        25.97          90.0       203.60
                                                             5.34-10.67                 5.70-22.78                 6.5-103.76                9.02-4595.6
                                                                                                                                                       7
1.0..........................................          5.0         6.14          10.0         7.55          20.0        11.39          45.0        31.91
                                                              5.17-7.30                 5.34-10.67                 5.70-22.78                6.72-151.59
0.5..........................................          2.5         5.54           5.0         6.14          10.0         7.55          22.5        12.63
                                                              5.08-6.04                  5.17-7.30                 5.34-10.67                 5.79-27.53
0.2..........................................          1.0         5.21           2.0         5.43           4.0          5.9           9.0         7.24
                                                              5.03-5.39                  5.07-5.82                  5.13-6.77                  5.30-9.89
0.1..........................................          0.5          5.1           1.0         5.21           2.0         5.43           4.5         6.02
                                                              5.02-5.19                  5.03-5.39                  5.07-5.82                  5.15-7.03
--------------------------------------------------------------------------------------------------------------------------------------------------------

    The Cox proportional hazards model, used with the fixed 
``baseline'' rates of 0.5 percent and 1 percent, predicted risks of 
sensitization totaling 43 and 86 cases per 1,000 workers, respectively, 
or 4.3 and 8.6 percent, at the preceding PEL of 2 [mu]g/m\3\. The 
predicted risk of CBD is 203 cases per 1,000 workers, or 20.3 percent, 
at the preceding PEL of 2 [mu]g/m\3\, assuming 45 years of exposure 
(cumulative exposure of 90 [mu]g/m\3\-yr).\20\ The predicted risks of 
sensitization at the new PEL of 0.2 [mu]g/m\3\ are substantially lower, 
at 6 and 12 cases per 1,000 for the baselines of 0.5% and 1.0%, 
respectively. The predicted risk of CBD is also much lower at the new 
TWA PEL of 0.2 [mu]g/m\3\ (9 [mu]g/m\3\-year), at 7 cases per 1,000 
assuming 45 years of exposure.
---------------------------------------------------------------------------

    \20\ The predictions for each model represent the estimated 
probability of being sensitized or having CBD at one point in time, 
rather than the cumulative risk over a lifetime of exposure, which 
would be higher. Lifetime risks are presented in the FEA, Benefits 
Analysis.
---------------------------------------------------------------------------

    Due to limitations in the Cox analysis, including the small size of 
the dataset, relatively limited exposure data from the plant's early 
years, study size-related constraints on the statistical analysis of 
the dataset, limited follow-

[[Page 2540]]

up time on many workers, and sensitivity of the results to the 
``baseline'' values assumed for sensitization and CBD, OSHA must 
interpret the model-based risk estimates presented in Tables VI-6 and 
VI-7 with caution. Uncertainties in these risk estimates are discussed 
in the background document (Risk Analysis of the NJH Data Set from the 
Beryllium Machining Facility in Cullman, Alabama--CBD and 
Sensitization, OSHA, 2016). However, these uncertainties do not alter 
OSHA's conclusions with regard to the significance of risk at the 
preceding PEL and alternate PELs that OSHA considered, which are based 
primarily on the Agency's review of the literature and the prevalence 
analysis presented earlier in this section (also see Section VII, 
Significance of Risk).

D. Lung Cancer

    As discussed more fully in the Health Effects section of the 
preamble, OSHA has determined beryllium to be a carcinogen based on an 
extensive review of the scientific literature regarding beryllium and 
cancer (see Section V.E). This review included an evaluation of the 
human epidemiological, animal cancer, and mechanistic studies described 
in the Health Effects section of this preamble. OSHA's conclusion is 
supported by the findings of public health organizations such as the 
International Agency for Research on Cancer (IARC), which has 
determined beryllium and its compounds to be carcinogenic to humans 
(Group 1 category) (IARC 2012, Document ID 0650); the National 
Toxicology Program (NTP), which classifies beryllium and its compounds 
as known carcinogens (NTP 2014, Document ID 0389); and the 
Environmental Protection Agency (EPA), which considers beryllium to be 
a probable human carcinogen (EPA 1998, Document ID 0661).
    The Sanderson et al. study previously discussed in Health Effects 
evaluated the association between beryllium exposure and lung cancer 
mortality based on data from a beryllium processing plant in Reading, 
PA (Sanderson et al., 2001, Document ID 1419). Specifically, this case-
control study evaluated lung cancer mortality in a cohort of 3,569 male 
workers employed at the plant from 1940 to 1969 and followed through 
1992. For each lung cancer victim, 5 age- and race-matched controls 
were selected by incidence density sampling, for a total of 142 
identified lung cancer cases and 710 controls.
    A conditional logistic regression analysis showed an increased risk 
of death from lung cancer in workers with higher exposures when dose 
estimates were lagged by 10 and 20 years (Sanderson et al., 2001, 
Document ID 1419). This lag was incorporated in order to account for 
exposures that did not contribute to lung cancer because they occurred 
after the induction of cancer. The authors noted that there was 
considerable uncertainty in the estimation of exposure levels for the 
1940s and 1950s and in the shape of the dose-response curve for lung 
cancer. In a 2008 study, Schubauer-Berigan et al. reanalyzed the data, 
adjusting for potential confounders of hire age and birth year 
(Schubauer-Berigan et al., 2008, Document ID 1350). The study reported 
a significant increasing trend (p < 0.05) in lung cancer mortality when 
average (log transformed) exposure was lagged by 10 years. However, it 
did not find a significant trend when cumulative (log transformed) 
exposure was lagged by 0, 10, or 20 years (Schubauer-Berigan et al., 
2008, Table 3).
    In formulating the final rule, OSHA was particularly interested in 
lung cancer risk estimates from a 45-year (i.e., working lifetime) 
exposure to beryllium levels between 0.1 [mu]g/m\3\ and 2 [mu]g/m\3\. 
The majority of case and control workers in the Sanderson et al. (2001, 
Document ID 1419) case-control analysis were first hired during the 
1940s and 50s when exposures were extremely high (estimated daily 
weighted averages (DWAs) >20 [mu]g/m\3\ for most jobs) in comparison to 
the exposure range of interest to OSHA (Sanderson et al. 2001, Document 
ID 1419, Table II). About two-thirds of cases and half of controls 
worked at the plant for less than a year. Thus, a risk assessment based 
on this exposure-response analysis would have needed to extrapolate 
from very high to low exposures, based on a working population with 
extremely short tenure. While OSHA risk assessments must often make 
extrapolations to estimate risk within the range of exposures of 
interest, the Agency acknowledges that these issues of short tenure and 
high exposures would have created substantial uncertainty in a risk 
assessment based on this particular study population.
    In addition, the relatively high exposures of the least-exposed 
workers in the study population might have created methodological 
issues for the lung cancer case-control study design. Mortality risk is 
expressed as an odds ratio that compares higher exposure quartiles to 
the lowest quartile. It is preferable that excess risks attributable to 
occupational beryllium be determined relative to an unexposed or 
minimally exposed reference population. However, in this study 
population, workers in the lowest quartile were exposed well above the 
preceding OSHA TWA PEL (average exposure <11.2 [mu]g/m\3\) and may have 
had a significant lung cancer risk. This issue would have introduced 
further uncertainty into the lung cancer risks.
    In 2011, Schubauer-Berigan et al. published a quantitative risk 
assessment that addressed several of OSHA's concerns regarding the 
Sanderson et al. analysis. This new risk assessment was based on an 
update of the Reading cohort analyzed by Sanderson et al., as well as 
workers from two smaller plants (Schubauer-Berigan et al. 2011, 
Document ID 1265). This study population was exposed, on average, to 
lower levels of beryllium and had fewer short-term workers than the 
previous cohort analyzed by Sanderson et al. (2001, Document ID 1250) 
and Schubauer-Berigan et al. (2008, Document ID 1350). Schubauer-
Berigan et al. (2011) followed the study population through 2005 where 
possible, increasing the length of follow-up time overall by an 
additional 17 years of observation compared to the previous analyses. 
For these reasons, OSHA considered the Schubauer-Berigan (2011) 
analysis more appropriate than Sanderson et al. (2001) and Schubauer-
Berigan (2008) for its risk assessment. OSHA therefore based its 
preliminary QRA for lung cancer on the results from Schubauer-Berigan 
et al. (2011).
    OSHA received several comments about its choice of Schubauer-
Berigan et al. (2011) as the basis for its preliminary QRA for lung 
cancer. NIOSH commented that OSHA's choice of Schubauer-Berigan et al. 
for its preliminary analysis was appropriate because ``[n]o other study 
is available that presents quantitative dose-response information for 
lung cancer, across a range of beryllium processing facilities'' 
(Document ID 1725, p. 7). In supporting OSHA's use of this study, NIOSH 
emphasized in particular the study's inclusion of relatively low-
exposed workers from two facilities that began operations in the 1950s 
(after employer awareness of acute beryllium disease (ABD) and CBD led 
to efforts to minimize worker exposures to beryllium), as well as the 
presence of both soluble and poorly soluble forms of beryllium in the 
facilities studied (Document ID 1725, p. 7).
    According to Dr. Paolo Boffetta, who submitted comments on this 
study,

[[Page 2541]]

Schubauer-Berigan et al. (2011) is not the most relevant study 
available to OSHA for its lung cancer risk analysis. Dr. Boffetta 
argued that the most informative study of lung cancer risk in the 
beryllium industry after 1965 is one that he developed in 2015 
(Boffetta et al., 2015), which he described as a pooled analysis of 11 
plants and 4 distribution centers (Document ID 1659, p. 1). However, 
Dr. Boffetta did not provide OSHA with the manuscript of his study, 
which he stated was under review for publication. Instead, he reported 
some results of the study and directed OSHA to an abstract of the study 
in the 2015 Annual Conference of the Society for Epidemiologic Research 
(Document ID 1659; Document ID 1661, Attachment 1).
    Because only an abstract of Boffetta et al.'s 2015 study was 
available to OSHA (see Document ID 1661, Attachment 1), OSHA could not 
properly evaluate it or use it as the basis of a quantitative risk 
assessment for lung cancer. Nevertheless, OSHA has addressed comments 
Dr. Boffetta submitted based on his analyses in the relevant sections 
of the final QRA for lung cancer below. Because it was not possible to 
use this study for its lung cancer QRA and OSHA is not aware of other 
studies appropriate for use in its lung cancer QRA (nor did commenters 
besides Dr. Boffetta suggest that OSHA use any additional studies for 
this purpose), OSHA finds that the body of available evidence has not 
changed since the Agency conducted its preliminary QRA based on 
Schubauer-Berigan et al. (2011, Document ID 1265). Therefore, OSHA 
concludes that Schubauer-Berigan et al. (2011) is the most appropriate 
study for its final lung cancer QRA, presented below.
1. QRA for Lung Cancer Based on Schubauer-Berigan et al. (2011)
    The cohort studied by Schubauer-Berigan et al. (2011, Document ID 
1265) included 5,436 male workers who had worked for at least 2 days at 
the Reading facility or at the beryllium processing plants in Hazleton, 
PA and Elmore, OH prior to 1970. The authors developed job-exposure 
matrices (JEMs) for the three plants based on extensive historical 
exposure data, primarily short-term general area and personal breathing 
zone samples, collected on a quarterly basis from a wide variety of 
operations. These samples were used to create DWA estimates of workers' 
full-shift exposures, using records of the nature and duration of tasks 
performed by workers during a shift. Details on the JEM and DWA 
construction can be found in Sanderson et al. (2001, Document ID 1250), 
Chen et al. (2001, Document ID 1593), and Couch et al. (2010, Document 
ID 0880).
    Workers' cumulative exposures ([mu]g/m\3\-days) were estimated by 
summing daily average exposures (assuming five workdays per week) 
(Schubauer-Berigan et al., 2011). To estimate mean exposure ([mu]g/
m\3\), cumulative exposure was divided by exposure time (in days), 
accounting where appropriate for lag time. Maximum exposure ([mu]g/
m\3\) was calculated as the highest annual DWA on record for a worker 
from the first exposure until the study cutoff date of December 31, 
2005, again accounting where appropriate for lag time. Exposure 
estimates were lagged by 5, 10, 15, and 20 years in order to account 
for exposures that may not have contributed to lung cancer because of 
the long latency required for manifestation of the disease. The authors 
also fit models with no lag time.
    As shown in Table VI-8 below, estimated exposure levels for workers 
from the Hazleton and Elmore plants were on average far lower than 
those for workers from the Reading plant (Schubauer-Berigan et al., 
2011). Whereas the median worker from Hazleton had a mean exposure 
across his tenure of less than 1.5 [mu]g/m\3\ and the median worker 
from Elmore had a mean exposure of less than 1 [mu]g/m\3\, the median 
worker from Reading had a mean exposure of 25 [mu]g/m\3\. The Elmore 
and Hazleton worker populations also had fewer short-term workers than 
the Reading population. This was particularly evident at Hazleton, 
where the median value for cumulative exposure among cases was higher 
than at Reading despite the much lower mean and maximum exposure 
levels.

                                       Table VI-8--Cohort Description and Distribution of Cases by Exposure Level
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                            All plants     Reading plant  Hazleton plant   Elmore plant
--------------------------------------------------------------------------------------------------------------------------------------------------------
Number of cases................................  .......................................             293             218              30              45
Number of non-cases............................  .......................................            5143            3337             583            1223
Median value for mean exposure.................  No lag.................................           15.42              25           1.443           0.885
([mu]g/m\3\) among cases.......................  10-year lag............................           15.15              25           1.443           0.972
Median value for cumulative exposure...........  No lag.................................            2843            2895            3968            1654
([mu]g/m\3\-days) among cases..................  10-year lag............................            2583            2832            3648            1449
Median value for maximum exposure..............  No lag.................................              25            25.1            3.15            2.17
([mu]g/m\3\) among cases.......................  10-year lag............................              25              25            3.15            2.17
Number of cases with potential asbestos          .......................................       100 (34%)        68 (31%)        16 (53%)        16 (36%)
 exposure.
Number of cases who were professional workers..  .......................................         26 (9%)        21 (10%)         3 (10%)          2 (4%)
--------------------------------------------------------------------------------------------------------------------------------------------------------
 Table adapted from Schubauer-Berigan et al., 2011, Document ID 1265, Table 1.

    Schubauer-Berigan et al. analyzed the data set using a variety of 
exposure-response modeling approaches, including categorical analyses, 
continuous-variable piecewise log-linear models, and power models 
(2011, Document ID 1265). All models adjusted for birth cohort and 
plant. Because exposure values were log-transformed for the power model 
analyses, the authors added small values to exposures of 0 in lagged 
analyses (0.05 [mu]g/m\3\ for mean and maximum exposure, 0.05 [mu]g/
m\3\-days for cumulative exposure). The authors used restricted cubic 
spline models to assess the shape of the exposure-response curves and 
suggest appropriate parametric model forms. The Akaike Information 
Criterion (AIC) value was used to evaluate the fit of different model 
forms and lag times.
    Because smoking information was available for only about 25 percent 
of the cohort (those employed in 1968), smoking could not be controlled 
for directly in the models. Schubauer-Berigan et al. reported that 
within the subset with smoking information, there was little difference 
in smoking by cumulative or maximum exposure category, suggesting that 
smoking was unlikely to act as a confounder in the cohort. In addition 
to models based on the full cohort, Schubauer-Berigan et al. also 
prepared risk estimates based on models excluding professional workers 
(ten percent of cases) and workers believed to have asbestos exposure 
(one-third of cases). These models were

[[Page 2542]]

intended to mitigate the potential impact of smoking and asbestos as 
confounders.\21\
---------------------------------------------------------------------------

    \21\ The authors appeared to reason that if professional workers 
had both lower beryllium exposures and lower smoking rates than 
production workers, smoking could be a confounder in the cohort 
comprising both production and professional workers. However, 
smoking was unlikely to be correlated with beryllium exposure among 
production workers, and would therefore probably not act as a 
confounder in a cohort excluding professional workers.
---------------------------------------------------------------------------

    The authors found that lung cancer risk was strongly and 
significantly related to mean, cumulative, and maximum measures of 
workers' exposure (all models reported in Schubauer-Berigan et al., 
2011, Document ID 1265). They selected the best-fitting categorical, 
power, and monotonic piecewise log-linear (PWL) models with a 10-year 
lag to generate HRs for male workers with a mean exposure of 0.5 [mu]g/
m\3\ (the current NIOSH Recommended Exposure Limit for beryllium).\22\ 
In addition, they estimated the daily weighted average exposure that 
would be associated with an excess lung cancer mortality risk of one in 
one thousand (.005 [mu]g/m\3\ to .07 [mu]g/m\3\ depending on model 
choice). To estimate excess risk of cancer, they multiplied these 
hazard ratios by the 2004 to 2006 background lifetime lung cancer rate 
among U.S. males who had survived, cancer-free, to age 30. At OSHA's 
request, Dr. Schubauer-Berigan also estimated excess lung cancer risks 
for workers with mean exposures at the preceding PEL of 2 [mu]g/m\3\ 
and at each of the other alternate PELs that were under consideration: 
1 [mu]g/m\3\, 0.2 [mu]g/m\3\, and 0.1 [mu]g/m\3\ (Document ID 0521). 
The resulting risk estimates are presented in Table VI-9 below.
---------------------------------------------------------------------------

    \22\ Here, ``monotonic PWL model'' means a model producing a 
monotonic exposure-response curve in the 0 to 2 [mu]g/m\3\ range.

   Table VI-9--Excess Lung Cancer Risk per 1,000 [95% Confidence Interval] For Male Workers at Alternate PELs
                                    [Based on Schubauer-Berigan et al., 2011]
----------------------------------------------------------------------------------------------------------------
                                                                   Mean exposure
     Exposure-response model     -------------------------------------------------------------------------------
                                  0.1 [mu]g/m\3\  0.2 [mu]g/m\3\  0.5 [mu]g/m\3\   1 [mu]g/m\3\    2 [mu]g/m\3\
----------------------------------------------------------------------------------------------------------------
Best monotonic PWL--all workers.    7.3 [2.0-13]     15 [3.3-29]       45 [9-98]    120 [20-340]    140 [29-370]
Best monotonic PWL--excluding        3.1 [<0-11]     6.4 [<0-23]      17 [<0-74]     39 [39-230]     61 [<0-280]
 professional and asbestos
 workers........................
Best categorical--all workers...     4.4 [1.3-8]      9 [2.7-17]       25 [6-48]     59 [13-130]    170 [29-530]
Best categorical--excluding         1.4 [<0-6.0]     2.7 [<0-12]     7.1 [<0-35]      15 [<0-87]     33 [<0-290]
 professional and asbestos
 workers........................
Power model--all workers........       12 [6-19]     19 [9.3-29]      30 [15-48]      40 [19-66]      52 [23-88]
Power model--excluding               19 [8.6-31]      30 [13-50]      49 [21-87]     68 [27-130]     90 [34-180]
 professional and asbestos
 workers........................
----------------------------------------------------------------------------------------------------------------
Source: Schubauer-Berigan, Document ID 0521, pp. 6-10.

    Schubauer-Berigan et al. (2011, Document ID 1265) discuss several 
strengths, weaknesses, and uncertainties of their analysis. Strengths 
include a long (>30 years) follow-up time and the extensive exposure 
and work history data available for the development of exposure 
estimates for workers in the cohort. Weaknesses and uncertainties of 
the study include the limited information available on workers' smoking 
habits: As mentioned above, smoking information was available only for 
workers employed in 1968, about 25 percent of the cohort. Another 
potential weakness was that the JEMs used did not account for possible 
respirator use among workers in the cohort. The authors note that 
workers' exposures may therefore have been overestimated, and that 
overestimation may have been especially severe for workers with high 
estimated exposures. They suggest that overestimation of exposures for 
workers in highly exposed positions may have caused attenuation of the 
exposure-response curve in some models at higher exposures. This could 
cause the relationship between exposure level and lung cancer risk to 
appear weaker than it would in the absence of this source of error in 
the estimation of workers' beryllium exposures.
    Schubauer-Berigan et al. (2011) did not discuss the reasons for 
basing risk estimates on mean exposure rather than cumulative exposure, 
which is more commonly used for lung cancer risk analysis. OSHA 
believes the decision may involve the non-monotonic relationship the 
authors observed between cancer risk and cumulative exposure level. As 
discussed previously, workers from the Reading plant frequently had 
very short tenures and high exposures, yielding lower cumulative 
exposures compared to cohort workers from other plants with longer 
employment. Despite the low estimated cumulative exposures among the 
short-term Reading workers, they may have been at high risk of lung 
cancer due to the tendency of beryllium to persist in the lung for long 
periods. This could lead to the appearance of a non-monotonic 
relationship between cumulative exposure and lung cancer risk. It is 
possible that a dose-rate effect may exist for beryllium, such that the 
risk from a cumulative exposure gained by long-term, low-level exposure 
is not equivalent to the risk from a cumulative exposure gained by very 
short-term, high-level exposure. In this case, mean exposure level may 
better correlate with the risk of lung cancer than cumulative exposure 
level. For these reasons, OSHA considers the authors' use of the mean 
exposure metric to be appropriate and scientifically defensible for 
this particular dataset.
    Dr. Boffetta's comment, mentioned above, addressed the relevance of 
the Schubauer-Berigan et al. (2011) cohort to determining whether 
workers currently employed in the beryllium industry experience an 
increased lung cancer hazard (Document ID 1659, pp. 1-2). His comment 
also analyzed the methods and findings in Schubauer-Berigan et al. 
(2011) (Document ID 1659, pp. 2-3). Notably, he stated that his own 
study, Boffetta et al. (2015) provides better information for risk 
assessment than does Schubauer-Berigan et al. (2011) (Document ID 1659, 
pp. 1-2). As discussed above, OSHA cannot rely on a study for its QRA 
(Boffetta et al., 2015) that has not been submitted to the record and 
is not otherwise available to OSHA. However, in the discussion below, 
OSHA addresses Dr. Boffetta's study to the extent it can given the

[[Page 2543]]

limited information available to the Agency. OSHA also responds to Dr. 
Boffetta's comments on Schubauer-Berigan et al. (2011, Document ID 
1265) and Boffetta et al. (2014, Document ID 0403), which Dr. Boffetta 
asserts provides evidence that poorly soluble beryllium compounds are 
not associated with lung cancer (Document ID 1659, p. 1).
    Boffetta argued that the most informative study in the modern 
(post-1965) beryllium industry is Boffetta et al. (2015, Document ID 
1661, Attachment 1). According to Boffetta's comment, the study found 
an SMR of 1.02 (95% CI 0.94-1.10, based on 672 deaths) for the overall 
cohort and an SMR for lung cancer among workers exposed only to 
insoluble beryllium of 0.93 (95% CI 0.79-1.08, based on 157 deaths). 
Boffetta noted that his study was based on 23 percent more overall 
deaths than the Schubauer-Berigan et al. cohort (Document ID 1659, pp. 
1-2). As stated earlier, this study is unpublished and was not provided 
to OSHA. The abstract provided by Materion (Document ID 1661, 
Attachment 1) included very little information beyond the SMRs 
reported; for example, it provided no information about the 
manufacturing plants and distribution centers included, workers' 
beryllium exposure levels, how the cohorts were defined, or how the 
authors determined the solubility of the beryllium to which workers 
were exposed. OSHA is therefore unable to evaluate the quality or 
conclusions of this study.
    Dr. Boffetta also commented that there is a lack of evidence of 
increased lung cancer risk among workers exposed only to poorly soluble 
beryllium compounds (Document ID 1659, p. 1). To support this 
statement, he cited a study he published in 2014 of workers at four 
``insoluble facilities'' (Boffetta et al., 2014) and Schubauer-Berigan 
et al.'s 2011 study, arguing that increased cancer risk in beryllium-
exposed workers in those two studies was only observed in workers 
employed in Reading and Lorain prior to 1955. Workers employed at the 
other plants and workers who were first employed in Reading and Lorain 
after 1955, according to Dr. Boffetta, were exposed primarily to poorly 
soluble forms of beryllium and did not experience an increased risk of 
lung cancer. Dr. Boffetta further stated that his unpublished paper 
(Boffetta et al., 2015) shows a similar result (Document ID 1659, p. 
1).
    OSHA carefully considered Dr. Boffetta's argument regarding the 
status of poorly soluble beryllium compounds, and did not find 
persuasive evidence showing that the solubility of the beryllium to 
which the workers in the studies he cited were exposed accounts for the 
lack of statistically significantly elevated risk in the Boffetta et 
al. (2014) cohort or the Schubauer-Berigan et al. (2011) subcohort. 
While it is true that the SMR for lung cancer was not statistically 
significantly elevated in the Schubauer-Berigan et al. (2011) study 
when workers hired before 1955 in the Reading and Lorain plants were 
excluded from the study population, or in the study of four facilities 
published by Boffetta et al. in 2014, there are various possible 
reasons for these results that Dr. Boffetta did not consider in his 
comment. As discussed below, OSHA finds that the type of beryllium 
compounds to which these workers were exposed is not likely to explain 
Dr. Boffetta's observations.
    As discussed in Section V, Health Effects and in comments submitted 
by NIOSH, animal toxicology evidence shows that poorly soluble 
beryllium compounds can cause cancer. IARC determined that poorly 
soluble forms of beryllium are carcinogenic to humans in its 2012 
review of Group I carcinogens (see section V.E.5 of this preamble; 
Document ID 1725, p. 9; IARC, 2012, Document ID 0650). NIOSH noted that 
poorly soluble forms of beryllium remain in the lung for longer time 
periods than soluble forms, and can therefore create prolonged exposure 
of lung tissue to beryllium (Document ID 1725, p. 9). This prolonged 
exposure may lead to the sustained tissue inflammation that causes many 
forms of cancer and is believed to be one pathway for carcinogenesis 
due to beryllium exposure (see Section V, Health Effects).
    The comments from NIOSH also demonstrate that the available 
information cannot distinguish between the effects of soluble and 
poorly soluble beryllium. NIOSH submitted information on the solubility 
of beryllium in the Schubauer-Berigan et al. (2011) cohort, stating 
that operations typically involving both soluble and poorly soluble 
beryllium were performed at all three of the beryllium plants included 
in the study (Document ID 1725, p. 9; Ward et al., 1992, Document ID 
1378). Based on evaluations of the JEMs and work histories of employees 
in the cohort (which were not published in the 2011 Schubauer-Berigan 
et al. paper), NIOSH stated that ``the vast majority of beryllium work-
time at all three of these facilities was due to either insoluble or 
mixed chemical forms. In fact, insoluble beryllium was the largest 
single contributor to work-time (for beryllium exposure of known 
solubility class) at the three facilities across most time periods'' 
(Document ID 1725, p. 9). NIOSH also provided figures showing the 
contribution of insoluble beryllium to exposure over time in the 
Schubauer-Berigan et al. (2011) study, as well as the relatively small 
proportion of work years during which workers in the study were exposed 
exclusively to either soluble or poorly soluble forms (Document ID 
1725, pp. 10-11).
    Boffetta et al. (2014, Document ID 0403) examined a population of 
workers allegedly exposed exclusively to poorly soluble beryllium 
compounds, in which overall SMR for lung cancer was not statistically 
significantly elevated (SMR 96.0, 95% CI 80.0-114.3). Boffetta et al. 
concluded, ``[a]lthough a small risk for lung cancer is compatible with 
our results, we can confidently exclude an excess greater than 20%'' in 
the study population (Boffetta et al., 2014, p. 592). Limitations of 
the study include a lack of information on many workers' job titles, a 
lack of any beryllium exposure measurements, and the very short-term 
employment of most cohort members at the study facilities (less than 5 
years for 72 percent of the workers) (Boffetta et al., 2014).
    OSHA reviewed this study, and finds that it does not contradict the 
findings of the Schubauer-Berigan et al. (2011) lung cancer risk 
analysis for several reasons. First, as shown in Table VI-9 above, none 
of the predictions of excess risk in the risk analysis exceed 20 
percent (200 per 1,000 workers); most are well below this level, and 
thus are well within the range that Boffetta et al. (2014) state they 
cannot confidently exclude. Thus, the statement by Boffetta et al. that 
the risk of excess lung cancer is no higher than 20 percent is actually 
consistent with the risk findings from Schubauer-Berigan et al. (2011) 
presented above. Second, the fact that most workers in the cohort were 
employed for less than five years suggests that most workers' 
cumulative exposures to beryllium were likely to be quite low, which 
would explain the non-elevated SMR for lung cancer in the study 
population regardless of the type of beryllium to which workers were 
exposed. The SMR for workers employed in the study facilities for at 
least 20 years was elevated (112.7, CI 66.8-178.1) (Boffetta et al., 
2014, Document ID 0403, Table 3),\23\ supporting OSHA's observation 
that the lack of elevated SMR in the cohort overall may be due to 
short-term

[[Page 2544]]

employment and low cumulative exposures.
---------------------------------------------------------------------------

    \23\ This SMR was not statistically significantly elevated, 
probably due to the small size of this subcohort (153 total deaths, 
18 lung cancer deaths).
---------------------------------------------------------------------------

    Finally, the approach of Boffetta et al. (2014), which relies on 
SMR analyses, does not account for the healthy worker effect. SMRs are 
calculated by comparing disease levels in the study population to 
disease levels in the general population, using regional or national 
reported disease rates. However, because working populations tend to 
have lower disease rates than the overall population, SMRs can 
underestimate excess risk of disease in those populations. The SMR in 
Boffetta et al. (2014) for overall mortality in the study population 
was statistically significantly reduced (94.7, 95 percent CI 89.9-
99.7), suggesting a possible healthy worker effect. The SMR for overall 
mortality was even further reduced in the category of workers with at 
least 20 years of employment (87.7, 95 percent CI 74.3-102.7), in which 
an elevated SMR for lung cancer was observed. NIOSH commented that 
``[i]n a modern industrial population, the expected SMR for lung cancer 
would be approximately 0.93 [Park et al. (1991)]'' (Document ID 1725, 
p. 8). This is lower than the SMR for lung cancer (96) observed in 
Boffetta et al. (2014) and much lower than the SMR for lung cancer in 
the category of workers employed for at least 20 years (112.7), which 
is the group most likely to have had sufficient exposure and latency to 
show excess lung cancer (Boffetta et al., 2014, Document ID 0403, 
Tables 2 and 3). Thus, it appears that the healthy worker effect is 
another factor (in addition to low cumulative exposures) that may 
account for the findings of Boffetta et al.'s 2014 study.
    Taken together, OSHA finds that the animal toxicology evidence on 
the carcinogenicity of poorly soluble beryllium forms, the long 
residence of poorly soluble beryllium in the lung, the likelihood that 
most workers in Schubauer-Berigan et al. (2011) were exposed to a 
mixture of soluble and poorly soluble beryllium forms, and the points 
raised above regarding Boffetta et al. (2014) rebut Boffetta's claim 
that low solubility of beryllium compounds is the most likely 
explanation for the lack of statistically significantly elevated SMR 
results.
    Dr. Boffetta's comment also raised technical questions regarding 
the Schubauer-Berigan et al. (2011, Document ID 1265) risk analysis. He 
noted that risk estimates at low exposures are dependent on choice of 
model in their analysis; the authors' choice of a single ``best'' model 
was based on purely statistical criteria, and the results of the 
statistics used (AIC) were similar between the models'' (Document ID 
1659, p. 2). Therefore, according to Dr. Boffetta, ``there is ample 
uncertainty about the shape of the dose-response function in the low-
dose range'' (Document ID 1659, p. 3).
    OSHA agrees that it is difficult to distinguish a single ``best'' 
model from the set of models presented by Schubauer-Berigan et al. 
(2011), and that risk estimates at low exposure levels vary depending 
on choice of model. That is one reason OSHA presented results from all 
of the models (see Table VI-9). OSHA further agrees that there is 
uncertainty in the lung cancer risk estimates, the estimation of which 
(unlike for CBD) required extrapolation below beryllium exposure levels 
experienced by workers in the Schubauer-Berigan et al. (2011) study. 
However, the Schubauer-Berigan risk assessment's six best-fitting 
models all support OSHA's significant risk determination, as they all 
predict a significant risk of lung cancer at the preceding TWA PEL of 2 
[mu]g/m\3\ (estimates ranging from 33 to 170 excess lung cancers per 
1,000 workers) and a substantially reduced, though still significant, 
risk of lung cancer at the new TWA PEL of 0.2 [mu]g/m\3\ (estimates 
ranging from 3 to 30 excess lung cancers per 1,000 workers) (see Table 
VI-9).
    Dr. Boffetta also noted that the risk estimates provided by 
Schubauer-Berigan et al. (2011, Document ID 1265) for OSHA's lung 
cancer risk assessment depend on the background lung cancer rate used 
in excess risk calculations, and that industrial workers may have a 
different background lung cancer risk than the U.S. population as a 
whole (Document ID 1659, p. 2). OSHA agrees that choice of background 
risk could influence the number of excess lung cancers predicted by the 
models the Agency relied on for its lung cancer risk estimates. 
However, choice of background risk did not influence OSHA's finding 
that excess lung cancer risks would be substantially reduced by a 
decrease in exposure from the preceding TWA PEL to the final TWA PEL, 
because the same background risk was factored into estimates of risk at 
both levels. Furthermore, the Schubauer-Berigan et al. (2011) estimates 
of excess lung cancer from exposure at the preceding PEL of 2 [mu]g/
m\3\ (ranging from 33 to 170 excess lung cancers per 1,000 workers, 
depending on the model) are much higher than the level of 1 per 1,000 
that OSHA finds to be clearly significant. Even at the final TWA PEL of 
0.2 [mu]g/m\3\, the models demonstrate a range of risks of excess lung 
cancers of 3 to 30 per 1,000 workers, estimates well above the 
threshold for significant risk (see Section II, Pertinent Legal 
Authority). Small variations in background risk across different 
populations are highly unlikely to influence excess lung cancer risk 
estimates sufficiently to influence OSHA's finding of significant risk 
at the preceding TWA PEL, which is the finding OSHA relies on to 
support the need for a new standard.
    Finally, Dr. Boffetta noted that the models that exclude 
professional and asbestos workers (the groups that Schubauer-Berigan et 
al. believed could be affected by confounding from tobacco and asbestos 
exposure) showed non-significant increases in lung cancer with 
increasing beryllium exposure. According to Dr. Boffetta, this suggests 
that confounding may contribute to the results of the models based on 
the full population. He speculates that if more precise information on 
confounding exposures were available, excess risk estimates might be 
further reduced (Document ID 1659, p. 2).
    OSHA agrees with Dr. Boffetta that there is uncertainty in the 
Schubauer-Berigan et al. (2011) lung cancer risk estimates, including 
uncertainty due to limited information on possible confounding from 
associations between beryllium exposure level and workers' smoking 
habits or occupational co-exposures. However, in the absence of 
detailed smoking and co-exposure information, the models excluding 
professional and asbestos workers are a reasonable approach to 
addressing the possible effects of unmeasured confounding. OSHA's 
decision to include these models in its preliminary and final QRAs 
therefore represents the Agency's best available means of dealing with 
this uncertainty.

E. Risk Assessment Conclusions

    As described above, OSHA's risk assessment for beryllium 
sensitization and CBD relied on two approaches: (1) Review of the 
literature, and (2) analysis of a data set provided by NJH. OSHA has a 
high level of confidence in its finding that the risks of sensitization 
and CBD are above the benchmark of 1 in 1,000 at the preceding PEL, and 
the Agency believes that a comprehensive standard requiring a 
combination of more stringent controls on beryllium exposure will 
reduce workers' risk of both sensitization and CBD. Programs that have 
reduced median levels to below 0.1 [mu]g/m\3\ and tightly controlled 
both respiratory exposure and dermal contact have substantially reduced 
risk of sensitization within the first years of exposure. These 
conclusions are supported by the results of several studies conducted 
in facilities dealing

[[Page 2545]]

with a variety of production activities and physical forms of beryllium 
that have reduced workers' exposures substantially by implementing 
stringent exposure controls and PPE requirements since approximately 
2000. In addition, these conclusions are supported by OSHA's analyses 
of the NJH data set, which contains highly-detailed exposure and work 
history information on several hundred beryllium workers.
    Furthermore, OSHA believes that more stringent control of airborne 
beryllium exposures will reduce beryllium-exposed workers' significant 
risk of lung cancer. The risk estimates from the lung cancer study by 
Schubauer-Berigan et al. (2011, Document ID 1265; 0521), described 
above, range from 33 to 170 excess lung cancers per 1,000 workers 
exposed at the preceding PEL of 2 [mu]g/m\3\, based on the study's six 
best-fitting models. These models each predict substantial reductions 
in risk with reduced exposure, ranging from 3 to 30 excess lung cancers 
per 1,000 workers exposed at the final PEL of 0.2 [mu]g/m\3\. The 
evidence of lung cancer risk from the Schubauer-Berigan et al. (2011) 
risk assessment provides additional support for OSHA's conclusions 
regarding the significance of risk of adverse health effects for 
workers exposed to beryllium levels at and below the preceding PEL. 
However, the lung cancer risks required a sizable low dose 
extrapolation below beryllium exposure levels experienced by workers in 
the Schubauer-Berigan et al. (2011) study. As a result, there is 
greater uncertainty regarding the lung cancer risk estimates than there 
is for the risk estimates for beryllium sensitization and CBD. The 
conclusions with regard to significance of risk are presented and 
further discussed in section VII of the preamble.

VII. Significance of Risk

    In this section, OSHA discusses its findings that workers exposed 
to beryllium at and below the preceding TWA PEL face a significant risk 
of material impairment of health or functional capacity within the 
meaning of the OSH Act, and that the new standards will substantially 
reduce this risk. To make the significance of risk determination for a 
new final or proposed standard, OSHA uses the best available scientific 
evidence to identify material health impairments associated with 
potentially hazardous occupational exposures and to evaluate exposed 
workers' risk of these impairments assuming exposure over a working 
lifetime. As discussed in section II, Pertinent Legal Authority, courts 
have stated that OSHA should consider all forms and degrees of material 
impairment--not just death or serious physical harm. To evaluate the 
significance of the health risks that result from exposure to hazardous 
chemical agents, OSHA relies on epidemiological, toxicological, and 
experimental evidence. The Agency uses both qualitative and 
quantitative methods to characterize the risk of disease resulting from 
workers' exposure to a given hazard over a working lifetime (generally 
45 years) at levels of exposure reflecting compliance with the 
preceding standard and compliance with the new standards (see Section 
II, Pertinent Legal Authority). When determining whether a significant 
risk exists OSHA considers whether there is a risk of at least one-in-
a-thousand of developing a material health impairment from a working 
lifetime of exposure. The Supreme Court has found that OSHA is not 
required to support its finding of significant risk with scientific 
certainty, but may instead rely on a body of reputable scientific 
thought and may make conservative assumptions (i.e., err on the side of 
protecting the worker) in its interpretation of the evidence (Section 
II, Pertinent Legal Authority).
    OSHA's findings in this section follow in part from the conclusions 
of the preceding sections V, Health Effects, and VI, Risk Assessment. 
In this preamble at section V, Health Effects, OSHA reviewed the 
scientific evidence linking occupational beryllium exposure to a 
variety of adverse health effects and determined that beryllium 
exposure causes sensitization, CBD, and lung cancer, and is associated 
with various other adverse health effects (see section V.D, V.E, and 
V.F). In this preamble at section VI, Risk Assessment, OSHA found that 
the available epidemiological data are sufficient to evaluate risk for 
beryllium sensitization, CBD, and lung cancer among beryllium-exposed 
workers. OSHA evaluated the risk of sensitization, CBD, and lung cancer 
from levels of airborne beryllium exposure that were allowed under the 
previous standard, as well as the expected impact of the new standards 
on risk of these conditions. In this section of the preamble, OSHA 
explains its determination that the risk of material impairments of 
health, particularly CBD and lung cancer, from occupational exposures 
allowable under the preceding TWA PEL of 2 [mu]g/m\3\ is significant, 
and is substantially reduced but still significant at the new TWA PEL 
of 0.2 [mu]g/m\3\. Furthermore, evidence reviewed in section VI, Risk 
Assessment, shows that significant risk of CBD and lung cancer could 
remain in workplaces with exposures as low as the new action level of 
0.1 [mu]g/m\3\. OSHA also explains here that the new standards will 
reduce the occurrence of sensitization.
    In the NPRM, OSHA preliminarily determined that both CBD and lung 
cancer are material impairments of health. OSHA also preliminarily 
determined that a working lifetime (45 years) of exposure to airborne 
beryllium at the preceding time-weighted average permissible exposure 
limit (TWA PEL) of 2 [mu]g/m\3\ would pose a significant risk of both 
CBD and lung cancer, and that this risk is substantially reduced but 
still significant at the new TWA PEL of 0.2 [mu]g/m\3\. OSHA did not 
make a preliminary determination as to whether beryllium sensitization 
is a material impairment of health because, as the Agency explained in 
the NPRM, it was not necessary to make such a determination. The 
Agency's preliminary findings on CBD and lung cancer were sufficient to 
support the promulgation of new beryllium standards.
    Upon consideration of the entire rulemaking record, including the 
comments and information submitted to the record in response to the 
preliminary Health Effects, Risk Assessment, and Significance of Risk 
analyses (NPRM Sections V, VI, and VIII), OSHA reaffirms its 
preliminary findings that long-term exposure at the preceding TWA PEL 
of 2 [mu]g/m\3\ poses a significant risk of material impairment of 
workers' health, and that adoption of the new TWA PEL of 0.2 [mu]g/m\3\ 
and other provisions of the final standards will substantially reduce 
this risk.

Material Impairment of Health

    As discussed in Section V, Health Effects, CBD is a respiratory 
disease caused by exposure to beryllium. CBD develops when the body's 
immune system reacts to the presence of beryllium in the lung, causing 
a progression of pathological changes including chronic inflammation 
and tissue scarring. CBD can also impair other organs such as the 
liver, skin, spleen, and kidneys and cause adverse health effects such 
as granulomas of the skin and lymph nodes and cor pulmonale (i.e., 
enlargement of the heart) (Conradi et al., 1971 (Document ID 1319); 
ACCP, 1965 (1286); Kriebel et al., 1988a (1292) and b (1473)).
    In early, asymptomatic stages of CBD, small granulomatous lesions 
and mild inflammation occur in the lungs. Over time, the granulomas can 
spread and lead to lung fibrosis (scarring) and

[[Page 2546]]

moderate to severe loss of pulmonary function, with symptoms including 
a persistent dry cough and shortness of breath (Saber and Dweik, 2000, 
Document ID 1421). Fatigue, night sweats, chest and joint pain, 
clubbing of fingers (due to impaired oxygen exchange), loss of 
appetite, and unexplained weight loss may occur as the disease 
progresses (Conradi et al., 1971, Document ID 1319; ACCP, 1965 (1286); 
Kriebel et al., 1988 (1292); Kriebel et al., 1988 (1473)).
    Dr. Lee Newman, speaking at the public hearing on behalf of the 
American College of Occupational and Environmental Medicine (ACOEM), 
testified on his experiences treating patients with CBD: ``as a 
physician who has spent most of my [practicing] career seeing patients 
with exposure to beryllium, with beryllium sensitization, and with 
chronic beryllium disease including those who have gone on to require 
treatment and to die prematurely of this disease . . . [I've seen] 
hundreds and hundreds, probably over a thousand individuals during my 
career who have suffered from this condition'' (Document ID 1756, Tr. 
79). Dr. Newman further testified about his 30 years of experience 
treating CBD in patients at various stages of the disease:

    . . . some of them will go from being sensitized to developing 
subclinical disease, meaning that they have no symptoms. As I 
mentioned earlier, most of those will, if we actually do the tests 
of their lung function and their oxygen levels in their blood, those 
people are already demonstrating physiologic abnormality. They 
already have disease affecting their health. They go on to develop 
symptomatic disease and progress to the point where they require 
treatment. And sometimes to the extent of even requiring a [lung] 
transplant (Document ID 1756, Tr. 131).

    Dr. Newman described one example of a patient who developed CBD 
from his occupational beryllium exposure and ``who went on to die 
prematurely with a great deal of suffering along the way due to the 
condition chronic beryllium disease'' (Document ID 1756, Tr. 80).
    During her testimony at the public hearing, Dr. Lisa Maier of 
National Jewish Health (NJH) provided an example from her experience 
with treating CBD patients. ``This gentleman started to have a cough, a 
dry cough in 2011 . . . His symptoms progressed and he developed 
shortness of breath, wheezing, chills, night sweats, and fatigue. These 
were so severe that he was eventually hospitalized'' (Document ID 1756, 
Tr. 105). Dr. Maier noted that this patient had no beryllium exposure 
prior to 2006, and that his CBD had developed from beryllium exposure 
in his job melting an aluminum alloy in a foundry casting airplane 
parts (Document ID 1756, Tr. 105-106). She described how her patient 
could no longer work because of his condition. ``He requires oxygen and 
systemic therapy . . . despite aggressive treatment [his] test findings 
continue to demonstrate worsening of his disease and increased needs 
for oxygen and medications as well as severe side effects from 
medications. This patient may well need a lung transplant if this 
disease continues to progress . . . '' (Document ID 1756, Tr. 106-107).
    The likelihood, speed, and severity of individuals' transition from 
asymptomatic to symptomatic CBD is understood to vary widely, with some 
individuals responding differently to exposure cessation and treatment 
than others (Sood, 2009, Document ID 0456; Mroz et al., 2009 (1443)). 
In the public hearing, Dr. Newman testified that the great majority of 
individuals with very early stage CBD in a cross-sectional study he 
published (Pappas and Newman, 1993) had physiologic impairment. Thus, 
even before x-rays or CAT scans found evidence of CBD, the lung 
functions of those individuals were abnormal (Document ID 1756, Tr. 
112). Materion commented that the best available evidence on the 
transition from asymptomatic to more severe CBD is a recent 
longitudinal study by Mroz et al. (2009, Document ID 1443), which found 
that 19.3 percent of individuals with CBD developed clinical 
abnormalities requiring oral immunosuppressive therapy (Document ID 
1661, pp. 5-6). The authors' overall conclusions in that study include 
a finding that adverse physiological changes among initially 
asymptomatic CBD patients progress over time, requiring many 
individuals to be treated with corticosteroids, and that the patients' 
levels of beryllium exposure may affect progression (Mroz et al., 
2009). Dr. Maier, a co-author of the study, testified that studies 
``indicate that higher levels of exposure not only are risk factors for 
[developing CBD in general] but also for more severe [CBD] (Document ID 
1756, Tr. 111).\24\
---------------------------------------------------------------------------

    \24\ The study by Mroz et al. (2009, Document ID 1443) included 
all individuals who were clinically evaluated at NJH between 1982 
and 2002 and were found to have CBD on baseline clinical evaluation. 
All cohort members were identified by abnormal BeLPTs before 
identification of symptoms, physiologic abnormalities, or 
radiographic changes. All members were offered evaluation for 
clinical abnormalities every 2 years through 2002, including 
pulmonary function testing, exercise testing, chest radiograph with 
International Labor Organization (ILO) B-reading, fiberoptic 
bronchoscopy with bronchoalveolar lavage (BAL), and transbronchial 
lung biopsies. Of 171 CBD cases, 33 (19.3%) developed clinical 
abnormalities requiring oral immunosuppressive therapy, at an 
average of 1.4 years after the initial diagnosis of CBD. To examine 
the effect of beryllium exposure level on the progression of CBD, 
Mroz et al. compared clinical manifestations of CBD among machinists 
(the group of patients likely to have had the highest beryllium 
exposures) to non- machinists, including only CBD patients who had 
never smoked. Longitudinal analyses showed significant declines in 
some clinical indicators over time since first exposure for 
machinists (p <0.01) as well as faster development of illness (p < 
0.05), compared to a control group of non-machinists.
---------------------------------------------------------------------------

    Treatment of CBD using inhaled and systemic steroid therapy has 
been shown to ease symptoms and slow or prevent some aspects of disease 
progression. As explained below, these treatments can be most 
effectively applied when CBD is diagnosed prior to development of 
symptoms. In addition, the forms of treatment that can be used to 
manage early-stage CBD have relatively minor side effects on patients, 
while systemic steroid treatments required to treat later-stage CBD 
often cause severe side effects.
    In the public hearing, Dr. Newman and Dr. Maier testified about 
their experiences treating patients with CBD at various stages of the 
disease. Dr. Newman stated that patients' outcomes depend greatly on 
how early they are diagnosed. ``So there are those people who are 
diagnosed very late in the course of disease where there's little that 
we can do to intervene and they are going to die prematurely. There are 
those people who may be detected with milder disease where there are 
opportunities to intervene'' (Document ID 1756, Tr. 132). Both Dr. 
Maier and Dr. Newman emphasized the importance of early detection and 
diagnosis, stating that removing the patient from exposure and 
providing treatment early in the course of the disease can slow or even 
halt progression of the disease (Document ID 1756, Tr. 111, 132).
    Dr. Maier testified that inhaled steroids can be used to treat 
relatively mild symptoms that may occur in early stages of the disease, 
such as a cough during exercise (Document ID 1756, Tr. 139). Inhaled 
steroids, she stated, are commonly used to treat other health 
conditions and have fewer and milder side effects than forms of steroid 
treatment that are used to treat more severe forms of CBD (Document ID 
1756, Tr. 140). Early detection of CBD helps physicians to properly 
treat early-onset symptoms, since appropriate forms of treatment for 
early stage CBD can differ from treatments for conditions it is 
commonly mistaken for, such as chronic obstructive pulmonary disease

[[Page 2547]]

(COPD) and asthma (Document ID 1756, Tr. 140-141).
    CBD in later stages is often managed using systemic steroid 
treatments such as corticosteroids. In workers with CBD whose beryllium 
exposure has ceased, corticosteroid therapy has been shown to control 
inflammation, ease symptoms (e.g., difficulty breathing, fever, cough, 
and weight loss), and in some cases prevent the development of fibrosis 
(Marchand-Adam et al., 2008, Document ID 0370). Thus, although there is 
no cure for CBD, properly-timed treatment can lead to CBD regression in 
some patients (Sood, 2004, Document ID 1331). Other patients have shown 
short-term improvements from corticosteroid treatment, but then 
developed serious fibrotic lesions (Marchand-Adam et al., 2008). Ms. 
Peggy Mroz, of NJH, discussed the results of the Marchand-Adam et al. 
study in the hearing, stating that treatment of CBD using steroids has 
been most successful when treatment begins prior to the development of 
lung fibrosis (Document ID 1756, Tr. 113). Once fibrosis has developed 
in the lungs, corticosteroid treatment cannot reverse the damage (Sood, 
2009, Document ID 0456). Persons with late-stage CBD experience severe 
respiratory insufficiency and may require supplemental oxygen (Rossman, 
1991, Document 1332). Historically, late-stage CBD often ended in death 
(NAS, 2008, Document ID 1355). While the use of steroid treatments can 
help to reduce the effects of CBD, OSHA is not aware of any studies 
showing the effect of these treatments on the frequency of premature 
death among patients with CBD.
    Treatment with corticosteroids has severe side effects 
(Trikudanathan and McMahon, 2008, Document ID 0366; Lipworth, 1999 
(0371); Gibson et al., 1996 (1521); Zaki et al., 1987 (1374)). Adverse 
effects associated with long-term corticosteroid use include, but are 
not limited to: increased risk of opportunistic infections (Lionakis 
and Kontoyiannis, 2003, Document ID 0372; Trikudanathan and McMahon, 
2008 (0366)); accelerated bone loss or osteoporosis leading to 
increased risk of fractures or breaks (Hamida et al., 2011, Document ID 
0374; Lehouck et al., 2011 (0355); Silva et al., 2011 (0388); Sweiss et 
al., 2011 (0367); Langhammer et al., 2009 (0373)); psychiatric effects 
including depression, sleep disturbances, and psychosis (Warrington and 
Bostwick, 2006, Document ID 0365; Brown, 2009 (0377)); adrenal 
suppression (Lipworth, 1999, Document ID 0371; Frauman, 1996 (0356)); 
ocular effects including cataracts, ocular hypertension, and glaucoma 
(Ballonzoli and Bourcier, 2010, Document ID 0391; Trikudanathan and 
McMahon, 2008 (0366); Lipworth, 1999 (0371)); an increase in glucose 
intolerance (Trikudanathan and McMahon, 2008, Document ID 0366); 
excessive weight gain (McDonough et al., 2008, Document ID 0369; Torres 
and Nowson, 2007 (0387); Dallman et al., 2007 (0357); Wolf, 2002 
(0354); Cheskin et al., 1999 (0358)); increased risk of atherosclerosis 
and other cardiovascular syndromes (Franchimont et al., 2002, Document 
ID 0376); skin fragility (Lipworth, 1999, Document ID 0371); and poor 
wound healing (de Silva and Fellows, 2010, Document ID 0390).
    Based on the above, OSHA considers late-stage CBD to be a material 
impairment of health, as it involves permanent damage to the pulmonary 
system, causes additional serious adverse health effects, can have 
adverse occupational and social consequences, requires treatment that 
can cause severe and lasting side effects, and may in some cases cause 
premature death.
    Furthermore, OSHA has determined that early-stage CBD, an 
asymptomatic period during which small lesions and inflammation appear 
in the lungs, is also a material impairment of health. OSHA bases this 
conclusion on evidence and expert testimony that early-stage CBD is a 
measurable change in an individual's state of health that, with and 
sometimes without continued exposure, can progress to symptomatic 
disease (e.g., Mroz et al., 2009 (1443); 1756, Tr. 131). Thus, 
prevention of the earliest stages of CBD will prevent development of 
more serious disease. In OSHA's Lead standard, promulgated in 1978, the 
Agency stated its position that a ``subclinical'' health effect may be 
regarded as a material impairment of health. In the preamble to that 
standard, the Agency said:


    OSHA believes that while incapacitating illness and death 
represent one extreme of a spectrum of responses, other biological 
effects such as metabolic or physiological changes are precursors or 
sentinels of disease which should be prevented. . . . Rather than 
revealing the beginnings of illness the standard must be selected to 
prevent an earlier point of measurable change in the state of health 
which is the first significant indicator of possibly more severe ill 
health in the future. The basis for this decision is twofold--first, 
pathophysiologic changes are early stages in the disease process 
which would grow worse with continued exposure and which may include 
early effects which even at early stages are irreversible, and 
therefore represent material impairment themselves. Secondly, 
prevention of pathophysiologic changes will prevent the onset of the 
more serious, irreversible and debilitating manifestations of 
disease (43 FR 52952, 52954).

    Since the Lead rulemaking, OSHA has also found other non-
symptomatic (or sub-clinical) health conditions to be material 
impairments of health. In the Bloodborne Pathogens rulemaking, OSHA 
maintained that material impairment includes not only workers with 
clinically ``active'' hepatitis from the hepatitis B virus (HBV) but 
also includes asymptomatic HBV ``carriers'' who remain infectious and 
are able to put others at risk of serious disease through contact with 
body fluids (e.g., blood, sexual contact) (56 FR 64004). OSHA stated: 
``Becoming a carrier [of HBV] is a material impairment of health even 
though the carrier may have no symptoms. This is because the carrier 
will remain infectious, probably for the rest of his or her life, and 
any person who is not immune to HBV who comes in contact with the 
carrier's blood or certain other body fluids will be at risk of 
becoming infected'' (56 FR 64004, 64036).
    OSHA finds that early-stage CBD is the type of asymptomatic health 
effect the Agency determined to be a material impairment of health in 
the Lead and Bloodborne Pathogens standards. Early stage CBD involves 
lung tissue inflammation without symptoms that can worsen with--or 
without--continued exposure. The lung pathology progresses over time 
from a chronic inflammatory response to tissue scarring and fibrosis 
accompanied by moderate to severe loss in pulmonary function. Early 
stage CBD is clearly a precursor of advanced clinical disease, 
prevention of which will prevent symptomatic disease. OSHA determined 
in the Lead standard that such precursor effects should be considered 
material health impairments in their own right, and that the Agency 
should act to prevent them when it is feasible to do so. Therefore, 
OSHA finds all stages of CBD to be material impairments of health 
within the meaning of section 6(b)(5) of the OSH Act (29 U.S.C. 
655(b)(5)).
    In reviewing OSHA's Lead standard in United Steelworkers of 
America, AFL-CIO v. Marshall, 647 F.2d 1189, 1252 (D.C. Cir. 1980) 
(Lead I), the D.C. Circuit affirmed that the OSH Act ``empowers OSHA to 
set a PEL that prevents the subclinical effects of lead that lie on a 
continuum shared with overt lead disease.'' See also AFL-CIO v. 
Marshall, 617 F.2d 636, 654 n.83 (D.C. Cir. 1979) (upholding OSHA's 
authority to prevent early symptoms of a disease, even if the effects 
of the disease are, at that point, reversible). According to the Court, 
OSHA only had to demonstrate,

[[Page 2548]]

on the basis of substantial evidence, that preventing the subclinical 
effects would help prevent the clinical phase of disease (United 
Steelworkers of America, AFL-CIO, 647 F.2d at 1252). Thus, OSHA has the 
authority to regulate to prevent asymptomatic CBD whether or not it is 
properly labeled as a material impairment of health.
    OSHA has also determined that exposure to beryllium can cause 
beryllium sensitization. Sensitization is a precursor to development of 
CBD and an essential step for development of the disease. As discussed 
in Section V, Health Effects, only sensitized individuals can develop 
CBD (NAS, 2008, Document ID 1355).\25\ As explained above, OSHA has the 
authority to promulgate regulations designed to prevent precursors to 
material impairments of health. Therefore, OSHA's new beryllium 
standards aim to prevent sensitization as well as the development of 
CBD and lung cancer. OSHA's risk assessment for sensitization, 
presented in section VI, informs the Agency's understanding of what 
exposure control measures have been successful in preventing 
sensitization, which in turn prevents development of CBD. Therefore, 
OSHA addresses sensitization in this section on significance of risk.
---------------------------------------------------------------------------

    \25\ In the NPRM, OSHA took no position on whether beryllium 
sensitization by itself is a material impairment of health, stating 
it was unnecessary to do so as part of this rulemaking. The only 
comment on this issue came from Materion, which argued that ``BeS 
does not constitute a material impairment of health or functional 
capacity'' (document ID 1958). Because BeS is also a precursor to 
CBD, OSHA finds it unnecessary to resolve this issue here.
---------------------------------------------------------------------------

Risk Assessment

    As discussed in Section VI, Risk Assessment, the risk assessment 
for beryllium sensitization and CBD relied on two approaches: (1) 
OSHA's review of epidemiological studies of sensitization and CBD that 
contain information on exposures in the range of interest to OSHA (2 
[mu]g/m\3\ and below), and (2) OSHA's analysis of a NJH data set on 
sensitization and CBD in a group of beryllium-exposed machinists in 
Cullman, AL.
    OSHA's review of the literature includes studies of beryllium-
exposed workers at a Tucson, AZ ceramics plant (Kreiss et al., 1996, 
Document ID 1477; Henneberger et al., 2001 (1313); Cummings et al., 
2007 (1369)); a Reading, PA copper-beryllium processing plant (Schuler 
et al., 2005, Document ID 0919; Thomas et al., 2009 (0590)); a Cullman, 
AL beryllium machining plant (Newman et al., 2001, Document ID 1354; 
Kelleher et al., 2001 (1363); Madl et al., 2007 (1056)); an Elmore, OH 
metal, alloy, and oxide production plant (Kreiss et al., 1993 Document 
ID 1478; Bailey et al., 2010 (0676); Schuler et al., 2012 (0473)); 
aluminum smelting facilities (Taiwo et al. 2008, Document ID 0621; 2010 
(0583); Nilsen et al., 2010 (0460)); and nuclear facilities (Viet et 
al., 2000, Document ID 1344; Arjomandi et al., 2010 (1275)).
    The published literature on beryllium sensitization and CBD 
discussed in section VI shows that the risk of both can be significant 
in workplaces where exposures are at or below OSHA's preceding PEL of 2 
[mu]g/m\3\ (e.g., Kreiss et al., 1996, Document ID 1477; Henneberger et 
al., 2001 (1313); Newman et al., 2001 (1354); Schuler et al., 2005 
(0919), 2012 (0473); Madl et al., 2007 (1056)). For example, in the 
Tucson ceramics plant mentioned above, Kreiss et al. (1996) reported 
that eight (5.9 percent) \26\ of the 136 workers tested in 1992 were 
sensitized, six (4.4 percent) of whom were diagnosed with CBD. In 
addition, of 77 Tucson workers hired prior to 1992 who were tested in 
1998, eight (10.4 percent) were sensitized and seven of these (9.7 
percent) were diagnosed with CBD (Henneberger et al., 2001, Document ID 
1313). Full-shift area samples showed most airborne beryllium levels 
below the preceding PEL: 76 percent of area samples collected between 
1983 and 1992 were at or below 0.1 [mu]g/m\3\ and less than 1 percent 
exceeded 2 [mu]g/m\3\; short-term breathing zone measurements collected 
between 1981 and 1992 had a median of 0.3 [mu]g/m\3\; and personal 
lapel samples collected at the plant beginning in 1991 had a median of 
0.2 [mu]g/m\3\ (Kreiss et al., 1996).
---------------------------------------------------------------------------

    \26\ Although OSHA reports percentages to indicate the risks of 
sensitization and CBD in this section, the benchmark OSHA typically 
uses to demonstrate significant risk, as discussed earlier, is 
greater than or equal to 1 in 1,000 workers. One in 1,000 workers is 
equivalent to 0.1 percent. Therefore, any value of 0.1 percent or 
higher when reporting occurrence of a health effect is considered by 
OSHA to indicate a significant risk.
---------------------------------------------------------------------------

    Results from the Elmore, OH beryllium metal, alloy, and oxide 
production plant and the Cullman, AL machining facility also showed 
significant risk of sensitization and CBD among workers with exposures 
below the preceding TWA PEL. Schuler et al. (2012, Document ID 0473) 
found 17 cases of sensitization (8.6 percent) among Elmore, OH workers 
within the first three quartiles of LTW average exposure (198 workers 
with LTW average total mass exposures lower than 1.1 [mu]g/m\3\) and 4 
cases of CBD (2.2 percent) within those quartiles of LTW average 
exposure (183 workers with LTW average total mass exposures lower than 
1.07 [mu]g/m\3\; note that follow-up time of up to 6 years for all 
study participants was very short for development of CBD). At the 
Cullman, AL machining facility, Newman et al. (2001, Document ID 1354) 
reported 22 (9.4 percent) sensitized workers among 235 tested in 1995-
1999, 13 of whom were diagnosed with CBD within the study period. 
Personal lapel samples collected between 1980 and 1999 indicate that 
median exposures were generally well below the preceding PEL (<=0.35 
[mu]g/m\3\ in all job titles except maintenance (median 3.1 [mu]g/m\3\ 
during 1980-1995) and gas bearings (1.05 [mu]g/m\3\ during 1980-1995)).
    Although risk will be reduced by compliance with the new TWA PEL, 
evidence in the epidemiological studies reviewed in section VI, Risk 
Assessment, shows that significant risk of sensitization and CBD could 
remain in workplaces with exposures as low as the new action level of 
0.1 [mu]g/m\3\. For example, Schuler et al. (2005, Document ID 0919) 
reported substantial prevalences of sensitization (6.5 percent) and CBD 
(3.9 percent) among 152 workers at the Reading, PA facility screened 
with the BeLPT in 2000. These results showed significant risk at this 
facility, even though airborne exposures were primarily below both the 
preceding and final TWA PELs due to the low percentage of beryllium in 
the metal alloys used (median general area samples <=0.1 [mu]g/m\3\, 
97% < 0.5 [mu]g/m\3\; 93% of personal lapel samples below the new TWA 
PEL of 0.2 [mu]g/m\3\). The only group of workers with no cases of 
sensitization or CBD, a group of 26 office administration workers, was 
the group with exposures below the new action level of 0.1 [mu]g/m\3\ 
(median personal sample 0.01 [mu]g/m\3\, range <0.01-0.06 [mu]g/m\3\) 
(Schuler et al., 2005). The Schuler et al. (2012, Document ID 0473) 
study of short-term workers in the Elmore, OH facility found three 
cases (4.6%) of sensitization among 66 workers with total mass LTW 
average exposures below 0.1 [mu]g/m\3\. All three of these sensitized 
workers had LTW average exposures of approximately 0.09 [mu]g/m\3\.
    Furthermore, cases of sensitization and CBD continued to arise in 
the Cullman, AL machining plant after control measures implemented 
beginning in 1995 brought median airborne exposures below 0.2 [mu]g/
m\3\ (personal lapel samples between 1996 and 1999 in machining jobs 
had a median of 0.16 [mu]g/m\3\ and the median was 0.08 [mu]g/m\3\ in 
non-machining jobs)

[[Page 2549]]

(Madl et al., 2007, Document ID 1056, Table IV). At the time that 
Newman et al. (2001, Document ID 1354) reviewed the results of BeLPT 
screenings conducted in 1995-1999, a subset of 60 workers had been 
employed at the plant for less than a year and had therefore benefitted 
to some extent from the exposure reductions. Four (6.7 percent) of 
these workers were found to be sensitized, of whom two were diagnosed 
with CBD and one with probable CBD (Newman et al., 2001). A later study 
by Madl. et al. (2007, Document ID 1056) reported seven sensitized 
workers who had been hired between 1995 and 1999, of whom four had 
developed CBD as of 2005 (Table II; total number of workers hired 
between 1995 and 1999 not reported).
    The enhanced industrial hygiene programs that have proven effective 
in several facilities demonstrate the importance of minimizing both 
airborne exposure and dermal contact to effectively reduce risk of 
sensitization and CBD. Exposure control programs that have used a 
combination of engineering controls, PPE, and stringent housekeeping 
measures to reduce workers' airborne exposure and dermal contact have 
substantially lowered risk of sensitization among newly-hired 
workers.\27\ Of 97 workers hired between 2000 and 2004 in the Tucson, 
AZ plant after the introduction of a comprehensive program which 
included the use of respiratory protection (1999) and latex gloves 
(2000), one case of sensitization was identified (1 percent) (Cummings 
et al., 2007, Document ID 1369). In Elmore, OH, where all workers were 
required to wear respirators and skin PPE in production areas beginning 
in 2000-2001, the estimated prevalence of sensitization among workers 
hired after these measures were put in place was around 2 percent 
(Bailey et al., 2010, Document ID 0676). In the Reading, PA facility, 
after workers' exposures were reduced to below 0.1 [mu]g/m\3\ and PPE 
to prevent dermal contact was instituted, only one (2.2 percent) of 45 
workers hired was sensitized (Thomas et al. 2009, Document ID 0590). 
And, in the aluminum smelters discussed by Taiwo et al. (2008, Document 
ID 0621), where available exposure samples from four plants indicated 
median beryllium levels of about 0.1 [mu]g/m\3\ or below (measured as 
an 8-hour TWA) and workers used respiratory and dermal protection, 
confirmed cases of sensitization were rare (zero or one case per 
location).
---------------------------------------------------------------------------

    \27\ As discussed in Section V, Health Effects, beryllium 
sensitization can occur from dermal contact with beryllium.
---------------------------------------------------------------------------

    OSHA notes that the studies on recent programs to reduce workers' 
risk of sensitization and CBD were conducted on populations with very 
short exposure and follow-up time. Therefore, they could not adequately 
address the question of how frequently workers who become sensitized in 
environments with extremely low airborne exposures (median <0.1 [mu]g/
m\3\) develop CBD. Clinical evaluation for CBD was not reported for 
sensitized workers identified in the studies examining the post-2000 
worker cohorts with very low exposures in Tucson, Reading, and Elmore 
(Cummings et al. 2007, Document ID 1369; Thomas et al. 2009, (0590); 
Bailey et al. 2010, (0676)). In Cullman, however, two of the workers 
with CBD had been employed for less than a year and worked in jobs with 
very low exposures (median 8-hour personal sample values of 0.03-0.09 
[mu]g/m\3\) (Madl et al., 2007, Document ID 1056, Table III). The body 
of scientific literature on occupational beryllium disease also 
includes case reports of workers with CBD who are known or believed to 
have experienced minimal beryllium exposure, such as a worker employed 
only in shipping at a copper-beryllium distribution center (Stanton et 
al., 2006, Document ID 1070), and workers employed only in 
administration at a beryllium ceramics facility (Kreiss et al., 1996, 
Document ID 1477). Therefore, there is some evidence that cases of CBD 
can occur in work environments where beryllium exposures are quite low.
    In summary, the epidemiological literature on beryllium 
sensitization and CBD that OSHA's risk assessment relied on show 
sufficient occurrence of sensitization and CBD to be considered 
significant within the meaning of the OSH Act. These demonstrated risks 
are far in excess of 1 in 1,000 among workers who had full-shift 
exposures well below the preceding TWA PEL of 2 [mu]g/m\3\ and workers 
who had median full-shift exposures down to the new action level of 0.1 
[mu]g/m\3\. These health effects occurred among populations of workers 
whose follow-up time was much less than 45 years. As stated earlier, 
OSHA is interested in the risk associated with a 45-year (i.e., working 
lifetime) exposure. Because CBD often develops over the course of years 
following sensitization, the risk of CBD that would result from 45 
years of occupational exposure to airborne beryllium is likely to be 
higher than the prevalence of CBD observed among these workers.\28\ In 
either case, based on these studies, the risks to workers from long-
term exposure at the preceding TWA PEL and below are clearly 
significant. OSHA's review of epidemiological studies further showed 
that worker protection programs that effectively reduced the risk of 
beryllium sensitization and CBD incorporated engineering controls, work 
practice controls, and personal protective equipment (PPE) that reduce 
workers' airborne beryllium exposure and dermal contact with beryllium. 
OSHA has therefore determined that an effective worker protection 
program should incorporate both airborne exposure reduction and dermal 
protection provisions.
---------------------------------------------------------------------------

    \28\ This point was emphasized by members of the scientific peer 
review panel for OSHA's Preliminary Risk Assessment (see the NPRM 
preamble at section VII).
---------------------------------------------------------------------------

    OSHA's conclusions on significance of risk at the final PEL and 
action level are further supported by its analysis of the data set 
provided to OSHA by NJH from which OSHA derived additional information 
on sensitization and CBD at exposure levels of interest. The data set 
describes a population of 319 beryllium-exposed workers at a Cullman, 
AL machining facility. It includes exposure samples collected between 
1980 and 2005, and has updated work history and screening information 
through 2003. Seven (2.2 percent) workers in the data set were reported 
as sensitized only. Sixteen (5.0 percent) workers were listed as 
sensitized and diagnosed with CBD upon initial clinical evaluation. 
Three (0.9 percent) workers, first shown to be sensitized only, were 
later diagnosed with CBD. The data set includes workers exposed at 
airborne beryllium levels near the new TWA PEL of 0.2 [mu]g/m\3\, and 
extensive exposure data collected in workers' breathing zones, as is 
preferred by OSHA. Unlike the Tucson, Reading, and Elmore facilities 
after 2000, respirator use was not generally required for workers at 
the Cullman facility. Thus, analysis of this data set shows the risk 
associated with varying levels of airborne exposure rather than 
estimating exposure accounting for respirators. Also unlike the Tucson, 
Elmore, and Reading facilities, glove use was not reported to be 
mandatory in the Cullman facility. Therefore, OSHA believes reductions 
in risk at the Cullman facility to be the result of airborne exposure 
control, rather than the combination of airborne and dermal exposure 
controls used at other facilities.
    OSHA analyzed the prevalence of beryllium sensitization and CBD 
among

[[Page 2550]]

workers at the Cullman facility who were exposed to airborne beryllium 
levels at and below the preceding TWA PEL of 2 [mu]g/m\3\. In addition, 
a statistical modeling analysis of the NJH Cullman data set was 
conducted under contract with Dr. Roslyn Stone of the University of 
Pittsburgh Graduate School of Public Heath, Department of 
Biostatistics. OSHA summarizes these analyses briefly below, and in 
more detail in section VI, Risk Assessment and in the background 
document (Risk Analysis of the NJH Data Set from the Beryllium 
Machining Facility in Cullman, Alabama--CBD and Sensitization, OSHA, 
2016).
    Tables VII-1 and VII-2 below present the prevalence of 
sensitization and CBD cases across several categories of lifetime-
weighted (LTW) average and highest-exposed job (HEJ) exposure at the 
Cullman facility. The HEJ exposure is the exposure level associated 
with the highest-exposure job and time period experienced by each 
worker. The columns ``Total'' and ``Total percent'' refer to all 
sensitized workers in the data set, including workers with and without 
a diagnosis of CBD.

                            Table VII-1--Prevalence of Sensitization and CBD by LTW Average Exposure Quartile in NJH Data Set
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                            Sensitized
            LTW average exposure ([mu]g/m\3\)               Group size         only             CBD            Total        Total  (%)       CBD  (%)
--------------------------------------------------------------------------------------------------------------------------------------------------------
0.0-0.080...............................................              91               1               1               2             2.2             1.0
0.081-0.18..............................................              73               2               4               6             8.2             5.5
0.19-0.51...............................................              77               0               6               6             7.8             7.8
0.51-2.15...............................................              78               4               8              12            15.4            10.3
                                                         -----------------------------------------------------------------------------------------------
    Total...............................................             319               7              19              26             8.2             6.0
--------------------------------------------------------------------------------------------------------------------------------------------------------
Source: Section VI, Risk Assessment.


                        Table VII-2--Prevalence of Sensitization and CBD by Highest-Exposed Job Exposure Quartile in NJH Data Set
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                            Sensitized
                HEJ exposure ([mu]g/m\3\)                   Group size         only             CBD            Total         Total (%)        CBD (%)
--------------------------------------------------------------------------------------------------------------------------------------------------------
0.0-0.086...............................................              86               1               0               1             1.2             0.0
0.091-0.214.............................................              81               1               6               7             8.6             7.4
0.387-0.691.............................................              76               2               9              11            14.5            11.8
0.954-2.213.............................................              76               3               4               7             9.2             5.3
                                                         -----------------------------------------------------------------------------------------------
    Total...............................................             319               7              19              26             8.2             6.0
--------------------------------------------------------------------------------------------------------------------------------------------------------
Source: Section VI, Risk Assessment.

    The preceding PEL of 2 [mu]g/m\3\ is close to the upper bound of 
the highest quartile of LTW average (0.51-2.15 [mu]g/m\3\) and HEJ 
(0.954-2.213 [mu]g/m\3\) exposure levels. In the highest quartile of 
LTW average exposure, there were 12 cases of sensitization (15.4 
percent), including eight (10.3 percent) diagnosed with CBD. Notably, 
the Cullman workers had been exposed to beryllium dust for considerably 
less than 45 years at the time of testing. A high prevalence of 
sensitization (9.2 percent) and CBD (5.3 percent) is seen in the top 
quartile of HEJ exposure as well, with even higher prevalences in the 
third quartile (0.387-0.691 [mu]g/m\3\).\29\
---------------------------------------------------------------------------

    \29\ This exposure-response pattern, wherein higher rates of 
response are seen in workers with lower exposures, is sometimes 
attributed to a ``healthy worker effect'' or to exposure 
misclassification, as discussed in this preamble at section VI, Risk 
Assessment.
---------------------------------------------------------------------------

    The new TWA PEL of 0.2 [mu]g/m\3\ is close to the upper bound of 
the second quartile of LTW average (0.81-0.18 [mu]g/m\3\) and HEJ 
(0.091-0.214 [mu]g/m\3\) exposure levels and to the lower bound of the 
third quartile of LTW average (0.19-0.50 [mu]g/m\3\) exposures. The 
second quartile of LTW average exposure shows a high prevalence of 
beryllium-related health effects, with six workers sensitized (8.2 
percent), of whom four (5.5 percent) were diagnosed with CBD. The 
second quartile of HEJ exposure also shows a high prevalence of 
beryllium-related health effects, with seven workers sensitized (8.6 
percent), of whom six (7.4 percent) were diagnosed with CBD. Among six 
sensitized workers in the third quartile of LTW average exposures, all 
were diagnosed with CBD (7.8 percent). The prevalence of CBD among 
workers in these quartiles was approximately 5-8 percent, and overall 
sensitization (including workers with and without CBD) was about 8-9 
percent. OSHA considers these rates to be evidence that the risks of 
developing sensitization and CBD are significant among workers exposed 
at and below the preceding TWA PEL, and even below the new TWA PEL. 
These risks are much higher than the benchmark for significant risk of 
1 in 1,000. Much lower prevalences of sensitization and CBD were found 
among workers with exposure levels less than or equal to about 0.08 
[mu]g/m\3\, although these risks are still significant. Two sensitized 
workers (2.2 percent), including one case of CBD (1.0 percent), were 
found among workers with LTW average exposure levels less than or equal 
to 0.08 [mu]g/m\3\. One case of sensitization (1.2 percent) and no 
cases of CBD were found among workers with HEJ exposures of at most 
0.086 [mu]g/m\3\. Strict control of airborne exposure to levels below 
0.1 [mu]g/m\3\ using engineering and work practice controls can, 
therefore, substantially reduce risk of sensitization and CBD. Although 
OSHA recognizes that maintaining exposure levels below 0.1 [mu]g/m\3\ 
may not be feasible in some operations (see this preamble at section 
VIII, Summary of the Economic Analysis and Regulatory Flexibility 
Analysis), the Agency finds that workers in facilities that meet the 
action level of 0.1 [mu]g/m\3\ will face lower risks of sensitization 
and CBD than workers in facilities that cannot meet the action level.
    Table VII-3 below presents the prevalence of sensitization and CBD 
cases across cumulative exposure quartiles, based on the same Cullman 
data used to derive Tables 1 and 2. Cumulative exposure is the sum of a 
worker's exposure across the duration of his or her employment.

[[Page 2551]]



                            Table VII-3--Prevalence of Sensitization and CBD by Cumulative Exposure Quartile in NJH Data Set
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                            Sensitized
          Cumulative exposure ([mu]g/m\3\-yrs)              Group size         only             CBD            Total          Total %          CBD %
--------------------------------------------------------------------------------------------------------------------------------------------------------
0.0-0.147...............................................              81               2               2               4             4.9             2.5
0.148-1.467.............................................              79               0               2               2             2.5             2.5
1.468-7.008.............................................              79               3               8              11            13.9             8.0
7.009-61.86.............................................              80               2               7               9            11.3             8.8
                                                         -----------------------------------------------------------------------------------------------
    Total...............................................             319               7              19              26             8.2             6.0
--------------------------------------------------------------------------------------------------------------------------------------------------------
Source: Section VI, Risk Assessment.

    A 45-year working lifetime of occupational exposure at the 
preceding PEL would result in 90 [mu]g/m\3\-years of exposure, a value 
far higher than the cumulative exposures of workers in this data set, 
who worked for periods of time less than 45 years and whose exposure 
levels were mostly well below the previous PEL. Workers with 45 years 
of exposure to the new TWA PEL of 0.2 [mu]g/m\3\ would have a 
cumulative exposure (9 [mu]g/m\3\-years) in the highest quartile for 
this worker population. As with the average and HEJ exposures, the 
greatest risk of sensitization and CBD appears at the higher exposure 
levels (<1.467 [mu]g/m\3\-years). The third cumulative quartile, at 
which a sharp increase in sensitization and CBD appears, is bounded by 
1.468 and 7.008 [mu]g/m\3\-years. This is equivalent to 0.73-3.50 years 
of exposure at the preceding PEL of 2 [mu]g/m\3\, or 7.34-35.04 years 
of exposure at the new TWA PEL of 0.2 [mu]g/m\3\. Prevalence of both 
sensitization and CBD is substantially lower in the second cumulative 
quartile (0.148-1.467 [mu]g/m\3\-years). This is equivalent to 
approximately 0.7 to 7 years at the new TWA PEL of 0.2 [mu]g/m\3\, or 
1.5 to 15 years at the action level of 0.1 [mu]g/m\3\. Risks at all 
levels of cumulative exposure presented in Table 3 are significant. 
These findings support OSHA's determination that maintaining exposure 
levels below the new TWA PEL will help to protect workers against risk 
of beryllium sensitization and CBD. Moreover, while OSHA finds that 
significant risk remains at the PEL, OSHA's analysis shows that further 
reductions of risk will ensue if employers are able to reduce exposure 
to the action level or even below.

Lung Cancer

    Lung cancer, a frequently fatal disease, is a well-recognized 
material impairment of health. OSHA has determined that beryllium 
causes lung cancer based on an extensive review of the scientific 
literature regarding beryllium and cancer. This review included an 
evaluation of the human epidemiological, animal cancer, and mechanistic 
studies described in section V, Health Effects. OSHA's conclusion that 
beryllium is carcinogenic is supported by the findings of expert public 
health and governmental organizations such as the International Agency 
for Research on Cancer (IARC), which has determined beryllium and its 
compounds to be carcinogenic to humans (Group 1 category) (IARC, 2012, 
Document ID 0650); the National Toxicology Program (NTP), which 
classifies beryllium and its compounds as known carcinogens (NTP, 2014, 
Document ID 0389); and the Environmental Protection Agency (EPA), which 
considers beryllium to be a probable human carcinogen (EPA, 1998, 
Document ID 0661).
    OSHA's review of epidemiological studies of lung cancer mortality 
among beryllium workers found that most of them did not characterize 
exposure levels sufficiently to evaluate the risk of lung cancer at the 
preceding and new TWA PELs. However, as discussed in this preamble at 
section V, Health Effects and section VI, Risk Assessment, Schubauer-
Berigan et al. published a quantitative risk assessment based on 
beryllium exposure and lung cancer mortality among 5,436 male workers 
first employed at beryllium processing plants in Reading, PA, Elmore, 
OH, and Hazleton, PA, prior to 1970 (Schubauer-Berigan et al., 2011, 
Document ID 1265). This risk assessment addresses important sources of 
uncertainty for previous lung cancer analyses, including the sole prior 
exposure-response analysis for beryllium and lung cancer, conducted by 
Sanderson et al. (2001) on workers from the Reading plant alone. 
Workers from the Elmore and Hazleton plants who were added to the 
analysis by Schubauer-Berigan et al. were, in general, exposed to lower 
levels of beryllium than those at the Reading plant. The median worker 
from Hazleton had a LTW average exposure of less than 1.5 [mu]g/m\3\, 
while the median worker from Elmore had a LTW average exposure of less 
than 1 [mu]g/m\3\. The Elmore and Hazleton worker populations also had 
fewer short-term workers than the Reading population. Finally, the 
updated cohorts followed the worker populations through 2005, 
increasing the length of follow-up time compared to the previous 
exposure-response analysis. For these reasons, OSHA based the 
preliminary risk assessment for lung cancer on the Schubauer-Berigan 
risk analysis.
    Schubauer-Berigan et al. (2011, Document ID 1265) analyzed the data 
set using a variety of exposure-response modeling approaches, described 
in this preamble at section VI, Risk Assessment. The authors found that 
lung cancer mortality risk was strongly and significantly correlated 
with mean, cumulative, and maximum measures of workers' exposure to 
beryllium (all of the models reported in the study). They selected the 
best-fitting models to generate risk estimates for male workers with a 
mean exposure of 0.5 [mu]g/m\3\ (the current NIOSH Recommended Exposure 
Limit for beryllium). In addition, they estimated the daily weighted 
average exposure that would be associated with an excess lung cancer 
mortality risk of one in one thousand (.005 [mu]g/m\3\ to .07 [mu]g/
m\3\ depending on model choice). At OSHA's request, the authors also 
estimated excess lifetime risks for workers with mean exposures at the 
preceding TWA PEL of 2 [mu]g/m\3\ as well as at each of the alternate 
TWA PELs that were under consideration: 1 [mu]g/m\3\, 0.2 [mu]g/m\3\, 
and 0.1 [mu]g/m\3\. Table VII-4 presents the estimated excess risk of 
lung cancer mortality associated with various levels of beryllium 
exposure, based on the final models presented in Schubauer-Berigan et 
al's risk assessment.\30\
---------------------------------------------------------------------------

    \30\ The estimates for lung cancer represent ``excess'' risks in 
the sense that they reflect the risk of dying from lung cancer over 
and above the risk of dying from lung cancer faced by those who are 
not occupationally exposed to beryllium.

[[Page 2552]]



 Table VII-4--Excess Risk of Lung Cancer Mortality per 1,000 Male Workers at Alternate PELs (based on Schubauer-
                                              Berigan et al., 2011)
----------------------------------------------------------------------------------------------------------------
                                                                   Mean exposure
     Exposure-response model     -------------------------------------------------------------------------------
                                  0.1 [mu]g/m\3\  0.2 [mu]g/m\3\  0.5 [mu]g/m\3\   1 [mu]g/m\3\    2 [mu]g/m\3\
----------------------------------------------------------------------------------------------------------------
Best monotonic PWL-all workers..             7.3              15              45             120             140
Best monotonic PWL--excluding                3.1             6.4              17              39              61
 professional and asbestos
 workers........................
Best categorical--all workers...             4.4               9              25              59             170
Best categorical--excluding                  1.4             2.7             7.1              15              33
 professional and asbestos
 workers........................
Power model--all workers........              12              19              30              40              52
Power model--excluding                        19              30              49              68              90
 professional and asbestos
 workers........................
----------------------------------------------------------------------------------------------------------------
Source: Schubauer-Berigan, Document ID 0521, pp. 6-10.

    The lowest estimate of excess lung cancer deaths from the six final 
models presented by Schubauer-Berigan et al. is 33 per 1,000 workers 
exposed at a mean level of 2 [mu]g/m\3\, the preceding TWA PEL. Risk 
estimates as high as 170 lung cancer deaths per 1,000 result from the 
other five models presented. Regardless of the model chosen, the excess 
risk of about 33 to 170 per 1,000 workers is clearly significant, 
falling well above the level of risk the Supreme Court indicated a 
reasonable person might consider acceptable (see Benzene, 448 U.S. at 
655). The new PEL of 0.2 [mu]g/m\3\ is expected to reduce these risks 
significantly, to somewhere between 2.7 and 30 excess lung cancer 
deaths per 1,000 workers. At the new action level of 0.1 [mu]g/m\3\, 
risk falls within the range of 1.4 to 19 excess lung cancer deaths. 
These risk estimates still fall above the threshold of 1 in 1,000 that 
OSHA considers clearly significant. However, the Agency believes the 
lung cancer risks should be regarded as less certain than the risk 
estimates for CBD and sensitization discussed previously. While the 
risk estimates for CBD and sensitization at the preceding and new TWA 
PELs were determined from exposure levels observed in occupational 
studies, the lung cancer risks were extrapolated from much higher 
exposure levels.

Conclusions

    As discussed throughout this section, OSHA used the best available 
scientific evidence to identify adverse health effects of occupational 
beryllium exposure, and to evaluate exposed workers' risk of these 
impairments. The Agency reviewed extensive epidemiological and 
experimental research pertaining to adverse health effects of 
occupational beryllium exposure, including lung cancer, CBD, and 
beryllium sensitization, and has evaluated the risk of these effects 
from exposures allowed under the preceding and new TWA PELs. The Agency 
has, additionally, reviewed the medical literature, as well as previous 
policy determinations and case law regarding material impairment of 
health, and has determined that CBD, at all stages, and lung cancer 
constitute material health impairments.
    OSHA has determined that long-term exposure to beryllium at the 
preceding TWA PEL would pose a risk of CBD and lung cancer greater than 
the risk of 1 per 1,000 exposed workers the Agency considers clearly 
significant, and that adoption of the new TWA PEL, action level, and 
dermal protection requirements of the final standards will 
substantially reduce this risk. OSHA believes substantial evidence 
supports its determinations, including its choices of the best 
available published studies on which to base its risk assessment, its 
examination of the prevalence of sensitization and CBD among workers 
with exposure levels comparable to the preceding TWA PEL and new TWA 
PEL in the NJH data set, and its selection of the Schubauer-Berigan QRA 
to form the basis for its lung cancer risk estimates. The previously-
described analyses demonstrate that workers with occupational exposure 
to airborne beryllium at the preceding PEL face risks of developing CBD 
and dying from lung cancer that far exceed the value of 1 in 1,000 used 
by OSHA as a benchmark of clearly significant risk. Furthermore, OSHA's 
risk assessment indicates that risk of CBD and lung cancer can be 
significantly reduced by reduction of airborne exposure levels, and 
that dermal protection measures will additionally help reduce risk of 
sensitization and, therefore, of CBD.
    OSHA's risk assessment also indicates that, despite the reduction 
in risk expected with the new PEL, the risks of CBD and lung cancer to 
workers with average exposure levels of 0.2 [mu]g/m\3\ are still 
significant and could extend down to 0.1 [mu]g/m\3\, although there is 
greater uncertainty in this finding for 0.1 [mu]g/m\3\ since there is 
less information available on populations exposed at and below this 
level. Although significant risk remains at the new TWA PEL, OSHA is 
also required to consider the technological and economic feasibility of 
the standard in determining exposure limits. As explained in Section 
VIII, Summary of the Final Economic Analysis and Final Regulatory 
Flexibility Analysis, OSHA determined that the new TWA PEL of 0.2 
[mu]g/m\3\ is both technologically and economically feasible in the 
general industry, construction, and shipyard sectors. OSHA was unable 
to demonstrate, however, that a lower TWA PEL of 0.1 [mu]g/m\3\ would 
be technologically feasible. Therefore, OSHA concludes that, in setting 
a TWA PEL of 0.2 [mu]g/m\3\, the Agency is reducing the risk to the 
extent feasible, as required by the OSH Act (see section II, Pertinent 
Legal Authority). In this context, the Agency finds that the action 
level of 0.1 [mu]g/m\3\, dermal protection requirements, and other 
ancillary provisions of the final rule are critically important in 
reducing the risk of sensitization, CBD, and lung cancer among workers 
exposed to beryllium. Together, these provisions, along with the new 
TWA PEL of 0.2 [mu]g/m\3\, will substantially reduce workers' risk of 
material impairment of health from occupational beryllium exposure.

VIII. Summary of the Final Economic Analysis and Final Regulatory 
Flexibility Analysis

A. Introduction

    OSHA's Final Economic Analysis and Final Regulatory Flexibility 
Analysis (FEA) addresses issues related to the costs, benefits, 
technological and economic feasibility, and the economic impacts 
(including impacts on small entities) of this final beryllium rule and 
evaluates regulatory alternatives to the final rule. Executive Orders 
13563 and

[[Page 2553]]

12866 direct agencies to assess all costs and benefits of available 
regulatory alternatives and, if regulation is necessary, to select 
regulatory approaches that maximize net benefits (including potential 
economic, environmental, and public health and safety effects; 
distributive impacts; and equity). Executive Order 13563 emphasized the 
importance of quantifying both costs and benefits, of reducing costs, 
of harmonizing rules, and of promoting flexibility. The full FEA has 
been placed in OSHA rulemaking docket OSHA-H005C-2006-0870. This rule 
is an economically significant regulatory action under Sec. 3(f)(1) of 
Executive Order 12866 and has been reviewed by the Office of 
Information and Regulatory Affairs in the Office of Management and 
Budget, as required by executive order.
    The purpose of the FEA is to:
     Identify the establishments and industries potentially 
affected by the final rule;
     Estimate current exposures and the technologically 
feasible methods of controlling these exposures;
     Estimate the benefits resulting from employers coming into 
compliance with the final rule in terms of reductions in cases of lung 
cancer, chronic beryllium disease;
     Evaluate the costs and economic impacts that 
establishments in the regulated community will incur to achieve 
compliance with the final rule;
     Assess the economic feasibility of the final rule for 
affected industries; and
     Assess the impact of the final rule on small entities 
through a Final Regulatory Flexibility Analysis (FRFA), to include an 
evaluation of significant regulatory alternatives to the final rule 
that OSHA has considered.
Significant Changes to the FEA Between the Proposed Standards and the 
Final Standards
    OSHA made changes to the Preliminary Economic Analysis (PEA) for 
several reasons:
     Changes to the rule, summarized in Section I of the 
preamble and discussed in detail in the Summary and Explanation;
     Comments on the PEA;
     Updates of economic data; and
     Recognition of errors in the PEA.
    OSHA revised its technological and economic analysis in response to 
these changes and to comments received on the NPRM. The FEA contains 
some costs that were not included in the PEA and updates data to use 
more recent data sources and, in some cases, revised methodologies. 
Detailed discussions of these changes are included in the relevant 
sections throughout the FEA.
    The Final Economic Analysis contains the following chapters:

Chapter I. Introduction
Chapter II. Market Failure and the Need for Regulation
Chapter III. Profile of Affected Industries
Chapter IV. Technological Feasibility
Chapter V. Costs of Compliance
Chapter VI. Economic Feasibility Analysis and Regulatory Flexibility 
Determination
Chapter VII. Benefits and Net Benefits
Chapter VIII. Regulatory Alternatives
Chapter IX. Final Regulatory Flexibility Analysis

    Table VIII-1 provides a summary of OSHA's best estimate of the 
costs and benefits of the final rule using a discount rate of 3 
percent. As shown, the final rule is estimated to prevent 90 fatalities 
and 46 beryllium-related illnesses annually once it is fully effective, 
and the estimated cost of the rule is $74 million annually. Also as 
shown in Table VIII-1, the discounted monetized benefits of the final 
rule are estimated to be $561 million annually, and the final rule is 
estimated to generate net benefits of $487 million annually. Table 
VIII-1 also presents the estimated costs and benefits of the final rule 
using a discount rate of 7 percent.

   Table VIII-1--Annualized Benefits, Costs and Net Benefits of OSHA's
                        Final Beryllium Standard
                 [3 Percent Discount Rate, 2015 dollars]
------------------------------------------------------------------------
 
------------------------------------------------------------------------
Annualized Costs:
  Control Costs.........................................     $12,269,190
  Rule Familiarization..................................         180,158
  Exposure Assessment...................................      13,748,676
  Regulated Areas.......................................         884,106
  Beryllium Work Areas..................................         129,648
  Medical Surveillance..................................       7,390,958
  Medical Removal.......................................       1,151,058
  Written Exposure Control Plan.........................       2,339,058
  Protective Work Clothing & Equipment..................       1,985,782
  Hygiene Areas and Practices...........................       2,420,584
  Housekeeping..........................................      22,763,595
  Training..............................................       8,284,531
  Respirators...........................................         320,885
                                                         ---------------
      Total Annualized Costs (Point Estimate)...........      73,868,230
Annual Benefits: Number of Cases Prevented:
  Fatal Lung Cancers (Midpoint Estimate)................               4
  Fatal Chronic Beryllium Disease.......................              86
  Beryllium-Related Mortality...........................              90
  Beryllium Morbidity...................................              46
  Monetized Annual Benefits (Midpoint Estimate).........    $560,873,424
Net Benefits:
  Net Benefits..........................................    $487,005,194
------------------------------------------------------------------------
Sources: US DOL, OSHA, Directorate of Standards and Guidance, Office of
  Regulatory Analysis

    The remainder of this section (Section VIII) of the preamble is 
organized as follows:

B. Market Failure and the Need for Regulation
C. Profile of Affected Industries
D. Technological Feasibility
E. Costs of Compliance
F. Economic Feasibility Analysis and Regulatory Flexibility 
Determination
G. Benefits and Net Benefits
H. Regulatory Alternatives
I. Final Regulatory Flexibility Analysis.

B. Market Failure and the Need for Regulation

    Employees in work environments addressed by the final beryllium 
rule are exposed to a variety of significant hazards that can and do 
cause serious injury and death. As described in Chapter II of the FEA 
in support of the final rule, OSHA concludes there is a demonstrable 
failure of private markets to protect workers from exposure to 
unnecessarily high levels beryllium and that private markets, as well 
as information dissemination programs, workers' compensation systems, 
and tort liability options, each may fail to protect workers from 
beryllium exposure, resulting in the need for a more protective OSHA 
beryllium rule.
    After carefully weighing the various potential advantages and 
disadvantages of using a regulatory approach to improve upon the 
current situation, OSHA concludes that, in the case of beryllium 
exposure, the final mandatory standards represent the best choice for 
reducing the risks to employees.

C. Profile of Affected Industries

    Chapter III of the FEA presents profile data for industries 
potentially affected by the final beryllium rule. This Chapter provides 
the background data used throughout the remainder of the FEA including 
estimates of what industries are affected, and their economic and 
beryllium exposure characteristics. OSHA identified the following 
application groups as affected by the standard:

 Beryllium Production
 Beryllium Oxide Ceramics and Composites
 Nonferrous Foundries
 Secondary Smelting, Refining, and Alloying
 Precision Turned Products
 Copper Rolling, Drawing, and Extruding
 Fabrication of Beryllium Alloy Products
 Welding
 Dental Laboratories
 Aluminum Production
 Coal-Fired Electric Power Generation

[[Page 2554]]

 Abrasive Blasting

    Table VIII-3 shows the affected industries by application group and 
selected economic characteristics of these affected industries. Table 
VIII-4 provides industry-by-industry estimates of current exposure.

[[Page 2555]]

[GRAPHIC] [TIFF OMITTED] TR09JA17.004


[[Page 2556]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.005


[[Page 2557]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.006


[[Page 2558]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.007


[[Page 2559]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.008


[[Page 2560]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.009


[[Page 2561]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.010


[[Page 2562]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.011


[[Page 2563]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.012


[[Page 2564]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.013


[[Page 2565]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.014


[[Page 2566]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.015


[[Page 2567]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.016


[[Page 2568]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.017


[[Page 2569]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.018


[[Page 2570]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.019


[[Page 2571]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.020


[[Page 2572]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.021


[[Page 2573]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.022


[[Page 2574]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.023


[[Page 2575]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.024


[[Page 2576]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.025


[[Page 2577]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.026


[[Page 2578]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.027


[[Page 2579]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.028


[[Page 2580]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.029


[[Page 2581]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.030


[[Page 2582]]



D. Technological Feasibility of the Final Standard on Occupational 
Exposure to Beryllium

    The OSH Act requires OSHA to demonstrate that a proposed health 
standard is technologically feasible (29 U.S.C. 655(b)(5)). As 
described in the preamble to the final rule (see Section II, Pertinent 
Legal Authority), technological feasibility has been interpreted 
broadly to mean ``capable of being done'' (Am. Textile Mfrs. Inst. v. 
Donovan, 452 U.S. 490, 509-510 (1981) (``Cotton Dust'')). A standard is 
technologically feasible if the protective measures it requires already 
exist, can be brought into existence with available technology, or can 
be created with technology that can reasonably be expected to be 
developed, i.e., technology that ``looms on today's horizon'' (United 
Steelworkers of Am., AFL-CIO-CLC v. Marshall, 647 F.2d 1189, 1272 (D.C. 
Cir. 1980) (``Lead I''); Amer. Iron & Steel Inst. v. OSHA, 939 F.2d 
975, 980 (D.C. Cir. 1991) (``Lead II''); AFL-CIO v. Brennan, 530 F.2 
109, 121 (3rd Cir. 1975)). Courts have also interpreted technological 
feasibility to mean that, for health standards, a typical firm in each 
affected industry will reasonably be able to implement engineering and 
work practice controls that can reduce workers' exposures to meet the 
permissible exposure limit in most operations most of the time, without 
reliance on respiratory protection (see Lead I, 647 F.2d at 1272; Lead 
II, 939 F.2d at 990).
    OSHA's technological feasibility analysis is presented in Chapter 
IV of the FEA. The technological feasibility analysis identifies the 
affected industries and application groups in which employees can 
reasonably be expected to be exposed to beryllium, summarizes the 
available air sampling data used to develop employee exposure profiles, 
and provides descriptions of engineering controls and other measures 
employers can take to reduce their employees' exposures to beryllium. 
For each affected industry sector or application group, OSHA provides 
an assessment of the technological feasibility of compliance with the 
final permissible exposure limit (PEL) of 0.2 [mu]g/m\3\ as an 8-hour 
TWA and a 15-minute short-term exposure limit (STEL) of 2.0 [mu]g/m\3\.
    The technological feasibility analysis covers twelve application 
groups that correspond to specific industries or production processes 
that involve the potential for occupational exposures to materials 
containing beryllium and that OSHA has determined fall within the scope 
of this final beryllium standard. Within each of these application 
groups, exposure profiles have been developed to characterize the 
distribution of the available exposure measurements by job title or 
group of jobs. Each section includes descriptions of existing, or 
baseline, engineering controls for operations that generate beryllium 
exposure. For those job groups in which current exposures were found to 
exceed the final PEL, OSHA identifies and describes additional 
engineering and work practice controls that can be implemented to 
reduce exposure and achieve compliance with the final PEL. For each 
application group or industry, a final determination is made regarding 
the technological feasibility of achieving the proposed permissible 
exposure limits based on the use of engineering and work practice 
controls and without reliance on the use of respiratory protection. The 
determination is made based on the legal standard of whether the PEL 
can be achieved for most operations most of the time using such 
controls. In a separate chapter on short-term exposures, OSHA also 
analyzes the feasibility of achieving compliance with the Short-Term 
Exposure Limit (STEL).
    The analysis is based on the best evidence currently available to 
OSHA, including a comprehensive review of the industrial hygiene 
literature, National Institute for Occupational Safety and Health 
(NIOSH) Health Hazard Evaluations and case studies of beryllium 
exposure, site visits conducted by an OSHA contractor (Eastern Research 
Group (ERG)), and inspection data from OSHA's Integrated Management 
Information System (IMIS) and OSHA's Information System (OIS). OSHA 
also obtained information on beryllium production processes, worker 
exposures, and the effectiveness of existing control measures from 
Materion Corporation, the primary beryllium producer in the United 
States, interviews with industry experts, and comments submitted to the 
rulemaking docket in response to the Notice of Proposed Rulemaking and 
informal public hearings. All of this evidence is in the rulemaking 
record.
    The twelve application groups are:
     Primary Beryllium Production,
     Beryllium Oxide Ceramics and Composites,
     Nonferrous Foundries,
     Secondary Smelting, Refining, and Alloying, Including 
Handling of Scrap and Recycled Materials,
     Precision Turned Products,
     Copper Rolling, Drawing, and Extruding,
     Fabrication of Beryllium Alloy Products,
     Welding,
     Dental Laboratories,
     Abrasive Blasting,
     Coal-Fired Electric Power Generation,
     Aluminum Production
    For discussion purposes, the twelve application groups are divided 
into four general categories based on the distribution of exposures in 
the exposure profiles: (1) Application groups in which baseline 
exposures for most jobs are already at or below the final PEL of 0.2 
[mu]g/m\3\; (2) application groups in which baseline exposures for one 
or more jobs exceed the final PEL of 0.2 [mu]g/m\3\, but additional 
controls have been identified that could achieve exposures at or below 
the final PEL for most of the operations most of the time; (3) 
application groups in which exposures in one or more jobs routinely 
exceed the preceding PEL of 2.0 [mu]g/m\3\, and therefore substantial 
reductions in exposure would be required to achieve the final PEL; and 
(4) application groups in which exposure to beryllium occurs due to 
trace levels of beryllium found in dust or fumes that nonetheless can 
result in exposures that exceed 0.1 [mu]g/m\3\ as an 8-hour TWA under 
foreseeable conditions.
    The application groups in category 1, where exposures for most jobs 
are already at or below the final PEL of 0.2 [mu]g/m\3\, typically 
handle beryllium alloys containing a low percentage of beryllium (<2 
percent) using processes that do not result in significant airborne 
exposures. These four application groups are (1) copper rolling, 
drawing, and extruding; (2) fabrication of beryllium alloy products; 
(3) welding; and (4) aluminum production. The handling of beryllium 
alloys in solid form is not expected to result in exposures of concern. 
For example, beryllium alloys used in copper rolling, drawing, and 
extruding typically contain 2 percent beryllium by weight or less 
(Document ID 0081, Attachment 1). One facility noted that the copper-
beryllium alloys it used contained as little as 0.1 percent beryllium 
(Document ID 0081, Attachment 1). These processes, such as rolling 
operations that consist of passing beryllium alloys through a rolling 
press to conform to a desired thickness, tend to produce less 
particulate and fume than high energy processes. Exposures can be 
controlled using containment, exhaust ventilation, and work practices 
that include rigorous housekeeping. In addition, the heating of metal 
during welding operations results in the release of fume, but the 
beryllium in the welding fume accounts for a relatively small 
percentage of the beryllium exposure. Worker exposure to beryllium

[[Page 2583]]

during welding activities is largely attributable to flaking oxide 
scale on the base metal, which can be reduced through chemically 
stripping or pickling the beryllium alloy piece prior to welding on it, 
and/or enhancing exhaust ventilation (Corbett, 2006; Kent, 2005; 
Materion Information Meeting, 2012).
    For application groups in category 2, where baseline exposures for 
one or more jobs exceed the final PEL of 0.2 [mu]g/m \3\, but 
additional controls have been identified that could achieve exposures 
at or below the final PEL for most of the operations most of the time, 
workers may encounter higher content beryllium (20 percent or more by 
weight), or higher temperature processes (Document ID 1662, p. 4.) The 
application groups in the second category are: (1) Precision turned 
products and (2) secondary smelting, refining, and alloying. While the 
median exposures for most jobs in these groups are below the preceding 
PEL of 2.0 [mu]g/m\3\, the median exposures for some jobs in these 
application groups exceed the final PEL of 0.2 [mu]g/m\3\ when not 
adequately controlled. For these application groups, additional 
exposure controls and work practices will be required to reduce 
exposures to or below the final PEL for most operations most of the 
time. For example, personal samples collected at a precision turned 
products facility that machined pure beryllium metal and high beryllium 
content materials (40-60 percent) measured exposures on two machinists 
of 2.9 and 6.6 [mu]g/m3 (ERG Beryllium Site 4, 2003). A second survey 
at this same facility conducted after an upgrade to the ventilation 
systems in the mill and lathe departments measured PBZ exposures for 
these machinists of 1.1 and 2.3 [mu]g/m\3\ (ERG Beryllium Site 9, 
2004), and it was noted that not all ventilation was optimally 
positioned, indicating that further reduction in exposure could be 
achieved. In 2007, the company reported that after the installation of 
enclosures on milling machines and additional exhaust, average 
exposures to mill and lathe operators were reduced to below 0.2 
[micro]g/m\3\ (ICBD, 2007). For secondary smelting operations, several 
surveys conducted at electronic recycling and precious metal recovery 
operations indicate that exposures for mechanical processing operators 
can be controlled to or below 0.2 [micro]g/m\3\. However, for furnace 
operations in secondary smelting, the median value in the exposure 
profile exceeds the preceding PEL. Furnace operations involve high 
temperatures that produce significant amounts of fumes and particulate 
that can be difficult to contain. Therefore, the reduction of 8-hour 
average exposures to or below the final PEL may not be achievable for 
most furnace operations involved with secondary smelting of beryllium 
alloys. In these cases, the supplemental use of respiratory protection 
for specific job tasks will be needed to adequately protect furnace 
workers for operations where exposures are found to exceed 0.2 [mu]g/
m\3\ despite the implementation of all feasible engineering and work 
practice controls.
    The application groups in category 3 include application groups for 
which the exposure profiles indicate that exposures in one or more jobs 
routinely exceed the preceding PEL of 2.0 [mu]g/m\3\. The three 
application groups in this category are: (1) Beryllium production, (2) 
beryllium oxide ceramics production, and (3) nonferrous foundries. For 
the job groups in which exposures have been found to routinely exceed 
the preceding PEL, OSHA identifies additional exposure controls and 
work practices that the Agency has determined can reduce exposures to 
or below the final PEL, most of the time. For example, OSHA concluded 
that exposures to beryllium resulting from material transfer, loading, 
and spray drying of beryllium oxide powders can be reduced to or below 
0.2 [micro]g/m3 with process enclosures, ventilation hoods, and 
diligent housekeeping for material preparation operators working in 
beryllium oxide ceramics and composites facilities (FEA, Chapter IV-
04). However, for furnace operations in primary beryllium production 
and nonferrous foundries, and shakeout operations at nonferrous 
foundries, OSHA recognizes that even after installation of feasible 
controls, supplemental use of respiratory protection may be needed to 
protect workers adequately (FEA, Chapter IV-03 and IV-05). The evidence 
in the rulemaking record is insufficient to conclude that these 
operations would be able to reduce the majority of the exposure to 
levels below 0.2 [mu]g/m\3\ most of the time, and therefore some 
increased supplemental use of respiratory protection may be required 
for certain tasks in these jobs.
    Category 4 includes application groups that encounter exposure to 
beryllium due to trace levels found in dust or fumes that nonetheless 
can exceed 0.1 [mu]g/m\3\ as an 8-hour TWA under foreseeable 
conditions. The application groups in this category are (1) coal-fired 
power plants in which exposure to beryllium can occur due to trace 
levels of beryllium in the fly ash during very dusty maintenance 
operations, such as cleaning the air pollution control devices; (2) 
aluminum production in which exposure to beryllium can occur due to 
naturally occurring trace levels of beryllium found in bauxite ores 
used to make aluminum; and (3) abrasive blasting using coal and copper 
slag that can contain trace levels of beryllium. Workers who perform 
abrasive blasting using either coal or copper slag abrasives are 
potentially exposed to beryllium due to the high total exposure to the 
blasting media. Due to the very small amounts of beryllium in these 
materials, the final PEL for beryllium will be exceeded only during 
operations that generate excessive amount of visible airborne dust, for 
which engineering controls and respiratory protection are already 
required. However, the other workers in the general vicinity do not 
experience these high exposures if proper engineering controls and work 
practices, such as temporary enclosures and maintaining appropriate 
distance during the blasting or maintenance activities, are 
implemented.
    During the rulemaking process, OSHA requested and received comments 
regarding the feasibility of the PEL of 0.2 [mu]g/m\3\, as well as the 
proposed alternative PEL of 0.1 [micro]g/m\3\ (80 FR 47565, 47780 (Aug. 
7, 2015)). OSHA did this because it recognizes that significant risk of 
beryllium disease is not eliminated at an exposure level of 0.2 [mu]g/
m\3\. As discussed below, OSHA finds that the proposed PEL of 0.2 
[mu]g/m\3\ can be achieved through engineering and work practice 
controls in most operations most of the time in all the affected 
industry sectors and application groups, and therefore is feasible for 
these industries and application groups under the OSH Act. OSHA could 
not find, however, that the proposed alternative PEL of 0.1 [mu]g/m\3\ 
is also feasible for all of the affected industry sectors and 
application groups.
    The majority of commenters, including stakeholders in labor and 
industry, public health experts, and the general public, explicitly 
supported the proposed PEL of 0.2 [micro]g/m\3\ (NIOSH, Document ID 
1671, Attachment 1, p. 2; National Safety Council, 1612, p. 3; 
Beryllium Health and Safety Committee Task Group, 1655, p. 2; Newport 
News Shipbuilding, 1657, p. 1; National Jewish Health (NJH), 1664, p. 
2; the Aluminum Association, 1666, p. 1; the Boeing Company, 1667, p. 
1; American Industrial Hygiene Association, 1686, p. 2; United 
Steelworkers (USW), 1681, p. 7; Andrew Brown, 1636, p. 6; Department of 
Defense, 1684, p. 1). In addition, Materion Corporation, the sole

[[Page 2584]]

primary beryllium production company in the U.S., and USW, jointly 
submitted a draft proposed rule that included an exposure limit of 0.2 
[mu]g/m\3\ (Document ID 0754, p. 4). In its written comments, Materion 
explained that it is feasible to control exposure to levels below 0.2 
[mu]g/m\3\ through the use of engineering controls and work practices 
in most, but not all, operations:

    Based on many years' experience in controlling beryllium 
exposures, its vigorous product stewardship program in affected 
operations, and the judgment of its professional industrial hygiene 
staff, Materion Brush believes that the 0.2 [mu]g/m\3\ PEL for 
beryllium, based on median exposures, can be achieved in most 
operations, most of the time. Materion Brush does recognize that it 
is not feasible to reduce exposures to below the PEL in some 
operations, and in particular, certain beryllium production 
operations, solely through the use of engineering and work practice 
controls (Document ID 1052).

    On the other hand, the Nonferrous Founders' Society (NFFS) asserted 
that OSHA had not demonstrated that the final PEL of 0.2 [micro]g/m\3\ 
was feasible for the nonferrous foundry industry (Document ID 1678, pp. 
2-3). NFFS asserted that ``OSHA has failed to meet its burden of proof 
that a ten-fold reduction to the current two micrograms per cubic meter 
limit is technologically or economically feasible in the non-ferrous 
foundry industry'' (Document ID 1678, pp. 2-3; 1756, Tr. 18). In 
written testimony submitted as a hearing exhibit, NFFS claimed that 
OSHA's supporting documentation in the PEA had no ``concrete assurance 
on technologic feasibility either by demonstration or technical 
documentation'' (Document ID 1732, Appendix A, p. 4).
    However, contrary to the NFFS comments, which are addressed at 
greater length in Section IV-5 of the FEA, OSHA's exposure profile is 
based on the best available evidence for nonferrous foundries; the 
exposure data are taken from NIOSH surveys, an ERG site visit, and the 
California Cast Metals Association (Document ID 1217; 1185; 0341, 
Attachment 6; 0899). Materion also submitted substantial amounts of 
monitoring data, process descriptions and information of engineering 
controls that have been implemented in its facilities to control 
beryllium exposure effectively, including operations that involve the 
production of beryllium alloys using the same types of furnace and 
casting operations as those conducted at nonferrous foundries producing 
beryllium alloys (Document ID 0719; 0720; 0723). Furthermore, Materion 
submitted the above-referenced letter to the docket stating that, based 
on its many years of experience controlling beryllium exposures, a PEL 
of 0.2 [mu]g/m\3\ can be achieved in most operations, most of the time 
(Document ID 1052). Materion's letter is consistent with the monitoring 
data Materion submitted, and OSHA considers its statement regarding 
feasibility at the final PEL relevant to nonferrous foundries because 
Materion has similar operations in its facilities, such as beryllium 
alloy production. As stated in Section IV-5 of the FEA, the size and 
configuration of nonferrous foundries may vary, but they all use 
similar processes; they melt and pour molten metal into the prepared 
molds to produce a casting, and remove excess metal and blemishes from 
the castings (NIOSH 85-116, 1985). While the design may vary, the basic 
operations and worker job tasks are similar regardless of whether the 
casting metal contains beryllium.
    In the NPRM, OSHA requested that affected industries submit to the 
record any available exposure monitoring data and comments regarding 
the effectiveness of currently implemented control measures to inform 
the Agency's final feasibility determinations. During the informal 
public hearings, OSHA asked the NFFS panel to provide information on 
current engineering controls or the personal protective equipment used 
in foundries claiming to have difficulty complying with the preceding 
PEL, but no additional information was provided (Document ID 1756; Tr. 
24-25; 1785, p. 1). Thus, the NFFS did not provide any sampling data or 
other evidence regarding current exposure levels or existing control 
measures to support its assertion that a PEL of 0.2 [mu]g/m\3\ is not 
feasible, and did not show that the data in the record are insufficient 
to demonstrate technological feasibility for nonferrous foundry 
industry.
    In sum, while OSHA agrees that two of the operations in the 
nonferrous foundry industry, furnace and shakeout operations, employing 
a relatively small percentage of workers in the industry, may not be 
able to achieve the final PEL of 0.2 [mu]g/m\3\ most of the time, 
evidence in the record indicates that the final PEL is achievable in 
the other six job categories in this industry. Therefore, in the FEA, 
OSHA finds the PEL of 0.2 [mu]g/m\3\ is technologically feasible for 
the nonferrous foundry industry.
    OSHA also recognizes that engineering and work practice controls 
may not be able to consistently reduce and maintain exposures to the 
final PEL of 0.2 [mu]g/m\3\ in some job categories in other application 
groups, due to the processing of materials containing high 
concentrations of beryllium, which can result in the generation of 
substantial amounts of fumes and particulate. For example, the final 
PEL of 0.2 [mu]g/m\3\ cannot be achieved most of the time for furnace 
operations in primary beryllium production and for some furnace 
operation activities in secondary smelting, refining, and alloying 
facilities engaged in beryllium recovery and alloying. Workers may need 
supplementary respiratory protection during these high exposure 
activities where exposures exceed the final PEL of 0.2 [mu]g/m\3\ or 
STEL of 2.0 [mu]g/m\3\ with engineering and work practice controls. In 
addition, OSHA has determined that workers who perform open-air 
abrasive blasting using mineral grit (i.e., coal slag) will routinely 
be exposed to levels above the final PEL (even after the installation 
of feasible engineering and work practice controls), and therefore, 
these workers will also be required to wear respiratory protection.
    Overall, however, based on the information discussed above and the 
other evidence in the record and described in Chapter IV of the FEA, 
OSHA has determined that for the majority of the job groups evaluated 
exposures are either already at or below the final PEL, or can be 
adequately controlled to levels below the final PEL through the 
implementation of additional engineering and work practice controls for 
most operations most of the time. Therefore, OSHA concludes that the 
final PEL of 0.2 [mu]g/m\3\ is technologically feasible.
    In contrast, the record evidence does not show that it is feasible 
for most operations in all affected industries and application groups 
to achieve the alternative PEL of 0.1 [mu]g/m\3\ most of the time. As 
discussed below, although a number of operations can achieve this 
level, they may be interspersed with operations that cannot, and OSHA 
sees value in having a uniform PEL that can be enforced consistently 
for all operations, rather than enforcing different PELs for the same 
contaminant in different operations.
    Several commenters supported a PEL of 0.1 [mu]g/m\3\. Specifically, 
Public Citizen; the American Federation of Labor and Congress of 
Industrial Organizations (AFL-CIO); the International Union, United 
Automobile, Aerospace, and Agriculture Implement Workers of America 
(UAW); North America's Building Trades Unions (NABTU); and the American 
College of Occupational and Environmental Medicine contended that OSHA 
should adopt this lower level because of the residual risk at 0.2 
[mu]g/m\3\

[[Page 2585]]

(Document ID 1689, p. 7; 1693, p. 3; 1670, p. 1; 1679, pp. 6-7; 1685, 
p. 1; 1756, Tr. 167). Two of these commenters, Public Citizen and the 
AFL-CIO, also contended that a TWA PEL of 0.1 [mu]g/m3 is feasible 
(Document ID 1756, Tr. 168-169, 197-198). Neither of those commenters, 
however, submitted any additional evidence to the record that OSHA 
could rely on to conclude that a PEL of 0.1 [mu]g/m\3\ is achievable.
    On the other hand, the Beryllium Health and Safety Committee and 
NJH specifically rejected a PEL of 0.1 [mu]g/m\3\ in their comments. 
They explained that they believed the proposed PEL of 0.2 [mu]g/m\3\ 
and the ancillary provisions would reduce the prevalence of beryllium 
sensitization and chronic beryllium disease (CBD) and be the best 
overall combination for protecting workers when taking into 
consideration the analytical chemistry capabilities and economic 
considerations (Document ID 1655, p. 16; 1664, p. 2).
    Based on the record evidence, OSHA cannot conclude that the 
alternative PEL of 0.1 [mu]g/m\3\ is achievable most of the time for at 
least one job category in 8 of the 12 application groups or industries 
included in this analysis: Primary beryllium production; beryllium 
oxide ceramics and composites; nonferrous foundries; secondary 
smelting, refining, and alloying, including handling of scrap and 
recycled materials; precision turned products; dental laboratories; 
abrasive blasting; and coal-fired electric power generation. In 
general, OSHA's review of the available sampling data indicates that 
the alternative PEL of 0.1 [mu]g/m\3\ cannot be consistently achieved 
with engineering and work practice controls in application groups that 
use materials containing high percentages of beryllium or that involve 
processes that result in the generation of substantial amounts of fumes 
and particulate. Variability in processes and materials for operations 
involving the heating or machining of beryllium alloys or beryllium 
oxide ceramics also makes it difficult to conclude that exposures can 
be routinely reduced to below 0.1 [mu]g/m\3\. For example, in the 
precision turned products industry, OSHA has concluded that exposures 
for machinists machining pure beryllium or high beryllium alloys can be 
reduced to or below 0.2 [mu]g/m\3\, but not 0.1 [mu]g/m\3\. 
Additionally, OSHA has determined that job categories that involve 
high-energy operations will not be able to consistently achieve 0.1 
[mu]g/m\3\ (e.g., abrasive blasting with coal slag in open-air). These 
operations can cause workers to have elevated exposures even when 
available engineering and work practice controls are used.
    In other cases, paucity of data or other data issues prevent OSHA 
from determining whether engineering and work practice controls can 
reduce exposures to or below 0.1 [mu]g/m\3\ most of the time (see 
Chapter IV of the FEA). A large portion of the sample results obtained 
by OSHA for the dental laboratories industry and for two of the job 
categories in the coal-fired electric power generation industry 
(operations workers and routine maintenance workers) were below the 
reported limit of detection (LOD). Because the LODs for many of these 
samples were higher than 0.1 [mu]g/m\3\, OSHA could not assess whether 
exposures were below 0.1 [mu]g/m\3\. For example, studies of dental 
laboratories showed that use of well-controlled ventilation can 
consistently reduce exposures to below the LOD of 0.2 [mu]g/m\3\. 
However, without additional information, OSHA cannot conclude that 
exposures can be reduced to or below 0.1 [mu]g/m\3\ most of the time. 
Therefore, OSHA cannot determine if a PEL of 0.1 [mu]g/m\3\ would be 
feasible for the dental laboratory industry.
    The lack of available data has also prevented OSHA from determining 
whether exposures at or below of 0.1 [mu]g/m\3\ can be consistently 
achieved for machining operators in the beryllium oxide ceramics and 
composites industry. As discussed in Section IV-4 of the FEA, the 
exposure profile for dry (green) machining and lapping and plate 
polishing (two tasks within the machining operator job category) is 
based on 240 full-shift PBZ samples obtained over a 10-year period 
(1994 to 2003). The median exposure levels in the exposure profile for 
green machining and lapping and polishing are 0.16 [mu]g/m\3\ and 0.29 
[mu]g/m\3\, respectively. While the record indicates that improvements 
in exposure controls were implemented over time (Frigon, 2005, Document 
ID 0825; Frigon, 2004 (Document ID 0826)), data showing to what extent 
exposures have been reduced are not available. Nonetheless, because the 
median exposures for green machining are already below 0.2 [mu]g/m\3\, 
and the median exposures for lapping and polishing are only slightly 
above the PEL of 0.2 [mu]g/m\3\, OSHA concluded that the controls that 
have been implemented are sufficient to reduce exposures to at or below 
0.2 [mu]g/m\3\ most of the time. However, without additional 
information, OSHA cannot conclude that exposures could be reduced to or 
below 0.1 [mu]g/m\3\ most of the time for these tasks.
    Most importantly for this analysis, the available evidence 
demonstrates that the alternative PEL of 0.1 [mu]g/m\3\ is not 
achievable in five out of the eight job categories in the nonferrous 
foundries industry: Furnace operator, shakeout operator, pouring 
operator, material handler, and molder. As noted above, the first two 
of these job categories, furnace operator and shakeout operator, which 
together employ only a small fraction of the workers in this industry, 
cannot achieve the final PEL of 0.2 [mu]g/m\3\ either, but evidence in 
the record demonstrates that nonferrous foundries can reduce the 
exposures of most of the rest of the workers in the other six job 
categories to or below the final PEL of 0.2 [mu]g/m\3\, most of the 
time. However, OSHA's feasibility determination for the pouring 
operator, material handler, and molder job categories, which together 
employ more than half the workers at these foundries, does not allow 
the Agency to conclude that exposures for those jobs can be 
consistently lowered to the alternative PEL of 0.1 [mu]g/m\3\. See 
Section IV-5 of the FEA. Thus, OSHA cannot conclude that most 
operations in the nonferrous foundries industry can achieve a PEL of 
0.1 [mu]g/m\3\, most of the time. Accordingly, OSHA finds that the 
alternative PEL of 0.1 [mu]g/m\3\ is not feasible for the nonferrous 
foundries industry.
    OSHA has also determined either that information in the rulemaking 
record demonstrates that 0.1 [mu]g/m\3\ is not consistently achievable 
in a number of operations in other affected industries or that the 
information is insufficient to establish that engineering and work 
practice controls can consistently reduce exposures to or below 0.1 
[mu]g/m\3\. Therefore, OSHA finds that the proposed alternative PEL of 
0.1 [mu]g/m\3\ is not appropriate, and the rule's final PEL of 0.2 
[mu]g/m\3\ is the lowest exposure limit that can be found to be 
technologically feasible through engineering and work practice controls 
in all of the affected industries and application groups included in 
this analysis.
    Because of this inability to achieve 0.1 [mu]g/m\3\ in many 
operations, if OSHA were to adopt a PEL of 0.1 [mu]g/m\3\, a 
substantial number of employees would be required to wear respirators. 
As discussed in the Summary and Explanation for paragraph (f), Methods 
of Compliance, use of respirators in the workplace presents a number of 
independent safety and health concerns. Workers wearing respirators may 
experience diminished vision, and respirators can impair the ability of 
employees to communicate with one another. Respirators can impose 
physiological burdens on employees due to the weight of the respirator 
and increased breathing resistance

[[Page 2586]]

experienced during operation. The level of physical work effort 
required, the use of protective clothing, and environmental factors 
such as temperature extremes and high humidity can interact with 
respirator use to increase the physiological strain on employees. 
Inability to cope with this strain as a result of medical conditions 
such as cardiovascular and respiratory diseases, reduced pulmonary 
function, neurological or musculoskeletal disorders, impaired sensory 
function, or psychological conditions can place employees at increased 
risk of illness, injury, and even death. The widespread, routine use of 
respirators for extended periods of time that may be required by a PEL 
of 0.1 [mu]g/m\3\ creates more significant concerns than the less 
frequent respirator usage that is required by a PEL of 0.2 [mu]g/m\3\.
    Furthermore, OSHA concludes that it would complicate both 
compliance and enforcement of the rule if it were to set a PEL of 0.1 
[mu]g/m\3\ for some industries or operations and a PEL of 0.2 [mu]g/
m\3\ for the remaining industries and operations where technological 
feasibility at the lower PEL is either unattainable or unknown. OSHA 
may exercise discretion to issue a uniform PEL if it determines that 
the PEL is technologically feasible for all affected industries (if not 
for all affected operations) and that a uniform PEL would constitute 
better public policy. See Pertinent Legal Authority (discussing the 
Chromium decision). In declining to lower the PEL to 0.1 [mu]g/m\3\ for 
any segment of the affected industries, OSHA has made that 
determination here. Therefore, OSHA has determined that the proposed 
alternative PEL of 0.1 [mu]g/m\3\ is not appropriate.
    OSHA also evaluated the technological feasibility of the final STEL 
of 2.0 [mu]g/m\3\ and the alternative STEL of 1.0 [mu]g/m\3\. An 
analysis of the available short-term exposure measurements presented in 
Chapter IV, Section 15 of the FEA indicates that elevated exposures can 
occur during short-term tasks such as those associated with the 
operation and maintenance of furnaces at primary beryllium production 
facilities, at nonferrous foundries, and at secondary smelting 
operations. Peak exposures can also occur during the transfer and 
handling of beryllium oxide powders. OSHA finds that in many cases, the 
control of peak short-term exposures associated with these intermittent 
tasks will be necessary to reduce workers' TWA exposures to or below 
the final PEL. The short-term exposure data presented in the FEA show 
that the majority (79%) of these exposures are already below 2.0 [mu]g/
m\3\.
    A number of stakeholders submitted comments related to the proposed 
and alternative STELs. Some of these stakeholders supported a STEL of 
2.0 [mu]g/m\3\. Materion stated that a STEL of 2.0 [mu]g/m\3\ for 
controlling the upper range of worker short term exposures is 
sufficient to prevent CBD (Document ID 1661, p. 3). Other commenters 
recommended a STEL of 1.0 [mu]g/m\3\ (Document ID 1661, p. 19; 1681, p. 
7). However, no additional engineering controls capable of reducing 
short term exposures to at or below 1.0 [mu]g/m\3\ were identified by 
these commenters. OSHA provides a full discussion of the public 
comments in the Summary and Explanation section of this preamble. OSHA 
has determined that the implementation of engineering and work practice 
controls required to maintain full shift exposures at or below a PEL of 
0.2 [mu]g/m\3\ will reduce short term exposures to 2.0 [mu]g/m\3\ or 
below, and that a STEL of 1.0 [mu]g/m\3\ would require additional 
respirator use. Furthermore, OSHA notes that the combination of a PEL 
of 0.2 [mu]g/m\3\ and a STEL of 2.0 [mu]g/m\3\ would, in most cases, 
keep workers from being exposed to 15 minute intervals of 1.0 [mu]g/
m\3\. See Table IV.78 of Chapter IV of the FEA.
    Therefore, OSHA concludes that the STEL of 2.0 [mu]g/m\3\ can be 
achieved for most operations most of the time, given that most short-
term exposures are already below 2.0 [mu]g/m\3\. OSHA recognizes that 
for a small number of tasks, short-term exposures may exceed the final 
STEL, even after feasible control measures to reduce TWA exposure to or 
below the final PEL have been implemented, and therefore, some limited 
use of respiratory protection will continue to be required for short-
term tasks in which peak exposures cannot be reduced to less than 2.0 
[mu]g/m\3\ through use of engineering controls.
    After careful consideration of the record, including all available 
data and stakeholder comments in the record, OSHA has determined that a 
STEL of 2.0 [mu]g/m\3\ is technologically feasible. Thus, as explained 
in the Summary and Explanation for paragraph (c), OSHA has retained the 
proposed value of 2.0 [mu]g/m\3\ as the final STEL.

E. Costs of Compliance

    In Chapter V, Costs of Compliance, OSHA assesses the costs to 
general industry, maritime, and construction establishments in all 
affected application groups of reducing worker exposures to beryllium 
to an eight-hour time-weighted average (TWA) permissible exposure limit 
(PEL) of 0.2 [mu]g/m\3\ and to the final short-term exposure limit 
(STEL) of 2.0 [mu]g/m\3\, as well as of complying with the final 
standard's ancillary provisions. These ancillary provisions encompass 
the following requirements: Exposure monitoring, regulated areas (and 
competent person in construction), a written exposure control plan, 
protective work clothing, hygiene areas and practices, housekeeping, 
medical surveillance, medical removal, familiarization, and worker 
training. This final cost assessment is based in part on OSHA's 
technological feasibility analysis presented in Chapter IV of the FEA; 
analyses of the costs of the final standard conducted by OSHA's 
contractor, Eastern Research Group (ERG); and the comments submitted to 
the docket in response to the request for information (RFI) as part of 
the Small Business Regulatory Enforcement Fairness Act (SBREFA) 
process, comments submitted to the docket in response to the PEA, 
comments during the hearings conducted in March 2016, and comments 
submitted to the docket after the hearings concluded.
    Table VIII-4 presents summary of the annualized costs. All costs in 
this chapter are expressed in 2015 dollars and were annualized using a 
discount rate of 3 percent. (Costs at other discount rates are 
presented in the chapter itself). Annualization periods for 
expenditures on equipment are based on equipment life, and one-time 
costs are annualized over a 10-year period. Chapter V provides detailed 
explanation of the basis for these cost estimates.

[[Page 2587]]

[GRAPHIC] [TIFF OMITTED] TR09JA17.031


[[Page 2588]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.032


[[Page 2589]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.033


[[Page 2590]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.034

F. Economic Feasibility and Regulatory Flexibility Determination

    In Chapter VI, OSHA investigates the economic impacts of its final 
beryllium rule on affected employers. This impact investigation has two 
overriding objectives: (1) To establish whether the final rule is 
economically feasible for all affected application groups/
industries,\31\ and (2) to determine if the Agency can certify that the 
final rule will not have a significant economic impact on a substantial 
number of small entities.
---------------------------------------------------------------------------

    \31\ As noted in the FEA, OSHA uses the umbrella term 
``application group'' to refer either to an industrial sector or to 
a cross-industry group with a common process. In the industrial 
profile chapter, because some of the discussion being presented has 
historically been framed in the context of the economic feasibility 
for an ``industry,'' the Agency uses the term ``application group'' 
and ``industry'' interchangeably.
---------------------------------------------------------------------------

    Table VIII-5 presents OSHA's screening analysis, which shows costs 
as percentage of revenues and as a percentage of profits. The chapter 
explains why these screening analysis

[[Page 2591]]

results can reasonably be viewed as economically feasible. Section 
VIII.j shows similar results for small and very small entities.
[GRAPHIC] [TIFF OMITTED] TR09JA17.035


[[Page 2592]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.036


[[Page 2593]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.037


[[Page 2594]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.038


[[Page 2595]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.039


[[Page 2596]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.040

    In Chapter VII, OSHA estimates the benefits and net benefits of the 
final beryllium rule. The methodology for these estimates largely 
remains the same as in the PEA. OSHA did not receive many comments 
challenging any aspect

[[Page 2597]]

of the benefits analysis presented in the PEA. There are, however, a 
few significant alterations, such as: Using an empirical turnover rate 
as part of the estimation of exposure response functions, full analysis 
of the population model with varying turnover (a model only briefly 
presented in the PEA), and presentation of a statistical proportional 
hazard model in response to comment. The other large change to the 
benefits analysis is the result of the increase in the scope of the 
rule to protect workers in the construction and ship-building 
industries. In the proposed rule, coverage of these latter industries 
was only presented as an alternative and therefore were not included in 
the benefits in the PEA, but they are covered by the final rule.
    This chapter proceeds in five steps. The first step estimates the 
numbers of diseases and deaths prevented by comparing the current 
(baseline) situation to a world in which the final PEL is adopted in a 
final standard, and in which employees are exposed throughout their 
working lives to either the baseline or the final PEL. The second step 
also assumes that the final PEL is adopted, but uses the results from 
the first step to estimate what would happen under a realistic scenario 
in which new employees will not be exposed above the final PEL, while 
employees already at work will experience a combination of exposures 
below the final PEL and baseline exposures that exceed the final PEL 
over their working lifetime. The comparison of these steps is given in 
Table VIII-6. OSHA also presents in Chapter VII similar kinds of 
results for a variety of other risk assessment and population models.
[GRAPHIC] [TIFF OMITTED] TR09JA17.041

    The third step covers the monetization of benefits. Table VIII-7 
presents the monetization of benefits at various interest rates and 
monetization values.

[[Page 2598]]

[GRAPHIC] [TIFF OMITTED] TR09JA17.042

    In the fourth step, OSHA estimates the net benefits of the final 
rule by comparing the monetized benefits to the costs presented in 
Chapter V of the FEA. These values are presented in Table VIII-8. The 
table shows that benefits exceed costs for all situations except for 
the low estimate of benefits using a 7 percent discount rate. The low 
estimate of benefits reflects the assumption that the ancillary 
provisions have no independent effect in reducing cases of CBD. OSHA 
considers this assumption to be very unlikely, based on the available 
evidence.

[[Page 2599]]

[GRAPHIC] [TIFF OMITTED] TR09JA17.043

    In the fifth step, OSHA provides a sensitivity analysis to explore 
the robustness of the estimates of net benefits with respect to many of 
the assumptions made in developing and applying the underlying models. 
This is done because the models underlying each step inevitably need to 
make a variety of assumptions based on limited data. OSHA invited 
comments on each aspect of the data and methods used in this chapter, 
and received none specifically on the sensitivity analysis. Because 
dental laboratories constituted a significant source of both costs and 
benefits to the proposal, the PEA indicated that OSHA was particularly 
interested in comments regarding the appropriateness of the model, 
assumptions, and data for estimating the benefits to workers in that 
industry. Although the Agency did not receive any comments on this 
question directly, the American Dental Association's comments relevant 
to the underlying use of beryllium alloys in dental labs are addressed 
in Chapter III of the FEA. The Agency has not altered its main 
estimates of the exposure profile for dental laboratory workers, but 
provides sensitivity analyses in the FEA to examine the outcome if a 
lower percentage of dental laboratories were to substitute materials 
that do not contain beryllium for beryllium-containing materials. OSHA 
also estimates net benefits with a variety of scenarios in which dental 
laboratories are not included. All of these results are presented in 
Chapter VII of the FEA.

H. Regulatory Alternatives

    Chapter VIII presents the costs, benefits and net benefits of a 
variety of regulatory alternatives.

I. Final Regulatory Flexibility Analysis

    The Regulatory Flexibility Act, (RFA), Public Law 96-354, 94 Stat. 
1164 (codified at 5 U.S.C. 601), requires Federal agencies to consider 
the economic impact that a final rulemaking will have on small 
entities. The RFA states that whenever an agency promulgates a final 
rule that is required to conform to the notice-and-comment rulemaking 
requirements of section 553 of the Administrative Procedure Act (APA), 
the agency shall prepare a final regulatory flexibility analysis 
(FRFA). 5 U.S.C. 604(a).
    However, 5 U.S.C. 605(b) of the RFA states that Section 604 shall 
not apply to any final rule if the head of the agency certifies that 
the rule will not, if promulgated, have a significant economic impact 
on a substantial number of small entities. As discussed in Chapter VI 
of the FEA, OSHA was unable to so certify for the final beryllium rule.
    For OSHA rulemakings, as required by 5 U.S.C. 604(a), the FRFA must 
contain:
    1. A statement of the need for, and objectives of, the rule;
    2. a statement of the significant issues raised by the public 
comments in response to the initial regulatory flexibility analysis, a 
statement of the assessment of the agency of such issues, and a 
statement of any changes made in the proposed rule as a result of such 
comments;
    3. the response of the agency to any comments filed by the Chief 
Counsel for Advocacy of the Small Business Administration (SBA) in 
response to the proposed rule, and a detailed statement of any change 
made to the proposed rule in the final rule as a result of the 
comments;
    4. a description of and an estimate of the number of small entities 
to which the rule will apply or an explanation of why no such estimate 
is available;
    5. a description of the projected reporting, recordkeeping and 
other

[[Page 2600]]

compliance requirements of the rule, including an estimate of the 
classes of small entities which will be subject to the requirement and 
the type of professional skills necessary for preparation of the report 
or record;
    6. a description of the steps the agency has taken to minimize the 
significant economic impact on small entities consistent with the 
stated objectives of applicable statutes, including a statement of the 
factual, policy, and legal reasons for selecting the alternative 
adopted in the final rule and why each one of the other significant 
alternatives to the rule considered by the agency which affect the 
impact on small entities was rejected; and for a covered agency, as 
defined in section 609(d)(2), a description of the steps the agency has 
taken to minimize any additional cost of credit for small entities.
    The Regulatory Flexibility Act further states that the required 
elements of the FRFA may be performed in conjunction with or as part of 
any other agenda or analysis required by any other law if such other 
analysis satisfies the provisions of the FRFA. 5 U.S.C. 605(a).
    In addition to these elements, OSHA also includes in this section 
the recommendations from the Small Business Advocacy Review (SBAR) 
Panel and OSHA's responses to those recommendations.
    While a full understanding of OSHA's analysis and conclusions with 
respect to costs and economic impacts on small entities requires a 
reading of the complete FEA and its supporting materials, this FRFA 
will summarize the key aspects of OSHA's analysis as they affect small 
entities.
 The Need for, and Objective of, the Rule
    The objective of the final beryllium standard is to reduce the 
number of fatalities and illnesses occurring among employees exposed to 
beryllium. This objective will be achieved by requiring employers to 
install engineering controls where appropriate and to provide employees 
with the equipment, respirators, training, medical surveillance, and 
other protective measures necessary to perform their jobs safely. The 
legal basis for the rule is the responsibility given the U.S. 
Department of Labor through the Occupational Safety and Health Act of 
1970 (OSH Act). The OSH Act provides that, in promulgating health 
standards dealing with toxic materials or harmful physical agents, the 
Secretary ``shall set the standard which most adequately assures, to 
the extent feasible, on the basis of the best available evidence, that 
no employee will suffer material impairment of health or functional 
capacity even if such employee has regular exposure to the hazard dealt 
with by such standard for the period of his working life.'' 29 U.S.C. 
655(b)(5). See Section II of the preamble for a more detailed 
discussion.
    Chronic beryllium disease (CBD) is a hypersensitivity, or allergic 
reaction, to beryllium that leads to a chronic inflammatory disease of 
the lungs. It takes months to years after final beryllium exposure 
before signs and symptoms of CBD occur. Removing an employee with CBD 
from the beryllium source does not always lead to recovery. In some 
cases CBD continues to progress following removal from beryllium 
exposure. CBD is not a chemical pneumonitis but an immune-mediated 
granulomatous lung disease. OSHA's final risk assessment, presented in 
Section VI of the preamble, indicates that there is significant risk of 
beryllium sensitization and chronic beryllium disease from a 45-year 
(working life) exposure to beryllium at the current TWA PEL of 2 [mu]g/
m\3\. The risk assessment further indicates that there is significant 
risk of lung cancer to workers exposed to beryllium at the current TWA 
PEL of 2 [mu]g/m\3\. The final standard, with a lower PEL of 0.2 [mu]g/
m\3\, will help to address these health concerns. See the Health 
Effects and Risk Assessment sections of the preamble for further 
discussion.
 Summary of Significant Issues Raised by Comments on the 
Initial Regulatory Flexibility Analysis (IRFA) and OSHA's Assessment 
of, and Response to, Those Issues
    This section of the FRFA focuses only on public comments concerning 
significant issues raised on the Initial Regulatory Flexibility 
Analysis (IRFA). OSHA received only one such comment.
    The Non-Ferrous Founders' Society claimed that the costs of the 
rule will disproportionately affect small employers and result in job 
losses to foreign competition (Document ID 1678, p. 3). This comment is 
addressed in the FEA in the section on International Trade Effects in 
Chapter VI: Economic Feasibility Analysis and Regulatory Flexibility 
Determination. The summary of OSHA's response is that, in general, 
metalcasters in the U.S. have shortened lead times, improved 
productivity through computer design and logistics management, expanded 
design and development services to customers, and provided a higher 
quality product than foundries in China and other nations where labor 
costs are low (Document ID 1780, p. 3-12). All of these measures, 
particularly the higher quality of many U.S. metalcasting products and 
the ability of domestic foundries to fulfill orders quickly, are 
substantial advantages for U.S. metalcasters that may outweigh the very 
modest price increases that might occur due to the final rule. For a 
more detailed response please see the section on International Trade 
Effects in Chapter VI of the FEA.
Response to Comments by the Chief Counsel for Advocacy of the Small 
Business Administration and OSHA'S Response to Those Comments
    The Chief Counsel for Advocacy of the Small Business Administration 
(``Advocacy'') did not provide OSHA with comments on this rule.
 A Description of, and an Estimate of, the Number of Small 
Entities To Which the Rule Will Apply
    OSHA has analyzed the impacts associated with this final rule, 
including the type and number of small entities to which the standard 
will apply. In order to determine the number of small entities 
potentially affected by this rulemaking, OSHA used the definitions of 
small entities developed by the Small Business Administration (SBA) for 
each industry.
    OSHA estimates that approximately 6.600 small business entities 
would be affected by the beryllium standard. Within these small 
entities, 33,800 workers are exposed to beryllium and would be 
protected by this final standard. A breakdown, by industry, of the 
number of affected small entities is provided in Table III-14 in 
Chapter III of the FEA.
    OSHA estimates that approximately 5,280 very small entities--those 
with fewer than 20 employees--would be affected by the beryllium 
standard. Within these very small entities, 11,800 workers are exposed 
to beryllium and would be protected by the standard. A breakdown, by 
industry, of the number of affected very small entities is provided in 
Table III-15 in Chapter III of the FEA.
A Description of the Projected Reporting, Recordkeeping, and Other 
Compliance Requirements of the Rule
    Tables VIII-9 and VIII-10 show the average costs of the beryllium 
standard and the costs of compliance as a percentage of profits and 
revenues by NAICS code for, respectively, small entities (classified as 
small by SBA) and very small entities (those with fewer than 20 
employees). The full derivation of these costs is presented in Chapter 
V. The cost for SBA-defined small entities ranges from a low of $832 
per entity for

[[Page 2601]]

entities in NAICS 339116a: Dental Laboratories, to a high of about 
$599,836 for NAICS 331313: Alumina Refining and Primary Aluminum 
Production.
    The annualized cost for very small entities ranges from a low of 
$542 for entities in NAICS 339116a: Dental Laboratories, to a high of 
about $34,222 for entities in NAICS 331529b: Other Nonferrous Metal 
Foundries (except Die-Casting).\32\
---------------------------------------------------------------------------

    \32\ The cost of $542 for NAICS 339116a is the sum of a $524 
cost to substitute for a non-hazard material and $19 for cost of 
ancillary provisions. The total cost of $34,222 for NAICS 331529b is 
the sum of $22,601 for engineering controls, $186 for respirator 
costs, and $11,435 for ancillary provisions.

---------------------------------------------------------------------------

[[Page 2602]]

[GRAPHIC] [TIFF OMITTED] TR09JA17.044


[[Page 2603]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.045


[[Page 2604]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.046


[[Page 2605]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.047


[[Page 2606]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.048


[[Page 2607]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.049


[[Page 2608]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.050


[[Page 2609]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.051

Description of the Steps OSHA Has Taken To Minimize the Significant 
Economic Impact on Small Entities Consistent With the Stated Objectives 
of Applicable Statutes and Statement of the Reasons For Selecting the 
Alternative Adopted in the Final Rule
    OSHA has made a number of changes in the final beryllium rule that 
will serve to minimize significant impacts on small entities consistent 
with the objectives of the OSH Act. These changes are explained in more 
detail in Section XVI: Summary and Explanation in this preamble.
    During the SBAR Panel, SERs requested a clearer definition of the 
triggers for medical surveillance. This concern was rooted in the cost 
of BeLPTs and the trigger of potential skin contact. For the final 
rule, the Agency has removed skin contact as a trigger for medical 
surveillance. OSHA has also reduced the frequency of medical 
surveillance from annually (in the proposed rule) to biennially in the 
final rule.
    In the final rule, OSHA has added a performance option, as an 
alternative to scheduled monitoring, to allow employers to comply with 
exposure assessment requirements. This performance option should allow 
employers more flexibility, and often lower cost, in complying with the 
exposure assessment requirements.
    Some SERs were already applying many of the protective controls and 
practices that would be required by the ancillary provisions of the 
standard. However, many SERs objected to the requirements regarding 
hygiene facilities. For this final rule, OSHA has concluded that all 
affected employers currently have hand washing facilities. OSHA has 
also concluded that no affected employers will be required to install 
showers. OSHA noted in the PEA that some facilities already have 
showers. There were no comments challenging the Agency's preliminary 
determinations regarding the existing availability of shower facilities 
or the means of preventing contamination, so the Agency concludes that 
all employers have showers where needed. Therefore, employers will not 
need to provide any new shower facilities to comply with the 
standard.\33\
---------------------------------------------------------------------------

    \33\ OSHA reached the same conclusion in the PEA (p. V-118). For 
information purposes, OSHA estimated the initial cost of installing 
portable showers at $39,687, with an annualized cost of $4,653 per 
facility (Id.) and did not receive any comments suggesting that 
shower costs should be included or regarding the cost of installing 
them. The annual cost per employee for shower supplies, towels, and 
time required for showering was estimated to be $1,519. However, as 
indicated above in the text, the Agency believed that employers 
would be able to comply with the standard by less costly means than 
the installation of shower facilities.
---------------------------------------------------------------------------

    Similarly, in the PEA the Agency included no additional costs for 
readily accessible washing facilities, under the expectation that 
employers already have such facilities in place (PEA p. IX-19). 
Although the abrasive blasters exposed to beryllium in maritime and 
construction work may not have been expressly addressed in the PEA, 
OSHA notes that their employers are typically already required to 
provide readily accessible washing facilities to comply with other OSHA 
standards such as its sanitation standard at 29 CFR 1926.51(f)(1).\34\ 
In the absence of additional comment, OSHA is not including any costs 
for washing facilities in the FEA.
---------------------------------------------------------------------------

    \34\ OSHA's shipyard standard at 29 CFR 1915.58(e) requires 
handwashing facilities ``at or adjacent to each toilet facility'' 
and ``equipped with . . . running water and soap, or with waterless 
skin-cleansing agents that are capable of . . . neutralizing the 
contaminants to which the employee may be exposed.'' OSHA's 
construction standard at 29 CFR 1926.51(f)(1) requires ``adequate 
washing facilities for employees engaged in . . . operations where 
contaminants may be harmful to the employees. Such facilities shall 
be in near proximity to the worksite and shall be so equipped as to 
enable employees to remove such substances.''
---------------------------------------------------------------------------

    OSHA's shipyard standard at 29 CFR 1915.58(e) requires handwashing 
facilities ``at or adjacent to each toilet facility'' and ``equipped 
with . . . running water and soap, or with waterless skin-cleansing 
agents that are capable of . . . neutralizing the contaminants to which 
the employee may be exposed.'' OSHA's construction standard at 29 CFR 
1926.51(f)(1) requires ``adequate washing facilities for employees 
engaged in . . . operations where contaminants may be harmful to the 
employees. Such facilities shall be in near proximity to the worksite 
and shall be so equipped as to enable employees to remove such 
substances.''

[[Page 2610]]

    The Agency has determined that the long-term rental of modular 
units was representative of costs for a range of reasonable approaches 
to comply with the change room part of the provision. Alternatively, 
employers could renovate and rearrange their work areas in order to 
meet the requirements of this provision.
    Finally, in the final rule, OSHA has extended the compliance 
deadlines for change rooms from one year to two years and for 
engineering controls from two years to three years.
 Regulatory Alternatives
    For the convenience of those persons interested only in OSHA's 
regulatory flexibility analysis, this section repeats the discussion 
presented in Chapter VIII of the FEA, but only for the regulatory 
alternatives to the final OSHA beryllium standard that would have 
lowered costs.
    Each regulatory alternative presented here is described and 
analyzed relative to the final rule. Where appropriate, the Agency 
notes whether the regulatory alternative, to have been a legitimate 
candidate for OSHA consideration, required evidence contrary to the 
Agency's final findings of significant risk and feasibility. For this 
chapter on the Final Regulatory Flexibility Analysis, the Agency is 
only presenting regulatory alternatives that would have reduced costs 
for small entities. (See Chapter VIII for the full list of all 
alternatives analyzed.) There are 14 alternatives that would have 
reduced costs for small entities (and for all businesses in total). 
Using the numbering scheme from Chapter VIII of the FEA, these are 
Regulatory Alternatives #1a, #2a, #2b, #5, #6, #7, #8, #9, #10, #11, 
#12, #13, #15, #16, #18, and #22. OSHA has organized these 16 cost-
reducing alternatives (and a general discussion of considered phase-ins 
of the rule) into four categories: (1) Scope; (2) exposure limits; (3) 
methods of compliance; and (4) ancillary provisions.
(1) Scope Alternatives
    The scope of the beryllium final rule applies to general industry 
work, construction and maritime activities. In addition, the final rule 
provides an exemption for those working with materials containing only 
trace amounts of beryllium (less than 0.1% by weight) when the employer 
has objective data that employee exposure to beryllium will remain 
below the action level as an 8-hour TWA under any foreseeable 
conditions.
    The first set of regulatory alternatives would alter the scope of 
the final standard by differing in coverage of groups of employees and 
employers. Regulatory Alternatives #1a, #2a, and #2b would decrease the 
scope of the final standard.
    Regulatory Alternative #1a would exclude all operations where 
beryllium exists only as a trace contaminant; that is, where the 
materials used contain less than 0.1% beryllium by weight, with no 
other conditions. OSHA has identified two industries with workers 
engaged in general industry work that would be excluded under 
Regulatory Alternative #1a: Primary aluminum production and coal-fired 
power generation.
    Table VIII-11 presents, for informational purposes, the estimated 
costs, benefits, and net benefits of Regulatory Alternative #1a using 
alternative discount rates of 3 percent and 7 percent. In addition, 
this table presents the incremental costs, incremental benefits, and 
incremental net benefits of this alternative relative to the final 
rule. Table VIII-11 also breaks out costs by provision, and benefits by 
type of disease and by morbidity/mortality prevented. (Note: 
``morbidity'' cases are cases where health effects are limited to non-
fatal illness; in these cases there is no further disease progression 
to fatality).
    As shown in Table VIII-11, Regulatory Alternative #1a would 
decrease the annualized cost of the rule from $73.9 million to $64.6 
million using a 3 percent discount rate and from $76.6 million to $67.0 
million using a 7 percent discount rate. Annualized benefits in 
monetized terms would decrease from $560.9 million to $515.7 million, 
using a 3 percent discount rate, and from $249.1 million to $229.0 
million using a 7 percent discount rate. Net benefits would decrease 
from $487.0 million to $451.1 million using a 3 percent discount rate 
and from $172.4 million to $162.0 million using a 7 percent discount 
rate.

[[Page 2611]]

[GRAPHIC] [TIFF OMITTED] TR09JA17.052

    Regulatory Alternative #2a would exclude construction and maritime 
work from the scope of the final standard. For example, this 
alternative would exclude abrasive blasters, pot tenders, and cleanup 
staff working in

[[Page 2612]]

construction and shipyards who have the potential for airborne 
beryllium exposure during blasting operations and during cleanup of 
spent media.
    Table VIII-12 presents the estimated costs, benefits, and net 
benefits of Regulatory Alternative #2a using alternative discount rates 
of 3 percent and 7 percent. In addition, this table presents the 
incremental costs, incremental benefits, and incremental net benefits 
of these alternatives relative to the final rule. Table VIII-12 also 
breaks out costs by provision and benefits by type of disease and by 
morbidity/mortality.
    As shown in Table VIII-12, Regulatory Alternative #2a would 
decrease costs from $73.9 million to $62.0 million, using a 3 percent 
discount rate, and from $76.6 million to $64.4 million using a 7 
percent discount rate. Annualized benefits would decrease from $560.9 
million to $533.3 million, using a 3 percent discount rate, and from 
$249.1 million to $236.8 million using a 7 percent discount rate. Net 
benefits would change from $487.0 million to $471.3 million, using a 3 
percent discount rate, and is essentially unchanged at a discount rate 
of 7 percent, with the final rule having net benefits of $172.4 million 
while the alternative has $172.5 million. Thus, at a 7 percent discount 
rate, the costs exceed the benefits for this alternative by $0.1 
million per year. However, OSHA believes that for these industries, the 
cost estimate is severely overestimated because 45 percent of the costs 
are for exposure monitoring assuming that employers use the periodic 
monitoring option. Employers in this sector are far more likely to use 
the performance based monitoring options at considerably reduced costs. 
If this is the case, benefits would exceed costs even at a 7 percent 
discount rate.
    Regulatory Alternative #2b would eliminate the ancillary provisions 
in the final rule for the shipyard and construction sectors and for any 
operations where beryllium exists only as a trace contaminant. 
Accordingly, only the final TWA PEL and STEL would apply to employers 
in these sectors and operations (through 29 CFR 1910.1000 Tables Z-1 
and Z-2, 1915.1000 Table Z, and 1926.55 Appendix A). Operations in 
general industry where the ancillary provisions would be eliminated 
under Regulatory Alternative #2b include aluminum smelting and 
production and coal-powered utility facilities and any other operations 
where beryllium is present only as a trace contaminant (in addition to 
all operations in construction and shipyards).
    As shown in Table VIII-13, Regulatory Alternative #2b would 
decrease the annualized cost of the rule from $73.9 million to $53.5 
million using a 3 percent discount rate, and from $76.6 to $55.6 
million using a 7 percent discount rate. Annualized benefits would 
decrease from $560.9 million to $493.3 million, using a 3 percent 
discount rate, and from $249.1 million to $219.1 million, using a 7 
percent discount rate. Net benefits would decrease from $487.0 million 
to $439.8 million, using a 3 percent discount rate, and from $172.4 
million to $163.5 million, using a 7 percent discount rate.

[[Page 2613]]

[GRAPHIC] [TIFF OMITTED] TR09JA17.053


[[Page 2614]]


[GRAPHIC] [TIFF OMITTED] TR09JA17.054


[[Page 2615]]


(2) Exposure Limit (TWA PEL, STEL, and Action Level) Alternatives
    Paragraph (c) of the three final standards establishes two PELs for 
beryllium in all forms, compounds, and mixtures: An 8-hour TWA PEL of 
0.2 [mu]g/m\3\ (paragraph (c)(1)), and a 15-minute short-term exposure 
limit (STEL) of 2.0 [mu]g/m\3\ (paragraph (c)(2)). OSHA has defined the 
action level for the final standard as an airborne concentration of 
beryllium of 0.1 [mu]g/m\3\ calculated as an eight-hour TWA (paragraph 
(b)). In this final rule, as in other standards, the action level has 
been set at one half of the TWA PEL.
    Regulatory Alternative #5 would set a higher TWA PEL at 0.5 
[micro]g/m\3\ and an action level at 0.25 [micro]g/m\3\. This 
alternative responds to an issue raised during the Small Business 
Advocacy Review (SBAR) process conducted in 2007 to consider a draft 
OSHA beryllium proposed rule that culminated in an SBAR Panel report 
(SBAR, 2008). That report included a recommendation that OSHA consider 
both the economic impact of a low TWA PEL and regulatory alternatives 
that would ease cost burden for small entities. OSHA has provided a 
full analysis of the economic impact of its final PELs (see Chapter VI 
of the FEA), and Regulatory Alternative #5 was considered in response 
to the second half of that recommendation. However, the higher 0.5 
[micro]g/m\3\ TWA PEL is not consistent with the Agency's mandate under 
the OSH Act to promulgate a lower PEL if it is feasible and could 
prevent additional fatalities and non-fatal illnesses. The data 
presented in Table VIII-14 below indicate that the final TWA PEL would 
prevent additional fatalities and non-fatal illnesses relative to 
Regulatory Alternative #5.
    Table VIII-14 below presents, for informational purposes, the 
estimated costs, benefits, and net benefits of the final rule under the 
final TWA PEL of 0.2 [mu]g/m\3\ and for the regulatory alternative TWA 
PEL of 0.5 [mu]g/m\3\ (Regulatory Alternative #5), using alternative 
discount rates of 3 percent and 7 percent. In addition, the table 
presents the incremental costs, the incremental benefits, and the 
incremental net benefits of going from a TWA PEL of 0.5 [mu]g/m\3\ to 
the final TWA PEL of 0.2 [mu]g/m\3\. Table VIII-14 also breaks out 
costs by provision and benefits by type of disease and by morbidity/
mortality.
    As Table VIII-14 shows, going from a TWA PEL of 0.5 [mu]g/m\3\ to a 
TWA PEL of 0.2 [mu]g/m\3\ would prevent, annually, an additional 30 
beryllium-related fatalities and an additional 16 non-fatal illnesses. 
This is consistent with OSHA's final risk assessment, which indicates 
significant risk to workers exposed at a TWA PEL of 0.5 [mu]g/m\3\; 
furthermore, OSHA's final feasibility analysis indicates that a lower 
TWA PEL than 0.5 [mu]g/m\3\ is feasible. Net benefits of this 
regulatory alternative versus the final TWA PEL of 0.2 [mu]g/m\3\ would 
decrease from $487.0 million to $376.5 million using a 3 percent 
discount rate and from $172.4 million to $167.2 million using 7 percent 
discount rate.

[[Page 2616]]

[GRAPHIC] [TIFF OMITTED] TR09JA17.055


[[Page 2617]]


Regulatory Alternative With Unchanged PEL But Full Ancillary Provisions
    An Informational Analysis: This final regulation has the somewhat 
unusual feature for an OSHA substance-specific health standard that 
most of the quantified benefits that OSHA estimated would come from the 
ancillary provisions rather than from meeting the PEL solely with 
engineering controls (see Chapter VII of the FEA for a more detailed 
discussion). OSHA decided to analyze for informational purposes the 
effect of retaining the preceding PEL but applying all of the ancillary 
provisions, including respiratory protection. Under this approach, the 
TWA PEL would remain at 2.0 micrograms per cubic meter, but all of the 
other final provisions (including respiratory protection) would be 
required with their triggers remaining the same as in the final rule--
either the presence of airborne beryllium at any level (e.g., initial 
monitoring, written exposure control plan), at certain kinds of dermal 
exposure (PPE), at the action level of 0.1 [micro]g/m\3\ (e.g., 
periodic monitoring, medical removal), or at 0.2 [micro]g/m\3\ (e.g., 
regulated areas, respiratory protection, medical surveillance).
    Given the record regarding beryllium exposures, this approach is 
not one OSHA could legally adopt. The absence of engineering controls 
would not be consistent with OSHA's application of the hierarchy of 
controls, in which engineering controls are applied to eliminate or 
control hazards, before administrative controls and personal protective 
equipment are applied to address remaining exposures. Section 6(b)(5) 
of the OSH Act requires OSHA to ``set the standard which most 
adequately assures, to the extent feasible, on the basis of the best 
available evidence, that no employee will suffer material impairment of 
health or functional capacity even if such employee has regular 
exposure to the hazard dealt with by such standard for the period of 
his working life.'' For that reason, this additional analysis is 
provided strictly for informational purposes. E.O. 12866 and E.O. 13563 
direct agencies to identify approaches that maximize net benefits, and 
this analysis is purely for the purpose of exploring whether this 
approach would hold any real promise to maximize net benefits if it was 
permissible under the OSH Act. It does not appear to hold such promise 
because an ancillary-provisions-only approach would not be as 
protective and thus offers fewer benefits than one that includes a 
lower PEL and engineering controls. Also, OSHA estimates the costs 
would be about the same (or slightly lower, depending on certain 
assumptions) under that approach as under the traditional final 
approach.
    When examined on an industry-by-industry basis, OSHA found that 
some industries would have lower costs if they could adopt the 
ancillary-provision-only approach. Some employers would use engineering 
controls where they are cheaper, even if they are not mandatory. OSHA 
does not have sufficient information to do an analysis employer-by-
employer of when the ancillary-provisions-only approach might be 
cheaper. In the majority of affected industries, the Agency estimates 
there are no cost savings to the ancillary-provisions-only approach. 
However, OSHA estimates an annualized total cost saving of $2.7 million 
per year for entire industries where the ancillary-provisions-only 
approach would be less expensive.
    The above discussion does not account for the possibility that the 
lack of engineering controls would result in higher beryllium exposures 
for workers in adjacent (non-production) work areas due to the 
increased level of beryllium in the air. Because of a lack of data, and 
because the issue did not arise in the other regulatory alternatives 
OSHA considered (all of which have a PEL of less than 2.0 [micro]g/
m\3\), OSHA did not examine exposure levels in non-production areas for 
either cost or benefit purposes. To the extent such exposure levels 
would be above the action level, there would be additional costs for 
respiratory protection and medical surveillance.
    If respirators were as effective as engineering controls, the 
ancillary-provisions-only approach would have benefits comparable to 
the benefits of the final rule. However, in this alternative most 
exposed individuals would be required to use respirators, which OSHA 
considers less effective than engineering controls in preventing 
employee exposure to beryllium. OSHA also examined what the benefits 
would be if respirators were not required, were not worn, or were 
ineffective. OSHA found that, if all of the other aspects of the 
benefits analysis remained the same, the annualized benefits would be 
reduced by from $33.2 million using a discount rate of 3 percent, and 
$22.4 using a discount rate of 7 percent, largely as a result of 
failing to reduce deaths from lung cancer, which are unaffected by the 
ancillary provisions. However, there are also other reasons to believe 
that benefits may be even lower:
    (1) As noted above, in the final rule OSHA did not consider 
benefits caused by reductions in exposure in non-production areas. 
Unless employers act to reduce exposures in the production areas, the 
absence of a requirement for such controls would largely negate such 
benefits from reductions in exposure in the non-productions areas.
    (2) OSHA judges that the benefits of the ancillary provisions (a 
midpoint estimate of eliminating 45 percent of all remaining cases of 
CBD for all sectors except for abrasive blasting and coal-fired power 
plants, and an estimate of 11.25 percent, or one fourth of the 
percentage for other sectors, for abrasive blasting and coal-fired 
power plants) would be partially or wholly negated in the absence of 
engineering controls that would reduce both airborne and surface dust 
levels. The Agency's high estimate (90 percent for all sectors except 
abrasive blasting and coal fired power plants, 22.5 percent for 
abrasive blasting and coal-fired power plants) of the proportion of 
remaining CBD cases eliminable by ancillary provisions is based on data 
from a facility with average exposure levels of less than 0.2 [micro]g/
m\3\.
    Based on these considerations, OSHA finds that the ancillary-
provisions-only approach is not one that is likely to maximize net 
benefits. The cost savings, if any, are estimated to be small, and the 
difficult-to-measure declines in benefits could be substantial.
(2) A Method-of-Compliance Alternative
    Paragraph (f)(2)(i) of the final standards contains requirements 
for the implementation of engineering and work practice controls to 
minimize beryllium exposures in general industry, maritime, and 
construction. For each operation in a beryllium work area in general 
industry or where exposures are or can reasonably be expected to be 
above the action level in shipyards or construction, employers must 
ensure that one or more of the following are in place to minimize 
employee exposure: Material and/or process substitution; isolation, 
such as ventilated partial or full enclosures; local exhaust 
ventilation; or process controls, such as wet methods and automation. 
Employers are exempt from using these methods only when they can show 
that such methods are not feasible or where exposures are below the 
action level based on two exposure samples taken at least seven days 
apart.
    OSHA believes that the methods outlined in paragraph (f)(2)(i) 
provide the most reliable means to control variability in exposure 
levels. However, OSHA also recognizes that the requirements of 
paragraph (f)(2)(i) are not typical of OSHA standards, which usually 
require engineering controls

[[Page 2618]]

only where exposures exceed the TWA PEL or STEL. The Agency therefore 
also considered Regulatory Alternative #6, which would drop the 
provisions of (f)(2)(i) from the final standard and make conforming 
edits to paragraphs (f)(2)(ii) and (iii). This regulatory alternative 
does not eliminate the need for engineering controls to comply with the 
final TWA PEL and STEL, but does eliminate the requirement to use one 
or more of the specified engineering or work practice controls where 
exposures equal or exceed the action level. As shown in Table VIII-15, 
Regulatory Alternative #6 would decrease the annualized cost of the 
final rule by $606,706 using a discount rate of 3 percent and by 
$638,100 using a discount rate of 7 percent.
    In the PEA, OSHA had been unable to estimate the benefits of this 
alternative and invited public comment. The Agency did not receive 
public comment and therefore has not estimated the change in benefits 
resulting from Regulatory Alternative #6.
[GRAPHIC] [TIFF OMITTED] TR09JA17.056

(4) Regulatory Alternatives That Affect Ancillary Provisions
    The final standard contains several ancillary provisions 
(provisions other than the exposure limits), including requirements for 
exposure assessment, medical surveillance, medical removal, training, 
competent person, and regulated areas or access control. As reported in 
Chapter V of the FEA, these ancillary provisions account for $61.3 
million (about 83 percent) of the total annualized costs of the rule 
($73.4 million) using a 3 percent discount rate. The most expensive of 
the ancillary provisions are the requirements for housekeeping and 
exposure monitoring, with annualized costs of $22.8 million and $13.7 
million, respectively, at a 3 percent discount rate.
    OSHA's reasons for including each of the final ancillary provisions 
are explained in Section XVI of the preamble, Summary and Explanation 
of the Standards.
    OSHA has examined a variety of regulatory alternatives involving 
changes to one or more of the final ancillary provisions. The 
incremental cost of each of these regulatory alternatives and its 
impact on the total costs of the final rule are summarized in Table 
VIII-16 at the end of this section. OSHA has determined that several of 
these ancillary provisions will increase the benefits of the final 
rule, for example, by helping to ensure the TWA PEL is not exceeded or 
by lowering the risks to workers given the significant risk remaining 
at the final TWA PEL. However, except for Regulatory Alternative #7 
(involving the elimination of all ancillary provisions), OSHA did not 
estimate changes in monetized benefits for the regulatory alternatives 
that affect ancillary provisions. Two regulatory alternatives that 
involve all ancillary provisions are presented below (#7 and #8), 
followed by regulatory alternatives for exposure monitoring (#9, #10, 
and #11), for regulated areas (#12), for personal protective clothing 
and equipment (#13), for medical surveillance (#14 through #20), and 
for medical removal protection (#22).
All Ancillary Provisions
    The SBAR Panel recommended that OSHA analyze a PEL-only standard as 
a regulatory alternative. The Panel also recommended that OSHA consider 
not applying ancillary provisions of the standard where exposure levels 
are low so as to minimize costs for small businesses (SBAR, 2008). In 
response to these recommendations, OSHA analyzed Regulatory Alternative 
#7, a PEL-only standard, and Regulatory Alternative #8, which would 
apply ancillary provisions of the beryllium standard only where 
exposures exceed the final TWA PEL of 0.2 [mu]g/m\3\ or the final STEL 
of 2.0 [mu]g/m\3\.
    Regulatory Alternative #7 would only update 1910.1000 Tables Z-1 
and Z-2, so that the final TWA PEL and STEL would apply to all workers 
in general industry, construction, and maritime. This alternative would 
eliminate all of the ancillary provisions of the final rule, including 
exposure assessment, medical surveillance, medical removal protection, 
PPE, housekeeping, training, competent person, and regulated areas or 
access control. Under this regulatory alternative, OSHA estimates that 
the costs for the final ancillary provisions of the rule (estimated at 
$61.4 million annually at a 3 percent discount rate) would be 
eliminated. In order to meet the PELs, employers would still commonly 
need to do monitoring, train workers on the use of controls, and set up 
some kind of regulated areas to indicate where respirator use would be 
required. It is also likely that, under this alternative, many 
employers would follow the recommendations of Materion and the United 
Steelworkers to provide medical surveillance, PPE, and other protective 
measures for their workers (Materion and United Steelworkers, 2012). 
OSHA has not attempted to estimate the extent to which these ancillary 
provision costs would be incurred if they were not formally required or 
whether any of

[[Page 2619]]

these costs under Regulatory Alternative #7 would reasonably be 
attributable to the final rule. The total costs for this alternative 
are $12.5 million at a 3% discount rate and $13.5 million at a 7% 
discount rate.
    OSHA has also estimated the effect of this regulatory alternative 
on the benefits of the rule, presented in Table VIII-16. As a result of 
eliminating all of the ancillary provisions, annualized benefits are 
estimated to decrease 71 percent, relative to the final rule, from 
$560.9 million to $211.9 million, using a 3 percent discount rate, and 
from $249.1 million to $94.0 million using a 7 percent discount rate. 
This estimate follows from OSHA's analysis of benefits in Chapter VII 
of the FEA, which found that about 68 percent of the benefits of the 
final rule, evaluated at their mid-point value, were attributable to 
the combination of the ancillary provisions. As these estimates show, 
OSHA expects that the benefits estimated under the final rule will not 
be fully achieved if employers do not implement the ancillary 
provisions of the final rule.
    Both industry and worker groups have recognized that a 
comprehensive standard is needed to protect workers exposed to 
beryllium. The stakeholders' recommended standard--that representatives 
of Materion, the primary beryllium producer, and the United 
Steelworkers union provided to OSHA--confirms the importance of 
ancillary provisions in protecting workers from the harmful effects of 
beryllium exposure (Materion and United Steelworkers, 2012). Ancillary 
provisions such as personal protective clothing and equipment, 
regulated areas, medical surveillance, hygiene areas, housekeeping 
requirements, and hazard communication all serve to reduce the risks to 
beryllium-exposed workers beyond that which the final TWA PEL alone 
could achieve.
    Under Regulatory Alternative #8, several ancillary provisions that 
the current final rule would require under a variety of exposure 
conditions (e.g., dermal contact, any airborne exposure, exposure at or 
above the action level) would instead only apply where exposure levels 
exceed the TWA PEL or STEL.
    Regulatory Alternative #8 affects the following provisions of the 
final standard:

--Exposure monitoring: Whereas the scheduled monitoring option of the 
final standards requires monitoring every six months when exposure 
levels are at or above the action level and at or below the TWA PEL and 
every three months when exposure levels exceed the TWA PEL, Regulatory 
Alternative #8 would require annual exposure monitoring where exposure 
levels exceed the TWA PEL or STEL;

    [cir] Written exposure control plan: Whereas the final standards 
require written exposure control plans to be maintained in any facility 
covered by the standard, Regulatory Alternative #8 would require only 
facilities with exposures above the TWA PEL or STEL to maintain a plan;

    [cir] PPE: Whereas the final standards require PPE when airborne 
exposure to beryllium exceeds, or can reasonably be expected to exceed, 
the PEL or STEL, and where there is a reasonable expectation of dermal 
contact with beryllium, Alternative #8 would require PPE only for 
employees exposed above the TWA PEL or STEL;

    [cir] Medical Surveillance: Whereas the final standard's medical 
surveillance provisions require employers to offer medical surveillance 
to employees exposed above the action level for 30 days per year, 
showing signs or symptoms of CBD, exposed to beryllium in an emergency, 
or when recommended by a medical opinion, Alternative #8 would require 
surveillance only for those employees exposed above the TWA PEL or 
STEL.
    To estimate the cost savings for this alternative, OSHA re-
estimated the group of workers that would fall under the above 
provisions, with results presented in Table VIII-16. Combining these 
various adjustments along with associated unit costs, OSHA estimates 
that, under this regulatory alternative, the costs for the final rule 
would decline from $73.9 million to $35.8 million, using a 3 percent 
discount rate, and from $76.6 million to $37.9 million, using a 7 
percent discount rate.
    The Agency has not quantified the impact of this alternative on the 
benefits of the rule. However, ancillary provisions that offer 
protective measures to workers exposed below the final TWA PEL, such as 
personal protective clothing and equipment, beryllium work areas, 
hygiene areas, housekeeping requirements, and hazard communication, all 
serve to reduce the risks to beryllium-exposed workers beyond that 
which the final TWA PEL and STEL could achieve.
    The remainder of this chapter discusses additional regulatory 
alternatives that apply to individual ancillary provisions.
Exposure Monitoring
    Paragraph (d) of the final standard, Exposure Assessment, allows 
employers to choose either the performance option or scheduled 
monitoring. The scheduled monitoring option requires semi-annual 
monitoring for those workers exposed at or above the action level but 
at or below the PEL and quarterly exposure monitoring for those workers 
exposed above the PEL. The rationale for this provision is provided in 
the preamble discussion of paragraph (a) in Section XVI, Summary and 
Explanation of the Standards.
    OSHA has examined three regulatory alternatives that would modify 
the requirements of periodic monitoring in the final rule. Under 
Regulatory Alternative #9, employers would be required to perform 
periodic exposure monitoring annually when exposures are at or above 
the action level or above the STEL, but at or below the TWA PEL. As 
shown in Table VIII-16, Regulatory Alternative #9 would decrease the 
annualized cost of the final rule by about $4.3 million using either a 
3 percent or 7 percent discount rate.
    Under Regulatory Alternative #10, employers would be required to 
perform periodic exposure monitoring annually when exposures are at or 
above the action level. As shown in Table VIII-16, Regulatory 
Alternative #10 would decrease the annualized cost of the final rule by 
about $4.9 million using either a 3 percent or 7 percent discount rate.
    Under Regulatory Alternative #11, employers would be required to 
perform annual exposure monitoring where exposures are at or above the 
action level but at or below the TWA PEL and STEL. When exposures are 
above the TWA PEL, no periodic monitoring would be required. As shown 
in Table VIII-16, Regulatory Alternative #11 would decrease the 
annualized cost of the final rule by about $5.0 million using either a 
3 percent or 7 percent discount rate. OSHA is unable to quantify the 
effect of this change on benefits but has judged the alternative 
adopted necessary and protective.
Regulated Areas
    Final paragraph (e) for General Industry requires employers to 
establish and maintain beryllium work areas in any work area containing 
a process or operation that can release beryllium where employees are, 
or can reasonably be expected to be, exposed to airborne beryllium at 
any level or where there is the potential for dermal contact with 
beryllium, and regulated areas wherever airborne concentrations of 
beryllium exceed, or can reasonably be expected to

[[Page 2620]]

exceed, the TWA PEL or STEL. The Shipyards standard also requires 
regulated areas. The Construction standard has a comparable competent 
person requirement. Employers in General Industry and Shipyards are 
required to demarcate regulated areas and limit access to regulated 
areas to authorized persons.
    The SBAR Panel report recommended that OSHA consider dropping or 
limiting the provision for regulated areas (SBAR, 2008). In response to 
this recommendation, OSHA examined Regulatory Alternative #12, which 
would eliminate the requirement that employers establish regulated 
areas in the General Industry and Maritime standards, and eliminate the 
competent person requirement in the Construction standard. This 
alternative would not eliminate the final requirement to establish 
beryllium work areas, where required. As shown in Table VIII-16, 
Regulatory Alternative #12 would decrease the annualized cost of the 
final rule by about $1.0 million using either a 3 or 7 percent discount 
rate.
Personal Protective Clothing and Equipment
    Regulatory Alternative #13 would modify the requirements for 
personal protective equipment (PPE) by eliminating the requirement for 
appropriate PPE whenever there is potential for skin contact with 
beryllium or beryllium-contaminated surfaces. This alternative would be 
narrower, and thus less protective, than the PPE requirement in the 
final standards, which require PPE to be used where airborne exposure 
exceeds, or can reasonably be expected to exceed, the TWA PEL or STEL, 
or where there is a reasonable expectation of dermal contact with 
beryllium.
    The economic analysis for the final standard already contains costs 
for protective clothing, namely gloves, for all employees who can 
reasonably be expected to be have dermal contact with beryllium; thus 
OSHA estimated the cost of this alternative as the cost reduction from 
not providing gloves under these circumstances. As shown in Table VIII-
16, Regulatory Alternative #13 would decrease the annualized cost of 
the final rule by about $481,000 using either a 3 percent or 7 percent 
discount rate.
 Medical Surveillance
    The final requirements for medical surveillance include: (1) 
Medical examinations, including a test for beryllium sensitization, for 
employees who are or are reasonably expected to be exposed to beryllium 
at or above the action level for more than 30 days per year, who show 
signs or symptoms of CBD or other beryllium-related health effects, are 
exposed to beryllium in an emergency, or whose more recent written 
medical opinion required by paragraph (k)(6) or (k)(7) recommends such 
surveillance, and (2) low dose CT scans for employees when recommended 
by the PLCHP. The final standards require biennial medical exams to be 
provided for eligible employees. The standards also require tests for 
beryllium sensitization to be provided to eligible employees 
biennially.
    OSHA estimated in Chapter V of the FEA that the medical 
surveillance requirements would apply to 4,528 workers in general 
industry, of whom 387 already receive medical surveillance.\35\ In 
Chapter V of the FEA, OSHA estimated the costs of medical surveillance 
for the remaining 4,141 workers who would now have such protection due 
to the final standard. The Agency's final analysis indicates that 4 
workers with beryllium sensitization and 6 workers with CBD will be 
referred to a CBD diagnostic center annually as a result of this 
medical surveillance. Medical surveillance is particularly important 
for this rule because beryllium-exposed workers, including many workers 
exposed below the final PELs, are at significant risk of illness.\36\
---------------------------------------------------------------------------

    \35\ See baseline compliance rates for medical surveillance in 
Chapter III of the FEA, Table III-20.
    \36\ OSHA did not estimate, and the benefits analysis does not 
include, monetized benefits resulting from early discovery of 
illness.
---------------------------------------------------------------------------

    OSHA has examined four regulatory alternatives (#15, #16, #18, and 
#22) that would modify the final rule's requirements for employee 
eligibility, the tests that must be offered, and the frequency of 
periodic exams. Medical surveillance was a subject of special concern 
to SERs during the SBAR Panel process, and the SBAR Panel offered many 
comments and recommendations related to medical surveillance for OSHA's 
consideration. Some of the Panel's concerns have been partially 
addressed in this final rule, which was modified since the SBAR Panel 
was convened (see the preamble at Section XVI, Summary and Explanation 
of the Standards, for more detailed discussion). Regulatory Alternative 
#16 also responds to recommendations by the SBAR Panel to reduce 
burdens on small businesses by dropping or reducing the frequency of 
medical surveillance requirements.
    OSHA has determined that a significant risk of beryllium 
sensitization, CBD, and lung cancer exists at exposure levels below the 
final TWA PEL and that there is evidence that beryllium sensitization 
can occur even from short-term exposures (see the preamble at Section 
V, Health Effects, and Section VII, Significance of Risk). The Agency 
therefore anticipates that more employees would develop adverse health 
effects without receiving the benefits of early intervention in the 
disease process because they are not eligible for medical surveillance 
(see section XVI of this preamble, the Summary and Explanation for 
paragraph (k)).
    Regulatory Alternative #15 would decrease eligibility for medical 
surveillance to employees who are exposed to beryllium above the final 
PEL
    To estimate the cost of Regulatory Alternative #15, OSHA assumed 
that all workers exposed above the PEL before the final rule would 
continue to be exposed after the standard is promulgated. Thus, this 
alternative eliminates costs for medical exams for the number of 
workers exposed between the action level and the TWA PEL. As shown in 
Table VIII-16, Regulatory Alternative #15 would decrease the annualized 
cost of the final rule by about $4.5 million using a discount rate of 3 
percent, and by about $4.8 million using a discount rate of 7 percent.
    In response to concerns raised during the SBAR Panel process about 
testing requirements, OSHA considered two regulatory alternatives that 
would provide greater flexibility in the program of tests provided as 
part of an employer's medical surveillance program. Under Regulatory 
Alternative #16, employers would not be required to offer employees 
testing for beryllium sensitization. As shown in Table VIII-16, this 
alternative would decrease the annualized cost of the final rule by 
about $2.4 million using either a 3 percent or 7 percent discount rate.
    Regulatory Alternative #18 would eliminate the CT scan requirement 
from the final rule. This alternative would decrease the annualized 
cost of the final rule by about $613,000 using a discount rate of 3 
percent, and by about $643,000 using a discount rate of 7 percent.
 Medical Removal
    Under paragraph (l) of the final standard, Medical Removal, 
employees in jobs with exposure at or above the action level become 
eligible for medical removal when they provide their employers with a 
written medical report indicating they are diagnosed with CBD or 
confirmed positive for beryllium sensitization, or if a written medical 
opinion recommends medical removal

[[Page 2621]]

in accordance with the medical surveillance paragraph of the standards. 
When an employee chooses removal, the employer is required to remove 
the employee to comparable work in an environment where beryllium 
exposure is below the action level if such work is available and the 
employee is either already qualified or can be trained within one 
month. If comparable work is not available, the employer must place the 
employee on paid leave for six months or until comparable work becomes 
available (whichever comes first). Or, rather than choosing removal, an 
eligible employee could choose to remain in a job with exposure at or 
above the action level, in which case the employer would have to 
provide, and the employee would have to use, a respirator.
    The SBAR Panel report included a recommendation that OSHA give 
careful consideration to the impacts that an MRP requirement could have 
on small businesses (SBAR, 2008). In response to this recommendation, 
OSHA analyzed Regulatory Alternative #22, which would remove the final 
requirement that employers offer MRP. As shown in Table VIII-16, this 
alternative would decrease the annualized cost of the final rule by 
about $1.2 million using a discount rate of 3 percent, and by about 
$1.3 million using a discount rate of 7 percent.

[[Page 2622]]

[GRAPHIC] [TIFF OMITTED] TR09JA17.057


[[Page 2623]]


SBAR Panel
    Table VIII-17 lists all of the SBAR Panel recommendations and 
OSHA's response to those recommendations.
 Table VIII-17: SBAR Panel Recommendations and OSHA Responses

------------------------------------------------------------------------
          Panel recommendation                    OSHA response
------------------------------------------------------------------------
The Panel recommends that OSHA evaluate  OSHA has reviewed its cost
 carefully the costs and technological    estimates and the
 feasibility of engineering controls at   technological feasibility of
 all PEL options, especially those at     engineering controls at
 the lowest levels.                       various PEL levels. These
                                          issues are discussed in the
                                          Regulatory Alternatives
                                          Chapter.
The Panel recommends that OSHA consider  OSHA has removed the initial
 alternatives that would alleviate the    exposure monitoring
 need for monitoring in operations with   requirement for workers likely
 exposures far below the PEL. The Panel   to be exposed to beryllium by
 also recommends that OSHA consider       skin or eye contact through
 explaining more clearly how employers    routine handling of beryllium
 may use ``objective data'' to estimate   powders or dusts or contact
 exposures. Although the draft proposal   with contaminated surfaces.
 contains a provision allowing           The periodic monitoring
 employers to initially estimate          requirement presented in the
 exposures using ``objective data''       SBAR Panel report required
 (e.g., data showing that the action      monitoring every 6 months for
 level is unlikely to be exceeded for     airborne levels at or above
 the kinds of process or operations an    the action level but below the
 employer has), the SERs did not appear   PEL, and every 3 months for
 to have fully understood how this        exposures at or above the PEL.
 alternative may be used.                 The final standard, in line
                                          with OSHA's normal practice,
                                          requires exposure monitoring
                                          every three months for levels
                                          above the PEL or STEL and
                                          every six months for exposures
                                          between the action level and
                                          the PEL. In the preamble to
                                          the final standard, OSHA
                                          provides further explanation
                                          on the use of objective data,
                                          which would exempt employers
                                          from the requirements of the
                                          final rule.
                                         These issues are discussed in
                                          the preamble at Section XVI,
                                          Summary and Explanation of the
                                          Standards, (d): Exposure
                                          Monitoring.
The Panel recommends that OSHA consider  In the preamble to the final
 providing some type of guidance to       standards, OSHA discusses the
 describe how to use objective data to    issue of objective data. While
 estimate exposures in lieu of            OSHA recognizes that some
 conducting personal sampling.            establishments will have
Using objective data could provide        objective data, for purposes
 significant regulatory relief to         of estimating the cost of this
 several industries where airborne        rule, the Agency is assuming
 exposures are currently reported by      that no establishments will
 SERs to be well below even the lowest    use objective data. The Agency
 PEL option. In particular, since         recognizes that this will
 several ancillary provisions, which      overestimate costs.
 may have significant costs for small    The use of objective data is
 entities may be triggered by the PEL     discussed in the preamble at
 or an action level, OSHA should          Section XVI, Summary and
 consider encouraging and simplifying     Explanation of the Standards,
 the development of objective data from   (d): Exposure Monitoring.
 a variety of sources.
The Panel recommends that OSHA revisit   SERs with very low exposure
 its analysis of the costs of regulated   levels or only occasional work
 areas if a very low PEL is proposed.     with beryllium will not be
 Drop or limit the provision for          required to have regulated
 regulated areas: SERs with very low      areas unless exposures are
 exposure levels or only occasional       above the final PEL of 0.2
 work with beryllium questioned the       [mu]g/m\3\.
 need for separating areas of work by    The final standards for general
 exposure level. Segregating machines     industry and maritime require
 or operations, SERs said, would affect   the employer to establish and
 productivity and flexibility. Until      maintain a regulated area
 the health risks of beryllium are        wherever employees are, or can
 known in their industries, SERs          be expected to be, exposed to
 challenged the need for regulated        airborne beryllium at levels
 areas.                                   above the PEL of 0.2 [mu]g/
                                          m\3\. There is no regulated
                                          area requirement in
                                          Construction.
The Panel recommends that OSHA revisit   In General industry employers
 its cost model for hygiene areas to      must ensure that employees who
 reflect SERs' comments that estimated    have dermal contact with
 costs are too low and more carefully     beryllium wash any exposed
 consider the opportunity costs of        skin at the end of the
 using space for hygiene areas where      activity, process, or work
 SERs report they have no unused space    shift and prior to eating,
 in their physical plant for them. The    drinking, smoking, chewing
 Panel also recommends that OSHA          tobacco or gum, applying
 consider more clearly defining the       cosmetics, or using the
 triggers (skin exposure and              toilet. In General Industry,
 contaminated surfaces) for the hygiene   although there is a shower
 areas provisions. In addition, the       requirement, OSHA has
 Panel recommends that OSHA consider      determined that establishments
 alternative requirements for hygiene     required to have showers will
 areas dependent on airborne exposure     already have them, and
 levels or types of processes. Such       employers will not have to
 alternatives might include, for          install showers to comply with
 example, hand washing facilities in      the beryllium standard (Please
 lieu of showers in particular cases or   see the Hygiene Areas and
 different hygiene area triggers where    Practices section in Chapter V
 exposure levels are very low.            of the FEA). In Construction
                                          and Maritime, for each
                                          employee required to use
                                          personal protective clothing
                                          or equipment, the employer
                                          must ensure that employees who
                                          have dermal contact with
                                          beryllium wash any exposed
                                          skin at the end of the
                                          activity, process, or work
                                          shift and prior to eating,
                                          drinking, smoking, chewing
                                          tobacco or gum, applying
                                          cosmetics, or using the
                                          toilet. For Construction and
                                          Maritime, language involving
                                          showers has been removed but
                                          employers are still required
                                          to provide change rooms. Where
                                          personal protective clothing
                                          or equipment must be used, the
                                          employer must provide washing
                                          facilities. The standards do
                                          not require that eating and
                                          drinking areas be provided,
                                          but impose requirements when
                                          the employer chooses to have
                                          eating and drinking areas.
                                         Change rooms have been costed
                                          in general industry for
                                          employees who work in a
                                          beryllium work area and in
                                          construction and maritime for
                                          employees who required to use
                                          personal protective clothing
                                          or equipment. The Agency has
                                          determined that the long-term
                                          rental of modular units is
                                          representative of costs for a
                                          range of reasonable approaches
                                          to comply with the change room
                                          part of the provision.
                                          Alternatively, employers could
                                          renovate and rearrange their
                                          work areas in order to meet
                                          the requirements of this
                                          provision.

[[Page 2624]]

 
The Panel recommends that OSHA consider  In the preamble to the final
 clearly explaining the purpose of the    rule, OSHA has clarified the
 housekeeping provision and describing    purpose of the housekeeping
 what affected employers must do to       provision. However, due to the
 achieve it.                              variety of work settings in
For example, OSHA should consider         which beryllium is used, OSHA
 explaining more specifically what        has concluded that a highly
 surfaces need to be cleaned and how      specific directive in the
 frequently they need to be cleaned.      preamble on what surfaces need
 The Panel recommends that the Agency     to be cleaned, and how
 consider providing guidance in some      frequently, would not provide
 form so that employers understand what   effective guidance to
 they must do. The Panel also             businesses. Instead, at the
 recommends that once the requirements    suggestion of industry and
 are clarified that the Agency re-        union stakeholders (Materion
 analyze its cost estimates.              and USW, 2012), OSHA's final
The Panel also recommends that OSHA       standards include a more
 reconsider whether the risk and cost     flexible requirement for
 of all parts of the medical              employers to develop a written
 surveillance provisions are              exposure control plan specific
 appropriate where exposure levels are    to their facilities. In
 very low. In that context, the Panel     general industry, the employer
 recommends that OSHA should also         must establish procedures to
 consider the special problems and        maintain all surfaces in
 costs to small businesses that up        beryllium work areas as free
 until now may not have had to provide    as practicable of beryllium as
 or manage the various parts of an        required by the written
 occupational health standard or          exposure control plan. Other
 program.                                 than requirements pertaining
                                          to eating and drinking areas,
                                          there are no requirements to
                                          maintain surface cleanliness
                                          in construction or maritime.
                                          These issues are discussed in
                                          the preamble at Section XVI,
                                          Summary and Explanation of the
                                          Standards, (f) Methods of
                                          Compliance and (j)
                                          Housekeeping. The adoption of
                                          Regulatory Alternative #20 in
                                          the PEA reduced the frequency
                                          of physical examinations from
                                          annual to biennial, matching
                                          the frequency of BeLPT testing
                                          in the final rule.
                                         These alternatives for medical
                                          surveillance are discussed in
                                          the Regulatory Alternatives
                                          Chapter, Chapter VIII and in
                                          the preamble at section XVI,
                                          Summary and Explanation of the
                                          Standards, (k) Medical
                                          Surveillance.
The Panel recommends that OSHA consider  Under the final standards, skin
 that small entities may lack the         exposure is not a trigger for
 flexibility and resources to provide     medical removal (unlike the
 alternative jobs to employees who test   draft version used for the
 positive for the BeLPT, and whether      SBAR Panel). Employees are
 medical removal protection (MRP)         only eligible for medical
 achieves its intended purpose given      removal if they are in a job
 the course of beryllium disease. The     with airborne exposure at or
 Panel also recommends that if MRP is     above the action level and
 implemented, that its effects on the     provide the employer with a
 viability of very small firms with a     written medical report
 sensitized employee be considered        confirming that they are
 carefully.                               sensitized or have been
                                          diagnosed with CBD, or that
                                          the physician recommends
                                          removal, or if the employer
                                          receives a written medical
                                          opinion recommending removal
                                          of the employee. After
                                          becoming eligible for medical
                                          removal an employee may choose
                                          to remain in a job with
                                          exposure at or above the
                                          action level, provided that
                                          the employer provides and the
                                          employee wears a respirator in
                                          accordance with the
                                          Respiratory Protection
                                          standard (29 CFR 1910.134). If
                                          the employee chooses removal,
                                          the employer is only required
                                          to place the employee in
                                          comparable work with exposure
                                          below the action level if such
                                          work is available; if such
                                          work is not available, the
                                          employer may place the
                                          employee on paid leave for six
                                          months or until such work
                                          becomes available, whichever
                                          comes first.
                                         OSHA discusses the basis of the
                                          provision in the preamble at
                                          Section XVI, Summary and
                                          Explanation of the Standards,
                                          (l) Medical Removal
                                          Protection. OSHA provides an
                                          analysis of costs and economic
                                          impacts of the provision in
                                          the FEA in Chapter V and
                                          Chapter VI, respectively.
The Panel recommends that OSHA consider  As stated above, the triggers
 more clearly defining the trigger        for medical surveillance in
 mechanisms for medical surveillance      the final standard have
 and also consider additional or          changed from those presented
 alternative triggers--such as limiting   to the SBAR Panel. Whereas the
 the BeLPT to a narrower range of         draft standard presented at
 exposure scenarios and reducing the      the SBAR Panel required
 frequency of BeLPT tests and physical    medical surveillance for
 exams. The Panel also recommends that    employees with skin contact--
 OSHA reconsider whether the risk and     potentially applying to
 cost of all parts of the medical         employees with any level of
 surveillance provisions are              airborne exposure--the final
 appropriate where exposure levels are    standard ties medical
 very low. In that context, the Panel     surveillance to exposures at
 recommends that OSHA should also         or above the action level for
 consider the special problems and        more than 30 days per year (or
 costs to small businesses that up        signs or symptoms of beryllium-
 until now may not have had to provide    related health effects,
 or manage the various parts of an        emergency exposure, or a
 occupational health standard or          medical opinion recommending
 program.                                 medical surveillance on the
                                          basis of a CBD or
                                          sensitization diagnosis).
                                          Thus, small businesses with
                                          exposures below the final
                                          action level would not need to
                                          provide or manage medical
                                          surveillance for their
                                          employees unless employees
                                          develop signs or symptoms of
                                          beryllium-related health
                                          effects or are exposed in
                                          emergencies.
                                         These issues are discussed in
                                          the preamble at section XVI,
                                          Summary and Explanation of the
                                          Standards, (k) Medical
                                          Surveillance.
The Panel recommends that the Agency,    OSHA has reviewed the possible
 in evaluating the economic feasibility   effects of the final
 of a potential regulation, consider      regulation on market demand
 not only the impacts of estimated        and/or foreign production, in
 costs on affected establishments, but    addition to the Agency's usual
 also the effects of the possible         measures of economic impact
 outcomes cited by SERs: Loss of market   (costs as a fraction of
 demand, the loss of market to foreign    revenues and profits). This
 competitors, and of U.S. production      discussion can be found in
 being moved abroad by U.S. firms. The    Chapter VI of the FEA
 Panel also recommends that OSHA          (entitled Economic Feasibility
 consider the potential burdens on        Analysis and Regulatory
 small businesses of dealing with         Flexibility Determination).
 employees who have a positive test
 from the BeLPT. OSHA may wish to
 address this issue by examining the
 experience of small businesses that
 currently provide the BeLPT test.

[[Page 2625]]

 
The Panel recommends that OSHA consider  The provisions in the standard
 seeking ways of minimizing costs for     presented in the SBAR panel
 small businesses where the exposure      report applied to all
 levels may be very low. Clarifying the   employees, whereas the final
 use of objective data, in particular,    standard's ancillary
 may allow industries and                 provisions are only applied to
 establishments with very low exposures   employees in work areas who
 to reduce their costs and involvement    are, or can reasonably be
 with many provisions of a standard.      expected to be, exposed to
 The Panel also recommends that the       airborne beryllium. In
 Agency consider tiering the              addition, the scope of the
 application of ancillary provisions of   final standard includes
 the standard according to exposure       several limitations. Whereas
 levels and consider a more limited or    the standard presented in the
 narrowed scope of industries.            SBAR panel report covered
                                          beryllium in all forms and
                                          compounds in general industry,
                                          construction, and maritime,
                                          the scope of the final
                                          standard (1) does not apply to
                                          beryllium-containing articles
                                          that the employer does not
                                          process; and (2) does not
                                          apply to materials that
                                          contain less than 0.1%
                                          beryllium by weight if the
                                          employer has objective data
                                          demonstrating that employee
                                          exposure to beryllium will
                                          remain below the action level
                                          as an 8-hour TWA under any
                                          foreseeable conditions.
                                         In the preamble to the final
                                          standard, OSHA has clarified
                                          the circumstances under which
                                          an employer may use historical
                                          and objective data in lieu of
                                          initial monitoring (Section
                                          XVI, Summary and Explanation
                                          of the Standards, (d) Exposure
                                          Monitoring).
                                         OSHA also considered two
                                          Regulatory Alternatives that
                                          would reduce the impact of
                                          ancillary alternatives on
                                          employers, including small
                                          businesses. Regulatory
                                          Alternative #7, a PEL-only
                                          standard, would drop all
                                          ancillary provisions from the
                                          standard. Regulatory
                                          Alternative #8 would limit the
                                          application of several
                                          ancillary provisions,
                                          including Exposure Monitoring,
                                          the written exposure control
                                          plan section of Method of
                                          Compliance, PPE, Housekeeping,
                                          and Medical Surveillance, to
                                          operations or employees with
                                          exposure levels exceeding the
                                          TWA PEL or STEL.
                                         These alternatives are
                                          discussed in the Regulatory
                                          Alternatives, Chapter VIII of
                                          the FEA.
The Panel recommends that OSHA provide   The explanation and analysis
 an explanation and analysis for all      for all health outcomes (and
 health outcomes (and their scientific    their scientific basis) are
 basis) upon which it is regulating       discussed in the preamble to
 employee exposure to beryllium. The      the final standard at Section
 Panel also recommends that OSHA          V, Health Effects, and Section
 consider to what extent a very low PEL   VI, Risk Assessment. They are
 (and lower action level) may result in   also reviewed in the preamble
 increased costs of ancillary             to the final standard at
 provisions to small entities (without    Section VII, Significance of
 affecting airborne employee              Risk, and the Benefits Chapter
 exposures). Since in the draft           of the FEA.
 proposal the PEL and action level are   As discussed above, OSHA
 critical triggers, the Panel             considered Regulatory
 recommends that OSHA consider            Alternatives #7 and #8, which
 alternate action levels, including an    would eliminate or reduce the
 action level set at the PEL, if a very   impact of ancillary provisions
 low PEL is proposed.                     on employers, respectively.
                                          These alternatives are
                                          discussed in Chapter VIII of
                                          the FEA.
The Panel recommends that OSHA consider  OSHA has removed skin exposure
 more clearly and thoroughly defining     as a trigger for several
 the triggers for ancillary provisions,   ancillary provisions in the
 particularly the skin exposure           final standard, including
 trigger. In addition, the Panel          Exposure Assessment and
 recommends that OSHA clearly explain     Medical Surveillance. For each
 the basis and need for small entities    employee working in a
 to comply with ancillary provisions.     beryllium work area in general
 The Panel also recommends that OSHA      industry, and for each
 consider narrowing the trigger related   employee required to use
 to skin and contamination to capture     personal protective clothing
 only those situations where surfaces     or equipment in construction
 and surface dust may contain beryllium   and maritime, the employer
 in a concentration that is significant   must ensure that employees who
 enough to pose any risk--or limiting     have dermal contact with
 the application of the trigger for       beryllium wash any exposed
 some ancillary provisions.               skin at the end of the
                                          activity, process, or work
                                          shift and prior to eating,
                                          drinking, smoking, chewing
                                          tobacco or gum, applying
                                          cosmetics, or using the
                                          toilet. In addition, the
                                          potential for dermal contact
                                          with beryllium triggers
                                          requirements related to
                                          beryllium work areas, the
                                          written exposure control plan,
                                          washing facilities,
                                          housekeeping and training: For
                                          some ancillary provisions,
                                          including PPE and
                                          Housekeeping, the requirements
                                          are triggered by visible
                                          contamination with beryllium
                                          or dermal contact with
                                          beryllium.
                                         In Construction and Maritime,
                                          for each employee required to
                                          use personal protective
                                          clothing or equipment, the
                                          employer must ensure that
                                          employees who have dermal
                                          contact with beryllium wash
                                          any exposed skin at the end of
                                          the activity, process, or work
                                          shift and prior to eating,
                                          drinking, smoking, chewing
                                          tobacco or gum, applying
                                          cosmetics, or using the
                                          toilet. For Construction and
                                          Maritime, language involving
                                          showers has been removed and
                                          employers are required to
                                          provide change rooms for
                                          employees required to use
                                          personal protective clothing
                                          or equipment and required to
                                          remove their personal
                                          clothing. Where dermal contact
                                          occurs, employers must provide
                                          washing facilities.
                                         These requirements are
                                          discussed in the preamble at
                                          Section XVI, Summary and
                                          Explanation of the Standards.
                                          The Agency has also explained
                                          the basis and need for
                                          compliance with ancillary
                                          provisions in the preamble at
                                          Section XVI, Summary and
                                          Explanation of the Standards.

[[Page 2626]]

 
Several SERs said that OSHA should       In the Technological
 first assume the burden of describing    Feasibility Analysis presented
 the exposure level in each industry      in the FEA, OSHA has described
 rather than employers doing so. Others   the baseline exposure levels
 said that the Agency should accept       in each industry or
 exposure determinations made on an       application group.
 industry-wide basis, especially where   In the preamble to the final
 exposures were far below the PEL         standards, OSHA discusses the
 options under consideration.             issue of objective data. While
As noted above, the Panel recommends      OSHA recognizes that some
 that OSHA consider alternatives that     establishments will have
 would alleviate the need for             objective data, for purposes
 monitoring in operations or processes    of the economic analysis, the
 with exposures far below the PEL. The    Agency is choosing to assume
 use of objective data is a principal     that no establishments will
 method for industries with low           use objective data. The Agency
 exposures to satisfy compliance with a   recognizes that this will
 proposed standard. The Panel             overestimate costs.
 recommends that OSHA consider
 providing some guidance to small
 entities in the use of objective data.
The Panel recommends that OSHA consider  OSHA has provided discussion of
 more fully evaluating whether the        the BeLPT in the preamble to
 BeLPT is suitable as a test for          the final rule at section V,
 beryllium sensitization in an OSHA       Health Effects; and in the
 standard and respond to the points       preamble at section XVI,
 raised by the SERs about its efficacy.   Summary and Explanation of the
 In addition, the Agency should           Standards, (b) Definitions and
 consider the availability of other       (k) Medical Surveillance. In
 tests under development for detecting    the regulatory text, OSHA has
 beryllium sensitization and not limit    clarified that a test for
 either employers' choices or new         beryllium sensitization other
 science and technology in this area.     than the BeLPT may be used in
 Finally, the Panel recommends that       lieu of the BeLPT if a more
 OSHA re-consider the trigger for         reliable and accurate
 medical surveillance where exposures     diagnostic test is developed.
 are low and consider if there are       As stated above, the triggers
 appropriate alternatives.                for medical surveillance in
                                          the final standard have
                                          changed from those presented
                                          to the SBAR Panel. Whereas the
                                          draft standard presented
                                          during the SBREFA process
                                          required medical surveillance
                                          for employees with skin
                                          contact--potentially applying
                                          to employees with any level of
                                          airborne exposure--the final
                                          standard ties medical
                                          surveillance to exposures
                                          above the final action level
                                          of 0.1 [mu]g/m\3\ (or signs or
                                          symptoms of beryllium-related
                                          health effects, emergency
                                          exposure, or a medical opinion
                                          recommending medical
                                          surveillance on the basis of a
                                          CBD or sensitization
                                          diagnosis). The triggers for
                                          medical surveillance are
                                          discussed in the preamble at
                                          section XVI, Summary and
                                          Explanation of the Standards,
                                          (k) Medical Surveillance.
                                         OSHA has considered Regulatory
                                          Alternative #16, where
                                          employers would not be
                                          required to offer employees a
                                          BeLPT that tests for beryllium
                                          sensitization. from the final
                                          standard. This alternative is
                                          discussed in the Regulatory
                                          Alternatives Chapter and in in
                                          the preamble at Section XVI,
                                          Summary and Explanation of the
                                          Final Standard, (k) Medical
                                          Surveillance.
Seeking ways of minimizing costs to low- The standard presented in the
 risk processes and operations: OSHA      SBAR panel report had skin
 should consider alternatives for         exposure as a trigger. The
 minimizing costs to industries,          final standards require PPE
 operations, or processes that have low   when there is a reasonable
 exposures. Such alternatives may         expectation of dermal contact
 include, but not be limited to:          with beryllium. The employer
 Encouraging the use of objective data    must ensure that employees who
 by such mechanisms as providing          have dermal contact with
 guidance for objective data; assuring    beryllium wash any exposed
 that triggers for skin exposure and      skin at the end of the
 surface contamination are clear and do   activity, process, or work
 not pull in low-risk operations;         shift and prior to eating,
 providing guidance on least-cost ways    drinking, smoking, chewing
 for low risk facilities to determine     tobacco or gum, applying
 what provisions of the standard they     cosmetics, or using the
 need to comply with; and considering     toilet. OSHA uses an exposure
 ways to limit the scope of the           profile to determine which
 standard if it can be ascertained that   workers will be affected by
 certain processes do not represent a     the standards. As a result, in
 significant risk.                        General Industry and Maritime,
                                          the final standards require
                                          regulated areas where
                                          exposures can exceed the PEL
                                          or STEL. In General Industry,
                                          beryllium work areas must be
                                          established in areas that
                                          contain a process or operation
                                          that can release beryllium
                                          where employees are, or can
                                          reasonably be expected to be,
                                          exposed to airborne beryllium
                                          at any level or where there is
                                          the potential for dermal
                                          contact with beryllium.
                                         In Construction, the written
                                          exposure control plan must
                                          contain procedures used to
                                          restrict access to work areas
                                          when airborne exposures are,
                                          or can reasonably be expected
                                          to be, above the TWA PEL or
                                          STEL, and the competent person
                                          must implement the plan.
                                         In addition, the scope of the
                                          final standards includes
                                          several limitations. Whereas
                                          the standard presented in the
                                          SBAR panel report covered
                                          beryllium in all forms and
                                          compounds in general industry,
                                          construction, and maritime,
                                          the scope of the final
                                          standard (1) does not apply to
                                          beryllium-containing articles
                                          that the employer does not
                                          process; and (2) does not
                                          apply to materials that
                                          contain less than 0.1%
                                          beryllium by weight where the
                                          employer has objective data
                                          demonstrating that employee
                                          exposure to beryllium will
                                          remain below the action level
                                          as an 8-hour TWA under any
                                          foreseeable conditions. In the
                                          preamble to the final
                                          standards, OSHA discusses the
                                          issue of objective data. While
                                          OSHA recognizes that some
                                          establishments will have
                                          objective data, for purposes
                                          of this rule, the Agency is
                                          choosing to assume that no
                                          establishments will use
                                          objective data. The Agency
                                          recognizes that this will
                                          overestimate costs.

[[Page 2627]]

 
PEL-only standard: One SER recommended   OSHA considered Regulatory
 a PEL-only standard. This would          Alternative #7, a PEL-only
 protect employees from airborne          standard. This alternative is
 exposure risks while relieving the       discussed in Chapter VIII of
 beryllium industry of the cost of the    the FEA.
 ancillary provisions. The Panel
 recommends that OSHA, consistent with
 its statutory obligations, analyze
 this alternative.
Alternative triggers for ancillary       OSHA has removed skin exposure
 provisions: The Panel recommends that    as a trigger for several
 OSHA clarify and consider eliminating    ancillary provisions in the
 or narrowing the triggers for            final standard, including
 ancillary provisions associated with     Exposure Monitoring and
 skin exposure or contamination. In       Medical Surveillance. In
 addition, the Panel recommends that      General Industry, the employer
 OSHA should consider trying ancillary    must ensure that employees who
 provisions dependent on exposure         have dermal contact with
 rather than have these provisions all    beryllium wash any exposed
 take effect with the same trigger. If    skin at the end of the
 OSHA does rely on a trigger related to   activity, process, or work
 skin exposure, OSHA should thoroughly    shift and prior to eating,
 explain and justify this approach        drinking, smoking, chewing
 based on an analysis of the scientific   tobacco or gum, applying
 or research literature that shows a      cosmetics, or using the
 risk of sensitization via exposure to    toilet.
 skin. If OSHA adopts a relatively low   In Construction and Maritime,
 PEL, OSHA should consider the effects    for each employee required to
 of alternative airborne action levels    use personal protective
 in pulling in many low risk facilities   clothing or equipment, the
 that may be unlikely to exceed the       employer must ensure that
 PEL--and consider using only the PEL     employees who have dermal
 as a trigger at very low levels.         contact with beryllium wash
                                          any exposed skin at the end of
                                          the activity, process, or work
                                          shift and prior to eating,
                                          drinking, smoking, chewing
                                          tobacco or gum, applying
                                          cosmetics, or using the
                                          toilet.
                                         In addition, the language of
                                          the final standard regarding
                                          skin exposure has changed: For
                                          some ancillary provisions,
                                          including PPE and
                                          Housekeeping, the requirements
                                          are triggered by visible
                                          contamination with beryllium
                                          or skin contact with beryllium
                                          compounds.
                                         These requirements are
                                          discussed in the preamble at
                                          Section XVI, Summary and
                                          Explanation of the Standards.
                                         OSHA has explained the
                                          scientific basis for
                                          minimizing skin exposure to
                                          beryllium in the preamble to
                                          the final rule at Section V,
                                          Health Effects, and explains
                                          the basis for specific
                                          ancillary provisions related
                                          to skin exposure in the
                                          preamble at Section XVI,
                                          Summary and Explanation of the
                                          Standards. In the final
                                          standards, the application of
                                          ancillary provisions is
                                          dependent on exposure, and not
                                          all provisions take effect
                                          with the same trigger. A
                                          number of requirements are
                                          triggered by exposures (or a
                                          reasonable expectation of
                                          exposures) above the PEL or
                                          action level (AL). As
                                          discussed above, OSHA
                                          considered Regulatory
                                          Alternatives #7 and #8, which
                                          would eliminate or reduce the
                                          impact of ancillary provisions
                                          on employers, respectively.
                                          These alternatives are
                                          discussed in Chapter VIII of
                                          the FEA.
Revise the medical surveillance          After considering comments from
 provisions, including eliminating the    SERs, OSHA has revised the
 BeLPT: The BeLPT was the most common     medical surveillance provision
 complaint from SERs. The Panel           and removed the skin exposure
 recommends that OSHA carefully examine   trigger for medical
 the value of the BeLPT and consider      surveillance. As a result,
 whether it should be a requirement of    OSHA estimates that the number
 a medical surveillance program. The      of small-business employees
 Panel recommends that OSHA present the   requiring a BELPT will be
 scientific evidence that supports the    substantially reduced.
 use of the BeLPT as several SERs were   OSHA has provided discussion of
 doubtful of its reliability. The Panel   the BeLPT in the preamble to
 recommends that OSHA also consider       the final rule at section V,
 reducing the frequency of physicals      Health Effects; and in the
 and the BeLPT, if these provisions are   preamble at section XVI,
 included in a proposal. The Panel        Summary and Explanation of the
 recommends that OSHA also consider a     Standards, (b) Definitions and
 performance-based medical surveillance   (k) Medical Surveillance. In
 program, permitting employers in         the regulatory text, OSHA has
 consultation with physicians and         clarified that a test for
 health experts to develop appropriate    beryllium sensitization other
 tests and their frequency.               than the BeLPT may be used in
                                          lieu of the BeLPT if a more
                                          reliable and accurate
                                          diagnostic test is developed.
                                         The frequency of periodic BeLPT
                                          testing in the final standard
                                          is biennial, whereas annual
                                          testing was included in the
                                          draft standard presented to
                                          the SBAR Panel.
                                         Regulatory Alternative #20
                                          would reduce the frequency of
                                          physical examinations from
                                          biennial to annual, matching
                                          the frequency of BeLPT testing
                                          in the final rule.
                                         In response to the suggestion
                                          to allow performance-based
                                          medical surveillance, OSHA
                                          considered two regulatory
                                          alternatives that would
                                          provide greater flexibility in
                                          the program of tests provided
                                          as part of an employer's
                                          medical surveillance program.
                                          Regulatory Alternative #16
                                          would eliminate BeLPT testing
                                          requirements from the final
                                          standard. Regulatory
                                          Alternative #18 would
                                          eliminate the CT scan
                                          requirement from the final
                                          standard. These alternatives
                                          are discussed in the
                                          Regulatory Alternatives
                                          Chapter and in the preamble at
                                          Section XVI, Summary and
                                          Explanation of the Standards,
                                          (k) Medical Surveillance.

[[Page 2628]]

 
No medical removal protection (MRP):     The final standard includes an
 OSHA's draft proposed standard did not   MRP provision. OSHA discusses
 include any provision for medical        the basis of the provision in
 removal protection, but OSHA did ask     the preamble at Section XVI,
 the SERs to comment on MRP as a          Summary and Explanation of the
 possibility. Based on the SER            Standards, (l) Medical Removal
 comments, the Panel recommends that if   Protection. OSHA provides an
 OSHA includes an MRP provision, the      analysis of costs and economic
 agency provide a thorough analysis of    impacts of the provision in
 why such a provision is needed, what     the FEA in Chapter V and
 it might accomplish, and what its full   Chapter VI, respectively.
 costs and economic impacts on those     The Agency considered
 small businesses that need to use it     Alternative #22, which would
 might be.                                eliminate the MRP requirement
                                          from the standard. This
                                          alternative is discussed in
                                          the Regulatory Alternatives
                                          Chapter and in the preamble at
                                          section XVI, Summary and
                                          Explanation of the Standards,
                                          (l) Medical Removal
                                          Protection.
------------------------------------------------------------------------

IX. OMB Review Under the Paperwork Reduction Act of 1995

Introduction

    The three final beryllium standards (collectively ``the 
standards'') for occupational exposure to beryllium--general industry 
(29 CFR 1910.1024), construction (29 CFR 1926.1124), and shipyard (29 
CFR 1915.1024)--contain collection of information (paperwork) 
requirements that are subject to review by the Office of Management and 
Budget (OMB) under the Paperwork Reduction Act of 1995 (PRA), 44 U.S.C. 
3501 et seq, and OMB's regulations at 5 CFR part 1320. The PRA requires 
that agencies obtain approval from OMB before conducting any collection 
of information (44 U.S.C. 3507). The PRA defines ``collection of 
information'' to mean ``the obtaining, causing to be obtained, 
soliciting, or requiring the disclosure to third parties or the public, 
of facts or opinions by or for an agency, regardless of form or 
format'' (44 U.S.C. 3502(3)(A)).
    In accordance with the PRA (44 U.S.C. 3506(c)(2)), OSHA solicited 
public comments on the Beryllium Standard for General Industry (29 CFR 
1910.1024), Information Collection Request (ICR) (paperwork burden hour 
and cost analysis) for the proposed rule (80 FR 47555). The Department 
submitted this ICR to OMB for review in accordance with 44 U.S.C. 
3507(d) on August 7, 2015. A copy of this ICR is available to the 
public at https://www.reginfo.gov/public/do/PRAOMBHistory?ombControlNumber=1218-0267).
    On October 21, 2015, OMB issued a Notice of Action (NOA) assigning 
Beryllium Standard for General Industry new OMB Control Number 1218-
0267 to use in future paperwork submissions involving this rulemaking. 
OMB requested that, ``Prior to publication of the final rule, the 
agency should provide a summary of any comments related to the 
information collection and their response, including any changes made 
to the ICR as a result of comments. In addition, the agency must enter 
the correct burden estimates.''
    The proposed rule invited the public to submit comments to OMB, in 
addition to OSHA, on the proposed collections of information with 
regard to the following:
     Whether the proposed collections of information are 
necessary for the proper performance of the Agency's functions, 
including whether the information is useful;
     The accuracy of OSHA's estimate of the burden (time and 
cost) of the collections of information, including the validity of the 
methodology and assumptions used;
     The quality, utility, and clarity of the information 
collected; and
     Ways to minimize the compliance burden on employers, for 
example, by using automated or other technological techniques for 
collecting and transmitting information (78 FR 56438).
    No public comments were received specifically in response to the 
proposed ICR submitted to OMB for review. However, several public 
comments submitted in response to the Notice of Proposed Rulemaking 
(NPRM), described earlier in this preamble, substantively addressed 
provisions containing collections of information and contained 
information relevant to the burden hour and costs analysis. These 
comments are addressed in the preamble, and OSHA considered them when 
it developed the revised ICR associated with these final standards.
    The Department of Labor submitted the final ICR January 9, 2017 
containing a full analysis and description of the burden hours and 
costs associated with the collections of information of the standards 
to OMB for approval. A copy of the ICR is available to the public at 
https://www.reginfo.gov. OSHA will publish a separate notice in the 
Federal Register that will announce the results of OMB's review. That 
notice will also include a list of OMB approved collections of 
information and total burden hours and costs imposed by the new 
standards.
    Under the PRA, Federal agency cannot conduct or sponsor a 
collection of information unless it is approved by OMB under the PRA, 
and the collection of information notice displays a currently valid OMB 
control number (44 U.S.C. 3507(a)(3)). Also, notwithstanding any other 
provision of law, no employer shall be subject to penalty for failing 
to comply with a collection of information if the collection of 
information does not display a currently valid OMB control number (44 
U.S.C. 3512). The major collections of information found in the 
standards are listed below.

Summary of Information Collection Requirements

    The Beryllium standards contain collection of information 
requirements which are essential components of the occupational safety 
and health standards that will assist both employers and their 
employees in identifying the exposures to beryllium and beryllium 
compounds, the medical effects of such exposures, and the means to 
reduce the risk of overexposures to beryllium and beryllium compounds. 
In the final ICR, OSHA has expanded its coverage to include the 
construction and shipyard industries--in order to tailor the collection 
of information requirements to the circumstances found in these 
sectors. The decision to include standards for construction and 
shipyards is based on information and comment submitted in response to 
the NPRM request for comment, and during the informal public hearing.
    1. Title: Beryllium (29 CFR 1910.1024; 29 CFR 1915.1024; 29 CFR 
1926. 1124).
    2. Type of Review: New.
    3. OMB Control Number: 1218-0267.
    4. Affected Public: Business or other for-profit. This standard 
applies to employers in general industry, shipyard, and construction 
who have employees that may have occupational exposures to any form of 
beryllium, including compounds and mixtures, except those articles and 
materials exempted by paragraphs (a)(2) and (a)(3) of the Final 
standard.

[[Page 2629]]

    5. Number of Respondents: 5,872 affected employers.
    6. Frequency of Responses: On occasion; quarterly, semi-annually, 
annual; biannual.
    7. Number of Responses: 246,433.
    8. Average Time per Response: Varies from 5 minutes (.08 hours) for 
a clerical worker to generate and maintain an employee medical record, 
to more than 8 hours for a human resource manager to develop and 
implement a written exposure control plan.
    9. Estimated Total Burden Hours: 196,894.
    10. Estimated Cost (capital-operation and maintenance): 
$46,158,266.

Discussion of Significant Changes in the Collections of Information 
Requirements

    Below is a summary of the collection of information requirements 
contained in the final rule, and a brief description of the most 
significant changes between the proposal and the final rule portions of 
the regulatory text containing collection of information requirements. 
One of the most significant changes between the NPRM and this final 
rule is that OSHA extended the scope of the rule so that the most of 
the provisions now also apply to construction and shipyard work. As a 
result, while most of the provisions are identical across all three 
standards (general industry, construction, and shipyards), there are 
technically more collections of information. However, for purposes of 
the review and explanation that follows, OSHA has focused on the 
changes to the general industry provisions and has not separately 
identified the additions to the construction and shipyard standard 
unless they deviate from the requirements in the general industry 
standard. A more detailed discussion of all the changes made to the 
proposed rule, including the requirements that include identified 
collection of information, is in Section XVIII: Summary and 
Explanation. The impact on information collections is also discussed in 
more detail in Item 8 of the ICR.

Exposure Assessment

    Paragraph (d) sets forth requirements for assessing employee 
exposures to beryllium. Consistent with the definition of ``airborne 
exposure'' in paragraph (b) of these standards, exposure monitoring 
results must reflect the exposure to airborne beryllium that would 
occur if the employee were not using a respirator.
    Proposed paragraph (d) used the term ``Exposure monitoring.'' In 
the final rule, this term was changed to ``Exposure assessment'' 
throughout the paragraph. This change in the final standards was made 
to align the provision's purpose with the broader concept of exposure 
assessment beyond conducting air monitoring, including the use of 
objective data.
    OSHA added a paragraph (d)(2) as an alternative exposure assessment 
method to the scheduled monitoring requirements in the proposed rule. 
Under this option employers must assess 8-hour TWA exposure and the 15-
minute short term exposure for each employee using any combination of 
air monitoring data and objective data sufficient to accurately 
characterize airborne exposure to beryllium.
    Proposed paragraph (d)(3), Periodic Exposure Monitoring, would have 
required employers whose initial monitoring results indicated that 
employee's exposures results are at or above the action level and at or 
below the TWA PEL to conduct periodic exposure monitoring at least 
annually. Final paragraph (d)(3), Scheduled Monitoring Option, 
increased the frequency schedule for periodic monitoring and added a 
requirement to perform periodic exposure monitoring when exposures are 
above the PEL, paragraph (d)(3)(vi) and when exposures are above the 
STEL in paragraph (d)(3)(viii).
    Proposed paragraph (d)(4) would have required employers to conduct 
exposure monitoring within 30 days after a change in production 
processes, equipment, materials, personnel, work practices, or control 
methods that could reasonably be expected to result in new or 
additional exposures. OSHA changed the proposed requirement to require 
that employers perform reassessment of exposures when there is a change 
in ``production, process, control equipment, personnel, or work 
practices'' that may reasonably be expected to result in new or 
additional exposures at or above the action level or STEL. In addition, 
OSHA added ``at or above the action level or STEL'' to final paragraph 
(d)(4). In summary, the final rule requires that employers must perform 
reassessment of exposures when there is a change in production, 
process, control equipment, personnel, or work practices that may 
reasonably be expected to result in new or additional exposures at or 
above the action level or STEL.
    Proposed paragraph (d)(5)(i), Employee Notification of Monitoring 
Results, would have required employers in general industry to inform 
their employees of results within 15 working days after receiving the 
results of any exposure monitoring completed under this standard. Final 
paragraph (d)(6), Employee Notification of Assessment Results, requires 
that employers in general industry, construction and shipyards inform 
their employees of results within 15 working days after completing an 
exposure assessment.
    Proposed paragraph (d)(5)(ii) (paragraph (d)(6)(ii) of the final 
standards) would have required that whenever an exposure assessment 
indicates that airborne exposure is above the TWA PEL or STEL, the 
employer must include in the written notification the suspected or 
known sources of exposure and the corrective action(s) the employer has 
taken or will take to reduce exposure to or below the PELs, where 
feasible corrective action exists but had not been implemented when the 
monitoring was conducted. Final paragraph (d)(6)(ii) removes the 
requirement that employers include suspected or known sources of 
exposure in the written notification.

Methods of Compliance

    Proposed paragraph (f)(1)(i) would have required employers to 
establish, implement and maintain a written control plan for beryllium 
work areas. OSHA has retained the requirement for a written exposure 
control plan and incorporated most provisions of the proposed paragraph 
(f)(1)(i) into the final standards for construction and shipyards, with 
certain modifications due to the work processes and worksites 
particular to these sectors.
    Paragraph (f)(1)(i) differs from the proposal in that it requires a 
written exposure control plan for each facility, whereas the proposal 
would have required a written exposure control plan for beryllium work 
areas within each facility. OSHA has modified the requirement of a list 
of operations and job titles reasonably expected to have exposure to 
include those operations and job titles that are reasonably expected to 
have dermal contact with beryllium. Finally, OSHA modified the proposed 
requirement to inventory engineering and work practice controls 
required by paragraph (f)(2) of this standard to include respiratory 
protection.
    Paragraph (f)(1)(ii) of the final standards requires the employer 
to review and evaluate the effectiveness of each written exposure 
control plan at least annually and update it when: (A) Any change in 
production processes, materials, equipment, personnel, work practices, 
or control methods results or can reasonably be expected to result in 
additional or new airborne exposure to beryllium; (B) the employer is 
notified that an employee is eligible for medical removal in accordance 
with paragraph

[[Page 2630]]

(l)(1) of this standard, referred for evaluation at a CBD Diagnostic 
Center, or shows signs or symptoms associated with airborne exposure to 
or dermal contact with beryllium; or (C) the employer has any reason to 
believe that new or additional airborne exposure is occurring or will 
occur.
    OSHA made several changes to that paragraph. First, OSHA added a 
requirement to review and evaluate the effectiveness of each written 
exposure control plan at least annually. Second, OSHA changed the 
proposed language of (f)(1)(ii)(B) to reflect other changes in the 
standard, including a change to ensure that employers are not 
automatically notified of cases of sensitization or CBD among their 
employees. Third, OSHA modified (f)(1)(ii)(B) to clarify the Agency's 
understanding that signs and symptoms of beryllium exposure may be 
related to inhalation or dermal exposure. Finally, OSHA modified the 
wording of (f)(1)(ii) to require the employer to update ``each'' 
written exposure control plan rather than ``the'' written exposure 
control plan, since an employer who operates multiple facilities is 
required to establish, implement and maintain a written exposure 
control plan for each facility.
    Paragraph (f)(1)(iii) of the proposed rule would have required the 
employer to make a copy of the exposure control plan accessible to each 
employee who is or can reasonably be expected to be exposed to airborne 
beryllium in accordance with OSHA's Access to Employee Exposure and 
Medical Records (Records Access) standard (29 CFR 1910.1020(e)). OSHA 
did not receive comments specific to this provision, and has retained 
it in the final standard for general industry and included the 
paragraph in the final standards for construction and shipyards.

Respiratory Protection

    Proposed Paragraph (g) of the standard would have established the 
requirements for the use of respiratory protection. OSHA added language 
to paragraph (g) to clarify that both the selection and use of 
respiratory protection must be in accordance with the Respiratory 
Protection standard 29 CFR 1910.134, which is cross-referenced, and to 
provide a powered air-purifying respirator (PAPR) when requested by an 
employee. The Respiratory protection standard contains collection of 
information requirements, include a written respiratory protection 
program and fit-testing records (29 CFR 1910.134(c)). The collection of 
information requirements contained in the Respiratory Protection 
Program standard are approved under OMB Control Number 1218-0099.

Personal Protective Equipment

    Final paragraph (h)(3)(iii), like proposed paragraph (h)(3), 
requires employers to inform in writing the persons or the business 
entities who launder, clean or repair the protective clothing or 
equipment required by this standard of the potentially harmful effects 
of exposure to airborne beryllium and contact with soluble beryllium 
compounds and how the protective clothing and equipment must be handled 
in accordance with the standard.

Housekeeping

    Paragraph (j)(3) requires warning labels in accordance with the 
requirements in paragraph (m) when employer transfer materials 
containing beryllium. Medical Surveillance Final paragraph (k) sets 
forth requirements for the medical surveillance provisions. The 
paragraph specifies which employees must be offered medical 
surveillance, as well as the frequency and content of medical 
examinations. It also sets forth the information that the licensed 
physician and CBD diagnostic center is to provide to the employee and 
employer.
    In paragraphs (k)(1)(i)(A)-(D) of the proposal, OSHA specified that 
employers must make medical surveillance required by this paragraph 
available for each employee: (1) Who has worked in a regulated area for 
more than 30 days in the last 12 months; (2) showing symptoms or signs 
of CBD, such as shortness of breath after a short walk or climbing 
stairs, persistent dry cough, chest pain, or fatigue; or (3) exposed to 
beryllium during an emergency; and (4) who was exposed to airborne 
beryllium above .2 [mu]g/m\3\ for more than 30 days in a 12-month 
period for 5 years or more, limited to the procedures described in 
paragraph (k)(3)(ii)(F) of this section unless the employee also 
qualifies for an examination under paragraph (k)(1)(i)(A), (B), or (C) 
of this section. OSHA revised the first proposed medical surveillance 
trigger to require the offering of medical surveillance based on 
exposures at or above the action level, rather than the PEL. In 
addition, OSHA revised the proposed trigger to require employers to 
make medical surveillance available to each employee who is or is 
reasonably expected to be exposed at or above the action level for more 
than 30 days a year, rather than waiting for the 30th day of exposure 
to occur.
    Paragraph (k)(1)(i)(B) has been revised to include signs or 
symptoms of other beryllium-related health effects.
    Proposed paragraph (k)(1)(i)(C) required employers to offer medical 
surveillance to employees exposed during an emergency. No revisions 
were made to this paragraph.
    OSHA added final paragraph (k)(1)(i)(D), which requires that 
medical surveillance be made available when the most recent written 
medical opinion to the employer recommends continued medical 
surveillance. Under final paragraphs (k)(6) and (k)(7), the written 
opinion must contain a recommendation for continued periodic medical 
surveillance if the employee is confirmed positive or diagnosed with 
CBD, and the employee provides written authorization.
    Frequency: Proposed paragraph (k)(2) specified when and how 
frequently medical examinations were to be offered to those employees 
covered by the medical surveillance program. Under proposed paragraph 
(k)(2)(i)(A), employers would have been required to provide each 
employee with a medical examination within 30 days after making a 
determination that the employee had worked in a regulated area for more 
than 30 days in the past 12 months, unless the employee had received a 
medical examination provided in accordance with this standard within 
the previous 12 months. OSHA made several changes to this requirement. 
First, OSHA revised the medical surveillance trigger of employees 
working in a regulated area to a determination that employee is or is 
reasonably expected to be exposed at or above the action level for more 
than 30 days of year; or who shows signs or symptoms of CBD or other 
beryllium-related health effects. Second, the Agency changed the 
extended the length of time from within the last 12 months to within 
the last two years.
    Proposed paragraph (k)(2)(ii) required employers to provide an 
examination annually (after the first examination is made available) to 
employees who continue to meet the criteria of proposed paragraph 
(k)(1)(i)(A) or (B). OSHA revised the paragraph to specify that medical 
examinations were to be made available ``at least'' every two years and 
to include employees who continue to meet the criteria of final 
paragraph (k)(1)(i)(D), i.e., each employee whose most recent written 
medical opinion required by paragraph (k)(6) or (k)(7) recommends 
periodic medical surveillance. Under the final standards, employees 
exposed in an

[[Page 2631]]

emergency, who are covered by paragraph (k)(1)(i)(C), are not included 
in the biennial examination requirement unless they also meet the 
criteria of paragraphs (k)(1)(i)(A) or (B) or (D). Final paragraph 
(k)(2)(i)(A) also differs from the proposal in that in the proposed 
paragraph the employer did not have to offer an examination if the 
employee had received an equivalent examination within the last 12 
months. In the final rule, this was increased to within two years to 
align that provision with the frequency of periodic examinations, which 
is every two years in the final rule.
    Proposed paragraph (k)(2)(iii) required the employer to offer a 
medical examination at the termination of employment, if the departing 
employee met any of the criteria of proposed paragraphs (k)(1) at the 
termination of employment for each employee who met the criteria of 
paragraphs (k)(1)(i)(A), (B), or (C), unless an examination has been 
provided in accordance with the standard during the 6 months prior to 
the date of termination.
    Final paragraph (k)(2)(iii) requires the employer to make a medical 
examination available to each employee who meets the criteria of final 
paragraph (k)(1)(i) at the termination of employment, unless the 
employee received an exam meeting the requirements of the standards 
within the last 6 months. OSHA extended the requirement to employees 
who meet the criteria of final paragraph (k)(1)(i)(D).
    Contents of Examination. Paragraph (k)(3) details the contents of 
the examination. Paragraph (k)(3)(i) requires the employer to ensure 
that the PLHCP advised the employee of the risks and benefits of 
participating in the medical surveillance program and the employee's 
right to opt out of any or all parts of the medical examination.
    Paragraphs (k)(3)(ii)(A)-(D) detail the content of the medical 
examination. The final rule made several changes to the content of the 
employee medical examination including, but not limited to, revising 
paragraphs: (k)(3)(ii)(A), to include emphasis on past and present 
airborne exposure to or dermal contact with beryllium; (k)(3)(ii)(C) to 
require a physical examination for skin rashes, rather than an 
examination for breaks and wounds; (k)(3)(ii)(E) to require the BeLPT 
test to be offered ``at least'' every two years, rather than every two 
years; (k)(3)(ii)(F) to include an LDCT scan when recommended by the 
PLHCP. With these changes, final paragraphs (k)(3)(ii)(A)-(D) require 
the medical examination to include: (1) Medical and work history, with 
emphasis on past and present airborne exposure to or dermal contact 
with beryllium, any history of respiratory dysfunction and smoking 
history, and; (2) a physical examination with emphasis on the 
respiratory system; (3) a physical examination for skin rashes; and (4) 
a pulmonary function test, performed in accordance with guidelines 
established by the ATS including forced vital capacity (FVC) and a 
forced expiratory volume in one second (FEV1). A more detailed 
discussion regarding all of the changes to the content of the Medical 
examinations may be found in section XVI, Summary and Explanation of 
the Standards, under (k) Medical Surveillance.

Information Provided to the PLHCP

    Proposed paragraph (k)(4) detailed which information must be 
provided to the PHLCP. Specifically, the proposed standard required the 
employer to provide to the examining PLHCP the following information, 
if known to the employer: A description of the employee's former and 
current duties that relate to the employee's occupational exposure 
((k)(4)(i)); the employee's former and current levels of occupational 
exposure ((k)(4)(ii)); a description of any personal protective 
clothing and equipment, including respirators, used by the employee, 
including when and for how long the employee has used that clothing and 
equipment ((k)(4)(iii)); and information the employer has obtained from 
previous medical examinations provided to the employee, that is 
currently within the employer's control, if the employee provides a 
medical release of the information ((k)(4)(iv)). OSHA made several 
changes to this paragraph. First, OSHA updated paragraph (k)(4)(i) to 
require the employer to provide a description of the employee's former 
and current duties that relate to both the employee's airborne exposure 
to and dermal contact with beryllium, instead of merely requiring the 
provision of information related to occupational exposure. Second, OSHA 
changed the requirement that the employer obtain a ``medical release'' 
from the employee to ``written consent'' before providing the PLHCP 
with information from records of employment-related medical 
examinations. Third, OSHA revised the provision to require that the 
employer ensure that the same information provided to the PLHCP is also 
provided to the agreed-upon CBD diagnostic center, if an evaluation is 
required under paragraph (k)(7) of the standard.

Licensed Physician's Written Medical Opinion

    Paragraph (k)(5) of the proposed standard provided for the licensed 
physician to give a written medical opinion to the employer, but relied 
on the employer to give the employee a copy of that opinion; thus, 
there was no difference between information the employer and employee 
received. The final standards differentiate the types of information 
the employer and employee receive by including two separate paragraphs 
within the medical surveillance section that require a written medical 
report to go to the employee, and a more limited written medical 
opinion to go to the employer. The requirement to provide the medical 
opinion to the employee is in paragraph (k)(5) of the final standards; 
the requirement for providing documentation to the employer is in 
paragraph (k)(6) of the final standards. Most significantly, OSHA 
removed the requirement that the medical opinion pass through the 
employer to the employee.

Licensed Physician's Written Medical Report for the Employee

    Final paragraphs (k)(5)(i)-(v) provide the contents of the licensed 
physician's written medical report for the employee. They include: The 
results of the medical examination, including any medical condition(s), 
such as CBD or beryllium sensitization (i.e., the employee is confirmed 
positive, as is defined in paragraph (b) of the standard), that may 
place the employee at increased risk from further airborne exposure; 
any medical conditions related to airborne exposure that require 
further evaluation or treatment (this requirement was not expressly 
included in the proposal); any recommendations on the employee's use of 
respirators, protective clothing, or equipment; and any recommended 
limitations on airborne beryllium exposure.
    Paragraph (k)(5) also provides that if the employee is confirmed 
positive or diagnosed with CBD, or if the physician otherwise deems it 
appropriate, the written medical report must also contain a referral to 
a CBD diagnostic center, a recommendation for continued medical 
surveillance, and a recommendation for medical removal from airborne 
beryllium exposures above the action level, as described in paragraph 
(l) of the standard. Proposed paragraph (k)(6) also addressed 
information provided to employees who were confirmed positive or 
diagnosed with CBD, but simply required a consultation with the 
physician.

[[Page 2632]]

Licensed Physician's Written Medical Opinion for the Employer

    Paragraph (k)(6)(i) requires employers to obtain a written medical 
opinion from the licensed physician within 45 days of the medical 
examination (including any follow-up BeLPT required under 
(k)(3)(ii)(E)). In proposed (k)(5), the physician would have been 
required to share most of the information identified now provided 
directly to the employee per final (k)(5) with the employer, but in the 
final rule OSHA limited the information that could be shared with the 
employer. In final (k)(6) the written medical opinion for the employer 
must contain only the date of the examination, a statement that the 
examination has met the requirements of this standard, and any 
recommended limitations on the employee's use of respirators, 
protective clothing, and equipment; and a statement that the PLHCP 
explained the results of the examination to the employee, including any 
tests conducted, any medical conditions related to airborne exposure 
that require further evaluation or treatment, and any special 
provisions for use of personal protective clothing or equipment.
    Paragraph (k)(6)(ii) states that if the employee provides written 
authorization, the written medical opinion for the employer must also 
contain any recommended limitations on the employee's airborne exposure 
to beryllium. The requirement for written authorization was not in the 
proposal. Paragraphs (k)(6)(iii)-(v) state that if an employee is 
confirmed positive or diagnosed with CBD and the employee provides 
written authorization, the written opinion must also contain a referral 
for evaluation at a CBD diagnostic center and recommendations for 
continued medical surveillance and medical removal from airborne 
exposure to beryllium as described in paragraph (l).
    Paragraph (k)(6)(vi) requires the employer to ensure that employees 
receive a copy of the written medical opinion for the employer within 
45 days of any medical examination (including any follow-up BeLPT 
required under paragraph (k)(3)(ii)(E) of this standard) performed for 
that employee. A similar requirement was included in proposed 
(k)(5)(iii), but the time period was two weeks.

Beryllium Sensitization Test Results Research (Removed)

    Proposed paragraph (k)(7) would have required employers to convey 
the results of beryllium sensitization tests to OSHA for evaluation and 
analysis at the request of OSHA. Based on comments received during the 
comment period, OSHA decided not to include the proposed paragraph 
(k)(7) in the final standard.

Referral to a Diagnostic Center

    Final paragraph (k)(7) requires that if the employee wants a 
clinical evaluation at a CBD diagnostic center, the employer must 
provide the examination at no cost to the employee. OSHA made several 
changes to final paragraph (k)(7) as compared to similar provisions in 
paragraph (k)(6) of the proposal. First, OSHA changed the trigger for 
referral to a CBD diagnostic center to include both confirmed positive 
and a CBD diagnosis for consistency with final paragraphs (k)(5)(iii) 
and (k)(6)(iii). Second, OSHA removed the requirement for a 
consultation between the physician and employee. However, final 
paragraph (k)(7)(i) requires that employers provide a no-cost 
evaluation at a CBD-diagnostic center that is mutually agreed upon by 
the employee and employer.
    Final paragraph (k)(7) requires the employer to ensure that the 
employee receives a written medical report form the CBD diagnostic 
center that contains all the information required in paragraph 
(k)(5)(i), (ii), (iv) and (v) and that the PLHCP explains the results 
of the examination of the employee within 30 days of the examination.

Communication of Hazards

    Proposed paragraph (m)(1)(i) required chemical manufacturers, 
importers, distributors, and employers to comply with all applicable 
requirements of the HCS (29 CFR 1910.1200) for beryllium. No 
substantive changes were made to this paragraph.
    Proposed paragraph (m)(1)(ii) would have required employers to 
address at least the following, in classifying the hazards of 
beryllium: Cancer; lung effects (chronic beryllium disease and acute 
beryllium disease); beryllium sensitization; skin sensitization; and 
skin, eye, and respiratory tract irritation. According to the HCS, 
employers must classify hazards if they do not rely on the 
classifications of chemical manufacturers, importers, and distributors 
(see 29 CFR 1910.1200(d)(1)). OSHA revised the language to bring it 
into conformity with other substance specific standards so it is clear 
that chemical manufacturers, importers, and distributors are among the 
entities required to classify the hazards of beryllium. OSHA has chosen 
not to include an equivalent requirement in the final standards for 
construction and shipyards since employers in construction and 
shipyards are generally downstream users of beryllium products 
(blasting media) and would not therefore be classifying chemicals.
    Proposed paragraph (m)(1)(iii) would have required employers to 
include beryllium in the hazard communication program established to 
comply with the HCS, and ensure that each employee has access to labels 
on containers and safety data sheets for beryllium and is trained in 
accordance with the HCS and the training paragraph of the standard. The 
final paragraph (m)(1)(iii) applies to the general industry, shipyards, 
and construction. The final provisions are substantively unchanged from 
the proposal.

Recordkeeping

    Paragraph (n) of the final standards sets forth the employer's 
obligation to comply with requirements to maintain records of air 
monitoring data, objective data, medical surveillance, and training.
    Proposed paragraph (n)(1)(i) required employers to maintain records 
of all measurements taken to monitor employee exposure to beryllium as 
required by paragraph (d) of the standard. OSHA made one minor 
modification in the final standard: OSHA added the words ``make and'' 
prior to ``maintain'' in order to clarify that the employer's 
obligation is to create and preserve such records.
    Proposed paragraph (n)(1)(ii) required that records of all 
measurements taken to monitor employee exposure include at least the 
following information: The date of measurement for each sample taken; 
the operation being monitored; the sampling and analytical methods used 
and evidence of their accuracy; the number, duration, and results of 
samples taken; the type of personal protective clothing and equipment, 
including respirators, worn by monitored employees at the time of 
monitoring; and the name, social security number, and job 
classification of each employee represented by the monitoring, 
indicating which employees were actually monitored. OSHA has made one 
editorial modification to paragraph (n)(1)(ii)(B), which is to change 
``operation'' to ``task.'' Proposed paragraph (n)(1)(iii) required 
employers to maintain employee exposure monitoring records in 
accordance with 29 CFR 1910.1020(d)(1)(ii). OSHA has changed the 
requirement that the employer ``maintain this record as required by'' 
OSHA's Records Access standard to ``ensure that exposure records are 
maintained and made available in accordance with'' that standard.

[[Page 2633]]

Proposed Paragraph (n)(2) Historical Monitoring Data (Removed)
    Proposed paragraph (n)(2) contained the requirement to retain 
records of any historical monitoring data used to satisfy the proposed 
standard's the initial monitoring requirements. OSHA deleted the 
separate recordkeeping requirement for historical data.
Final (n)(2)(i), (ii), and (iii) Objective Data
    As a result of deleting paragraph (n)(2) Historical Data, OSHA has 
included proposed paragraph (n)(3) as paragraph (n)(2) in the final 
standards, with minor alterations. Paragraph (n)(2) contains the 
requirements to keep accurate records of objective data. Paragraph 
(n)(2)(i) requires employers to establish and maintain accurate records 
of the objective data relied upon to satisfy the requirement for 
initial monitoring in paragraph (d)(2). Under paragraph (n)(2)(ii), the 
record is required to contain at least the following information: (A) 
The data relied upon; (B) the beryllium-containing material in 
question; (C) source of the data; (D) description of the process, task, 
or activity on which the objective data were based; (E) other data 
relevant to the process, task, activity, material, or airborne exposure 
on which the objective data were based. These requirements included 
minor changes in the description of the last two changes, but were not 
substantively different.
    Paragraph (n)(2)(iii) of the final standard (paragraph (n)(3)(iii) 
in the proposal) requires the employer to maintain a record of 
objective data relied upon as required by the Records Access standard, 
which specifies that exposure records must be maintained for 30 years 
(29 CFR 1910.1020(d)(1)(ii)).
Paragraph (n)(3)(i), (ii), & (iii) Medical Surveillance Records
    Paragraph (n)(3) of the final standards (paragraph (n)(4) in the 
proposal), addresses medical surveillance records. Employers must 
establish and maintain medical surveillance records for each employee 
covered by the medical surveillance requirements in paragraph (k). 
Paragraph (n)(3)(ii) lists the categories of information that an 
employer was required to record: The employee's name, social security 
number, and job classification; a copy of all licensed physicians' 
written medical opinions; and a copy of the information provided to the 
PLHCP. OSHA has moved the requirement that the record include copies of 
all licensed physicians' written opinions from proposed paragraph 
(n)(4)(ii)(B) to paragraph (n)(3)(ii)(B) of the final standards.
    Proposed paragraph (n)(4)(iii) required the employer to maintain 
employee medical records in accordance with OSHA's Records Access 
Standard at 29 CFR 1910.1020. OSHA has added ``and made available'' 
after ``maintained'' in final paragraph (n)(3)(iii) of the standards, 
but the requirement is otherwise unchanged.
Paragraph (n)(4)(i) and (ii) Training Records
    Paragraph (n)(4) of the final standards (paragraph (n)(5) of the 
proposal) requires employers to preserve training records, including 
records of annual retraining or additional training, for a period of 
three years after the completion of the training. At the completion of 
training, the employer is required to prepare a record that includes 
the name, social security number, and job classification of each 
employee trained; the date the training was completed; and the topic of 
the training. This record maintenance requirement also applied to 
records of annual retraining or additional training as described in 
paragraph (m)(4). This paragraph is substantively unchanged from the 
proposal.
Paragraph (n)(5) Access to Records
    Paragraph (n)(5) of the final standards (paragraph (n)(6) of the 
proposal), requires employers to make all records mandated by these 
standards available for examination and copying to the Assistant 
Secretary, the Director of NIOSH, each employee, and each employee's 
designated representative as stipulated by OSHA's Records Access 
standard (29 CFR 1910.1020). This paragraph is substantively unchanged 
from the proposal.
Paragraph (n)(6) Training Records
    Paragraph (n)(6) of the final standards (paragraph (n)(6) in the 
proposal), requires that employers comply with the Records Access 
standard regarding the transfer of records, 29 CFR 1910.1020(h), which 
instructs employers either to transfer records to successor employers 
or, if there is no successor employer, to inform employees of their 
access rights at least three months before the cessation of the 
employer's business. This paragraph is substantively unchanged from the 
proposal.

X. Federalism

    OSHA reviewed the final beryllium rule according to the most recent 
Executive Order (``E.O.'') on Federalism, E.O. 13132, 64 FR 43255 (Aug. 
10, 1999). The E.O. requires that Federal agencies, to the extent 
possible, refrain from limiting State policy options, consult with 
States before taking actions that would restrict States' policy 
options, and take such actions only when clear constitutional authority 
exists and the problem is of national scope. The E.O. allows Federal 
agencies to preempt State law only with the expressed consent of 
Congress. In such cases, Federal agencies must limit preemption of 
State law to the extent possible.
    Under Section 18 of the Occupational Safety and Health Act (the 
``Act'' or ``OSH Act''), 29 U.S.C. 667, Congress expressly provides 
that States may adopt, with Federal approval, a plan for the 
development and enforcement of occupational safety and health 
standards. OSHA refers to States that obtain Federal approval for such 
plans as ``State-Plan States.'' 29 U.S.C. 667. Occupational safety and 
health standards developed by State-Plan States must be at least as 
effective in providing safe and healthful employment and places of 
employment as the Federal standards. Subject to these requirements, 
State-Plan States are free to develop and enforce their own 
occupational safety and health standards.
    While OSHA wrote this final rule to protect employees in every 
State, Section 18(c)(2) of the OSH Act permits State-Plan States to 
develop and enforce their own standards, provided those standards 
require workplaces to be at least as safe and healthful as this final 
rule requires. Additionally, standards promulgated under the OSH Act do 
not apply to any worker whose employer is a state or local government. 
29 U.S.C. 652(5).
    This final rule complies with E.O. 13132. In States without OSHA-
approved State plans, Congress expressly provides for OSHA standards to 
preempt State occupational safety and health standards in areas 
addressed by the Federal standards. In these States, this rule limits 
State policy options in the same manner as every standard promulgated 
by the Agency. In States with OSHA-approved State plans, this 
rulemaking does not significantly limit State policy options to adopt 
stricter standards.

XI. State-Plan States

    When Federal OSHA promulgates a new standard or a more stringent 
amendment to an existing standard, the States and U.S. territories with 
their own OSHA-approved occupational safety and health plans (``State-
Plan

[[Page 2634]]

States'') must revise their standards to reflect the new standard or 
amendment. The State standard must be at least as effective as the 
Federal standard or amendment, and must be promulgated within six 
months of the publication date of the final Federal rule. 29 CFR 
1953.5(a). Currently, there are 28 State-Plan States.
    A State-Plan State may demonstrate that a standard change is not 
necessary because the State standard is already the same as or at least 
as effective as the new or amended Federal standard. In order to avoid 
delays in worker protection, the effective date of the State standard 
and any of its delayed provisions must be the date of State 
promulgation or the Federal effective date, whichever is later. The 
Assistant Secretary may permit a longer time period if the State makes 
a timely demonstration that good cause exists for extending the time 
limitation. 29 CFR 1953.5(a).
    Of the 28 States and territories with OSHA-approved State plans, 22 
cover public and private-sector employees: Alaska, Arizona, California, 
Hawaii, Indiana, Iowa, Kentucky, Maryland, Michigan, Minnesota, Nevada, 
New Mexico, North Carolina, Oregon, Puerto Rico, South Carolina, 
Tennessee, Utah, Vermont, Virginia, Washington, and Wyoming. The 
remaining six states and territories cover only public-sector 
employees: Connecticut, Illinois, New Jersey, Maine, New York, and the 
Virgin Islands.
    This beryllium rule applies to general industry, construction, and 
shipyards. This rule requires that all State-Plan States revise their 
standards appropriately within six months of the date of this notice.

XII. Unfunded Mandates Reform Act

    Under Section 202 of the Unfunded Mandates Reform Act of 1995 
(``UMRA''), 2 U.S.C. 1532, an agency must prepare a written 
``qualitative and quantitative assessment'' of any regulation creating 
a mandate that ``may result in the expenditure by the State, local, and 
tribal governments, in the aggregate, or by the private sector, of 
$100,000,000 or more (adjusted annually for inflation)'' in any one 
year before promulgating a final rule. OSHA's rule does not place a 
mandate on State or local governments, for purposes of the UMRA, 
because OSHA cannot enforce its regulations or standards on State or 
local governments. 29 U.S.C. 652(5). Under voluntary agreement with 
OSHA, some States require public sector entities to comply with State 
standards, and these agreements specify that these State standards must 
be at least as protective as OSHA standards. The OSH Act does not cover 
tribal governments in the performance of traditional governmental 
functions, though it does cover tribal governments when they engage in 
commercial activity. However, the final rule will not require tribal 
governments to expend, in the aggregate, $100,000,000 or more in any 
one year for their commercial activities. Thus, the final rule does not 
trigger the requirements of UMRA based on its impact on State, local, 
or tribal governments.
    Based on the analysis presented in the Final Economic Analysis (see 
Section VIII above), OSHA concludes that the rule would not impose a 
Federal mandate on the private sector in excess of $100 million 
(adjusted annually for inflation) in expenditures in any one year. As 
noted below, OSHA also reviewed this final rule in accordance with E.O. 
13175 on Consultation and Coordination with Indian Tribal Governments, 
65 FR 67249 (Nov. 9, 2000), and determined that it does not have 
``tribal implications'' as defined in that Order.

XIII. Protecting Children From Environmental Health and Safety Risks

    E.O. 13045, 66 FR 19931 (Apr. 23, 2003), requires that Federal 
agencies submitting covered regulatory actions to OMB's Office of 
Information and Regulatory Affairs (``OIRA'') for review pursuant to 
E.O. 12866, 58 FR 51735 (Oct. 4, 1993), must provide OIRA with (1) an 
evaluation of the environmental health or safety effects that the 
planned regulation may have on children, and (2) an explanation of why 
the planned regulation is preferable to other potentially effective and 
reasonably feasible alternatives considered by the agency. E.O. 13045 
defines ``covered regulatory actions'' as rules that may (1) be 
economically significant under E.O. 12866 (i.e., a rulemaking that has 
an annual effect on the economy of $100 million or more, or would 
adversely affect in a material way the economy, a sector of the 
economy, productivity, competition, jobs, the environment, public 
health or safety, or State, local, or tribal governments or 
communities), and (2) concern an environmental health risk or safety 
risk that an agency has reason to believe may disproportionately affect 
children. In this context, the term ``environmental health risks and 
safety risks'' means risks to health or safety that are attributable to 
products or substances that children are likely to come in contact with 
or ingest (e.g., through air, food, water, soil, or product use).
    The final beryllium rule is economically significant under E.O. 
12866 (see Section IX of this preamble). However, after reviewing the 
rule, OSHA has determined that it will not impose environmental health 
or safety risks to children as set forth in E.O. 13045. The final rule 
will require employers to limit employee exposure to beryllium and take 
other precautions to protect employees from adverse health effects 
associated with exposure to beryllium. OSHA is not aware of any studies 
showing that exposure to beryllium in workplaces disproportionately 
affects children, who typically are not allowed in workplaces where 
such exposure exists. OSHA is also not aware that there are a 
significant number of employees under 18 years of age who may be 
exposed to beryllium, or that employees of that age are 
disproportionately affected by such exposure. One commenter, Kimberly-
Clark Professional, noted that children may be subject to secondary 
beryllium exposure due to beryllium particles being carried home on 
their parents' work clothing, shoes, and hair (Document ID 1962, p. 2). 
Commenter Evan Shoemaker also noted that ``beryllium can collect on 
surfaces such as shoes, clothing, and hair as well as vehicles leading 
to contamination of the family and friends of workers exposed to 
beryllium'' (Document ID 1658, p. 3). However, OSHA does not believe 
beryllium exposure disproportionately affects children or that 
beryllium particles brought home on work clothing, shoes, and hair 
result in exposures at or near the action level. Furthermore, Kimberly-
Clark Professional also noted that potential secondary exposures can be 
controlled through the use of personal protective equipment in the 
workplace (Document ID 1676, p. 2). The final standards contain 
ancillary provisions, such as personal protective clothing and hygiene 
areas, which are specifically designed to minimize the amount of 
beryllium leaving the workplace. Therefore, OSHA believes that the 
final beryllium rule does not constitute a covered regulatory action as 
defined by E.O. 13045.

XIV. Environmental Impacts

    OSHA has reviewed the final beryllium rule according to the 
National Environmental Policy Act of 1969 (NEPA) (42 U.S.C. 4321 et 
seq.), the regulations of the Council on Environmental Quality (40 CFR 
part 1500), and the Department of Labor's NEPA procedures (29 CFR part 
11). OSHA made a preliminary determination that the proposed

[[Page 2635]]

standard would have no significant impact on air, water, or soil 
quality; plant or animal life; the use of land or aspects of the 
external environment. No comments to the record questioned this 
determination, nor has the Agency found other evidence to invalidate 
it. Therefore, OSHA concludes that the final beryllium standard will 
have no significant environmental impacts.

XV. Consultation and Coordination With Indian Tribal Governments

    OSHA reviewed this final rule in accordance with E.O. 13175 on 
Consultation and Coordination with Indian Tribal Governments, 65 FR 
67249 (Nov. 9, 2000), and determined that it does not have ``tribal 
implications'' as defined in that order. The OSH Act does not cover 
tribal governments in the performance of traditional governmental 
functions, so the rule will not have substantial direct effects on one 
or more Indian tribes in their sovereign capacity, on the relationship 
between the Federal government and Indian tribes, or on the 
distribution of power and responsibilities between the Federal 
government and Indian tribes. On the other hand, employees in 
commercial businesses owned by tribes or tribal members will receive 
the same protections and benefits of the standard as all other covered 
employees.

XVI. Summary and Explanation of the Standards

    OSHA proposed a standard for occupational exposure to beryllium and 
beryllium compounds in general industry and proposed regulatory 
alternatives to address beryllium exposures in the construction and 
maritime industries. The proposed standard for general industry was 
structured according to OSHA's traditional approach, with permissible 
exposure limits, and ancillary provisions such as exposure assessment, 
methods of compliance, and medical surveillance. As discussed below, 
OSHA based the proposal substantively on a joint industry and labor 
stakeholders' draft occupational health standard developed and 
submitted to OSHA by Materion Corporation (Materion) and the United 
Steelworkers (USW). The final rule, however, is based on the entirety 
of the rulemaking record.
    In the final rule, OSHA is expanding coverage to include the 
construction and shipyard industries and establishing separate final 
standards for occupational exposure to beryllium in general industry, 
construction, and shipyards. In the NPRM, OSHA discussed Regulatory 
Alternative 2a to include both the construction and shipyard industries 
in the final rule (80 FR 47732-47734), presented estimated costs and 
benefits associated with extending the scope of the final rule, and 
requested comment on the alternative. The decision to include standards 
for construction and shipyards is based on information and comment 
submitted in response to this request for comment and evaluated by OSHA 
during the public comment periods and the informal public hearing. OSHA 
decided to issue three separate standards because there are some 
variations in the standards for each industry, although the structure 
of the final standards for general industry, construction, and 
shipyards remains generally consistent with other OSHA health 
standards. The most significant change is in the standard for 
construction where paragraph (e) Competent person, replaces paragraph 
(e) Beryllium work areas and regulated areas in general industry and 
paragraph (e) Regulated areas in shipyards.
    All three final standards have a provision for methods of 
compliance, although in the standard for construction this provision 
has an additional requirement to describe procedures used by the 
designated competent person to restrict access to work areas, when 
necessary, to minimize the number of employees exposed to airborne 
beryllium above the PEL or STEL. This requirement allows the competent 
person to perform essentially the same role as the requirement 
governing regulated areas in general industry and shipyards, which is 
to regulate and minimize the number of workers exposed to hazardous 
levels of beryllium. OSHA decided to include a competent person 
provision in the final standard for construction because of the 
industry's familiarity with this concept and its past successful use in 
many OSHA construction standards and documents. ``Competent person'' is 
defined in OSHA's Safety and Health Regulations for Construction (29 
CFR 1926.32(f)) as being a person who is capable of identifying 
existing and predictable hazards in the surroundings or working 
conditions which are unsanitary, hazardous, or dangerous to employees, 
and who has authorization to take prompt corrective measures to 
eliminate them. This generally applicable definition corresponds well 
with the definition for ``competent person'' in the standard for 
construction: In this context, ``competent person'' means an individual 
who is capable of identifying existing and foreseeable beryllium 
hazards in the workplace and who has authorization to take prompt 
corrective measures to eliminate or minimize them. The competent person 
must have the knowledge, ability, and authority necessary to fulfill 
the responsibilities set forth in paragraph (e) of this standard.
    OSHA has retained, in modified form, the scope exemption from the 
proposed standard for materials containing less than 0.1 percent 
beryllium by weight in the standard for general industry and included 
it in the standards for construction and shipyards. The scope exemption 
has been modified in the final standards with the additional 
requirement that the employer must have objective data demonstrating 
that employee exposure to beryllium will remain below the action level 
as an 8-hour TWA under any foreseeable conditions. The 0.1 percent 
exemption was generally supported by commenters from general industry 
and shipyards; construction employers did not comment. Other 
commenters, especially those representing workers or public health 
organizations, expressed concern that these materials, in some cases, 
could expose workers to hazardous levels of beryllium. As discussed in 
more detail in the summary and explanation for Scope and application, 
the objective data requirement addresses these concerns and ensures the 
protection of workers who experience significant exposures from 
materials containing trace amounts of beryllium. Employers who have 
objective data showing that employees will not be exposed at or above 
the action level under any foreseeable conditions when processing 
materials containing less than 0.1 percent beryllium by weight are 
exempt from the standard.
    OSHA decided to add a performance option in paragraph (d), Exposure 
assessment, as an alternative exposure assessment method to the 
scheduled monitoring requirements in the proposed rule, based on public 
comment received from industry and labor. OSHA believes the performance 
option, which encompasses either exposure monitoring or assessments 
based on objective data, gives employers flexibility in determining 
employee exposure to beryllium based on to their unique workplace 
circumstances. OSHA has provided this performance option in recent 
health standards such as respirable crystalline silica (29 CFR 
1910.1053(d)(2)) and chromium VI (29 CFR 1910.1026(d)(3)).
    OSHA also received comments about other provisions in the proposed 
standard, and in some cases, OSHA responded with changes from the

[[Page 2636]]

proposed rule that were based on the evidence provided in the record. 
Any changes made to the provisions in the final standards are described 
in detail in their specific summary and explanation sections.
    Although details of the final standards for general industry, 
construction, and shipyards differ slightly, most of the requirements 
are the same or similar in all three standards. Therefore, the summary 
and explanation is organized according to the main requirements of the 
standards, but includes paragraph references to the standards for 
general industry, construction, and shipyards. The summary and 
explanation uses the term ``standards'' or ``final standards'' when 
referring to all three standards. Generally, when the summary and 
explanation refers to the term ``standards,'' it is referring to the 
final standards. To avoid confusion, the term ``final rule'' is 
sometimes used when making a comparison to or clarifying a change from 
the proposed rule.
    The proposed rule applied to occupational exposure to beryllium in 
all forms, compounds, and mixtures in general industry, except those 
articles and materials exempted by proposed paragraphs (a)(2) and 
(a)(3) of the proposed standard. The final standards are identical in 
their application to occupational exposures to beryllium. In the 
summary and explanation sections, OSHA has changed ``beryllium and 
beryllium compounds'' or anything specifying soluble beryllium to just 
``beryllium.'' OSHA intends the term ``beryllium'' to cover all forms 
of beryllium, including compounds and mixtures, both soluble and poorly 
soluble, throughout the summary and explanation sections. Other global 
changes in the regulatory text include changing ``shall'' to ``must'' 
to make it clear when a provision is a requirement and adding 
``personal'' to ``protective clothing or equipment'' and ``protective 
clothing and equipment'' consistently. OSHA has changed ``exposure'' to 
``airborne exposure'' to make it clear when referring to just airborne 
exposure, and specifically noting when OSHA intends to cover dermal 
contact.
    As noted above, OSHA's proposed rule was based, in part, upon a 
draft occupational health standard submitted to the Agency by Materion, 
the leading producer of beryllium and beryllium products in the United 
States, and USW, an international labor union representing workers who 
manufacture beryllium alloys and beryllium-containing products in a 
number of industries (Document ID 0754). Materion and USW worked 
together to craft a model beryllium standard that OSHA could adopt and 
that would have support from both labor and industry. They submitted 
their joint draft standard to OSHA in February 2012.
    Like the proposal, many of the provisions in the final rules are 
identical or substantively similar to those contained in Materion and 
USW's draft standard. For example, the final rule for general industry 
and the Materion/USW draft standard both include an exclusion for 
materials containing less than 0.1 percent beryllium; both contain many 
similar definitions; both contain a time weighted average (TWA) PEL of 
0.2 [mu]g/m\3\; both include exposure monitoring provisions, including 
provisions for scheduled monitoring, employee notification of results, 
methods of sample analysis, and observation of monitoring; both contain 
similar requirements for beryllium work areas and regulated areas; both 
mandate a written exposure control plan and engineering and work 
practice controls that follow OSHA's traditional hierarchy of controls; 
and both include similar provisions related to respiratory protection, 
protective clothing and equipment, hygiene areas and practices, 
housekeeping, medical surveillance, medical removal protection, 
training and communication of hazards, recordkeeping, and compliance 
dates.

(a) Scope and Application

    Separate standards for general industry, construction, and 
shipyards. OSHA proposed a standard addressing occupational exposure to 
beryllium in general industry and regulatory alternatives to address 
exposures in the construction and maritime industries.\37\ The proposal 
was modeled on a suggested rule that was crafted by two major 
stakeholders in general industry, Materion Corporation (Materion) and 
the United Steelworkers (USW) (Document ID 0754). Materion and USW 
provided OSHA with data on exposure and control measures and 
information on their experiences with handling beryllium in general 
industry settings (80 FR 47774). At the time, the information available 
to OSHA on beryllium exposures outside of general industry was limited. 
Therefore, the Agency preliminarily decided to limit the scope of its 
beryllium rule proposal to general industry but propose regulatory 
alternatives that would expand the scope of the proposed standard to 
also include employers in construction and maritime if it turned out 
the record evidence warranted it. Specifically, OSHA requested comment 
on Regulatory Alternative #2a, which would expand the scope of the 
proposed standard to also include employers in construction and 
maritime, and Regulatory Alternative #2b, which would update 29 CFR 
1910.1000 Tables Z-1 and Z-2, 1915.1000 Table Z, and 1926.55 Appendix A 
so that the proposed TWA PEL and STEL would apply to all employers and 
employees in general industry, shipyards, and construction, including 
occupations where beryllium exists only as a trace contaminant. OSHA 
also requested stakeholder comment and data on employees in 
construction or maritime, or in general industry, not covered in the 
scope of the proposed standard, who deal with beryllium only as a trace 
contaminant, who may be at significant risk from occupational beryllium 
exposures.
---------------------------------------------------------------------------

    \37\ The proposed rule did not cover agricultural employers 
because OSHA had not found any evidence indicating that beryllium is 
used or handled in agriculture in a way that might result in 
beryllium exposure. OSHA's authority is also restricted in this 
area; since 1976, an annual rider in the Agency's Congressional 
appropriations bill has limited OSHA's use of funds with respect to 
farming operations that employ fewer than ten employees 
(Consolidated Appropriations Act, 1976, 94, 90 Stat. 1420, 1421 
(1976) (and subsequent appropriations acts)). In the Notice of 
Proposed Rulemaking (NPRM), the Agency requested information on 
whether employees in the agricultural sector are exposed to 
beryllium in any form and, if so, their levels of exposure and what 
types of exposure controls are currently in place (80 FR 47565, 
47775). OSHA did not receive comment on beryllium and the 
agriculture industry or information that would support coverage of 
agricultural operations. Therefore, agriculture employers and 
operations are not covered by the rule.
---------------------------------------------------------------------------

    OSHA did not receive any additional exposure data for construction 
or shipyards in response to OSHA's request in the NPRM. However, since 
the proposal, OSHA reviewed its OIS compliance exposure database and 
identified personal exposure sample results on beryllium for abrasive 
blasting workers in construction, general industry and maritime, which 
can be found broken out by sector in FEA Table IV.68.
    The vast majority of stakeholders who submitted comments on this 
issue supported extending the scope of the proposed rule to cover 
workers in the construction and maritime industries who are exposed to 
beryllium (e.g., Document ID 1592; 1625, p. 3; 1655, p. 15; 1658, p. 5; 
1664, pp. 1-2; 1670, p. 7; 1671, Attachment 1, p. 5; 1672, p. 1; 1675, 
p. 2; 1676, p. 1; 1677, p. 1; 1679, p. 2; 1681, pp. 5, 16; 1683, p. 2; 
1684, Attachment 2, p. 3; 1685, p. 2; 1686, p. 2; 1689, p. 6; 1690, p. 
2; 1693, p. 3; 1703, p. 2; 1705, p. 1). For example, the National 
Council for Occupational Safety and Health (National COSH) urged that 
OSHA should ensure greater

[[Page 2637]]

protections to beryllium exposed workers by extending the scope of the 
proposed standard to workers in the construction and maritime 
industries. National COSH explained: ``In the proposed preamble, OSHA 
recognizes that these workers are exposed to beryllium during abrasive 
blasting and clean-up of spent material. The risks that construction 
and maritime workers face when exposed to beryllium particulate is the 
same as the risk faced at similar exposures by general industry 
workers'' (Document ID 1690, p. 2). The American Federation of Labor 
and Congress of Industrial Organizations (AFL-CIO) agreed, adding that 
``[a]vailable data in the construction and maritime sector shows that 
there is a significant risk of sensitization and CBD among these 
workers'' (Document ID 1689, p. 6). Similarly, the American Industrial 
Hygiene Association (AIHA) warned that the ``[p]otential for exposure, 
especially in the construction industry, is very high'' (Document ID 
1686, p. 2).
    OSHA also heard testimony during the public hearing from Dr. Lee 
Newman of the American College of Occupational and Environmental 
Medicine (ACOEM), Peggy Mroz of National Jewish Health (NJH), Emily 
Gardner of Public Citizen, Mary Kathryn Fletcher of AFL-CIO, and Mike 
Wright of the USW that supported covering workers in the construction 
and maritime industries (Document ID 1756, Tr. 81; 1756, Tr. 97-98; 
1756, Tr. 172-175; 1756, Tr. 198-199; 1755, Tr. 181). Peggy Mroz of NJH 
testified that ``[b]ased on the data presented, [NJH] support[s] 
expanding the scope of the proposed standard to include . . . employers 
in construction and maritime'' (Document ID 1756, Tr. 98). Emily 
Gardner of Public Citizen argued that ``the updated standard cannot 
leave construction and shipyard workers vulnerable to the devastating 
effects of beryllium'' (Document ID 1756, Tr. 175). She added that 
``Public Citizen urges OSHA to revise the proposed rule to cover these 
workers'' (Document ID 1756, Tr. 175).
    Several commenters specifically supported Regulatory Alternative 
#2a. For example, the International Union, United Automobile, 
Aerospace, and Agriculture Implement Workers of America (UAW) indicated 
its support for this alternative (Document ID 1693, p. 3 (pdf)). UAW 
added that Alternative #2a would cover abrasive blasters, pot tenders, 
and cleanup staff working in construction and shipyards who have the 
potential for airborne beryllium exposure during blasting operations 
and during cleanup of spent media (Document ID 1693, p. 3 (pdf)). 
Kimberly-Clark Professional (KCP) similarly indicated that it favored 
the adoption of this alternative (Document ID 1676, p. 1). KCP 
explained that ``[h]azardous exposures are equally dangerous to workers 
regardless of whether the worker is in a factory or on a construction 
site, and the worker protection provided by OSHA regulations should 
also be equal'' (Document ID 1676, p. 1). In addition, 3M Company also 
observed that Regulatory Alternative #2a is a more protective 
alternative (Document ID 1625, p. 3 (pdf)).
    However, other commenters argued in favor of keeping the proposed 
scope unchanged (e.g., Document ID 1583; 1661, Attachment 2, pp. 6-7; 
1673, pp. 12-23). Some of these stakeholders contended that adding 
construction and maritime was not necessary (e.g., Document ID 1673, 
pp. 20-22). For example, Materion opined that ``the requirements of [29 
CFR] 1910.94 provide sufficient protections for the construction and 
maritime industries and accordingly, [Materion and USW] did not include 
construction and maritime within [their] assessment of technological 
feasibility or the scope of the standard'' (Document ID 1661, 
Attachment 2, p. 7). Materion added that ``it is [its] understanding 
that in the absence of a specific maritime standard, OSHA applies 
general industry standards to the maritime industries'' (Document ID 
1661, Attachment 2, p. 7). While this may be the general practice of 
the industry, OSHA does not enforce general industry standards where 
the shipyard standards apply unless they are specifically cross 
referenced in the shipyard standards.
    Some of these commenters offered specific concerns with covering 
the construction and maritime industries, or with covering abrasive 
blasting in general. For instance, Jack Allen, Inc. argued against 
extending the proposed rule to cover the use of coal slag in the 
sandblasting industry because the industry already has processes and 
controls in place to prevent exposures to all dusts during operations 
(Document ID 1582). The Abrasive Blasting Manufacturers Alliance (ABMA) 
presented a number of arguments against the coverage of abrasive 
blasting. ABMA argued that regulating the trace amounts of beryllium in 
abrasive blasting will increase the use of silica-based blasting agents 
``despite OSHA's longstanding recommendation of substitution for 
silica-based materials'' (Document ID 1673, p. 14). ABMA added that 
scoping in abrasive blasting would increase the amount of coal slag 
materials ``going to landfills rather than being used for beneficial 
purpose'' (Document ID 1673, p. 14). ABMA also cited to technological 
feasibility issues in sampling and analysis, noted that the proposed 
standard was not appropriately tailored to construction and maritime 
worksites, and argued that it is not appropriate to regulate abrasive 
blasting on a chemical-by-chemical basis (Document ID 1673, pp. 8, 21-
23).
    After careful consideration of these comments and those relating to 
Regulatory #2b discussed below, OSHA has decided to adopt Regulatory 
Alternative #2a to expand the proposal's scope to cover construction 
and shipyards. As noted by commenters like the AFL-CIO, record evidence 
shows that exposures above the new action level and PEL, primarily from 
abrasive blasting operations, occur in both the construction and 
shipyard industries (see Chapter IV of the Final Economic Analysis and 
Regulatory Flexibility Analysis (FEA)). As discussed in Section V, 
Health Effects, and Section VII, Significance of Risk, employees 
exposed to airborne beryllium at these levels are at significant risk 
of developing adverse health effects, primarily chronic beryllium 
disease (CBD) and lung cancer. And under the OSH Act, and specifically 
section 6(b)(5), the Agency is required to set health standards which 
most adequately assure, to the extent feasible, that no employee will 
suffer material impairment of health or functional capacity even if 
such employee has regular exposure to the hazard dealt with by such 
standards for the period of his working life. Therefore, OSHA finds it 
would be inappropriate to exclude construction and shipyard employers 
from coverage under this rule.
    OSHA disagrees with Materion's assertion that existing standards 
render it unnecessary to have this standard cover construction and 
shipyard employers whose employees are exposed to beryllium during 
abrasive blasting operations. The OSHA Ventilation standard referenced 
by Materion (29 CFR 1910.94) applies only to general industry and does 
not cover construction and shipyard workers. The OSHA Ventilation 
standard in construction (1926.57) and Mechanical paint removers 
standard in shipyards (1915.34) provide some general protections for 
abrasive blasting workers but do not provide the level of protection 
provided by the ancillary provisions contained in the final standards 
such as medical surveillance, personal protective clothing and 
equipment, and beryllium-specific training.

[[Page 2638]]

    OSHA also disagreed with Jack Allen, Inc.'s assertion that the 
employers conducting abrasive blasting already have sufficient 
processes and controls in place to prevent exposures to all dusts 
during operations. OSHA's examination of the record identifies data on 
beryllium exposure in the abrasive blasting industry showing beryllium 
exposure above the action level and TWA PEL when beryllium-containing 
slags are used (e,g., Document ID 1166; 1815, Attachment 35; 1880). And 
even in abrasive blasting operations where all available controls and 
work processes to reduce beryllium exposure are used, additional 
ancillary provisions are still as necessary to protect workers from the 
harmful effects of exposure to beryllium as in general industry. OSHA 
also finds unsubstantiated ABMA's assertion that regulating the trace 
amounts of beryllium in abrasive blasting will increase the use of 
silica-based blasting agents and result in an increase in the amount of 
coal slag materials going to landfills. OSHA has identified several 
controls for abrasive blasting in its technological feasibility 
analysis (see Chapter IV of the FEA). OSHA also noted that substitution 
is not always feasible and employers should be cautious to not 
introduce additional hazards when switching to an alternate media. The 
Agency is certainly not encouraging employers to increase the use of 
silica sand as a blasting media. However, workers using silica-based 
blasting materials are protected under a new comprehensive silica 
standard (29 CFR 1910.1053, 29 CFR 1926.1153). Employers are in the 
best position to determine which blasting material to use and how to 
weigh the costs of compliance with the two rules. A 1998 NIOSH-funded 
study on substitute materials for silica sand in abrasive blasting 
provides comprehensive information on alternative media and can be used 
by employers seeking to identify appropriate abrasive blasting media 
alternatives (Document ID 1815, Attachment 85-87). In fact, exploring 
the use of alternative media for safer abrasive blasting media is 
already underway (Document ID 1741, p. 2). OSHA anticipates that the 
amount of slag material being deposited in landfills will remain 
constant regardless of its use prior to disposal, as the spent slag 
material used in abrasive blasting will still need to be disposed of. 
OSHA is also not persuaded by ABMA's technological feasibility argument 
that regulating trace amounts of beryllium would require testing below 
the limit of detection and that it is not technologically feasible to 
measure beryllium exposures in abrasive blasting. As explained in 
sections 2 and 12 of Chapter IV of the Final Economic Analysis, there 
are a number of available sampling and analytical methods that are 
capable of detecting beryllium at air concentrations below the action 
level of 0.1 [mu]g/m\3\, as well as existing exposure data for 
beryllium in abrasive blasting operations. And finally, OSHA disagrees 
with ABMA's assertion that regulating abrasive blasting on a chemical-
by-chemical basis is inappropriate. The beryllium rule is typical of 
OSHA substance-specific health standards that have been promulgated for 
the construction and shipyard industries and include abrasive blasting 
operations, such as the Lead standard for construction (1926.62) and 
the Lead standard for general industry (1910.1025), which applies to 
the shipyard industry.
    However, OSHA does agree with ABMA's observation that many of the 
conditions in the construction and shipyard industries are distinct 
from those in general industry, and agrees that the standard as 
proposed was not tailored to construction and shipyard worksites. The 
Agency has long recognized a distinction between the construction and 
general industry sectors and has issued standards specifically 
applicable to construction and shipyard work under 29 CFR part 1926 and 
29 CFR part 1915, respectively. OSHA's understanding of the differences 
between these industries is why OSHA specifically asked stakeholders 
with experience and knowledge of the construction or shipyard 
industries to opine on whether coverage of those industries is 
appropriate and, if so, how the proposal should be revised to best 
protect workers in those industries. As discussed throughout the rest 
of this Summary and Explanation section, many stakeholders responded to 
OSHA's request.
    After careful consideration of the record, OSHA finds that the 
unique needs of, conditions in, and challenges posed by the 
construction and maritime sectors, particularly concerning abrasive 
blasting operations at construction sites and shipyards, warrant 
different requirements from general industry. Therefore, OSHA is 
issuing three separate standards--one for each of these sectors. OSHA 
judges that the primary source of beryllium exposure at construction 
worksites and in shipyards is from abrasive blasting operations when 
using abrasives that contain trace amounts beryllium.
    Abrasive blasters and their helpers are exposed to beryllium from 
coal slag and other abrasive blasting material like copper slag that 
may contain beryllium as a trace contaminant. The most commonly used 
abrasives in the construction industry include coal slag and steel 
grit, which are used to remove old coatings and etch the surfaces of 
outdoor structures, such as bridges, prior to painting (Document ID 
1815, Attachment 93, p. 80). Shipyards are large users of mineral slag 
abrasives. In a recent survey conducted for the Navy, the use of coal 
slag abrasives accounted for 68 percent and copper slag accounted for 
20 percent of abrasive media usage as reported by 26 U.S. shipyards and 
boatyards (Document ID 0767). The use of coal and copper slag abrasives 
has increased in recent years as industries have sought substitutes for 
silica sand blasting abrasives to avoid health risks associated with 
respirable crystalline silica (Document ID 1671, Attachment 3; 1681, 
Attachment 1, pp. 1-2).
    OSHA's exposure profile for abrasive blasters, pot tenders/helpers, 
and abrasive material cleanup workers is found in Section 12 of Chapter 
IV in the FEA. The exposure profile for abrasive blasters shows a 
median of 0.2 [mu]g/m\3\, a mean of 2.18 [mu]g/m\3\, and a range from 
0.004 [mu]g/m\3\ to 66.5 [mu]g/m\3\. The mean level of 2.18 [micro]g/
m\3\ is above the preceding PEL for beryllium. For pot tenders/helpers, 
the exposure profile shows a median of 0.09 [mu]g/m\3\, a mean of 0.10 
[mu]g/m\3\, and a range from 0.04 to 0.20 [mu]g/m\3\. Beryllium 
exposure for workers engaged in abrasive material cleanup shows a 
median of 0.18 [mu]g/m\3\, a mean of 1.76 [mu]g/m\3\, and a range from 
0.04 [mu]g/m\3\ to 7.4 [mu]g/m\3\ (see Section 12 of Chapter IV in the 
FEA). OSHA concludes that abrasive blasters, pot tenders/helpers, and 
cleanup workers have the potential for significant airborne beryllium 
exposure during abrasive blasting operations and during cleanup of 
spent abrasive material. Accordingly, these workers require protection 
under the beryllium standards. To address high concentrations of 
various hazardous chemicals in abrasive blasting, employers are already 
required to use engineering and work practice controls to limit 
workers' exposures and supplement these controls with respiratory 
protection when necessary. For example, abrasive blasters in the 
construction industry fall under the protection of the Ventilation 
standard (29 CFR 1926.57). The Ventilation standard includes an 
abrasive blasting subsection (29 CFR 1926.57(f)), which requires that 
abrasive blasting respirators be worn by all abrasive

[[Page 2639]]

blasting operators when working inside blast-cleaning rooms (29 CFR 
1926.57(f)(5)(ii)(A)), when using silica sand in manual blasting 
operations where the nozzle and blast are not physically separated from 
the operator in an exhaust-ventilated enclosure (29 CFR 
1926.57(f)(5)(ii)(B)), or when needed to protect workers from exposures 
to hazardous substances in excess of the limits set in Sec.  1926.55 
(29 CFR 1926.57(f)(5)(ii)(C)). For the shipyard industry, paragraph (c) 
of the Mechanical paint removers standard (29 CFR 1915.34) also has 
respiratory protection requirements for abrasive blasting operations. 
Because of these requirements, OSHA believes that employers already 
have those controls in place and provide respiratory protection during 
abrasive blasting operations. Nonetheless, the construction and 
shipyard standards' new ancillary provisions such as medical 
surveillance, personal protective clothing and equipment, housekeeping, 
and beryllium-specific training will provide increased protections to 
workers in these industries.
    OSHA also received comment and heard testimony on potential 
beryllium exposure from other sources. NIOSH commented that 
construction workers may be exposed to beryllium when demolishing 
buildings or building equipment, based on a study of workers 
demolishing oil-fired boilers (Document ID 1671, Attachment 1, pp. 5, 
15; 1671, Attachment 21). Peggy Mroz of NJH testified that ``[n]umerous 
studies have documented beryllium exposure sensitization and chronic 
beryllium disease in construction industries, demolition and 
decommissioning, and among workers who use non-sparking tools'' 
(Document ID 1756, Tr. 98). Many such cases were discovered among trade 
workers at Department of Energy sites from the National Supplemental 
Screening Program (Document ID 1756, Tr. 81-82). Ashlee Fitch from the 
USW testified that in addition to abrasive blasting using beryllium-
contaminated slags, workers in the maritime industry use non-sparking 
tools that are composed of beryllium alloys. Ms. Fitch stated that 
these tools can create beryllium particulate when they are dressed 
(e.g., sharpening, grinding, straightening). She also noted that 
shipyards may use beryllium for other tasks in the future. Ms. Fitch 
alluded to a 2000 Navy survey of potential exposure to beryllium in 
shipyards which identified potential beryllium sources in welding, 
abrasive blasting, and metal machining (Document ID 1756, Tr. 242-243). 
Mr. Wright of the USW testified that shipyard management told a USW 
representative ``that most of the beryllium that they're aware of comes 
in in the form of articles . . . . That is to say, it might be part of 
some assembly . . . [a]nd it comes in and it's sealed and closed'' 
(Document ID 1756, Tr. 270). However, Mr. Wright stated that beryllium 
is a high-tech material and that ``there is nothing more high-tech than 
an aircraft carrier or a nuclear submarine'' so exposure from 
beryllium-containing alloys cannot be ruled out in these operations 
(Document ID 1756, Tr. 270).
    Despite requesting information both in the NPRM and during the 
public hearing, OSHA does not have sufficient data on beryllium 
exposures in the construction and shipyard industries to characterize 
exposures of workers in application groups other than abrasive blasting 
with beryllium-containing slags. OSHA could not develop exposure 
profiles for construction and shipyard workers engaged in activities 
involving non-sparking tools, demolition of beryllium-contaminated 
buildings or equipment, and working with beryllium-containing alloys. 
However, OSHA acknowledges the USW's concerns about future beryllium 
use and recognizes that there is potential for exposure to beryllium in 
construction and shipyard operations other than abrasive blasting. As 
such, workers engaged in such operations are exposed to the same hazard 
of developing CBD and other beryllium-related disease, and therefore 
deserve the same level of protection as do workers who are engaged in 
abrasive blasting or covered in the general industry final rule. 
Therefore, although at this time OSHA cannot specifically quantify 
exposures in construction or shipyard operations outside of abrasive 
blasting, OSHA has determined that it is necessary for the final 
standards for construction and maritime to cover all occupational 
exposures to beryllium in those industries in order to ensure that the 
standard is broadly effective and addresses all potential harmful 
exposures.
    Three commenters representing the maritime industry supported 
Regulatory Alternative #2b--adopting the new PELs for construction and 
maritime by updating the existing Z tables to incorporate them, but not 
applying the other ancillary provisions of this standard to 
construction and maritime (Document ID 1595, p. 2; 1618, p. 2; 1657. p. 
1). The Shipbuilders Council of America (SCA) supported lowering the 
PEL for beryllium from 2.0 [mu]/m\3\ to 0.2 [mu]/m\3\ in 29 CFR 
1915.1000 Table Z, but argued that a new beryllium standard would prove 
to be redundant. SCA contended that many shipyards maintain a 
comprehensive industrial hygiene program focused on exposure 
assessments and protective measures for a variety of metals in shipyard 
tasks, and that shipyards encounter beryllium only at trace contaminant 
levels in materials involved in the welding and abrasive blasting 
processes. SCA stated that the potential hazards inherent in and unique 
to abrasive blasting in shipyards are already effectively controlled 
through existing regulations (Document ID 1618, pp. 2-4). General 
Dynamics' Bath Iron Works expressed similar views in their comments on 
this issue, as did Newport News Shipbuilding (Document 1595, p. 2; 
1657, p. 1).
    In addition to the commenters representing the maritime industry, 
Ameren, an electric and natural gas public utility, also supported 
applying the proposed TWA PEL and STEL to all employers in general 
industry, construction, and maritime even where beryllium exists only 
as a trace contaminant (Document ID 1675, p. 3). However, not all 
commenters endorsed Alternative #2b. The Department of Energy's 
National Supplemental Screening Program (NSSP) did not support this 
alternative because the other provisions of the standard would only 
cover employers and employees within the scope of the proposed general 
industry rule (Document ID 1677, p. 2). Furthermore, many commenters 
supported extending the full protections of the standard to the 
construction and maritime industries as set forth in Regulatory 
Alternative #2a, discussed earlier, which implicitly rejects Regulatory 
Alternative #2b (see, e.g., Document ID 1756, Tr. 81; 1756, Tr. 97-98; 
1756, Tr. 172-175; 1756, Tr. 198-199; 1755, Tr. 181).
    OSHA is not persuaded by the maritime industry commenters' 
assertions that the ancillary provisions of the beryllium standard 
would be redundant. While OSHA acknowledges that shipyards encounter 
beryllium only at trace levels in materials involved in the welding and 
abrasive blasting processes, OSHA disagrees with their contention that 
updating the PEL and STEL will provide adequate protection to shipyard 
workers. OSHA agrees with NSSP and all the commenters supporting 
Regulatory Alternative #2a that a comprehensive standard specific to 
beryllium will provide the important protection of ancillary 
provisions, such as medical surveillance and medical removal 
protection. OSHA intends to

[[Page 2640]]

ensure that workers exposed to beryllium in the construction and 
shipyard industries are provided with protection that is comparable to 
the protection afforded workers in general industry. Therefore, OSHA 
has set an identical PEL and STEL and, where no meaningful distinctions 
are identified in the record, included substantially the same or 
approximately equivalent ancillary provisions in all three standards. 
For further discussion of the differences among the standards, see the 
provision-specific sections included in this Summary and Explanation.
    Therefore, OSHA declines to adopt Regulatory Alternative #2b, 
which, as noted above, would have updated 29 CFR 1910.1000 Tables Z-1 
and Z-2, 29 CFR 1915.1000 Table Z, and 29 CFR 1926.55 Appendix A so 
that the new TWA PEL and STEL, but not the standard's ancillary 
provisions, would apply to all employers and employees in general 
industry, shipyards, and construction, including occupations where 
beryllium exists only as a trace contaminant. The Agency intends for 
employers that are exempt from the scope of these comprehensive 
standards in accordance with paragraph (a) to comply with the preceding 
TWA PEL and STEL in 29 CFR 1910.1000 Table Z-2, 29 CFR 1915.1000 Table 
Z, and 29 CFR 1926.55 Appendix A, as applicable. Given that the Agency 
is issuing separate beryllium standards for the construction and 
shipyard industries, OSHA is also adding to these tables a cross-
reference to the new standards and clarifying that if the new standards 
are stayed or otherwise not in effect, the preceding PEL and short-term 
ceiling limit apply.
    Paragraph (a)(1). Proposed paragraph (a)(1) applied the standard to 
occupational exposures to beryllium in all forms, compounds, and 
mixtures in general industry, except those articles and materials 
exempted by paragraphs (a)(2) and (a)(3) of the standards. As OSHA 
explained in the proposal, the Agency preliminarily chose to treat 
beryllium generally, instead of individually addressing specific 
compounds, forms, and mixtures. This decision was based on the Agency's 
preliminary determination that the toxicological effects of beryllium 
exposure on the human body are similar regardless of the form of 
beryllium (80 FR 47774).
    Several commenters offered opinions on this approach. The Non-
Ferrous Founders' Society (NFFS) expressed concern that beryllium metal 
was being treated the same as soluble beryllium compounds, such as 
salts, even though NFFS believes these soluble compounds are more 
hazardous and suggested that OSHA establish a bifurcated standard for 
insoluble beryllium versus soluble beryllium compounds (Document ID 
1732, p. 3; 1678, p. 2; 1756, Tr. 18). In related testimony, NIOSH's 
Dr. Aleks Stefaniak discussed the dermal exposure mechanisms of poorly 
soluble beryllium through particle penetration and particle dissolving 
(Document ID 1755, pp. 35-39). Dr. Stefaniak testified that while 
``intact skin naturally has a barrier . . . [v]ery few people actually 
have fully intact skin, especially in an industrial environment'' 
(Document ID 1755, p. 36). He added:

in fact, beryllium particles, beryllium oxide, beryllium metal, 
beryllium alloys, all these sort of what we call insoluble forms 
actually do in fact dissolve very readily in analog of human sweat. 
And once beryllium is in an ionic form on the skin, it's actually 
very easy for it to cross the skin barrier (Document ID 1755, pp. 
36-37).

NIOSH also provided additional information on beryllium solubility and 
the development of CBD in its post-hearing brief, labeling as untrue 
NFFS's assertion that insoluble beryllium does not cause CBD (Document 
ID 1960, Attachment 2, pp. 8-10), citing studies showing that workers 
exposed to insoluble forms of beryllium have developed sensitization 
and CBD (Kreiss, et al., 1997, Document ID 1360; Schuler et al., 2005 
(1349); Schuler et al., 2008 (1291); Wegner et al., 2000, (1960, 
Attachment 7)).
    After careful consideration of the various comments on this issue, 
OSHA is not persuaded that there are differences in workers' health 
risks that justify treating poorly soluble beryllium differently than 
soluble compounds. The Agency is persuaded by NIOSH that poorly soluble 
beryllium presents a significant risk of beryllium-related disease to 
workers and discusses this topic further in Section V of this preamble, 
Health Effects. OSHA has determined that the toxicological effects of 
beryllium exposure on the human body are similar regardless of the form 
of beryllium. Therefore, the Agency concludes that the record supports 
issuing standards that apply to beryllium in all forms, compounds, and 
mixtures. Final paragraph (a)(1) is therefore substantively unchanged 
from the proposal in all three standards.
    Paragraph (a)(2). Proposed paragraph (a)(2) excluded from the 
standard's scope articles, as defined in the Hazard Communication 
standard (HCS) (29 CFR 1910.1200(c)), that contain beryllium and that 
the employer does not process. As OSHA explained in the proposal (80 FR 
47775), the HCS defines an ``article'' as

a manufactured item other than a fluid or particle: (i) Which is 
formed to a specific shape or design during manufacture; (ii) which 
has end use function(s) dependent in whole or in part upon its shape 
or design during end use; and (iii) which under normal conditions of 
use does not release more than very small quantities, e.g., minute 
or trace amounts of a hazardous chemical . . ., and does not pose a 
physical hazard or health risk to employees.

OSHA preliminarily found that items or parts containing beryllium that 
employers assemble where the physical integrity of the item is not 
compromised are unlikely to release beryllium that would pose a 
physical or health hazard for workers. Therefore, OSHA proposed to 
exempt such articles from the scope of the standard. This proposed 
provision was intended to ease the burden on employers by exempting 
items from coverage where they are unlikely to pose a risk to 
employees.
    Commenters generally supported this proposed exemption. For 
example, NFFS stated that the exemption was ``important and practical'' 
(Document ID 1678, p. 2; Document ID 1756, Tr. 35-36)). However, two 
commenters requested minor amendments to the exemption. First, ORCHSE 
Strategies (ORCHSE) asked OSHA to ``clarify'' that proposed paragraph 
(a)(2) ``exempts `articles' even if they are processed, unless the 
processing releases beryllium to an extent that negates the definition 
of an `article' '' (Document ID 1691, Attachment 1, p. 16). ORCHSE 
asserted that the standard should not apply in a workplace when ``the 
item actually meets OSHA's definition of an article'' and that OSHA 
should change the regulation's language accordingly (Document ID 1691, 
Attachment 1, pp. 16-17). Second, the American Dental Association (ADA) 
asked that OSHA clarify the article exemption, specifically that 
employers who use but do not process articles are fully exempt from all 
requirements of the proposed rule, including those established for 
recordkeeping (Document ID 1597, p. 1).
    In contrast, Public Citizen objected to the inclusion of this 
exemption because exempting articles that are not processed does not 
take into consideration dermal exposure from handling articles 
containing beryllium (Document ID 1670, p. 7). Public Citizen pointed 
to OSHA's proposed rule in which OSHA acknowledged that beryllium 
absorbed through the skin can induce a sensitization response that is a 
necessary first step toward CBD and that there is evidence that the 
risk is not limited to soluble forms. However, during follow-up 
questioning at the beryllium public hearings, Dr. Almashat

[[Page 2641]]

of Public Citizen was unable to provide any examples of dermal exposure 
from articles through their handling, as opposed to when processing 
beryllium materials (Document ID 1756, Tr. 178-180). And, in its post-
hearing comments, Public Citizen did not provide evidence of dermal 
exposure to workers handling beryllium materials that would fall under 
the definition of article (Document ID 1964). In the final standard, 
OSHA has decided not to alter the proposed exemption of articles. OSHA 
is not persuaded by ORCHSE's argument that OSHA should change the 
regulation's language to exempt articles even if they are processed, 
unless the processing releases beryllium to an extent that negates the 
definition of an article. The HCS defines an article as

a manufactured item other than a fluid or particle: (i) Which is 
formed to a specific shape or design during manufacture; (ii) which 
has end use function(s) dependent in whole or in part upon its shape 
or design during end use; and (iii) which under normal conditions of 
use does not release more than very small quantities, e.g., minute 
or trace amounts of a hazardous chemical (as determined under 
paragraph (d) of this section), and does not pose a physical hazard 
or health risk to employees. (29 CFR 1910.1200(c)).

Whether a particular item is an ``article'' under the HCS depends on 
the physical properties and intended use of that item. However, 
employers may use and process beryllium-containing items in ways not 
necessarily intended by the manufacturer. Therefore, OSHA has decided 
not to link the processing limitation to the definition of an 
``article'' and is retaining the language of proposed (a)(2) to comport 
with the intention of the exemption.
    In response to the ADA's request for clarification that employers 
who use but do not process articles are fully exempt from all 
requirements of the rule, OSHA notes that paragraph (a)(2) of the final 
standards states that the ``standard does not apply'' to those 
articles. Furthermore, the recordkeeping requirement for objective data 
in paragraph (n)(2) of the standards states that it applies to 
objective data used to satisfy exposure assessment requirements, but 
does not mention any data used to determine coverage under paragraph 
(a). Therefore, OSHA has determined that no further clarification in 
the regulatory text is necessary.
    In response to the comment from Public Citizen, OSHA did not 
receive any evidence on the issue of beryllium exposure through dermal 
contact with unprocessed articles. Therefore, OSHA cannot find that 
such contact poses a risk.
    Paragraph (a)(2) of the final standards therefore remains unchanged 
from the proposed standard. The final standards do not apply to 
articles, as defined in the Hazard Communication standard (HCS) (29 CFR 
1910.1200(c)), that contain beryllium and that the employer does not 
process.
    Paragraph (a)(3). Proposed paragraph (a)(3) exempted from coverage 
materials containing less than 0.1 percent beryllium by weight. 
Requesting comment on this exemption (80 FR 47776), OSHA presented 
Regulatory Alternative #1a, which would have eliminated the proposal's 
exemption for materials containing less than 0.1 percent beryllium by 
weight, and #1b, which would have exempted operations where the 
employer can show that employees' exposures will not meet or exceed the 
action level or exceed the STEL. The Agency asked whether it is 
appropriate to include an exemption for operations where beryllium 
exists only as a trace contaminant, but some workers can nevertheless 
be significantly exposed. And the Agency asked whether it should 
consider dropping the exemption, or limiting it to operations where 
exposures are below the proposed action level and STEL. In addition, 
OSHA requested additional data describing the levels of airborne 
beryllium in workplaces that fall under this exemption. Some 
stakeholders supported keeping the 0.1 percent exemption as proposed 
(Document ID 1661, p. 6; 1666, p. 2; 1668, p. 2; 1673, p. 8; 1674, p. 
3; 1687, Attachment 2, p. 8; 1691, Attachment 1, p. 3; 1756, Tr. 35-36, 
63). For example, the Edison Electric Institute (EEI) strongly 
supported the exemption and asserted ``that abandoning the exemption 
would result in no additional benefits from a reduction in the 
beryllium permissible exposure limit (PEL) or from ancillary provisions 
similar to those already in place for the arsenic and other standards'' 
(Document ID 1674, p. 3). Mr. Weaver of NFFS also opposed eliminating 
the exemption, testifying that without the 0.1 percent exemption, 900 
to 1,100 foundries would come under the scope of the rule (Document ID 
1756, Tr. 55-56).
    ABMA also supported the proposed 0.1 percent exemption, suggesting 
that there is a lack of evidence of significant risk from working with 
material containing beryllium in trace amounts and that OSHA needs 
substantial evidence that it is ``at least more likely than not'' that 
exposure to beryllium in trace amounts presents significant risk of 
harm, under court decisions concerning the Benzene rule (Document ID 
1673, pp. 8-9). ABMA further argued that significant risk does not 
exist even below the previous PEL of 2.0 [mu]g/m\3\ (Document ID 1673, 
pp. 8-9, 11). ABMA added that its members collectively have over 200 
years of experience producing coal and/or copper slag abrasive material 
and have employed thousands of employees in this production process. 
ABMA explained:

    Through the years, Alliance members have worked with and put to 
beneficial use over 100 million tons of slag material that would 
otherwise have been landfilled. Despite this extensive history, the 
Alliance members have no history of employees with beryllium 
sensitization or beryllium-related illnesses. Indeed, the Alliance 
members are not aware of a single documented case of beryllium 
sensitization or beryllium-related illness associated with coal or 
copper slag abrasive production among their employees, or their 
customers' employees working with the products of Alliance members 
(Document ID 1673, p. 9).

    OSHA is not persuaded by these arguments. The lack of anecdotal 
evidence of sensitization or beryllium-related illness does not mean 
these workers are not at risk. As noted by Representative Robert C. 
``Bobby'' Scott, Ranking Member of the U.S. House of Representatives 
Committee on Education and the Workforce the U.S. House of 
Representatives, ``medical surveillance has not been required for 
beryllium-exposed workers outside of the U.S. Department of Energy. The 
absence of evidence is not evidence of absence'' (Document ID 1672). As 
discussed in Section II of this preamble, Pertinent Legal Authority, 
courts have not required OSHA ``to support its finding that a 
significant risk exists with anything approaching scientific 
certainty'' (Benzene, 448 U.S. 607, 656 (1980)). Rather, OSHA may rely 
on ``a body of reputable scientific thought'' to which ``conservative 
assumptions in interpreting the data . . .'' may be applied, ``risking 
error on the side of overprotection'' (Benzene, 448 U.S. at 656). OSHA 
may thus act with a ``pronounced bias towards worker safety'' in making 
its risk determinations (Bldg & Constr. Trades Dep't v. Brock, 838 F.2d 
1258, 1266 (D.C. Cir. 1988). Where, as here, the Agency has evidence 
indicating that a certain operation can result in exposure levels that 
the Agency knows can pose a significant risk--such as evidence that 
workers that have been exposed to beryllium at the final PEL of 0.2 
[mu]g/m\3\ in primary beryllium production and beryllium machining 
operations have developed CBD (see this preamble at section V, Risk 
assessment)--OSHA need not wait until it has specific evidence that 
employees in that

[[Page 2642]]

particular industry are suffering. A number of commenters supported 
Regulatory Alternative #1a, proposing to eliminate the proposal's 
exemption for materials containing less than 0.1 percent beryllium by 
weight (Document ID 1655, p. 15; 1664, p. 2; 1670, p. 7; 1671, 
Attachment 1, p. 5; 1672, pp. 4-5; 1683, p. 2; 1686, p. 2; 1689, pp. 6-
7; 1690, p. 3; 1693, p. 3; 1720, pp. 1, 4). Public Citizen expressed 
concern with the proposed exemption and pointed out that OSHA 
identified studies in its proposal unequivocally demonstrating that 
beryllium sensitization and CBD occur in multiple industries utilizing 
products containing trace amounts of beryllium and that such an 
exemption would expose workers in such industries to the risks of 
beryllium toxicity (Document ID 1670, p. 7). The American Association 
for Justice, the AFL-CIO, and the UAW were all concerned that the 
proposed standard's 0.1 percent exemption would result in workers being 
exposed to significant amounts of beryllium from abrasive blasting 
(Document ID 1683, p. 2; 1689, pp. 6-7, 10-11; 1693, p. 3). Both Dr. 
Sammy Almashat and Emily Gardner of Public Citizen testified that they 
support inclusion of work processes that involve materials containing 
less than 0.1 percent of beryllium because the beryllium can become 
concentrated in air, even when using materials with only trace amounts 
(Document ID 1756, Tr. 174, 177-178, 185-186). Similarly, the AFL-CIO 
stated that ``there are known over-exposures among industries that use 
materials with less than 0.1% beryllium by weight, including an 
estimated 1,665 workers in primary aluminum production and 14,859 coal-
fired electric power generation workers'' (Document ID 1689, p. 7). 
Mary Kathryn Fletcher of the AFL-CIO further explained that the AFL-CIO 
supported eliminating the exemption because these employees are at 
significant risk for developing sensitization, chronic beryllium 
disease (CBD), and lung cancer (Document ID 1756, Tr. 198-199). The 
Sampling and Analysis Subcommittee Task Group of the Beryllium Health 
and Safety Committee (BHSC Task Group) recommended that OSHA remove the 
exemption (Document ID 1655, p. 15). AIHA also recommended eliminating 
or reducing the percentage content exemption until data is available to 
demonstrate that materials with very low beryllium content will not 
result in potential exposure above the proposed PEL (Document ID 1686, 
p. 2).
    Both NIOSH and North America's Building Trades Unions (NABTU) 
expressed concern that the 0.1 percent exemption would expose 
construction and shipyard workers conducting abrasive blasting with 
coal slags to beryllium in concentrations above the final PEL. NIOSH 
and NABTU cited a study by the Center for Construction Research and 
Training, and NIOSH also cited one of its exposure assessment studies 
of a coal slag blaster showing beryllium air concentrations exceeding 
the preceding OSHA PEL (Document ID 1671, Attachment 1, p. 5; 1679, pp. 
3-4). In addition, NIOSH points out that although the abrasive blasting 
workers may use personal protective equipment that limits exposure, 
supervisors and other bystanders may be exposed. NIOSH gave other 
examples where the 0.1 percent exemption could result in workers being 
exposed to beryllium, such as building or building equipment demolition 
and work in dental offices that fabricate or modify beryllium-
containing dental alloys, but did not provide reference material or 
exposure data for these examples (Document ID 1671, pp. 5-6). In its 
post-hearing brief, NIOSH also specifically disagreed with EEI's 
contention that compliance with the arsenic and asbestos standards 
satisfies the proposed regulatory requirements of the beryllium rule. 
NIOSH argued that, unlike arsenic and lead, beryllium is a sensitizer, 
and as such, necessary and sufficient controls are required to protect 
workers from life-long risk of beryllium sensitization and disease 
(Document ID 1960, Attachment 2, p. 6).
    OSHA also received comment and heard testimony from Dr. Weissman of 
NIOSH recommending that the scope of the standard be based on employee 
exposures and not the concentration of beryllium in the material 
(Document ID 1671, pp. 5-6; Document ID 1755, Tr. 17-18). NIOSH 
identified coal-fired electric power generation and primary aluminum 
production as industries that could fall under the 0.1 percent 
exemption (Document ID 1671, Attachment 1, p. 6). Stating it was not 
aware of any medical screening of utility workers exposed to fly ash, 
NIOSH recommended that OSHA include coal-fired electric power 
generation in the scope of the standard unless and until available data 
can demonstrate that there is no risk of sensitization to those workers 
(Document ID 1671, p. 6). NIOSH did not offer specifics on the 
magnitude of beryllium exposure in the aluminum production industry. In 
its post-hearing brief, NIOSH recommended that OSHA remove the 0.1 
percent exemption from the rule, allowing the rule to cover a broad 
range of construction, shipyard, and electric utility power generation 
activities that are associated with beryllium exposure, such as 
abrasive blasting with coal or copper slag, repairing and maintaining 
structures contaminated with fly ash, and remediation or demolition 
(Document ID 1960, Attachment 2, p. 2). And Peggy Mroz of NJH testified 
that beryllium sensitization and CBD have been reported in the aluminum 
industry and that NJH has continued to see cases of severe CBD in 
workers exposed to beryllium through medical recycling and metal 
reclamation (Document ID 1756, Tr. 98-99).
    Other commenters suggested limiting the exemption, as OSHA proposed 
in Regulatory Alternative #1b, to require employers to demonstrate, 
using objective data, that the materials, when processed or handled, 
cannot release beryllium in concentrations at or above the action level 
as an 8-hour TWA under any foreseeable conditions (Document ID 1597, p. 
1; 1681, pp. 5-6). For example, the Materion-USW proposed standard 
included the 0.1 percent exemption unless objective data or initial 
monitoring showed exposures could exceed the action level or STEL. USW 
asserted that not including this requirement in the rule would be a 
mistake (Document ID 1681, pp. 5-6). The AFL-CIO also supported the 
joint USW-Materion scope provision (Document ID 1756, Tr. 212). Mike 
Wright of the USW asserted that maintaining the 0.1 percent exemption 
would leave thousands of workers unprotected, including those 
performing abrasive blasting operations in general industry, ship 
building, and construction (Document ID 1755, Tr. 111-114). Mr. Wright 
argued that in the 1,3 Butadiene standard OSHA recognized that the 0.1 
percent exemption would not protect some workers and therefore included 
additional language limiting the exemption where objective data showed 
``that airborne concentrations generated by such mixtures can exceed 
the action level or STEL under reasonably predictable conditions of 
processing, use or handling that will cause the greatest possible 
release'' (Document ID 1755, Tr. 113; 29 CFR 1910.1051(a)(2)(ii)). Mr. 
Wright urged OSHA to include similar language in the beryllium standard 
(Document ID 1755, Tr. 113-114).
    Some commenters endorsed a modified version of Alternative #1b. For 
example, the Department of Defense (DOD) supported Alternative #1b, but 
also suggested limiting the exemption if exposures ``could present a 
health risk

[[Page 2643]]

to employees'' (Document ID 1684, Attachment 2, pp. 1, 3). Boeing 
suggested adding a different exemption to the scope of the standard:

where the employer has objective data demonstrating that a material 
containing beryllium or a specific process, operation, or activity 
involving beryllium cannot release dusts, fumes, or mists of 
beryllium in concentrations at or above 0.02 [mu]g/m\3\ as an 8-hour 
time-weighted average (TWA) or at or above 0.2 [mu]g/m\3\ as 
determined over a sampling period of 15 minutes under any expected 
conditions of use (Document ID 1667, p. 12).

Other commenters, like ABMA, criticized Regulatory Alternative #1b, 
insisting that the rulemaking record contained no evidence to support 
expanding the scope, but that if the scope was expanded to cover trace 
beryllium, a significant exemption would be needed. ABMA argued that 
such an exemption would need to go considerably beyond that of using 
the action level or STEL because of the substantial costs, particularly 
on small businesses, that would be incurred where there is no evidence 
of benefit. However, ABMA did not specify what such an exemption would 
look like (Document ID 1673, p. 11). Similarly, the National Rural 
Electric Cooperative Association (NRECA) objected to Regulatory 
Alternative #1b as being unnecessary to protect employees from CBD in 
coal fired power plants (Document ID 1687, p. 2).
    Ameren did not agree with the objective data requirement in 
Regulatory Alternative #1b because it would be difficult to perform 
sampling in a timely manner for the many different maintenance 
operations that occur infrequently. This would include in the scope of 
the rule activities for which exposures are difficult to measure, but 
are less likely to cause exposure than other operations (Document ID 
1675, p. 2). The NSSP also does not support Regulatory Alternative #1b 
because without first expanding the scope of the rule to cover the 
construction and maritime sectors, employers in construction and 
maritime would still be excluded (Document ID 1677, p. 1).
    OSHA agrees with the many commenters and testimony expressing 
concern that materials containing trace amounts of beryllium (less than 
0.1 percent by weight) can result in hazardous exposures to beryllium. 
We disagree, however, with those who supported completely eliminating 
the exemption because this could have unintended consequences of 
expanding the scope to cover minute amounts of naturally occurring 
beryllium (Ex 1756 Tr. 55). Instead, we believe that alternative #1b--
essentially as proposed by Materion and USW and acknowledging that 
workers can have significant beryllium exposures even with materials 
containing less than 0.1%--is the most appropriate approach. Therefore, 
in the final standard, it is exempting from the standard's application 
materials containing less than 0.1% beryllium by weight only where the 
employer has objective data demonstrating that employee exposure to 
beryllium will remain below the action level as an 8-hour TWA under any 
foreseeable conditions.
    As noted by NIOSH, NABTU, and the AFL-CIO, and discussed in Chapter 
IV of the FEA, workers in abrasive blasting operations using materials 
that contain less than 0.1 percent beryllium still have the potential 
for significant airborne beryllium exposure during abrasive blasting 
operations and during cleanup of spent abrasive material. NIOSH and the 
AFL-CIO also identified coal-fired electric power generation and 
primary aluminum production as industries that could fall under the 0.1 
percent exemption but still have significant worker exposure to 
beryllium. Furthermore, OSHA agrees with NIOSH that the Agency should 
regulate based on the potential for employee exposures and not the 
concentration of beryllium in the material being handled. However, OSHA 
acknowledges the concerns expressed by ABMA and EEI that processing 
materials with trace amounts of beryllium may not necessarily cause 
significant exposures to beryllium. OSHA does not have evidence that 
all materials containing less than 0.1 percent beryllium by weight can 
result in significant exposure to beryllium, but the record contains 
ample evidence that there are significant exposures in operations using 
materials with trace amounts of beryllium, such as abrasive blasting, 
coal-fired power generation, and primary aluminum production. As 
discussed in Section VII of this preamble, Significance of Risk, 
preventing airborne exposures at or above the action level reduces the 
risk of beryllium-related health effects to workers. OSHA is also not 
persuaded by comments that claim obtaining this exposure data is too 
difficult for infrequent or short-term tasks because employers must be 
able to establish their eligibility for the exemption before being able 
to take advantage of it. If an employer cannot establish by objective 
data, including actual monitoring data, that exposures will not exceed 
the action level, then the beryllium standards apply to protect that 
employer's workers.
    As pointed out by commenters such as the USW, similar exemptions 
are included in other OSHA standards, including Benzene (29 CFR 
1910.1028), Methylenedianiline (MDA) (29 CFR 1910.1050), and 1,3-
Butadiene (BD) (29 CFR 1910.1051). These exemptions were established 
because workers in the exempted industries or workplaces were not 
exposed to the subject chemical substances at levels of significant 
risk. In the preamble to the MDA standard, OSHA states that the Agency 
relied on data showing that worker exposure to mixtures or materials of 
MDA containing less than 0.1 percent MDA did not create any hazards 
other than those expected from worker exposure beneath the action level 
(57 FR 35630, 35645-46). The exemption in the BD standard does not 
apply where airborne concentrations generated by mixtures containing 
less than 0.1 percent BD by volume can exceed the action level or STEL 
(29 CFR 1910.1051(a)(2)(ii)). The exemption in the Benzene standard was 
based on indications that exposures resulting from substances 
containing trace amounts of benzene would generally be below the 
exposure limit and on OSHA's determination that the exemption would 
encourage employers to reduce the concentration of benzene in certain 
substances (43 FR 27962, 27968).
    OSHA's decision to maintain the 0.1 percent exemption and require 
employers to demonstrate, using objective data, that the materials, 
when processed or handled, cannot release beryllium in concentrations 
at or above the action level as an 8-hour TWA under any foreseeable 
conditions, is a change from proposed paragraph (a)(3) that specified 
only that the standard did not apply to materials containing less than 
0.1 percent beryllium by weight. This is also a change from Regulatory 
Alternative #1b in another respect, insofar as it proposed requiring 
objective data demonstrating that employee exposure to beryllium will 
remain below both the proposed action level and STEL. OSHA removed the 
STEL requirement as largely redundant because if exposures exceed the 
STEL of 2.0 [micro]g/m\3\ for more than one 15-minute period per 8-hour 
shift, even if exposures are non-detectable for the remainder of the 
shift, the 8-hour TWA would exceed the action level of 0.1 [mu]g/m\3\.
    Further, OSHA added the phrase ``under any foreseeable conditions'' 
to paragraph (a)(3) of the final standards to make clear that limited 
sampling results indicating exposures are below the

[[Page 2644]]

action level would be insufficient to take advantage of this exemption. 
When using the phrase ``any foreseeable conditions,'' OSHA is referring 
to situations that can reasonably be anticipated. For example, annual 
maintenance of equipment during which exposures could exceed the action 
level would be a situation that is generally foreseeable.
    In sum, the proposed standard covered occupational exposures to 
beryllium in all forms, compounds, and mixtures in general industry. It 
did not apply to articles, as defined by the HCS, or to materials 
containing less than 0.1 percent beryllium by weight. After a thorough 
review of the record, OSHA has decided to adopt Regulatory Alternative 
#2a and include the construction and shipyard sectors within the scope 
of the final rule. This decision was in response to the majority of 
comments recommending that OSHA protect workers in these sectors under 
the final rule and the exposure data in these sectors contained in the 
record. OSHA has also decided to adopt a modified version of Regulatory 
Alternative #1b and limit the 0.1 percent exemption to those employers 
who have objective data demonstrating that employee exposure to 
beryllium will remain below the action level as an 8-hour TWA under any 
foreseeable conditions.
    Therefore, the final rule contains three standards--one each for 
general industry, construction, and shipyard. The article exemption has 
remained unchanged, and the 0.1 percent exemption has been limited to 
protect workers with significant exposures despite working with 
materials with trace amounts of beryllium.

(b) Definitions

    Paragraph (b) includes definitions of key terms used in the 
standard. To the extent possible, OSHA uses the same terms and 
definitions in the standard as the Agency has used in other OSHA health 
standards. Using similar terms across health standards, when possible, 
makes them more understandable and easier for employers to follow. In 
addition, using similar terms and definitions helps to facilitate 
uniformity of interpretation and enforcement.
    Action level means a concentration of airborne beryllium of 0.1 
micrograms per cubic meter of air ([mu]g/m\3\) calculated as an 8-hour 
time-weighted average (TWA). Exposures at or above the action level 
trigger requirements for periodic exposure monitoring when the employer 
is following the scheduled monitoring option (see paragraph (d)(3)). In 
addition, paragraph (f)(1)(i)(B) requires employers to list as part of 
their written exposure control plan the operations and job titles 
reasonably expected to have exposure at or above the action level. 
Paragraph (f)(2) requires employers to ensure that at least one of the 
controls listed in paragraph (f)(2)(i) is in place unless employers can 
demonstrate for each operation or process either that such controls are 
not feasible, or that employee exposures are below the action level 
based on at least two representative personal breathing zone samples 
taken at least seven days apart. In addition, under paragraph 
(k)(1)(i)(A), employee exposure at or above the action level for more 
than 30 days per year triggers requirements for medical surveillance. 
The medical surveillance provision triggered by the action level allows 
employees to receive exams at least every two years at no cost to the 
employee. The action level is also relevant to the medical removal 
requirements. Employees eligible for removal can choose to remain in 
environments with exposures at or above the action level, provided they 
wear respirators (paragraph (l)(2)(ii)). These employees may also 
choose to be transferred to comparable work in environments with 
exposures below the action level (if comparable work is not available, 
the employer must maintain the employee's earnings and benefits for six 
months or until comparable work becomes available (paragraph (l)(3)).
    OSHA's risk assessment indicates that significant risk remains at 
and below the TWA PEL (see this preamble at section VII, Significance 
of Risk). When there is significant risk remaining at the PEL, the 
courts have ruled that OSHA has the legal authority to impose 
additional requirements, such as action levels, on employers to further 
reduce risk when those requirements will result in a greater than 
minimal incremental benefit to workers' health (Asbestos II, 838 F.2d 
at 1274). OSHA concludes that an action level for beryllium exposure 
will result in a further reduction in risk beyond that provided by the 
PEL alone.
    Another important reason to set an action level involves the 
variable nature of employee exposures to beryllium. Because of this 
fact, OSHA concludes that maintaining exposures below the action level 
provides reasonable assurance that employees will not be exposed to 
beryllium above the TWA PEL on days when no exposure measurements are 
made. This consideration is discussed later in this section of the 
preamble regarding paragraph (d)(3).
    The United Steelworkers (USW) commented in support of the action 
level, noting that it is typical in OSHA standards to have an action 
level at one half of the PEL (Document ID 1681, p. 11). The USW also 
commented that the ``action level will further reduce exposure to 
beryllium by workers and will incentivize employers to implement best 
practice controls keeping exposures at a minimum as well as reducing 
costs of monitoring and assessments'' (Document ID 1681, p. 11). 
National Jewish Health (NJH) also supported OSHA's proposal for a more 
comprehensive standard and noted that the action level in the 
Department of Energy's beryllium standard has been ``very effective at 
reducing exposures and rates of beryllium sensitization and chronic 
beryllium disease in those facilities'' (Document ID 1756, p. 90).
    As noted by the commenters, OSHA's decision to set an action level 
of one-half of the TWA PEL is consistent with previous standards, 
including those for inorganic arsenic (29 CFR 1910.1018), chromium (VI) 
(29 CFR 1910.1026), benzene (29 CFR 1910.1028), ethylene oxide (29 CFR 
1910.1047), methylene chloride (29 CFR 1910.1052), and respirable 
crystalline silica (29 CFR 1910.1053).
    The definition of ``action level'' is therefore unchanged from the 
proposal. Some of the ancillary provisions triggered by the action 
level have changed since the proposal. Those changes are discussed in 
more detail in the Summary and Explanation sections for those 
provisions.
    Airborne exposure and airborne exposure to beryllium mean the 
exposure to airborne beryllium that would occur if the employee were 
not using a respirator.
    OSHA included a definition for the terms ``exposure'' and 
``exposure to beryllium'' in the proposed rule, and defined the terms 
to mean ``the exposure to airborne beryllium that would occur if the 
employee were not using a respirator.'' In the final rule, the word 
``airborne'' is added to the terms to make clear that they refer only 
to airborne beryllium, and not to dermal contact with beryllium. The 
modified terms replace ``exposure'' and ``exposure to beryllium'' in 
the rule, and the terms ``exposure'' and ``exposure to beryllium'' are 
no longer defined.
    Assistant Secretary means the Assistant Secretary of Labor for 
Occupational Safety and Health, United States Department of Labor, or 
designee. OSHA received no comments on this definition, and it is 
unchanged from the proposal.
    Beryllium lymphocyte proliferation test (BeLPT) means the 
measurement of blood lymphocyte proliferation in a

[[Page 2645]]

laboratory test when lymphocytes are challenged with a soluble 
beryllium salt. For additional explanation of the BeLPT, see the Health 
Effects section of this preamble (section V). Under paragraph 
(f)(1)(ii)(B), an employer must review and evaluate its written 
exposure control plan when an employee is confirmed positive. The BeLPT 
could be used to determine whether an employee is confirmed positive 
(see definition of ``confirmed positive'' in paragraph (b) of this 
standard). Paragraph (k)(3)(ii)(E) requires the BeLPT unless a more 
reliable and accurate test becomes available.
    NJH supported OSHA's definition of the BeLPT in the NPRM (Document 
ID 1664, p. 5). However, OSHA has made one change from the proposed 
definition of the BeLPT in the NPRM to the final definition to provide 
greater clarity. The Agency has moved the characterization of a 
confirmed positive result from the BeLPT definition to the ``confirmed 
positive'' definition because it was more appropriate there.
    Beryllium work area means any work area containing a process or 
operation that can release beryllium where employees are, or can 
reasonably be expected to be, exposed to airborne beryllium at any 
level or where there is potential for dermal contact with beryllium. 
The definition of ``beryllium work area'' has been changed from the 
proposed definition to reflect stakeholder concerns regarding the 
overlap between a beryllium work area and regulated area, and to 
include the potential for dermal exposure. The definition only appears 
in the general industry standard because the requirement for a 
beryllium work area only applies to the general industry standard. 
Beryllium work areas are areas where employees are or can reasonably be 
expected to be exposed to airborne beryllium at any level, whereas an 
area is a regulated area only if employees are or can reasonably be 
expected to be exposed above the TWA PEL or STEL; the regulated area, 
therefore, is either a subset of the beryllium work area or, less 
likely, identical to it, depending on the configuration and 
circumstances of the worksite. Dermal exposure has also been included 
in the final definition to address the potential for sensitization from 
dermal contact. Therefore, while not all beryllium work areas are 
regulated areas, all regulated areas are beryllium work areas because 
they are areas with employee exposure to beryllium. Accordingly, all 
requirements for beryllium work areas also apply in all regulated 
areas, but requirements specific to regulated areas apply only to 
regulated areas and not to beryllium work areas where exposures do not 
exceed the TWA PEL or STEL. For further discussion, see this section of 
the preamble regarding paragraph (e), Beryllium work areas and 
regulated areas.
    The presence of a beryllium work area triggers a number of the 
requirements in the general industry standard. Under paragraph 
(d)(3)(i), employers must determine exposures for each beryllium work 
area. Paragraphs (e)(1)(i) and (e)(2)(i) require employers to 
establish, maintain, identify, and demarcate the boundaries of each 
beryllium work area. Under paragraph (f)(1)(i)(D), employers must 
minimize cross-contamination by preventing the transfer of beryllium 
between surfaces, equipment, clothing, materials, and articles within a 
beryllium work area. Paragraph (f)(1)(i)(F) states that employers must 
minimize migration of beryllium from the beryllium work area to other 
locations within and outside the workplace. Paragraph (f)(2) requires 
employers to implement at least one of the controls listed in 
(f)(2)(i)(A) through (D) for each operation in a beryllium work area 
unless one of the exemptions in (f)(2)(ii) applies. Paragraph (i)(1) 
requires employers to provide readily accessible washing facilities to 
employees working in a beryllium work area, and to ensure that 
employees who have dermal contact with beryllium wash any exposed skin 
at the end of the activity, process, or work shift and prior to eating, 
drinking, smoking, chewing tobacco or gum, applying cosmetics, or using 
the toilet. In addition employers must ensure that these areas comply 
with the Sanitation standard (29 CFR 1910.141) (paragraph (i)(4)). 
Employers must maintain surfaces in all beryllium work areas as free as 
practicable of beryllium (paragraph (j)(1)(i)). Paragraph (j)(2) 
requires certain practices and prohibits other practices for cleaning 
surfaces in beryllium work areas. Under paragraph (m)(4)(ii)(B), 
employers must ensure workers demonstrate knowledge of the written 
exposure control plan with emphasis on the location(s) of beryllium 
work areas.
    CBD diagnostic center means a medical diagnostic center that has an 
on-site pulmonary specialist and on-site facilities to perform a 
clinical evaluation for the presence of chronic beryllium disease 
(CBD). This evaluation must include pulmonary function testing (as 
outlined by the American Thoracic Society criteria), bronchoalveolar 
lavage (BAL), and transbronchial biopsy. The CBD diagnostic center must 
also have the capacity to transfer BAL samples to a laboratory for 
appropriate diagnostic testing within 24 hours. The on-site pulmonary 
specialist must be able to interpret the biopsy pathology and the BAL 
diagnostic test results. For purposes of these standards, the term 
``CBD diagnostic center'' refers to any medical facility that meets 
these criteria, whether or not the medical facility formally refers to 
itself as a CBD diagnostic center. For example, if a hospital has all 
of the capabilities required by this standard for CBD diagnostic 
centers, the hospital would be considered a CBD diagnostic center for 
purposes of these standards.
    OSHA received comments from NJH and ORCHSE Strategies (ORCHSE) 
regarding the definition of the ``CBD diagnostic center.'' NJH 
commented that CBD diagnostic centers do not need to be able to perform 
the BeLPT but should be able to process the BAL appropriately and ship 
samples within 24 hours to a facility that can perform the BeLPT. NJH 
also indicated that CBD diagnostic centers should be able to perform CT 
scans, pulmonary function tests with DLCO (diffusing capacity of the 
lungs for carbon monoxide), and measure gas exchange abnormalities. NJH 
further indicated that CBD diagnostic centers should have a medical 
doctor who has experience and expertise, or is willing to obtain such 
expertise, in the diagnosis and treatment of chronic beryllium disease 
(Document ID 1664, pp. 5-6). ORCHSE argued that CBD diagnostic centers 
should be allowed to rely on off-site interpretation of transbronchial 
biopsy pathology, reasoning that this change would broaden the 
accessibility of CBD diagnostic centers to more affected employees 
(Document ID 1691, p. 3).
    OSHA evaluated these recommendations and included the language 
regarding sample processing and removed the proposal's requirement that 
BeLPTs be performed on-site. The Agency also changed the requirement 
that pulmonary specialist perform testing as outlined in the proposal 
to the final definition which requires that a pulmonary specialist be 
on-site. This requirement addresses the concerns ORCHSE raised about 
accessibility of CBD diagnostic centers by increasing the number of 
facilities that would qualify as centers. This also preserves the 
expertise required to diagnose and treat CBD as stated by NJH (Document 
1664, p. 6).
    Paragraph (k)(7) includes provisions providing for an employee who 
has been confirmed positive to receive an initial clinical evaluation 
and subsequent medical examinations at a CBD diagnostic center.
    Chronic beryllium disease (CBD) means a chronic lung disease 
associated

[[Page 2646]]

with exposure to airborne beryllium. The Health Effects section of this 
preamble, section V, contains more information on CBD. CBD is relevant 
to several provisions of this standard. Under paragraph (k)(1)(i)(B), 
employers must make medical surveillance available at no cost to 
employees who show signs and symptoms of CBD. Paragraph (k)(3)(ii)(B) 
requires medical examinations conducted under this standard to include 
a physical examination with emphasis on the respiratory system, in 
order to identify respiratory conditions such as CBD. Under paragraph 
(k)(5)(i)(A), the licensed physician's report must advise the employee 
on whether or not the employee has any detected medical condition that 
would place the employee at an increased risk of CBD from further 
exposure to beryllium. Furthermore, CBD is a criterion for medical 
removal under paragraph (l)(1). Under paragraph (m)(1)(ii), employers 
must address CBD in classifying beryllium hazards under the hazard 
communication standard (HCS) (29 CFR 1910.1200). Employers must also 
train employees on the signs and symptoms of CBD (see paragraph 
(m)(4)(ii)(A) of the general industry and shipyard standards and 
paragraph (m)(3)(ii)(A) of the construction standard).
    Competent person means an individual on a construction site who is 
capable of identifying existing and foreseeable beryllium hazards in 
the workplace and who has authorization to take prompt corrective 
measures to eliminate or minimize them. The competent person must have 
the knowledge, ability, and authority necessary to fulfill the 
responsibilities set forth in paragraph (e) of the standard for 
construction. This definition appears only in the standard for 
construction.
    The competent person concept has been broadly used in OSHA 
construction standards (e.g., 29 CFR 1926.32(f) and 1926.20(b)(2)), 
including in the recent health standard for respirable crystalline 
silica (29 CFR 1926.1153). Under 29 CFR 1926.32(f), competent person is 
defined as ``one capable of identifying existing and predictable 
hazards in the surroundings or working conditions that are unsanitary, 
hazardous, or dangerous to employees and who is authorized to take 
prompt corrective measures to eliminate them.'' OSHA has adapted this 
definition for the beryllium construction standard by specifying 
``foreseeable beryllium hazards in the workplace'' instead of 
``predictable hazards in the surroundings or working conditions that 
are unsanitary, hazardous, or dangerous to employees.'' The Agency also 
replaced the word ``one'' with ``an individual.'' The Agency revised 
the phrase ``to eliminate them'' to read ``to eliminate or minimize 
them'' to denote there may be cases where complete elimination would 
not be feasible. The definition of competent person also indicates that 
the competent person must have the knowledge, ability, and authority 
necessary to fulfill the responsibilities set forth in paragraph (e) of 
the construction standard, in order to ensure that the competent has 
appropriate training, education, or experience. See the discussion of 
``competent person'' in the summary and explanation of paragraphs (e), 
Beryllium work areas and regulated areas, and (f), Methods of 
compliance, in this section.
    Confirmed positive means the person tested has beryllium 
sensitization, as indicated by two (either consecutive or non-
consecutive) abnormal BeLPT test results, an abnormal and borderline 
test result, or three borderline test results. The definition of 
``confirmed positive'' also includes a single result of a more reliable 
and accurate test indicating that a person has been identified as 
sensitized to beryllium if the test has been validated by repeat 
testing to have more accurate and precise diagnostic capabilities 
within a single test result than the BeLPT. OSHA recognizes that 
diagnostic tests for beryllium sensitization could eventually be 
developed that would not require a second test to confirm 
sensitization. Alternative test results would need to have comparable 
or increased sensitivity, specificity and positive predictive value 
(PPV) in order to replace the BeLPT as an acceptable test to evaluate 
beryllium sensitization (see section V.D.5.b of this preamble).
    OSHA received comments from NJH, the American Thoracic Society 
(ATS) and ORCHSE regarding the requirement for consecutive test results 
within a two year time frame, and the inclusion of borderline test 
results (Document ID 1664, p.5; 1668, p. 2; 1691, p. 20). NJH and ATS 
submitted similar comments regarding the requirement of two abnormal 
BeLPT test results to be consecutive and within two years. According to 
NJH, ``the definition of `confirmed positive' [should] include two 
abnormals, an abnormal and a borderline test result, and/or three 
borderline tests. This recommendation is based on studies of Middleton 
et al. (2008, and 2011), which showed that these other two combinations 
result in a PPV similar to two abnormal test results and are an equal 
predictor of CBD.'' (Document ID 1664, p. 5). In addition, the ATS 
stated:

    These test results need not be from consecutive BeLPTs or from a 
second abnormal BeLPT result within a two-year period of the first 
abnormal result. These recommendations are based on the many studies 
cited in the docket, as well as those of Middleton, et al. (2006, 
2008, and 2011), which showed that an abnormal and a borderline 
result provide a positive predictive value (PPV) similar to that of 
two abnormal test results for the identification of both beryllium 
sensitization and for CBD (Document ID 1668, p. 2).

    Materion Corporation (Materion) opposed changing the requirement 
for two abnormal BeLPT results and opposed allowing two or three 
borderline results to determine sensitization (Document ID 1808, p. 4). 
Without providing scientific studies or other bases for its position, 
Materion argued that ``[m]aking a positive BeS determination for an 
individual without any confirmed abnormal test result is not warranted 
and clearly is not justifiable from a scientific, policy or legal 
perspective'' (Document ID 1808, p. 4).
    OSHA evaluated these comments and modified the definition of 
``confirmed positive'' accordingly for reasons described more fully 
within the Health Effects section of this preamble, V.D.5.b, including 
reliance on the Middleton studies (2008, 2011). The original definition 
for ``confirmed positive'' in the proposed standard was adapted from 
the model standard submitted to OSHA by Materion and the USW in 2012. 
Having carefully considered all these comments and their supporting 
evidence, where provided, the Agency finds the arguments from NJH, ATS, 
and ORCHSE persuasive. In particular ATS points out the Middleton et 
al. studies ``. . . showed that an abnormal and a borderline result 
provide a positive predictive value (PPV) similar to that of two 
abnormal test results for the identification of both beryllium 
sensitization and for CBD.'' (Document ID. 1688 p. 3). Therefore, the 
Agency recognizes that a borderline BeLPT test result when accompanied 
by an abnormal test result, or three separate borderline test results, 
should also be considered ``confirmed positive.''
    In addition, ORCHSE commented on the use of a single test result 
from a more reliable and accurate test (Document ID 1691, p. 20). 
Specifically, ORCHSE recommended revising the language to include ``the 
result of a more reliable and accurate test such that beryllium 
sensitization can be confirmed after one test, indicating a person has 
been identified as having beryllium sensitization'' (Document ID 1691, 
p. 20). In response to the comment from ORCHSE, the Agency has included

[[Page 2647]]

additional language regarding the results from an alternative test 
(Document ID 1691, p. 20). OSHA inserted additional language clarifying 
that the alternative test has to be validated by repeat testing 
indicating that it has comparable or increased sensitivity, specificity 
and PPV than the BeLPT. The Agency finds that this language provides 
more precise direction for acceptance of an alternative test.
    Director means the Director of the National Institute for 
Occupational Safety and Health (NIOSH), U.S. Department of Health and 
Human Services, or designee. The recordkeeping requirements mandate 
that, upon request, employers make all records required by this 
standard available to the Director (as well as the Assistant Secretary) 
for examination and copying (see paragraph (n)(6)). Typically, the 
Assistant Secretary sends representatives to review workplace safety 
and health records. However, the Director may also review these records 
while conducting studies such as Health Hazard Evaluations of 
workplaces, or for other purposes. OSHA received no comments on this 
definition, and it is unchanged from the proposal.
    Emergency means any uncontrolled release of airborne beryllium. An 
emergency could result from equipment failure, rupture of containers, 
or failure of control equipment, among other causes.
    An emergency triggers several requirements of this standard. Under 
paragraph (g)(1)(iv), respiratory protection is required during 
emergencies to protect employees from potential overexposures. 
Emergencies also trigger clean-up requirements under paragraph 
(j)(1)(ii), and medical surveillance under paragraph (k)(1)(i)(C). In 
addition, under paragraph (m)(4)(ii)(D) of the standards for general 
industry and shipyards and paragraph (m)(3)(ii)(D) of the standard for 
construction, employers must train employees in applicable emergency 
procedures.
    High-efficiency particulate air (HEPA) filter means a filter that 
is at least 99.97 percent effective in removing particles 0.3 
micrometers in diameter (see Department of Energy Technical Standard 
DOE-STD-3020-2005). HEPA filtration is an effective means of removing 
hazardous beryllium particles from the air. The standard requires 
beryllium-contaminated surfaces to be cleaned by HEPA vacuuming or 
other methods that minimize the likelihood of exposure (see paragraphs 
(j)(2)(i) and (ii)). OSHA received no comments on this definition, and 
it is unchanged from the proposal.
    Objective data means information, such as air monitoring data from 
industry-wide surveys or calculations based on the composition of a 
substance, demonstrating airborne exposure to beryllium associated with 
a particular product or material or a specific process, task, or 
activity. The data must reflect workplace conditions closely resembling 
or with a higher airborne exposure potential than the processes, types 
of material, control methods, work practices, and environmental 
conditions in the employer's current operations.
    OSHA did not include a definition of ``objective data'' in the 
proposed rule. Use of objective data was limited in the proposed rule, 
and applied only to an exception from initial monitoring requirements 
in proposed paragraph (d)(2). Proposed paragraph (d)(2)(ii) included 
criteria for objective data.
    The final rule allows for expanded use of objective data. Paragraph 
(a)(3) allows for use of objective data to support an exception from 
the scope of the standards. Paragraph (d)(2) allows for use of 
objective data as part of the performance option for exposure 
assessment. OSHA is therefore including a definition of ``objective 
data'' in paragraph (b) of the standards. The definition is generally 
consistent with the criteria included in proposed paragraph (d)(2)(ii), 
and with the use of this term in other OSHA substance-specific health 
standards such as the standards addressing exposure to cadmium (29 CFR 
1910.1027), chromium (VI) (29 CFR 1010.1026), and respirable 
crystalline silica (29 CFR 1910.1053).
    Physician or other licensed health care professional (PLHCP) means 
an individual whose legally permitted scope of practice, such as 
license, registration, or certification, allows the person to 
independently provide or be delegated the responsibility to provide 
some or all of the health care services required in paragraph (k). The 
Agency recognizes that personnel qualified to provide medical 
surveillance may vary from State to State, depending on State licensing 
requirements. Whereas all licensed physicians would meet this 
definition of PLHCP, not all PLHCPs must be physicians.
    Under paragraph (k)(5) of the standards, the written medical report 
for the employee must be completed by a licensed physician. Under 
paragraph (k)(6) of the standard, the written medical opinion for the 
employer must also be completed by a licensed physician. However, other 
requirements of paragraph (k) may be performed by a PLHCP under the 
supervision of a licensed physician (see paragraphs (k)(1)(ii), 
(k)(3)(i), (k)(3)(ii)(F), (k)(3)(ii)(G), and (k)(5)(iii)). The standard 
also identifies what information the employer must give to the PLHCP 
providing the services listed in this standard, and requires that 
employers maintain a record of this information for each employee (see 
paragraphs (k)(4) and (n)(3)(ii)(C), and the summary and explanation of 
paragraphs (k), Medical surveillance, in this section).
    Allowing a PLHCP to provide some of the services required under 
this rule is consistent with other recent OSHA health standards, such 
as bloodborne pathogens (29 CFR 1910.1030), respiratory protection (29 
CFR 1910.134), methylene chloride (29 CFR 1910.1052), and respirable 
crystalline silica (29 CFR 1910.1053). OSHA received no comments on 
this definition, and it is unchanged from the proposal.
    Regulated area means an area, including temporary work areas where 
maintenance or non-routine tasks are performed, where an employee's 
airborne exposure exceeds, or can reasonably be expected to exceed, 
either the TWA PEL or STEL. For an explanation of the distinction and 
overlap between beryllium work areas and regulated areas, see the 
definition of ``beryllium work area'' earlier in this section of the 
preamble and the summary and explanation for paragraph (e), Beryllium 
work areas and regulated areas. Regulated areas appear only in the 
general industry and shipyard standards, and they trigger several other 
requirements.
    Paragraphs (e)(1)(ii) and (e)(2)(ii) require employers to establish 
and demarcate regulated areas. Note that the demarcation requirements 
for regulated areas are more specific than those for other beryllium 
work areas (see also paragraph (m)(2) of the standards for general 
industry and shipyards). Paragraph (e)(3) requires employers to 
restrict access to regulated areas to authorized persons, and paragraph 
(e)(4) requires employers to provide all employees in regulated areas 
appropriate respiratory protection and personal protective clothing and 
equipment, and to ensure that these employees use the required 
respiratory protection and protective clothing and equipment. Paragraph 
(i)(5)(i) prohibits employers from allowing employees to eat, drink, 
smoke, chew tobacco or gum, or apply cosmetics in regulated areas. 
Paragraph (m)(2) requires warning signs associated with regulated areas 
to meet

[[Page 2648]]

certain specifications. Paragraph (m)(4)(ii)(B) requires employers to 
train employees on the written exposure control plan required by 
paragraph (f)(1), including the location of regulated areas and the 
specific nature of operations that could result in airborne exposure.
    In the proposed rule, OSHA included in the definition of the term 
``regulated area'' that it was ``an area that the employer must 
demarcate.'' Because the requirement to demarcate regulated areas is 
presented elsewhere in the standards, the reference in the definition 
to ``an area that the employer must demarcate'' is redundant, and has 
been removed from the final definition of the term.
    This definition of regulated areas is consistent with other 
substance-specific health standards that apply to general industry and 
shipyards, such as the standards addressing occupational exposure to 
cadmium (29 CFR 1910.1027 and 29 CFR 1915.1027), benzene (29 CFR 
1910.1028 and 29 CFR 1915.1028), and methylene chloride (29 CFR 
1910.1052 and 29 CFR 1915.1052).
    This standard means the beryllium standard in which it appears. In 
the general industry standard, it refers to 29 CFR 1910.1024. In the 
shipyard standard, it refers to 29 CFR 1915.1024. In the construction 
standard, it refers to 29 CFR 1926.1124. This definition elicited no 
comments and differs from the proposal only in that it appears in the 
three separate standards.

(c) Permissible Exposure Limits (PELs)

    Paragraph (c) of the standards establishes two permissible exposure 
limits (PELs) for beryllium in all forms, compounds, and mixtures: An 
8-hour time-weighted average (TWA) PEL of 0.2 [mu]g/m\3\ (paragraph 
(c)(1)), and a 15-minute short-term exposure limit (STEL) of 2.0 [mu]g/
m\3\ (paragraph (c)(2)). The TWA PEL section of the standards requires 
employers to ensure that no employee's exposure to beryllium, averaged 
over the course of an 8-hour work shift, exceeds 0.2 [mu]g/m\3\. The 
STEL section of the standards requires employers to ensure that no 
employee's exposure, sampled over any 15-minute period during the work 
shift, exceeds 2.0 [mu]g/m\3\. While the proposed rule contained 
slightly different language in paragraph (c), i.e. requiring that 
``each employee's airborne exposure does not exceed'' the TWA PEL and 
STEL, the final language was chosen by OSHA to remain consistent with 
prior OSHA health standards and to clarify that OSHA did not intend a 
different interpretation of the PELs in this standard. The same PELs 
apply to general industry, construction, and shipyards.
    TWA PEL. OSHA proposed a new TWA PEL of 0.2 [mu]g/m\3\ of 
beryllium--one-tenth the preceding TWA PEL of 2 [mu]g/m\3\--because 
OSHA preliminarily found that occupational exposure to beryllium at and 
below the preceding TWA PEL of 2 [mu]g/m\3\ poses a significant risk of 
material impairment of health to exposed workers. As with several other 
provisions of these standards, OSHA's proposed TWA PEL followed the 
draft recommended standard submitted to the Agency by Materion 
Corporation (Materion) and the United Steelworkers (USW) (see this 
preamble at section III, Events Leading to the Standards).
    After evaluating the record, including published studies and more 
recent exposure data from industrial facilities involved in beryllium 
work, OSHA is adopting the proposed TWA PEL of 0.2 [mu]g/m\3\. OSHA has 
made a final determination that occupational exposure to a variety of 
beryllium compounds at levels below the preceding PELs poses a 
significant risk to workers (see this preamble at section VII, 
Significance of Risk). OSHA's risk assessment, presented in section VI 
of this preamble, indicates that there is significant risk of beryllium 
sensitization,\38\ CBD, and lung cancer from a 45-year (working life) 
exposure to beryllium at the preceding TWA PEL of 2 [mu]g/m\3\. The 
risk assessment further indicates that, although the risk is much 
reduced, significant risk remains at the new TWA PEL of 0.2 [mu]g/m\3\.
---------------------------------------------------------------------------

    \38\ As discussed in section VII of this preamble, Significance 
of Risk, beryllium sensitization is a necessary precursor to 
developing CBD.
---------------------------------------------------------------------------

    OSHA has determined that the new TWA PEL is feasible across all 
affected industry sectors (see section VIII.D of this preamble, 
Technological Feasibility) and that compliance with the new PEL will 
substantially reduce employees' risks of beryllium sensitization, 
Chronic Beryllium Disease (CBD), and lung cancer (see section VI of 
this preamble, Risk Assessment). OSHA's conclusion about feasibility is 
supported both by the results of the Agency's feasibility analysis and 
by the recommendation of the PEL of 0.2 [mu]g/m\3\ by Materion and the 
USW.
     Materion is the sole beryllium producer in the U.S., and its 
facilities include some of the processes where OSHA expects it will be 
most challenging to control beryllium exposures. Although OSHA also 
found that there is significant risk at the proposed alternative TWA 
PEL of 0.1 [mu]g/m\3\, OSHA did not adopt that alternative because the 
Agency could not demonstrate technological feasibility at that level 
(see section VIII.D of this preamble, Technological Feasibility).
    The TWA PEL was the subject of numerous comments in the rulemaking 
record. Comments from stakeholders in labor and industry, public health 
experts, and the general public supported OSHA's selection of 0.2 
[mu]g/m\3\ as the final PEL (NIOSH, Document ID 1671, Attachment 1, p. 
2; National Safety Council, 1612, p. 3; The Sampling and Analysis 
Subcommittee Task Group of the Beryllium Health and Safety Committee of 
the Department of Energy's National Nuclear Security Administration 
Lawrence Livermore National Lab (BHSC Task Group), 1655, p. 2; Newport 
News Shipbuilding, 1657, p. 1; National Jewish Health (NJH),1664, p. 2; 
The Aluminum Association, 1666, p. 1; The Boeing Company (Boeing), 
1667, p. 1; American Industrial Hygiene Association (AIHA), 1686, p. 2; 
United Steelworkers (USW), 1681, p. 7; Andrew Brown, 1636, p. 6; 
Department of Defense, 1684, p. 1). Materion stated that the record 
does not support the feasibility of any limit lower than 0.2 [mu]g/m\3\ 
(Document ID 1808, p. 2). OSHA also received comments supporting 
selection of a lower TWA PEL of 0.1 [mu]g/m\3\ from Public Citizen, the 
AFL-CIO, the United Automobile, Aerospace & Agricultural Implement 
Workers of America (UAW), North America's Building Trades Unions 
(NABTU), and the American College of Occupational and Environmental 
Medicine (ACOEM) (Document ID 1689, p. 7; 1693, p. 3; 1670, p. 1; 1679, 
pp. 6-7; 1685, p. 1; 1756, Tr. 167). These commenters based their 
recommendations on the significant risk of material health impairment 
from exposure at the TWA PEL of 0.2 [mu]g/m\3\ and below, which OSHA 
acknowledges.
    In addition to their concerns about risk, Public Citizen and the 
American Federation of Labor and Congress of Industrial Organizations 
(AFL-CIO) argued that a TWA PEL of 0.1 [mu]g/m\3\ is feasible (Document 
ID 1756, Tr. 168-169, 197-198). As discussed further below, however, 
OSHA's selection of the TWA PEL in this case was limited by the 
findings of its technological feasibility analysis. No commenter 
provided information that would permit OSHA to show the feasibility of 
a TWA PEL of 0.1 [mu]g/m\3\ in industries where OSHA did not have 
sufficient information to make this determination at the proposal 
stage. Public Citizen instead argued that insufficient evidence that 
engineering and work practice controls can maintain exposures at or 
below a TWA PEL of 0.1

[[Page 2649]]

[mu]g/m\3\ should not preclude OSHA from establishing such a PEL; and 
that workplaces unable to achieve a TWA PEL of 0.1 [mu]g/m\3\ should be 
required to reduce airborne exposures as much as possible using 
engineering and work practice controls, supplemented with a respiratory 
protection program (Document ID 1670, p. 5).
    OSHA has determined that Public Citizen's claim that the Agency 
should find a PEL of 0.1 [mu]g/m\3\ technologically feasible is 
inconsistent with the test for feasibility as described by the courts 
as well as the evidence in the rulemaking record. OSHA bears the 
evidentiary burden of establishing feasibility in a rulemaking 
challenge. The D.C. Circuit, in its decision on OSHA's Lead standard 
(United Steelworkers of America v. Marshall, 647 F.2d 1189 (D.C. Cir. 
1981) (``Lead'')), explained that in order to establish that a standard 
is technologically feasible, ``OSHA must prove a reasonable possibility 
that the typical firm will be able to develop and install engineering 
and work practice controls that can meet the PEL in most of its 
operations'' (Lead, 647 F.2d at 1272). ``The effect of such proof,'' 
the court continued, ``is to establish a presumption that industry can 
meet the PEL without relying on respirators'' (Lead, 647 F.2d at 1272). 
The court's definition of technological feasibility thus recognizes 
that, for a standard based on a hierarchy of controls prioritizing 
engineering and work practice controls over respirators, a particular 
PEL is not technologically feasible simply because it can be achieved 
through the widespread use of respirators (see Lead, 647 F.2d at 1272). 
OSHA's long-held policy of avoiding requirements that will result in 
extensive respirator use is consistent with this legal standard.
    In considering an alternative TWA PEL of 0.1 [mu]g/m\3\ that would 
reduce risks to workers further than would the TWA PEL of 0.2 [mu]g/
m\3\, OSHA was unable to determine that this level was technologically 
feasible. For some work operations, the evidence is insufficient for 
OSHA to demonstrate that a TWA PEL of 0.1 [mu]g/m\3\ could be achieved 
most of the time. In other operations, a TWA PEL of 0.1 [mu]g/m\3\ 
appears to be impossible to achieve without resort to respirators (see 
section VIII.D of this preamble, Technological Feasibility, for a 
detailed discussion of OSHA's feasibility findings). Thus, OSHA was 
unable to meet its legal burden to demonstrate the technological 
feasibility of the alternative TWA PEL of 0.1 [mu]g/m\3\ (see Lead, 647 
F.2d at 1272; Amer. Iron & Steel Inst. v. OSHA, 939 F.2d 975, 990 (D.C. 
Cir. 1991)) and has adopted the proposed PEL of 0.2 [mu]g/m\3\, for 
which there is substantial evidence demonstrating technological 
feasibility.
    OSHA also invited comment on and considered an alternative TWA PEL 
of 0.5 [mu]g/m\3\--two-and-a-half times greater than the proposed PEL 
that it is adopting. As noted above, OSHA determined that significant 
risk to worker health exists at the preceding PEL of 2.0 [mu]g/m\3\ as 
well as at the new TWA PEL of 0.2 [mu]g/m\3\. Because OSHA found that a 
TWA PEL of 0.2 [mu]g/m\3\ is technologically and economically feasible, 
the Agency concludes that setting the TWA PEL at 0.5 [mu]g/m\3\--a 
level that would leave workers exposed to even greater health risks 
than they will face at the new PEL of 0.2 [mu]g/m\3\--would be contrary 
to the OSH Act, which requires OSHA to eliminate the risk of material 
health impairment ``to the extent feasible'' (29 U.S.C. 655(b)(5)). 
Thus, the Agency is not adopting the proposed alternative TWA PEL of 
0.5 [mu]g/m\3\.
    Because significant risks of sensitization, CBD, and lung cancer 
remain at the new TWA PEL of 0.2 [mu]g/m\3\, the final standards 
include a variety of ancillary provisions to further reduce risk to 
workers. These ancillary provisions include implementation of feasible 
engineering controls in beryllium work areas, respiratory protection, 
personal protective clothing and equipment, exposure monitoring, 
regulated areas, medical surveillance, medical removal, hygiene areas, 
housekeeping requirements, and hazard communication. The Agency has 
determined that these provisions will reduce the risk beyond that which 
the TWA PEL alone could achieve. These provisions are discussed later 
in this Summary and Explanation section of the preamble.
    STEL. OSHA is also promulgating a STEL of 2.0 [mu]g/m\3\, as 
determined over a sampling period of 15 minutes. The new STEL of 2 
[mu]g/m\3\ was suggested by the joint Materion-USW proposed rule and 
proposed in the NPRM. As discussed in section VII of this preamble, 
significant risks of sensitization, CBD, and lung cancer remain at the 
TWA PEL of 0.2 [mu]g/m\3\. Where a significant risk of material 
impairment of health remains at the TWA PEL, OSHA must impose a STEL if 
doing so would further reduce risk and is feasible to implement (Pub. 
Citizen Health Research Grp. v. Tyson, 796 F.2d 1479, 1505 (D.C. Cir. 
1986) (``Ethylene Oxide''); see also Building and Construction Trades 
Department, AFL-CIO v. Brock, 838 F.2d 1258, 1271 (D.C. Cir. 1988)). In 
this case, the evidence in the record demonstrates that the STEL is 
feasible and that it will further reduce the risk remaining at the TWA 
PEL. The goal of a STEL is to protect employees from the risk of harm 
that can occur as a result of brief exposures that exceed the TWA PEL. 
Without a STEL, the only protection workers would have from high short-
duration exposures is that, when those exposures are factored in, they 
cannot exceed the cumulative 8-hour exposure at the proposed 0.2 [mu]g/
m\3\ TWA PEL (i.e., 1.6 [mu]g/m\3\). Since there are 32 15-minute 
periods in an 8-hour work shift, a worker's 15-minute exposure in the 
absence of a STEL could be as high as 6.4 [mu]g/m\3\ (32 x 0.2 [mu]g/
m\3\) if that worker's exposures during the remainder of the 8-hour 
work shift are non-detectable. A STEL serves to minimize high, task-
based exposures by requiring feasible controls in these situations, and 
has the added effect of further reducing the 8-hour TWA exposure.
    OSHA believes a STEL for beryllium will help reduce the risk of 
sensitization and CBD in beryllium-exposed employees. As discussed in 
this preamble at section V, Health Effects, beryllium sensitization is 
the initial step in the development of CBD. Sensitization has been 
observed in some workers who were only exposed to beryllium for a few 
months (see section V.D.1 of this preamble), and tends to be more 
strongly associated with 'peak' and highest-job-worked exposure metrics 
than cumulative exposure (see section V.D.5 of this preamble). Short-
term exposures to beryllium have also been shown to contribute to the 
development of lung disease in laboratory animals (see this preamble at 
section V, Health Effects). These study findings indicate that adverse 
effects to the lung may occur from beryllium exposures of relatively 
short duration. Thus OSHA expects a STEL to add further protection from 
the demonstrated significant risk of harm than that afforded by the new 
0.2 [mu]g/m\3\ TWA PEL alone.
    STEL exposures are typically associated with, and need to be 
measured by the employer during, the highest-exposure operations that 
an employee performs (see paragraph (d)(3)(ii)). OSHA has determined 
that the STEL of 2.0 [mu]g/m\3\ can be measured for this brief period 
of time using OSHA's available sampling and analytical methodology, and 
that feasible means exist to maintain 15-minute short-term exposures at 
or below the proposed STEL (see section VIII.D of this preamble, 
Technological Feasibility). Comments on the STEL were generally 
supportive of OSHA's

[[Page 2650]]

decision to include a beryllium STEL, but differed on the appropriate 
level. NIOSH recommended a STEL of at most 1 [mu]g/m\3\, noting that 
available exposure assessment methods are sensitive enough to support a 
STEL of 1 [mu]g/m\3\ and that it is likely to be more protective than 
the proposed STEL of 2 [mu]g/m\3\ (Document ID 1960, Attachment 2, p. 
4; 1725, p. 35; 1755, Tr. 22). NJH's comments also supported a STEL of 
1 [mu]g/m\3\ as the best option (Document ID 1664, p. 3). Public 
Citizen and the AFL-CIO advocated for a STEL of 1 [mu]g/m\3\, stating 
that it would be more protective than the proposed STEL of 2 [mu]g/m\3\ 
(Document ID 1670, p. 6; 1689, p. 7-8). The AFL-CIO and Public Citizen 
both stated that a STEL of 1 [mu]g/m\3\ is supported in the record, 
including by exposure data from OSHA workplace inspections (Document ID 
1670, p. 6; 1756, Tr. 171). However, no additional engineering controls 
capable of reducing short term exposures to or below 1.0 [mu]g/m\3\ 
were identified by commenters. Public commenters did not provide any 
empirical data to suggest that those exposed to working conditions 
associated with a STEL of 2.0 [mu]g/m\3\ would be more likely to be 
sensitized than those exposed to working conditions associated with a 
STEL of 1.0 [mu]g/m\3\. However, OSHA notes that the available 
epidemiological literature on beryllium-related disease does not 
address the question of whether those exposed to working conditions 
associated with a STEL of 2.0 [mu]g/m\3\ would be more likely to be 
sensitized than those exposed to working conditions associated with a 
STEL of 1.0 [mu]g/m\3\. Detailed documentation of workers' short-term 
exposures is typically not available to researchers. Therefore, OSHA 
cannot exclusively rely on evidence relating health effects to specific 
short-term exposure levels to set a STEL. In setting a STEL, OSHA also 
examines the likelihood that a given STEL will help to reduce 
excursions above the TWA PEL and the feasibility of meeting a given 
STEL using engineering controls. The UAW emphasized that ``OSHA must 
include the STEL in the standard to ensure that peak exposures are 
characterized and controlled'' (Document ID 1693, p. 3). The UAW 
argued, specifically, for a STEL of five times the PEL (recommending a 
STEL of 0.5 [mu]g/m\3\ based on a TWA PEL of 0.1 [mu]g/m\3\), noting 
that single short-term, high-level beryllium exposures can lead to 
sensitization, and that UAW members in industries such as nonferrous 
foundries and scrap metal reclamation may experience such exposures 
even when not exposed above the 8 hour TWA PEL (Document ID 1693, p. 
3). Ameren Services Company, a public utility that includes electric 
power generation companies, expressed support for the proposed PEL and 
STEL, but also expressed support for selecting a STEL of five times the 
PEL in order to maintain consistency with OSHA's typical approach to 
setting STELs (Document ID 1675, p. 3).
    In contrast, NGK Metals Corporation (NGK) supported the proposed 
STEL of 2 [mu]g/m\3\, and specifically argued against a STEL of 0.5 
[mu]g/m\3\ on the basis that a reduced STEL would not be feasible or 
offer significantly more protection than the proposed STEL (Document ID 
1663, p. 4). Materion emphasized the need for ``proactive operational 
control'' of tasks that could generate high, short-term beryllium 
exposures, and supported the STEL of 2 [mu]g/m\3\ contained in OSHA's 
proposed rule (Document ID 1661, pp. 3, 5). Materion indicated in its 
comments that the proposed STEL of 2.0 [mu]g/m\3\ was based on 
controlling the upper range of worker short term exposures (Document ID 
1661). Materion used data provided in the Johnson study of the United 
Kingdom Atomic Weapons Establishment (AWE) in Cardiff, Wales, as 
supporting evidence for the proposed STEL (Document ID 1505). However, 
Dr. Christine Schuler from NIOSH commented that the AWE study was not 
an appropriate basis for an OSHA STEL because the AWE study was based 
on workers showing physical signs of CBD (``If somebody became really 
apparently ill, then they would have identified them.'') (Document ID 
1755, Tr. 35). Dr. Schuler additionally commented that the studies 
performed in the United States are more appropriate since they are 
based on identified cases of CBD at an earlier stage where there are 
generally very few symptoms (called asymptomatic or subclinical) 
(Document ID 1755, Tr. 34-35). OSHA agrees with Dr. Schuler's 
assessment and that the AWE study should not be used as scientific 
evidence to support a STEL of 2.0 [mu]g/m\3\.
    After careful consideration of the record, including all available 
data and stakeholder comments, OSHA has reaffirmed its preliminary 
determinations that a STEL of 2.0 [mu]g/m\3\ (ten times the final PEL 
of 0.2 [mu]g/m\3\) is technologically feasible and will help reduce the 
risk of beryllium-related health effects in exposed employees. As 
discussed in section VIII.D of this preamble, Technological 
Feasibility, OSHA has determined that the implementation of engineering 
and work practice controls required to maintain full shift exposures at 
or below a PEL of 0.2 [mu]g/m\3\ will reduce short term exposures to 
2.0 [mu]g/m\3\ or below. However, adopting a STEL of 1.0 [mu]g/m\3\ or 
lower would likely require additional respirator use in some 
situations. Thus, OSHA has retained the proposed value of 2.0 [mu]g/
m\3\ as the final STEL.
    OSHA also received a comment from Paul Wambach, (an independent 
commenter) stating that a STEL should not be included in the final 
rule, arguing that the diseases associated with beryllium exposure are 
chronic in nature and therefore are not affected by brief excursions 
above the TWA PEL (Document ID 1591, p. 1). However, as discussed 
above, OSHA has determined that there is sufficient evidence that 
brief, high-level exposures to beryllium contribute to the development 
of beryllium sensitization and CBD to support inclusion of a STEL in 
the final rule (see this preamble at section V, Health Effects). This 
comment also discussed the statistical relationship between a 15-minute 
STEL and 8-hour TWA PEL and issues of sampling strategy, discussed in 
section VIII.D of this preamble, Technological Feasibility.
    CFR Entries. OSHA's preceding PELs for ``beryllium and beryllium 
compounds,'' were contained in 29 CFR 1910.1000 Table Z-2 for general 
industry. Table Z-2 contained two PELs: (1) A 2 [mu]g/m\3\ TWA PEL, and 
(2) a ceiling concentration of 5 [mu]g/m\3\ that employers must ensure 
is not exceeded during the 8-hour work shift, except for a maximum peak 
of 25 [mu]g/m\3\ over a 30-minute period in an 8-hour work shift. The 
preceding PELs for beryllium and beryllium compounds in shipyards (29 
CFR 1915.1000 Table Z) and construction (29 CFR 1926.55 Appendix A) 
were also 2 [mu]g/m\3\, but did not include ceiling or peak exposure 
limits. OSHA adopted the preceding PELs in 1972 pursuant to section 
6(a) of the OSH Act (29 U.S.C. 655(a)). The 1972 PELs were based on the 
1970 American National Standards Institute (ANSI) Beryllium and 
Beryllium Compounds standard (Document ID 1303), which in turn was 
based on a 1949 U.S. Atomic Energy Commission adoption of a threshold 
limit for beryllium of 2.0 [mu]/m\3\ and was included in the 1971 
American Conference of Governmental Industrial Hygienists Documentation 
of the Threshold Limit Values for Substances in Workroom Air (Document 
ID 0543).
    OSHA is revising the entry for beryllium and beryllium compounds in 
29 CFR 1910.1000 Table Z-1 to cross-reference the new general industry 
standard, 1910.1024. A comparable revision to 29 CFR 1915.1000 Table Z

[[Page 2651]]

cross-references the shipyard standard, 1915.1024, and 29 CFR 1926.55 
Appendix A is revised to cross-reference the construction standard, 
1926.1124. A footnote is added to 29 CFR 1910.1000 Table Z-1, which 
refers to 29 CFR 1910.1000 Table Z-2 for situations when the new 
exposure limits in 1910.1024 are stayed or otherwise not in effect. The 
preceding PELs for beryllium are retained in 29 CFR 1910.1000 Table Z-
2, 29 CFR 1915.1000 Table Z, and 29 CFR 1926.55 Appendix A. Footnotes 
are added to these tables to make clear that the preceding PELs apply 
to any sectors or operations where the new TWA PEL of 0.2 [mu]g/m\3\ 
and STEL of 2.0 [mu]g/m\3\ are not in effect. The preceding PELs are 
also applicable during the time between publication of the beryllium 
rule and the dates established for compliance with the rule, as well as 
in the event of regulatory delay, a stay, or partial or full 
invalidation by the Court.

(d) Exposure Assessment

    Paragraph (d) of the final standards for general industry, 
construction, and shipyards sets forth requirements for assessing 
employee exposures to beryllium. The requirements are issued pursuant 
to section 6(b)(7) of the OSH Act, which mandates that any standard 
promulgated under section 6(b) shall, where appropriate, ``provide for 
monitoring or measuring employee exposure at such locations and 
intervals, and in such manner as may be necessary for the protection of 
employees.'' 29 U.S.C. 655(b)(7). Consistent with the definition of 
``airborne exposure'' in paragraph (b) of these standards, exposure 
monitoring results must reflect the exposure to airborne beryllium that 
would occur if the employee were not using a respirator. Exposures must 
be assessed using the new performance option (i.e., use of any 
combination of air monitoring data or objective data sufficient to 
accurately characterize employee exposures) or by following the 
scheduled monitoring option (with the frequency of monitoring 
determined by the results of the initial and subsequent monitoring). 
The performance option provides flexibility for employers who are able 
to accurately characterize employee exposures through alternative 
methods like objective data and has been successfully applied in the 
Chromium (VI) standard and recently included in the respirable 
crystalline silica standard. The scheduled monitoring option provides a 
framework that is familiar to many employers, having been a customary 
practice in past substance-specific OSHA health standards. Under either 
option, employers must assess the exposure of each employee who is or 
may reasonably be expected to be exposed to airborne beryllium.
    In the proposed exposure monitoring provision, OSHA required 
employers to assess the exposure of employees who are, or may 
reasonably be expected to be, exposed to airborne beryllium. This 
obligation consisted of an initial exposure assessment, unless the 
employer relied on objective data to demonstrate that exposures would 
be below the action level or the short term exposure level (STEL) under 
any expected conditions; periodic exposure monitoring (at least 
annually if initial exposure monitoring indicates that exposures are at 
or above the action level and at or below the time-weighted average 
(TWA) PEL); and additional monitoring if changes in the workplace could 
reasonably be expected to result in new or additional exposures to 
beryllium. In the proposed rule, monitoring to determine employee TWA 
exposures had to represent the employee's average exposure to airborne 
beryllium over an eight-hour workday. STEL exposures had to be 
characterized by sampling periods of 15 minutes for each operation 
likely to produce exposures above the STEL. Samples taken had to 
reflect the exposure of employees on each work shift, for each job 
classification, in each beryllium work area. Samples had to be taken 
within an employee's breathing zone. The proposed rule also included 
provisions for employee notification of monitoring results and 
observation of monitoring.
    OSHA received comments on a variety of issues pertaining to the 
proposal's exposure monitoring provision. In hearing testimony, Dr. 
Lisa Maier from National Jewish Health (NJH) expressed general support 
for exposure monitoring in the workplace ``to target areas that are at 
or above the action level and to regulate these areas to trigger 
administrative controls'' (Document ID 1756, Tr. 108). All other 
comments regarding the exposure monitoring requirements focused on 
specific areas of those requirements and are discussed in the 
appropriate subject section below.
    OSHA has retained the provisions related to exposure assessment in 
the final standards. These provisions are important because assessing 
employee exposure to toxic substances is a well-recognized and accepted 
risk management tool. As the Agency noted in the proposal, the purposes 
of requiring assessment of employee exposures to beryllium include 
determination of the extent and degree of exposure at the worksite; 
identification and prevention of employee overexposure; identification 
of the sources of exposure to beryllium; collection of exposure data so 
that the employer can select the proper control methods to be used; and 
evaluation of the effectiveness of those selected methods. Assessment 
enables employers to meet their legal obligation to ensure that their 
employees are not exposed in excess of the permissible exposure limit 
(PEL) or short-term exposure limit (STEL) and to ensure employees have 
access to accurate information about their exposure levels, as required 
by section 8(c)(3) of the Act, 29 U.S.C. 657(c)(3). In addition, 
exposure data enable physicians or other licensed health care 
professionals (PLHCPs) performing medical examinations to be informed 
of the extent of the worker's exposure to beryllium.
    In the final standards, paragraph (d) is now titled ``Exposure 
assessment.'' This change from ``exposure monitoring'' in the proposal 
to ``exposure assessment'' in the final standards was made to align the 
provision's purpose with the broader concept of exposure assessment 
beyond conducting air monitoring, including the use of objective data.
    General Requirements. Proposed paragraph (d)(1)(i) contained the 
general requirement that the exposure assessment provisions would apply 
when employees ``are, or may reasonably be expected to be, exposed to 
airborne beryllium.'' OSHA did not receive comment on this specific 
provision. However, in paragraph (d)(1) of the final standards for 
general industry, construction, and shipyards, the Agency has changed 
the proposed requirement that ``These exposure monitoring requirements 
apply when employees are, or may reasonably be expected to be, exposed 
to airborne beryllium'' to ``The employer must assess the airborne 
exposure of each employee who is or may reasonably be expected to be 
exposed to airborne beryllium.'' This change aligns the language to 
other OSHA standards such as respirable crystalline silica (29 CFR 
1910.1053) and hexavalent chromium ([delta]1910.1026) as well as 
clarifies the employer's obligation to assess each employee's beryllium 
exposure. Additionally, for reasons discussed below, paragraph (d)(1) 
of the final standards now requires the employer to assess employee 
exposure in accordance with either the new performance option, added at 
paragraph (d)(2), or the scheduled monitoring option, moved to 
paragraph (d)(3) of this section. Changes from the proposed exposure 
monitoring provision also include an increased

[[Page 2652]]

frequency schedule for periodic monitoring and a requirement to perform 
periodic exposure monitoring when exposures are above the PEL in the 
scheduled monitoring option in paragraph (d)(3)(vi) and when exposures 
are above the STEL in the scheduled monitoring option in paragraph 
(d)(3)(viii).
    Proposed paragraphs (d)(1)(ii)-(v) have been moved to different 
paragraphs in the final standards and will be discussed in the 
appropriate sections below.
    The performance option. Proposed paragraph (d)(2) set forth initial 
exposure monitoring requirements and the circumstances under which 
employers do not need to conduct initial exposure monitoring. In the 
proposal, employers did not have to conduct initial exposure monitoring 
if they relied on historical data or objective data. The proposal also 
set forth requirements for the sufficiency of any historical data or 
objective data used to satisfy proposed paragraph (d)(2). OSHA has 
decided to remove this provision from the final standards as part of 
the change to allow employers to choose between the scheduled 
monitoring option and the performance option for all exposure 
assessment. Paragraph (d)(2) of the final standards for general 
industry, construction, and shipyards describes the exposure assessment 
performance option. OSHA has included this option because it provides 
employers flexibility to assess the 8-hour TWA and STEL exposure for 
each employee on the basis of any combination of air monitoring data or 
objective data sufficient to accurately characterize employee exposures 
to beryllium. OSHA recognizes that exposure monitoring may present 
challenges in certain instances, particularly when tasks are of short 
duration or performed under varying environmental conditions. The 
performance option is intended to allow employers flexibility in 
assessing the beryllium exposures of their employees. The performance 
option for exposure assessment is consistent with other OSHA standards, 
such as those for exposure to respirable crystalline silica (29 CFR 
1910.1053) and chromium (VI) (29 CFR 1910.1026).
    When the employer elects the performance option, the employer must 
initially conduct the exposure assessment and must demonstrate that 
employee exposures have been accurately characterized. As evident in 
final paragraph (d)(3), OSHA considers exposures to be accurately 
characterized when they reflect the exposures of employees on each 
shift, for each job classification, in each work area. However, under 
this option, the employer has flexibility to determine how to achieve 
this. For example, under this option an employer could determine that 
there are no differences between the exposure of an employee in a 
certain job classification who performs a task in a particular work 
area on one shift and the exposure of another employee in the same job 
classification who performs the same task in the same work area on 
another shift. In that case, the employer could characterize the 
exposure of the second employee based on the first employee's exposure.
    Accurately characterizing employee exposures under the performance 
option is also an ongoing duty. In order for exposures to continue to 
be accurately characterized, the employer is required to reassess 
exposures whenever a change in production, process, control equipment, 
personnel, or work practices may reasonably be expected to result in 
new or additional exposures at or above the action level or STEL, or 
when the employer has any reason to believe that new or additional 
exposures at or above the action level have occurred (see discussion 
below of paragraph (d)(4) of the final standards for general industry, 
construction, and shipyards).
    When using the performance option, the burden is on the employer to 
demonstrate that the data accurately characterize employee exposure. 
However, the employer can characterize employee exposure within a 
range, in order to account for variability in exposures. For example, 
an employer could use the performance option and determine that an 
employee's exposure is above the action level but below the PEL. Based 
on this exposure assessment, the employer would be required under 
paragraph (k)(1)(i)(A) to provide medical surveillance if the employee 
is exposed for more than 30 days per year.
    OSHA has not included specific criteria for implementing the 
performance option in the final standards. Because the goal of the 
performance option is to give employers flexibility to accurately 
characterize employee exposures using whatever combination of air 
monitoring data and objective data is most appropriate for their 
circumstances, OSHA concludes it would be inconsistent to specify in 
the standards exactly how and when data should be collected. When an 
employer wants a more structured approach for meeting their exposure 
assessment obligations, it may opt for the scheduled monitoring option.
    OSHA does, however, offer two clarifying points. First, the Agency 
clarifies that when using the term ``air monitoring data'' in this 
paragraph, OSHA refers to any monitoring conducted by the employer to 
comply with the requirements of these standards, including the 
prescribed accuracy and confidence requirements in paragraph (d)(5). 
Second, objective data can include historic air monitoring data, but 
that data must reflect workplace conditions closely resembling or with 
a higher airborne exposure potential than the processes, types of 
material, control methods, work practices, and environmental conditions 
in the employer's current operations. Additional discussion of the 
types of data and exposure assessment strategies that may be used by 
employers as ``objective data'' to accurately characterize employee 
exposures to beryllium can be found in the summary and explanation of 
``objective data'' in paragraph (b) (``Definitions'').
    Where employers rely on objective data generated by others as an 
alternative to developing their own air monitoring data, they will be 
responsible for ensuring that the data relied upon from other sources 
are accurate measures of their employees' exposures. Thus, the burden 
is on the employer to show that the exposure assessment is sufficient 
to accurately characterize employee exposures to beryllium.
    As with the Chromium (VI) standard, 29 CFR 1910.1026, OSHA does not 
limit when objective data can be used to characterize exposure. OSHA 
permits employers to rely on objective data for meeting their exposure 
assessment obligations, even where exposures may exceed the action 
level or PEL. OSHA's intent is to allow employers flexibility to assess 
employee exposures to beryllium, but to ensure that the data used are 
accurate in characterizing employee exposures. For example, where an 
employer has a substantial body of data (from previous monitoring, 
industry-wide surveys, or other sources) indicating that employee 
exposures in a given task are between the action level and PEL, the 
employer may choose to rely on those data to determine his or her 
compliance obligations (e.g., medical surveillance).
    OSHA has also not established time limitations for air monitoring 
results used to characterize employee exposures under the performance 
option. The burden is on the employer to show that the data accurately 
characterize employee exposure to beryllium. This burden applies to the 
age of the data as well as to the source of the data. For example, 
monitoring results obtained 18 months prior to the effective date of 
the standards could be

[[Page 2653]]

used to determine employee exposures, but only if the employer could 
show that the data were obtained during work operations conducted under 
conditions closely resembling the processes, types of material, control 
methods, work practices, and environmental conditions in the employer's 
current operations. Regardless of when they were collected, the data 
must accurately reflect current conditions.
    Any air monitoring data relied upon by employers must be maintained 
and made available in accordance with the recordkeeping requirements in 
paragraph (n)(1) of the final standards for general industry, 
construction, and shipyards. Any objective data relied upon must be 
maintained and made available in accordance with the recordkeeping 
requirements in paragraph (n)(2) of the standards.
    The scheduled monitoring option. Paragraph (d)(3) of the final 
standards for general industry, construction, and shipyards describes 
the scheduled monitoring option. Parts of the scheduled monitoring 
option in the final standards come from proposed paragraphs (d)(1)(ii)-
(iv), which set out the general exposure monitoring requirements. 
Proposed paragraph (d)(1)(ii) required the employer to determine the 8-
hour TWA exposure for each employee, and proposed paragraph (d)(1)(iii) 
required the employer to determine the 15-minute short-term exposure 
for each employee. Both proposed paragraph (d)(1)(ii) and (d)(1)(iii) 
required breathing zone samples to represent the employee's exposure on 
each work shift, for each job classification, in each beryllium work 
area.
    Some commenters disagreed with the requirement to perform exposure 
monitoring on each work shift. NGK stated that sampling on each shift 
is overly burdensome and unnecessary since samples are collected from 
those employees who are expected to have the highest exposure (Document 
ID 1663, p. 1). Materion and the United Steelworkers (USW) recommended 
representative sampling instead of sampling all employees, and sampling 
from the shift expected to have the highest exposures (Document ID 
1680, p. 3). Materion separately commented that monitoring on all three 
shifts is not warranted, would be burdensome to small businesses, and 
does not align well with other standards (Document ID 1661, p. 14 
(pdf)). In post-hearing comments, Materion submitted an analysis of 
exposure variation by shift at one of their facilities and argued that 
the data are the best available evidence that monitoring on all three 
shifts is not justifiable or necessary to fulfill the requirements of 
the OSH Act (Document ID 1807, Attachment 1, p. 5, Attachment 7, p. 82; 
1958, pp. 5-6). In an individual submission, the USW also stated that 
three-shift monitoring would add unnecessary compliance costs. 
Additionally, it commented that if the operations are identical, the 
shift chosen will not matter, while if they are not identical, then 
monitoring on the highest exposed shift will overestimate exposures on 
the other shifts (Document ID 1681, Attachment 1, p. 8). Conversely, 
the American Federation of Labor and Congress of Industrial 
Organizations (AFL-CIO) noted in post-hearing comments that widely 
accepted industrial hygiene practice includes exposure monitoring 
during different shifts, tasks, and times of the year and that 
monitoring is specifically designed this way to characterize exposure 
under different conditions (Document ID 1809, p. 1). During the 
hearings, Dr. Virji from NIOSH testified that because exposure is 
variable and ``different things happen at different shifts,'' including 
maintenance activities, ``it is hard to . . . gauge . . . which shift 
[has] the highest exposure,'' so ``it is important that multiple shifts 
get representative sampling'' (Document ID 1755, Tr. 50-51).
    OSHA agrees with the AFL-CIO and Dr. Virji and has retained the 
requirement in proposed paragraphs (d)(1)(ii) and (iii) that samples 
reflect exposures on each shift, for each job classification, and in 
each work area. This requirement is included in final paragraphs 
(d)(3)(i) and (ii). However, in response to the comments from Materion 
and the USW, OSHA restructured the exposure assessment requirements in 
order to provide employers with greater flexibility to meet their 
exposure assessment obligations by using either the performance option 
or the scheduled monitoring option depending on the operation and 
information available. OSHA believes that conducting exposure 
assessment on a specific schedule provides employers with a workable 
structure to properly assess their employees' exposure to beryllium and 
provides sufficient information for employers to make informed 
decisions regarding exposure prevention measures. Alternatively, the 
performance option provides employers with flexibility in accurately 
characterizing employee exposures to beryllium on the bases of any 
combination of air monitoring and objective data.
    Comments submitted from Mr. Paul Wambach, a private citizen, stated 
that the proposed short-term exposure limit (STEL) of 2 [mu]g/m\3\ has 
the potential for being misinterpreted as requiring the use of 
impractical exposure monitoring methods that would require collecting 
32 consecutive 15-minute samples while providing no real health 
protection benefit and should be dropped from the final rule (Document 
ID 1591, p. 3). OSHA's intent, however, is that compliance with the 
STEL can be assessed using a task specific monitoring strategy, during 
which representative 15-minute samples can be taken to evaluate peak 
exposures. OSHA maintains that consistent with the comments from 
Materion, the identification and control of short-term exposures is 
critical to the protection of worker health from exposure to beryllium.
    OSHA has decided to include the scheduled monitoring option in the 
final standards because it provides employers with a clearly defined, 
structured approach to assessing employee exposures. Under paragraph 
(d)(3)(i) of the final standards, employers who select the scheduled 
monitoring option must conduct initial monitoring to determine employee 
exposure to beryllium. Air monitoring to determine employee exposures 
must represent the employee's 8-hour TWA exposure to beryllium. Final 
paragraph (d)(3)(ii) requires the employer to perform initial 
monitoring to assess the employee's 15-minute short-term exposure. 
Under both paragraphs (d)(3)(i) and (d)(3)(ii), samples must be taken 
within the employee's personal breathing zone, and must represent the 
employee's airborne exposure on each shift, for each job 
classification, in each work area. In the final standards, OSHA has 
changed ``in each beryllium work area'' to ``in each work area'' to 
avoid confusion with the beryllium work areas defined in paragraphs (b) 
and (e) of the final standard for general industry. In other OSHA 
standards, the term ``work area'' is used to describe the general 
worksite where employees are present and performing tasks or where work 
processes and operations are being carried out. Employers following the 
scheduled monitoring option should conduct initial monitoring as soon 
as work on a task or project involving beryllium exposure begins so 
they can identify situations where control measures are needed.
    Representative sampling. Paragraph (d)(3)(iii) of the final 
standards, like proposed paragraph (d)(1)(iv), describes the 
circumstances under which employers may use representative sampling. 
Proposed paragraphs (d)(1)(iv)(A)-(C) permitted the use of

[[Page 2654]]

representative sampling to characterize exposures of non-sampled 
employees, provided that the employer performed such sampling where 
several employees performed the same job tasks, in the same job 
classification, on the same work shift, and in the same work area, and 
had similar duration and frequency of exposure; took breathing zone 
samples sufficient to accurately characterize exposure on each work 
shift, for each job classification, in each work area; and sampled the 
employees expected to have the highest exposure.
    The USW and AFL-CIO supported the representative sampling provision 
in OSHA's proposed exposure monitoring requirements (Document ID 1681, 
p. 8; 1689, p. 11). OSHA has decided to retain the representative 
sampling provision in the final standards to provide employers with 
greater flexibility in meeting their exposure assessment obligations. 
Under the scheduled monitoring option, just as under the performance 
option, employers must accurately characterize the exposure of each 
employee to beryllium. In some cases, this will entail monitoring all 
exposed employees. In other cases, monitoring of ``representative'' 
employees is sufficient. As in the proposal, representative exposure 
sampling is permitted under the final standards when several employees 
perform the same tasks on the same shift and in the same work area. 
However, OSHA has not included the requirement in proposed paragraph 
(d)(1)(iv)(A) that employees ``have similar duration and frequency of 
exposure'' in final paragraph (d)(3)(iii). This provision is 
unnecessary because final paragraph (d)(3)(iii), like proposed 
paragraph (d)(1)(iv)(C), requires the employer to sample the 
employee(s) expected to have the highest exposures to beryllium. 
Additionally, the requirement in proposed paragraph (d)(1)(iv)(B) that 
employers take ``sufficient breathing zone samples to accurately 
characterize exposure on each work shift, for each job classification, 
in each work area'' has been removed because when performing exposure 
monitoring under final paragraphs (d)(3)(i) or (d)(3)(ii), employers 
already must assess exposures based on personal breathing zone air 
samples that reflect the airborne exposure of employees on each shift, 
for each job classification, and in each work area. Under these 
conditions, OSHA expects that exposures will be accurately 
characterized.
    Finally, the proposed requirement in paragraph (d)(1)(iv)(C) that 
employers must monitor the employee(s) expected to have the highest 
exposures has been retained in the final standards. For example, this 
could involve monitoring the beryllium exposure of the employee closest 
to an exposure source. The exposure result may then be attributed to 
other employees who perform the same tasks on the same shift and in the 
same work area. Exposure assessment should include, at a minimum, one 
full-shift sample and one 15 minute sample taken for each job 
classification, in each work area, for each shift.
    Where employees are not performing the same tasks on the same shift 
and in the same work area, representative sampling will not adequately 
characterize actual exposures of those employees, and individual 
monitoring is necessary.
    Frequency of monitoring under scheduled monitoring option. 
Paragraph (d)(3) of the proposed standard required periodic monitoring 
at least annually if initial exposure monitoring indicated that 
exposures were at or above the action level and at or below the TWA 
PEL. The proposal did not require periodic exposure monitoring if 
initial monitoring indicated that exposures were below the action 
level.
    In the NPRM, OSHA solicited comment on the reasonableness of 
discontinuing monitoring based on one sample below the action level. In 
response, many commenters discussed the importance of taking multiple 
samples to evaluate a worker's exposure even if initial results are 
below the action level. NJH emphasized that ``[i]t is NOT reasonable to 
discontinue monitoring after one sample result below the action level'' 
because ``a single sample result does not reflect the random variation 
in sampling and analytical methods'' (Document ID 1664, p. 6). NIOSH 
commented that, because occupational exposure distributions are right-
skewed (i.e., the mean is higher than the median so most sample results 
will be below the average exposure level), collecting fewer samples 
leads to a higher likelihood of showing compliance when it may not be 
warranted (Document ID 1671, Attachment 1, p. 6). Also during the 
hearings, Marc Kolanz of Materion stated that one sample does not 
provide ``a good understanding of what's out there,'' and there is 
``value in trying to collect at least a few samples'' (Document ID 
1755, Tr. 140). The Department of Defense (DOD) commented that it is 
not appropriate to discontinue monitoring based on one sample below the 
action level (Document ID 1684, Attachment 2, p. 3). The American 
College of Occupational and Environmental Medicine (ACOEM) commented 
that ``[t]here is significant uncertainty associated with limited 
sample numbers'' (Document 1685, p. 3). Ameren Corporation (Ameren), an 
electric utility company, stated that the number of samples needed 
``depend[s] on how well the sample characterizes the work performed'' 
(Document ID 1675, p. 10). The Sampling and Analysis Subcommittee Task 
Group of the Beryllium Health and Safety Committee (BHSC Task Group), a 
non-profit organization promoting the understanding and prevention of 
beryllium-induced conditions and illnesses, commented that it would not 
consider a single sample to be a reasonable determination of exposures 
(Document ID 1665, p. 6). North America's Building Trades Unions 
(NABTU) commented that it was unreasonable to allow discontinuation of 
monitoring based on one sample below the action level, because that 
sample could be a statistical aberration, and ``the assumption that if 
a workplace is in compliance at one time it will stay in compliance in 
the future is a fallacy, particularly on an active, dynamic 
construction site'' (Document ID 1679, p. 8). The USW and Materion 
stated that exposure characterization often requires more than one 
sample (Document ID 1680, p. 3). Southern Company suggested that 
``language regarding initial and periodic monitoring, and the 
discontinuation of both, [should] be consistent with existing substance 
specific standards'' (Document ID 1668, p. 3).
    OSHA has considered these comments and has determined that if 
initial monitoring indicates that employee exposures are below the 
action level and at or below the STEL, no further monitoring is 
required. Paragraph (d)(3)(iv) of the final standards permits employers 
to discontinue monitoring of employees whose exposure is represented by 
such monitoring where initial monitoring indicates that exposure is 
below the action level and at or below the STEL. However, a single 
sample below the action level and at or below the STEL does not 
necessarily warrant discontinuation of exposure monitoring. OSHA has 
clarified in final paragraphs (d)(3)(i) and (d)(3)(ii) that any initial 
monitoring conducted under the scheduled monitoring option must reflect 
exposures on each shift, for each job classification, and in each work 
area. Therefore, where there is more than one shift or work area for a 
particular task, there will be more than one sample; accordingly, it is 
unlikely that an employer would be able to sufficiently characterize 
and assess employee

[[Page 2655]]

exposure for a given job classification under the scheduled monitoring 
option using a single sample.
    In paragraph (d)(3) of the proposed rule, periodic exposure 
monitoring was required at least annually if initial exposure 
monitoring found exposures at or above the action level and at or below 
the TWA PEL. In the NPRM, OSHA asked a question about the frequency of 
monitoring and the reasoning behind that frequency. During the 
hearings, Peggy Mroz with NJH testified that periodic monitoring 
conducted at least every 180 days when exposures are at or above the 
action level is ``the most protective for workers'' (Document ID 1756, 
Tr. 99-100). Ms. Mroz further stated that exposure monitoring should 
also be conducted at least annually for all other processes and jobs 
where initial monitoring shows levels below the action level since 
changes in working conditions can affect monitoring results, and ``[i]t 
has already been shown that beryllium sensitization and CBD occur at 
measured exposures below the proposed action level'' (Document ID 1756, 
Tr. 100). Both NIOSH and NJH recommended more frequent monitoring for 
employers to fully understand levels of exposure that may vary over 
time and to assess whether proper controls are in place after a high 
exposure level is documented (Document ID 1725, p. 29; 1720, p. 5). The 
BHSC Task Group stated that annual monitoring is inadequate, and 
recommended sampling more frequently than every 180 days (Document ID 
1665, pp. 15, 17). And, the AFL-CIO commented that annual exposure 
monitoring is inadequate and does not provide the employer with enough 
information to make appropriate changes to prevent and minimize 
exposure. The AFL-CIO cited various OSHA health standards that required 
more frequent periodic exposure monitoring, including cadmium, 
asbestos, vinyl chloride, arsenic, lead, and respirable crystalline 
silica (Document ID 1809, pp. 1-2). In contrast, Ameren agreed with the 
proposal's requirement to conduct monitoring annually if exposures are 
at or above the action level, because the proposal already requires 
additional monitoring when work conditions change (Document ID 1675, p. 
4). And, the Edison Electric Institute (EEI) commented that beryllium 
exposure in the electric utility industry occurs during maintenance 
outages, ``which more closely align with the annual re-sampling 
requirements than the 180 [day] provisions in these alternatives'' 
(Document ID 1674, p. 14).
    OSHA is persuaded by the commenters recommending more frequent 
periodic monitoring and has changed the frequency required for 
exposures between the action level and the TWA PEL in the scheduled 
monitoring option in the final standards. Paragraph (d)(3)(v) of the 
final standards requires monitoring every six months if initial 
exposure monitoring indicates that exposures are at or above the action 
level but at or below the TWA PEL, which is the typical frequency in 
other health standards for carcinogens such as respirable crystalline 
silica, cadmium, vinyl chloride, and asbestos for this level of 
exposure. Alternatively, employers in general industry, construction, 
and shipyards can use the performance option in paragraph (d)(2), which 
provides employers greater flexibility to meet their exposure 
assessment obligations.
    In the proposal, OSHA did not require periodic exposure monitoring 
if initial exposure monitoring indicated that exposures were above the 
TWA PEL or STEL. In response to a question in the NPRM about monitoring 
above the PEL, Materion commented that there is no benefit to expending 
time and money monitoring exposures that exceed the PEL, because it is 
more important that activities be directed toward the exposure control 
plan. Based on their experience, Materion believes that employers will 
conduct monitoring as often as necessary to demonstrate that exposures 
have been reduce to below the PEL (Document ID 1661, p. 24 (pdf)). 
Other commenters disagreed with OSHA's proposal not to require periodic 
exposure monitoring above the PEL. The DOD commented that periodic 
monitoring should also be performed when levels are above the PEL to 
ensure respiratory protection is adequate and to test the effectiveness 
of engineering controls (Document ID 1684, Attachment 2, p. 9). In 
response to a question during the hearings on the benefits of 
monitoring above the PEL, NIOSH's Dr. Virji testified that exposure can 
vary within a job and that even though an employer may know exposures 
are high in a particular area, the information is ``useful because then 
it allows an understanding of what level of engineering controls that 
would be required to bring down the exposures to acceptable levels'' 
(Document ID 1755, Tr. 49-50). In her testimony, Mary Kathryn Fletcher 
with the AFL-CIO expressed support for monitoring above the PEL, 
stating that ``exposure monitoring is important to reevaluate control 
measures in cases of over-exposure,'' and ``[it is] important to 
characterize the job to know the exposures if you're going to try to 
reduce those exposures'' (Document ID 1756, Tr. 236). Also during the 
hearings, Ashlee Fitch with the Health, Safety, and Environment 
Department of the USW responded to a similar question on the benefits 
of air monitoring in cases where exposures are believed to exceed the 
PEL. She stated, ``You see oftentimes that employers used exposure 
rates to measure how well ventilation systems are working or what the 
exposure is, and after they implement engineering controls, what that 
exposure goes to'' (Document ID 1756, Tr. 282). In her testimony, Peggy 
Mroz with NJH expressed support for periodic exposure monitoring every 
90 days where exposures exceed the TWA PEL or STEL as ``routine and 
regular sampling and repeated sampling should be done to assess whether 
proper controls are in place after a high sample is documented as we 
know that beryllium sensitization and chronic beryllium disease can 
occur within a few weeks of exposure'' (Document ID 1756, Tr. 100).
    Based on these comments received in the record and testimony 
obtained from the public hearing, OSHA's final standards require 
periodic exposure monitoring every three months when exposures are 
above the TWA PEL or STEL under the scheduled monitoring option in 
paragraphs (d)(3)(vi) and (d)(3)(viii). Alternatively, employers in 
general industry, construction, and shipyards can use the performance 
option in paragraph (d)(2) which provides employers with greater 
flexibility to meet their exposure assessment obligations.
    Proposed paragraph (d) did not include a separate provision to 
allow employers to discontinue monitoring if exposures were 
subsequently reduced to below the action level, as demonstrated by 
periodic monitoring. In the NPRM, OSHA solicited comment on the 
reasonableness of discontinuing monitoring based on one sample below 
the action level. As discussed more fully in the explanation of final 
paragraph (d)(3)(iv), many commenters discussed the importance of 
taking multiple samples to confirm exposures are below the action level 
before allowing the discontinuation of monitoring. For example, ORCHSE 
Strategies (ORCHSE) commented that allowing discontinuation of 
monitoring based on one sample is not appropriate and that two 
consecutive samples taken at least seven days apart, that show exposure 
below the action level, should be required to allow monitoring to be

[[Page 2656]]

discontinued (Document ID 1691, Attachment 1, p. 3).
    As stated in the explanation of final paragraph (d)(3)(iv), OSHA 
has carefully considered these comments and agrees that a single sample 
is not sufficient to allow employers to discontinue monitoring. OSHA 
has therefore decided to add paragraph (d)(3)(vii) to the final 
standards. This provision requires that, where the most recent exposure 
monitoring indicates that employee exposure is below the action level, 
the employer must repeat exposure monitoring within six months of the 
most recent monitoring. The employer may discontinue TWA monitoring, 
for those employees whose exposure is represented by such monitoring, 
only when two consecutive measurements, taken seven or more days apart, 
are below the action level, except as otherwise provided in the 
reassessment of exposures requirements in paragraph (d)(4) of the final 
standards. Additionally, OSHA has added paragraph (d)(3)(viii) to the 
final standards. This provision requires that, where the most recent 
exposure monitoring indicates that employee exposure is above the STEL, 
the employer must repeat exposure monitoring within three months of the 
most recent short-term exposure monitoring until two consecutive 
measurements, taken seven or more days apart, are below the STEL. At 
this point, the employer may discontinue monitoring for those employees 
whose exposure is represented by such monitoring. As discussed below, 
reassessment is always required whenever a change in the workplace may 
be reasonably expected to result in new or additional exposures at or 
above the action level or above the STEL or the employer has any reason 
to believe that new or additional exposures at or above the action 
level or above the STEL have occurred, regardless of whether the 
employer has ceased monitoring because exposures are below the action 
level or at or below the STEL under paragraphs (d)(3)(iv), (d)(3)(vii), 
or (d)(3)(viii) of the final standards. Exposure assessment in 
construction and shipyard industries. Beryllium exposure occurs in the 
construction and shipyard industries primarily during abrasive blasting 
operations that use coal and copper slags containing trace amounts of 
beryllium (Document ID 1815, Attachment 85, pp. 70-72; 0767, p. 6).
    During the public hearing, testimony was heard about abrasive 
blasting operations using slags at a shipyard facility. Mike Wright, 
with the USW, testified that the use of enclosure (containment) is 
important to prevent the escape of beryllium dust during abrasive 
blasting operations and that exposure monitoring could help determine 
the integrity of the enclosure along with establishing a perimeter 
where beryllium contamination is controlled (Document ID 1756, Tr. 274-
275). Ashlee Fitch, also representing the USW, testified about 
monitoring worker exposure to beryllium in the maritime industry. Ms. 
Fitch stated that abrasive blasting using beryllium-containing abrasive 
materials should be done in full containment and that exposures outside 
the containment should not exceed the PEL or STEL (Document ID 1756, 
Tr. 244-245). Ms. Fitch recommended that in cases where full 
containment is used, ``the employer shall do an initial monitoring for 
each configuration of the containment'' and ``if the initial monitoring 
shows exposures above the action level, monitoring shall be performed 
for every blasting operation.'' She also recommended air monitoring of 
exposed workers outside of the containment or through monitoring of the 
positions where exposure is likely to be the highest, or if full 
containment is not used, ``around any abrasive blasting operation'' 
(Document ID 1756, Tr. 245). Representative Robert Scott, the ranking 
minority member on the Committee on Education and the Workforce of the 
U.S. House of Representatives (Representative Scott), commented that 
when workers are engaged in abrasive blasting and the abrasive blasting 
area is contained, exposure monitoring should be routinely performed 
when levels exceed the action level (Document ID 1672, p.4).
    Substantially agreeing with these comments, in paragraph (d)(3) of 
the final standards, OSHA is requiring monitoring on each work shift, 
for each job classification, and in each work area when employers are 
following the scheduled monitoring option. OSHA also agrees that 
monitoring should be of the positions where exposure is likely to be 
the highest, so when employers engage in representative sampling under 
the scheduled monitoring option, final paragraph (d)(3)(iii) requires 
that they must sample the employee(s) expected to have the highest 
airborne exposure to beryllium. OSHA also agrees with Representative 
Scott that exposure monitoring should be routinely performed for 
abrasive blasting and all other operations exposing workers to 
beryllium when exposures exceed the action level. If exposures exceed 
the action level or STEL, the employer is required to monitor exposures 
at frequencies indicated in the scheduled monitoring option or using 
the performance option to accurately assess the beryllium exposure of 
their employees. However, OSHA does not consider monitoring to be 
necessary each time there is an abrasive blasting or other operation 
that fits within the profile of a previously taken representative 
sample.
    Reassessment of exposures. Paragraph (d)(4) of the final standards, 
like paragraph (d)(4) of the proposal, describes the employer's 
obligation to reassess employee exposures under certain circumstances. 
Proposed paragraphs (d)(4)(i) and (d)(4)(ii) required the employer to 
conduct exposure monitoring within 30 days after a change in production 
processes, equipment, materials, personnel, work practices, or control 
methods that could reasonably be expected to result in new or 
additional exposure, or if the employer had any other reason to believe 
that new or additional exposure was occurring.
    Commenters generally advocated for monitoring to assess any new 
exposures. For example, in her testimony, Mary Kathryn Fletcher with 
the AFL-CIO expressed support for exposure monitoring even if exposure 
is reduced as far as feasible, because exposures can change, so ``it's 
important to monitor as tasks change and over time, there are different 
procedures, different workers in the area, doing different things'' 
(Document ID 1756, Tr. 236). Also, NJH commented that ``periodic 
sampling, even of low exposure potential tasks, ensures that despite 
changes in processes, personnel, exhaust systems, and other control 
measures, the exposure remains low and workers remain safe'' (Document 
ID 1664, p. 6). Therefore, the Agency has decided to retain the 
requirement of proposed paragraph (d)(4) that employers reassess 
exposures, but has made minor changes to the regulatory text. OSHA has 
changed the title ``Additional Monitoring'' in proposed paragraph 
(d)(4) to ``Reassessment of exposures'' in paragraph (d)(4) of the 
final standards to be consistent with the change in paragraph (d) 
terminology from ``exposure monitoring'' to ``exposure assessment.'' 
OSHA has also changed the proposed requirement that employers conduct 
exposure monitoring within 30 days after a change in ``production 
processes, equipment, materials, personnel, work practices, or control 
methods'' that could reasonably be expected to result in new or 
additional exposures to the requirement in the final standards that 
employers must perform reassessment of exposures

[[Page 2657]]

when there is a change in ``production, process, control equipment, 
personnel, or work practices'' that may reasonably be expected to 
result in new or additional exposures at or above the action level or 
STEL. OSHA made these changes to provide clarity and consistency with 
other OSHA health standards.
    In addition, there may be other situations that can result in new 
or additional exposures that are unique to an employer's work 
situation. In order to cover those special situations, OSHA has 
retained the requirement in proposed paragraph (d)(4)(ii) that the 
employer must reassess exposures whenever the employer has any reason 
to believe that a change has occurred that may result in new or 
additional exposures, and has added ``at or above the action level or 
STEL'' to final paragraph (d)(4). Under this provision, for example, an 
employer is required to reassess exposures when an employee has a 
confirmed positive result for beryllium sensitization, exhibits signs 
or symptoms of CBD, or is diagnosed with CBD. These conditions 
necessitate a reassessment of exposures to ascertain if airborne 
exposures contributed to the beryllium-related health effects. 
Additionally, reassessment of exposures would be required following a 
process modification that increases the amount of beryllium-containing 
material used, thereby possibly increasing employee exposure. 
Reassessment of exposures will also be required when a shipyard or 
construction employer introduces a new beryllium-containing slag for 
use in an abrasive blasting operation. Once reassessment of exposures 
is performed and if exposures are above the action level, TWA PEL, or 
STEL, the employer can take appropriate action to protect exposed 
employees and must perform periodic monitoring as discussed above.
    Methods of sample analysis. Paragraph (d)(5) of the final 
standards, like proposed paragraph (d)(1)(v), addresses methods for 
evaluating air monitoring samples. Proposed paragraph (d)(1)(v) 
required employers to use a method of exposure monitoring and analysis 
that could measure beryllium to an accuracy of plus or minus 25 percent 
within a statistical confidence level of 95 percent for airborne 
concentrations at or above the action level. This provision is largely 
unchanged in the final standards. OSHA has changed the title ``Accuracy 
of measurement'' in the proposal's paragraph (d)(1)(v) to ``Methods of 
sample analysis'' in paragraph (d)(5) of the final standards. OSHA made 
this change to more accurately describe the purpose of this 
requirement. Additionally, OSHA changed the requirement that employers 
``use a method of exposure monitoring and analysis'' in the proposed 
rule to require that employers ``ensure that all samples taken to 
satisfy the monitoring requirements of paragraph (d) are evaluated by a 
laboratory'' to clarify that employers may send samples to a laboratory 
for analysis, and OSHA does not intend to require employers to have a 
laboratory to analyze samples at the worksite.
    Under final paragraph (d)(5), the employer is required to make sure 
that all samples taken to satisfy the monitoring requirements of 
paragraph (d) are evaluated by a laboratory that can measure airborne 
levels of beryllium to an accuracy of plus or minus 25 percent within a 
statistical confidence level of 95 percent for airborne concentrations 
at or above the action level. The following methods meet these 
criteria: NIOSH 7704 (also ASTM D7202), ASTM D7439, OSHA 206, OSHA 
125G, and OSHA 125G using ICP-MS. All of these methods are available to 
commercial laboratories analyzing beryllium samples. However, not all 
of these methods are appropriate for measuring beryllium oxide, so 
employers must verify that the analytical method used is appropriate 
for measuring the form(s) of beryllium present in the workplace.
    In the NPRM, OSHA requested comment on whether these methods would 
satisfy the requirements of this paragraph, and if there were other 
methods that would also meet these criteria. The BHSC Task Group 
commented that OSHA's accuracy criteria could be met for full shift 
samples using available analytical methods. The BHSC Task Group agreed 
with the guidance in OSHA's NPRM to use ICP-MS or fluorescence to 
assure adequate sensitivity and analytical precision (Document ID 1655, 
p. 2). In response to a question on whether the current methods were 
sufficiently sensitive, Kevin Ashley with NIOSH testified that both the 
fluorescence method (NIOSH method 7704) and the inductively coupled 
plasma mass spectrometry (ASTM method D7439) were adequately sensitive 
to measure at the proposed PEL and STEL (Document ID 1755, Tr. 58). The 
DOD commented that the current limit of quantification (LOQ) of 0.05 
[micro]g for beryllium using the NIOSH 7300 and OSHA 125G methods would 
be adequate to detect exposures below the proposed action level of 0.1 
[micro]g/m\3\ and the proposed STEL of 2 [micro]g/m\3\ (Document ID 
1684, Attachment 2, p. 9). OSHA has identified several sampling and 
analysis methods for beryllium that are capable of detecting beryllium 
at air concentrations below the final action level of 0.1 [micro]g/m\3\ 
and the final STEL of 2.0 [micro]g/m\3\ for a 15-minute sampling period 
(see Chapter IV of the Final Economic Analysis, Technological 
Feasibility). Therefore, OSHA has determined that the sampling and 
analytical methods currently available to employers are sufficient to 
measure beryllium as required in paragraph (d) of the final standards.
    Rather than specifying a particular method that must be used, the 
final standards allow for a performance-oriented approach that allows 
the employer to use the method and analytical laboratory of its 
choosing as long as that method meets the accuracy specifications in 
paragraph (d)(5) and the reported results represent the total airborne 
concentration of beryllium for the worker being characterized. Other 
methods, such as a respirable fraction sample or size selective sample, 
would not provide results directly comparable to either PEL, and 
therefore would not be considered valid.
    Employee Notification of Assessment Results. Paragraph (d)(6) of 
the final standards, like proposed paragraph (d)(5), addresses employee 
notification requirements. OSHA did not receive comment specifically on 
this provision, but several commenters supported the exposure 
monitoring provisions as a whole, and after reviewing the record, OSHA 
has decided to retain the employee notification requirements in the 
final standards. OSHA has changed the title ``Employee Notification of 
Monitoring Results'' in proposed paragraph (d)(5) to ``Employee 
Notification of Assessment Results'' in final paragraph (d)(6) to 
reflect the change in the title of paragraph (d). This requirement is 
consistent with other OSHA standards, such as those for respirable 
crystalline silica (29 CFR 1910.1053), methylenedianiline (29 CFR 
1910.1050), 1,3-butadiene (29 CFR 1910.1051), and methylene chloride 
(29 CFR 1910.1052).
    Proposed paragraph (d)(5)(i) required employers to notify each 
employee of his or her monitoring results within 15 working days after 
receiving the results of any exposure monitoring. Both the employees 
whose exposures were measured directly and those whose exposures were 
represented by the monitoring had to be notified. The employer had to 
notify each employee individually in writing or post the monitoring 
results in an appropriate location accessible to all employees required 
to be notified. Proposed paragraph (d)(5)(i) is now paragraph (d)(6)(i) 
in the final standards, and has

[[Page 2658]]

been edited to reflect the change in language from ``exposure 
monitoring'' to ``exposure assessment,'' discussed earlier. This can be 
in print or electronically as long as the affected employees have 
access to the information and have been informed of the posting 
location. Final paragraph (d)(6)(i) for general industry, construction, 
and shipyards is substantively unchanged from the proposal. However, 
due to the transient nature of construction work and the need to 
receive exposure assessment results while the work is still occurring, 
OSHA recommends that employers in the construction industry make every 
effort to notify employees of their monitoring results as soon as 
possible.
    Proposed paragraph (d)(5)(ii) required that, whenever exposures 
exceeded the TWA PEL or STEL, the written notification required by 
proposed paragraph (d)(5)(i) include (1) suspected or known sources of 
exposure and (2) a description of the corrective action(s) that have 
been taken or will be taken by the employer to reduce the employee's 
exposure to or below the TWA PEL or STEL where feasible corrective 
action exists but was not implemented at the time of the monitoring. 
OSHA did not receive comment on this specific provision, and after 
reviewing the record, including comments supporting paragraph (d) 
generally, OSHA has decided to retain a notification requirement 
focused on individual exposure assessments and the corrective actions 
being taken for exposures above the PEL or STEL. It is necessary to 
assure employees that the employer is making efforts to furnish them 
with a safe and healthful work environment, and to provide employees 
with information about their exposures. Furthermore, notification to 
employees of exposures above a prescribed PEL and the corrective 
actions being taken is required under section 8(c)(3) of the Act (29 
U.S.C. 657(c)(3)). In order to provide consistency with other OSHA 
health standards, OSHA has removed the requirement in proposed 
paragraph (d)(5)(ii) that employers include suspected or known sources 
of exposure in the written notification. Proposed paragraph (d)(5)(ii), 
as revised, is now paragraph (d)(6)(ii) in the final standards.
    Observation of monitoring. Paragraph (d)(7) of the final standards, 
like proposed paragraph (d)(6), requires employers to provide for 
observation of exposure monitoring. OSHA did not receive comment on 
this specific provision, and after reviewing the record, including 
comments supporting paragraph (d) generally, OSHA has decided to retain 
it in the final standards because it promotes occupational safety and 
health and is required by the OSH Act. Section 8(c)(3) of the Act (29 
U.S.C. 657(c)(3)) mandates that regulations requiring employers to keep 
records of employee exposures to toxic materials or harmful physical 
agents provide employees or their representatives with the opportunity 
to observe monitoring or measurements.
    Proposed paragraph (d)(6)(i) required the employer to provide an 
opportunity to observe any exposure monitoring required by the 
standards to each employee whose airborne exposure was measured or 
represented by the monitoring and to each employee's representative(s). 
Proposed paragraph (d)(6)(i) is now paragraph (d)(7)(i) in the final 
standards, and is substantively unchanged from the proposal. When 
observation of monitoring required entry into an area where the use of 
protective clothing or equipment was required, proposed paragraph 
(d)(6)(ii) required the employer to provide the observer with that 
personal protective clothing or equipment, at no cost. The employer was 
also required to ensure that the observer used such clothing or 
equipment appropriately. Proposed paragraph (d)(6)(ii) is now paragraph 
(d)(7)(ii) in the final standards, and is substantively unchanged from 
the proposal. Paragraph (d)(6)(iii) of the proposal required employers 
to ensure that each observer complied with all applicable OSHA 
requirements and the employer's workplace safety and health procedures. 
Proposed paragraph (d)(6)(iii) is now paragraph (d)(7)(iii) in the 
final standards. OSHA has changed the proposed language to require that 
employers ensure that each observer follows all other applicable safety 
and health procedures to clarify that the burden to comply with OSHA 
requirements remains on the employer, not the observer.

(e) Beryllium Work Areas and Regulated Areas (General Industry); 
Regulated Areas (Shipyards); and Competent Person (Construction)

    Paragraph (e) of the standards for general industry and shipyards 
sets forth the requirements for establishing, maintaining, demarcating, 
and limiting access to certain areas of the workplace to aid in 
minimizing employee exposure to beryllium. As discussed below, the 
general industry standard includes requirements for both ``work areas'' 
and ``regulated areas,'' which are subsets of work areas. The shipyard 
standard includes requirements for regulated areas, but not work areas. 
Paragraph (e) of the construction standard does not require either work 
areas or regulated areas, but instead includes requirements for a 
``competent person,'' who has responsibility for demarcating certain 
areas of beryllium exposure for similar purposes.
    Specifically, paragraph (e)(1)(i) and (e)(2)(i) of the standard for 
general industry requires employers to establish, maintain, and 
demarcate one or more ``beryllium work area,'' which is defined as a 
work area containing a process or operation that can release beryllium 
where employees are, or can reasonably be expected to be, exposed to 
airborne beryllium at any level or where there is the potential for 
dermal contact with beryllium. OSHA intends these beryllium work area 
provisions to apply to the area surrounding the process, operation, or 
task where airborne beryllium is released or the potential for dermal 
contact is created. Beryllium work areas are also referenced in the 
general industry standard in paragraphs (f)(1) (the written exposure 
control plan), (f)(2) (engineering and work practice controls), and (j) 
(housekeeping). Under paragraphs (e)(1)(ii) and (e)(1) of the standards 
for general industry and shipyards, respectively, employers are also 
required to establish and maintain regulated areas wherever employees 
are, or can reasonably be expected to be, exposed to airborne beryllium 
at levels above the TWA PEL or STEL. As indicated and discussed in more 
detail below, the final standards for shipyards and construction do not 
contain provisions for beryllium work areas and the standard for 
construction does not require employers to establish regulated areas. 
In lieu of regulated areas, paragraph (e) of the final standard for 
construction, Competent Person, consists of a set of requirements 
designed to provide most of the same protections as regulated areas in 
general industry and shipyards, using a competent person instead of 
demarcated areas to achieve these ends.
    The requirements to establish beryllium work areas and regulated 
areas or designate competent persons serve several important purposes. 
First, requiring employers to establish and demarcate beryllium work 
areas in general industry ensures that workers and other persons are 
aware of the potential for work processes to release airborne beryllium 
or cause dermal contact with beryllium. Second, the required 
demarcation of regulated areas in general industry and shipyards in 
accordance with the paragraph (m) requirements for warning signs 
ensures that all persons entering regulated areas

[[Page 2659]]

will be aware of the serious health effects associated with exposure to 
beryllium. Similarly, assignment of a competent person to carry out the 
provisions of paragraph (e) in the construction standard where 
exposures may exceed the TWA PEL or STEL provides employees in 
construction with a knowledgeable on-site authority to convey 
information about the hazards of beryllium exposure. Third, limiting 
access to regulated areas (general industry and shipyards) or areas 
where exposures may exceed the TWA PEL or STEL (construction) restricts 
the number of workers potentially exposed to beryllium at levels above 
the TWA PEL or STEL. Finally, provisions for respiratory protection and 
PPE ensure that those who must enter regulated areas (general industry 
and shipyards) or areas where exposures may exceed the TWA PEL or STEL 
(construction) are properly protected, thereby reducing the risk of 
serious health effects associated with airborne beryllium exposure and 
dermal contact with beryllium.
    The remainder of this section provides detailed discussion of each 
provision in paragraph (e) of the final standards for general industry, 
shipyards, and construction, as well as comments OSHA received on 
paragraph (e) of the proposed standard, OSHA's response to these 
comments, and the reasons for OSHA's decisions regarding the provisions 
of paragraph (e) in each final standard.
    Beryllium Work Areas (General Industry). Provisions for the 
establishment of beryllium work areas were included in the proposed 
standard for general industry in paragraph (e)(1)(i). This proposed 
provision required employers to establish and maintain beryllium work 
areas where employees are, or can reasonably be expected to be, exposed 
to airborne beryllium. OSHA explained that it intended the provision to 
apply to all areas and situations where employees are actually exposed 
to airborne beryllium and to areas and situations where the employer 
has reason to anticipate or believe that airborne exposures may occur. 
The Agency further explained that--unlike the requirements for 
regulated areas--the proposed requirements were not tied to a 
particular level of exposure, but rather were triggered by the presence 
of airborne beryllium at any exposure level. The provision was based on 
a provision recommended by Materion Corporation (Materion) and the 
United Steelworkers (USW) in their joint submission, (see previous 
discussion in the Introduction to this Summary and Explanation 
section).
    A number of stakeholders commented on the proposed definition of a 
beryllium work area. Some commenters, such as NGK Metals Corporation 
(NGK) and ORCHSE Strategies (ORCHSE), argued that the definition of a 
beryllium work area is vague and requested that OSHA trigger the 
requirement to establish and maintain beryllium work areas at a 
measureable threshold, such as the action level (e.g., Document ID 
1663, p. 1; 1691, Attachment 1, p. 15). Edison Electric Institute 
(EEI), an industry association representing electric utility companies, 
also did not agree with the beryllium work area definition (Document ID 
1674, p. 13). Like NGK and ORCHSE, EEI recommended that OSHA tie the 
beryllium work area requirements to a quantifiable exposure level, like 
the action level or the PEL (Document ID 1674, p. 13). The Boeing 
Company (Boeing) also recommended the use of a quantifiable trigger, 
but suggested a much lower trigger of 0.02 [micro]g/m\3\ (Document ID 
1667, p. 3). Boeing explained that not including a specific threshold 
can lead to inconsistent results because it depends on the sensitivity 
of the measurement method (Document ID 1667, p. 3).
    Other commenters supported the proposed standard's establishment of 
beryllium work areas at any level of airborne beryllium exposure. For 
example, AWE commented that its ``supervised beryllium workspaces'' 
align with the proposal's beryllium work areas (Document ID 1615, p. 
1). NIOSH observed that the proposed approach is feasible and 
appropriate for beryllium work settings where work such as production, 
processing, handling, and manufacturing of beryllium products is 
performed and areas where needed preventive controls can be relatively 
easily demarcated (Document ID 1725, pp. 29-30). Materion and USW 
reiterated their support for provisions related to beryllium work areas 
``where operations generate airborne beryllium particulate'', which 
were included in the recommended model standard they submitted to OSHA 
(Document ID 1680, p. 3).
    The purpose of a beryllium work area is to establish a demarcated 
area in which workers and other persons authorized to be in the area 
are made aware of the potential for beryllium exposure and must take 
certain precautions accordingly. OSHA finds that establishing beryllium 
work areas where exposures are at the action level or above the PEL 
would not adequately protect exposed workers operating outside 
demarcated regulated areas, for which the applicable trigger is the TWA 
PEL or STEL. Because, as discussed in Section V, Health Effects, there 
is still a potential health risk to workers exposed to beryllium below 
the action level, the establishment and demarcation of beryllium work 
areas at any level of airborne exposure will provide additional 
protection for these workers by ensuring that they are aware of the 
presence of processes that release beryllium. OSHA similarly finds that 
Boeing's suggested trigger of 0.02 [micro]g/m\3\ is not suitable 
because OSHA has not established a level of exposure at which beryllium 
does not pose a risk to workers (see this preamble at Section VI, Risk 
Assessment). Therefore, OSHA finds that establishing and demarcating 
beryllium work areas wherever processes or operations release beryllium 
is more protective. OSHA also does not agree with those commenters who 
find the trigger for establishing beryllium work areas vague. As 
explained previously, OSHA has modified the beryllium work areas 
provision in the final standard for general industry to specify that 
the source of the airborne beryllium exposure and potential for dermal 
contact triggering the requirement for a beryllium work area must be 
generated from a process or operation within that area, not just the 
fact that an employee may be handling an article containing beryllium. 
An employer can (but is not required to) use air monitoring to 
determine the presence of airborne beryllium in the area surrounding 
the process, operation, or task that may be releasing beryllium or wipe 
sampling to determine the presence of beryllium on surfaces that 
workers may come into contact with. Affording the employer such 
flexibility to comply with this performance-based provision does not 
make it impermissibly vague. Accordingly, OSHA has decided to retain, 
as modified, the requirement that beryllium work areas must be 
established and maintained where there is a process or operation that 
can release beryllium and employees are, or can reasonably be expected 
to be, exposed to airborne beryllium at any level. However, as 
discussed below, OSHA has somewhat modified the definition of beryllium 
work areas in response to comments from other stakeholders and NIOSH.
    Two electric utility companies, Southern Company and Ameren 
Corporation (Ameren), argued that a work area requirement defined by 
any level of airborne beryllium exposure was subjective and would 
result in their entire facility falling under this

[[Page 2660]]

requirement (Document ID 1668, pp. 3-4; 1675 p. 5). The Aluminum 
Association stated that there may be areas where airborne beryllium 
exposures are present but have been found through exposure assessments 
and monitoring to be insignificant; therefore, beryllium work areas are 
overly broad as defined in the proposal and should be dropped from the 
final standard (Document ID 1666, p. 2). The American College of 
Occupational and Environmental Medicine (ACOEM) also did not agree with 
the proposed definition of beryllium work areas because it is not 
specific to workplaces where beryllium is used or processed (Document 
ID 1685, p. 2). ACOEM argued that airborne beryllium is essentially 
ubiquitous at very low levels, and that the proposed definition of 
beryllium work areas could be interpreted to apply to most worksites 
regardless of work activity. Therefore, ACOEM suggested clarifying the 
requirement using language that specifies ``worksites in which any 
beryllium or beryllium-containing materials are or have been processed 
using methods capable of generating dust or fume'' (Document ID 1685, 
p. 2).
    OSHA did not intend a scenario where an entire facility becomes a 
beryllium work area from environmental or other non-occupational 
sources of beryllium. Nor did the Agency intend to cause the entirety 
of any worksite covered by the rule to become a beryllium work area, 
even where the amount of airborne beryllium is insignificant in the 
sense that it is residually present at very low levels in areas of a 
facility where work processes that release airborne beryllium do not 
occur. (Note that the best available scientific evidence has not 
identified a medically insignificant level of beryllium exposure; as 
discussed in Section VI, Risk Assessment, beryllium sensitization has 
been found among individuals whose exposures are below the action 
level.) Such a situation might occur in a coal-fired electric 
generating plant or a foundry where a very small amount of beryllium 
may be detectable far away from the processes that released it. To 
avoid these unintended consequences, OSHA has modified the beryllium 
work areas provision in the final standard for general industry to 
specify that the source of the airborne beryllium exposure and 
potential for dermal contact triggering the requirement for a beryllium 
work area must be generated from a process or operation within that 
area. This modification is similar to ACOEM's suggestion to define 
beryllium work areas as areas where beryllium or beryllium-containing 
materials are or have been processed (Document ID 1685, p. 2). While 
the trigger for beryllium work area is based on whether the beryllium 
is processed by controlling the release of airborne beryllium from the 
particular process, operation, or task, the employer can limit the size 
of the beryllium work area and eliminate the likelihood of an entire 
facility becoming a beryllium work area. OSHA believes this modified 
definition of beryllium work areas addresses the concerns raised by 
employers and ACOEM, while also maintaining the protective benefits 
associated with beryllium work areas for beryllium-exposed employees.
    In addition to commenting on the level of exposure that should 
trigger the establishment and maintenance of a beryllium work area, 
NIOSH offered an opinion on the type of exposure that should trigger 
beryllium work areas. Specifically, NIOSH argued that limiting the 
definition of beryllium work area to employee exposure to airborne 
beryllium omits the potential contribution of dermal exposure to total 
exposure (Document ID 1725, p. 30). To support its point, NIOSH cited 
to Armstrong et al. (2014), which reported that work processes 
associated with elevated risk for beryllium sensitization had high air/
high dermal exposure, high air/low dermal exposure, or low air/high 
dermal exposure indicating that dermal exposures should be considered 
as relevant pathways (Document ID 1725, p. 30). OSHA agrees with NIOSH 
and has modified the beryllium work areas section of the final standard 
for general industry to include potential dermal exposure.
    OSHA also made two other minor, nonsubstantive changes to the 
proposed provision to help streamline the final general industry 
standard. First, instead of restating the definition of beryllium work 
area in paragraph (e)(1)(i) (as in the proposal), OSHA has modified 
final paragraph (e)(1)(i) in the proposal to merely refer to the term 
as defined in paragraph (b) of the standard for general industry. 
Second, the definition of beryllium work area in the final general 
industry standard includes the qualifier ``where employees are, or can 
reasonably be expected to be, exposed to airborne beryllium at any 
level.'' This is a modification from the proposed beryllium work area 
definition wording ``where employees are, or can reasonably be expected 
to be, exposed to airborne beryllium, regardless of the level of 
exposure.'' Both of these changes were intended only to simplify the 
language of the regulatory text and should not be read to suggest a 
change in substantive requirements or the Agency's intent.
    The construction and shipyard sectors were not included in the 
proposed standard. However, OSHA requested comments on Regulatory 
Alternative #2a in the NPRM, which would apply all provisions of the 
proposed standard to facilities in construction and shipyards, 
including provisions pertaining to the establishment of beryllium work 
areas. Following careful consideration of the comments OSHA received 
from a variety of stakeholders and from NIOSH on this topic, OSHA has 
concluded that the requirement to establish and maintain beryllium work 
areas are not appropriate for construction or shipyards. The work 
processes (primarily abrasive blasting), worksites, and conditions in 
construction and shipyards differ substantially from those typically 
found in general industry; as discussed further below, establishment of 
beryllium work areas in these sectors is likely to be impractical. 
However, OSHA has modified the standards so that most of the protective 
measures related to beryllium work areas in the general industry 
standard apply to operations in construction and shipyards, using 
triggers more suitable for these sectors. Thus, OSHA believes the final 
standards for construction and shipyards provide employees protection 
similar to employees in general industry, but avoid the difficulties 
associated with establishment of beryllium work areas in the context of 
abrasive blasting operations in these sectors.
    NIOSH commented that while it supported triggering the requirement 
to establish beryllium work areas at any level of airborne exposures, 
it is not clear how such a requirement would work in an outdoor 
environment (Document ID 1725, p. 30). It explained that it is possible 
that even ambient conditions could cause an outdoor work environment to 
qualify as a ``beryllium work area'' (Document ID 1725, p. 30). NIOSH 
also noted that it was unclear how to delineate beryllium work areas in 
an outdoor setting when abrasive blasting the outer hull of a large 
ship and questioned how the beryllium work area trigger of any level of 
airborne exposure to beryllium could be applied only to that specified 
area (Document 1755, Tr. 21). NIOSH further explained that establishing 
a beryllium work area for abrasive blasting in an outdoor environment 
is difficult because outdoor blasting operations often involve large 
structures and constant moving of the operation (Document ID 1755, Tr. 
55).

[[Page 2661]]

    Newport News Shipbuilding (NNS) similarly commented that since 
beryllium is primarily encountered in shipyards as a trace element in 
coal slag blasting media, the requirement to establish and maintain 
beryllium work areas is not appropriate for shipyards. NNS stated, 
``[i]t is relatively easy to control a work area to a stated number 
such as a permissible exposure limit or an action level, but 
controlling `regardless of level of exposure' for a trace contaminant 
in dust is impractical'' (Document ID 1657, pp. 1-2).
    Recognizing the difficulties described by NIOSH and NNS, the Agency 
decided not to require employers in construction and shipyards to 
establish and maintain beryllium work areas. However, OSHA has modified 
provisions associated with beryllium work areas in paragraph (f)(1) and 
paragraph (h) of the proposed standard so as to provide employees in 
all sectors with largely equivalent protective measures. For example, 
employers in all sectors are required to create, implement, and 
maintain a written exposure control plan that lists jobs and operations 
where beryllium exposure may occur, and that documents procedures for 
limiting cross-contamination and migration of beryllium (see Summary 
and Explanation of paragraph (f)(1)). Similarly, whereas employers in 
general industry are required under paragraph (f)(2) to take certain 
steps to reduce airborne beryllium in beryllium work areas where 
exposures meet or exceed the action level, employers in construction 
and shipyards have a nearly identical requirement to take steps to 
reduce exposures where exposures meet or exceed the action level. Thus, 
the only provisions related to beryllium work areas that apply in 
general industry but not in construction and shipyards are those OSHA 
is persuaded add protective value in general industry but would be 
unworkable or ineffective in the construction and shipyard contexts of 
abrasive blasting and outdoor operations, e.g., certain housekeeping 
provisions related to surface contamination (see Summary and 
Explanation, paragraph (j), Housekeeping, for further discussion).
    Regulated Areas. Paragraph (e)(1)(ii) of the proposed standard 
required employers to establish and maintain regulated areas wherever 
employees are, or can reasonably be expected to be, exposed to airborne 
concentrations of beryllium in excess of the TWA PEL or STEL. OSHA 
explained that the requirement to establish and maintain regulated 
areas would apply if any exposure monitoring or objective data indicate 
that airborne exposures are in excess of either the TWA PEL or STEL, or 
if the employer has reason to anticipate or believe that airborne 
exposures may be above the TWA PEL or STEL, even if the employer has 
not yet characterized or monitored those exposures. For example, if 
newly introduced processes involving beryllium appear to be creating 
dust and have not yet been monitored, the employer should reasonably 
anticipate that airborne exposures could exceed the TWA PEL or STEL. In 
this situation, the employer would be required to designate the area as 
a regulated area to protect workers and other persons until monitoring 
results establish that exposures are at or below the TWA PEL and STEL. 
In the proposed standard, work in regulated areas triggered additional 
requirements for medical surveillance (see Summary and Explanation for 
paragraph (k)), PPE (see Summary and Explanation for paragraph (h)), 
and hazard communication (see Summary and Explanation for paragraph 
(m)). The construction and shipyard sectors were not included in the 
proposed standard, but were included in Regulatory Alternative #2a in 
the NPRM, which would extend all provisions of the proposed standard 
for general industry to construction and shipyards, including 
provisions pertaining to regulated areas. OSHA requested comments on 
this proposed regulatory alternative.
    OSHA received relatively few comments on the proposed provisions 
for regulated areas, which were largely similar to the regulated areas 
provisions included in previous substance-specific standards. In 
general, commenters did not oppose the concept of regulated areas. 
Clive LeGresly with AWE noted that their organization establishes 
``Controlled'' beryllium workspaces that align with the final 
standards' regulated areas (Document ID 1615, p. 4). However, some 
commenters suggested modifications to OSHA's proposed definition of 
regulated areas. In their comments, the Sampling and Analysis 
Subcommittee Task Group of the Beryllium Health and Safety Committee 
(BHSC Task Group) and National Jewish Health (NJH) both supported the 
concept of regulated areas but recommended they be established when 
exposures are at or above the action level (Document ID 1655, p. 7; 
1664, p. 3). Finally, the Department of Defense (DoD) argued that 
having both beryllium work areas and regulated areas was confusing and 
burdensome, and suggested that the final standard should include only 
areas with airborne beryllium above the TWA PEL or STEL, which they 
described as better defined and more enforceable than the provisions 
for beryllium work areas in the proposed standard (Document ID 1684, 
Attachment 2, p. 2). After carefully considering the record on 
regulated areas, OSHA has decided to modify some of the provisions 
associated with regulated areas to address commenters' concerns where 
appropriate, but to retain paragraph (e)(1)(ii) as proposed in the 
final standard for general industry. Thus, final paragraph (e)(1)(ii) 
in general industry requires employers to establish and maintain a 
regulated area wherever employees are, or can reasonably be expected to 
be, exposed to airborne beryllium at levels above the TWA PEL or STEL. 
A detailed discussion of OSHA's decisions and reasoning follows.
    As applied to general industry, OSHA has not accepted the DoD's 
suggestion that only work areas where exposures exceed the TWA PEL or 
STEL need to be demarcated as limited-access or regulated areas. 
Because employees who are exposed to airborne beryllium below the TWA 
PEL and STEL and who have dermal contact with beryllium are at risk of 
adverse health effects, OSHA finds that it is appropriate to establish 
and demarcate beryllium work areas wherever work processes create such 
exposures and are primarily located in indoor settings, as OSHA finds 
is typical of operations in general industry. As discussed above, the 
requirement for the establishment and maintenance of beryllium work 
areas is necessary to alert workers to the presence of beryllium and to 
trigger basic exposure prevention methods, such as hygiene facilities 
and housekeeping. However, it is also appropriate to establish 
regulated areas with more stringent requirements, such as respiratory 
protection, limited access, and warning signs, where exposures may 
exceed the TWA PEL or STEL. OSHA concludes that beryllium work areas 
and regulated areas serve distinct purposes, and each provides 
important protections to employees. Therefore, OSHA has decided to 
retain both beryllium work areas and regulated areas in the final 
standard for the general industry standard. As explained elsewhere in 
this section, OSHA finds that requirements to establish and demarcate 
beryllium work areas are not appropriate to operations in construction 
and shipyards, and that the objectives of regulated areas are better

[[Page 2662]]

achieved through the use of a competent person in construction.
    OSHA has also carefully considered the recommendation by the BHSC 
Task Group and NJH to use the action level rather than the TWA PEL or 
STEL to trigger the provisions of the proposed standard associated with 
regulated areas, and finds that it has some merit. For example, in the 
proposed standard, employees who work in regulated areas for more than 
30 days in a 12-month period would be eligible for medical 
surveillance. Because employees exposed to beryllium at levels below 
the TWA PEL are at significant risk of material impairment of health as 
a result of their exposure (Section VII, Significance of Risk), OSHA is 
persuaded that the action level is a more appropriate trigger for the 
provision of medical surveillance. Eligibility for medical surveillance 
at the action level is also consistent with previous OSHA standards 
where significant risk remains at the TWA PEL, such as the recently 
published respirable crystalline silica standard. In addition, because 
beryllium sensitization can occur from dermal contact with beryllium 
regardless of whether airborne exposures are above or below the TWA PEL 
or STEL, OSHA believes it is appropriate to apply PPE requirements much 
more broadly than the proposed standard, which relied heavily on work 
in regulated areas as a trigger for PPE.
    However, OSHA does not believe that all provisions associated with 
regulated areas should apply at exposure levels below the TWA PEL and 
STEL. Employers are required to restrict access to regulated areas, 
thereby limiting the number of employees potentially exposed to 
beryllium at levels above the TWA PEL or STEL and limiting others' risk 
of serious health effects associated with such exposure. OSHA finds 
that lowering the exposure trigger for regulated areas could lead to 
the creation of large restricted areas, and therefore large numbers of 
employees with access to restricted areas where exposures may range 
anywhere between the action level and high above the final PEL. And, as 
discussed previously, establishing and demarcating regulated areas 
ensures that workers and other persons are aware of the potential 
presence of airborne beryllium at levels above the TWA PEL or STEL and 
ensures that all persons entering regulated areas are made aware of the 
dangers of exposure to beryllium at these levels. Moreover, in general 
industry, the requirement to demarcate beryllium work areas triggered 
by any level of beryllium exposure resulting from a process or 
operation, provides awareness for the potential hazard of beryllium 
contact or exposure at levels below the action level. For these 
reasons, OSHA believes that it is appropriate to retain the proposed 
standard's definition of regulated areas and related provisions for 
restricted access and demarcation.
    In addition, OSHA finds that it is inappropriate to extend 
mandatory provision and use of respirators (triggered by work in 
regulated areas in the proposed standard) to all workers whose 
exposures meet or exceed the action level. As discussed elsewhere in 
this Summary and Explanation, OSHA's longstanding policy is to avoid 
issuing standards that result in widespread use of respiratory 
protection due to issues of health, safety, and effectiveness that can 
occur with employees' regular use of respirators (see Summary and 
Explanation for paragraph (f), Methods of Compliance, and paragraph 
(g), Respiratory Protection).
    For the reasons described above, OSHA has decided to adopt more 
protective triggers for some of the provisions associated with 
regulated areas in the proposed standard. OSHA has expanded eligibility 
for medical surveillance to employees who work for at least 30 days in 
a 12-month period in operations where airborne beryllium exposures meet 
or exceed the action level (previously, employees who work for at least 
30 days in a 12-month period in a regulated area; see Summary and 
Explanation for paragraph (k), Medical Surveillance). OSHA has also 
expanded PPE requirements to all employees whose work involves dermal 
contact with beryllium (see Summary and Explanation for paragraph (h), 
PPE). These expanded PPE requirements in recognition of the dermal risk 
posed by beryllium also are responsive to a request from Public Citizen 
that beryllium work areas and regulated areas be broadly defined in 
order to ensure ``appropriate protections against dermal exposure to 
beryllium, and dermal sensitization'' (Document ID 1756, Tr. 176-77).
    As discussed in the Summary and Explanation of paragraph (a), Scope 
and application, OSHA received comments from a variety of stakeholders 
on Regulatory Alternative #2a presented in the NPRM, which extends all 
provisions of the proposed standard to the construction and shipyard 
sectors. Following careful consideration of these comments, OSHA 
determined that it is appropriate to extend all provisions of the 
proposed standard to cover facilities in construction and shipyards, 
except where some provisions of the general industry standard may be 
inappropriate due to the nature of workplaces or work processes in 
construction or shipyards. OSHA has additionally reviewed comments 
received on the topic of regulated areas in construction and shipyards, 
to determine whether it is appropriate to modify the requirements for 
regulated areas in these sectors. Based on its review, as well as 
OSHA's previous experience regulating chemical exposures in these 
sectors, the Agency has concluded that provisions for regulated areas 
(as opposed to the larger beryllium work areas) are appropriate to 
include in the final standard for shipyards. In construction, OSHA does 
not find regulated area requirements to be appropriate but has decided 
instead to require employers to meet the goals of the regulated areas 
provisions using a competent person approach, which the Agency believes 
will be more effective in construction work settings. OSHA's review of 
the record and reasons for these decisions follow.
    In the NPRM, OSHA requested comment on whether the provisions of 
the abrasive blasting substandard in the Ventilation standard for 
construction (29 CFR 1926.57, paragraph (f)) and the standard for 
Mechanical paint removers in shipyards (29 CFR 1915.34(c)) provide 
adequate protection to employees exposed to beryllium from abrasive 
blasting operations in these sectors. As discussed previously in the 
Summary and Explanation for paragraph (a), Scope and application, 
commenters argued persuasively that these abrasive blasting standards 
do not adequately protect beryllium-exposed construction and shipyard 
employees, and that OSHA should extend all provisions of the general 
industry standard to these sectors (e.g., Document ID 1679; 1963). 
However, the Abrasive Blasting Manufacturers Alliance (ABMA) stated 
that the proposed provisions for regulated areas in general industry 
would be inconsistent with regulations for abrasive blasting in 
shipyards, which do not always require such designated areas (Document 
ID 1673, p. 22). A similar concern could apply to requirements for 
regulated areas in construction.
    In OSHA's view, the provisions of the abrasive blasting standards 
in shipyards and in construction provide important baseline 
requirements appropriate to any situation where abrasive blasting is 
conducted in these sectors. However, the abrasive blasting standards 
are not intended to provide comprehensive requirements for all abrasive 
blasting operations, because some operations may involve hazards unique 
to the particular process or blast media in use.

[[Page 2663]]

Operations that use beryllium-containing blast media present unique 
risks of beryllium sensitization and CBD to exposed employees (see 
Section V, Health Effects), and thus require protective measures beyond 
those of the abrasive blasting standards. As discussed above, regulated 
areas and related provisions include requirements that are key to 
protecting employees from the effects of beryllium exposure, such as 
restricted access, respiratory protection, and warning signs. OSHA 
concludes that provisions similar to the requirements for regulated 
areas in the final standard for general industry will provide shipyard 
employees necessary protection complementing that found in the shipyard 
mechanical paint remover standard, and is not in conflict with the 
provisions or intent of that standard.
    OSHA has similarly concluded that the beryllium standard should 
apply to construction because it will better protect employees exposed 
to beryllium while abrasive blasting than application of the 
Ventilation standard alone. However, comments in the record and OSHA's 
experience regulating chemical exposures in construction indicate that 
the establishment of regulated areas is not the most effective way to 
ensure that construction employees receive the protections associated 
with regulated areas in the general industry standard. This decision is 
chiefly based on the Agency's recognition that conditions at 
construction worksites present challenges to establishing regulated 
areas due to the varied and changing nature of construction work. Some 
of these challenges were noted in the preamble to the recent respirable 
crystalline silica standard (81 FR 16285) and also apply here. For 
example, construction tasks, and specifically abrasive blasting, are 
commonly performed outdoors. Exposure-generating tasks could be short 
or long in duration and are typically performed at non-fixed 
workstations or worksites. Moreover, construction tasks may move to 
different locations during the workday. Such conditions could make it 
difficult to establish and maintain regulated areas as required by the 
general industry and shipyard standards.
    At the same time, OSHA finds that construction workers, like their 
counterparts in general industry and shipyards, need to be made aware 
of those locations in their workplace where airborne exposures are, or 
can reasonably be expected to be, above the TWA PEL or STEL. Therefore, 
OSHA has decided to adopt the method that was recently included in the 
recent respirable crystalline silica standard for construction, as well 
as in some prior construction standards. There, in lieu of establishing 
regulated areas, the Agency included a requirement for a designated 
competent person to implement procedures in the written exposure 
control plan to restrict access to work areas, where necessary, to 
limit exposures to respirable crystalline silica to achieve the primary 
objectives of a regulated area. OSHA has concluded that a similar 
approach is appropriate in this rulemaking. The Agency finds that this 
flexible approach balances the unique conditions of the construction 
industry with the need to protect construction employees.
    In summary, OSHA has decided to include regulated area requirements 
in the final standards for general industry and shipyards. The 
requirements to establish and maintain a regulated area wherever 
employees are, or can reasonably be expected to be, exposed to airborne 
beryllium at levels above the TWA PEL or STEL, can be found in 
paragraph (e)(1)(ii) of the standard for general industry and (e)(1) of 
the standard for shipyards. Other requirements related to regulated 
areas, e.g., the requirements to identify and limit access to regulated 
areas, are discussed in more detail below. In addition, OSHA has 
decided not to include requirements for regulated areas in the final 
construction standard, but has provided analogous protections for 
construction employees through the competent person provisions in 
paragraph (e) of the final construction standard. The competent person 
requirements are also discussed in detail below.
    In addition, NIOSH suggested that since demarcated areas may be 
difficult to establish and maintain in some construction or maritime 
settings, OSHA could consider alternative ways to provide the 
protections associated with such areas to employees in these sectors. 
For example, respiratory protection could be triggered by exposure to a 
threshold airborne level, or dermal protections could be triggered 
based on performance of tasks involving dermal contact with beryllium 
(Document ID 1755, Tr. 21-22). OSHA has adopted NIOSH's suggestion to 
tie certain protective measures to employee inhalation exposures or 
dermal contact rather than using the intermediary step of establishing 
demarcated areas where such areas are not required in the construction 
or maritime sectors. For example, as explained below in the discussion 
of competent person requirements, respiratory protection requirements 
apply to employees in construction who have or may reasonably be 
expected to have airborne exposure above the TWA PEL or STEL. In 
addition, requirements for provision and use of PPE are triggered based 
on the potential for dermal contact with beryllium in all three 
standards (see the Summary and Explanation for paragraph (h), Personal 
protective clothing and equipment). Thus, PPE is available to all 
employees whose work may involve dermal contact with beryllium, 
irrespective of whether they work in an industry where demarcated areas 
are required.
    Demarcation of regulated areas. Proposed paragraph (e)(2) included 
the requirements for the demarcation of beryllium work areas and 
regulated areas. Under proposed paragraph (e)(2)(i), employers were 
required to identify each beryllium work area through signs or any 
other methods that adequately establish and inform each employee of the 
boundaries of each beryllium work area. OSHA explained that the 
demarcation must effectively alert workers and other persons that 
airborne beryllium may be present. Proposed paragraph (e)(2)(ii) 
required employers to demarcate each regulated area in accordance with 
the paragraph (m)(2) hazard communication provisions of this standard. 
OSHA did not further specify requirements for demarcation, proposing 
instead to offer employers flexibility in determining the best means to 
demarcate beryllium work areas and regulated areas. The Agency 
requested comment on each of these proposed provisions, including 
whether the standard should specify what types of demarcation employers 
must use or take a more performance-oriented approach. See 80 FR 47786.
    OSHA received several comments on demarcation in general industry 
and maritime settings. First, NIOSH advocated the need for more 
specification on how to demarcate regulated areas (Document ID 1671, 
Attachment 1, p. 6). OSHA believes, however, that allowing employers to 
choose how to best demarcate regulated areas (as well as beryllium work 
areas) is consistent with its preference for performance-based 
approaches where, as here, the Agency has determined that employers, 
based on their knowledge of the specific conditions of their workplace, 
are in the best position to make such determinations. For example, if 
an employer knows that exposures in a particular work area might exceed 
the PEL on one particular day only, that employer might choose a 
temporary method of demarcation. Conversely, an employer might choose 
to use a more permanent method of demarcation for a beryllium work area 
that contains a

[[Page 2664]]

potentially beryllium-releasing operation that occurs daily. In some 
workplaces employers might choose to use barricades, in others textured 
flooring, roped-off areas, ``No entry''/``No access'' signs, or painted 
boundary lines. OSHA generally approves of each of these methods, 
provided that the particular method or methods the employer selects are 
clear and understandable enough to alert workers to the boundaries of 
the beryllium work area or regulated area. This may mean, for example, 
including more than one language on a sign, if the inclusion of a 
second language would make the sign understandable to a particular 
workforce with limited English reading skills.
    OSHA has identified several factors that it considers to be 
appropriate considerations for employers when they are determining how 
to demarcate beryllium work areas and regulated areas. These factors 
include the configuration of the beryllium work area or regulated area; 
whether the beryllium work area or regulated area is permanent; the 
airborne concentrations of beryllium in the beryllium work area or 
regulated area; the number of employees working in areas adjacent to 
any beryllium work area or regulated area; and the period of time the 
beryllium work area or regulated area is expected to have hazardous 
exposures. OSHA also notes that the use of a performance-oriented 
approached to the demarcation of regulated areas is consistent with 
previous health standards, such as respirable crystalline silica (29 
CFR 1910.1053) and chromium (VI) (29 CFR 1910.1026).
    Moreover, although proposed paragraph (e)(2)(ii) allowed employers 
to demarcate regulated areas in a variety of ways, it also contained 
specific requirements for the posting and wording of a warning sign in 
accordance with proposed paragraph (m)(2). OSHA included this 
requirement in the proposal because it preliminarily found that 
employees must recognize when they are entering a regulated area, and 
understand the hazards associated with the area, as well as the need 
for respiratory protection. Signs are an effective means of 
accomplishing these objectives. Therefore, OSHA included a proposed 
requirement for employers to post all entrances to regulated areas with 
signs that bear the following legend:

DANGER
BERYLLIUM
BERYLLIUM MAY CAUSE CANCER
CAUSES DAMAGE TO LUNGS
AUTHORIZED PERSONNEL ONLY
WEAR RESPIRATORY PROTECTION AND PROTECTIVE CLOTHING AND EQUIPMENT IN 
THIS AREA

Ameren, an electric power utility, objected to the proposal's 
demarcation requirement. Specifically, Ameren stated that ``[c]onfined 
space areas such as a boiler penthouse during abrasive blasting 
activities would be hard to demarcate since the entrance to the 
regulated area is small and would block access to the area for 
personnel and equipment. It would also be difficult to establish areas 
for activities such as cleaning fly ash off of plant piping or 
structural steel.'' Ameren suggested alternate, training-based means of 
informing employees of beryllium exposures, such as job planning and 
job safety briefings (Document ID 1675, p. 11). OSHA disagrees that its 
performance-oriented approach does not accommodate these circumstances. 
As discussed above, demarcation requirements for beryllium work areas 
and regulated areas allow employers maximum flexibility in designing 
forms of demarcation that best fit the nature of their facilities and 
processes. Forms of demarcation, such as tape, that do not block access 
to areas and can be applied in areas where fly ash is cleaned are not 
difficult to design or implement. Furthermore, training to inform 
employees of the location of beryllium exposures is a valuable 
complement to, but should not replace, demarcation in the final 
standards. The reinforcement of training with demarcation is an 
important protection to ensure that employees, who may work frequently 
in beryllium work areas and regulated areas, are continually aware of 
the location of beryllium exposures in their workplace. See summary and 
Explanation for paragraph (m), discussing employee training 
requirements. Also, requirements for demarcation ensure that persons 
other than employees, who may enter the worksite but may not receive 
training, are adequately informed of the presence of beryllium.
    Commenters also opined on the signage requirement in proposed 
paragraph (e)(2)(ii). Specifically, the ABMA argued that the beryllium 
specific signs required in the proposed standard for general industry 
are not appropriate for use in shipyard abrasive blasting, since this 
operation involves potential exposure to a number of hazardous 
chemicals (Document ID 1673, p. 22). OSHA disagrees and is maintaining 
the sign requirement in the final standards (with slightly altered 
language, noted below). Beryllium specific signs are appropriate and 
necessary to inform employees and others of the specific health hazards 
associated with beryllium exposure. Although employees should also be 
made aware of other hazardous chemicals they may be occupationally 
exposed to, training and signage regarding these other chemicals must 
necessarily be addressed elsewhere, and these concerns should not 
preclude OSHA from requiring appropriate warning signs for beryllium 
exposure. OSHA notes that in comments from the U.S. House of 
Representatives Committee on Education and the Workforce, the committee 
urged OSHA to implement ``demarcation (through postings of warnings) if 
there is abrasive blasting with beryllium containing materials'' by 
shipyard workers (Document ID 1672, p. 4).
    After carefully reviewing the record, OSHA finds that the proposed 
approach for the demarcation of beryllium work areas and regulated 
areas strikes a reasonable balance between the difficulties of 
establishing and maintaining these areas with the need to alert those 
exposed of the risks involved, to reduce the number of employees 
exposed to beryllium, and to protect those employees exposed to high 
levels of airborne beryllium. In particular, OSHA finds that the 
general performance-oriented approach in the proposed requirements, 
when coupled with the specificity of the signage requirements for 
regulated areas, provides employers with a good balance of direction 
and flexibility. The final standards do not require employers to 
establish and demarcate beryllium work areas or regulated areas by 
permanently segregating and isolating processes generating airborne 
beryllium. Instead, the standards allow employers to use temporary or 
flexible methods to demarcate beryllium work areas and regulated areas. 
In sum, OSHA finds that these flexible, performance-based requirements 
will accommodate open work spaces, changeable plant layouts, and 
sporadic or occasional beryllium use without imposing undue costs or 
burdens. Therefore, OSHA has decided to include paragraphs (e)(2)(i) 
and (e)(2)(ii), as proposed, in the final standard for general industry 
and to include regulated areas demarcation requirements in paragraph 
(e)(2) of the shipyard standard identical to those of paragraph 
(e)(2)(ii) of the general industry standard. However, OSHA notes that 
the required legend for the signage has been amended slightly to 
include the words ``REGULATED AREA,'' as discussed in the Summary and 
Explanation for paragraph (m),

[[Page 2665]]

Communication of hazards, in this preamble. (OSHA is not including the 
proposed demarcation provisions in the final standard for construction 
because, as discussed above, the construction standard does not require 
the establishment or maintenance of either beryllium work areas or 
regulated areas.)
    Paragraph (e)(3) of the proposed standard required employers to 
limit access to regulated areas. Because of the serious health effects 
of exposure to beryllium and the need for persons entering the 
regulated area to be properly protected, OSHA proposed that the number 
of persons allowed to access regulated areas should be limited to: (i) 
Persons the employer authorizes or requires to be in a regulated area 
to perform work duties; (ii) persons entering a regulated area as 
designated representatives of employees for the purposes of exercising 
the right to observe exposure monitoring procedures under paragraph 
(d)(6) of this standard; and (iii) persons authorized by law to be in a 
regulated area.
    The first group, persons the employer authorizes or requires to be 
in a regulated area to perform work duties, may include workers and 
other persons whose jobs involve operating machinery, equipment, and 
processes located in regulated areas; performing maintenance and repair 
operations on machinery, equipment, and processes in those areas; 
conducting inspections or quality control tasks; and supervising those 
who work in regulated areas.
    The second group encompasses persons entering a regulated area as 
designated representatives of employees for the purpose of exercising 
the right to observe exposure monitoring under paragraph (d)(7). As 
explained in the summary and explanation section on paragraph (d) for 
exposure assessment, providing employees and their representatives with 
the opportunity to observe monitoring is consistent with the OSH Act 
and OSHA's other substance-specific health standards, such as those for 
respirable crystalline silica (29 CFR 1910.1053), cadmium (29 CFR 
1910.1027), and methylene chloride (29 CFR 1910.1052).
    The third group consists of persons authorized by law to be in a 
regulated area. This category includes persons authorized to enter 
regulated areas by the OSH Act, OSHA regulations, or any other 
applicable law. OSHA compliance officers would fall into this group.
    As discussed in the NPRM, limiting access to regulated areas 
restricts the number of persons potentially exposed to beryllium at 
levels above the TWA PEL or STEL, and thus reduces the risk of 
beryllium-related health effects for employees and others who do not 
need access to regulated areas. As explained previously in the Summary 
and Explanation for paragraph (a), Scope and application, OSHA has 
decided to extend all provisions of the general industry standard to 
construction and shipyards except where the Agency finds that they are 
not appropriate to construction and shipyard settings. OSHA did not 
receive comments on this provision in the proposed standard, and did 
not receive comments or evidence indicating that restricted access 
areas are not appropriate in construction and shipyards. However, as 
discussed previously, OSHA has determined that protections associated 
with regulated areas in general industry will be more effectively 
accomplished with a competent person provision in construction.
    OSHA has therefore decided to retain paragraph (e)(3) as proposed 
in the final standard for general industry, and to add an identical 
provision to the shipyard standard and an analogous provision to the 
construction standard. Thus, final paragraph (e)(3) requires employers 
in general industry and shipyards to limit access to regulated areas 
to: (i) Persons the employer authorizes or requires to be in a 
regulated area to perform work duties; (ii) persons entering a 
regulated area as designated representatives of employees for the 
purposes of exercising the right to observe exposure monitoring 
procedures under paragraph (d)(6) of this standard; and (iii) persons 
authorized by law to be in a regulated area. And paragraph (e) of the 
construction standard requires the designation of a competent person, 
who, among other things, will implement the written exposure control 
plan under paragraph (f) of this standard. As discussed in more detail 
below, paragraph (f)(1)(i)(H) of the construction standard requires 
employers to establish and implement procedures to restrict access to 
work areas when airborne exposures are, or can reasonably be expected 
to be, above the TWA PEL or STEL, to minimize the number of employees 
exposed to airborne beryllium and their level of exposure, including 
exposures generated by other employers or sole proprietors.
    Proposed paragraph (e)(4) required employers to provide and ensure 
that each employee entering a regulated area uses personal protective 
clothing and equipment, including respirators, in accordance with 
paragraphs (g) and (h) of the proposed standard. As discussed in the 
NPRM, provisions for respiratory protection and PPE ensure that those 
who must enter regulated areas are properly protected, thereby reducing 
the risk of serious health effects associated with airborne beryllium 
exposure and dermal contact with beryllium. As explained previously in 
the Summary and Explanation for paragraph (a), Scope and application, 
OSHA has decided to extend all provisions of the general industry 
standard to construction and shipyards except where the Agency finds 
that they are not appropriate to construction and shipyard settings. 
OSHA did not receive comments on this provision in the proposed 
standard for general industry, and did not receive comments or evidence 
indicating that restricted access areas are not appropriate in 
construction and shipyards. However, as discussed previously in this 
section, OSHA has determined that protections associated with regulated 
areas in general industry will be more effectively accomplished with a 
competent person provision in construction.
    OSHA has therefore decided to retain paragraph (e)(4) as proposed 
in the final standard for general industry, and to add an identical 
provision to the shipyard standard and an analogous provision to the 
construction standard. Thus, final paragraph (e)(4) of the general 
industry and shipyard standards requires employers to provide and 
ensure that each employee entering a regulated area uses respiratory 
protection in accordance with paragraph (g) and personal protective 
clothing and equipment in accordance with paragraphs (h) of the final 
standard for general industry. Wherever employees are, or can 
reasonably be expected to be, exposed to airborne beryllium at levels 
above the TWA PEL or STEL in construction settings, paragraph (e) of 
the construction standard requires the employer to designate a 
competent person to ensure that all employees use respiratory 
protection and PPE in accordance with paragraphs (g) and (h) of the 
standard.
    Competent Person (Construction). To balance the unique conditions 
present in the construction industry with the need to protect 
construction industry employees from high airborne exposures, OSHA has 
chosen to adopt an approach in the construction standard for 
restricting access to high-exposure areas similar to that used in the 
recent respirable crystalline silica standard for construction. This 
approach requires the employer to designate a competent person or 
persons, who will, among other things, implement the written exposure 
control plan, including procedures used to

[[Page 2666]]

restrict access to work areas when airborne exposures are, or can 
reasonably be expected to be, above the TWA PEL or STEL; ensure that 
all employees use respiratory protection in accordance with paragraph 
(g) of this standard; and ensure that all employees use personal 
protective clothing and equipment in accordance with paragraph (h) of 
this standard. OSHA finds this approach offers construction employers a 
flexible means of providing protection to their employees.
    The competent person requirement is a well-known and accepted 
concept in OSHA standards; competent person provisions are included in 
at least 20 of OSHA's construction standards, including OSHA substance-
specific standards for construction, such as lead (29 CFR 1926.62), 
asbestos (29 CFR 1926.1101), cadmium (29 CFR 1926.1127), and respirable 
crystalline silica (29 CFR 1926.1153). In addition, OSHA's general 
safety and health provisions for construction require the employer to 
initiate and maintain programs for accident prevention, as may be 
necessary, and such programs require frequent and regular inspections 
of job sites, materials, and equipment by a designated competent person 
(29 CFR 1926.20(b)(1) and (2)).
    Competent person provisions are also commonly included in American 
National Standard Institute (ANSI) standards for construction. NIOSH 
and its state partners also routinely recommend the need for, and role 
of, designated competent persons in investigation reports conducted 
under NIOSH's Fatality Assessment and Control Evaluation program. Thus, 
OSHA finds that the use of a competent person is consistent with 
current industry practices in that many construction employers are 
already using a designated competent person.
    Moreover, although OSHA did not include a competent person 
requirement in the proposed rule, stakeholders indicated that such a 
requirement would be appropriate if the Agency chose to include the 
construction industry within the scope of this rulemaking. For example, 
North America's Building Trades Unions (NABTU) testified that beryllium 
construction work should be done under the supervision of a competent 
person (Document ID 1756, Tr. 231-232). NABTU added that the most 
important point of having a competent person designated in the standard 
is to ensure there is an agent of the employer on site who has the 
appropriate authority to correct hazards (Document ID 1805, Attachment 
1, p. 4).
    Based on these comments and the reasons described above, OSHA has 
decided to include competent person requirements in the final rule for 
construction, instead of requiring regulated areas. In paragraph (b) of 
the construction standard, OSHA defines competent person as an 
individual who is capable of identifying existing and foreseeable 
beryllium hazards in the workplace and who has authorization to take 
prompt corrective measures to eliminate or minimize them. The 
definition also specifies that the competent person must have the 
knowledge, ability, and authority necessary to fulfill the 
responsibilities set forth in paragraph (e) of the construction 
standard.
    In order to craft an appropriate definition for this term, OSHA 
considered stakeholder comments, including NABTU's above comments on 
the need for a competent person in the construction standard, and the 
definition of competent person in the safety and health regulations for 
construction (29 CFR 1926.32(f)). Under 29 CFR 1926.32(f), competent 
person is defined as a person capable of identifying existing and 
predictable hazards in the surroundings or working conditions that are 
unsanitary, hazardous, or dangerous to employees and who is authorized 
to take prompt corrective measures to eliminate them. OSHA's definition 
for competent person in the construction standard is consistent with 
the 1926.32(f) definition with several minor changes. For example, the 
Agency tailored this definition to beryllium by specifying ``beryllium 
hazards'' instead of ``unsanitary, hazardous, or dangerous'' 
conditions. In addition, OSHA replaced the word ``one'' with 
``individual,'' which is merely an editorial change. The Agency also 
removed the phrase ``in the surroundings or working conditions'' and 
changed it to ``in the workplace'' to make it specific to the 
workplace. And the Agency removed the phrase ``to eliminate them'' and 
changed it to ``to eliminate or minimize them'' to denote there may be 
cases where complete elimination would not be feasible. Finally, OSHA 
changed ``predictable'' to ``foreseeable'' to make the wording 
consistent with the scope of this construction standard (paragraph 
(a)).
    OSHA also decided that it was important to detail the necessary 
characteristics and authority of a competent person in the standard to 
ensure that he or she is truly competent to carry out the tasks 
designated under paragraph (e). Thus, under paragraph (b) of the 
construction standard, the competent person must have the knowledge, 
ability, and authority necessary to fulfill the responsibilities set 
forth in paragraph (e) of the construction standard. However, OSHA has 
chosen not to specify particular training requirements for competent 
persons. The Agency finds that it is not practical to specify in the 
rule the elements and level of training required for a competent 
person. And the Agency does not find it appropriate to mandate a ``one 
size fits all'' set of training requirements to establish the 
competency of competent persons in every conceivable construction 
setting. Therefore, the training requirement for a competent person is 
performance-oriented. This approach is consistent with most OSHA 
construction standards, such as cadmium (29 CFR 1926.1127), lead (29 
CFR 1926.62) and respirable crystalline silica (1926.1153), which 
include a performance-based approach by not specifying training or 
qualifications required for a competent person.
    Like the regulated area provisions in general industry and 
shipyards, paragraph (e)(1) of the construction standard applies 
wherever employees are, or can reasonably be expected to be, exposed to 
airborne beryllium at levels above the TWA PEL or STEL. As discussed in 
more detail above with regard to the establishment and maintenance of 
regulated areas in general industry and shipyards, OSHA finds that this 
exposure level trigger is appropriate for provisions such as this one.
    Paragraph (e) of the standard for construction further specifies 
that wherever employees are, or can reasonably be expected to be, 
exposed to airborne beryllium at levels above the TWA PEL or STEL, the 
employer shall designate a competent person to: (1) Make frequent and 
regular inspections of job sites, materials, and equipment; (2) 
implement the written exposure control plan under paragraph (f) of this 
standard; (3) ensure that all employees use respiratory protection in 
accordance with paragraph (g) of this standard; and (4) ensure that all 
employees use personal protective clothing and equipment in accordance 
with paragraph (h) of this standard. OSHA finds that these 
responsibilities, together, offer construction employees similar 
protection to those afforded to general industry and shipyard employees 
while offering construction employers more flexibility to suit their 
workplaces.
    Under paragraph (e)(1) of the construction standard, the competent 
person must make frequent and regular

[[Page 2667]]

inspections of job sites, materials, and equipment. OSHA included this 
requirement in order to ensure that the competent person has the 
necessary information to carry out the rest of his or her duties. For 
example, the competent person's second responsibility (as discussed 
below) is to implement the written exposure control plan under 
paragraph (f) of this standard. Among other things, the written 
exposure control plan includes procedures for minimizing cross-
contamination (paragraph (f)(1)(i)(D)). In order to implement these 
procedures on a construction worksite, the competent person may need to 
know about the unique characteristics of the jobsite and the materials 
and equipment used therein. Similarly, in order to carry out his or her 
duty to implement the procedures used to restrict access to work areas 
when airborne exposures are, or can reasonably be expected to be, above 
the TWA PEL or STEL, and to minimize the number of employees exposed to 
airborne beryllium and their level of exposure, including exposures 
generated by other employers or sole proprietors, as required by 
paragraph (f)(1)(i)(I), the competent person will equally need to be 
familiar with the jobsite, materials, and equipment in order to know 
where high exposures might occur.
    Under paragraph (e)(2) of the construction standard, OSHA is 
requiring that the competent person implement the written exposure 
control plan because the plan specifies what must be done to 
consistently identify and control beryllium hazards on a job site. See 
Summary and Explanation for paragraph (f), Written exposure control 
plan. In construction, a competent person is needed to ensure that the 
requirements of the written exposure control plan are being met under 
variable conditions. The subjects that must be included in the written 
exposure control plan for construction are consistent with the duties 
of a competent person in past OSHA standards. Therefore, this 
requirement should be familiar to construction employers covered by 
this standard.
    In addition, under paragraph (f)(1)(i)(I) the written exposure 
control plan must contain procedures used to restrict access to work 
areas when airborne exposures are, or can reasonably be expected to be, 
above the TWA PEL or STEL, to minimize the number of employees exposed 
to airborne beryllium and their level of exposure, including exposures 
generated by other employers or sole proprietors. By requiring the 
competent person to implement these procedures, OSHA is offering 
similar protection to construction employees as given to general 
industry and shipyard employees through the regulated area provisions 
in the general industry and shipyard standards.
    OSHA is cognizant that the written exposure control plan 
requirement regarding the exposures generated by other employers or 
sole proprietors is important in construction because at multi-employer 
worksites, the actions of one employer may expose employees of other 
employers to hazards. A competent person can help communicate hazards 
to other employers. OSHA expects that the employers or their competent 
persons will work with general contractors at construction sites to 
avoid high exposures of employees working alongside others by 
implementing administrative procedures such as scheduling high-exposure 
tasks when others will not be in the area. However, if this does not 
occur, the competent person has authority to implement other 
administrative procedures that would be effective for protecting 
employees in situations where an employer was not made aware that 
another employer or sole proprietor would be conducting abrasive 
blasting operations on the worksite. Upon encountering such situations 
on a worksite, the competent person is expected to remind employees to 
stay away from the abrasive blasting site and make sure that employees 
he or she oversees are positioned at a safe distance from the abrasive 
blasting activity
    In addition to limiting access to high exposure areas, the standard 
for construction requires the competent person to ensure that employees 
use respiratory protection and personal protective clothing and 
equipment while in high exposure areas (paragraph (e)(3)-(4)). This is 
an important requirement because without demarcated regulated areas, 
employees would not have signs to remind them of the need to use such 
protective equipment. It is therefore the competent person's 
responsibility to provide the necessary warnings.
    OSHA is not requiring a competent person for the general industry 
and shipyard standards. OSHA has determined that in most cases, general 
industry scenarios are not as variable as those in construction. For 
example, most work is performed indoors and therefore, not subject to 
variables such as wind shifts and moving exposure sources that could 
significantly affect exposures or complicate establishment of regulated 
areas. Employers covered under the general industry and shipyard 
standards are more likely to have health and safety professionals on 
staff who could assist with implementation of the standard. Finally, 
competent persons have not been included in other OSHA substance-
specific standards for general industry. For example, a competent 
person requirement was included in the construction standard for 
cadmium because of environmental variability and the presence of 
multiple employers on the job site, but a competent person requirement 
was not included in the general industry standard for cadmium (29 CFR 
1910.1027; 29 CFR 1926.1127; 57 FR 42101, 42382 (9/14/1992)). A 
competent person requirement was included in the construction standard 
for respirable crystalline silica for similar reasons (81 FR 16811). 
These factors explain and support OSHA's conclusion that there is no 
regulatory need for including a competent person requirement in the 
beryllium standards for general industry and shipyards.

(f) Methods of Compliance

    Paragraph (f) of the standards establishes methods for reducing 
employee exposure to beryllium through the use of a written exposure 
control plan and engineering and work practice controls. Paragraph 
(f)(1)(i) of each of the standards requires employers to establish, 
implement, and maintain a written exposure control plan and specifies 
the information that must be included in the plan. Paragraph (f)(1)(ii) 
establishes requirements for employers to review their plan(s) at least 
annually and update it under specified circumstances. Finally, 
paragraph (f)(1)(iii) requires employers to make a copy of the written 
exposure control plan accessible to each employee who is, or can 
reasonably be expected to be, exposed to airborne beryllium.
    Paragraph (f)(2) of the final standards requires employers to 
implement engineering and work practice controls to reduce beryllium 
exposures to employees. Where airborne exposure exceeds the TWA PEL or 
STEL, the employer must implement engineering and work practice 
controls to reduce airborne exposure to or below the exceeded exposure 
limit(s). Wherever the employer demonstrates that it is not feasible to 
reduce airborne exposure to or below the PELs by engineering and work 
practice controls, the employer must implement and maintain engineering 
and work practice controls to reduce airborne exposure to the lowest 
levels feasible and supplement these controls by using respiratory 
protection in accordance with paragraph (g) of this standard. In 
addition,

[[Page 2668]]

paragraph (f)(2) includes limited requirements for implementation of 
exposure controls where operations release airborne beryllium exceeding 
the action level. Finally, paragraph (f)(3) prohibits the employer from 
rotating employees to different jobs to achieve compliance with the TWA 
PEL and STEL.
    Paragraph (f)(1)(i) of the proposed rule would have required 
employers to establish, implement, and maintain a written exposure 
control plan for beryllium work areas, containing an inventory of 
operations and job titles reasonably expected to have exposure at or 
above the action level; an inventory of operations and job titles 
reasonably expected to have exposure above the TWA PEL or STEL; 
procedures for minimizing cross-contamination, keeping surfaces in the 
beryllium work area as free as practicable of beryllium; minimizing the 
migration of beryllium from beryllium work areas to other locations 
within or outside the workplace, and removal, laundering, storage, 
cleaning, repairing, and disposal of beryllium-contaminated personal 
protective clothing and equipment, including respirators; and an 
inventory of engineering and work practice controls required by 
paragraph (f)(2) of the proposed standard.
    Several commenters offered broad support for the inclusion of 
paragraph (f)(1)'s provisions in the final rule (e.g., Document ID 
1681, Attachment 1, p. 9; 1689, p. 11; 1690, p. 1). For example, United 
Steelworkers (USW) stated: ``[a] written plan will help to ensure that 
exposure controls and safety practices are continually followed. This 
will also provide workers and other stakeholders with information 
necessary in evaluating the health and safety protections and 
provisions provided by the employer'' (Document ID 1681, p. 9). The 
American Federation of Labor and Congress of Industrial Organizations 
(AFL-CIO) also supported the inclusion of written exposure control plan 
requirements (Document ID 1689, p. 11). It argued that ``[r]equiring 
employers to properly make use of a written plan is an essential tool 
for continuously controlling exposures and using proper safety 
practices'' (Document ID 1689, p. 11). The National Council for 
Occupational Safety and Health (National COSH) agreed, stating that 
``[a] comprehensive program to protect workers from these exposures, 
that includes a requirement for a written beryllium control plan, 
regular exposure monitoring, medical surveillance, medical removal 
protection benefits, and training would provide much needed protection 
for beryllium exposed workers'' (Document ID 1690, p. 1). Written 
exposure control plan requirements were also included in the draft 
proposed rule submitted to the Agency by Materion Corporation 
(Materion) and United Steelworkers (USW) (Document ID 0754, p. 6).
    OSHA agrees with the opinions expressed by these commenters. 
Requiring employers to articulate where exposures occur and how those 
exposures will be controlled will help to ensure that they have a 
complete understanding of the controls needed to comply with the rule. 
Thus, OSHA expects a written exposure control plan will be instrumental 
in ensuring that employers comprehensively and consistently protect 
their employees. Consequently, the Agency has decided to include 
written exposure control plan requirements in paragraph (f)(1) of the 
final standards.
    In the preamble to the proposal, OSHA explained that adherence to 
the written exposure control plan will help reduce skin contact with 
beryllium, which can lead to beryllium sensitization, and airborne 
exposure, which can lead to beryllium sensitization, CBD, and lung 
cancer (80 FR 47787). Because skin contact and airborne exposure can 
occur in any workplace within the scope of the standard, OSHA 
preliminarily decided to require a written exposure control plan for 
all employers within the scope of the standard.
    OSHA received comments regarding the proposed trigger for written 
exposure control plan requirements. For example, NGK Metals Corporation 
(NGK) argued that requiring employers to develop and maintain a written 
exposure control plan for facilities where exposures are below the 
action level is burdensome, and recommended that the written plan be 
required only where exposures exceed the action level (Document ID 
1663, p. 2). EEI asserted that a requirement for a written exposure 
control plan should apply to areas where exposures meet or exceed the 
action level or PEL, so as to be consistent with other health standards 
(Document ID 1674, p. 13).
    OSHA has re-examined the provisions of (f)(1) in light of these 
comments and reaffirms its preliminary decision to require all 
employers within the scope of the standard to establish, implement, and 
maintain a written exposure control plan. The Agency finds that the 
requirements that apply where exposures are below the action level 
(e.g., a list of operations and job titles reasonably expected to 
involve airborne exposure or dermal contact with beryllium; 
descriptions of procedures for handling beryllium-contaminated PPE and 
respirators; and descriptions of procedures for minimizing cross-
contamination and migration of beryllium) are important to preventing 
beryllium sensitization and CBD, and are not overly burdensome. 
Moreover, many of the requirements in the plan are intended to 
complement the housekeeping and hygiene requirements that all 
facilities in the scope of the standard must already meet, and do not 
create significant burdens for employers beyond documentation of their 
procedures for meeting the requirements of other paragraphs in the 
standards, such as (h) Personal protective clothing and equipment, (i) 
Hygiene areas and practices, and (j) Housekeeping.
    Proposed paragraph (f)(1)(i)(A)-(H) set forth the required contents 
of the written exposure control plan. Under the proposal, the 
employer's written exposure control plan was required to include: (1) 
An inventory of operations and job titles reasonably expected to have 
exposure; (2) an inventory of operations and job titles reasonably 
expected to have exposure at or above the action level; (3) an 
inventory of operations and job titles reasonably expected to have 
exposure above the TWA PEL or STEL; (4) procedures for limiting 
beryllium contamination, including but not limited to preventing the 
transfer of beryllium between surfaces, equipment, clothing, materials, 
and articles within the beryllium work area; (5) procedures for keeping 
surfaces in the beryllium work area as free as practicable of 
beryllium; (6) procedures for minimizing the migration of beryllium 
from beryllium work areas to other locations within or outside the 
workplace; (7) an inventory of engineering and work practice controls 
used by the employer to comply with paragraph (f)(2) of this standard; 
and (8) procedures for removal, laundering, storage, cleaning, 
repairing, and disposal of beryllium-contaminated personal protective 
clothing and equipment, including respirators.
    Stakeholders offered comments on the proposed written control plan 
contents. For example, the Boeing Company suggested that OSHA should 
revise the proposed provision requiring ``procedures for keeping 
surfaces in the beryllium work area as free as practicable of 
beryllium'' to define specific surface contaminant levels (Document ID 
1667, p. 4). The apparent advantage of providing a target surface 
contaminant level is that employers could use surface sampling to 
determine whether they are in compliance with the standard's 
requirements for surface cleaning. However, as OSHA explained

[[Page 2669]]

in the Summary and Explanation for paragraph (j), Housekeeping, the 
relationship between a precise amount of surface contamination and 
health risk is unknown. Therefore, OSHA cannot find that a particular 
level of contamination is safe. Rather, OSHA has determined that 
keeping surfaces as clean as practicable is appropriate because 
promptly removing beryllium deposits prevents them from becoming 
airborne, thus reducing employees' inhalation exposure, and helps to 
minimize the likelihood of skin contact with beryllium. Moreover, the 
term ``free as practicable'' is accepted language and has been used in 
previous standards, such as standards addressing exposure to lead and 
chromium (VI). Consequently, OSHA has decided to retain the ``free as 
practicable'' language in the final rule for general industry. (As 
discussed in more detail below, the final standards for construction 
and shipyards do not include this requirement.)
    After careful consideration of the record, OSHA reaffirms the need 
for the written exposure control plan to contain each of the provisions 
included in the proposal. This written record of which operations and 
job titles are likely to have exposures at certain levels and which 
housekeeping provisions and engineering and work practice controls the 
company has selected to control exposures required in paragraph (f) 
will make it easier for employers to implement monitoring, hygiene 
practices, housekeeping, engineering and work practice controls, and 
other measures. The provisions contained in (f)(1)(i)(D), (E), (F), and 
(H) of the proposed rule will work to minimize the spread of beryllium 
throughout and outside the workplace and to reduce the likelihood of 
skin contact and re-entrainment of beryllium particulate.
    Therefore, OSHA has decided to retain the proposed contents of the 
written exposure control plan in the standard for general industry, 
with the following revisions. First, OSHA has modified the proposed 
requirement to include an inventory of operations and job titles 
reasonably expected to have exposure, including by dermal contact. As 
discussed in detail in the Summary and Explanation for paragraph (h), 
Personal protective clothing and equipment (PPE), OSHA finds that it is 
important to protect employees from dermal contact with beryllium. OSHA 
therefore finds that the written exposure control plan should inform 
employees and others of jobs and operations where dermal contact with 
beryllium is reasonably expected, and has added dermal contact with 
beryllium to paragraph (f)(1)(i)(A) of the final standards. Thus, the 
final standard for general industry requires the employer to include a 
list of operations and job titles reasonably expected to involve 
airborne exposure to beryllium or dermal contact with beryllium in 
their written exposure control plan(s).
    Second, OSHA modified the language of proposed paragraphs 
(f)(1)(i)(A), (B), (C), and (G) by replacing the term ``inventory'' 
with the term ``list''. This change in wording does not imply a change 
in the intent of the provision. Rather, OSHA made this change to 
clarify the Agency's intent to require employers to simply identify 
jobs, operations and controls that match the criteria of these 
provisions, and that employers are not required to provide more 
extensive description of such jobs and operations. Third, OSHA modified 
(f)(1)(i)(D) by deleting ``but not limited to'' from the phrase 
``including but not limited to preventing the transfer of beryllium'', 
because the term ``including'' implies that the examples to follow are 
not intended to be exhaustive. This change in wording does not imply a 
change in the intent of the provision.
    Fourth, OSHA has edited the proposed text, which required an 
``inventory'' of operations and job titles reasonably expected to 
``have'' exposure; exposure at or above the action level; and exposure 
above the TWA PEL or STEL. The final text requires a ``list'' of 
operations and job titles reasonably expected to ``involve'' airborne 
exposure to or dermal contact with beryllium; airborne exposure at or 
above the action level; and airborne exposure above the TWA PEL or 
STEL. This is an editorial change to provide greater clarity to better 
describe the actual requirement, and does not change the intent of the 
provision. Fifth, OSHA modified the proposed requirement to inventory 
engineering and work practice controls required by paragraph (f)(2) of 
this standard to include respiratory protection. This change ensures 
that the respiratory protection requirement, which is included in 
(f)(2)(iv) of the final standards, is treated in the same manner as the 
engineering and work practices control requirements in (f)(2)(i) and 
(f)(2)(iii).
    Finally, OSHA has included one additional provision in the final 
rule for general industry that was not contained in the proposal. 
Specifically, paragraph (f)(1)(i)(H) of the final rule requires 
employers to include within their written exposure control plan a list 
of personal protective clothing and equipment required by paragraph (h) 
of this standard. This provision is added in recognition of the 
importance of personal protective clothing and equipment in protecting 
exposed employees, particularly those employees who may have dermal 
contact with beryllium. With the addition of this new provision, 
proposed paragraph (f)(1)(i)(H) (regarding procedures for removal, 
laundering, storage, cleaning, repairing, and disposal of beryllium-
contaminated personal protective clothing and equipment, including 
respirators) has been redesignated as paragraph (f)(1)(i)(I) of the 
final rule for general industry.
    OSHA has incorporated most provisions of the proposed paragraph 
(f)(1)(i) into the final standards for construction and shipyards, with 
certain modifications due to the work processes and worksites 
particular to these sectors. As explained in the Summary and 
Explanation for paragraph (j), Housekeeping, OSHA has determined that 
abrasive blasting operations are the primary source of beryllium 
exposure in the construction and shipyard sectors and has chosen not to 
include provisions related to surface cleaning in the final standards 
for these sectors due to the extreme difficulty of maintaining clean 
surfaces during blasting operations. OSHA has therefore decided to 
exclude the provision regarding procedures for keeping surfaces as free 
as practicable of beryllium (proposed paragraph (f)(1)(i)(E)) from the 
construction and shipyard standards. And due to the difficulty of 
controlling contamination during blasting operations, OSHA has decided 
to include a more performance-oriented provision on cross-contamination 
in the standards for construction and shipyards than in paragraph 
(f)(1)(i)(D) of the general industry standard. Employers are still 
required to establish and implement procedures for minimizing cross-
contamination of beryllium in construction and shipyard industries. 
However, the written exposure control plan provision on cross-
contamination simply requires ``procedures for minimizing cross-
contamination''; it does not specify ``procedures for minimizing cross-
contamination, including preventing the transfer of beryllium between 
surfaces, equipment, clothing, materials, and articles within beryllium 
work areas'' as in general industry. OSHA has included the proposed 
provision for minimizing the migration of beryllium in the standards 
for construction and shipyards, but has removed the reference to 
beryllium work areas since these are not established in construction

[[Page 2670]]

and shipyards. The written exposure control plan provision on migration 
in these sectors requires the plan to include ``procedures for 
minimizing the migration of beryllium within or to locations outside 
the workplace.''
    Because the requirements pertaining to surfaces contained in final 
paragraph (f)(1)(i)(E) of the general industry standard do not appear 
in the construction and shipyard standards, the numbering of the 
provisions differs from that of the general industry standard. For the 
construction and shipyard standards, requirements pertaining to the 
migration of beryllium appear in paragraphs (f)(1)(i)(E); requirements 
for a list of engineering controls, work practices, and respiratory 
protection are in paragraphs (f)(1)(i)(F); requirements for a list of 
personal protective clothing and equipment are in paragraphs 
(f)(1)(i)(G); and requirements pertaining to removal, laundering, 
storage, cleaning, repairing, and disposal of beryllium-contaminated 
personal protective clothing and equipment, including respirators, 
appear in paragraph (f)(1)(i)(H). Additional discussion of some of 
these requirements may be found in this section of the preamble, 
Summary and Explanation, at paragraph (h), Personal Protective Clothing 
and Equipment; paragraph (i), Hygiene Areas and Practices; and 
paragraph (j), Housekeeping.
    OSHA has also included paragraph (f)(1)(i)(I) in the construction 
standard only, requiring employers in the construction sector to 
establish, implement and maintain procedures to restrict access where 
airborne exposures are, or can reasonably be expected to be, above the 
TWA PEL or STEL. This addition is related to OSHA's decision, explained 
in the Summary and Explanation of paragraph (e), not to include a 
requirement to establish regulated areas in the construction standard, 
and to achieve the protective benefits associated with regulated areas 
by other means. In the general industry and shipyard standards, the 
employer must limit access to regulated areas to persons who are 
authorized or required to be in a regulated area to perform work 
duties, observation, or other limited circumstances. OSHA has 
determined that restricting access to areas where airborne exposures 
exceed or may reasonably be expected to exceed the TWA PEL or STEL is 
appropriate to reduce employees' and others' risk of adverse health 
effects associated with airborne beryllium exposure. OSHA has therefore 
established alternative methods to ensure that construction employees 
do not enter such areas unnecessarily. To this end, the final standard 
for construction includes paragraph (f)(1)(i)(I), which requires 
employers to establish, implement and maintain procedures used to 
restrict access to work areas when airborne exposures are, or can 
reasonably be expected to be, above the TWA PEL or STEL, in order to 
minimize the number of employees exposed to airborne beryllium and 
their level of exposure, including exposures generated by other 
employers or sole proprietors. Significantly, the construction standard 
additionally includes paragraph (e), Competent Person, which requires 
employers to designate a competent person to implement the written 
exposure control plan. The competent person is therefore responsible 
for ensuring that the procedures to restrict access are followed in the 
workplace.
    National Jewish Health (NJH) submitted a comment to OSHA regarding 
the importance of training, labeling, housekeeping measures, restricted 
entry to beryllium-contaminated areas, and technologies such as sticky 
mats and boot scrubbers in controlling employees' exposure to 
beryllium. NJH requested that OSHA emphasize the importance of such 
measures in paragraph (f) of these standards (Document ID 1664, p. 6). 
OSHA agrees with NJH that all of these approaches are helpful, and in 
some cases essential, to reducing employees' exposure. Training and 
some forms of labeling and access restriction are specifically required 
in other paragraphs of the standards. Specific tools such as sticky 
mats and boot scrubbers are not required in the standards, but are 
approaches employers should consider as part of their control 
procedures. All of the methods mentioned by NJH are ways to limit 
migration of beryllium and cross-contamination, and are therefore 
appropriate for inclusion in an employer's written exposure control 
plan(s).
    The final standards' paragraph (f)(1)(i) differs from the proposal 
in that it requires a written exposure control plan for each facility, 
whereas the proposal would have required a written exposure control 
plan for beryllium work areas within each facility. In addition, OSHA 
has removed the phrase ``in the beryllium work area'' from provision 
(f)(1)(i)(E) of the final standard for general industry, so that it now 
reads: ``Procedures for keeping surfaces as free as practicable of 
beryllium''. OSHA made these changes because it changed the definition 
of a ``beryllium work area'' in the proposed standard for general 
industry. The proposed standard defined a beryllium work area to 
include any area where employees are, or can reasonably be expected to 
be, exposed to airborne beryllium, regardless of the level of exposure. 
As discussed previously in the Summary and Explanation for paragraph 
(e), the final standard for general industry defines a beryllium work 
area to include only those areas containing a process or operation that 
releases beryllium where employees are, or can reasonably be expected 
to be, exposed to airborne beryllium at any level or where there is the 
potential for dermal contact with beryllium. Accordingly, OSHA made 
these changes to the wording of (f)(1)(i) and (f)(1)(i)(E) to maintain 
the intent of proposed paragraph (f)(1)(i)(A), to require employers to 
list all jobs and operations throughout their facilities involving 
beryllium exposure, and paragraph (f)(1)(i)(E) to control dermal 
contact with beryllium wherever airborne beryllium may settle on 
surfaces in their facilities. If employers' procedures to prevent 
migration of beryllium from work areas to other areas of the facility 
are fully effective (paragraph (f)(1)(i)(F)), further steps to keep 
surfaces as free as practicable of beryllium will not be necessary. 
However, if the employer is unable to consistently prevent transfer of 
beryllium from work areas to other areas of the facility, the employer 
must develop and implement additional procedures to keep surfaces 
outside of the beryllium work areas as free as practicable of 
beryllium.
    Paragraph (f)(1)(ii) of the proposed rule would have required the 
employer to update the exposure control plan when: (A) Any change in 
production processes, materials, equipment, personnel, work practices, 
or control methods results or can reasonably be expected to result in 
new or additional exposures to beryllium; (B) an employee is confirmed 
positive, is diagnosed with CBD, or shows signs or symptoms associated 
with exposure; or (C) the employer has any reason to believe that new 
or additional exposures are occurring or will occur. OSHA did not 
receive any comments on this provision. However, as noted in the 
proposal, employers such as Materion and Axsys Technologies, who have 
worked to identify and document the exposure sources associated with 
cases of sensitization and CBD in their facilities, have used this 
information to develop and update beryllium exposure control plans 
(Document ID 0634; 0473; 0599). OSHA found that this process, whereby 
an employer uses employee health outcome data to check and improve the 
effectiveness of the employer's exposure

[[Page 2671]]

control plan, is consistent with other performance-oriented aspects of 
these standards. Thus, after considering the record on this issue, OSHA 
has decided to retain proposed paragraph (f)(1)(ii) in the final rule, 
with the modifications discussed below, to ensure that the employer's 
plan reflects the current conditions in the workplace.
    The first modification is that OSHA added a requirement to review 
and evaluate the effectiveness of each written exposure control plan at 
least annually. OSHA finds that an annual review is appropriate because 
workplace conditions can change. In addition, by requiring employers to 
check the effectiveness of their plans annually, the standards offer 
employers the opportunity to better protect their employees by 
reflecting on any lessons learned throughout the previous year. The 
final annual review requirement is consistent with previous OSHA 
standards, such as the standards addressing bloodborne pathogens (29 
CFR 1910.1030) and respirable crystalline silica (29 CFR 1910.1053).
    Second, OSHA changed the proposed language of (f)(1)(ii)(B), which 
would have required employers to update their written exposure control 
plans when an employee is confirmed positive for beryllium 
sensitization, is diagnosed with CBD, or shows signs or symptoms 
associated with exposure. This change is related to another change from 
the proposed standard, which would have required notification of 
employers whenever an employee is confirmed positive for beryllium 
sensitization. As explained in the Summary and Explanation for 
paragraph (k), Medical Surveillance, OSHA has modified this provision 
so that employers are not automatically notified of cases of 
sensitization or CBD among their employees. However, employers will 
receive a written medical opinion from the licensed physician that may 
include a referral for an evaluation at a CBD Diagnostic Center (see 
(k)(6)(iii)) or a recommendation for medical removal from exposure to 
beryllium (see (k)(6)(v)). An employee may also provide the employer 
with a written medical report indicating a confirmed positive finding 
or CBD diagnosis. Final paragraph (f)(1)(ii)(B) has been revised from 
the proposal to reflect the circumstances under the final standards 
where an employer will be notified that an employee has, or may have, a 
beryllium-related health effect. This includes when the employer is 
notified that an employee is eligible for medical removal in accordance 
with paragraph (l)(1) of the standard (i.e., when the employee provides 
the employer with a written medical report indicating a confirmed 
positive finding or CBD diagnosis, or the employer receives a written 
medical opinion recommending removal from exposure to beryllium); when 
the employer is notified that an employee is referred for evaluation at 
a CBD Diagnostic Center, or when an employee shows signs and symptoms 
associated with exposure. Third, OSHA further modified (f)(1)(ii)(B) to 
clarify the Agency's understanding that signs and symptoms may be 
related to inhalation or dermal exposure, as discussed in Section V, 
Health Effects. Final paragraph (f)(1)(ii)(B) therefore refers to signs 
and symptoms of ``airborne exposure to or dermal contact with 
beryllium''. Fourth, OSHA modified the wording of (f)(1)(ii) to require 
the employer to update ``each'' written exposure control plan rather 
than ``the'' written exposure control plan, since an employer who 
operates multiple facilities is required to establish, implement and 
maintain a written exposure control plan for each facility.
    Paragraph (f)(1)(ii) of the final standards thus requires the 
employer to review and evaluate the effectiveness of each written 
exposure control plan at least annually and update it when: (A) Any 
change in production processes, materials, equipment, personnel, work 
practices, or control methods results or can reasonably be expected to 
result in new or additional airborne exposure to beryllium; (B) the 
employer is notified that an employee is eligible for medical removal 
in accordance with paragraph (l)(1) of this standard, referred for 
evaluation at a CBD Diagnostic Center, or shows signs or symptoms 
associated with airborne exposure to or dermal contact with beryllium; 
or (C) the employer has any reason to believe that new or additional 
airborne exposure is occurring or will occur.
    Paragraph (f)(1)(iii) of the proposed rule would have required the 
employer to make a copy of the exposure control plan accessible to each 
employee who is or can reasonably be expected to be exposed to airborne 
beryllium in accordance with OSHA's Access to Employee Exposure and 
Medical Records (Records Access) standard (29 CFR 1910.1020(e)). As 
discussed above and in the NPRM, access to the exposure control plan 
will enable employees to partner with their employers in keeping the 
workplace safe. OSHA did not receive comments specific to this 
provision, and has decided to retain it in the final standard for 
general industry and include it in the final standards for construction 
and shipyards.
    Proposed paragraph (f)(2) established a hierarchy of controls that 
employers must use to reduce beryllium exposures. This paragraph 
required employers to rely on engineering and work practice controls as 
the primary means to reduce exposures. As a general matter, where 
airborne exposure exceeded the TWA PEL or STEL, proposed paragraph 
(f)(2) required employers to implement engineering and work practice 
controls to reduce airborne exposure to or below the PELs. Wherever the 
employer demonstrated that it is not feasible to reduce airborne 
exposure to or below the PELs through the use of engineering and work 
practice controls, the employer would have been required to implement 
and maintain engineering and work practice controls to reduce airborne 
exposure to the lowest levels feasible and supplement these controls by 
using respiratory protection in accordance with paragraph (g) of this 
standard. In addition, proposed paragraph (f)(2) included limited 
requirements for implementation of exposure controls for each operation 
in a beryllium work area.
    OSHA's long-standing hierarchy of controls policy was supported by 
a number of commenters, including USW; the Sampling and Analysis 
Subcommittee Task Group of the Beryllium Health and Safety Committee 
(BHSC Task Group); AWE; AFL-CIO; 3M; and National Jewish Health (e.g., 
Document ID 1963, p. 12; 1655, pp. 8, 16; 1618, p. 8 (pdf); 1689, p. 
11; 1625, p. 6 (pdf); 1664, p. 6). For example, the BHSC Task Group 
stated that OSHA's mandate ``to assure safe and healthy workplaces 
requires it to reinforce fundamental industrial hygiene tenets. Prime 
among these is application of a hierarchy of controls'' (Document ID 
1655, p. 16). Similarly, 3M indicated that it ``agree[d] with OSHA that 
the hierarchy of controls--effective engineering and work practice 
controls--should be the primary means to help reduce employee exposures 
to beryllium and its compounds'' (Document ID 1625, p. 6 (pdf)). 3M 
added that ``when engineering controls and work practices cannot reduce 
employee exposure to beryllium to below the PEL, then the employer must 
protect employees' respiratory health through the use of respirators'' 
(Document ID 1625, p. 6 (pdf)). NJH added that

. . . engineering and/or work practice controls are critical in 
reducing beryllium exposure and we have consulted with clients on 
this issue. In identifying controls, using the hierarchy of 
industrial controls to start with elimination or substitution . . . 
followed by engineering controls and process

[[Page 2672]]

controls such as enclosures, local exhaust ventilation, and wet 
methods . . . is crucial (Document ID 1664, p. 6).

    After a careful review of the record, OSHA concludes that requiring 
primary reliance on engineering and work practice controls is necessary 
and appropriate because reliance on these methods is consistent with 
good industrial hygiene practice, with the Agency's experience in 
ensuring that workers have a healthy workplace, and with OSHA's 
traditional adherence to a hierarchy of controls. The Agency finds that 
engineering controls are reliable, provide consistent levels of 
protection to a large number of workers, can be monitored continually 
and inexpensively, allow for predictable performance levels, and can 
efficiently remove toxic substances from the workplace. Once removed, 
the toxic substances no longer pose a threat to employees. The 
effectiveness of engineering controls does not generally depend to any 
substantial degree on human behavior, and the operation of control 
equipment is not as vulnerable to human error as is personal protective 
equipment.
    OSHA has identified several key methods of reducing exposures: (1) 
Substitution; (2) isolation (e.g., enclosures); (3) ventilation; and 
(4) process controls (e.g. wet methods, automation). Substitution 
refers to the replacement of a toxic material with another material 
that reduces or eliminates the harmful exposure. When available, 
substitution can replace a toxic material in the work environment with 
a non-toxic material, thus eliminating the risk of adverse health 
effects.
    Isolation, i.e., separating workers from the source of the hazard, 
is another effective engineering control employed to reduce exposures 
to beryllium. Isolation can be accomplished by either containing the 
hazard or isolating workers from the source of the hazard. For example, 
to contain the hazard, an employer might install a physical barrier 
around the source of exposure to contain a toxic substance within the 
barrier. Isolating the source of a hazard within an enclosure restricts 
respirable dust from spreading throughout a workplace and exposing 
employees who are not directly involved in exposure-generating 
operations. Or, alternatively, an employer might isolate employees from 
the hazard source by placing them in a properly ventilated space or at 
some distance from the source of the beryllium exposure.
    Ventilation is another engineering control method used to minimize 
airborne concentrations of a contaminant by supplying or exhausting 
air. The primary type of ventilation system used to control beryllium 
exposure is local exhaust ventilation (LEV). LEV is used to remove an 
air contaminant by capturing it at or near the source of emission, 
before the contaminant spreads throughout the workplace. If designed 
properly, LEV systems efficiently remove contaminants and provide for 
cleaner and safer work environments.
    Work practice controls involve adjustments in the way a task is 
performed. In many cases, work practice controls complement engineering 
controls in providing worker protection. For example, periodic 
inspection and maintenance of process equipment and control equipment 
such as ventilation systems is an important work practice control. 
Frequently, equipment which is in disrepair or near failure will not 
perform normally. Regular inspections can detect abnormal conditions so 
that timely maintenance can then be performed. If equipment is 
routinely inspected, maintained, and repaired or replaced before 
failure is likely, there is less chance that hazardous exposures will 
occur.
    Workers must know the proper way to perform their job tasks in 
order to minimize their exposure to beryllium and to maximize the 
effectiveness of control measures. For example, if an exhaust hood is 
designed to provide local ventilation and a worker performs a task that 
generates a contaminant away from the exhaust hood, the control measure 
will be of no use. Workers can be informed of proper operating 
procedures through information and training. Good supervision further 
ensures that proper work practices are carried out by workers. By 
persuading a worker to follow proper procedures, such as positioning 
the exhaust hood in the correct location to capture the contaminant, a 
supervisor can do much to minimize unnecessary exposure. Employees' 
exposures can also be controlled by scheduling operations with the 
highest exposures at a time when the fewest employees are present.
    Under the hierarchy of controls, respirators can be another means 
of providing employees effective protection from exposure to air 
contaminants. However, to be effective, respirators must be 
individually selected, fitted and periodically refitted, 
conscientiously and properly worn, regularly maintained, and replaced 
as necessary. In many workplaces, these conditions for effective 
respirator use are difficult to achieve. The absence of any one of 
these conditions can reduce or eliminate the protection the respirator 
provides to some or all of the employees. For example, certain types of 
respirators require the user to be clean shaven to achieve an effective 
seal where the respirator contacts the employee's skin. Failure to 
ensure a tight seal due to the presence of facial hair compromises the 
effectiveness of the respirator.
    Respirator effectiveness ultimately relies on employers educating 
employees on the necessary good work practices and ensuring that 
employees adopt those practices. In contrast, the effectiveness of 
engineering controls does not rely so heavily on actions of individual 
employees. Engineering and work practice controls are capable of 
reducing or eliminating a hazard from a worksite, while respirators 
protect only the employees who are wearing them correctly. Furthermore, 
engineering and work practice controls permit the employer to evaluate 
their effectiveness directly through air monitoring and other means. It 
is considerably more difficult to directly measure the effectiveness of 
respirators on a regular basis to ensure that employees are not 
unknowingly being overexposed. OSHA therefore continues to consider the 
use of respirators to be the least satisfactory approach to exposure 
control.
    In addition, use of respirators in the workplace presents other 
safety and health concerns. Respirators can impose substantial 
physiological burdens on employees, including the burden imposed by the 
weight of the respirator; increased breathing resistance during 
operation; limitations on auditory, visual, and olfactory sensations; 
and isolation from the workplace environment. Job and workplace factors 
such as the level of physical work effort, the use of protective 
clothing, and temperature extremes or high humidity can also impose 
physiological burdens on employees wearing respirators. These stressors 
may interact with respirator use to increase the physiological strain 
experienced by employees.
    Certain medical conditions can compromise an employee's ability to 
tolerate the physiological burdens imposed by respirator use, thereby 
placing the employee wearing the respirator at an increased risk of 
illness, injury, and even death. These medical conditions include 
cardiovascular and respiratory diseases (e.g., a history of high blood 
pressure, angina, heart attack, cardiac arrhythmias, stroke, asthma, 
chronic bronchitis, emphysema), and reduced pulmonary function caused 
by other factors (e.g., smoking or prior exposure to respiratory 
hazards), neurological or

[[Page 2673]]

musculoskeletal disorders (e.g., epilepsy, lower back pain), and 
impaired sensory function (e.g., a perforated ear drum, reduced 
olfactory function). Psychological conditions, such as claustrophobia, 
can also impair the effective use of respirators by employees and may 
also cause, independent of physiological burdens, significant 
elevations in heart rate, blood pressure, and respiratory rate that can 
jeopardize the health of employees who are at high risk for 
cardiopulmonary disease (see 63 FR 1152, 1208-1209 (1/8/98)).
    In addition, safety problems created by respirators that limit 
vision and communication must always be considered. In some difficult 
or dangerous jobs, effective vision or communication is vital. Voice 
transmission through a respirator can be difficult, annoying, and 
fatiguing. In addition, movement of the jaw in speaking can cause 
leakage, thereby reducing the efficiency of the respirator and 
decreasing the protection afforded the employee. Skin irritation can 
result from wearing a respirator in hot, humid conditions. Such 
irritation can cause considerable distress to employees and can cause 
employees to refrain from wearing the respirator, thereby rendering it 
ineffective.
    These potential burdens placed on employees by the use of 
respirators were acknowledged in OSHA's revision of its respiratory 
protection standard, and are the basis for the requirement (29 CFR 
1910.134(e)) that employers provide a medical evaluation to determine 
the employee's ability to wear a respirator before the employee is fit 
tested or required to use a respirator in the workplace (see 63 FR at 
1152). Although experience in industry shows that most healthy 
employees do not have physiological problems wearing properly chosen 
and fitted respirators, nonetheless common health problems can cause 
difficulty in breathing while an employee is wearing a respirator.
    For these reasons, all OSHA substance-specific health standards 
have recognized and required employers to observe the hierarchy of 
controls, favoring engineering and work practice controls over 
respirators. And the Agency's adherence to the hierarchy of controls 
has been successfully upheld by the courts (see Section II, Pertinent 
Legal Authority for further discussion of these cases).
    Therefore, OSHA has decided to require the use of the long-
established hierarchy of controls in this standard. Because engineering 
and work practice controls are capable of reducing or eliminating a 
hazard from the workplace, while respirators protect only the employees 
who are wearing them and depend on the selection and maintenance of the 
respirator and the actions of employees, OSHA holds to the view that 
engineering and work practice controls offer more reliable and 
consistent protection to a greater number of employees, and are 
therefore preferable to respiratory protection. Thus, the Agency 
continues to conclude that engineering and work practice controls 
provide a more protective first line of defense than respirators and 
must be used first when feasible.
    The provisions related to engineering and work practice controls 
begin in paragraph (f)(2)(i). Paragraph (f)(2)(i)(A) of the proposed 
rule stated that, for each operation in a beryllium work area (i.e., 
any work area involving airborne beryllium exposure), the employer 
shall ensure that at least one of the following engineering and work 
practice controls is in place to minimize employee exposure: (1) 
Material and/or process substitution; (2) ventilated partial or full 
enclosures; (3) local exhaust ventilation at the points of operation, 
material handling, and transfer; or (4) process control, such as wet 
methods and automation. Under proposed paragraph (f)(2)(i)(B), an 
employer would be exempt from using the above controls to the extent 
that: (1) The employer can establish that such controls are not 
feasible; or (2) the employer can demonstrate that exposures are below 
the action level, using no fewer than two representative personal 
breathing zone samples taken 7 days apart, for each affected operation.
    Because OSHA recognized that these proposed provisions are not 
typical for OSHA standards, which usually require engineering controls 
only where exposures exceed the PEL(s), the Agency asked for comments 
on the potential benefits of including such provisions in the beryllium 
standard, the potential costs and burdens associated with them, and 
whether OSHA should include these provisions in the final standard (80 
FR 47789). In addition, the Agency examined and asked for comment on 
Regulatory Alternative #6, which would exclude the provisions of 
proposed paragraph (f)(2)(i) from the final standard.
    Comments on these provisions focused mainly on the trigger for 
proposed paragraph (f)(2)(i) or the action level exemption in proposed 
paragraph (f)(2)(i)(B)(2) and fell into one of two categories. The 
first group of stakeholders argued that the engineering and work 
practice controls requirement in proposed paragraph (f)(2)(i) was too 
broad. Specifically, they objected to the inclusion of a requirement 
for controls where exposures do not exceed the TWA PEL or STEL. For 
example, NGK argued that ``this provision essentially halves the PEL by 
requiring engineering controls above the action level'' (Document ID 
1663, p. 2). NGK asserted that engineering controls should only be 
required where exposures exceed the TWA PEL or STEL, concluding that 
the ``mandatory use of certain engineering controls'' should be removed 
(Document ID 1663, p. 4). Similarly, Ameren disagreed with the proposed 
requirement to use at least one engineering control in areas where, it 
stated, there may be only minimal exposures and thus no benefit to be 
gained from installing additional controls (Document ID 1675, p. 5).
    The second set of commenters argued that the engineering and work 
practice controls requirement in proposed paragraph (f)(2)(i) was too 
narrow. These commenters objected to the exemption in proposed 
paragraph (f)(2)(i)(B)(2), which exempted employers from using one of 
the controls listed in (f)(2)(i) to the extent that the employer could 
demonstrate that exposures are below the action level, using no fewer 
than two representative personal breathing zone samples taken 7 days 
apart, for each affected operation. USW commented that the only 
legitimate reasons not to require engineering controls below the action 
level are if such a requirement is technologically or economically 
infeasible (Document ID 1681, p. 10). The AFL-CIO and National COSH 
similarly recommended that the final standard require engineering and 
work practice controls wherever airborne beryllium is present (Document 
ID 1689, p. 11; 1690, p. 3). The AFL-CIO based their recommendation on 
the capacity of beryllium at very low concentrations to cause beryllium 
sensitization and its carcinogenicity (Document ID 1689, p. 12).
    OSHA has carefully reviewed the opinions and arguments of these 
commenters, and has concluded that the requirement to implement at 
least one form of exposure control on beryllium-releasing processes 
will serve to reduce the significant risk of both CBD and lung cancer 
remaining at the TWA PEL (see Section VII, Significance of Risk), and 
will also reduce the likelihood of exposures exceeding the PEL in the 
absence of any engineering or work practice control. OSHA therefore 
disagrees with Ameren's argument that the requirements of (f)(2)(i) 
will not benefit workers, and with NGK's position that engineering 
controls should not be required below the TWA

[[Page 2674]]

PEL and STEL. OSHA also disagrees with NGK's characterization of the 
list of controls provided in (f)(2)(i) as a ``mandatory use of certain 
engineering controls'' (Document ID 1663, p. 4). Rather, the list 
includes a broad range of possible approaches to eliminate, capture or 
control beryllium emissions at the source so as to reduce employees' 
exposure to airborne beryllium, and provides employers great 
flexibility in selection of at least one such approach where required 
by the standards.
    However, while the Agency upholds the importance of requiring at 
least one engineering or work practice control where operations release 
beryllium, it disagrees with comments that such controls should be 
required wherever there is airborne beryllium at any level. OSHA 
recognizes that a significant risk of developing beryllium-related 
adverse health effects remains at the action level. But the Agency 
finds that an exemption from the requirement to implement at least one 
of the controls listed in proposed paragraph (f)(2)(i)(A) when 
exposures are demonstrably below the action level strikes a reasonable 
balance between providing additional protection for employees who are 
at risk and the burdens associated with implementing controls that may 
provide little or no benefit (i.e., where airborne exposures are 
minimal). The action level serves as a reasonable and administratively 
convenient benchmark for a number of provisions in the standards (e.g., 
periodic exposure monitoring, medical surveillance); OSHA finds that 
the action level serves a comparable purpose with regard to the 
requirement to implement at least one of the controls listed in 
proposed paragraph (f)(2)(i)(A) as well.
    Moreover, as discussed in the NPRM, the inclusion of the 
engineering and work practice control provision in proposed paragraph 
(f)(2)(i)(A) addresses a concern regarding the proposed PEL. OSHA 
expects that day-to-day changes in workplace conditions might cause 
frequent excursions above the PEL in workplaces where periodic sampling 
indicates exposures are between the action level and the PEL. Normal 
variability in the workplace and work processes, such as workers' 
positioning or patterns of airflow, can lead to excursions above the 
PEL. Substitution or controls such as those outlined in proposed 
paragraph (f)(2)(i)(A) provide the most reliable means to control 
variability in exposure levels. And, as noted above, they have the 
added benefit of further reducing beryllium exposures to employees 
where such means are feasible, and so reducing the significant risk of 
beryllium-related adverse health effects associated with airborne 
exposures at the TWA PEL and the action level (see Section VII, 
Significance of Risk). In addition, OSHA finds that the exemption in 
proposed paragraph (f)(2)(i)(B)(2) will reduce the cost burden on 
employers with operations where measured exposures are below the action 
level, and therefore less likely to exceed the PEL in the course of 
typical exposure fluctuations. OSHA notes that this exemption is 
similar to a provision in 1,3-Butadiene (29 CFR 1910.1051), which 
requires an exposure goal program where exposures exceed the action 
level. Therefore, OSHA has retained the proposed provisions of 
paragraph (f)(2)(i) and the proposed exemptions. The Agency also 
revised the enumeration of the paragraphs for clarity in the final 
standards.
    OSHA has made a number of clarifying changes to the language of 
proposed paragraph (f)(2)(i), none of which is meant to change the 
meaning of the proposed language. First, OSHA revised the proposed 
language of (f)(2)(i)(A) (paragraph (f)(2)(i) in the final standards) 
by specifying that this provision applies to each operation in a 
beryllium work area ``that releases airborne beryllium.'' The proposed 
language could have been interpreted to require controls on operations 
that do not release airborne beryllium, if such operations happened to 
be performed in a beryllium work area; it was not OSHA's intent to 
require employers to apply controls to any operations that do not 
release beryllium. Second, OSHA added the term ``airborne'' preceding 
``exposure'' in proposed (f)(2)(i)(A) and (f)(2)(i)(B)(2) (paragraphs 
(f)(2)(i) and (f)(2)(ii)(B) in the final standards) to clarify the type 
of exposure addressed by these provisions. Third, OSHA removed the 
phrase ``engineering and work practice controls'' preceding the list of 
controls provided in proposed paragraph (f)(2)(i)(A) (paragraph 
(f)(2)(i) in the final standards) for brevity. Fourth, OSHA modified 
the language of proposed paragraph (f)(2)(i)(A) (paragraph (f)(2)(i) in 
the final standards) to require employers to ``reduce'', rather than 
``minimize'' airborne exposure because ``reduce'' is more consistent 
with the requirement; employers are not required to implement more than 
one such control unless exposures exceed the TWA PEL or STEL. OSHA has 
included a non-mandatory appendix presenting a non-exhaustive list of 
engineering controls employers may use to comply with paragraph 
(f)(2)(i) (see Appendix A).
    The fifth and sixth clarifying changes to proposed paragraph 
(f)(2)(i) address the types of control measures that are acceptable for 
complying with the provision. The Southern Company suggested that 
isolation/containment should be considered for inclusion in the listed 
controls in proposed paragraph (f)(2)(i)(A) (Document ID 1668, p. 5). 
OSHA agrees that isolation is an appropriate method of exposure 
control, and proposed paragraph (f)(2)(i)(A)(2) listed ``ventilated 
partial or full enclosures'', which are forms of isolation. Paragraph 
(f)(2)(i)(B) of the final standards indicates ``isolation, such as 
ventilated partial or full enclosures'' to make clear that alternative 
forms of isolation are also acceptable. In addition, USW and Materion 
recommended that proposed paragraph (f)(2)(i)(A)(3), which read ``local 
exhaust ventilation at the points of operation, material handling, or 
transfer'' be revised to read ``local exhaust ventilation such as at 
the points of operation, material handling, or transfer'' to broaden 
the applicability of the provision (Document ID 1680, p. 4). OSHA 
agrees that the suggested revision more accurately describes acceptable 
control measures, and has adopted the recommended change in the final 
standards (now designated as paragraph (f)(2)(i)(C)).
    The seventh and final clarifying change to proposed paragraph 
(f)(2)(i) pertains to the proposed requirement for employers to 
demonstrate that airborne exposures are below the action level using 
personal breathing zone samples taken 7 days apart. In response to a 
comment from Ameren Corporation, which stated that some operations are 
short in duration and taking samples precisely 7 days apart may not be 
possible (Document ID 1675, p. 5), OSHA changed the text of the 
standards to ``at least 7 days apart'', which was the Agency's 
intention.
    With these changes, final paragraph (f)(2)(i) of the general 
industry standard requires that, for each operation in a beryllium work 
area that releases airborne beryllium, the employer must ensure that at 
least one of the following is in place to reduce airborne exposure: (A) 
Material and/or process substitution; (B) isolation, such as ventilated 
partial or full enclosures; (C) local exhaust ventilation, such as at 
the points of operation, material handling, and transfer; or (D) 
process control, such as wet methods and automation. Final paragraph 
(f)(2)(ii) allows that an employer is exempt from using the above 
controls to the extent that: (A) The employer can establish that such 
controls are not feasible; or (B) the employer can demonstrate that 
airborne exposure is below the action level, using

[[Page 2675]]

no fewer than two representative personal breathing zone samples taken 
at least 7 days apart, for each affected operation.
    Final paragraph (f)(2)(i) of the construction and shipyard 
standards also requires employers to ensure that one of the four 
enumerated types of control is in place to reduce airborne exposure and 
exempts employers who can establish that such controls are not feasible 
or demonstrate that airborne exposure is below the action level, using 
no fewer than two representative personal breathing zone samples taken 
at least seven days apart, for each affected operation. However, the 
triggers in construction and shipyards differ from that in general 
industry: whereas the general industry standard requires employers to 
put one of the controls in place for each operation in a beryllium work 
area that releases airborne beryllium, the construction and shipyard 
standards do not require the establishment of beryllium work areas. In 
lieu of that trigger, the construction and shipyard provision requires 
the placement of a control where exposures are or can reasonably be 
expected to be at or above the action level. OSHA selected the action 
level as a trigger for this requirement because, as indicated above, 
the Agency finds that an exemption from the requirement to implement at 
least one of the controls is appropriate when exposures are below the 
action level.
    Congressman Robert C. Scott, Ranking Member of the House Committee 
on Education and the Workforce, recommended that the final standards 
should require abrasive blasting (the primary source of beryllium 
exposure in construction and maritime) to be conducted within 
containments whenever feasible (Document ID 1672, p. 4). OSHA agrees 
that containment is an effective approach to limit exposures outside of 
the blasting operation, and is protective of workers in nearby areas or 
performing ancillary activities. However, because abrasive blasting is 
performed in a wide variety of occupational settings and alternative 
methods of exposure control (for example, use of wet methods) may be 
effective in some settings, OSHA does not require the use of 
containment whenever feasible in blasting operations. Rather, paragraph 
(f)(2) is intended to provide employers flexibility to determine an 
appropriate approach to maintain airborne exposures below the TWA PEL 
and STEL and, in accordance with (f)(2)(i), reduce airborne exposures 
that exceed the action level.
    If exposures exceed the TWA PEL or STEL after the employer has 
implemented the control(s) required by paragraph (f)(2)(i), paragraph 
(f)(2)(iii) requires the employer to implement additional or enhanced 
engineering and work practice controls to reduce exposures to or below 
the PELs. For example, an enhanced engineering control may entail a 
redesigned hood on a local exhaust ventilation system to more 
effectively capture airborne beryllium at the source. The employer must 
use engineering and work practice controls, to the extent that such 
controls are feasible, to achieve the PELs.
    Whenever the employer demonstrates that it is not feasible to 
reduce exposures to or below the PELs using the engineering and work 
practice controls required by paragraphs (f)(2)(i) and (f)(2)(iii), 
however, paragraph (f)(2)(iv) requires the employer to implement and 
maintain engineering and work practice controls to reduce exposures to 
the lowest levels feasible and supplement these controls by using 
respiratory protection in accordance with paragraph (g) of this 
standard. As indicated previously, OSHA's long-standing hierarchy of 
controls policy was supported by a number of commenters (e.g., Document 
ID 1963, p. 12; 1655, pp. 8, 16; 1618, p. 8; 1689, p. 11; 1625, p. 6; 
1664, p. 6). Paragraphs (f)(2)(iii) and (f)(2)(iv) in the final 
standards are substantively consistent with the proposal, with minor 
changes to clarify that the provisions address only airborne exposures, 
and that paragraph (f)(2)(iii) applies to both the TWA PEL and STEL.
    Finally, paragraph (f)(3) of the proposed rule would have 
prohibited the employer from rotating workers to different jobs to 
achieve compliance with the PELs. As explained in the NPRM, worker 
rotation can potentially reduce exposures to individual employees, but 
increases the number of employees exposed. Because OSHA has determined 
that exposure to beryllium can result in sensitization, CBD, and 
cancer, the Agency considers it inappropriate to place more workers at 
risk. Since no absolute threshold has been established for 
sensitization or resulting CBD or the carcinogenic effects of 
beryllium, it was considered prudent to limit the number of workers 
exposed at any concentration by prohibiting employee rotation.
    This provision is not a general prohibition of worker rotation 
wherever workers are exposed to beryllium. It is only intended to 
restrict its use as a compliance method for the PEL (e.g., by exposing 
twice as many workers to beryllium for half the amount of time). It is 
not intended to bar the use of worker rotation as deemed appropriate by 
the employer in activities such as to provide cross-training or to 
allow workers to alternate physically demanding tasks with less 
strenuous activities. This same provision is included in the standards 
for asbestos (29 CFR 1910.1001 and 29 CFR 1926.1101), chromium (VI) (29 
CFR 1910.1026), 1,3-butadiene (29 CFR 1910.1051), methylene chloride 
(29 CFR 1910.1052), and cadmium (29 CFR 1910.1027 and 29 CFR 
1926.1127), and methylenedianiline (29 CFR 1910.1050 and 29 CFR 
1926.60). OSHA did not receive any objections to or comments on this 
provision and includes it in all three of the final standards to limit 
the number of employees at risk.

(g) Respiratory Protection

    Paragraph (g) of the standard establishes the requirements for the 
use of respiratory protection. Specifically, this paragraph requires 
that employers provide respiratory protection at no cost to the 
employee and ensure that employees utilize such protection during the 
situations listed in paragraph (g)(1). As detailed in paragraph (g)(2), 
the selection and use of required respiratory protection must comply 
with OSHA's Respiratory Protection standard (29 CFR 1910.134). In 
addition, paragraph (g)(3) requires employers to provide employees 
entitled to respiratory protection with a powered air-purifying 
respirator (PAPR) instead of a negative pressure respirator, if a PAPR 
is requested by the employee.
    Paragraph (g)(1) requires employers to ensure that each employee 
required to use a respirator does so. Accordingly, simply providing 
respirators to employees will not satisfy an employer's obligations 
under paragraph (g)(1) unless the employer also ensures that each 
employee properly wears the respirator when required. Paragraph (g)(1) 
also requires employers to provide required respirators at no cost to 
employees. This requirement is consistent with the OSH Act's holding 
employers principally responsible for complying with OSHA standards, 
with similar provisions under other OSHA standards, and specifically 
with OSHA's Respiratory Protection standard, which also requires 
employers to provide required respiratory protection to employees at no 
cost (29 CFR 1910.134(c)(4)).
    Paragraph (g)(1) requires appropriate respiratory protection during 
certain enumerated situations. Paragraph (g)(1)(i) requires respiratory 
protection during the installation and implementation of feasible 
engineering

[[Page 2676]]

and/or work practice controls where airborne exposures exceed or can 
reasonably be expected to exceed the TWA PEL or STEL. The Agency 
understands that changing workplace conditions may require employers to 
install new engineering controls, modify existing controls, or make 
other workplace changes to reduce employee exposure to or below the TWA 
PEL and STEL. In these cases, the Agency recognizes that installing 
appropriate engineering controls and implementing proper work practices 
may take time, and that exposures may be above the PELs until such work 
is completed. See paragraph (g)(1)(ii), discussed below. During this 
time, employers must demonstrate that they are making prompt, good 
faith efforts to obtain and install appropriate engineering controls 
and implement effective work practices, and to evaluate their 
effectiveness for reducing airborne exposure to beryllium to or below 
the TWA PEL and STEL.
    Paragraph (g)(1)(ii) requires the provision and use of respiratory 
protection during any operations, including maintenance and repair 
operations and other non-routine tasks, when engineering and work 
practice controls are not feasible and airborne exposures exceed or can 
reasonably be expected to exceed the TWA PEL or STEL. OSHA included 
this provision because the Agency realizes that certain operations may 
take place when engineering and work practice controls are not 
operational or capable of reducing exposures to or below the TWA PEL 
and STEL. The installation of necessary engineering controls, covered 
by paragraph (g)(1)(i), is a particular example of this more general 
circumstance. For another example, during maintenance and repair 
operations, engineering controls may lose their full effectiveness or 
require partial or total breach, bypass, or shutdown. Under these 
circumstances, if exposures exceed or can reasonably be expected to 
exceed the TWA PEL or STEL, the employer must provide and ensure the 
use of respiratory protection.
    Paragraph (g)(1)(iii) requires the provision and use of respiratory 
protection where beryllium exposures exceed the TWA PEL or STEL, even 
after the employer has installed and implemented all feasible 
engineering and work practice controls. OSHA anticipates that there 
will be some situations where feasible engineering and work practice 
controls are insufficient to reduce airborne exposure to beryllium to 
levels at or below the TWA PEL or STEL (see this preamble at section 
VIII.D, Technological Feasibility). In such cases, the standard 
requires that employers implement and maintain engineering and work 
practice controls to reduce exposure to the lowest levels feasible and 
supplement those controls by providing respiratory protection 
(paragraph (f)(2)(iv)). OSHA emphasizes that even where employers are 
able to demonstrate that engineering and work practice controls are not 
feasible or sufficient to reduce exposure to levels at or below the TWA 
PEL and STEL the use of respirators to achieve the PELs is only a 
supplement, and not a substitute for, such ``lowest level feasible'' 
controls.
    Paragraph (g)(1)(iv) requires the provision and use of respiratory 
protection in emergencies. Under the final standards, an emergency is 
defined as ``any uncontrolled release of airborne beryllium'' (see 
paragraph (b) of the standards). During emergencies, engineering 
controls may not be functioning fully or may be overwhelmed or rendered 
inoperable. Also, emergencies may occur in areas where there are no 
engineering controls. The standard recognizes that the provision of 
respiratory protection is critical in emergencies, as beryllium 
exposures may be very high and engineering controls may not be adequate 
to control an unexpected release of airborne beryllium.
    Boeing suggested limiting requirement of respirator use triggered 
by this definition of emergency, as it would not be practical to 
provide respirators to and train the large number of employees in the 
event of a fire or explosion (Document ID 1667, pp. 4-5). OSHA wishes 
to clarify that paragraph (g)(1)(iv) is not intended to require 
employers to provide respirators to all employees who may pass through 
areas where beryllium-releasing processes are housed, in the event of a 
general evacuation due to an event such as a fire or explosion. Rather, 
in the event that an uncontrolled release of beryllium occurs 
(f)(1)(iv) requires employers to provide respirators to employees who 
work in the vicinity of beryllium-releasing processes and employees who 
respond to such an emergency, because these employees will be in the 
immediate vicinity of an uncontrolled release.
    Paragraph (g)(1)(v) requires the provision and use of respiratory 
protection when an employee who is eligible for medical removal under 
paragraph (l)(1) chooses to remain in a job with airborne exposure at 
or above the action level. As explained in the summary and explanation 
of paragraph (l), Medical Removal Protection, an employee who is 
diagnosed with CBD or confirmed positive for beryllium sensitization 
and who works in a job with airborne exposure at or above the action 
level is eligible for medical removal protection (MRP). An employee who 
is eligible for MRP may choose medical removal from jobs with exposure 
at or above the action level, or may choose to remain in a job with 
exposure at or above the action level provided that the employee uses 
respiratory protection in accordance with the provisions of this 
paragraph (g), Respiratory Protection. This provision was not included 
in the proposed standard. However, OSHA received comments emphasizing 
the importance of reducing or eliminating the exposure of sensitized 
employees. For example, National Jewish Health (NJH) stated that 
``removal from exposure is the best form of prevention'' (Document ID 
1664, p. 4). The United Steelworkers (USW) commented that workers who 
are sensitized to beryllium or are in the early stages of chronic 
beryllium disease can significantly benefit from a reduction in their 
exposure to beryllium, based on evidence reviewed in Section VIII 
(Significant Risk) of the NPRM (Document ID 1963, p. 13). OSHA is 
cognizant that employees who are MRP-eligible (i.e., confirmed positive 
for beryllium sensitization or diagnosed with CBD) may decide not to 
take medical removal protection (MRP) or otherwise alert the employer 
to their condition. Therefore, OSHA included paragraph (g)(1)(v) in the 
final standards to provide these employees access to respiratory 
protection if their airborne exposures are expected to be at or above 
the action level. While not as protective as removal from any beryllium 
exposure, NJH's comments indicate that such protection has the 
potential to delay or avoid the onset of CBD in sensitized individuals 
and to mitigate or retard the effects of CBD in employees who are in 
the early stages of CBD. Because OSHA has not made a finding of 
significant risk at exposure levels below the action level, OSHA has 
chosen not to require provision and use of respirators for employees 
exposed below the action level, including sensitized employees. 
However, OSHA does not assume the absence of risk below the action 
level, especially to this particularly vulnerable population Indeed, it 
is the Agency's recommendation that employers voluntarily provide such 
protection to employees who self-identify that they have tested 
positive for sensitization if they ask for it and will be exposed to 
beryllium below the action level, or for whom a licensed physician has

[[Page 2677]]

recommended such protection. OSHA intends to issue additional guidance 
regarding non-mandatory respiratory protection for this group of at-
risk employees along with other compliance guidance in connection with 
these standards.
    OSHA received no comments objecting to paragraph (g)(1). Therefore, 
except for minor edits for clarity explained in the introduction to 
this section, it is unchanged from the proposal.
    Whenever respirators are used to comply with the requirements of 
this standard, paragraph (g)(2) requires that the employer implement a 
comprehensive written respiratory protection program in accordance with 
OSHA's Respiratory Protection standard (29 CFR 1910.134). The 
Respiratory Protection standard is designed to ensure that employers 
properly select and use respiratory protection in a manner that 
effectively protects exposed employees. Under 29 CFR 1910.134(c)(1), 
the employer's respiratory protection program must include:
     Procedures for selecting appropriate respirators for use 
in the workplace;
     Medical evaluations of employees required to use 
respirators;
     Respirator fit testing procedures for tight-fitting 
respirators;
     Procedures for proper use of respirators in routine and 
reasonably foreseeable emergency situations;
     Procedures and schedules for cleaning, disinfecting, 
storing, inspecting, repairing, discarding, and otherwise maintaining 
respirators;
     Procedures to ensure adequate quality, quantity, and flow 
of breathing air for atmosphere-supplying respirators;
     Training of employees in the respiratory hazards to which 
they are potentially exposed during routine and emergency situations, 
and in the proper use of respirators; and
     Procedures for evaluating the effectiveness of the 
program.
    In accordance with OSHA's policy to avoid duplication and to 
establish regulatory consistency, paragraph (g)(2) incorporates by 
reference the requirements of 29 CFR 1910.134 rather than reprinting 
those requirements in this standard. OSHA notes that the respirator 
selection provisions in 29 CFR 1910.134 include requirements for 
Assigned Protection Factors (APFs) and Maximum Use Concentrations 
(MUCs) that OSHA adopted in 2006 (71 FR 50122 (Aug. 24, 2006)). The 
APFs and MUCs provide employers with critical information for the 
selection of respirators to protect workers from exposure to 
atmospheric workplace contaminants. In incorporating the Respiratory 
Protection standard by reference, OSHA intends that any future change 
to that standard will automatically apply to this standard as well. As 
appropriate, OSHA will note the intended effect on this standard (and 
other standards) in either the text or preamble of the amended 
Respiratory Protection standard, but does not anticipate the need for a 
conforming amendment to this standard.
    Moreover, the situations in which respiratory protection is 
required under these standards are generally consistent with the 
requirements in other OSHA health standards, such as those for chromium 
(VI) (29 CFR 1910.1026), butadiene (29 CFR 1910.1051), and methylene 
chloride (29 CFR 1910.1052). Those standards and this standard also 
reflect the Agency's traditional adherence to a hierarchy of controls 
in which engineering and work practice controls are preferred to 
respiratory protection (see the discussion of paragraph (f) earlier in 
this section of the preamble).
    OSHA received no comments objecting to paragraph (g)(2). OSHA added 
language to clarify that both the selection and use of respiratory 
protection must be in accordance with the Respiratory Protection 
standard. Other than that change and some minor edits for clarity, 
paragraph (g)(2) is unchanged from the proposal.
    Paragraph (g)(3) requires the employer to provide a powered air-
purifying respirator (PAPR) instead of a negative pressure respirator 
at no cost to the employee when an employee entitled to respiratory 
protection under (g)(1) of these standards requests a PAPR. The 
employee may select any form of PAPR (half mask, full facepiece, 
helmet/hood, or loose fitting facepiece), so long as the PAPR is 
selected and used in compliance with the Respiratory Protection 
standard (29 CFR 1910.134) and provides adequate protection to the 
employee in accordance with paragraph (g)(2) of these standards. For 
example if an employee is using a half mask respirator with an APF of 
10 then a loose fitting PAPR with an APF of 25 would be an appropriate 
alternative. However, if the employee is required to use a full face 
respirator with an APF of 50 then the appropriate PAPR alternative 
would be a tight fitting PAPR.
    The requirement to provide a PAPR upon request of the employee 
(paragraph (g)(3)) is similar to provisions in several previous OSHA 
standards, including inorganic arsenic (CFR 1910.1018), lead (CFR 
1910.1025), cotton dust (1910.1043), asbestos (CFR 1910.1001), and 
cadmium (1910.1027). In promulgating these standards, OSHA cited 
several reasons why PAPRs can provide employees with better protection 
than negative pressure respirators, including superior reliability and 
comfort, reduced interference with work processes, and superior 
protection, especially for employees who cannot obtain a good face fit 
with a negative pressure respirator (e.g., 43 FR 19584, 19619; 43 FR 
52952, 52993; 51 FR 22612, 22698). Based on these considerations, OSHA 
required employers to provide PAPRs upon request to facilitate 
consistent and effective use of respiratory protection by employees 
when needed, and particularly in situations where respirator use is 
required for long periods of time (see 43 FR 52952, 52993; 51 FR 22612, 
22698).
    The PAPR provision was not included in the proposed standard. 
However, OSHA solicited public comment on the issue of whether 
employers should be required to provide employees with PAPRs upon 
request. During the public comment period and public hearing for the 
beryllium NPRM, several commenters supported a requirement for 
employers to provide a PAPR upon an employee's request, including the 
Sampling and Analysis Subcommittee Task Group of the Beryllium Health 
and Safety Committee (BHSC Task Group) (Document ID 1655, p. 8), a 
representative of the Department of Defense (Document ID 1684, 
Attachment 2, p. 4), ORCHSE Strategies (ORCHSE) (Document ID 1691, p. 
4), NJH (Document ID 1664, p. 5), Kimberly-Clark Professional (KCP) 
(Document ID 1676, p. 3), and North America's Building Trades Unions 
(NABTU) (Document ID 1679, p. 9). Dr. Lisa Maier of the NJH stated, 
``The beryllium standard should require employers to provide PAPRs when 
requested by the employee. We have consulted with clients on 
respiratory protection for beryllium exposure and found that employees 
are more likely to comply with respiratory protection requirements when 
they have an option regarding the type of respirator they wear'' 
(Document ID 1664, p. 7). Joann Kline of KCP similarly commented that 
``[f]it, style, comfort and worker preference are significant factors 
in the effectiveness of protection . . . Allowing a worker to choose 
PPE, including PAPRs, makes it much more likely that it will be 
comfortable and accepted. PAPRs in particular add to worker comfort, 
especially in hot environments, because of the flow of

[[Page 2678]]

fresh air on and around the wearer's face'' (Document ID 1676, p. 3).
    Likewise, ORCHSE commented that ``[c]omfort is a significant factor 
in the ability of employees to wear respiratory protection 
consistently, especially during an entire work shift, and/or under hot 
or stressful conditions. Employees experiencing discomfort, which is 
likely with negative-pressure respirators, are more apt to remove or 
otherwise compromise the effectiveness of their respirators while in 
the workplace. It is thus prudent for employers to provide the type of 
respiratory protection employees are more likely to use consistently 
and correctly'' (Document 1691, p. 4). Chris Trahan of NABTU cited the 
susceptibility of some employees to beryllium sensitization as a reason 
to require employers to provide PAPRs to employees upon their request 
(Document ID 1679, p. 9). As discussed in Section V, some individuals 
are genetically susceptible to beryllium-induced sensitization and CBD, 
and may develop these conditions from exposure to beryllium at levels 
well below the PEL and STEL included in this standard. Genetically 
susceptible individuals may therefore benefit from the enhanced 
protection provided by a PAPR, which have APFs ranging from 50 to 1000 
depending on type.
    OSHA also received comments opposing a requirement for employers to 
provide PAPRs upon employee request. For example, Julie A. Tremblay of 
3M commented that the incorporation of the Respiratory Protection 
Standard (29 CFR 1910.134) by reference, particularly paragraph 
(d)(1)(i) and paragraph (e)(6)(ii), adequately addresses issues of 
appropriate respirator selection (Document ID 1625, Attachment 1, p. 
2). 1910.134(d)(1)(i) directs the employer to select and provide an 
appropriate respirator based on the respiratory hazard(s) to which the 
worker is exposed and workplace and user factors that affect respirator 
performance and reliability. 1910.134(e)(6)(ii) states that if the 
PLHCP finds a medical condition that may place the employee's health at 
increased risk if a negative pressure respirator is used, the employer 
shall provide a PAPR if the PLHCP's medical evaluation finds that the 
employee can use such a respirator; however, if a subsequent medical 
evaluation finds that the employee is medically able to use a negative 
pressure respirator, then the employer is no longer required to provide 
a PAPR. OSHA received a similar comment from Charlie Shaw of Southern 
Company (Document ID 1668, p. 5). Two other commenters, William Orr of 
Ameren Corporation (Ameren) and Daniel Shipp of the International 
Safety Equipment Association (ISEA), stated that respiratory protection 
selection should be based primarily on the required APF given the 
exposure concentration of beryllium (Document ID 1675, p. 12; 1682, p. 
1). However, Mr. Orr also commented that workers handling beryllium-
containing materials should have access to loose fitting respirators 
for added dermal protection so long as the respirator's APF is 
appropriate to the work performed (Document ID 1675, p. 12). Mr. Orr 
also argued that a PAPR option is not necessary in the beryllium 
context: ``A PAPR should only be required if the exposure level 
dictates that the protection of a PAPR is necessary. The level of 
protection in the asbestos standard (CFR 1910.1001) is applicable to 
protection from airborne fibers with the unique characteristics of 
asbestos. The level of protection for beryllium should closer resemble 
particulate metal protection such as seen in the standards for metals 
such as lead or hexavalent chromium'' (Document ID 1675, p. 12). (As 
discussed above, the Agency notes that the OSHA lead standard (CFR 
1910.1025) does include a PAPR requirement, as does the standard for 
cadmium (1910.1027), also a metal).
    Finally, OSHA received a comment from USW (Document ID 1681) 
recommending that OSHA limit the type of PAPR provided under (g)(3) to 
types with close-fitting facepieces. USW stated that ``[t]he types with 
close-fitting face pieces can be quite effective, but it is easy to 
over breathe other types, especially the loose-fitting helmets'' 
(Document ID 1681, p. 22).
    OSHA has carefully considered all comments received on the issue of 
requiring employers to provide employees with PAPRs upon request, and 
agrees with Dr. Maier of NJH, Ms. Trahan of NABTU, and other commenters 
who have argued that providing employees a choice in selection of 
respiratory protection will improve the effectiveness of respiratory 
protection in reducing risk of sensitization and disease from 
occupational beryllium exposure. While the provisions of the 
Respiratory Protection standard provide important baseline requirements 
appropriate to all situations where respiratory protection is required, 
as discussed above, OSHA recognizes that provisions beyond those of the 
Respiratory Protection standard are appropriate in some circumstances 
to ensure that required respiratory protection is used on a consistent 
basis and as effectively as possible. As discussed in section V, Health 
Effects and section VI, Risk Assessment of this preamble, beryllium 
sensitization and CBD can result from small, short-term beryllium 
exposure in some individuals. Accordingly, consistent and effective 
respirator usage has played an important role in minimizing risk among 
workers in occupational settings such as beryllium processing, where it 
has proven difficult to reduce airborne exposures below 0.2 [micro]g/
m\3\ using engineering controls. Based on this evidence, OSHA concludes 
that provision of PAPRs at the employee's request will provide 
employees necessary protection beyond that found in provisions of the 
Respiratory Protection standard, where provision of a PAPR for reasons 
of fit, comfort and reliability is at the employer's discretion. 
Contrary to the comments of Mr. Orr and Mr. Shipp cited above, the 
evidence that beryllium sensitization can result from short-term, low-
level airborne beryllium exposure supports the provision of PAPRs upon 
request rather than relying on APF alone. Finally, while OSHA agrees 
with the USW that PAPRs with close-fitting facepieces can be more 
effective than loose-fitting helmets, the Agency recognizes that loose-
fitting helmets may be required in certain work conditions or due to 
difficulty achieving proper fit for some workers. Therefore, the 
standards allow for selection of any type of PAPR, but require that the 
PAPR selected provide adequate protection to the employee in accordance 
with the Respiratory Protection standard.

(h) Personal Protective Clothing and Equipment

    Paragraph (h) of the standards requires employers to provide 
employees with personal protective clothing and equipment (PPE) where 
employee exposure exceeds or can reasonably be expected to exceed the 
TWA PEL or STEL and where there is reasonable expectation of dermal 
contact with beryllium. Paragraph (h) also contains provisions for the 
safe removal, storage, cleaning, and replacement of the PPE required by 
the standards. To protect employees from adverse health effects, these 
PPE requirements are intended to prevent dermal exposure to beryllium, 
and prevent the accumulation of airborne beryllium on clothing, shoes, 
and equipment, which can result in additional inhalation exposure. The 
requirements also protect employees in other work areas, as well as 
employees and other individuals outside the workplace, from exposures 
that could occur if contaminated clothing were to transfer beryllium to 
those areas. The standards require the employer to

[[Page 2679]]

provide PPE at no cost to employees, and to ensure that employees use 
the provided PPE in accordance with the written exposure control plan 
as described in paragraph (f)(1) of these standards and OSHA'S Personal 
Protective Equipment standards (29 CFR part 1910 Subpart I, 29 CFR part 
1926 Subpart E, and 29 CFR part 1915 Subpart I). PPE, as used in the 
description of paragraph (h), refers to both clothing and equipment 
used to protect an employee from either airborne exposure to or dermal 
contact with beryllium. The requirements in paragraph (h) are the same 
in general industry, construction, and shipyards, except for the 
references to OSHA's Personal Protective and Life Saving Equipment 
standard for construction (29 CFR part 1926 Subpart E) in the 
construction standard and OSHA's Personal Protective Equipment standard 
for shipyards (29 CFR part 1915 Subpart I) in the shipyard standard. 
Requiring PPE is consistent with section 6(b)(7) of the OSH Act, which 
states that, where appropriate, standards shall prescribe suitable 
protective equipment to be used in connection with hazards (29 U.S.C. 
655(b)(7)). The requirements for PPE are based upon widely accepted 
principles and conventional practices of industrial hygiene, and are 
similar to the PPE requirements in other OSHA health standards, such as 
chromium (VI) (29 CFR 1910.1026), lead (29 CFR 1910.1025), cadmium (29 
CFR 1910.1027), and methylenedianiline (MDA; 29 CFR 1910.1050).
    The final provisions in paragraph (h) are the same as the proposed 
provisions, with several exceptions. First, in the final standards OSHA 
has used the term ``contact'' instead of ``exposure'' where the 
standards refer to the skin, so as to distinguish clearly between 
exposure via the skin (dermal route) and the inhalation route of 
exposure in the regulatory text. Second, OSHA has deleted the proposed 
provision in paragraph (h)(1)(ii) requiring PPE where employees' skin 
may become ``visibly contaminated'' with beryllium and instead will 
require use of PPE whenever there is a reasonable expectation of dermal 
contact with beryllium. Third, the final standards' requirements for 
provision and use of PPE apply where employees may reasonably be 
expected to have dermal contact with beryllium regardless of whether 
the beryllium is in a soluble or poorly soluble (sometimes called 
`insoluble') form, instead of just soluble beryllium compounds as in 
proposed paragraph (h)(1)(iii). Fourth, paragraph (h)(2)(iii) now 
requires that storage facilities for PPE prevent cross contamination. 
Finally, OSHA has made a few minor changes to clarify or streamline the 
regulatory text. The comments and OSHA's reasoning leading to these 
changes are discussed below.
    Paragraph (h)(1)(i) requires the provision and use of PPE for 
employees exposed to any form of airborne beryllium above the TWA PEL 
or STEL, or where exposure can reasonably be expected to exceed the TWA 
PEL or STEL, because such exposure would likely result in skin contact 
by means of deposits on employees' skin or clothes or on surfaces 
touched by employees. The term ``reasonably be expected'' is intended 
to convey OSHA's intent that the requirement for provision and use of 
PPE is defined by an employee's potential exposure, not by any 
particular individual's actual exposure. For example, if one employee's 
exposure assessment results indicate that the employee's exposure is 
above the PEL, it would be reasonable to expect that another employee 
doing a similar task would have exposures above the PEL and thus would 
require PPE.
    Paragraph (h)(1)(ii) requires the provision and use of PPE where 
employees are reasonably expected to have dermal contact with 
beryllium. This requirement applies to beryllium-containing dust, 
liquid, abrasive blasting media, and other beryllium-containing 
materials that can penetrate the skin, regardless of the level of 
airborne exposure. It is not intended to apply to dermal contact with 
solid objects (for example, tools made of beryllium alloy) unless the 
surface of such objects is contaminated with beryllium in a form that 
can penetrate the skin. Dermal contact with beryllium can result in 
absorption of beryllium through the skin and induce sensitization, a 
necessary precursor to CBD, as discussed further in Health Effects, 
section V.A.2.
    As mentioned above, the requirements of paragraph (h)(1) of the 
final standards differ from those of the proposed standard. Paragraph 
(h)(1) of the proposed standard required employers to provide employees 
with PPE where employee exposure exceeds or can reasonably be expected 
to exceed the TWA PEL or STEL; where work clothing or skin may become 
visibly contaminated with beryllium, including during maintenance and 
repair activities or during non-routine tasks; and where employees' 
skin is reasonably expected to be exposed to soluble beryllium 
compounds. In the NPRM, OSHA discussed concerns with the proposed 
requirements, requested public comment on proposed paragraph (h)(1), 
and presented Regulatory Alternative 13. Alternative 13, as described 
by OSHA, would replace the requirement for PPE where there is visible 
contamination with a requirement for appropriate PPE wherever there is 
potential for skin contact with beryllium or beryllium-contaminated 
surfaces. OSHA requested comments on this alternative, including the 
benefits and drawbacks of a broader PPE requirement and any relevant 
data or studies the Agency should consider. As discussed below, OSHA 
adopted Regulatory Alternative 13 in the final standard based on 
comments received in the public comment period and public hearing and 
on the scientific evidence in the record.
    The proposed requirement to use PPE where clothing or skin may 
become ``visibly contaminated'' with beryllium was a departure from 
most OSHA standards, which do not specify that contamination must be 
visible in order for PPE to be required. For example, the standard for 
chromium (VI) (29 CFR 1910.1026) requires the employer to provide 
appropriate PPE where a hazard is present or is likely to be present 
from skin or eye contact with chromium (VI). The lead (29 CFR 
1910.1025) and cadmium (29 CFR 1910.127) standards require PPE where 
employees are exposed above the PEL or where there is potential for 
skin or eye irritation regardless of airborne exposure level. In the 
case of MDA (29 CFR 1910.1050), PPE must be provided where employees 
are subject to dermal exposure to MDA, where liquids containing MDA can 
be splashed into the eyes, or where airborne concentrations of MDA are 
in excess of the PEL. While OSHA's language regarding PPE requirements 
varies somewhat from standard to standard, previous standards emphasize 
the potential for contact with a substance that can cause health 
effects via dermal exposure, and do not condition the provision and use 
of PPE on visible contamination with the substance.
    Nearly all comments OSHA received on the proposed requirement for 
employers to provide PPE where work clothing or skin may become 
``visibly contaminated'' with beryllium stated that this provision 
would not be sufficiently protective of beryllium-exposed workers 
(Document ID 1615, p. 8; 1625, p. 2; 1655, pp. 9-10; 1658, p. 6; 1664, 
pp. 3-4; 1671, Attachment 1, p. 7; 1676, pp. 2-3; 1677, p. 2; 1679, p. 
9; 1685, p. 3; 1688, p. 3; 1689, p. 12; 1691, pp. 4-5). Dr. Paul 
Schulte of NIOSH stated that ``visibly contaminated'' is not

[[Page 2680]]

an appropriate trigger for PPE requirements, citing evidence from Day 
et al. (2007, Document ID 1548) that biologically relevant amounts of 
beryllium can accumulate on the skin without becoming visible, and 
evidence from Armstrong et al. (2014, Document ID 0502) that work 
surfaces in beryllium manufacturing facilities are typically 
contaminated with beryllium even where airborne exposures are low 
(Document ID 1671, Attachment 1, p. 7). Dr. Lisa Maier of NJH 
commented, `` `[v]isibly contaminated' is not an appropriate trigger 
for PPE requirements; as noted by OSHA, `small particles may not be 
visible to the naked eye' and as such PPE to protect from skin exposure 
should be worn for all tasks where there is potential for skin contact 
with beryllium particles'' (Document ID 1664, pp. 3-4). Dr. Atul 
Malhotra of the American Thoracic Society (ATS) stated that ``the use 
of `visibly contaminated' as a trigger for PPE is problematic for 
multiple reasons . . . visual inspection cannot accurately estimate the 
amount of beryllium or its chemical state. Use of `visibly 
contaminated' is also not supported by the literature cited, which 
demonstrates skin exposure and sensitization in work settings 
considered clean, with no visible contamination'' (Document ID 1688, p. 
3).
    In addition, some comments and testimony indicated that the term 
``visibly contaminated'' is ambiguous and likely to be confusing to 
employers and others responsible for implementing the PPE requirements 
of the beryllium standards. According to Mr. Daniel Shipp of the 
International Safety Equipment Association (ISEA), `` `[v]isible 
contamination' is not an appropriate trigger for PPE. This term is too 
subjective to be useful'' (Document ID 1682, p. 2).
    Based on its evaluation of the evidence in the record, OSHA agrees 
with the commenters on these points. The Agency has determined that 
contact with and absorption of even minute amounts of beryllium through 
the skin may cause beryllium sensitization (see section V, Health 
Effects, subsection 2, Dermal Exposure) and that a ``visibly 
contaminated'' standard could allow for too much dermal exposure and be 
insufficiently protective of workers. In addition, as discussed in 
Section VI, Risk Assessment, studies conducted jointly by NIOSH and 
Materion Corporation (Materion) showed that a comprehensive approach to 
PPE is key to reducing risk of sensitization even in facilities that 
implement stringent exposure control and housekeeping programs (See 
Section VI. Risk Assessment).
    Materion, whose joint submission with the United Steelworkers union 
of a proposed standard was the basis for the ``visibly contaminated'' 
language, discussed the use of the term in its post hearing comments 
(Document ID 1808, pp. 4-5). Materion indicated that the typical 
workplace cannot reasonably be expected to measure skin or surface 
contamination for the purpose of determining whether PPE use is 
necessary. Even if this was done, ``such measures are lagging metrics 
which, by definition, are post potential exposure'' (Document ID 1808, 
p. 5). Materion believed that a standard relying on visual cues to 
check for contamination is easily understood by workers and management 
and is a useful part of a beryllium worker protection model.
    OSHA has considered Materion's comments supporting use of the terms 
``visibly contaminated'' and ``visibly clean.'' The Agency finds that 
the provision in the final standard requiring PPE wherever there is a 
reasonable expectation of any dermal contact with beryllium more 
clearly conveys to employers the idea that the provision and use of PPE 
should be used as a precaution against potential dermal contact. OSHA 
believes the proposed requirements for PPE where clothing or skin may 
become ``visibly contaminated'' may be reasonably interpreted by 
employers to mean that PPE is only required where work processes 
release quantities of beryllium sufficient to create deposits visible 
to the naked eye. If this were the case, employers' provision of PPE to 
employees would certainly lag behind potential exposure, if such 
provision occurs at all. Additionally, National Jewish Health agreed 
with OSHA that small particles may not be visible to the naked eye 
(Document ID 1664 p. 4). Therefore, OSHA has determined that the 
language of the final standards is more easily understood and applied 
so as to preempt dermal contact with beryllium and therefore prevent 
adverse health effects caused by dermal contact, such as beryllium 
sensitization. OSHA also notes that employers are not required to 
measure skin or surface contamination under the provisions governing 
the use and handling of PPE. Thus the Agency concludes that the changes 
made to the proposed rule adequately address Materion's concerns and 
more closely express OSHA's intent.
    OSHA also requested comment on proposed paragraph (h)(1)'s 
requirement for PPE to limit dermal contact with soluble beryllium 
compounds, and whether employers should also be required to provide PPE 
to limit dermal contact with poorly soluble (referred to as insoluble 
in the proposal) forms of beryllium. The solubility of beryllium was a 
consideration in the PPE requirements of the proposed standard because 
dermal absorption may occur at a greater rate for soluble beryllium 
than for poorly soluble beryllium.
    Comments submitted on the topic of beryllium solubility and dermal 
absorption indicate that beryllium in poorly soluble forms, as well as 
soluble forms, can be absorbed through the skin and cause sensitization 
(Document ID 1664, p. 3; 1671, p. 7; 1688, p. 3). Dr. Schulte of NIOSH 
stated that PPE should be required to protect against exposure to 
poorly soluble compounds as these forms can produce soluble beryllium 
ions in sweat, and because beryllium in any form can enter the body 
through minor abrasions, which are commonly found on the skin of 
industrial employees (Document ID 1671, p. 7). (See further discussion 
in Section V, Health Effects, subsection 2, Dermal Exposure.)
    General comments on whether OSHA should adopt more comprehensive 
PPE requirements similar to those specified in Regulatory Alternative 
13 were, by and large, supportive. The Sampling and Analysis 
Subcommittee Task Group of the Beryllium Health and Safety Committee 
(BHSC Task Group) (Document ID 1655, pp. 16-17), NJH (Document ID 1664, 
pp. 3-4, 7), NIOSH (Document ID 1671, p. 7), Kimberly-Clark 
Professional (KCP) (Document ID 1676, p. 2), the DOE's National 
Supplemental Screening Program (NSSP) (Document ID 1677, p. 2), ISEA 
(Document ID 1682, p. 2), the American College of Occupational and 
Environmental Medicine (ACOEM) (Document ID 1685, p. 3), ATS (Document 
ID 1688, p. 3), the AFL-CIO (Document ID 1689, p. 12), and ORCHSE 
Strategies (ORCHSE) (Document ID 1691, p. 4) all urged OSHA to adopt 
Regulatory Alternative 13 or similar requirements. The BHSC Task Group 
commented that its experience at Department of Energy Sites ``strongly 
suggests that this alternative should be adopted, since the concept of 
`visibly contaminated' is not sufficient to ensure an absence of such 
contamination on the skin'' (Document ID 1655, p. 17). In addition, the 
BHSC Task Group noted that elimination of dermal contact with beryllium 
helps reduce the risk of sensitization (Document ID 1655, p. 17).
    Similarly, several commenters indicated that a more appropriate 
trigger for the provision and use of PPE under

[[Page 2681]]

paragraph (h)(1) would be whenever an employee has the potential for 
skin contact with beryllium (Document ID 1664, p. 3; 1671, Attachment 
1, p. 7; 1676, pp. 2-3). Dr. Lisa Maier from NJH indicated, in her 
testimony, that ``personal protective equipment (PPE) such as gloves, 
respirators, protective clothing should be used wherever there is a 
potential for respiratory or skin exposure'' (Document ID 1720 p. 6). 
Another commenter ``strongly recommend[ed] a PPE requirement wherever 
exposure to beryllium, soluble or insoluble, is reasonably expected'' 
(Kimberly-Clark Professional, Document ID 1676, p. 3).
    In contrast, Ameren Corporation (Ameren) and NGK Metals (NGK) 
recommended against adoption of Regulatory Alternative 13. According to 
Ameren, ``[t]race beryllium in fly ash is unlikely to cause 
sensitization issues but PPE would be required under this alternative'' 
(Document ID 1675, p. 6). Ameren, however, did not provide further 
information or evidence to support this claim. NGK suggested the 
language ``visibly contaminated with beryllium particulate or 
solutions'' as a trigger for the standards' PPE requirements, to 
clarify that PPE is not required when handling clean, solid materials 
that contain beryllium (Document ID 1663, pp. 2, 5). OSHA does not find 
these comments persuasive. OSHA included operations and industries 
where beryllium is present as a trace contaminant in the scope of the 
beryllium standard only when these operations and industries have the 
potential to release airborne exposures exceeding the action level of 
0.1 [mu]g/m\3\, at which sensitization is known to occur (see Section 
VI, Risk Assessment). With regard to NGK's suggested language, the 
Agency believes the commenter's intention to clarify OSHA's position on 
clean, solid materials is already captured in the regulatory text of 
the standards. Paragraph (h)(1)(ii) is not intended to require the 
provision of PPE to employees whose only contact with beryllium is 
handling articles that do not have surface contamination with 
beryllium.
    In summary, OSHA has concluded that beryllium surface contamination 
may not be visible yet may still cause sensitization. Because small 
beryllium particles can pass through intact or broken skin and cause 
sensitization, limiting the requirements for PPE based on surfaces that 
are ``visibly contaminated'' may not adequately protect workers from 
beryllium exposure. Submicron particles (less than 1 [mu]g in diameter) 
are not visible to the naked eye and yet may pass through the skin and 
cause beryllium sensitization. And although solubility may play a role 
in the level of sensitization risk, the available evidence indicates 
that contact with poorly soluble as well as soluble beryllium can cause 
sensitization via dermal contact (see this preamble at section V, 
Health Effects). Based on these considerations, OSHA has adopted 
Regulatory Alternative 13 in paragraph (h)(1)(ii) of the final 
standards, which requires the employer to provide PPE and ensure its 
use wherever there is a reasonable expectation of dermal contact with 
beryllium to any extent and of any type.
    The USW recommended further specification of the PPE provisions, 
requesting clarification of the terms ``skin'' and ``exposure'' in the 
proposed standard's PPE requirements (Document ID 1680, p. 4; 1681, p. 
12). As discussed previously, the term ``contact'' has replaced 
``exposure'' where the final standard refers to the skin. This change 
was made in order to clearly distinguish between airborne and contact 
exposure in the text of the standards. OSHA's intention in using the 
term ``contact'' is straightforward, meaning any instance in which 
beryllium touches an employee's body. ``Skin'' refers to the exterior 
surface of all parts of an employee's body including face, arms, scalp, 
ears, and nostrils. OSHA notes that processes that have the potential 
to expose workers' eyes to beryllium will generally also expose the 
face, and forms of PPE such as face shields used to protect the face 
generally also protect the eyes (e.g., face shields for use in 
situations where there is a danger of being splashed in the face with 
beryllium-containing liquid, or a hooded respirator where the employee 
is exposed to beryllium-containing fumes).
    The USW also requested that OSHA include a specific requirement for 
provision of PPE to workers performing maintenance and repair 
activities and during non-routine tasks, to ensure that PPE is worn 
during tasks for which airborne exposure levels are not assessed 
(Document ID 1680, pp. 4-5; 1681, p. 12). This comment was submitted in 
response to the proposed standard, which would have required PPE where 
airborne exposures exceed the TWA PEL or STEL, but not in all cases 
where dermal contact occurs and airborne exposure levels are lower. 
OSHA believes the USW's concern has been addressed by the PPE 
requirements of the final standards, which apply wherever there is 
reasonable expectation of dermal contact with beryllium, including 
during maintenance and repair activities and non-routine tasks that 
involve beryllium-releasing processes or that are conducted in 
beryllium-contaminated areas.
    OSHA also received a suggestion from the Boeing Company (Boeing) to 
amend proposed paragraph (h)(1)'s requirement to ensure use of 
appropriate PPE in accordance with the written exposure control plan, 
by adding ``or equally as effective documentation'' (Document ID 1667, 
p. 5). Boeing argued that the suggested language would allow employers 
to provide the required information through use of existing processes 
instead of through the creation of a second document (Document ID 1667, 
pp. 3-5). OSHA considered Boeing's comment, but decided against adding 
the suggested language. OSHA determined that it would create 
unnecessary ambiguity in the requirements for documentation in the 
context of both compliance and enforcement, as employers and CSHOs 
would need to determine what constitutes ``equally effective 
documentation.'' If an employer such as Boeing already has documents 
describing appropriate use of PPE that comply with the requirements of 
these standards, OSHA believes those documents can easily be 
incorporated into the employer's written exposure control plan. Taking 
this approach would eliminate the potential for confusion or redundancy 
caused by implementing multiple documents on PPE.
    The employer must exercise reasonable judgment in selecting 
appropriate PPE. This requirement is consistent with OSHA's current 
standards for provision of personal protective equipment for general 
industry (29 CFR part 1910 Subpart I), construction (29 CFR part 1926 
Subpart E), and shipyards (29 CFR part 1915 Subpart I). As described in 
the non-mandatory appendix providing guidance on conducting a hazard 
assessment for OSHA general industry standards (29 CFR 1910 Subpart I 
Appendix B), the employer should ``exercise common sense and 
appropriate expertise'' in assessing hazards. By ``appropriate 
expertise,'' OSHA means that individuals conducting hazard assessments 
must be familiar with the employer's work processes, materials, and 
work environment. A thorough hazard assessment should include a walk-
through to identify sources of hazards to employees, wipe sampling to 
detect beryllium contamination on surfaces, review of injury and 
illness data, and employee input on the hazards to which

[[Page 2682]]

they are exposed. Information obtained in this manner provides a basis 
for the identification and evaluation of potential hazards. OSHA 
believes that the implementation of a comprehensive and thorough 
program to determine areas of potential exposure, consistent with the 
employer's written exposure control plan, is a sound safety and health 
practice and a necessary element of ensuring overall worker protection.
    Based on the hazard assessment results, the employer must determine 
what PPE is necessary to protect employees from beryllium exposure. The 
requirements for choosing PPE under OSHA's personal protective 
equipment standards (e.g., 29 CFR 1910 Subpart I for general industry) 
are performance-oriented, and are designed to allow the employer 
flexibility in selecting the PPE most suitable for each particular 
workplace. The type of PPE needed will depend on the potential for 
exposure, the physical properties of the beryllium-containing material 
used, and the conditions of use in the workplace. For example, shipping 
and receiving activities may necessitate only work uniforms and gloves. 
In other situations, such as when a worker is performing facility 
maintenance, gloves, work uniforms, coveralls, and respiratory 
protection may be appropriate. Beryllium compounds can exist in acidic 
or alkaline form, and these characteristics may influence the choice of 
PPE. Face shields may be appropriate in situations where there is a 
danger of being splashed in the face with beryllium or a liquid 
containing beryllium. Coveralls with a head covering may be appropriate 
when a sudden release of airborne beryllium could result in beryllium 
contamination of clothing, hair, or skin. Respirators are addressed 
separately in the explanation of paragraph (g) earlier in this section 
of the preamble.
    Although some personal protective clothing may be worn over street 
clothing, it is not appropriate for workers to wear protective clothing 
over street clothing if doing so could reasonably result in 
contamination of the workers' street clothes. In situations in which it 
is not appropriate for workers to wear protective clothing over their 
street clothes employers must select and ensure the use of protective 
clothing that is worn in lieu of (rather than over) street clothing, 
and must provide change rooms under paragraph (i)(2).
    The Abrasive Blasting Manufacturers Alliance (ABMA) asserted that 
the PPE requirements under this standard are not consistent with the 
abrasive blasting requirements for construction and maritime (e.g., 29 
CFR 1926.57(f), 29 CFR 1915.34) (Document ID 1673, pp. 22-23). OSHA 
disagrees, based on the performance-oriented nature of the PPE 
requirements in the final beryllium standards. If an employer provides 
PPE that is appropriate and suitable for abrasive blasting and that 
protects the employee's skin, this would be compliant with the 
requirements under this final beryllium standard.
    Paragraph (h)(2) contains requirements for removal and storage of 
PPE. This provision is intended to reduce beryllium contamination in 
the workplace and limit beryllium exposure outside the workplace. 
Wearing contaminated clothing outside the beryllium work area could 
lengthen the duration of exposure and carry beryllium from beryllium 
work areas to other areas of the workplace. In addition, contamination 
of personal clothing could result in beryllium being carried to 
employees' cars and homes, increasing employees' exposure as well as 
exposing others to beryllium hazards. An NJH collaborative study with 
NIOSH documented inadvertent transfer of beryllium from the workplace 
to workers' automobiles, and stressed the need for separating clean and 
contaminated (``dirty'') PPE (Document ID 0474, Sanderson, 1999). Toxic 
metals brought by workers into the home via contaminated clothing and 
vehicles continue to result in exposure to children and other household 
members. A recent study of battery recycling workers found that lead 
surface contamination above the Environmental Protection Agency level 
of concern (>=40 [mu]g/ft\2\) was common in the workers' homes and 
vehicles (Document ID 1875, Centers for Disease Control and Prevention, 
2012, pp. 967-970).
    Under paragraph (h)(2)(i), beryllium-contaminated PPE must be taken 
off at the end of the work shift, at the completion of tasks involving 
beryllium exposure, or when PPE becomes visibly contaminated with 
beryllium, whichever comes first. This provision is identical to the 
corresponding paragraph in the proposed standard, except for a slight 
reorganization to improve clarity and readability. Paragraph (h)(2)(i) 
is intended to convey that PPE contaminated with beryllium should not 
be worn when tasks involving beryllium exposure have been completed for 
the day. For example, if employees perform work tasks involving 
beryllium exposure for the first two hours of a work shift, and then 
perform tasks that do not involve exposure, they should remove their 
PPE after the exposure period to avoid the possibility of increasing 
the duration of exposure and contamination of the work area from 
beryllium residues on the PPE (i.e., re-entrainment of beryllium 
particulate). If, however, employees are performing tasks involving 
exposure intermittently throughout the day, or if employees are exposed 
to other contaminants where PPE is needed, this provision requires the 
employer to ensure that the employee wears is not intended to prevent 
them from wearing the PPE until the completion of their shift, unless 
it has become visibly contaminated with beryllium.
    PPE that is visibly contaminated with beryllium should be changed 
at the earliest reasonable opportunity. This provision is intended to 
protect employees working with beryllium and their co-workers from 
exposure due to accumulation of beryllium on PPE, and reduces the 
likelihood of cross-contamination from beryllium-contaminated PPE. 
Unlike the ``visibly contaminated'' language used in paragraph 
(h)(1)(ii) of the proposal, which has been removed, OSHA has determined 
that it is appropriate to use the same language here. Because the 
purpose of PPE is to serve as a barrier between an employee's body and 
ambient or surface beryllium, PPE becomes contaminated with beryllium 
immediately as part of its protective function. Requiring PPE to be 
changed upon contamination with any amount of beryllium is unreasonable 
and unnecessary to protect employees. This is because contamination of 
PPE with beryllium during work processes does not reduce the 
effectiveness of PPE or create hazards to employees unless sufficient 
beryllium accumulates on the PPE to impair its function or create 
additional exposures, such as by dispersing accumulated beryllium into 
the air. Furthermore, the process of changing contaminated PPE can 
create opportunities for both inhalation exposure and dermal contact 
with beryllium. The use of ``visibly contaminated'' protects employees 
from potential exposures while changing PPE by limiting requirements to 
change PPE during work tasks involving beryllium exposure to those 
circumstances when changing it is necessary to maintain its protective 
function and prevent deposits of beryllium from accumulating and 
dispersing.
    Using the ``visible contamination'' trigger in (h)(1)(ii) to 
determine when employees must wear PPE in the first instance would have 
reduced the protectiveness of the standard. Thus, OSHA determined that 
it would be inappropriate to use such a trigger in that context. 
However, as explained above, using ``visibly contaminated'' in

[[Page 2683]]

paragraph (h)(2)(i) actually increases the protectiveness of the 
standard. It provides a cue for when it is unacceptable for a worker to 
continue to work in his or her contaminated PPE, regardless of whether 
a shift or a task involving beryllium exposure has been completed. This 
common sense approach is supported by Materion in its post-hearing 
comments: ``If a job is such that company supplied work clothing may 
become dirty, wear a personal protective over-garment to keep your work 
clothing and your person clean. If your work clothing becomes dirty, 
change it.'' (Document ID 1752).
    Paragraph (h)(2)(ii) requires employees to remove PPE consistent 
with the written exposure control plan required by paragraph (f)(1). 
Paragraph (f)(1) specifies that the employer's written exposure control 
plan must contain procedures for minimizing cross-contamination, and 
procedures for the storage of beryllium-contaminated PPE, among other 
provisions. While proposed paragraph (h)(2)(ii) only required personal 
protective clothing to be removed pursuant to the written exposure 
control plan, the final language includes personal protective equipment 
as well as clothing. This change was made to ensure consistency with 
the rest of paragraph (h) and to confirm OSHA's intent that beryllium-
contaminated personal protective equipment should be treated with the 
same care as contaminated clothing in order to prevent additional 
airborne exposure and dermal contact.
    Paragraph (h)(2)(iii) requires employers to ensure that protective 
clothing is kept separate from employees' street clothing and that 
storage facilities prevent cross-contamination as specified in the 
written exposure control plan. The language of this provision has been 
modified slightly from the proposed standard to emphasize prevention of 
cross-contamination as well as implementation of the written exposure 
control plan, consistent with other requirements intended to limit 
beryllium migration and cross-contamination. OSHA believes these 
provisions are necessary to prevent the spread of beryllium throughout 
and outside the workplace.
    The remainder of paragraph (h)(2) is unchanged from the proposal 
and did not elicit comments from stakeholders. To further limit 
exposures outside the workplace, paragraph (h)(2)(iv) requires 
employers to ensure that beryllium-contaminated PPE is only removed 
from the workplace by employees who are authorized to do so for the 
purpose of laundering, cleaning, maintaining, or disposing of such PPE. 
These items must be brought to an appropriate location away from the 
workplace. To be an appropriate location for purposes of paragraph 
(h)(2)(iv), the facility must be equipped to handle beryllium-
contaminated items in accordance with these standards. The standards 
further require in paragraph (h)(2)(v) that PPE removed from the 
workplace for laundering, cleaning, maintenance, or disposal be placed 
in closed, impermeable bags or containers. These requirements are 
intended to minimize cross-contamination and migration of beryllium, 
and to protect employees or other individuals who later handle 
beryllium-contaminated items. Required warning labels should alert 
those handling the contaminated PPE of the potential hazards of 
exposure to beryllium. Such labels must conform with the hazard 
communication standard (29 CFR 1910.1200) and paragraph (m)(3) of these 
standards. These warning requirements are meant to reduce confusion and 
ambiguity regarding critical hazard information communicated in the 
workplace by requiring that this information be presented in a clear 
and uniform manner.
    Paragraph (h)(3) of the standards addresses the cleaning and 
replacement of PPE. Proper cleaning is necessary to ensure that neither 
the workers who use the PPE nor those who clean and maintain it are 
exposed to beryllium via inhalation or dermal contact. Proper 
replacement is necessary to ensure that the PPE continues to function 
effectively in protecting workers from exposure. Paragraph (h)(3) is 
unchanged from the proposal.
    Paragraph (h)(3)(i) requires the employer to ensure that reusable 
PPE is cleaned, laundered, repaired, and replaced as needed to maintain 
its effectiveness. In keeping with the performance orientation of the 
standards, OSHA does not specify how often PPE should be cleaned, 
repaired, or replaced. Appropriate time intervals for these actions may 
vary widely based on the types of PPE used, the nature of the beryllium 
exposures, and other circumstances in the workplace. However, even in 
the absence of a mandated schedule, these requirements must be 
completed at a frequency, and in a manner, sufficient to ensure that 
PPE continues to serve its intended purpose of protecting workers from 
beryllium exposure.
    Several commenters discussed the merits of the use of disposable 
PPE versus reusable PPE. These commenters indicated that OSHA should 
allow the use of disposable PPE, which could be both more protective 
and, in some cases, less costly, than reusable PPE (Document ID 1676, 
p. 3; 1682, p. 3). In response, OSHA notes that it is not prohibiting 
the use of disposable PPE. As discussed above, OSHA is leaving the 
decision regarding appropriate PPE to employers after they do their 
hazard assessments. While these commenters indicated that the 
regulatory text seems to focus on reusable PPE, the requirements 
specifically regarding reusable PPE are necessary to ensure that 
workers who handle this PPE downstream (for example, workers who 
launder or repair PPE) are protected and that reusable PPE is 
appropriately handled and cleaned before being reused. These provisions 
are not meant to indicate that OSHA prefers reusable PPE over 
disposable PPE.
    Under paragraph (h)(3)(ii), removal of beryllium from PPE by 
blowing, shaking, or any other means which disperses beryllium in the 
air is prohibited as this practice could result in unnecessary and 
harmful exposure to airborne beryllium. Paragraph (h)(3)(iii) requires 
the employer to inform, in writing, any person or business entity who 
launders, cleans, or repairs PPE required by this standard of the 
potentially harmful effects of exposure to airborne beryllium and 
dermal contact with beryllium, and of the need to handle the PPE in 
accordance with this standard. This provision is intended to limit 
dermal and inhalation exposure to beryllium, and to emphasize the need 
for hazard awareness and protective measures consistent with these 
standards among persons who clean, launder, or repair beryllium-
contaminated items.

(i) Hygiene Areas and Practices

    Paragraph (i) of the final standards for general industry, 
construction, and shipyards requires that, when certain conditions are 
met, the employer must provide employees with readily accessible 
washing facilities and change rooms. Additionally, paragraph (i) of the 
final standard for general industry requires that, when certain 
conditions are met, the employer must provide showers for employee use. 
Paragraph (i) of all three standards also requires the employer to take 
certain steps to minimize exposure in eating and drinking areas, and 
prohibits certain practices that may contribute to beryllium exposure. 
The final standards' hygiene provisions are consistent with other OSHA 
standards providing similar protection. For example, OSHA health 
standards for hexavalent chromium (29 CFR 1910.1026) and lead (29 CFR

[[Page 2684]]

1910.1025) include hygiene provisions along with engineering control 
requirements to protect workers from exposure to toxic substances. 
OSHA's standards addressing sanitation in general industry (29 CFR 
1910.141), construction (29 CFR 1926.51) and shipyard employment (29 
CFR 1915.88) also include hygiene provisions, requiring the employer to 
provide change rooms equipped with storage facilities for street 
clothes and separate storage facilities for protective clothing 
whenever employees are required by an OSHA standard to wear protective 
clothing because of the possibility of contamination with toxic 
materials. The sanitation standards also include provisions for washing 
facilities and prohibit storage or consumption of food or beverages in 
any area exposed to a toxic material.
    OSHA requested comment on the hygiene provisions of the proposed 
standard for general industry, which was similar in most respects to 
the hygiene provisions of the final general industry standard. It 
required employers to provide readily accessible washing facilities, 
change rooms and showers and to ensure the use of these facilities for 
each employee exposed to beryllium when necessary. The proposed 
standard also required employers to take certain steps to minimize 
exposure in eating and drinking areas and prohibited certain practices 
that may contribute to beryllium exposure. The remainder of this 
section discusses general comments on the hygiene section; explains the 
hygiene provisions of the final standards and OSHA's response to 
comments on each provision; and discusses differences between the 
proposed and final standards and differences between the final 
standards for each sector.
    Most commenters agreed with the need for hygiene areas and 
practices to protect workers from airborne exposure to and dermal 
contact with beryllium (Document ID 1664, p. 7; 1665, pp. 10-11; 1667, 
pp. 5-6; 1675, p. 13; 1679, p. 9; 1680, p, 5; 1689, p. 12). However, 
one commenter stated that its engineering control systems eliminated 
the need for hygiene facilities (Document ID 1615, p. 8). OSHA 
disagrees that engineering controls alone are sufficient to eliminate 
the need for hygiene areas and practices. Because significant risk of 
beryllium sensitization and CBD remain below the TWA PEL in the final 
beryllium standards, ancillary provisions such as requirements for 
hygiene areas and practices are appropriate to further reduce that 
risk. See Building and Constr. Trades Dept. v. Brock (Asbestos II), 838 
F.2d 1258, 1274 (D.C. Cir. 1988). As discussed in this preamble at 
Section V, Health Effects and Section VI, Risk Assessment, dermal 
contact with beryllium can cause beryllium sensitization, the first 
step in the development of CBD. Compliance with the hygiene provisions 
of the final standards will reduce the amount and duration of 
employees' dermal contact with beryllium, and will therefore more 
effectively reduce employees' risk of developing CBD than would 
compliance with the TWA PEL alone.
    Another commenter noted that hygiene areas and practices specified 
in the proposal exceed requirements for abrasive blasting operations 
discussed in OSHA's Ventilation standard for construction (29 CFR 
1926.57) and Mechanical paint removers standard in maritime employment 
(29 CFR 1915.34) (Document ID 1673, p. 23). Ancillary provisions in 
standards for specific substances such as beryllium complement these 
general OSHA standards. As OSHA noted in Section XVIII of the NPRM, the 
standards for abrasive blasting provide protection primarily to 
blasting operators, and do not apply to other employees who are likely 
to experience beryllium exposures, such as blasting helpers and cleanup 
workers. In addition, OSHA expects the hygiene provisions in the final 
beryllium standards to decrease the airborne exposure and dermal 
contact even of employees who wear respiratory protection and PPE 
required by other standards, and will therefore reduce significant risk 
of beryllium-related health effects among abrasive blasters in 
construction and shipyards.
    Paragraph (i)(1) of the proposed standard required that employers 
provide, for each employee working in a beryllium work area, readily 
accessible washing facilities to remove beryllium from the hands, face, 
and neck. It also required employers to ensure that each employee 
exposed to beryllium use these facilities when necessary.
    The requirements for washing facilities will reduce employees' skin 
contact with beryllium, the possibility of accidental ingestion and 
inhalation of beryllium, and the spread of beryllium within and outside 
the workplace. As discussed in Section V of this preamble, Health 
Effects, respiratory tract, skin, eye, or mucosal contact with 
beryllium can result in beryllium sensitization, which is a necessary 
first step toward the development of CBD. Also, beryllium can 
contaminate employees' clothing, shoes, skin, and hair, prolonging 
workers' beryllium exposure and exposing others such as family members 
if proper hygiene practices are not observed. A study by Sanderson et 
al. measured the levels of beryllium on workers' skin and vehicle 
surfaces at a machining plant. The study showed beryllium was present 
on workers' skin and in their vehicles, demonstrating that workers 
carried residual beryllium on their hands when leaving work (Sanderson 
et al., 1999, Document ID 0474). In addition, dermal contact with 
beryllium has been shown to occur even at low airborne exposure levels. 
For example, skin wipe sample analysis of dental laboratory technicians 
performing grinding operations demonstrated that beryllium was present 
on the hands of workers even when airborne exposures were well below 
the TWA PEL (Document ID 1878, pp. 8-9).
    The requirements in the standards to use washing facilities are 
performance-oriented, simply requiring employees to use the washing 
facilities to remove beryllium from their skin when the criteria in 
paragraph (i)(1) of the standards are met. Typically, washing 
facilities will consist of one or more sinks, soap or another cleaning 
agent, and a means for employees to dry themselves after washing. OSHA 
does not intend to require the use of any particular soap, cleaning 
agent, or drying mechanism. Employers can provide whatever washing 
materials and equipment they choose, as long as those materials and 
equipment are effective in removing beryllium from the skin and do not 
themselves cause skin or eye problems.
    Washing reduces exposure by limiting the period of time that 
beryllium is in contact with the skin, and helps prevent accidental 
ingestion. Although engineering and work practice controls and 
protective clothing and equipment are designed to prevent hazardous 
skin and eye contact, OSHA realizes that in some circumstances exposure 
will nevertheless occur. For example, an employee who wears gloves to 
protect against hand contact with beryllium may inadvertently touch his 
or her face with the contaminated glove during the course of the day. 
The purpose of requiring washing facilities is to mitigate adverse 
health effects when skin or eye contact with beryllium occurs.
    OSHA did not receive comment on this provision. Therefore, 
paragraph (i)(1) of the final standards is substantively unchanged from 
proposed paragraph (i)(1). Paragraph (i)(1) of the final standard for 
general industry requires the employer to provide readily accessible 
washing facilities for employees who work in beryllium work areas to 
remove beryllium from the

[[Page 2685]]

hands, face, and neck and ensure that employees who have had dermal 
contact with beryllium use these facilities at the end of the activity, 
process, or work shift and prior to eating, drinking, smoking, chewing 
tobacco or gum, applying cosmetics, or using the toilet.
    Because the standards for construction and shipyards do not require 
beryllium work areas, the requirements for washing facilities set forth 
in paragraph (i)(1) of the construction and shipyard standards differ 
from the general industry standard in that they require employers to 
provide washing facilities for each employee required to wear personal 
protective clothing or equipment by the final standards--that is, where 
employees are reasonably expected to be exposed to beryllium above the 
TWA PEL or STEL or where there is a reasonable expectation of dermal 
contact with beryllium. Otherwise, the requirements for washing 
facilities are the same in all three standards.
    Paragraph (i)(2) of the proposed standard required employers to 
provide affected employees with a designated change room and washing 
facilities in accordance with the proposed standard and the Sanitation 
standard where employees were required to remove their personal 
clothing.
    Change rooms allow employees to remove their personal clothing in 
order to use personal protective clothing. Minimizing contamination of 
employees' personal clothes will also reduce the likelihood that 
beryllium will contaminate employees' cars and homes, and other areas 
outside the workplace. Requiring employers to provide employees with 
change rooms to change out of work clothes, which are then segregated 
from their street clothes, and to leave work clothing at the workplace 
significantly reduces the possibility of beryllium migration outside 
the workplace, providing added protection from take-home beryllium 
exposure to workers and their families.
    One commenter recommended that change rooms be required only when 
there is required use of personal protective clothing and equipment 
(Document ID 1667, pp. 5-6). OSHA intends the change rooms requirement 
only to apply to covered workplaces where employees must change their 
clothing (i.e., take off their street clothes) to use protective 
clothing. In situations where removal of street clothes is not 
necessary (e.g., in a workplace where only gloves are used as 
protective clothing), change rooms are not required. The standards do 
not create a requirement for employees to change their clothing. Note 
that paragraph (h) of all three standards requires employers to provide 
``appropriate'' personal protective clothing. It is not appropriate for 
employees to wear protective clothing over street clothing if doing so 
results in contamination of the employee's street clothes. In such 
situations, the employer must ensure that employees wear protective 
clothing in lieu of (rather than over) street clothing, and provide 
change rooms.
    Another commenter stated that the final rule should require 
employers to develop a program that defines approved storage areas for 
protective apparel and personal hygiene towels, restricts access to 
this area, provides for employee training when handling or reusing 
previously used items, and establishes an objective means for 
determining when an item can no longer be reused and must be laundered 
or discarded (Document ID 1962, p. 5). OSHA agrees that employers 
should develop and document procedures for limiting beryllium cross-
contamination and migration, and has included such requirements in 
paragraph (f), Methods of Compliance, and paragraph (j), Housekeeping. 
These paragraphs of the final standards require each employer to 
develop, document, and implement procedures for limiting beryllium 
migration and cross-contamination in their facilities, which should 
address storage, handling and reuse of beryllium-contaminated items and 
access to storage facilities for beryllium-contaminated clothing and 
PPE, including towels if these are contaminated with beryllium during 
washing and showering.
    After carefully reviewing the record, OSHA has decided to keep 
paragraph (i)(2) substantively unchanged. Paragraph (i)(2) of the final 
standard for general industry requires the employer to provide a 
designated change room for employees who work in a beryllium work area 
and are required to remove their personal clothing. Paragraph (i)(2) of 
the final standards for construction and shipyards requires the 
employer to provide a designated change room for employees who are 
required by the final standards to wear personal protective clothing or 
equipment and are required to remove their personal clothing. The 
changed trigger for change rooms in the construction and shipyard 
standards is due to the fact that there are no beryllium work areas in 
those standards, and requiring change rooms where employees are 
required to wear personal protective clothing or equipment provides a 
similar level of protection to the general industry standard. Change 
rooms must be designed in accordance with the written exposure control 
plan required by paragraph (f)(1) of all three standards, and with the 
applicable Sanitation standards in general industry (29 CFR 1910.141), 
construction (29 CFR 1926.51), and shipyards (29 CFR 1915.88). These 
Sanitation standards require change rooms to be equipped with storage 
facilities (e.g., lockers) for protective clothing, and separate 
storage facilities for street clothes, to prevent cross-contamination.
    As in the proposed standard for general industry, paragraph (i)(3) 
of the final standard for general industry requires employers in 
general industry to provide and ensure the use of showers if employees 
are or can reasonably be expected to be exposed above the TWA PEL or 
STEL (paragraph (i)(3)(i)(A)) and if employees' hair or body parts 
other than hands, face, and neck could reasonably be expected to be 
contaminated with beryllium (paragraph (i)(3)(i)(B)). Employers are 
only required to provide showers if paragraphs (i)(3)(i)(A) and (B) 
both apply. Paragraph (i)(3)(ii) of the final standard for general 
industry, like the proposed standard for general industry, requires 
employers to ensure that employees use the showers at the end of the 
work activity or shift involving beryllium if the employees reasonably 
could have been exposed above the TWA PEL or STEL, and if beryllium 
could reasonably have contaminated the employees' body parts other than 
hands, face, and neck. The requirement is restricted to body parts 
other than the hands, face, and neck because if employees have dermal 
contact with beryllium on their hands, faces, or necks, they must use 
the washing facilities required by paragraph (i)(1)(i). This language 
is intended to convey that showers must be used immediately after work 
activities involving beryllium exposure have been completed for the 
day. For example, if employees perform work activities involving 
beryllium exposure that meet the requirements for showers for the first 
two hours of a work shift, and then perform activities that do not 
involve exposure, they should shower after the exposure period to avoid 
increasing the duration of exposure, potential of accidental ingestion, 
and contamination of the work area from beryllium residue on their hair 
and body parts other than hands, face, and neck. If, however, employees 
are performing tasks involving exposure intermittently throughout the 
day, this provision is intended to require them to shower after the 
last task involving exposure, not after the completion of each such 
task.

[[Page 2686]]

    The requirements of paragraph (i)(3) of the final standard for 
general industry are similar to requirements for provision and use of 
shower facilities in other substance-specific OSHA health standards, 
such as the standards for cadmium (29 CFR 1910.1027) and lead (29 CFR 
1910.1025), which also require showers when exposures exceed the TWA 
PEL. OSHA's standard for coke oven emissions (29 CFR 1910.1029) 
requires employers to provide showers and ensure that employees working 
in a regulated area shower at the end of the work shift. The standard 
for methylenedianiline (MDA) (29 CFR 1910.1050) requires employers to 
ensure that employees who may potentially be exposed to MDA above the 
action level shower at the end of the work shift.
    A majority of the comments on the proposed hygiene areas and 
practices provisions for general industry concerned the requirement for 
showers. The Sampling and Analysis Subcommittee Task Group of the 
Beryllium Health and Safety Committee (BHSC Task Group) expressed 
support for the mandatory use of showers for workers in beryllium 
regulated areas where airborne exposures can reasonably be expected to 
exceed the TWA PEL or STEL so that proper decontamination can occur and 
prevent beryllium from leaving the work area, and to ensure that 
workers and their families are not exposed to beryllium once workers 
leave their place of employment (Document ID 1665, pp. 10-11). Ameren 
Corporation (Ameren), the United Steelworkers (USW), and Materion 
Corporation (Materion) also supported the requirement for showers and 
their use by employees working in a beryllium regulated area (that is, 
where airborne exposures can reasonably be expected to exceed the TWA 
PEL or STEL) (Document ID 1675, p. 13; 1680, p. 5; 1681, p.12).
    Some commenters supported the requirement for showers, but 
suggested that employers should be required to provide shower 
facilities to workers exposed at lower exposure levels than the TWA PEL 
or STEL. National Jewish Health (NJH) suggested that showers should be 
required for workers exposed above the action level rather than the TWA 
PEL or STEL and in facilities where beryllium can be expected to 
contaminate the employees' hair or other body parts (Document ID 1664, 
p. 7). The North America's Building Trades Unions (NABTU) suggested 
that any beryllium work area should include all necessary 
decontamination facilities, including showers (Document ID 1679, p. 9).
    OSHA notes that NJH and NABTU's comments addressed the provisions 
of the proposed standard for general industry, which did not include a 
requirement to provide PPE wherever there is a potential for dermal 
contact with beryllium. As discussed previously in the Summary and 
Explanation for paragraph (h) of the final standards, OSHA has adopted 
much more comprehensive requirements for employers to provide and 
ensure the use of personal protective clothing and equipment (PPE) 
wherever exposure exceeds the TWA PEL or STEL or dermal contact with 
beryllium is reasonably expected to occur. The Agency believes that 
employees working in low-exposure contexts (where exposures do not 
exceed the TWA PEL or STEL) and using comprehensive PPE as required in 
paragraph (h) are unlikely to experience beryllium contamination that 
requires shower facilities to effectively remove beryllium from the 
hair and skin. OSHA therefore concludes that the required washing 
facilities and change rooms for general industry employees working in 
beryllium work areas in combination with the comprehensive PPE 
requirements described in paragraph (h) of the final standards are 
sufficient to protect workers in areas where exposures do not exceed 
the TWA PEL or STEL and where there is no reasonable expectation that 
body areas other than hands, face and neck will be contaminated with 
beryllium. OSHA therefore has decided not to require the provision of 
showers in general industry workplaces where exposure does not exceed 
the TWA PEL or STEL.
    The Boeing Company (Boeing) suggested requiring showers only when 
beryllium visibly contaminates employees' hair or body parts other than 
hands, face, and neck (Document ID 1667, p. 6). However, as discussed 
previously in the Summary and Explanation of paragraph (h), Personal 
Protective Clothing and Equipment, dermal contact with beryllium can 
lead to adverse health effects regardless of whether sufficient 
beryllium-containing dust has accumulated to be visible to the naked 
eye. Therefore, OSHA has determined that requiring showers only where 
beryllium contamination is visible would not adequately protect 
employees from prolonged dermal contact with beryllium or adequately 
prevent transfer of beryllium outside the workplace.
    Another commenter suggested that air showers for when employees 
leave the work area would be more cost effective and acceptable than 
water-based showers (Document ID 1596, p. 1). OSHA does not believe 
that air showers are appropriate for removing beryllium from workers' 
skin. Air showers are designed to remove accumulations of dust from the 
surface of work clothing, PPE, and exposed skin, but cannot remove 
residual beryllium as effectively as washing with water and soap. In 
addition, air showers can disperse beryllium-containing dust into the 
air and cause employees additional airborne exposure, whereas water-
based showers do not re-entrain dust into the air.
    OSHA has not included a requirement for showers in the final 
standards for construction and shipyards. Workers in these industries 
are exposed to beryllium primarily when an abrasive that contains trace 
amounts of beryllium, usually coal or copper slags, is used during 
abrasive blasting operations. These abrasive slags contain less than 
0.1% beryllium but may result in significant airborne exposure to 
beryllium because of the high dust levels generated during abrasive 
blasting. However, workers conducting abrasive blasting with these 
abrasives are currently protected from dermal contact with beryllium 
under existing OSHA standards. The OSHA Ventilation standard for 
construction (29 CFR 1926.57) and the OSHA Mechanical paint removers 
standard for shipyard employment (29 CFR 1915.34) require personal 
protective clothing and respiratory protection for abrasive blasters. 
The Ventilation standard requires employers to use only respirators 
approved by NIOSH under 42 CFR part 84 for protecting employees from 
dusts produced during abrasive-blasting operations (29 CFR 
1926.57(f)(5)(i)) and abrasive-blasting respirators must be worn by all 
abrasive-blasting operators (29 CFR 1926.57(f)(5)(ii)). These abrasive 
blasting respirators cover the entire head, neck and shoulder area to 
protect the worker from rebounding abrasive during these operations and 
prevent beryllium exposure to the head and neck area. The Mechanical 
paint removers standard has similar requirements for abrasive blasters 
including the use of hoods and airline respirators, along with 
protective clothing (29 CFR 1915.34(c)). Compliance with these 
requirements should effectively prevent contamination of abrasive 
blasters' bodies with beryllium; thus, use of showers to remove 
beryllium is unnecessary for these workers.
    Abrasive blasting support workers such as pot tenders and cleanup 
workers are also potentially exposed to beryllium during abrasive 
blasting

[[Page 2687]]

activities (Chapter IV, Technological Feasibility). However, their work 
is usually remote from the actual abrasive blasting or occurs prior to 
or after the operation is completed, resulting in lower exposures. 
OSHA's exposure profile for these workers shows a median exposure below 
the final standards' action level (0.09 [mu]g/m\3\ for pot tenders and 
helpers and 0.07 [mu]g/m\3\ for cleanup helpers) which is well below 
the median exposure level of 0.2 [mu]g/m\3\ for abrasive blasters 
(Chapter IV, Technological Feasibility) and well below the trigger for 
provision of showers established in the final standard for general 
industry. While abrasive blasting support workers are not exposed to 
the high dust levels experienced by the abrasive blasting operator, 
these workers are nevertheless protected under the personal protective 
clothing and equipment requirements in paragraph (h) of the final 
standards which requires the use of appropriate personal protective 
clothing and equipment where exposure can reasonably be expected to 
exceed the TWA PEL or STEL or where there is a reasonable expectation 
of dermal contact with beryllium. Based on the personal protective 
clothing and equipment requirements under OSHA standards for abrasive 
blasting operators and support workers, and the low exposure levels 
described above and in Chapter IV, Technological Feasibility, OSHA is 
not requiring showers in the final standards for construction and 
shipyards. OSHA also notes that providing showers can be impractical in 
some temporary worksites, such as those often used in construction 
settings.
    Paragraph (i)(4) (eating and drinking areas) of OSHA's proposed 
rule for general industry required that whenever the employer allows 
employees to consume food or beverages at a worksite where beryllium is 
present, the employer must ensure that surfaces in eating and drinking 
areas are as free as practicable of beryllium to minimize the 
possibility of food contamination and the likelihood of additional 
exposure to beryllium through inhalation or ingestion. Proposed 
paragraph (i)(4) further required employers to ensure that no employee 
in eating and drinking areas is exposed to airborne beryllium at or 
above the action level, and that eating and drinking areas must comply 
with the Sanitation standard (29 CFR 1910.141). Paragraph (i)(5)(ii) 
(prohibited activities) of the proposed rule, also related to eating 
and drinking areas, required the employer to ensure that no employees 
enter any eating or drinking area with personal protective clothing or 
equipment unless, prior to entry, surface beryllium has been removed 
from the clothing or equipment by methods that do not disperse 
beryllium into the air or onto an employee's body.
    A commenter with the American Federation of Labor and Congress of 
Industrial Organizations (AFL-CIO) recommended that OSHA develop 
stronger language to ensure that exposure levels are ``well below'' the 
action level for eating and drinking areas and that surfaces are truly 
as free as practicable of beryllium (Document ID 1689, pp. 12-13). OSHA 
agrees with the commenter that airborne beryllium should be maintained 
well below the action level in eating and drinking areas and has 
decided not to include the proposal's hygiene provision that no 
employee in eating and drinking areas is exposed to airborne beryllium 
at or above the action level in the final standards. OSHA believes that 
this language may be interpreted to allow airborne exposure levels up 
to the action level in eating and drinking areas, which is not OSHA's 
intent. The requirements to maintain surfaces in these eating and 
drinking areas as free as practicable of beryllium and to ensure that 
employees do not enter eating and drinking areas with personal 
protective work clothing or equipment unless beryllium has been removed 
will limit contamination and airborne exposure to beryllium and provide 
workers with safe areas to eat and drink.
    In comments on surface cleanliness pertaining to eating and 
drinking areas, Boeing suggested that the standard should define 
specific surface contaminant levels or instead simply rely on the 
existing OSHA Sanitation standard (1910.141) (Document ID 1667, p. 6). 
Kimberly-Clark Professional (KCP) suggested that OSHA should set a 
future goal of establishing maximum allowable surface contamination 
standards for toxic substances (Document ID 1962, p. 3). Materion 
suggests that its ``visibly clean'' standard is analogous to OSHA's 
standard of ``as free as practicable'' and that its cleaning program 
ensures that surfaces remain ``as free as practicable'' of beryllium 
(Document ID 1807, p. 5). Materion and USW proposed the term ``visibly 
clean'' because they ``have found it to be well understood by both 
workers and management'' (Document ID 1808, p. 4). However, Materion 
also points out that the use of the term ``as free as practicable'' has 
been understood by workers, management and OSHA compliance officers and 
has been successfully applied and effective in practice: ``[f]or 
decades, OSHA has used the term ``as free as practicable'' in its 
substance specific standards . . . OSHA's use of this term has been 
understood by workers, management and OSHA compliance officers. OSHA 
has successfully applied this compliance term in many prior OSHA 
standards which serves to demonstrate that its use is understandable 
and effective in practice'' (Document ID 1808, p. 5). In post-hearing 
comments, KCP states its belief that ``visibly contaminated'' is an 
inadequate standard and should not be used as a stand-in for ``as clean 
as practicable'' (Document ID 1962, p. 2).
    In developing the final standards, OSHA carefully considered these 
comments on the use of ``as free as practicable'' and alternative 
requirements in reference to surface cleanliness in eating and drinking 
areas and elsewhere in the beryllium standards, and concluded that ``as 
free as practicable'' is the most appropriate terminology for 
requirements pertaining to surface cleanliness. Issues related to use 
of ``as free as practicable'' and alternatives to this language are 
also discussed in the Summary and Explanation for paragraph (j), 
Housekeeping.
    The requirement to maintain surfaces as free as practicable of the 
regulated substance is included in other OSHA health standards such as 
those for lead in general industry (29 CFR 1910.1025), lead in 
construction (29 CFR 1926.62), chromium (IV) (29 CFR 1910.1026), and 
asbestos (29 CFR 1910.1001). Employers therefore have the benefit of 
previous experience interpreting and developing methods for compliance 
with requirements to maintain surfaces ``as free as practicable'' of 
toxic substances, as well as guidance from OSHA on compliance with such 
requirements. As OSHA explained in a January 13, 2003 letter of 
interpretation concerning the meaning of ``as free as practicable'' in 
OSHA's Lead in Construction standard, OSHA evaluates whether a surface 
is ``as free as practicable'' of a contaminant by the rigor of the 
employer's program to keep surfaces clean (OSHA, 2003, Document ID 
0550). A sufficient housekeeping program may be indicated by a routine 
cleaning schedule and the use of effective cleaning methods to minimize 
the possibility of exposure from accumulation of beryllium on surfaces. 
OSHA's compliance directive on Inspection Procedures for the Chromium 
(VI) Standards provides additional detail on how OSHA interprets ``as 
free as practicable'' for enforcement purposes (OSHA, 2008, Document ID 
0546, pp. 45-47). As explained in the directive, if a wipe

[[Page 2688]]

sample reveals a toxic substance on a surface, and the employer has not 
taken practicable measures to keep the surface clean, the employer has 
not kept the surface as free as practicable of the toxic substance. 
Thus, OSHA believes that the term ``as free as practicable'' is clearly 
understood by employers through its use in other standards and as 
explained in letters of interpretation and is using this term in the 
hygiene provision of the final standards.
    OSHA does not set quantitative limits for surface contamination 
because the best available scientific evidence on adverse health 
effects from dermal contact with beryllium does not provide sufficient 
information to link risk of adverse health effects with specific levels 
of surface contamination. As described above, OSHA finds that wipe 
sampling can be helpful in determining whether an employer is in 
compliance with a requirement to keep surfaces as free as practicable 
of toxic substances, but concludes that use of a specific target level 
of surface contamination should not define compliance with surface 
cleanliness requirements of the beryllium standards.
    Based on these conclusions, paragraph (i)(4) of the final standards 
requires that wherever the employer allows employees to consume food or 
beverages at a worksite where beryllium is present, the employer must 
ensure that surfaces in these areas are as free as practicable of 
beryllium. The employer must also ensure that employees do not enter 
eating and drinking areas with personal protective work clothing or 
equipment unless, prior to entry, surface beryllium has been removed 
from the clothing and equipment by methods that do not disperse 
beryllium into the air or onto an employee's body, further protecting 
workers from beryllium contamination in areas where eating and drinking 
occurs. Eating and drinking areas must further comply with the 
Sanitation standards (29 CFR 1910.141(g), 1926.51(g), 1915.88(h)), 
which prohibit consuming or storing food or beverages in a toilet area 
or in any area exposed to a toxic material. In the final standards, the 
provisions for eating and drinking areas (paragraph (i)(4) of the 
general industry standard, paragraph (i)(3) of the construction and 
shipyard standards) and prohibited activities (paragraph (i)(5) of the 
general industry standard and paragraph (i)(4) of the construction and 
shipyard standards) have been retained with one exception and one 
structural change. The proposed requirement to ensure that no employee 
in eating and drinking areas is exposed to airborne beryllium at or 
above the action level has been removed for the reasons already 
discussed above. And the requirement concerning employees entering any 
eating or drinking area with personal protective clothing or equipment 
has been moved from the prohibited activities section of the proposed 
rule's hygiene provision to the eating and drinking areas section in 
the final standards.
    Paragraph (i)(4) of the final standard for general industry and 
paragraph (i)(3) of the final standards for construction and shipyards 
do not require the employer to provide separate eating and drinking 
areas to employees at the worksite. Employees may consume food or 
beverages offsite. However, where the employer chooses to allow 
employees to consume food or beverages at a worksite where beryllium is 
present, the employer is required to maintain the area in accordance 
with paragraph (i)(4) of the final standard for general industry or 
paragraph (i)(3) of the final standards for construction and shipyards, 
and with the applicable Sanitation standard (29 CFR 1910.141, 29 CFR 
1915.1915.88, or 29 CFR 1926.51), and the employer must ensure that 
employees do not enter eating and drinking areas wearing contaminated 
personal protective clothing or equipment.
    Paragraph (i)(5)(i) of the proposed standard, setting forth 
prohibited activities, required the employer to ensure that no 
employees eat, drink, smoke, chew tobacco or gum, or apply cosmetics in 
regulated areas. OSHA did not receive comment on this provision. 
Therefore, paragraph (i)(5) of the final standards is substantively 
unchanged from proposed paragraph (i)(5)(i). Paragraph (i)(4) of the 
final construction and shipyard standards is substantively identical to 
paragraph (i)(5) of the general industry standard.
    Paragraph (i)(5) of the final standard for general industry and 
paragraph (i)(4) of the final standard for shipyards prohibit eating, 
drinking, smoking, chewing tobacco or gum, or applying cosmetics in 
regulated areas (areas where airborne exposure to beryllium is expected 
to exceed the TWA PEL or STEL). Paragraph (i)(4) of the final standard 
for construction differs slightly in that the employer is required to 
ensure that no employees eat, drink, smoke, chew tobacco or gum, or 
apply cosmetics in work areas where there is a reasonable expectation 
of exposure above the TWA PEL or STEL. This difference arises because 
the final standard for construction does not have a requirement for 
regulated areas but instead relies on a competent person provision 
(paragraph (e)) to restrict employee access to areas where exposures 
are, or can reasonably be expected to be, above the TWA PEL or STEL. 
Exposure at these levels creates a greater risk of beryllium 
contaminating the food, drink, tobacco, gum, or cosmetics. Prohibiting 
eating and drinking in these areas will reduce the potential for this 
manner of exposure.
    For the foregoing reasons, OSHA has decided to promulgate all the 
requirements of the proposed hygiene areas and practices provisions in 
the beryllium final standard for general industry except for the eating 
and drinking areas action level limit noted above. For the final 
standards for construction and shipyards, OSHA has decided to include 
all of the hygiene areas and practices provisions proposed for general 
industry except for the requirement for showers and the eating and 
drinking areas action level limit.

(j) Housekeeping

    Paragraph (j) of the final standard for general industry requires 
employers to maintain all surfaces in beryllium work areas as free as 
practicable of beryllium; promptly clean spills and emergency releases 
of beryllium; use appropriate cleaning methods; and properly dispose of 
materials containing or contaminated with beryllium. Paragraph (j) of 
the final standards for construction and shipyards requires employers 
to follow the written exposure control plan required under paragraph 
(f)(1) when cleaning beryllium-contaminated areas, use appropriate 
cleaning methods, and provide recipients of beryllium-containing 
materials for use or disposal with a copy of the warning described in 
paragraphs (m)(2) and (m)(3), respectively.
    As discussed in more detail below, the housekeeping requirements in 
the final standards are similar to those included in the proposal. 
While some stakeholders submitted divergent opinions on certain aspects 
of the proposed provisions, several commenters offered broad support 
for the inclusion of housekeeping provisions in the final rule (e.g., 
Document ID 1664, p. 7; 1681, Attachment 1, p. 13). For example, United 
Steelworkers (USW) stated that ``the proposed text provides employers 
with clear responsibilities and provides strong provisions to ensure 
worker protection'' (Document ID 1681, Attachment 1, p. 13). USW also 
expressed appreciation for the ``precautions incorporated into this 
section to minimize the amount of particulate suspended in the air'' 
(Document ID 1681, Attachment 1, p. 13). Another stakeholder, National 
Jewish Health (NJH), agreed with the

[[Page 2689]]

proposed rule regarding housekeeping (Document ID 1664, p. 7). 
Similarly, the American Federation of Labor and Congress of Industrial 
Organizations (AFL-CIO) argued that ``housekeeping provisions are 
essential'' ``[b]ecause of the hazardous nature of beryllium and the 
significant risk of developing beryllium sensitization or disease'' 
(Document ID 1689, p. 13).
    These comments support OSHA's view, as expressed in the NPRM, that 
these provisions are important because they minimize additional sources 
of exposure to beryllium that engineering controls do not completely 
eliminate. Good housekeeping measures are a cost-effective way to 
control worker exposures by removing settled beryllium that could 
otherwise become re-entrained into the surrounding atmosphere by 
physical disturbances or air currents and could enter an employee's 
breathing zone. Moreover, housekeeping provisions may be especially 
critical in the final beryllium standards because contact with 
contaminated surfaces can result in dermal exposure to beryllium. As 
discussed in this preamble at section V, Health Effects, researchers 
have identified skin exposure to beryllium as a pathway to 
sensitization. In addition, the housekeeping provisions in paragraph 
(j) of the standards for general industry, construction, and shipyards 
are generally consistent with housekeeping requirements in other OSHA 
standards for toxic metals, including cadmium (29 CFR 1910.1027, 
1926.1127), chromium (VI) (29 CFR 1910.1026), and lead (29 CFR 
1910.1025, 1926.62).
    The Abrasive Blasting Manufacturers Alliance (ABMA) asserted that 
the proposed housekeeping requirements are not consistent with the 
abrasive blasting requirements for construction and shipyards (e.g., 29 
CFR 1926.57(f), 29 CFR 1915.34) (Document ID 1673, pp. 22-23). OSHA 
disagrees. The performance-oriented provisions in the final 
construction and shipyard standards for beryllium provide employers 
with a great deal of flexibility in cleaning beryllium-contaminated 
areas and spills and emergency releases of beryllium and disposing of 
materials designated for disposal or recycling. In essence, the text 
requires employers to choose cleaning methods that minimize the 
likelihood and level of airborne exposure (unless certain conditions 
are met), handle and maintain cleaning equipment in a way that 
minimizes exposure, and protect their employees when dry sweeping, 
brushing, or using compressed air to clean in beryllium-contaminated 
areas. When transferring materials containing beryllium to another 
party for use or disposal, the employer is required to advise the 
recipient of the beryllium content and hazards. These provisions 
complement, rather than contradict, the rules set out in 29 CFR 
1926.57(f) and 29 CFR 1915.34, and are necessary for employee 
protection from beryllium-related adverse health effects.
    Paragraph (j)(1)(i) of the proposed rule would have required 
employers to maintain all surfaces in beryllium work areas as free as 
practicable of accumulations of beryllium and in accordance with the 
exposure control plan required under paragraph (f)(1) and the cleaning 
methods required under paragraph (j)(2) of the proposed rule. In this 
context, the phrase ``as free as practicable'' set forth the baseline 
goal in the development of an employer's housekeeping program to keep 
work areas free from surface contamination. For a detailed discussion 
of the meaning of the phrase ``as free as practicable,'' see the 
discussion in the Summary and Explanation for paragraph (i), Hygiene 
areas and practices, in this section of the preamble.
    Although this requirement is often included in OSHA's substance 
specific regulations, a number of commenters expressed concern about 
its inclusion in this rulemaking. For example, USW argued that a 
``requirement to maintain all surfaces in beryllium work areas as free 
as practicable of accumulations of beryllium could lead to difficulties 
in assessing compliance, since `as free as practicable' is open to 
interpretation''; instead, USW suggested that beryllium work areas 
should be required to be maintained ``visibly clean'' of accumulations 
(Document ID 1681, p. 13). Materion Corporation (Materion) also 
proposed the term ``visibly clean'' (Document ID 1808, p. 5; 1752, p. 
1). However, Materion stated that OSHA has long used the term ``as free 
as practicable'' in its standards as a measure of cleanliness for work 
areas and eating areas, and the term is well understood by workers, 
management, and OSHA compliance officers. According to Materion, 
``visibly clean'' is similar to ``as free as practicable'' and also 
well understood by workers and management (Document ID 1808, p. 5).
    Kimberly-Clark Professional (KCP) stated that this ``ostensible 
equivalence'' between the ``as free as practicable'' and ``visibly 
clean'' standards is ``unfounded,'' in part, because ``[i]t is 
practicable using readily known and available methods to make many 
surfaces clean beyond that which is visibly apparent'' (Document ID 
1962, p. 2). Instead, KCP recommended that OSHA ``establish surface 
contamination standards such that all subjectivity of surface 
cleanliness is removed'' (Document ID 1962, p. 2). KCP also argued that 
OSHA should require an employer's surface cleanliness protocol to be 
based on objective sampling and measurement. KCP maintained that there 
are many examples where surface sampling is used in economically 
feasible ways, including in the facilities governed by the Department 
of Energy (DOE). However, it acknowledged that the methods in other 
environments, including the DOE protocols for beryllium control in 
energy facilities, may not translate directly to industrial facilities. 
Nevertheless, KCP observed that ``there is sufficient ongoing 
successful use of such approaches to provide a framework for a more 
objective, data-driven protocol for surface control than `visibly 
contaminated' '' (Document ID 1962, p. 3). The Boeing Company (Boeing) 
also requested that ``as free as practicable'' be replaced with defined 
surface contaminant levels (Document ID 1667, pp. 6).
    Conversely, the Department of Defense (DOD) commented that 
employers should not be required to measure beryllium contamination on 
surfaces, as the relationship between level of surface contamination 
and health risk is unknown. It also stated that wipe samples are not an 
appropriate enforcement tool for determining that surfaces are ``as 
free as practicable'' of beryllium contamination (Document ID 1684, 
Attachment 1, p. 1). ORCHSE Strategies (ORCHSE) agreed that OSHA should 
not require measurement of beryllium contamination on surfaces 
(Document ID 1691, p. 18). And, the American Industrial Hygiene 
Association (AIHA) commented that ``the evaluation of `visible' is 
subjective'' (Document ID 1686, p. 1).
    After carefully considering these comments and other evidence in 
the record, OSHA has chosen not to require employers to measure 
beryllium contamination on surfaces, as suggested by KCP, or to 
otherwise ``define specific surface contaminant levels,'' as requested 
by Boeing Company. As DOD explains in its comments, the relationship 
between a precise amount of surface contamination and health risk is 
unknown. Therefore, OSHA cannot find that a particular level of 
contamination is safe. Rather, OSHA has determined that keeping 
surfaces as clean as practicable is appropriate because promptly 
removing beryllium deposits prevents them from becoming airborne, thus 
reducing employees'

[[Page 2690]]

inhalation exposure, and helps to minimize the likelihood of skin 
contact with beryllium. The Agency notes, however, that wipe samples 
can be a helpful tool for employers. For example, wipe samples can be 
used by employers to detect the presence of beryllium on surfaces and 
help gauge when surfaces are as free as practicable of accumulations of 
beryllium.
    Therefore, OSHA has decided to retain the requirement that 
employers maintain all surfaces in beryllium work areas as free as 
practicable of beryllium in paragraph (j)(1)(i) of the final general 
industry standard. The term ``as free as practicable'' is accepted 
language and used in other OSHA housekeeping requirements for toxic 
dusts (Asbestos, 29 CFR 1910.1001 and Cadmium, 29 CFR 1910.1027). As 
the Agency has explained in a letter of interpretation on this term as 
used in the lead standard, ``the requirement to maintain surfaces `as 
free as practicable' is performance-oriented. . . . The requirement is 
met when the employer is vigilant in his efforts to ensure that 
surfaces are kept free of accumulations of lead-containing dust. The 
role of the Compliance Safety and Health Officer (CSHO) is to evaluate 
the employer's housekeeping schedule, the possibility of exposure from 
these surfaces, and the characteristics of the workplace'' (OSHA, Jan. 
13, 2003, Letter of Interpretation.) The term ``surface'' has a common 
meaning but is not separately defined in the standard. This term has 
been used multiple times in OSHA's substance specific standards and 
OSHA has not found that it is a source of confusion for employers. As 
indicated in the preamble to the proposed standard, the term includes 
the outer parts of objects that workers come into contact with, such as 
equipment, floors, and items in storage facilities, as well as objects 
that workers may not directly contact, such as rafters and ledges. See 
80 FR 47796. Because all surfaces in beryllium work areas could 
potentially accumulate beryllium that could become airborne or that 
workers could later inhale, touch, or ingest, all surfaces in beryllium 
works areas must be kept as free as practicable of beryllium.
    OSHA has also decided to remove the phrase ``accumulations of'' 
from (j)(1)(i), because OSHA believes the reference to 
``accumulations'' may be misinterpreted to suggest that cleaning is 
only required when substantial deposits of beryllium-containing 
material have accumulated on surfaces. As discussed previously, dermal 
contact with small amounts of beryllium that are not visible to the 
naked eye can cause beryllium sensitization. Thus, the final standard 
for general industry requires the employer to maintain all surfaces in 
beryllium work areas as free as practicable of beryllium and in 
accordance with the written exposure control plan required under 
paragraph (f)(1) and the cleaning methods required under paragraph 
(j)(2) of this standard.
    OSHA has not included the requirement that employers maintain all 
surfaces in beryllium work areas as free as practicable of beryllium in 
the final standards for construction and shipyards because certain 
conditions typical in these sectors warrant different approaches in the 
housekeeping provisions. As discussed in the Summary and Explanation 
for paragraph (a), Scope and application, in this preamble, although 
employees in the construction and shipyard industries may be exposed to 
beryllium during the demolition of beryllium-contaminated buildings and 
metal recycling or through the dressing of non-sparking tools, the 
primary exposure source of beryllium at construction worksites and in 
shipyards is from abrasive blasting operations (Document ID 1671, 
Attachment 1, p. 5; 1756, Tr. 97-99). Specifically, employees in the 
construction and shipyard industries are typically exposed when they 
use abrasive blasting media that contain beryllium.
    Abrasive blasting in the construction and shipyard industries often 
occurs outdoors (see the Final Economic Analysis (FEA), Chapter IV. The 
surfaces being blasted can be large structures, such as buildings or 
ships. The blasting process itself can be transient and may occur for 
short periods of time. The work can be performed in the open or in 
temporary work enclosures when abrading large objects or structures 
that cannot be transported or are fixed. These enclosures are typically 
constructed of tarps and regularly moved from newly abraded areas to 
areas needing abrasion over very large distances (Document ID 1632, p. 
6).
    During the abrasive blasting process, large amounts of dust become 
airborne and then settle on nearby surfaces. Spent blasting media 
containing trace amounts of beryllium is cleaned up after the blasting 
operation is complete and has moved to a different area of the 
worksite. Paragraph (j)(2) of the construction and shipyard standards 
requires employers to ensure that employees use methods that minimize 
beryllium exposure during this cleaning process. However, due to the 
outdoor location of many worksites in construction and shipyards, OSHA 
finds it is not practical to require employers to maintain all surfaces 
in work areas as free as practicable of beryllium in construction or 
shipyards as for general industry. Therefore, OSHA has not included a 
reference to surfaces in the provisions of in paragraph (j)(1)(i) of 
the final standards for construction and shipyards. OSHA has modified 
paragraph (j)(1)(i) of these standards to require only that the 
employer follow the written exposure control plan required under 
paragraph (f)(1) when cleaning beryllium-contaminated areas.
    When beryllium is released into the workplace as a result of a 
spill or emergency release, paragraph (j)(1)(ii) of the final 
standards, like paragraph (j)(1)(ii) of the proposal, requires the 
employer to ensure prompt cleanup. As defined in paragraph (b) of the 
final standards, the term ``emergency'' means any uncontrolled release 
of airborne beryllium. An emergency could result from equipment 
failure, rupture of containers, or failure of control equipment, among 
other causes. Spills or emergency releases not attended to promptly are 
likely to result in additional employee exposure or skin contact.
    Boeing objected to the proposed requirement that employers maintain 
surfaces and clean up spills or emergency releases in accordance with 
the written exposure control plans required by paragraph (f)(1), in 
part, because it did not believe OSHA should require employees to 
establish a written exposure control plan. Instead, Boeing suggested 
the Agency revise the standard to allow employers to use ``existing 
processes, such as a written beryllium worksite control procedure'' 
(Document ID 1667, p. 4). To that end, Boeing suggested that employers 
be allowed to ensure prompt and proper cleanup in accordance with the 
exposure control plan, ``or equally as effective documentation'' 
(Document ID 1667, pp. 6-7). As explained in the Summary and 
Explanation for paragraph (f), Methods of Compliance, in this preamble, 
OSHA disagrees with Boeing and has chosen to retain the requirement to 
establish, implement, and maintain a written exposure control plan. 
Final paragraphs (j)(1)(i) and (ii) of the standards, like proposed 
paragraphs (j)(1)(i) and (ii), thus require employers to perform 
housekeeping activities in accordance with the written exposure control 
plan required by paragraph (f)(1) and the cleaning methods required by 
paragraph (j)(2) of the standards.
    Paragraph (j)(2) of the proposed rule included a few requirements 
regarding cleaning methods. Because OSHA recognizes that each work 
environment is unique, the Agency proposed

[[Page 2691]]

performance-oriented requirements for housekeeping to allow employers 
to determine how best to clean beryllium work areas. Paragraph 
(j)(2)(i) of the proposed standard would have required that surfaces in 
beryllium work areas be cleaned by high-efficiency particulate air 
filter (HEPA) vacuuming or other methods that minimize the likelihood 
and level of beryllium exposure.
    Some commenters, including NJH and USW, expressed support for the 
proposed requirement to use HEPA-filtered vacuuming (e.g., Document ID 
1664, p. 7; 1681, p. 13). NJH indicated that HEPA-filtered vacuuming is 
one of the methods that it recommends using because ``it has been shown 
to minimize exposures'' (Document ID 1664, p. 7). USW added that HEPA 
vacuums are common in the manufacturing industry and requiring their 
use should not burden employers (Document ID 1681, p. 13). Southern 
Company also noted that where beryllium is present as a trace element 
in coal-fired power generation, ``surfaces are cleaned and kept free of 
coal dust and ash by various methods, including vacuuming or washing,'' 
methods that may already comply with this proposed provision (Document 
ID 1668, p. 6).
    KCP also indicated its support for HEPA vacuums, stating that 
vacuuming with HEPA filters is the safest way to remove dry 
contaminants from surfaces (Document ID 1676, Attachment 1, p. 5). 
However, KCP added that HEPA vacuums do not always work well in tight 
areas with recesses, crevices, and complex arrangements of equipment 
components and that workers are likely to use a towel to clean such 
areas. Because workers will naturally use nearby towels, KCP 
recommended that OSHA specify that towels used to clean surfaces must 
be wet, not dry.
    The Sampling and Analysis Subcommittee Task Group of the Beryllium 
Health and Safety Committee (BHSC Task Group) also expressed concern 
with the proposed provision's reliance on HEPA-filtered vacuuming. The 
BHSC Task Group observed that although HEPA-filtered vacuuming is 
considered to be the most effective method for cleaning surfaces, it is 
not necessarily effective in minimizing the spread of contamination 
because the vacuums fail in various ways during use. The BHSC Task 
Group further suggested that if OSHA were to prescribe HEPA-filtered 
equipment use, it should include a requirement for particle counting 
during use (Document ID 1665, p. 11).
    OSHA finds that HEPA-filtered vacuuming is a highly effective 
method of cleaning beryllium-contaminated surfaces. However, the Agency 
acknowledges that any housekeeping equipment may fail and that 
maintaining the equipment according to the manufacturer's 
recommendations can be a critical part of ensuring that it functions as 
intended. (See summary and explanation of paragraph (j)(2)(v) which 
addresses maintenance of cleaning equipment.) Nevertheless, OSHA 
believes that when HEPA vacuums are maintained in proper working 
condition, it is not necessary to include a requirement for particle 
counting during the vacuuming. In addition, the Agency agrees with KCP 
that in certain circumstances other cleaning methods, such as wet 
wiping with towels, may also be effective in minimizing the likelihood 
and level of airborne exposure. Thus, paragraph (j)(2)(i) of the 
general industry standard retains the requirement that employers must 
ensure that surfaces in beryllium work areas are cleaned by HEPA-filter 
vacuuming or other cleaning methods that minimize the likelihood and 
level of airborne exposure. However, as discussed in detail below, OSHA 
has also added provisions to accommodate situations where cleaning with 
HEPA-filtered vacuums or other cleaning methods that minimize airborne 
exposure are not effective.
    As explained above, OSHA has chosen not to include a provision 
requiring the cleaning of surfaces in the final construction and 
shipyard standards. And, as explained in the Summary and Explanation 
for paragraph (e), the construction and shipyard standards do not 
include a provision establishing beryllium work areas. Thus, references 
to surface cleaning and beryllium work areas have been removed from 
paragraph (j)(2)(i) of the construction and shipyard standards. 
Paragraph (j)(2)(i) in these standards requires employers to ensure the 
use of HEPA-filter vacuuming or other methods that minimize the 
likelihood and level of airborne exposure when cleaning spent blast 
media or performing other cleaning in beryllium-contaminated areas.
    Paragraph (j)(2)(ii) of the proposed rule addressed the use of dry 
sweeping and brushing for cleaning in beryllium work areas. This 
proposed provision would have disallowed the use of dry sweeping and 
brushing unless the employer had tried cleaning with a HEPA-filtered 
vacuum or another method that minimizes the likelihood and level of 
exposure, and found that the method attempted was not effective under 
the particular circumstances found in the workplace. As explained in 
the proposal, OSHA included this provision to provide employers 
flexibility when exposure-minimizing cleaning methods would not be 
effective. See 80 FR 47796. However, the Agency indicated it was not 
aware of any circumstances in which dry sweeping or brushing would be 
necessary and requested comment on whether either of these cleaning 
methods would ever be necessary, and if so, under what circumstances. 
See 80 FR 47574.
    Some commenters expressed general support for the prohibition on 
dry sweeping and brushing. For example, Ashlee Fitch, representing USW 
and Materion, commented that HEPA vacuums should be used whenever 
feasible, and stated that ``OSHA has appropriately characterized this 
provision relative to exceptions'' (Document ID 1680, p. 5). ORCHSE 
also agreed that prohibiting dry sweeping or brushing to clean surfaces 
in beryllium work areas is appropriate, and that employers should only 
be permitted to use dry sweeping and dry brushing when HEPA-filtered 
vacuuming have been tried and found not effective (Document ID 1691, 
Attachment 1, p. 5).
    Commenters AFL-CIO, AWE, the BHSC Task Group, and North America's 
Building Trades Unions (NABTU), recommended prohibiting the use of dry 
sweeping under any circumstances (Document ID 1689, p. 13; 1615, p. 1, 
9; 1655, p. 11; 1679, p. 9). For example, Clive LeGresley of AWE stated 
that AWE does not permit dry sweeping or brushing to clean surfaces and 
recommended banning this practice (Document ID 1615, p. 1). The BHSC 
Task Group recommended that dry sweeping be prohibited because it 
disturbs settled beryllium on surfaces, ``which can exacerbate airborne 
contamination'' (Document ID 1655, p. 11). It also argued that dry 
sweeping is not an effective cleaning method, and when dry cleaning is 
the only available option, dry pickup cloths rather than sweeping 
should be used (Document ID 1655, p. 13). The AFL-CIO recommended 
strengthening language in the final rule to prohibit dry housekeeping 
methods (Document ID 1689, p. 13). In addition, the AFL-CIO pointed out 
that under the DOE Chronic Beryllium Disease Prevention Program, 10 CFR 
850.30 (Housekeeping), the use of dry methods for cleaning floors and 
surfaces in areas where beryllium is present is prohibited (Document ID 
1689, p. 13). NABTU argued that there are no circumstances in which dry 
sweeping or brushing is necessary, that these practices are unsafe, and 
the use of such practices would trigger the need to decontaminate 
entire work areas

[[Page 2692]]

before any work could be performed (Document ID 1679, p. 9). AFL-CIO 
additionally recommended that if dry cleaning methods are necessary due 
to feasibility issues, ``employers should be required to conduct an 
exposure assessment and provide a work process description'' (Document 
ID 1809, p. 2). OSHA has considered AFL-CIO's comment, and finds that 
the requirements for exposure assessment included in paragraph (d) of 
the final standards adequately address AFL-CIO's recommendation for 
exposure assessment. If an employer uses dry methods for cleaning 
beryllium-contaminated surfaces or areas, exposure from these methods 
should be included in exposure assessment, and re-assessment of 
exposures must be conducted when an employer adopts or changes dry 
methods because this could cause new or additional exposures.
    In addition, OSHA has considered AFL-CIO's recommendation to 
require employers who use dry methods to provide a work process 
description, and finds that a work process description provides no 
clear benefit to workers using dry methods for cleaning. However, OSHA 
notes that paragraph (m) of this standard, which requires training for 
every employee who is or can reasonably be expected to be exposed to 
airborne beryllium, encompasses any use of dry cleaning methods in the 
demarcated beryllium work areas (or, in construction and shipyard 
settings, in beryllium-contaminated areas). Paragraph (m)(4) includes 
requirements that employees can demonstrate knowledge and understanding 
of hazards associated with beryllium exposure, operations that could 
result in airborne exposure, and measures employees can take to protect 
themselves from airborne exposure to and contact with beryllium. OSHA 
intends that employees who use dry methods for cleaning beryllium-
contaminated surfaces or areas must be trained on the potential for 
airborne exposure during such cleaning, the hazards associated with 
such exposure, and the measures they can take to protect themselves, 
including the requirements of final paragraphs (j)(2)(iv) and (j)(2)(v) 
discussed later in this section. OSHA finds that these training 
requirements serve the purpose of providing information to employees 
regarding the work process, hazards and methods of protection related 
to dry sweeping, as OSHA believes the AFL-CIO's recommendation 
intended.
    Several stakeholders cited problems with the use of HEPA-filtered 
vacuums or wet methods in particular circumstances, or noted specific 
circumstances where they believed the use of dry sweeping was necessary 
(Document ID 1676, p. 5; 1668, p. 6; 1807, pp. 2-3; 1756, Tr. 42-43). 
For example, as noted above, KCP argued that HEPA-filtered vacuums do 
not always work well in tight areas with recesses, crevices, and 
complex arrangements of equipment components. Materion commented that 
it generally prohibits the use of dry brushing or broom cleaning for 
cleaning but, in instances such as machining operations, the use of 
paint brushes to clean small chips is required. Materion also noted 
that some manufacturing processes may use dry brushes. It added that 
when it permits use of a brush, it performs an exposure assessment ``to 
help ensure the task is well controlled'' (Document ID 1807, Attachment 
1, pp. 2-3). In addition, Jerrod Weaver from the Non-Ferrous Founders' 
Society (NFFS) testified that dry sweeping is ``not unusual'' in the 
foundry industry. He explained that the use of wet sweeping or other 
wet cleaning methods would be dangerous in foundries because when water 
hits molten metal, it can cause an explosion (Document ID 1756, Tr. 42-
43).
    Other stakeholders offered opinions on when the use of dry sweeping 
and dry brushing should be constrained. For example, the Southern 
Company argued that when dry sweeping does not result in exposure to 
beryllium above the action level, it should be considered a feasible 
cleaning option (Document ID 1668, p. 6). Similarly, Ameren Corporation 
stated that ``prohibiting dry sweeping should be based on employee 
exposure at or above the action level, not whether it's a beryllium 
work area'' (Document ID 1675, p. 6). As discussed in Section V, Health 
Effects, and Section VI, Risk Assessment, the best available scientific 
evidence suggests that adverse health effects such as beryllium 
sensitization and CBD can result from airborne exposures below the 
action level of 0.1 [mu]g/m\3\. In addition, OSHA does not see this 
suggestion as a practical solution where employers may feel obligated 
to perform exposure monitoring (or exposure assessments) every time 
housekeeping functions are performed. OSHA, as it has done in many 
other standards (e.g., Chromium (VI), 29 CFR 1910.1026), continues to 
believe that a general prohibition is warranted considering the risk 
even at the action level.
    After carefully reviewing the evidence in the record, OSHA finds 
that the use of dry sweeping and dry brushing can contribute to 
employee exposure. However, OSHA also finds convincing evidence that 
wet methods and HEPA-filtered vacuums may not be safe or effective in 
all situations in general industry. For example, wet sweeping in 
certain foundry work areas may be effective but is not safe because of 
the physical hazard created when water comes into contact with molten 
metal. Therefore, the Agency has retained both the prohibition on dry 
sweeping and dry brushing and the exceptions to that prohibition in 
paragraph (j)(2)(ii) of the final standard for general industry. 
Although OSHA has decided not to allow these methods based on a 
specific exposure level, OSHA has revised (j)(2)(ii) to clarify that 
employers may use dry sweeping or dry brushing to clean surfaces where 
HEPA-filtered vacuuming or other appropriate methods that minimize 
likelihood and level of exposure are not safe or effective. The 
proposed provision merely stated that employers could utilize the dry 
sweeping or brushing when HEPA-filtered vacuuming or the other methods 
were not ``effective.'' The Agency intended this term to encompass 
those situations in which HEPA-filtered vacuuming or the other chosen 
method would not accomplish the task at hand, i.e., cleaning, and 
situations in which the use of HEPA-filtered vacuuming or the other 
methods were unsafe. OSHA has modified the text of the final rule to 
make this intent explicit.
    In sum, final paragraph (j)(2)(ii) of the general industry standard 
states that the employer must not allow dry sweeping or brushing for 
cleaning surfaces in beryllium work areas unless HEPA-filtered 
vacuuming or other methods that minimize the likelihood and level of 
airborne exposure are not safe or effective. In situations where HEPA-
filtered vacuuming or other methods that minimize the likelihood and 
level of airborne exposure would be ineffective, would cause damage, or 
would create a hazard in the workplace, the employer is not required to 
use these cleaning methods. The revised paragraph (j)(2)(ii) gives 
employers the necessary flexibility to use dry sweeping or dry brushing 
in such situations.
    Although OSHA is allowing for dry sweeping and brushing, the Agency 
anticipates that the number of circumstances where these methods are 
necessary will be extremely limited. Where the employer uses dry 
sweeping or brushing, the employer must be able to demonstrate that 
HEPA-filtered vacuuming or other methods, such as wet sweeping, that 
minimize the likelihood or exposure are not safe or effective. To 
comply with the final rule, it is enough for employers to demonstrate 
that such cleaning methods

[[Page 2693]]

are unsafe or ineffective--actually attempting the method on a 
particular worksite is unnecessary. However, as in the proposal, the 
employer bears the burden of providing that these methods are either 
unsafe or ineffective. OSHA has included a similar provision in final 
paragraph (j)(2)(ii) of the standards for construction and shipyards. 
Like the general industry provision, final paragraph (j)(2)(ii) of the 
standards for construction and shipyards disallows dry sweeping and dry 
brushing and includes an exception for circumstances where HEPA-
filtered vacuuming, or other methods that minimize the likelihood of 
exposure are not safe or effective. Because the construction and 
shipyard standards do not include a provision establishing beryllium 
work areas, paragraph (j)(2)(i) of these standards requires the 
employer to ensure the use of HEPA-filter vacuuming or other methods 
that minimize the likelihood and level of airborne exposure when 
cleaning beryllium-contaminated areas. Paragraph (j)(2)(ii) states that 
the employer must not allow dry sweeping or brushing for cleaning in 
beryllium-contaminated areas unless HEPA-filtered vacuuming or other 
methods that minimize the likelihood and level of airborne exposure are 
not safe or effective.
    OSHA notes that methods that minimize the likelihood and level of 
airborne exposure other than HEPA vacuuming may be appropriate for use 
in construction and shipyards. Use of wet methods, such as wet sweeping 
or wet shoveling, or using mechanical equipment to move wetted 
material, may be viable alternatives for cleaning large amounts of 
spent blasting media used in abrasive blasting operations.
    Paragraph (j)(2)(iii) of the proposed rule would have prohibited 
the use of compressed air in cleaning beryllium-contaminated surfaces 
unless it was used in conjunction with a ventilation system designed to 
capture any resulting airborne beryllium. As OSHA indicated in the 
proposal, this provision was intended to limit airborne exposure by 
preventing the dispersal of beryllium into the air (80 FR 47796).
    Stakeholders offered a number of comments on the use of compressed 
air. For example, NJH expressed support for this provision, and 
emphasized that compressed air should only be used in conjunction with 
a ventilation system (Document ID 1664, p. 7). Several commenters 
discussed the use of compressed air for cleaning and other processes. 
Materion commented that it generally prohibits the use of compressed 
air, but production operations may incorporate compressed air into 
manufacturing processes (Document ID 1807, Attachment 1, p. 3). 
Materion further commented that on the few occasions when it permits 
the use of compressed air, it performs an exposure assessment ``to help 
ensure the task is well controlled'' (Document ID 1807, Attachment 1, 
p. 3). Mr. Weaver, a representative of NFFS, testified that the use of 
compressed air in the foundry industry is ``not unusual'' (Document ID 
1756, Tr. 42). He added that compressed air is useful for cleaning work 
surfaces (Document ID 1756, Tr. 42).
    Some commenters, including the AFL-CIO, AWE, and United Automobile, 
Aerospace & Agricultural Implement Workers of America (UAW), objected 
to the use of compressed air for cleaning (Document ID 1615 p. 1; 1689, 
p. 13; 1693, p. 4). For example, the AFL-CIO noted that the DOE Chronic 
Beryllium Disease Prevention Program prohibits the use of compressed 
air and dry methods for cleaning floors and surfaces in areas where 
beryllium is present (Document ID 1689, p. 13). And, UAW stated that 
``[c]apture hoods capable of reliably controlling particulates pushed 
by compressed air do not exist'' (Document ID 1693, p. 4).
    OSHA has carefully considered these comments and finds that the use 
of compressed air to clean beryllium-contaminated surfaces may 
occasionally be necessary in general industry; particularly in 
manufacturing processes. Therefore, paragraph (j)(2)(iii) of the final 
standards allows for the use of compressed air to clean, but only where 
the compressed air is used in conjunction with a ventilation system 
designed to capture the particulates made airborne by the use of 
compressed air. This provision is consistent with other recent 
substance-specific standards, such as the standard for respirable 
crystalline silica (29 CFR 1910.1053).
    Because the standards for construction and shipyards do not include 
a provision establishing beryllium work areas, paragraph (j)(2)(iii) of 
these standards states that employers must not allow the use of 
compressed air for cleaning in beryllium-contaminated areas unless the 
compressed air is used in conjunction with a ventilation system 
designed to capture the particulates made airborne by the use of 
compressed air. OSHA intends this paragraph to apply when using 
compressed air to clean, for example, surfaces in work areas, tarps 
used for abrasive blasting enclosures, abrasive blasting equipment, and 
material designated for recycling or disposal in order to prevent 
dispersal of beryllium into workers' breathing zones.
    OSHA recognizes that even the limited uses permitted under these 
standards of dry sweeping, dry brushing, and compressed air to clean 
can result in employee exposure to beryllium. To help mitigate the 
potential health risks, OSHA included a provision in the proposed rule 
to further protect employees who are using these cleaning methods. 
Under proposed paragraph (j)(2)(iv), where employees use dry sweeping, 
brushing, or compressed air to clean beryllium-contaminated surfaces, 
the employer was required to provide respiratory protection and 
protective clothing and equipment and ensure that each employee use 
this protection in accordance with paragraphs (g) and (h) of this 
standard. As OSHA explained in the proposal, the failure to provide 
proper and adequate protection to those employees performing cleanup 
activities would defeat the purpose of the housekeeping practices 
required to control beryllium exposure. See 80 FR 47796.
    In its post-hearing comments, the AFL-CIO indicated support for 
this requirement. Specifically, the AFL-CIO argued that if dry 
housekeeping methods are permitted, ``workers should be provided a N-95 
respirator--or a higher level of protection as required based on the 
exposure--and personal protective clothing'' (Document ID 1809, p. 2). 
After considering the record on this issue, OSHA concludes that 
requiring employers to provide respiratory protection and protective 
clothing and equipment in the limited situations where dry sweeping, 
brushing, or compressed air is used is essential to minimize exposure. 
Therefore, the Agency has included this provision in paragraph 
(j)(2)(iv) of the final standard for general industry. OSHA has also 
included a similar provision in paragraph (j)(2)(iv) of the final 
standards for construction and shipyards. Proposed paragraph (j)(2)(v) 
would have required employers to ensure that equipment used to clean 
beryllium from surfaces is handled and maintained in a manner that 
minimizes employee exposure and the re-entrainment of beryllium into 
the workplace environment. Re-entrainment occurs when particles that 
have settled on surfaces become airborne and remain suspended in the 
air. Beryllium particles that have been disturbed from surfaces and re-
entrained contribute to employee's airborne beryllium exposure. 
Commenters generally supported the inclusion of this provision in the 
final rule. For example,

[[Page 2694]]

Materion stated that preventing migration of beryllium requires 
``looking at all those migratory pathways where material can move 
around in an operation,'' keeping the material as close to the source 
as possible, and keeping it off of people and off of surfaces (Document 
ID 1755, Tr. 150). The BHSC Task Group commented that HEPA vacuums 
``must be maintained per the manufacturer's recommendations and 
oriented in such a manner that the exhaust side of the HEPA vacuum is 
not blowing hazardous dust into the work area'' (Document ID 1655, p. 
11). Among other things, the BHSC Task Group said this provision would 
cause employers to ensure that cleaning and maintenance of HEPA-
filtered vacuum equipment is done carefully to avoid exposure to 
beryllium. This provision would also require employers to ensure that 
filter changes and bag and waste disposal be performed in a manner that 
minimizes the risk of employee exposure to airborne beryllium and 
accidentally dispersing beryllium back into the workplace environment. 
After carefully reviewing these comments, OSHA finds that the 
provisions of paragraph (j)(2)(v) are necessary to the protection of 
employees from the adverse health effects associated with beryllium 
exposure, and has decided to include this provision (with minor 
changes) in paragraph (j)(2)(v) of the final standards. OSHA notes that 
paragraph (j)(2)(v) complements paragraph (f)(1)(i)(F), which requires 
employers to establish and implement a written exposure control plan 
that includes procedures for minimizing the migration of beryllium.
    Paragraph (j)(3)(i) of the proposed rule would have required the 
employer to ensure that waste, debris, and materials visibly 
contaminated with beryllium and consigned for disposal were disposed of 
in sealed, impermeable enclosures, such as bags or containers. 
Paragraph (j)(3)(ii) would have further required such bags or 
containers to be labeled in accordance with paragraph (m)(3) of the 
proposed rule. Finally, paragraph (j)(3)(iii) of the proposed rule 
would have required materials designated for recycling that are visibly 
contaminated with beryllium to be either cleaned to remove visible 
particulate, or placed in sealed, impermeable enclosures, such as bags 
or containers, that are labeled in accordance with paragraph (m)(3) of 
the proposed rule.
    OSHA intended these provisions to protect and inform workers who 
may be exposed to beryllium when handling waste or recycled materials. 
As discussed in the NPRM, alerting employers and employees who are 
involved in disposal to the potential hazards of beryllium exposure 
will better enable them to implement protective measures (80 FR 47771). 
OSHA reasoned that employers and employees should be similarly alerted 
if handling materials designated for recycling that have not been 
cleaned of visible particulate. The proposed requirements to use 
impermeable enclosures and/or clean materials of visible particulate 
were intended to reduce employees' risk of beryllium sensitization from 
dermal contact with beryllium in handling waste materials or materials 
designated for recycling. The options provided to employers in proposed 
paragraph (j)(3)(iii) were intended to allow employers flexibility to 
facilitate the recycling process.
    In the NPRM, OSHA asked for feedback on proposed paragraph (j)(3) 
(80 FR 47574). A number of stakeholders responded. For example, NFFS 
argued that:

[t]he sections regulating the manner in which waste product is 
labeled, packaged and shipped have already been regulated by both 
the [Environmental Protection Agency (EPA) (e.g. treatment, 
recycling and reuse of waste materials) and the DoT (e.g. shipping 
and placarding requirements, shipping containers for hazardous 
materials). Additionally, scrap and process coproducts in the non-
ferrous foundry industry are treated as products and provided with 
appropriate labeling and SDS information as required by OSHA and the 
GHS/Hazard Communication standard. Requiring the non-ferrous casting 
industry to treat our process coproducts the same as waste and 
debris streams contradicts the requirements of the EPA and DoT 
regarding the identification, processing, packing, handling and 
transportation requirements of these materials'' (Document ID 1678, 
p. 5).

OSHA's requirement for warning labels must be consistent with the 
Hazard Communication Standard. Therefore, OSHA is not convinced that 
these are barriers to appropriately warning downstream users of 
beryllium contamination. In the Hazard Communication Standard (HCS), 
OSHA has carefully defined when other Agencies have jurisdiction for 
labeling requirements such as EPA and the Department of Transportation 
(DOT). Additionally, as OSHA further explainsed in the Summary and 
Explanation for paragraph (m), Communication of hazards, OSHA intends 
for the hazard communication requirements in the final standards to be 
substantively as consistent as possible with the HCS, while including 
additional specific requirements needed to protect employees exposed to 
beryllium, in order to avoid duplicative administrative burden on 
employers who must comply with both the HCS and this rule. To that end, 
OSHA allows employers to include the information required by these 
beryllium standards on the labels created to comply with the HCS. Thus, 
if NFFS's members are already supplying labels that conform to the HCS, 
they can add the beryllium-specific information to the existing labels. 
OSHA deems this information is warranted and would not contradict or 
cast doubt on the other information required on the label.
    Some commenters, including USW, generally agreed with OSHA's 
proposed disposal and recycling requirements (e.g., Document ID 1680, 
p. 6). Materion noted that a similar provision appeared in Materion and 
the USW's joint draft model standard (Document ID 1681, p. 12). In 
addition, Materion argued that OSHA should not require that all 
material to be recycled be decontaminated regardless of perceived 
surface cleanliness or require that all material disposed or discarded 
be in enclosures regardless of perceived surface cleanliness (Document 
ID 1681, p. 12). The company maintained that this requirement would be 
technologically and economically infeasible and extremely costly in 
many regards, particularly with regard to surface residue from abrasive 
blasting (Document ID 1681, p. 12). As discussed below, OSHA has 
decided for the construction and shipyard standards not to require 
decontamination or enclosure of materials designated for recycling or 
disposal due in part to concerns about the feasibility of such 
requirements in these sectors.
    However, many other stakeholders argued in favor of cleaning or 
enclosing all beryllium-contaminated materials designated for recycling 
and enclosing such materials destined for disposal. For example, the 
BHSC Task Group, NJH, the National Institute for Occupational Safety 
and Health, Southern Company, NFFS, AIHA, NABTU, and ORCHSE disagreed 
with the proposal's use of the term ``visible'' when determining 
whether the provisions for containment and labeling included in 
proposed paragraph (j)(3) should apply to materials designated for 
recycling or disposal (e.g., Document ID 1664, p. 7; 1671, Attachment 
1, p. 7; 1668, p. 6; 1678, p. 5; 1686, p. 2; 1679, p. 10; 1691, p. 5). 
NJH and ORCHSE recommended that OSHA require all materials designated 
for recycling ``be decontaminated regardless of perceived surface 
cleanliness'' (Document ID 1664, p. 7; 1691, p. 5). NJH added that 
``particles may not be visible to the naked eye'' and 
``[d]econtaminating all

[[Page 2695]]

materials ensures that exposure is minimized.'' It also recommended 
that materials designated for disposal be discarded per local hazardous 
waste regulations (Document ID 1664, p. 7). ORCHSE argued that for the 
protection of municipal and commercial disposal workers, materials 
discarded from beryllium work areas should be in bags or other 
containers (Document ID 1691, p. 5). NFFS asserted that ``visibly 
contaminated,'' ``cleaned to remove visible particulate,'' and 
``sealed, impermeable enclosures'' are vague terms (Document ID 1678, 
p. 5).
    As discussed previously in the Summary and Explanation for 
paragraph (h), Personal protective clothing and equipment, in this 
preamble, OSHA finds that ``visibly contaminated'' is a subjective 
trigger for most purposes in the final standards, and dermal contact 
with beryllium can cause beryllium sensitization even if the beryllium 
is not visible to the naked eye. OSHA therefore agrees with the 
commenters who criticized the use of ``visibly contaminated.'' (see, 
e.g. Document ID 1686, p. 1). The Agency intends that waste, debris, 
and materials be disposed of as specified in paragraph (j)(3) 
regardless of particulate visibility. However, OSHA does not intend for 
this requirement to extend to articles containing beryllium that are 
outside of the scope the standard, but to beryllium dust generated 
during processing. Similarly, materials designated for recycling must 
be cleaned to remove particulate or placed in sealed, impermeable 
enclosures, such as bags or containers, and labeled in accordance with 
paragraph (m)(3) of the standards, regardless of particulate 
visibility. To make this intention clear to employers, OSHA has removed 
the terms ``visibly'' and ``visible'' from paragraph (j)(3) of the 
final standard for general industry, and has replaced them with ``as 
free as practicable.'' OSHA discusses the meaning of ``as free as 
practicable'' and addresses comments on this phrase in this Summary and 
Explanation of paragraph (j), Housekeeping.
    OSHA also agrees with ORCHSE that materials discarded from 
beryllium work areas in general industry should be in bags or other 
containers for the protection of municipal and commercial disposal 
workers (Document ID 1691, p. 5). However, OSHA disagrees with NFFS's 
comment that ``sealed, impermeable enclosures'' is problematically 
vague (Document ID 1678, p. 5). OSHA intends this term to be broad and 
the provision performance-oriented, so as to allow employers in a 
variety of industries flexibility to decide what type of enclosures 
(e.g., bags or other containers) are best suited to their workplace and 
the nature of the beryllium-containing materials they are disposing or 
designating for reuse outside the facility. OSHA finds that the terms 
``sealed'' and ``impermeable'' are commonly understood and should not 
cause employers confusion. OSHA intends these terms to mean that the 
enclosures selected should not allow the materials they contain to 
escape the enclosures under normal conditions of use.
    In addition, the BHSC Task Group stated that certain beryllium-
contaminated items should not be considered for recycling. According to 
the BHSC Task Group, only materials scheduled for use within beryllium 
regulated areas at other facilities, and not by the general public, 
should be recycled. The BHSC Task Group recommended surface wipe 
sampling to determine whether items should be decontaminated again and 
should be resampled prior to recycling; otherwise, if not meeting 
established limits, they should be disposed of according to 
``appropriate waste management practices'' (Document ID 1655, p. 13). 
After careful consideration, OSHA has decided not to adopt the BHSC 
Task Group's suggestion. The Agency finds that the requirement to 
either clean and label or enclose and label beryllium-contaminated or 
containing materials designated for recycling should provide protection 
for later recipients of these items, as discussed in more detail below.
    In addition to the previously discussed changes to the proposed 
rule, which were directly related to comments received by OSHA, the 
Agency has made several changes to better implement and communicate the 
intention of paragraph (j)(3). First, OSHA has modified the provisions 
of paragraph (j)(3) to state that it applies to materials that contain 
beryllium as well as materials contaminated with beryllium. OSHA finds 
that employers and employees who work with materials that were recycled 
or discarded by other facilities should be made aware of any beryllium-
containing materials they process. Provisions to ensure awareness of 
beryllium in materials received from other facilities aid employers who 
otherwise might not know they are required to comply with the beryllium 
standard, and employees who otherwise might not be appropriately 
protected or adequately informed about potential beryllium exposures in 
their workplace.
    Second, the requirements of (j)(3) regarding labeling materials 
designated for recycling have been modified. While the proposed rule 
required materials designated for recycling to be labeled in accordance 
with paragraph (m)(3) only if employers choose to enclose rather than 
clean them, the final standards require employers to label materials 
designated for recycling in either case. This modification, like OSHA's 
addition of the reference to beryllium-containing materials discussed 
above, ensures that employers and employees who work with materials 
that were recycled by other facilities are aware of any beryllium-
containing materials they process. OSHA also modified the requirements 
of proposed paragraph (j)(3) for the construction and shipyard sectors. 
Paragraph (j)(3) of the construction and shipyard standards requires 
employers who transfer materials containing beryllium to another party 
for use or disposal to provide the recipient with a copy of the warning 
described in paragraph (m)(3) of the standards, for the same reasons 
this requirement was retained in the final general industry standard. 
However, employers in construction and shipyards are not required to 
place beryllium-containing materials in sealed, impermeable enclosures 
for use or disposal by other entities. OSHA made this change from 
paragraph (j)(3) of the general industry standard because the Agency 
believes that spent media from abrasive blasting operations will 
constitute the great majority of beryllium-containing materials 
designated for disposal or recycling in construction and shipyards and 
it is generally not practical for employers to enclose spent blasting 
media in sealed, impermeable bags or containers, because of the large 
volume of waste material generated in these operations OSHA finds that 
requiring employers in construction and shipyards to include a warning 
label on beryllium-containing materials designated for disposal or 
reuse, but not requiring them to seal such materials in impermeable 
enclosure, appropriately informs recipients of the potential hazards of 
handling the materials without imposing impractical containment 
requirements on these employers. In addition, these separate 
requirements for construction and shipyards are responsive to 
Materion's concern regarding the technological and economic feasibility 
of cleaning or enclosing materials contaminated with surface residue 
from abrasive blasting.
    In summary, paragraph (j)(3)(i) of the final standard for general 
industry requires that items containing or contaminated with beryllium 
and designated for disposal be disposed of

[[Page 2696]]

in sealed, impermeable bags or other sealed, impermeable containers, 
and requires these containers to be marked with warning labels in 
accordance with paragraph (m)(3) of the standards. Paragraph (j)(3)(ii) 
of the final standard for general industry requires materials 
designated for recycling that contain or are contaminated with 
beryllium be cleaned to be as free as practicable of surface beryllium 
contamination and labeled in accordance with paragraph (m)(3) of this 
standard, or to be placed in sealed, impermeable enclosures, such as 
bags or containers, that are so labeled. Paragraph (j)(3) of the 
construction and shipyard standards requires employers who transfer 
materials containing beryllium to another party for use or disposal to 
provide the recipient with a copy of the warning described in paragraph 
(m)(3) of these standards. The term ``use'' is intended to include 
recycling, as well as any other use the recipient may make of the 
beryllium-containing materials.
    Finally, USW and Materion requested that OSHA make it clear that 
this provision does not apply to beryllium-containing scrap metals 
being reused within the facility (Document ID 1680, p. 6; 1661 p. 12). 
USW offered the example of copper beryllium machine turnings being 
utilized within the same facility. The union explained: ``In this 
example, it would not make sense to require cleaning or enclosing 
because they are either very clean to start with or have a thin coating 
of machining coolant. Requiring them to be cleaned before reuse in the 
facility might actually lead to greater worker exposures'' (Document ID 
1680, p. 6).
    OSHA did not intend to require employers to clean or enclose 
materials designated for reuse elsewhere in the same facility. 
Therefore, OSHA clarifies that paragraph (j)(3)(ii)'s requirements do 
not apply to scrap metals designated for reuse within the same 
facility.

(k) Medical Surveillance

    Paragraph (k) of the final standards sets forth requirements for 
the medical surveillance provisions. The paragraph specifies which 
employees must be offered medical surveillance, as well as the 
frequency and content of medical examinations. It also sets forth the 
information that the licensed physician and CBD diagnostic center is to 
provide to the employee and employer. Many of the provisions in the 
final standards are substantively consistent with the 2012 joint draft 
recommended standard by Materion Corporation (Materion) and the United 
Steelworkers (USW) (Document ID 0754).
    The purposes of medical surveillance for beryllium are: (1) To 
identify beryllium-related adverse health effects so that appropriate 
intervention measures can be taken; (2) to determine if an employee has 
any condition that might make him or her more sensitive to beryllium 
exposure; and (3) to determine the employee's fitness to use personal 
protective equipment such as respirators. The inclusion of medical 
surveillance in these final standards is consistent with section 
6(b)(7) of the OSH Act (29 U.S.C. 655(b)(7)), which requires that, 
where appropriate, medical surveillance programs be included in OSHA 
health standards to aid in determining whether the health of employees 
is adversely affected by exposure to the hazards addressed by the 
standard. Almost all other OSHA health standards, such as Chromium (VI) 
(29 CFR 1910.1026), Methylene Chloride (29 CFR 1910.1052), Cadmium (29 
CFR 1910.1027), and Respirable Crystalline Silica (29 CFR 1910.1053), 
have also included medical surveillance requirements and OSHA finds 
that a medical surveillance requirement is appropriate for the 
beryllium standards because of the health risks resulting from 
exposure.
    General. Consistent with the proposed standards, paragraph 
(k)(1)(i) of the final standards, requires employers to make medical 
surveillance available at no cost, and at a reasonable time and place, 
for each employee who meets a trigger for medical surveillance. As in 
previous OSHA standards, the ``no cost, and at a reasonable time and 
place'' requirement in the final beryllium standards is intended to 
encourage employee participation. Under this requirement, if 
participation requires travel away from the worksite, the employer will 
be required to bear the cost of travel, and employees will have to be 
paid for time spent taking medical examinations, including travel time.
    OSHA clarifies that employees of beryllium vendors who qualify for 
benefits under the Energy Employees Occupational Illness Compensation 
Program Act (EEOICPA) (42 U.S.C. 7384-7385s-15) and its implementing 
regulations (20 CFR part 30) may also qualify for medical surveillance 
benefits under this final standard. Medical benefits provided to 
covered employees for covered beryllium diseases under the EEOICPA 
program are paid for by the federal government.
    Employees covered by both the EEOICPA program and this final 
standard will not be required to choose between the programs. Rather, 
these dual-coverage employees may undergo medical examinations where 
they can receive the services and/or treatment covered under both 
programs. Treatment and services for covered beryllium disease of a 
covered beryllium employee under the EEOICPA program will be paid for 
by the federal government to the extent that the services provided are 
covered under the EEOICPA program. If this final standard requires 
services or treatment that are not covered by the EEOICPA program, the 
employer will be required to pay for these additional services.
    OSHA received numerous comments during the public comment period 
regarding the inclusion of the medical surveillance provision for the 
beryllium standard. Most comments supported inclusion of medical 
screening or surveillance in the final beryllium standard, including 
those from National Safety Council (NSC), Materion, National Jewish 
Health (NJH), North America's Building Trades Union (NABTU), USW, the 
American College of Occupational and Environmental Medicine (ACOEM), 
the American Thoracic Society (ATS), the American Federation of Labor 
and Congress of Industrial Organizations (AFL-CIO), ORCHSE Strategies 
(ORCHSE), the National Institute of Occupational Safety and Health 
(NIOSH), and Public Citizen (e.g., Document ID 1612, p. 3; 1661, p. 10; 
1664, pp. 1, 8; 1679, pp. 11-12; 1681, pp. 13-14; 1685, p. 4; 1688, p. 
2; 1689, pp. 13-14; 1691, Attachment 1, pp. 5-13; 1725, p. 33; 1964, p. 
3). No commenters opposed the inclusion of a medical surveillance 
requirement.
    In support of medical surveillance, the AFL-CIO and others 
indicated that medical surveillance is essential in screening for 
sensitization and preventing CBD (Document ID 1658, p. 3; 1689, p. 13). 
As noted in Section V, Health Effects, employees in the early stages of 
beryllium disease are often asymptomatic, and as a result, medical 
surveillance is critical to identify those employees who may benefit 
from interventions such as removal from exposure. ATS also commented 
that medical surveillance helps to identify those with sensitization 
and potentially CBD, as well as to define the risk of various work 
exposures, jobs, and tasks (Document ID 1688, p. 3). Commenter Evan 
Shoemaker said surveillance could ``inform employers that workplace 
controls and safeguards need updating'' (Document ID 1658, p. 3).
    NJH commented that early disease detection, before symptoms occur, 
is the cornerstone for managing work-related disease (Document ID 1806, 
pp. 2-3). Studies highlighted by NJH show that medical surveillance 
could be important for identifying workers that might

[[Page 2697]]

benefit from removal from exposure. Those studies show that rates of 
CBD development in sensitized workers are lower for short-term than 
long term workers (1.4% versus 9.1% in a study by Henneberger et al., 
2001, Document ID 1313). Other studies it cited showed improvements in 
gas exchange and radiography with decreased peak air concentrations of 
beryllium (Sprince et al., 1978, as cited in Document ID 1806) and 
improvements in lung function in most patients after stopping beryllium 
exposures (Sood et al., 2004, Document ID 1331).
    NJH also submitted evidence showing that once employees do develop 
symptoms, the knowledge that the symptoms are caused by CBD could lead 
to treatment to improve outcome (Document ID 1806, pp. 2-3). NJH found 
that identifying disease at an early stage allows the use of inhaled 
corticosteroids for mild symptoms, which it found to be effective for 
reducing expected levels of lung function decline and improving lung 
function and cough in employees with lower lung function (Document ID 
1811, Attachment 8). Early detection of beryllium disease and 
identification of employees who would benefit from oral corticosteroid 
treatment before fibrosis develops can result in regression of signs 
and symptoms and possibly prevent progression of the disease (Marchand-
Adam et al., 2008, Document ID 0370; 80 FR 47588). NJH concluded that 
early detection of beryllium disease allows for exposures to be 
decreased and symptoms to be treated at the earliest time point, which 
can result in decreases in medication doses, side effects, and risk of 
disease progression.
    In paragraphs (k)(1)(i)(A)-(C) of the proposal, OSHA specified that 
employers must ``make medical surveillance as required by this 
paragraph available'' for each employee: (1) Who has worked in a 
regulated area for more than 30 days in the last 12 months; (2) showing 
signs or symptoms of CBD, such as shortness of breath after a short 
walk or climbing stairs, persistent dry cough, chest pain, or fatigue; 
or (3) exposed to beryllium during an emergency. OSHA requested 
comments on these triggers and also presented alternatives to expand 
eligibility for medical surveillance to a broader group of employees 
(80 FR 47565, 47571, 47576). Under Regulatory Alternative #14, medical 
surveillance would have been available to employees who are exposed to 
beryllium above the proposed permissible exposure limit (PEL), 
including employees exposed for fewer than 30 days per year. Regulatory 
Alternative #15 would have expanded eligibility for medical 
surveillance to employees who are exposed to beryllium above the 
proposed action level, including employees exposed for fewer than 30 
days per year.\39\ OSHA requested comment on these alternatives.
---------------------------------------------------------------------------

    \39\ OSHA also proposed Regulatory Alternative #21, which would 
have extended eligibility for medical surveillance to all employees 
in shipyards, construction, and general industry who meet the 
criteria of proposed paragraph (k)(1) (or any of the alternative 
criteria under consideration). However, under Regulatory Alternative 
#21, all other provisions of the standard would have been in effect 
only for employers and employees that fell within the scope of the 
proposed rule. As discussed in the Summary and Explanation for 
paragraph (a), Scope and application, OSHA has decided to expand the 
proposal's scope to cover construction and shipyards. Therefore, 
Regulatory Alternative #21 is moot.
---------------------------------------------------------------------------

    OSHA received numerous comments related to each of the proposed 
triggers. First, a number of stakeholders commented on the proposed 
trigger of working in a regulated area, i.e., an area in the workplace 
where an employee's exposure exceeds, or can reasonably be expected to 
exceed, either the PEL or the short-term exposure limit (STEL), for 
more than 30 days in a 12-month period. For example, NIOSH argued that 
employees exposed above an action level of 0.1 [micro]g/m\3\ for 30 
days a year should be eligible for medical surveillance because 
``substantial risk for [sensitization] and [chronic beryllium disease 
(CBD)] exists even at the [a]ction [l]evel'' (Document ID 1725, p. 32; 
1755, Tr. 40). Public Citizen also advocated for an action level 
trigger based on risk of sensitization below the proposed PEL, arguing 
that triggering medical surveillance at the PEL, where significant risk 
remains, would be inconsistent with other OSHA health standards 
(Document ID 1964, p. 3). Public Citizen asked OSHA to consider the 
feasibility of making medical surveillance available to employees 
exposed at any level of beryllium for any duration of time (Document ID 
1964, p. 3).
    ATS and NJH supported expanding medical surveillance to all 
employees exposed to beryllium in beryllium work areas (above or below 
the action level), because of remaining significant risk at the PEL and 
because exposure monitoring is sporadic and may not always reflect 
higher exposures (Document ID 1664, p. 1; 1688, pp. 2, 4). Lisa Maier, 
M.D., from NJH further indicated that medical surveillance should be 
offered to these employees, regardless of the amount of time they spend 
in the work areas (Document ID 1756, Tr. 101-103). To support this 
recommendation, NJH referenced three studies (Henneberger et al., 2001, 
Document ID 1313; Schuler et al., 2005, (0919); and Taiwao et al, 2008, 
(1264)) that examine relationships between beryllium exposure and 
development of sensitization and CBD. NJH stated that exposure levels 
as low as 0.01 [mu]g/m\3\ were associated with the development of 
sensitization and disease (Document ID 1720; 1756, Tr. 93-94). NJH also 
presented evidence showing that some individuals are genetically 
susceptible to developing beryllium sensitization and CBD (e.g., Maier 
et al., 2003, Document ID 0484; 1720, p. 3).
    The National Supplemental Screening Program (NSSP), an organization 
that provides medical screening for former Department of Energy 
workers, and ACOEM supported an action level trigger, including for 
employees exposed for less than 30 days a year (Document ID 1677, p. 3; 
1685, p. 4; 1756, Tr. 83-84). However, Lee Newman, MD, who represented 
ACOEM at the public hearing, testified that he personally felt that 
medical surveillance should be offered to anyone who has worked in a 
beryllium work area with measurable beryllium exposures (Document ID 
1756, Tr. 84). Dr. Newman stated that his personal opinion was based 
upon his ``30 years of experience of working with people [exposed to 
beryllium'' and ``the studies that [he and his colleagues] have done'' 
(Document ID 1756, Tr. 84).
    In contrast, Materion argued medical surveillance should be 
triggered by exposures above the PEL because Johnson et al. (2001) 
(Document ID 1505) concluded that 2.0 [mu]g/m\3\ is sufficient to 
protect employees from developing clinical CBD, most recent scientific 
studies suggest that 0.2 [mu]g/m\3\ is sufficient to protect against 
CBD, and the coke oven emissions standard and formaldehyde standards 
trigger medical surveillance at the PEL (Document ID 1661, p. 10). NGK 
Metals Corporation (NGK) was also opposed to setting the medical 
surveillance trigger at the action level, claiming that this would be 
burdensome, costly, and cause distress in employees who receive false 
positive results (Document ID 1663, p. 5). The Department of Defense 
(DOD) argued that medical surveillance should be triggered above the 
PEL to monitor the effectiveness of engineering controls and 
respiratory protection (Document ID 1684, Attachment 2, p. 1-9).
    Based on the comments and other record evidence, OSHA finds that 
triggering medical surveillance at the action level of 0.1 [mu]g/m\3\ 
better addresses residual significant risk and varying susceptibility 
of employees that can result in sensitization and CBD at lower exposure 
levels. OSHA disagrees

[[Page 2698]]

with Materion that a PEL trigger for medical surveillance is 
sufficiently protective because OSHA's own risk assessment shows 
significant risk remaining at the action level and PEL (see Section VI, 
Risk Assessment). In addition, OSHA is aware of individuals who are 
genetically predisposed to developing beryllium sensitization and CBD 
at beryllium levels that would not cause disease in other individuals 
(See Section V, Health Effects). As a result, OSHA is concerned that a 
PEL trigger is not sufficient to identify disease at an early stage in 
employees who are genetically susceptible to developing disease.
    Moreover, OSHA finds that an action level trigger for medical 
surveillance encourages employers to maintain exposures below that 
level, which in turns provides reasonable assurance that exposures will 
not exceed the PEL on days when exposures are not measured (See Summary 
and Explanation for paragraphs (b), Definitions, and (d), Exposure 
Assessment). Therefore, an action level trigger in these standards is 
also appropriate to address stakeholder concerns, such as those raised 
by ATS and NJH, that exposure assessments might underestimate actual 
exposures due to variability in exposure levels or other factors.
    Medical surveillance triggered by the action level is the norm for 
OSHA health standards. Materion noted two exceptions, observing that 
medical surveillance is not triggered at the action level in standards 
for formaldehyde and coke oven emissions. However, the Coke Oven 
Emissions standard does not include an action level, and the trigger 
for medical surveillance is employment in a regulated area, which is a 
discretely identified area on or around the coke oven battery, for at 
least 30 days a year (29 CFR 1910.1029). Significantly, the Coke Oven 
Emissions standard requires employers to assure that no employee in the 
regulated area is exposed to coke oven emissions at concentrations 
greater than the PEL (29 CFR 1910.1029(c)). Therefore, the trigger in 
the Coke Oven Emissions standard, which would include employees who are 
exposed to levels no higher than the PEL for at least 30 days per year, 
is more protective than a requirement that does not trigger medical 
surveillance until exposures exceed the PEL for 30 days a year. With 
the exception of formaldehyde, OSHA standards trigger medical 
surveillance at exposure levels at or below the PEL, and typically at 
the action level.
    In sum, OSHA is persuaded that a lower trigger for medical 
surveillance is necessary because of the remaining health risk at both 
the action level and PEL. However, OSHA is not persuaded by those 
commenters who advocated triggering medical surveillance below the 
action level, in part, because nearly everyone in the general 
population is potentially exposed to beryllium as it is a naturally 
occurring compound in rocks and soil. In addition, the lack of 
conclusive evidence of non-industrial-related beryllium-related disease 
in the record suggests there is a level of exposure at which the risk 
of developing beryllium-related disease becomes negligible, but OSHA 
does not have information to precisely determine that level. As a 
result, offering medical surveillance to all potentially exposed 
employees would result in some low-risk employees receiving medical 
examinations when they have very little likelihood of benefiting from 
those examinations. OSHA is especially concerned by this because some 
medical examination components, such as the BeLPT, are invasive. In 
addition, OSHA finds that triggering surveillance at a level that is 
achievable for some employers is important because it provides 
employers with an incentive to keep exposures low to avoid the costs of 
providing medical surveillance. Employees benefit from those lower 
exposures because it reduces their risk of developing disease. 
Triggering medical surveillance at any level of exposure eliminates the 
incentive to keep exposures low and thus may be counterproductive to 
protecting employees.
    In conclusion, an action level trigger is appropriate because it is 
a level at which risks are measurable and found to be lower than at the 
PEL, especially for employees who may be more susceptible to developing 
disease. The action level is achievable for many employers, and those 
employers are likely to maintain exposures below the action level to 
avoid the costs associated with exposure assessments and offering 
medical surveillance. Maintaining exposures below the action level also 
benefits employees because it decreases the chances that exposures will 
not exceed the PEL on a day on which exposure assessments are not 
conducted, and it lowers the risk of developing disease. For those 
reasons, an action level trigger is appropriate in the beryllium 
standard, consistent with the majority of OSHA standards.
    Comments were also received on the 30-day duration as part of the 
medical surveillance trigger. NIOSH supported it (Document ID 1725, p. 
32; 1755, Tr. 40). However, NJH, NSSP, and ACOEM did not support OSHA's 
proposed duration trigger of more than 30 days a year, stating that 
eligible employees exposed less than 30 days a year should be offered 
medical surveillance (Document ID 1664, p. 9; 1677, p. 3; 1685, p. 4).
    Other stakeholders did not support extending medical surveillance 
to employees exposed for fewer than 30 days per year. For example, DOD 
commented that ``[w]hile it is conceivable that workers can be 
sensitized to beryllium after brief exposures, it is unlikely that 
infrequent, brief exposures will cause either sensitization or chronic 
beryllium disease'' (Document ID 1684, Attachment 2, p. 1-2).
    After careful consideration of these comments and other evidence in 
the record, OSHA finds that maintaining the 30-day exposure-duration 
trigger is appropriate in the final standards because the Agency's risk 
assessment shows increasing risk of health effects from exposure at 
increasing cumulative exposures, which considers both exposure level 
and duration (See Section VI, Risk Assessment). OSHA finds that a 30-
day trigger is a reasonable benchmark for capturing increasing risk 
from cumulative effects caused by repeated exposures. Including a 30-
day exposure-duration trigger also maintains consistency with other 
OSHA standards, such as Chromium (VI) (29 CFR 1910.1026), Cadmium (29 
CFR 1910.1027), Lead (29 CFR 1910.1025), Asbestos (29 CFR 1910.1001), 
and Respirable Crystalline Silica (29 CFR 1910.1053). As discussed in 
more detail below, OSHA notes that the triggers in final paragraphs 
(k)(1)(i)(B) and (C) may address employees who could be at risk, even 
though they may not have had repeated exposures.
    Therefore, OSHA has decided to revise the first proposed medical 
surveillance trigger to require the offering of medical surveillance 
based on exposures at or above the action level, rather than the PEL 
(i.e, work in a regulated area). But the Agency will retain the 30-day-
per-year-exposure-duration trigger. In addition, OSHA has chosen to 
revise the proposed trigger to require employers to make medical 
surveillance available to each employee ``who is or is reasonably 
expected to be exposed . . . for more than 30 days a year,'' rather 
than waiting for the 30th day of exposure to occur. OSHA made this 
revision because the proposed provision, in combination with paragraph 
(k)(2)(i)(A), may not have resulted in timely medical examinations for 
new employees who are not exposed to beryllium concentrations above the 
action level every day. For example, a new employee exposed to 
beryllium once per week would not receive a

[[Page 2699]]

medical examination until being employed for up to 34 weeks. As noted 
below, several stakeholders commented that a medical exam should be 
offered before or within 30 days of placement (e.g., Document ID 1664, 
p. 7; 1685, p. 4, 1689, p. 13). OSHA agrees that a medical examination 
should be conducted shortly after placement to allow the employee to 
find out if he or she has any condition that may make him or her more 
sensitive to beryllium exposure. For these reasons, paragraph 
(k)(1)(i)(A) of the final standards require that employers make medical 
surveillance available to each employee who is or is reasonably 
expected to be exposed above the action level for more than 30 days per 
year.
    The proposal's ``regulated area'' trigger corresponded to setting 
the trigger at the PEL, and so has been superseded by the final rule's 
action level trigger. The elimination of the ``regulated area'' trigger 
may also affect whether employees exposed above the short-term exposure 
limit (STEL) receive medical surveillance. As noted above and discussed 
extensively in the Summary and Explanation for paragraph (e), the 
proposed standard defined the term ``regulated area'' to mean an area 
that the employer must demarcate, including temporary work areas where 
maintenance or non-routine tasks are performed, where an employee's 
exposure exceeds, or can reasonably be expected to exceed, either of 
the permissible exposure limits (PELs). Proposed paragraphs (c) and (e) 
made clear that this definition included both the proposed 8-hour TWA 
PEL and the proposed STEL. Because the revised trigger in final 
paragraph (k)(1)(i)(A) focuses on the action level, rather than working 
in a regulated area, it does not directly require medical surveillance 
for employees who are exposed above the STEL, provided their airborne 
exposure levels do not exceed the action level for more than 30 days 
per year.
    However, as explained in Chapter IV-Section 15 of the Final 
Economic Analysis and discussed in the Summary and Explanation for 
paragraph (c), Permissible Exposure Limits (PELs), the occurrence of 
one or more short-term exposures to elevated airborne concentration 
during a work shift can substantially increase a worker's 8-hour TWA 
exposure. For example, the TWA exposure of a worker who is exposed to a 
background level at the final action level of 0.1 [mu]g/m\3\ will be 
0.16 [mu]g/m\3\ if that worker is exposed to a single 15-minute period 
at an exposure level just above 2.0 [mu]g/m\3\, the final STEL. 
Therefore, OSHA finds that the revised action level trigger will 
frequently address the STEL component of the proposed trigger because 
when exposures exceed the STEL, it is very likely that the action level 
will also be exceeded, thus triggering medical surveillance.
    Signs or Symptoms. Proposed paragraph (k)(1)(i)(B)) required 
employers to ``make medical surveillance as required by this paragraph 
available'' to each employee showing signs or symptoms of CBD, such as 
shortness of breath after a short walk or climbing stairs, persistent 
dry cough, chest pain, or fatigue. As OSHA explained in the proposal, a 
sign-or-symptoms trigger is necessary, in part, because beryllium 
sensitization and CBD could develop in employees who are especially 
sensitive to beryllium, may have been unknowingly exposed, or may have 
been exposed to greater amounts than the exposure assessment suggests. 
A signs-or-symptoms trigger was also included in the draft standard 
submitted by Materion and USW (Document ID 0754).
    One commenter, ORCHSE, argued that a symptom trigger should only 
apply to confirmed positive, i.e., sensitized, employees because the 
types of symptoms listed are non-specific for CBD and would require 
employers to offer medical surveillance to employees who were never 
exposed to beryllium (Document ID 1691, Attachment 1, pp. 5-6). 
However, the majority of the stakeholders who opined on the signs-or-
symptoms trigger supported its inclusion in the final rule. For 
example, NJH, ATS, and NIOSH supported a symptom trigger for medical 
surveillance (Document ID 1664, p. 4, 8; 1688, p. 3; 1725, p. 32). 
ACOEM and NJH indicated that skin symptoms should trigger medical 
examinations for employees exposed to beryllium (Document ID 1664, p. 
4; 1685, p. 4). NJH and ACOEM also offered examples of specific 
symptoms or signs of skin disease, including rashes or nodules and 
dermatitis that is unresponsive to treatment but responsive to removal 
from exposure (Document ID 1664, pp. 4, 8; 1688, p. 3; 1725, p. 32). In 
addition, United Kingdom defense contractor, AWE, indicated that it 
allows its employees with ``insignificant likelihood of exposure'' to 
undergo a medical examination if they report symptoms (Document ID 
1651, p. 10).
    After carefully considering these comments, OSHA reaffirms its 
preliminary finding that the proposed signs-or-symptoms trigger serves 
as a valuable complement to the use of airborne exposure triggers as a 
mechanism for initiating medical surveillance. A signs-or-symptoms 
trigger is appropriate for employees covered by the standard because 
the risk of material impairment of health remains significant at the 
action level (see Section VI, Risk Assessment). Consequently, even 
employees exposed at the action level for fewer than 30 days in a year 
may be at risk of developing CBD and other beryllium-related diseases 
and adverse health effects. In addition, beryllium sensitization and 
CBD could develop in employees who are especially sensitive to 
beryllium, may have been unknowingly exposed, or may have been exposed 
to greater amounts than the exposure assessment suggests. By requiring 
covered employers to make a medical exam available when an employee 
exhibits signs or symptoms, the final standard protects all employees 
who may have developed CBD, including employees who have been exposed 
to beryllium in an emergency or for less than 30 days above the action 
level.
    OSHA also finds that signs or symptoms of beryllium-related health 
effects other than CBD should also trigger medical surveillance (see 
Section V, Health Effects). As noted by NJH and ACOEM, these signs or 
symptoms can be indicative of beryllium-related skin disease or a sign 
of exposure that could lead to sensitization. For example, dermatitis 
that is unresponsive to treatment but responsive to removal from 
exposure may be a sign of a beryllium-related health effect. Other skin 
symptoms, such as reddened, elevated or fluid-filled lesions following 
contact with soluble beryllium compounds and ulceration or granulomas 
from soluble or poorly soluble beryllium compounds entering through 
cuts or scrapes, can also be a sign of a beryllium-related health 
effect (See Section V, Health Effects). Therefore, OSHA has revised 
paragraph (k)(1)(i)(B) to include signs or symptoms of other beryllium-
related health effects.
    OSHA disagrees with ORCHSE's recommendation that the final 
standards apply this trigger only to employees who have been confirmed 
positive, i.e., are sensitized, for several reasons. First, limiting 
the sign-or-symptoms trigger in this way could prevent sensitized 
employees from finding out that they are sensitized. For example, as 
noted above, individuals who are genetically predisposed can develop 
beryllium sensitization and CBD at beryllium levels that would not 
cause disease in other individuals. Such an employee could conceivably 
become sensitized and develop CBD without meeting the action level or 
30-day exposure trigger. Because this hypothetical employee would not 
otherwise be entitled to

[[Page 2700]]

medical surveillance, he or she might not know that they are 
sensitized. If this employee began suffering from signs or symptoms of 
CBD, he or she would not be entitled to medical surveillance under 
ORCHSE's proposal, precisely because they are not entitled to the BeLPT 
that would detect sensitization and then entitle them to further 
medical surveillance.
    Second, as discussed in more detail below, under the final 
standards, employers do not automatically find out whether their 
employees have been confirmed positive. If an employee chooses not to 
inform his or her employer of this fact, the employer may never find 
out. See paragraphs (k)(6) and (k)(7) of the final standards.
    Third, OSHA recognizes that signs and symptoms associated with 
adverse health effects of beryllium such as CBD and skin sensitization 
may be non-specific (i.e., they may be caused by factors other than 
beryllium exposure). However, it is important to realize the context in 
which signs and symptoms are expected to be used in medical 
surveillance. Signs and symptoms are generally expected to be self-
reported by employees who could potentially be exposed to beryllium and 
as such are not intended to serve as a means for diagnosing adverse 
health effects or determining their causality. Rather, they serve as a 
useful signal that an employee may be suffering from a beryllium 
exposure-related health effect. Once these signals are recognized, the 
employee should be offered medical surveillance and see a PLHCP who 
can, with sufficient information about the employee's duties, potential 
exposures, and medical and work histories (as required by this standard 
and discussed later), make determinations about the beryllium-related 
effects, provide medical treatment, and make other referrals or 
recommendations where necessary.
    However, ORCHSE's comment does raise the concern that the non-
specific signs and symptoms listed in the proposal, i.e., shortness of 
breath after a short walk or climbing stairs, persistent dry cough, 
chest pain, or fatigue, might cause the employer to offer medical 
surveillance to employees experiencing signs or symptoms that are not 
related to beryllium exposure. OSHA understands that many of these non-
specific symptoms can have various causes unrelated to beryllium 
exposure. For example, a dry cough could be related to a respiratory 
infection or allergies. On the other hand, the symptoms listed in the 
proposal can also be symptoms of CBD where they are recurring or 
persistent. Therefore, OSHA has removed the specific examples of signs 
or symptoms of CBD that were included in the proposal. OSHA finds that 
removing these examples makes it less likely that this will be 
misinterpreted to require medical surveillance for employees 
experiencing signs or symptoms not related to beryllium exposure. OSHA 
also clarifies that signs or symptoms that are indicative of CBD or 
other beryllium-related effects are typically persistent or recurring.
    Finally, OSHA emphasizes that although this provision requires 
employers to offer medical surveillance if persistent or recurring 
symptoms related to CBD or other beryllium-related health effects are 
reported to or observed by the employer (e.g., if an employee ``shows'' 
a persistent cough), it is not intended to force employers to survey 
their workforce, make diagnoses, or determine causality. Self-reporting 
by employees is supported by the training required under paragraph 
(m)(4)(ii) on the health hazards of beryllium and the signs and 
symptoms of CBD, and the medical surveillance and medical removal 
requirements of the final standard in paragraphs (k) and (l). Section 
11(c) of the OSH Act gives employees the right to report suspected 
work-related health effects and prohibits employers from retaliating 
against employees for exercising this right. Separately, OSHA's 
Recordkeeping Rule gives employees the right to report work-related 
illnesses such as CBD or other beryllium-related health effects, and 
Section 1904.35(b)(1)(iv) of that rule prohibits retaliation against 
employees for reporting these health effects.
    Emergencies. Proposed paragraph (k)(1)(i)(C) required employers to 
offer medical surveillance to employees exposed during an emergency. 
Although an emergency trigger for medical surveillance was not included 
in the joint draft recommended standard by Materion and USW, none of 
the comments on the proposal objected to its inclusion in the final 
rule (Document ID 0754). At least one commenter, NJH, supported a 
trigger for employees exposed in an emergency (Document ID 1664, p. 4).
    OSHA agrees with NJH that such a trigger is appropriate because 
emergency situations involve uncontrolled releases of airborne 
beryllium, and the significant exposures that can occur in these 
situations justify a requirement for medical surveillance. Therefore, 
OSHA has decided to include this provision as part of the final 
standards in paragraph (k)(1)(i)(C). As in the proposal, medical 
surveillance triggered by airborne exposures in emergency situations 
must be offered regardless of the airborne concentrations of beryllium 
to which these employees are routinely exposed in the workplace. The 
requirement for medical examinations after airborne exposure in an 
emergency is consistent with several other OSHA health standards, 
including the standards for Chromium (VI) (29 CFR 1910.1026), 
Methylenedianiline (29 CFR 1910.1050), 1,3-Butadiene (29 CFR 
1910.1051), and Methylene Chloride (29 CFR 1910.1052).
    Periodic medical surveillance. As noted above, OSHA asked 
stakeholders to opine on which employees should be included in medical 
surveillance and, as discussed in more detail below, on the appropriate 
frequency for examinations (e.g., 80 FR 47574, 47541). Several 
stakeholders, including Ameren Corporation (Ameren), NSSP, and ATS, 
submitted pre-hearing comments supporting the provision of continuing 
medical surveillance to employees who are confirmed positive (Document 
ID 1675, p. 16; 1677, p. 6; 1688, p. 3). For example, ATS commented 
that once an employee is sensitized, continued medical surveillance 
should be offered to determine if progression to CBD occurs (Document 
ID 1688, p. 3). Similarly, Ameren commented that sensitized employees 
should have the opportunity for further surveillance based on the 
recommendations of a pulmonologist (Document ID 1677, p. 6).
    OSHA agrees that an employee who is confirmed positive should 
continue to receive medical surveillance to determine if progression 
from sensitization to CBD occurs and to monitor the severity of disease 
if progression does occur. As discussed below, the standards provide 
for medical surveillance every 2 years in certain cases, such as when 
the employee continues to be exposed above the action level for more 
than 30 days a year, when the employee continues to have signs or 
symptoms of CBD or other beryllium-related health effects, or when an 
employee is exposed to beryllium during an emergency. However, under 
these first three triggers, periodic surveillance would end if an 
employee no longer met those triggers. Thus, an employee who was 
confirmed positive and no longer meets these triggers might not qualify 
for medical surveillance again until he or she develops signs or 
symptoms of disease. This gap in coverage is especially concerning 
considering the potentially long lag time between sensitization and the 
development of CBD and the benefits of early detection (see Section V, 
Health Effects).

[[Page 2701]]

    To allow for continued medical surveillance to this limited group 
of high risk employees who would not otherwise be eligible for periodic 
examinations, OSHA has added final paragraph (k)(1)(i)(D), which 
requires that medical surveillance be made available when the most 
recent written medical opinion to the employer recommends continued 
medical surveillance. Under final paragraphs (k)(6) and (k)(7), the 
written opinion must contain a recommendation for continued periodic 
medical surveillance if the employee is confirmed positive or diagnosed 
with CBD, and the employee provides written authorization. Under these 
provisions, the employer will only receive the recommendation for 
continued periodic medical surveillance with the employee's written 
consent. However, even where the employee provides his or her written 
consent, the written opinion must not include any specific findings or 
diagnoses that led to the recommendation for continued surveillance. 
Instead, the licensed physician or CBD diagnostic center's written 
opinion would simply recommend continued periodic medical surveillance. 
As discussed in more detail below, OSHA chose this method to convey the 
need for continued medical evaluations for employees who are confirmed 
positive or diagnosed with CBD, while protecting the employee's privacy 
by not revealing to the employer the specific finding that triggered 
the recommendation for continuing medical examinations.
    OSHA notes that although this requirement was not included in 
either the proposed standard or the joint draft recommended standard by 
Materion and USW (Document ID 0754), proposed paragraph (k)(1)(i)(D) 
(discussed below) would have allowed for limited medical surveillance 
(i.e., low dose computerized tomography (LDCT)) for certain high risk 
individuals.
    Low dose computerized tomography (LDCT). The proposal included a 
trigger to provide LDCT to some employees who met certain criteria 
regarding exposure levels, exposure duration, and age. The requirement 
is now included under paragraph (k)(3)(ii)(F) as a test that can be 
selected by the PLHCP for employees based on certain risk factors. A 
full discussion of LDCT scans and the reasons for this change is 
included below under the discussion of medical examination contents.
    Licensed physicians. Proposed paragraph (k)(1)(ii) required that 
the employer ensure that all medical examinations and procedures 
required by the standard are performed by or under the direction of a 
licensed physician. OSHA chose to require licensed physicians, as 
opposed to the broader category of PLHCPs, to oversee medical 
surveillance in this standard, and to provide certain services required 
by this standard (see, e.g., proposed paragraphs (k)(1)(ii) and 
(k)(5)). OSHA has in the past allowed a PLHCP to perform all aspects of 
medical surveillance, regardless of whether the PLHCP is a licensed 
physician (see OSHA's standards regulating Chromium (VI) (29 CFR 
1910.1026) and Respirable Crystalline Silica (29 CFR 1910.1053)). As 
explained in the NPRM, OSHA proposed that a licensed physician perform 
some of the requirements of paragraph (k) in response to Materion and 
USW's 2012 joint draft recommended standard (80 FR 47797). OSHA 
preliminarily found that this requirement struck an appropriate balance 
between ensuring that a licensed physician supervises the overall care 
of the employee, while giving the employer the flexibility to retain 
the services of a variety of qualified licensed health care 
professionals to perform certain other services required by paragraph 
(k). However, the Agency specifically requested stakeholder comment on 
this proposed requirement (80 FR 47575, 47797).
    OSHA received comments on this subject from a variety of 
stakeholders, including public health officials and representatives 
from industry and labor. ATS stated that due to the complex nature of 
CBD and sensitization, including multi-organ involvement and atypical 
presentations, all medical procedures should be carried out by or under 
the direction a licensed physician (Document ID 1688, p. 4). Similar 
support for medical procedures to be carried out by or under the 
direction of a licensed physician was expressed by NJH, Ameren, NSSP, 
NIOSH, and ACOEM (Document ID 1664, p. 8; 1675, p. 18; 1677, p. 7; 
1755, Tr. 27; 1756, Tr. 82). Materion commented that in the joint draft 
recommended standard, Materion and USW intended for a licensed 
physician to perform certain critical aspects of medical surveillance 
such as diagnosis and preparation of the written medical opinion 
(Document ID 1661, Attachment 2, p. 7). NABTU commented that medical 
and nursing experts supervise medical screening of Department of Energy 
workers in a program that is administered by the Center for 
Construction Research and Training (CPWR) (Document ID 1679, p. 10).
    OSHA recognizes that the requirement for a licensed physician to 
provide oversight and some services required under the standard departs 
from policy in recent standards, such as Chromium (VI) (29 CFR 
1910.1026) and Respirable Crystalline Silica (29 CFR 1910.1053). In the 
recently promulgated Respirable Crystalline Silica standard, OSHA 
allowed medical services to be provided by a PLHCP, defined as an 
individual whose legally permitted scope of practice (i.e., license, 
registration, or certification) allows him or her to independently 
provide or be delegated the responsibility to provide some or all of 
the particular health services required under the rule (81 FR 16818). 
To ensure competency while increasing flexibility for employers, OSHA 
found it appropriate to allow any healthcare professional to perform 
medical examinations and procedures made available under the standard 
when he or she is licensed by state law to provide those services. In 
the case of respirable crystalline silica, such a decision was 
justified because the record did not provide convincing evidence that 
such a requirement was not appropriate, and some stakeholders expressed 
concerns that healthcare professionals might be limited in certain 
geographical locations (81 FR 16818).
    In contrast to the silica rulemaking record, the beryllium 
rulemaking record shows support for a licensed physician to oversee and 
perform certain functions of medical surveillance and lacks evidence 
showing that licensed physicians may be limited in certain areas. As a 
result, OSHA is requiring in final paragraph (k)(1)(ii) that the 
employer ensure that all medical examinations and procedures required 
by the standard are performed by, or under the direction of, a licensed 
physician. In the case of the beryllium standard, OSHA finds this 
requirement strikes an appropriate balance between ensuring that a 
licensed physician supervises the overall care of the employee, while 
giving the employer the flexibility to retain the services of a variety 
of qualified licensed health care professionals to perform certain 
other services required by paragraph (k). Therefore, final paragraph 
(k)(1)(ii) requires the employer to ensure that all medical 
examinations and procedures required by the standard are performed by, 
or under the direction of a licensed physician.
    Frequency. Proposed paragraph (k)(2) specified when and how 
frequently medical examinations were to be offered to those employees 
covered by the medical surveillance program. Under proposed paragraph 
(k)(2)(i)(A), employers would have been required to provide each 
employee with a medical examination within 30 days after

[[Page 2702]]

determining that the employee had worked in a regulated area for more 
than 30 days in the past 12 months, unless the employee had received a 
medical examination provided in accordance with this standard within 
the previous 12 months. Under proposed paragraphs (k)(2)(i)(B) 
employers would have been required to provide medical examinations to 
employees exposed to beryllium during an emergency, and to those 
showing signs or symptoms of CBD, within 30 days of the employer 
becoming aware that these employees met those criteria.
    As noted above, a number of stakeholders supported a baseline 
examination. For example, ACOEM recommended that the criteria for 
inclusion in the medical surveillance program be revised to clearly 
indicate a baseline examination and BeLPT for employees assigned to 
regulated areas (Document ID 1685, p. 4). Similarly, NABTU and AFL-CIO 
commented that medical screening of employees should be done before 
they start working in a beryllium area (Document ID 1679, p. 12; 1689, 
p. 13). NJH also recommended a BeLPT at the beginning of employment but 
stated that some of their clients do the exams within 30 days to not 
influence hiring practices (Document ID 1664, p. 7). Ameren and NSSP 
commented that 30 days from initial assignment is a reasonable period 
to provide an examination; however, NSSP recommended a baseline BeLPT 
at the time of employment, while Ameren indicated that a baseline BeLPT 
should be at the employer's discretion based on employment history 
(Document ID 1675, pp. 15-16; 1677, p. 6). These comments run contrary 
to the proposed requirement allowing employers to withhold offering 
medical surveillance until after more than 30 days of exposure.
    OSHA is persuaded that it is appropriate to trigger medical 
surveillance within 30 days after making the determinations described 
in final paragraphs (k)(2)(i)(A) and (B). As a result of changes made 
to final paragraph (k)(1)(i)(A), the initial exam required under final 
paragraph (k)(2)(i)(A) is now triggered within 30 days after the 
employer determines that the employee is or is reasonably expected to 
be exposed at or above the action level for more than 30 days of year. 
This revised trigger for medical surveillance in the final beryllium 
standard is consistent with Ameren and NSSP recommendations to provide 
an exam within 30 days of initial assignment. OSHA finds that it is a 
reasonable period to offer medical surveillance because new employees 
are not likely to experience signs of beryllium exposure during that 
time, and it provides employers with administrative convenience because 
it gives them time to make the appointment, in addition to maintaining 
consistency with most OSHA standards, such as the Respirable 
Crystalline Silica (29 CFR 1910.1053). In response to Ameren's comment, 
OSHA acknowledges that an employee who was not previously exposed to 
beryllium would not be at risk for sensitization. However, an employer 
may not have a complete occupational exposure history to rule out prior 
beryllium exposure of the employee, and the employee may not be aware 
that he or she was exposed. OSHA considers a baseline BeLPT within 30 
days of when the employer determines that the employee is reasonably 
expected to be exposed for more than 30 days a year to be prudent to 
rule out sensitization in an employee who may have previously been 
exposed to beryllium unknowingly. Providing a baseline examination is 
also consistent with the joint draft recommended standard by Materion 
and USW, which recommended that medical surveillance including a BeLPT 
be made available to employees who are expected to meet the trigger for 
medical surveillance (Document ID 0754, pp. 7-8).
    Final paragraph (k)(2)(i)(A) also differs from the proposal in that 
in the proposed paragraph the employer did not have to offer an 
examination if the employee had received an equivalent examination 
within the last 12 months. In the final rule, this was increased to two 
years to align that provision with the frequency of periodic 
examinations, which is every two years in the final standards. The 
reason why frequency of periodic examinations was changed from every 
year to every two years is discussed below. In sum, paragraph 
(k)(2)(i)(A) requires the employer to make a medical examination 
available to employees who meet the criteria of paragraph (k)(1)(i)(A), 
unless the employee received a medical examination provided in 
accordance with the standard, within the last two years.
    As noted above, proposed paragraph (k)(2)(i)(B) would have required 
employers to provide medical examinations to employees exposed to 
beryllium during an emergency, and to those who are showing signs or 
symptoms of CBD, within 30 days of the employer becoming aware that 
these employees meet the criteria of proposed paragraph (k)(1)(i)(B) or 
(C), regardless of whether these employees received an exam in the 
previous 2 years. OSHA is not aware of any comments from stakeholders 
about the time period to offer medical examinations following a report 
of symptoms or exposure in an emergency; however the 30-day requirement 
to offer medical examinations to employees experiencing signs or 
symptoms was included in the joint draft proposal by Materion and USW 
(Document ID 0754, p. 7). Moreover, OSHA finds that the 30-day trigger 
is administratively convenient for post-emergency surveillance as well 
as after CBD signs or symptoms (and other beryllium-related effects 
like rashes) are reported, insofar as it is consistent with other OSHA 
standards and with other triggers in the beryllium standards. OSHA is 
therefore retaining paragraph (k)(2)(i)(B), as proposed, in the final 
rule. Proposed paragraph (k)(2)(ii) would have required employers to 
provide an examination annually (after the first examination is made 
available) to employees who continue to meet the criteria of proposed 
paragraph (k)(1)(i)(A) or (B). The Agency requested comment on the 
frequency of this medical surveillance (80 FR 47574).
    Ameren agreed with the proposed frequency of annual examinations, 
and USW commented that the proposed medical surveillance requirements 
would allow for timely detection of sensitization and health outcomes 
(Document ID 1675, p. 16; 1681, p. 13). AWE commented that it offers 
annual spirometry testing to its employees with ``significant 
likelihood for exposure'' (Document ID 1615, p. 10). DOD also provides 
annual medical surveillance for its beryllium-exposed employees 
(Document ID 1684, Attachment 2, p. 1-5). NIOSH commented that OSHA 
should require an annual questionnaire for symptoms (Document ID 1725, 
p. 32). However, other commenters argued that annual surveillance was 
not routinely required. For example, NJH and ACOEM supported offering 
medical examinations to eligible employees every two years (Document ID 
1664, p. 4; 1685, p. 4); NJH indicated that after initial testing, 
biennial medical surveillance is adequate to identify any new cases of 
sensitization that may develop in the workplace. In addition, NJH, 
NSSP, and NGK were opposed to annual BeLPTs (Document ID 1664, p. 4; 
1677, p. 3; 1663, p. 5). ATS and NIOSH recommended examinations every 1 
to 3 years for sensitized individuals to determine if progression is 
occurring (Document ID 1688, p. 3; 1725, pp. 2, 32). Finally, NABTU 
agreed with the proposed frequency for screening but noted that 
Department of Energy

[[Page 2703]]

workers participating in a medical screening program administered by 
CPWR are examined every three years (Document ID 1679, pp. 10-12).
    After careful consideration of the record on this issue, OSHA 
agrees with commenters like NJH who recommended that a BeLPT every two 
years is appropriate. In addition, based on its review of beryllium 
health effects, which shows that CBD generally progresses slowly (See 
Section V, Health Effects), the Agency finds that a two-year frequency 
period is also appropriate for the remaining parts of the medical 
examinations. This two-year period is consistent with NJH's suggestion 
to offer medical examinations biennially after the initial exam and 
with ATS and NIOSH's recommendations for examinations every 1 to 3 
years for sensitized individuals. However, OSHA disagrees with NIOSH 
that a yearly questionnaire for symptoms is needed because the 
standards already permit employees to receive medical surveillance by 
self-reporting signs and symptoms of CBD.
    To align the requirements for BeLPTs with the medical and work 
history, the physical examination, and pulmonary function testing, OSHA 
is requiring that all those components of the examination be offered 
every two years. OSHA concludes that this approach is more convenient 
for employers to administer, while maintaining adequate protection of 
employees. Offering examinations every two years accomplishes the main 
goals of medical surveillance for employees exposed to beryllium, which 
are to detect beryllium sensitization before employees develop CBD, and 
to diagnose CBD and other adverse health effects at an early stage. 
Requiring examinations to be offered every two years also strikes a 
reasonable balance between the resources required to provide 
surveillance and the need to diagnose health effects at an early stage 
to allow for interventions.
    In addition, OSHA finds that it is appropriate to extend the 
requirement for biennial surveillance under final paragraph (k)(2)(ii) 
for employees who continue to meet the criteria of final paragraph 
(k)(1)(i)(D), i.e., each employee whose most recent written medical 
opinion required by paragraph (k)(6) or (k)(7) recommends periodic 
medical surveillance. As discussed above, the recommendation for 
continued medical surveillance is based on a confirmed positive finding 
or a diagnosis of CBD. Employees such as those who are confirmed 
positive benefit from periodic surveillance to determine if 
sensitization progresses to CBD and monitor possible CBD progression.
    Finally, OSHA revised proposed paragraph (k)(2)(ii) to specify that 
medical examinations were to be made available ``at least'' every two 
years. This change clarifies OSHA's intent that the employer need not 
wait precisely two years to make medical surveillance available to 
employees who continue to meet the criteria of (k)(1)(A), (B), or (D) 
of this standard.
    Under the final standards, employees exposed in an emergency, who 
are covered by paragraph (k)(1)(i)(C), are not included in the biennial 
examination requirement unless they also meet the criteria of paragraph 
(k)(1)(i)(A) or (B), because OSHA expects that most effects of airborne 
exposure will be detected during the medical examination provided 
within 30 days of the emergency, pursuant to paragraph (k)(2)(i)(A). 
This is consistent with the proposal. An exception to this is beryllium 
sensitization, which OSHA finds may result from exposure in an 
emergency, but may not be detected within 30 days of the emergency. 
OSHA received no comments on this issue. To address possible delayed 
sensitization in employees exposed in an emergency, final paragraph 
(k)(3)(ii)(E) requires biennial BeLPTs for employees who have not been 
confirmed positive, including those exposed in emergencies. This 
paragraph is discussed in more detail later in this section of the 
preamble.
    Proposed paragraph (k)(2)(iii) required the employer to offer a 
medical examination at the termination of employment, if the departing 
employee met any of the criteria of proposed paragraphs (k)(1)(i)(A), 
(B), or (C) at the time the employee's employment was terminated. This 
proposed requirement was waived if the employer provided the departing 
employee with an exam during the six months prior to the date of 
termination. OSHA explained that the provision of an exam at 
termination was intended to ensure that no employee terminates 
employment while carrying a detectable, but undiagnosed, health 
condition related to beryllium exposure (80 FR 47798). A similar 
provision was included in the draft joint recommended standard by 
Materion and USW (Document ID 0754, p. 8).
    Commenters generally supported the inclusion of this provision in 
the final standard. NJH and NSSP agreed with the proposed requirement 
to perform a BeLPT at the time of termination and Ameren stated that a 
BeLPT is not needed if the employee was tested within the last six 
months (Document ID 1664, p. 7; 1675, p. 16; 1677, p. 6). However, 
NABTU indicated that the BeLPT need not be repeated if the employee's 
last test was done within the previous 60 days because the experience 
of their medical professionals indicates that a different test result 
is unlikely to occur within that time period (Document ID 1805, 
Attachment 1, p. 5). After considering these comments, OSHA reaffirms 
its preliminary decision to require employers to make medical 
surveillance available at the time of termination to eligible 
employers. Final paragraph (k)(2)(iii) requires the employer to make a 
medical examination available to each employee who meets the criteria 
of final paragraph (k)(1)(i)--the action level/30-day-exposure based 
trigger, shows signs or symptoms of CBD, or is exposed during an 
emergency--at the termination of employment, unless the employee 
received an exam meeting the requirements of the standards within the 
last 6 months. OSHA also finds that it is appropriate to extend the 
requirement to employees who meet the criteria of final paragraph 
(k)(1)(i)(D), i.e., each employee whose most recent written medical 
opinion required by paragraph (k)(6) or (k)(7) recommends periodic 
medical surveillance. Like the other employees covered by this 
provision, those employees could potentially have beryllium-related 
disease that was not present or detectable at their last examination or 
that has advanced.
    As indicated in the proposal, OSHA finds that providing a BeLPT at 
the time of termination, unless the employee was tested within the last 
six months or the employee was confirmed positive, is important to 
ensure that no employee is unknowingly sensitized at the time he or she 
leaves the job. In addition, OSHA finds that the other components of 
the examination, such as a medical and work history, the physical 
examination, and lung function testing are also important to determine 
if an employee may have developed physical signs of disease or if 
existing disease may have progressed since the last examination. OSHA 
disagrees with NABTU that another BeLPT should be conducted if the 
employee's last BeLPT was done more than two months ago. Requiring 
another BeLPT if the employee has not had one within the past six 
months is an abundantly cautious approach considering that public 
health officials, such as NJH, recommend a BeLPT every two years, since 
that time period is considered adequate to identify any new cases of 
sensitization that may develop in the workplace (Document ID 1664, p. 
4). Therefore, OSHA concludes that

[[Page 2704]]

offering a BeLPT at termination, if the employee has not had one in the 
past six months, is an approach that adequately protects the employee's 
health.
    Contents of Examination. Proposed paragraph (k)(3) detailed the 
contents of the examination. Proposed paragraph (k)(3)(i) required the 
employer to ensure that the PLHCP advised the employee of the risks and 
benefits of participating in the medical surveillance program and the 
employee's right to opt out of any or all parts of the medical 
examination. As OSHA explained in the proposal, the benefits of 
participating in medical surveillance may include early detection of 
adverse health effects, and aiding intervention efforts to prevent or 
treat disease. However, there may also be risks associated with medical 
testing for some conditions, such as radiation risks from CT scans for 
lung cancer (80 FR 47798). The employer must make sure the PLHCP 
communicates those risks to the employee. This requirement was included 
in the draft proposed rule submitted to the Agency by Materion and USW 
(Document ID 0754, p. 8). In the absence of public comments on this 
issue, the requirement remains substantively unchanged from the 
proposal in final paragraph (k)(3)(i). OSHA did, however, make one 
minor change to clarify the intent of this provision. Under the final 
standards, the PLHCP who advises the employee must be the PLCHP who is 
conducting the examination. Proposed paragraphs (k)(3)(ii)(A)-(D) 
specified that the medical examination must consist of: A medical and 
work history, with emphasis on past and present exposure, smoking 
history, and any history of respiratory dysfunction; a physical 
examination with emphasis on the respiratory system; a physical 
examination for skin breaks and wounds; and a pulmonary function test, 
performed in accordance with guidelines established by the American 
Thoracic Society including forced vital capacity (FVC) and a forced 
expiratory volume in one second (FEV1). Exam contents under 
the proposal also included a standardized BeLPT and, in some cases, a 
computerized tomography (CT) scan, both of which are discussed in more 
detail below. OSHA asked for comment on the contents of the medical 
surveillance exam in the proposal (80 FR 47574). Among other things, 
the Agency asked whether the required tests were appropriate, if 
additional tests should be included, and whether the skin should be 
examined for signs and symptoms of beryllium exposure or other medical 
issues, as well as for breaks and wounds. Stakeholders from the medical 
community and industry responded to OSHA's request for comment on the 
proposed contents for medical examinations. Ameren, NSSP, and NABTU 
agreed with the tests that OSHA proposed, including skin examinations 
(Document ID 1675, p. 16; 1677, p. 6; 1679, p. 12). ORCHESE was opposed 
to examining the skin for wounds and breaks because although skin 
injuries could allow for increased beryllium absorption, they are 
temporary conditions that could heal within days, thus making the 
finding observed during the exam irrelevant (Document ID 1691, 
Attachment 1, p. 7). NIOSH and ATS supported medical and work histories 
or questionnaires, but neither they nor NJH supported routine physical 
examinations and lung function testing of beryllium exposed employees 
(Document ID 1664, p. 8; 1688 p. 3; 1725, p. 32). ATS and NIOSH 
commented that physical examinations and lung function testing are not 
effective for identifying sensitization or CBD. NJH recommended that 
physical examinations and pulmonary function tests be offered to 
employees who do not have CBD but are experiencing symptoms, while 
NIOSH said that required tests should be determined by the PLHCP, based 
on responses to the questionnaire. Lung function (spirometry) testing 
is the only type of examination that AWE routinely does on its 
employees with ``significant likelihood for exposure'' (Document ID 
1615, p. 10). DOD includes a history, physical exam, a chest X-ray, and 
spirometry in its surveillance program, and agreed that the skin should 
be examined (Document ID 1684, Attachment 2, p. 1-5). 3M agreed that an 
employee's fitness to wear a respirator should be evaluated, but they 
argued that incorporating requirements of the medical evaluation under 
the respiratory protection program (29 CFR 1910.134(e)) would be a 
better tool for evaluating fitness to wear a respirator than the 
proposed medical surveillance requirements. In support of this 
statement, it asserted that pulmonary function tests are a poor 
predictor for fitness to wear a respirator (Document ID 1625, pp. 3-5).
    OSHA recognizes, as ATS, NIOSH, and NJH commented, that physical 
examinations and lung function testing are not effective for detecting 
sensitization or CBD. However, OSHA still finds that these tests should 
be included as part of medical surveillance examinations of beryllium 
exposed workers because they accomplish important goals of medical 
surveillance as part of an occupational health program. As indicated 
above, the major purposes of medical surveillance for beryllium-exposed 
employees go beyond identifying disease and include identifying 
conditions that put employees at increased risk from beryllium exposure 
and determining the employee's fitness to use personal protective 
equipment such as respirators. The medical examination for beryllium 
complements the medical evaluation under the respiratory protection 
program that must still be conducted before an employee is fitted for a 
respirator or uses the respirator in the workplace (29 CFR 
1910.134(e)(1)). Physical examinations and lung function tests are 
objective measures that are valuable in accomplishing the goals of 
medical surveillance for beryllium and to determine fitness to use 
personal protective equipment. For example, listening to heart and lung 
sounds with a stethoscope and conducting lung function testing might 
identify an impairment in an employee who is not experiencing symptoms 
but might be at risk with use of a negative pressure respirator. Such 
impairments in employees lacking symptoms may not be identified in the 
medical evaluation for respirator use, which typically involves 
administering a questionnaire and may not involve an examination. 
Another example of how the required tests under the beryllium standard 
accomplish goals of medical surveillance is that an employee who is 
found to have a loss in lung function can be warned that lung function 
loss can be compounded if that employee develops CBD.
    Skin examinations are also important because skin rashes could be a 
sign of dermal sensitization or also a sign that exposures that put the 
employee at risk of becoming sensitized have occurred. However, OSHA 
agrees with ORCHESE that conditions such as breaks and wounds are 
temporary and has therefore revised the proposed paragraph so that 
final paragraph (k)(3)(ii)(C) requires a physical examination for skin 
rashes, rather than an examination for breaks and wounds. OSHA notes 
that PLHCPs will nonetheless detect skin injuries during the skin 
examination, and when doing so can take that as an opportunity to 
educate the employee on the importance of using protective clothing, 
because beryllium absorption can be increased through broken skin.
    OSHA also revised proposed paragraph (k)(3)(ii)(A), which would 
have required, among other things, ``a medical and work history, with 
emphasis on past and present exposure'' so that final paragraph 
(k)(3)(ii)(A)

[[Page 2705]]

includes emphasis on past and present airborne exposure to or dermal 
contact with beryllium. OSHA added dermal contact to this list because, 
as noted by NJH and ACOEM, dermal contact can result in skin effects 
and sensitization (Document ID 1664, p. 5, 1685, p. 3). As discussed in 
Section V, Health Effects, dermal contact with beryllium can lead to 
respiratory and dermal sensitization and it is therefore an appropriate 
factor to consider as part of the medical and work history. With these 
changes, final paragraphs (k)(3)(ii)(A)-(D) require the medical 
examination to include: (1) Medical and work history, with emphasis on 
past and present airborne exposure to or dermal contact with beryllium, 
smoking history, and any history of respiratory dysfunction; (2) a 
physical examination with emphasis on the respiratory system; (3) a 
physical examination for skin rashes; and (4) a pulmonary function 
test, performed in accordance with guidelines established by the ATS 
including forced vital capacity (FVC) and a forced expiratory volume in 
one second (FEV1).
    Under proposed paragraph (k)(3)(ii)(E), an employee would have been 
offered a BeLPT or an equivalent test at the first examination, and 
then at least every two years after the first examination, unless the 
employee was confirmed positive. As OSHA explained in the preamble to 
the proposal, the proposed requirement to test for beryllium 
sensitization was intended to apply whether or not an employee was 
otherwise entitled to a medical examination in a given year (80 FR 
47799). For example, for an employee exposed during an emergency who 
would have normally been entitled to 1 exam within 30 days of the 
emergency but not annual exams thereafter, the employer would still 
have been required to provide this employee with a test for beryllium 
sensitization every 2 years. OSHA further explained that this proposed 
biennial requirement would have applied until the employee was 
confirmed positive. The Agency preliminarily found that the biennial 
testing required under proposed paragraph (k)(3)(ii)(E) was adequate to 
monitor employees at risk of developing sensitization while being 
sufficiently affordable for employers.
    The record showed strong support for use of BeLPT, with limited 
exceptions. NIOSH supported the BeLPT to identify sensitized employees, 
citing recent evidence that the BeLPT has a sensitivity of 66 to 86% 
and a specificity of >99%, which it stated is superior or comparable to 
other common medical screening test (Document ID 1725, pp. 32-33). In 
responding to comparisons of the BeLPT against World Health 
Organization (WHO) (Wilson) criteria (see next paragraph), NIOSH 
concluded that current evidence supports the use of the BeLPT to 
benefit both the individual employee and to identify improvements that 
could be made in work areas to prevent other workers from becoming 
sensitized (Document ID 1725, p. 33). BeLPT is also supported by or 
used in medical screening by medical authorities, unions, and industry 
stakeholders including Materion, NJH, Ameren, NSSP, USW, ACOEM, ATS, 
and ORCHSE (Document ID 1661, Attachment 2, pp. 7-8; 1664, p. 4; 1675, 
p. 16; 1677, pp. 5-6; 1681, p. 25; 1685, p. 4; 1688, p. 3; 1691, 
Attachment 1, p. 12). Ameren also commented that a BeLPT should be 
provided for employees diagnosed with sarcoidosis because of the 
potential for a misdiagnosis of CBD (Document ID 1675, p. 16). USW 
supported periodic BeLPTs because workers with a history of exposure 
remain at risk in the future (Document ID 1681, pp. 13-14). NJH 
supported biennial BeLPTs, which is consistent with the draft joint 
recommended standard by Materion and USW (Document ID 0754; 1664, p. 
4).
    In contrast, based on a false positive rate reported in a review 
done by AWE in 1990, AWE commented that it does not routinely use BeLPT 
in its medical surveillance program (Document ID 1615, p. 11). DOD did 
not support the BeLPT, arguing that it has not been shown to meet WHO 
guidelines as a screening tool (often referred to as the Wilson 
Criteria, which evaluates factors such as reliability of the assay and 
its usefulness to identify disease at an early stage in which treatment 
would be beneficial) (Document ID 1958, p. 8).
    After carefully considering these comments, OSHA agrees with NIOSH 
that the BeLPT is appropriate based on its sensitivity and low false 
positive rate that is comparable or superior to other screening tests. 
Unlike DOD, OSHA finds that the BeLPT does meet a number of the Wilson 
criteria because it is an acceptable, reliable test that allows for a 
serious disease to be diagnosed at an early stage, when employees with 
symptoms could benefit from treatment, or in the case of occupational 
exposures, interventions such as removal from exposure. OSHA agrees 
with Ameren that a BeLPT is an important component for diagnosing lung 
disease in beryllium-exposed employees to prevent a misdiagnosis. And 
OSHA reaffirms that it is important to conduct the BeLPT at least every 
two years to screen for beryllium sensitization, until the employee is 
confirmed positive. As in the proposal, the biennial requirement to 
test for beryllium sensitization applies regardless of whether an 
employee is otherwise entitled to a medical examination in a given 
year. OSHA concludes that this continuing requirement is important 
because sensitization can occur after exposures end.
    OSHA finds that in general, the biennial testing required under 
paragraph (k)(3)(ii)(E) is adequate to monitor employees that have the 
potential to develop sensitization while being sufficiently affordable 
for employers. However, one change to this provision compared to the 
proposed standard is to allow the test to be offered ``at least'' every 
two years, rather than every two years as proposed. This change 
clarifies OSHA's intent that the employer need not wait precisely two 
years to make the BeLPT available to employees.
    Final paragraph (3)(ii)(E) contains a number of other differences 
compared to the proposed requirements. Consistent with the definition 
in the proposed standards, the proposed paragraph considered two 
abnormal test results necessary to confirm a finding of beryllium 
sensitization when using the BeLPT (``confirmed positive''). Therefore, 
the proposal would have required that the BeLPT be repeated within one 
month of an employee receiving a single abnormal result. As discussed 
in more detail in the Summary and Explanation for paragraph (b), 
Definitions, commenters including ACOEM and ATS indicated that 
retesting should also be done following borderline BeLPT results, and 
as ACOEM noted, one borderline and one positive test or three 
borderline tests have a high predictive value for sensitization 
(Document ID 1685, p. 4; 1688, p. 2). In response to such comments, 
OSHA changed the definition of confirmed positive to two abnormal test 
results, an abnormal test result and a borderline test result, or three 
borderline test results. Therefore, to make this paragraph consistent 
with the revised definition, the text was changed to indicate that a 
follow-up BeLPT must be offered within 30 days for results that are 
``other than normal'' unless the employee has been confirmed positive. 
This language makes it clear that not only abnormal BeLPT results, but 
also borderline BeLPT results must be followed up according to the 
definition for confirmed positive. When an other than normal result is 
obtained, testing is to be repeated within 30 days, unless the employee 
is confirmed positive. This means that follow-up can stop as soon as it 
is determined that the

[[Page 2706]]

employee is confirmed positive (e.g., after receiving an abnormal and 
borderline test or three borderline tests).
    The proposed paragraph indicated that the requirement for a repeat 
BeLPT was waived if a more reliable and accurate test were to become 
available that could confirm beryllium sensitization based on one test 
result. OSHA requested comments on the availability of more reliable 
and accurate tests than the BeLPT for identifying beryllium 
sensitization (80 FR 47575). ORCHSE took issue with the statement that 
retesting would not be required if a more reliable and accurate test 
became available that could confirm beryllium sensitization based on 
one test result. It interpreted the statement to mean that an employee 
who tested positive would not receive a second BeLPT or second test 
that is more reliable and accurate than the BeLPT, leaving the employee 
with only one abnormal test that was unconfirmed (Document ID 1691; 
Attachment 1, pp. 7-8).
    To streamline the paragraph and avoid misunderstandings of the 
Agency's intent, OSHA removed the language waiving a second 
confirmatory test if a more accurate and reliable test became available 
that did not require retesting for confirmation of sensitization. 
Instead, final paragraph (k)(3)(E) requires a standardized BeLPT or 
equivalent test, upon the first examination and at least every two 
years thereafter, unless the employee is confirmed positive. If the 
results of the BeLPT are other than normal, a follow-up BeLPT must be 
offered within 30 days, unless the employee has been confirmed 
positive. This revision clarifies that only other than normal BeLPT 
results must be followed up within 30 days. Because the paragraph 
refers to follow-up testing for other than normal ``BeLPT'' results, 
the requirement would not apply to a more accurate and reliable test 
that would not require an abnormal result to be confirmed.
    OSHA acknowledges that the ``more accurate and reliable'' 
alternative remains hypothetical as there are currently no tests for 
beryllium sensitization that allow for a confirmed diagnosis of 
sensitization based on one test. However, if developed and validated as 
described below, such a test would be an improvement because it would 
eliminate the need for an employee to go back to have blood drawn a 
second and possible third time. OSHA's intent was to allow the current 
BeLPT requirement to be replaced with a more accurate and reliable test 
that would not require retesting to confirm sensitization, if such a 
test were ever developed. To clarify the Agency's intent, final 
paragraph (k)(3)(ii)(E) now specifies that a standardized BeLPT ``or 
equivalent test'' is to be offered. OSHA considers an ``equivalent 
test'' to be a test that would accurately identify sensitization based 
on one test result. Thus, the original intent of that requirement is 
unchanged, but OSHA clarifies that an ``equivalent test'' could also be 
a validated test that is superior to the BeLPT for other reasons. For 
example, NJH commented that alternative tests to the BeLPT are being 
developed that could require less blood and less sample manipulation 
and provide earlier results (Document ID 1664, p. 9).
    NJH commented on validating tests for beryllium sensitization that 
might be superior to a BeLPT (Document ID 1664, p. 9). It noted that 
validation could occur in a College of American Pathologists (CAP)/
Clinical Laboratory Improvement Amendments (CLIA) laboratory. Once the 
assay is determined to be robust and reproducible, clinical validation 
should then be performed using samples from patients known to be 
sensitized and from unexposed controls. OSHA agrees and as explained in 
the Summary and Explanation for paragraph (b), Definitions, before any 
test could be considered ``equivalent'' to a BeLPT for identifying 
sensitization but based on a single test result, the test must undergo 
rigorous validation to ensure that it has comparable or increased 
sensitivity, specificity, and positive predictive value within one test 
result than the BeLPT. OSHA also recommends that before any test for 
sensitization is considered equivalent to a BeLPT, it should be widely 
accepted by authoritative sources, such as CDC/NIOSH, ACOEM, and ATS, 
based on the validation criteria described above. Such an approach is 
conceptually consistent with that in the draft recommended standard by 
Materion and USW that required the CDC to approve a more reliable test 
that could eliminate the need to confirm a positive finding. The joint 
draft recommended standard by Materion and USW required that the BeLPT 
be performed in a laboratory licensed by the CDC (Document ID 0754). In 
contrast, OSHA's proposed provision did not require that a BeLPT be 
conducted by a laboratory that was licensed or accredited. OSHA 
requested comment on whether testing should be performed by a 
laboratory accredited by an organization such as CLIA (80 FR 47575).
    Commenters including NJH, Ameren, NSSP, Materion and USW, ACOEM, 
and ORCHSE supported the inclusion of a requirement that laboratories 
performing BeLPT be accredited by CAP and/or CLIA (Document ID 1664, 
pp. 8, 9; 1675, p. 19; 1677, p. 7; 1680, p. 7; 1685, p. 5; 1691, 
Attachment 1, p. 13). For example, NJH commented that a CAP/CLIA 
certification represents the standard for oversight for clinical 
testing to ensure proper quality control and testing (Document ID 1664, 
p. 9). ACOEM further added that those laboratories should undergo 
periodic proficiency testing (Document ID 1685, p. 5). Materion and USW 
also recommended that all laboratories that conduct BeLPT have a 
standard procedure and algorithm and that their BeLPT be approved by 
the FDA, but that these issues should not delay promulgation of the 
rule (Document ID 1680, p. 7). However, NJH indicated that while it 
would be preferable, standardization of interpretation algorithms 
across laboratories is challenging because it is influenced by many 
variables such as serum and reagent lots, sample quality, use of round 
versus flat bottomed plates, and technician skill (Document ID 1664, p. 
8). NSSP commented that all current BeLPT laboratories have 
certifications from CAP and/or another accreditation organization 
approved under CLIA and have participated in inter-laboratory split 
specimen testing (Document ID 1677, p. 7).
    After reviewing these comments and the remainder of the record on 
this issue, OSHA is convinced that requiring that the BeLPT be 
conducted by CAP/CLIA-certified laboratories would improve quality of 
BeLPT results. Based on comments from NSSP, all laboratories conducting 
BeLPTs are currently accredited. OSHA therefore finds that accredited 
laboratories are currently available and including such a requirement 
in the standards would not delay promulgation of the rule. The Agency 
also finds that CAP/CLIA certification helps improve proficiency in 
terms of obtaining accurate results that are appropriately interpreted 
and ensures that quality control procedures are followed. Therefore, to 
improve the accuracy and reliability of BeLPTs, the standards require 
that samples be analyzed by a laboratory certified under CAP/CLIA 
guidelines to perform the BeLPT.
    As a result of the changes discussed above, final paragraph 
(k)(3)(E) specifies that the examination must include a standardized 
BeLPT or equivalent test, upon the first examination and at least every 
two years thereafter, unless the employee is confirmed positive. If the 
results of the BeLPT are other than normal, a follow-up BeLPT must be

[[Page 2707]]

offered within 30 days, unless the employee has been confirmed 
positive. Samples must be analyzed by a laboratory certified under the 
College of American Pathologists (CAP)/Clinical Laboratory Improvement 
Amendments (CLIA) guidelines to perform the BeLPT.
    Proposed paragraph (k)(3)(ii)(F) would have required a CT scan to 
be offered to employees who had been exposed to beryllium at 
concentrations above 0.2 [mu]g/m\3\ for more than 30 days in a 12-month 
period for 5 years or more. As OSHA explained in the preamble, the five 
years of exposure did not need to be consecutive (80 FR 47799). As with 
the requirement for sensitization testing explained above, the CT scan 
would have been required to be offered to an employee who met the 
criteria of paragraph (k)(1)(i)(D) without regard to whether the 
employee was otherwise required to receive a medical exam in a given 
year. OSHA explained that the CT scan would have been offered to 
employees who met the criteria of paragraph (k)(1)(i)(D) for the first 
time beginning on the start-up date of this standard, or 15 years after 
the employee's first exposure to beryllium above 0.2 [mu]g/m\3\ for 
more than 30 days in a 12-month period, whichever was later. OSHA 
proposed the requirement for CT screening based in part on the Agency's 
consideration of the draft recommended standard submitted by industry 
and union stakeholders (Document ID 0754, p. 8).
    OSHA requested comment on the proposed CT scan requirements, as 
part of the content of the medical examinations (80 FR 47574). In 
addition, OSHA asked stakeholders to opine on two regulatory 
alternatives related to CT scans: (1) Regulatory Alternative #18, which 
would have dropped the CT scan requirement from the proposed rule, and 
(2) Regulatory Alternative #19, which would have increased the 
frequency of periodic CT scans from biennial to annual scans (80 FR 
47571).
    A number of stakeholders responded to the Agency's request for 
comments on the proposed CT scan requirements. Two such commenters, 
Public Citizen and NJH, referenced criteria for low-dose CT lung cancer 
screening set forth by the U.S. Preventive Services Task Force 
(USPSTF), an independent, volunteer panel of national experts in 
prevention and evidence-based medicine (Document ID 1664, p. 4; 1964, 
p. 4). In December, 2013, the USPSTF recommended annual screening for 
lung cancer with LDCT for adults aged 55 to 80 years with a 30-pack-
year smoking history and who either currently smoke or have quit within 
the past 15 years. Under USPSTF's criteria, screening should be 
discontinued once a person has not smoked for 15 years or develops a 
health problem that substantially limits life expectancy or the ability 
or willingness to have curative lung surgery (Moyer et al., 2014, 
Document ID 1791). The USPSTF recommendation was based on the findings 
of the National Lung Cancer Screening Trial (NLST), which was a large 
study of the effectiveness of using x-ray and LDCT screening for early 
detection of lung cancer.
    The NLST enrolled asymptomatic men and women (n = 53,454), aged 55 
to 74, that were current smokers or former smokers within the last 15 
years and had a smoking history of at least 30 pack-years. The 
participants underwent annual lung cancer screening with either LDCT or 
chest radiography for three years. The results showed a statistically 
significant 20-percent relative reduction in lung cancer mortality with 
LDCT screening (Aberle, et al., 2011, Document ID 1701). However, the 
trial also showed that LDCT screening results in a high false-positive 
rate; 24.2 percent of the total LDCT screening tests were classified as 
positive, with 96.4 percent of these positive results ultimately being 
false positives. In addition, 39.1 percent of the 26,722 (or about 
10,450) participants in the LDCT screening group had at least one 
positive screening result out of three LDCT scans during the study 
(Alberle, et al., 2011, Document ID 1701). Given that only 649 cancers 
were diagnosed after a positive screening test, and assuming that each 
of these cancers was in a different participant, it follows that only 
6.2 percent of those with at least one positive test were ultimately 
diagnosed with lung cancer. This means that 36.7 percent of 
participants in the LDCT screening group had at least one false 
positive result. Most positive initial screening results in the NLST--
many of which were false positives--were followed up with a diagnostic 
evaluation that included further imaging and, infrequently, invasive 
procedures (Alberle, et al., 2011, Document ID 1701).
    Given these findings, the USPSTF noted, in its recommendation for 
lung cancer screening for high-risk individuals, the importance of 
shared decision making. The USPSTF advised:

    Shared decision making is important for the population for whom 
screening is recommended. The benefit of screening varies with risk 
because persons who are at higher risk because of smoking history or 
other risk factors are more likely to benefit. Screening cannot 
prevent most lung cancer deaths, and smoking cessation remains 
essential. Lung cancer screening has substantial harms, most notably 
the risk for false-positive results and incidental findings that 
lead to a cascade of testing and treatment that may result in more 
harms, including the anxiety of living with a lesion that may be 
cancer. Overdiagnosis of lung cancer and the risks of radiation are 
real harms, although their magnitude is uncertain. The decision to 
begin screening should be the result of a thorough discussion of the 
possible benefits, limitations, and known and uncertain harms 
(Moyer, et al., 2014, Document ID 1791, p. 333).

    In addition to the USPSTF, several other organizations have 
recommended similar lung cancer screening protocols for high-risk 
individuals, including the American Cancer Society, American College of 
Chest Physicians, American Society of Clinical Oncology, American Lung 
Association, National Comprehensive Cancer Network, and the American 
Association for Thoracic Surgery. Each organization's specific 
screening recommendations are summarized by the U.S. Centers for 
Disease Control and Prevention: https://www.cdc.gov/cancer/lung/pdf/guidelines.pdf.
    With regard to occupational exposure, OSHA is not aware of any 
definitive recommendations based on a large, well-conducted, 
randomized, controlled study examining the benefit of lung cancer 
screening with LDCT among occupationally-exposed workers. In its pre-
hearing comments, NIOSH noted that the screened population must be at 
sufficiently high risk for lung cancer in order to assure that the 
benefit of LDCT screening for early detection exceeds the harm 
(Document ID 1671, Attachment 1, p. 8). NIOSH cited a report by the 
Finnish Institute of Occupational Health (FIOH) that recommended LDCT 
screening in asbestos-exposed individuals if their personal combination 
of risk factors, particularly smoking history, yields a risk for lung 
cancer equal to that needed for entry into the NLST. NIOSH noted that 
the absolute risk for lung cancer in the NLST and the threshold 
absolute risk for lung cancer proposed by FIOH as a trigger for LDCT 
screening was 1.34% over 6 years (Document ID 1671, Attachment 1, p. 
8).
    OSHA also received comments in the record pointing to the LDCT lung 
cancer screening recommendations of the National Comprehensive Cancer 
Network (NCCN), a nonprofit alliance of 27 cancer centers (Document ID 
1805, Attachment 1; Document ID 1959). In addition to recommending 
screening for individuals (current smokers or former smokers that have 
quit within the last 15 years) who are 55 to 74 years of age

[[Page 2708]]

with a smoking history of at least 30 pack-years, the NCCN recommended 
LDCT screening for individuals age 50 years or older with a smoking 
history of at least 20 pack-years and with one or more additional risk 
factors; these risk factors include a history of COPD or pulmonary 
fibrosis, a history of cancer, a family history of lung cancer, radon 
exposure, or occupational exposure to the carcinogens asbestos, 
arsenic, beryllium, cadmium, chromium, nickel, silica, or diesel fumes 
(Document ID 1815, Attachment 39). Like the USPSTF, NCCN noted that 
individuals who qualify under these LDCT screening recommendations 
should engage in shared decision making with their physician and 
discuss the benefits and harms of LDCT screening for lung cancer 
(Document ID 1815, Attachment 39).
    Thus, the studies and recommendations discussed above indicate that 
age and smoking history are crucial risk factors that determine when 
the benefits of LDCT screening are likely to outweigh the risks from 
radiation exposure and false-positive results. The radiation exposure 
received from periodic LDCT scans increases the risk of lung and breast 
cancer, as well as leukemia. Public Citizen estimated the risk of these 
cancers that could result when workers are screened as described in 
OSHA's proposed rule (Document ID 1964, pp. 4-6). Public Citizen also 
estimated the total radiation dose received to range from 900 to 2,400 
mrems, depending on age at which screening begins. The excess cancer 
risks resulting from these exposures, based on Public Citizen's use of 
the National Academies BIER VII report, ranged from 3.7 to 29.9 deaths 
per 1,000 workers for solid organ cancers, and from 0.5 to 2.3 deaths 
per 1,000 for leukemia (Document ID 1964, p. 6). These risk estimates 
are comparable to OSHA's estimated lung cancer mortality risk resulting 
from exposure to beryllium at the PEL of 0.2 [mu]g/m\3\ over a working 
life (see Section VI, Risk Assessment). False-positive results carry 
the risk of additional radiation exposure from repeat scans, as well as 
unnecessary anxiety for the workers and his or her family, unnecessary 
invasive procedures that may have risks of medical complications, and 
unnecessary medical expenses (Document ID 1806, pp. 1-2; 1964, pp. 7-
8).
    A number of rulemaking participants agreed that the lung cancer 
risks from beryllium exposure are, for the vast majority of workers, 
unlikely to be so high that LDCT screening would be beneficial, 
including NJH, ATS, ORCHSE, NIOSH, Public Citizen, NGK, and the 
Aluminum Association (Document ID 1664, pp. 1, 4; 1688, p. 2; 1691, 
Attachment 1, p. 1; 1671, Attachment 1, pp. 8-9; 1964, p. 4; 1663, p. 
3; 1666, pp. 3-4). For example, NJH commented that the risk of lung 
cancer associated with exposure to beryllium at the final rule's PEL of 
0.2 [mu]g/m\3\ was likely to be lower than that from the radiation 
exposure received from LDCT screening, particularly for workers under 
age 50 (Document ID 1664, p. 4). NJH also stated that the majority of 
beryllium-exposed workers are former smokers and many would not fit the 
criteria for the USPSTF recommendations (Document ID 1664, p. 4). 
ORCHSE argued that ``[e]xtrapolation of the results of the non-
occupational National Lung Screening Trial for implementation in the 
occupational setting is premature, and fraught with a number of 
potential issues and concerns [e.g., over-diagnosis, false positives, 
radiation dose, follow-on invasive procedures and attendant 
complications]. The requisite 30 pack-year trigger recommended for 
screening is associated with risks orders of magnitude higher than that 
associated with beryllium exposure'' (Document ID 1691, Attachment 1, 
p. 1). Similarly, in post-hearing comment, Public Citizen remarked that 
it would be a ``dangerous mistake'' to provide LDCT screening for the 
majority of non-smoking beryllium-exposed workers who are at low risk 
for lung cancer and thus would not benefit from such screening 
(Document ID 1964, p. 10).
    The suggestion that beryllium exposure alone would lead to lung 
cancer risks too low to warrant LDCT screening was illustrated by NIOSH 
in an analysis of risk information. NIOSH used the mortality study by 
Schubauer-Berigan et al. (2011 b, Document ID 0521) to estimate the 
exposure levels to beryllium that would result in a risk level at least 
as high as that suggested by FIOH as a trigger for LDCT screening 
(i.e., an absolute increased risk of 1.34 percent over a 6-year 
period). To reach risk levels of this magnitude, NIOSH found that a 40-
year-old would have had to have been exposed to a mean daily weighted 
average exposure of 12 [mu]g/m\3\ to achieve a lung cancer risk level 
sufficient to justify LDCT, and a 50-year-old worker would have had to 
have been exposed to a mean daily weighted average exposure of 2 [mu]g/
m\3\, a daily exposure equal to the previous PEL. It was not possible 
for NIOSH to estimate the required level of beryllium exposure 
necessary above age 60 to reach a risk level equal to that suggested by 
FIOH because the background rate of lung cancer already exceeded that 
level. Although there are uncertainties around the NIOSH estimates (for 
example, use of 10-year rather than 6-year age intervals, which would 
understate the required level of beryllium exposure), OSHA finds that 
the NIOSH analysis demonstrates that LDCT screening would benefit non-
smoking workers exposed to beryllium only where the workers were 
exposed to very high concentrations of beryllium, i.e., levels at and 
above the previous PEL.
    Many of the rulemaking commenters who objected to the proposed 
requirement for LDCT screening also believed that the absence of any 
studies showing the effectiveness of LDCT screening on beryllium-
exposed workers was further reason not to require LDCT screening based 
only on a history of beryllium exposure (Document ID 1664, p. 1; 1688, 
p. 2; 1691, Attachment 1, p. 1; 1756, pp. 123-125; 1806, pp. 1-2). For 
example, Dr. Newman, who represented ACOEM at the public hearing, in 
response to a question testified that

. . . we don't have any data on beryllium--specifically looking at 
beryllium workers with the cluster of risk factors [i.e., smoking 
plus Be exposure] that you've described. And I think that absent 
that it means that there is more of a question mark around . . . how 
far should OSHA go at this point with low dose CT (Document ID 1756, 
pp. 124-125).

In contrast to these commenters, inclusion of LDCT screening into the 
final rule was supported by USW in written comments and at the informal 
public hearing. Sara Brooks of the USW commented that

    The proposed inclusion of a low dose CT scan as part of medical 
surveillance is entirely justified. The low dose CT scan can 
effectively detect lung cancer at an early stage and has been 
demonstrated to reduce lung cancer mortality among high risk 
individuals. Since lung cancer is recognized as an outcome caused by 
beryllium exposure, inclusion of the low dose CT scan in the 
proposed rule is appropriate (Document ID 1681, Attachment 1, p. 
14).

Dr. Steven Markowitz of the City University of New York, testifying on 
behalf of USW, supported OSHA requiring LDCT screening for beryllium-
exposed workers, citing the NLST finding that screening reduced lung 
cancer mortality by 20 percent. He also noted that

[t]he use of LDCT is rapidly increasing because of just how common 
lung cancer is. And this is an effective non-invasive technique. And 
that there can really [be] a display of leadership by including LDCT 
now in the proposed medical standard for beryllium (Document ID 
1755, Tr. 110).


[[Page 2709]]


    In post-hearing comment, Dr. Markowitz suggested limiting the 
proposal's requirement to apply to workers age 50 or more, and pointed 
out that this was consistent with OSHA's past practice (i.e., medical 
surveillance requirements under the Cadmium standard, 29 CFR 1910.1027) 
and with NCCN recommendations (Document ID 1959, p. 1). Second, he 
argued that the assertion that LDCT should not be included in the rule 
based on the lack of studies showing efficacy of LDCT on beryllium-
exposures workers was ``without merit'' (Document ID 1959, p. 1). He 
pointed out that many of the risk factors used by the medical community 
as a basis for recommending LDCT (e.g., family medical history, 
presence of chronic obstructive lung disease) lack empirical evidence 
relating the effectiveness of LDCT to the presence of these risk 
factors. Thus, Dr. Markowitz argued that ``[t]he decision to undergo 
(by the individual) or to recommend (by the physician) LDCT for lung 
cancer screening is based on that individual's overall level of risk of 
lung cancer, not on the particular mix and magnitude of individual risk 
factors that constitute overall risk'' (Document ID 1959, p. 1). He 
also argued that because cancers caused by beryllium exposure are 
similar to the types of lung cancers from other causes, beryllium 
exposure is not more or less amenable to LDCT screening than are 
smoking history or other risk factors (Document ID 1959, p. 2). Dr. 
Markowitz concluded that the absence of studies on beryllium-exposed 
workers and LDCT screening ``should not be a decisive factor in 
determining whether LDCT should be included in the final OSHA standard 
on beryllium.'' (Document ID 1959, p. 3).
    OSHA agrees in general that beryllium exposure should be considered 
as a risk factor when deciding whether LDCT screening is appropriate, 
and agrees that it is not appropriate to wait for specific studies to 
be conducted before considering that a history of beryllium exposure 
should be factored into a decision to undergo LDCT screening. This is, 
in fact, consistent with the NCCN's criteria for LDCT screening that 
include occupational exposures along with age, smoking history, and 
other risk factors. However, LDCT screening is not triggered under 
these criteria based on occupational exposures and age alone; there 
must also be a history of smoking (albeit a lower trigger than when 
considering only age and smoking). As discussed above, there is no 
evidence in the record that exposure to beryllium alone at the level 
used in the proposal to trigger LDCT screening results in a cancer risk 
sufficiently high to warrant LDCT screening.
    For the final rule, OSHA considered increasing the threshold of 
beryllium exposure such that LDCT screening would be triggered at much 
higher exposures to beryllium (e.g., average exposure above 2 [micro]g/
m\3\ for over several years), as was suggested by the NIOSH analysis. 
OSHA rejected this approach for three reasons. First, as pointed out by 
ORCHSE (Document ID 1691, Attachment 1, p. 6), it is unlikely that 
exposure records would be available for many workers to show that the 
trigger was met, except where workers had long employment tenure with 
their present employer. Second, establishing such a high exposure 
trigger for LDCT screening would, in fact, exclude workers with a 
history of lesser beryllium exposure even when other risk factors are 
present such that LDCT would be beneficial. Finally, OSHA is reluctant 
to fix a hard exposure trigger in the standard given that, as pointed 
out by USW, LDCT technology is likely to advance and increase the 
efficacy of screening to where screening becomes beneficial for those 
with lesser risk of lung cancer than is reflected by current 
recommendations.
    Therefore, OSHA concludes that the best approach is to require LDCT 
screening for beryllium-exposed workers based on the recommendation of 
the physician conducting or overseeing the medical examination, after 
all relevant risk factors have been considered, and has accordingly 
reflected this approach in the final standards. For these reasons, 
paragraph (k)(3)(ii)(F) of the final standards requires the medical 
examination to include an LDCT scan, when recommended by the PLHCP 
after considering the employee's history of exposure to beryllium along 
with other risk factors, such as smoking history, family medical 
history, age, sex, and presence of existing lung disease.
    The seventh and final item required as part of the medical 
examination under the proposal was any other test deemed appropriate by 
the PLHCP. OSHA explained that other types of tests and examinations 
not mentioned in this standard, including X-ray, arterial blood gas, 
diffusing capacity, and oxygen desaturation during exercise, may also 
be useful in evaluating the effects of beryllium exposure (80 FR 
47799). In addition, OSHA noted that medical examinations that include 
more invasive testing, such as bronchoscopy, alveolar lavage, and 
transbronchial biopsy, have been demonstrated to provide additional 
valuable medical information. The Agency preliminarily found that the 
PLHCP was in the best position to decide which medical tests are 
necessary for each individual examined. Although a requirement for 
other tests deemed appropriate by the PLCHP was not included in the 
draft joint recommended standard by Materion and USW (Document ID 
0754), similar requirements have been included in previous OSHA health 
standards, such as Chromium (VI) (29 CFR 1910.1026) and Respirable 
Crystalline Silica (29 CFR 1910.1053).
    No stakeholders objected to the proposal's requirement that the 
medical examination include other tests deemed appropriate by the 
PLHCP. However, some commenters offered examples of tests that might be 
useful in certain situations. For example, for employees diagnosed with 
CBD, NJH recommended that the test battery include pulmonary function 
tests including diffusing capacity, exercise tolerance tests, chest X-
ray or CT scan, bronchoscopy with lavage and biopsy, and 
bronchoalveolar lavage BeLPT (Document ID 1806, p. 12).
    After reviewing the comments on this issue, OSHA reaffirms that 
allowing the PLHCP to select other tests is appropriate because there 
are no particular tests--beyond those listed in paragraph 
(k)(3)(ii)(A)-(E)--that are necessarily applicable to all employees 
covered by the medical surveillance requirements. This provision gives 
the examining PLHCP the flexibility to determine additional tests 
deemed to be appropriate for individual employees. While the tests 
conducted under this paragraph are for screening purposes, diagnostic 
tests may be necessary to address a specific medical complaint or 
finding related to beryllium exposure or the PLHCP may decide that the 
test battery needs to be expanded once an employee has been diagnosed 
with CBD. Although the tests suggested by NJH have been demonstrated to 
provide additional valuable medical information, OSHA considers the 
PLHCP to be in the best position to decide if any additional medical 
tests, especially the more invasive tests, are necessary for each 
individual examined. Under this provision, if a PLHCP decides another 
test related to beryllium exposure is medically indicated, the employer 
must make it available. OSHA intends the phrase ``deemed appropriate'' 
to mean that additional tests requested by the PLHCP must be both 
related to beryllium exposure and medically necessary, based on the 
findings of the medical examination.

[[Page 2710]]

    Information Provided to the PLHCP. Proposed paragraph (k)(4) 
detailed which information must be provided to the PHLCP. Specifically, 
the proposed standard required the employer to ensure the examining 
PLHCP has a copy of the standard, and to provide to the examining PLHCP 
the following information, if known to the employer: A description of 
the employee's former and current duties that relate to the employee's 
occupational exposure ((k)(4)(i)); the employee's former and current 
levels of occupational exposure ((k)(4)(ii)); a description of any 
personal protective clothing and equipment, including respirators, used 
by the employee, including when and for how long the employee has used 
that clothing and equipment ((k)(4)(iii)); and information the employer 
has obtained from previous medical examinations provided to the 
employee, that is currently within the employer's control, if the 
employee provides a medical release of the information ((k)(4)(iv)). A 
similar requirement was contained in the draft joint recommended 
standard by Materion and USW (Document ID 0754, p. 8). However, 
Materion and USW's standard did not require written authorization from 
the employee for the employer to release medical information to the 
PLHCP. OSHA has included similar provisions, with the exception of the 
employee's medical release, in previous OSHA standards, such as 
Chromium (VI) (29 CFR 1910.1026) and Respirable Crystalline Silica (29 
CFR 1910.1053).
    OSHA did not receive any comments on the proposed requirement to 
provide information to the PLHCP. Therefore, the Agency is including it 
in the final standards with three modifications. First, OSHA has 
updated paragraph (k)(4)(i) to require the employer to provide a 
description of the employee's former and current duties that relate to 
both the employee's airborne exposure to and dermal contact with 
beryllium, instead of merely requiring the provision of information 
related to airborne exposures, as in the proposal. As indicated above 
with regard to the medical examination's medical and work history 
requirements, OSHA finds that this change is appropriate because the 
record indicates that dermal contact with beryllium can lead to 
respiratory and dermal sensitization.
    Second, OSHA revised the requirement that the employer obtain a 
``medical release'' before providing the PLHCP with information from 
records of employment-related medical examinations. ORCHSE recommended 
that paragraph (k)(4)(iv) be revised to indicate that the requirement 
to provide medical information to the PLHCP be waived if the employee 
refuses to sign a medical release (Document ID 1691, Attachment 1, pp. 
10-11). After considering this comment, OSHA finds that a change to the 
provision is not needed because the employer can demonstrate a good 
faith effort in meeting this requirement by documenting the employee's 
refusal to provide a medical release. However, the Agency has chosen to 
use the phrase ``written consent'' instead of ``medical release'' in 
the final standards. This non-substantive change brings the language in 
this provision in line with the language used in final paragraphs 
(k)(6) and (k)(7), discussed below.
    Third, OSHA revised the provision to indicate that the employer 
must ensure that the same information provided to the PLHCP is also 
provided to the agreed-upon CBD diagnostic center, if an evaluation is 
required under paragraph (k)(7) of this standard. OSHA made this change 
because the CBD diagnostic center will need the same information as the 
PLHCP in order to effectively evaluate the employee.
    OSHA concludes that making this information available to the PLHCP 
and CBD diagnostic center will aid in the evaluation of the employee's 
health as it relates to the employee's assigned duties and fitness to 
use personal protective equipment, including respirators, when 
necessary. Providing the PLHCP and CBD diagnostic center with exposure 
monitoring results, as required under paragraph (k)(4)(ii), will assist 
them in determining if an employee is likely to be at risk of adverse 
effects from airborne beryllium exposure at work and indicate that 
information in the written medical report for the employee. A well-
documented exposure history will also assist the PLCHP in determining 
if a condition (e.g., dermatitis, decreased lung function) may be 
related to beryllium exposure.
    Written medical reports and opinions. Paragraph (k)(5) of the 
proposed standard provided for the licensed physician to give a written 
medical opinion to the employer, but relied on the employer to give the 
employee a copy of that opinion; thus, there was no difference between 
information the employer and employee received. The final standards 
differentiate the types of information the employer and employee 
receive by including two separate paragraphs within the medical 
surveillance section that require a written medical report to go to the 
employee, and a more limited written medical opinion to go to the 
employer. The former requirement is in paragraph (k)(5) of the final 
standards; the latter requirement is in paragraph (k)(6) of the final 
standards. This summary and explanation for those paragraphs first 
discusses the proposed requirements and general comments received in 
response during the rulemaking. OSHA then explains in this subsection 
of the preamble its decision in response to these comments to change 
from the proposed requirement for a single opinion to go to both the 
employee and employer and replace it with two separate and distinct 
requirements: (1) A full report for the employee, which includes 
medical findings, any recommendations on the employee's use of 
respirators, protective clothing, or equipment or limitations on 
airborne exposure to beryllium, and any recommendations for referral to 
a CBD diagnostic center, continued periodic surveillance, and medical 
removal; and (2) an opinion for the employer, which focuses primarily 
on any recommended limitations on respirator, protective clothing, or 
equipment use, and with the employee's consent, recommendations for 
referral to a CBD diagnostic center, continued periodic surveillance, 
and medical removal. The ensuing two subsections will then discuss the 
specific requirements and the record comments and testimony relating to 
those specific requirements.
    Proposed paragraphs (k)(5)(i)(A)-(C) would have required the 
employer to obtain from the licensed physician a written medical 
opinion containing: (1) The licensed physician's opinion as to whether 
the employee has any detected medical condition that would place the 
employee at increased risk of CBD from further airborne exposure to 
beryllium; (2) any recommended limitations on the employee's airborne 
exposure to beryllium, including the use and limitations of protective 
clothing or equipment, including respirators; and (3) a statement that 
the PLHCP explained the results of the medical examination to the 
employee, including tests conducted, any medical conditions related to 
airborne exposure that require further evaluation or treatment, and any 
special provisions related to use of protective clothing or equipment. 
Proposed paragraph (k)(5)(ii) would have required the employer to 
ensure that neither the licensed physician nor any other PLCHP revealed 
to the employer specific findings or diagnoses unrelated to airborne 
beryllium exposure or contact with soluble beryllium compounds. 
Finally, proposed paragraph (k)(5)(iii) would have required the 
employer to provide the employee with a copy of the opinion within two 
weeks of receiving it.

[[Page 2711]]

    OSHA asked stakeholders to consider what if any information the 
PLHCP should give to the employer. Specifically, the Agency asked 
whether it should revise the medical surveillance provisions of the 
proposed standard to allow employees to choose what, if any, medical 
information goes to the employer from the PLHCP. For example, OSHA 
explained, the employer could instead be required to obtain a 
certification from the PLHCP stating (1) when the examination took 
place, (2) that the examination complied with the standard, and (3) 
that the PLHCP provided the licensed physician's written medical 
opinion to the employee. Such an approach would require the employee to 
provide written consent for the medical opinion or any other medical 
information about the employee to be sent to the employer. OSHA asked 
stakeholders to comment on the relative merits of the proposed 
standard's requirement that employers obtain the PLHCP's written 
opinion or an alternative that would provide employees with greater 
discretion over the information that goes to employers. OSHA also asked 
that commenters explain the basis for their position and the potential 
impacts of such an approach (80 FR 47575).
    OSHA received a number of comments related to the proposed 
provisions and the issues raised. Many of these comments related to the 
proposed contents of the PLHCP's written medical opinion and its 
transmission to the employer. Some commenters offered suggestions to 
address privacy concerns regarding the content of the proposed licensed 
physician's written medical opinion and the proposed requirement that 
the opinion be given to the employer instead of the employee. For 
example, David Weissman, M.D., the director of the Respiratory Health 
Division at NIOSH, objected to providing a specific diagnosis to 
employers and urged OSHA to adopt a policy consistent with the 
International Code of Ethics for Occupational Health Professionals 
established by the International Commission on Occupational Health 
(Document ID 1725, p. 33; 1815, Attachment 82). The policy recommends 
reporting only information on fitness for work and medically related 
limitations to management. NIOSH, AFL-CIO, and NABTU also recommended 
the ACOEM guidance on confidentiality as a model for the types of 
information submitted to the employer (Document ID 1679, p. 13; 1689, 
p. 14; 1725, p. 33). The ACOEM guidelines state:

    Physicians should disclose their professional opinion to both 
the employer and the employee when the employee has undergone a 
medical assessment for fitness to perform a specific job. However, 
the physician should not provide the employer with specific medical 
details or diagnoses unless the employee has given his or her 
permission (Document ID 1815, Attachment 60, p. 1).

Exceptions to this recommendation listed under the ACOEM guidelines 
include health and safety concerns.
    Dr. Weissman also expressed concerns about employers' ability to 
ensure the confidentiality of the medical information obtained from 
workers (Document ID 1725, pp. 33-34). He argued that if OSHA were to 
require diagnoses of beryllium sensitization to be shared with 
employers, provisions would be needed to ensure that sensitive 
information was protected (Document ID 1725, p. 34). He maintained that 
``[s]uch provisions are especially needed because employers are not 
necessarily covered entities under the Health Insurance Portability and 
Accountability Act (HIPPAA) Privacy Rule'' (Document ID 1725, p. 34). 
In fact, some employers who commented during the silica rulemaking 
expressed concerns about having to maintain confidential medical 
information (81 FR 16832).
    Commenters representing employee interests also objected to giving 
the opinion to the employer, and offered solutions. For example, AFL-
CIO fellow Mary Kathryn Fletcher testified that OSHA should consider 
the MSHA requirements for black lung, which requires health care 
providers to give their opinion directly to the employee (Document ID 
1756, Tr. 201-202; 30 CFR 90.3).
    OSHA has accounted for stakeholder privacy concerns in devising the 
medical disclosure requirements in the rule. OSHA understands that the 
need to inform employers about a licensed physician's recommendations 
on work limitations associated with an employee's exposure to beryllium 
must be balanced against the employee's privacy interests. As discussed 
in further detail below, OSHA finds it appropriate to distinguish 
between the licensed physician's recommendations and the underlying 
medical reasons for those recommendations. In doing so, OSHA intends 
for the licensed physician to limit disclosure to the employer to what 
the employer needs to know to protect the employee, which does not 
include an employee's diagnosis.
    OSHA concludes that the employer primarily needs to know about any 
recommended work-related limitations or recommendations without 
conveying the medical reasons for the limitations. Thus, consistent 
with the weight of opinion in this rulemaking record and with evolving 
notions about where the balance between preventive health policy and 
patient privacy is properly struck, OSHA is taking a more privacy- and 
consent-based approach regarding the contents of the licensed 
physician's written medical opinion for the employer. The approach is 
similar to the approach that OSHA took in the recently promulgated 
Respirable Crystalline Silica standard, but more privacy-based compared 
to the proposed beryllium requirements and OSHA standards promulgated 
before the Respirable Crystalline Silica standard. These changes, which 
are reflected in paragraph (k)(6) of the standards, and the comments 
that led to these changes, are more fully discussed below.
    Reinforcing the privacy concerns, stakeholders testified about job 
loss concerns when employees are diagnosed with an illness. For 
example, NABTU's Chris Trahan testified that workers in the 
construction industry get laid off if an employer finds out they are 
ill (Document ID 1756, Tr. 237-238). Mike Wright, Director of the 
Environmental Health and Safety Department, USW, testified that he has 
repeatedly seen employers fire employees who are in the early stages of 
occupational disease (Document ID 1751, p. 284). Dr. Weissman testified 
that if medical results are given directly to the employer, employees 
may fear that it would result in loss of their jobs and that would 
discourage them from participating in medical surveillance (Document ID 
1755, Tr. 47-48). In commenting on a proposed standard provision that 
required an employer to get a signed release before sending medical 
information to a PLHCP, ORCHSE expressed concerns that employees are 
not compelled to sign releases (Document ID 1691, p. 10). The ORCHSE 
comment suggests that employees are reluctant to automatically have 
their medical information shared with medical professionals, much less 
their own employers. These comments mirror concerns voiced in the 
recent silica rulemaking. As part of that rulemaking, Dr. Weissman 
testified that fear of medical information being shared with employers 
is one of the biggest reasons that miners give for not participating in 
medical surveillance, and a number of employees testified that they 
would not participate in medical surveillance that lacked both employee 
confidentiality and anti-

[[Page 2712]]

retaliation and discrimination protection (81 FR 16831-16832). In 
addition, the Construction Industry Safety Coalition commented that 
some employers might refuse to hire an employee with silicosis for fear 
that they would be held liable or have to offer workers' compensation 
if the disease progressed (81 FR 16832)).
    A number of stakeholders, including Southern Company, Ameren, and 
NSSP highlighted the importance of reporting beryllium-related findings 
to the employer for reasons such as evaluating the effectiveness of 
workplace programs and making workplace changes to protect employees 
(Document ID 1668, p. 7; 1675, p. 18; 1677, p. 7). NJH reflected 
similar views and also indicated that the employer would need medical 
information for medical follow-up and removal and to help the employee 
file for workers' compensation (Document ID 1664, p. 8). Materion 
opposed withholding medical information from employers. It commented 
that Materion has a cooperative process where employees are involved in 
problem identification and resolution, and when an employee is 
diagnosed with sensitization or CBD, senior and safety personnel 
conduct an investigation (Document ID 1755, Tr. 172-173; 1807, pp. 4-
5). It indicated that the approach has resulted in improvements aimed 
at preventing other workers from developing CBD in the future (Document 
ID 1807, pp. 4-5).
    Although USW agreed that patient confidentiality is essential, it 
argued in comments submitted before the hearing that the employer needs 
certain information to comply with the standard, identify over-
exposures, and accommodate the needs of affected employees; it 
commented that the proposed rule struck the appropriate balance by 
giving the employer needed information while prohibiting the reporting 
of medical findings not related to beryllium exposure (Document ID 
1681, p. 26). However, at the hearings USW presented a slightly 
different view, as Mike Wright testified:

    So in this circumstance, we'd like the employer to know that 
there's an operation that has caused illness. In a union setting, we 
can usually protect people, but we only represent a fraction of the 
workforce. In a nonunion setting, and even in the union setting, 
people who report an occupational illness put their jobs at peril. 
So we tend to resolve that dilemma in terms of privacy (Document ID 
1756, Tr. 285).

    When questioned how privacy concerns could be balanced with 
improving the work environment, Dr. Weissman testified that medical 
providers could provide aggregated medical data to employers that would 
let employers know there may be a problem but not identify the specific 
employees affected (Document ID 1755, Tr. 47-49). He also said that 
employers could foster a strong culture of safety so that employees 
would be more likely to share medical findings. Dr. Maier, from NJH, 
suggested a similar approach of analyzing combined data based on job 
task with employees de-identified (Document ID 1756, p. 145). However, 
Terry Civic, Director of Safety Health and Regulatory Affairs from 
Materion, and Dr. Newman argued that such an approach may not be able 
to maintain employee confidentiality in many cases, such as when very 
few employees are involved with a process or are employed by a small 
company (Document ID 1755, Tr. 173-174; 1756, Tr. 145).
    Mr. Wright presented another view when he testified that risk can 
be determined in many ways, including air sampling and analyses of work 
processes. He went on to say that waiting for an employee to get sick 
is the least effective way of determining risk (Document ID 1756, Tr. 
284-285). Chris Trahan of NABTU expressed similar thoughts in her 
testimony (Document ID 1756, Tr. 240). Rebecca Reindel, Senior Safety 
and Health Specialist from AFL-CIO, added:

    Employers don't need to hear about a disease in order to 
implement engineering controls. It's unlikely that a disease is 
necessarily going to trigger engineering controls more than what 
OSHA requires in its standards (Document ID 1756, Tr. 240).

    OSHA acknowledges that identifying workers with beryllium-related 
disease has led to an increased understanding of exposures related to 
beryllium disease and development of controls to protect workers, and 
OSHA recognizes the efforts of employers who have promoted a strong 
health and safety culture and contributed to the knowledge on 
beryllium. However, OSHA also recognizes that many employees may fear 
possible repercussions of the release of medical information to their 
employers.
    Moreover, OSHA agrees with commenters who said that employers 
should be basing their actions on exposure assessments and implementing 
controls, and it encourages employers to regularly evaluate their 
beryllium programs. The standards for beryllium require employers to 
review and evaluate the written exposure control plan if the employer 
is notified that an employee is eligible for medical removal, is 
referred to a CBD diagnostic center, or shows signs or symptoms 
associated with airborne exposure to or dermal contact with beryllium 
(paragraph (f)(1)(ii)(B)). OSHA also encourages analyses of aggregated 
data when employers have the resources to do that and are able to 
maintain employee confidentially, which is not always possible. 
However, in the case where an employee may have disease related to 
beryllium exposure and the employer is effectively implementing 
controls to maintain exposures within the PEL, the only further action 
required by the employer would be to follow the licensed physician's 
recommendations to protect the employee who may be especially sensitive 
to exposure and may need special accommodations such as continuing 
medical examinations at a CBD diagnostic center or medical removal if 
requested by the employee. The employer does not need the specific 
health findings that contributed to those recommendations.
    OSHA examined a number of other factors in determining what the 
possible outcomes could be of not providing medical findings to 
employers. One possible outcome is that employers would not be able to 
report or record illness according to OSHA's standard on recording and 
reporting occupational injuries and illnesses (29 CFR 1904). OSHA notes 
that if employees do not participate in medical surveillance because of 
discrimination or retaliation fears, illnesses associated with 
beryllium would also generally not be identified. Although not 
disclosing medical information to employers appears inconsistent with 
the objective of recording illnesses, the net effect of that decision 
to guard employee privacy is improving employee protections due to more 
employees participating in medical surveillance.
    An additional possible outcome relating to what information goes to 
the employer is that withholding information, such as conditions that 
might place an employee at risk of health impairment with further 
exposure, may leave employers with no medical basis to aid in the 
placement of employees. For example, DOD opposed withholding medical 
information from employers because the information lets the employer 
know if the worker can continue to work without undue risk (Document ID 
1684, Attachment 2, pp. 1-7). However, in the recent silica rulemaking, 
a number of stakeholders commented that because of the significance of 
job loss or modifications, employees that are able to perform work 
duties should make their own decisions on whether to continue working 
and that such decisions should be made with guidance from the PLHCP (81 
FR

[[Page 2713]]

16833). OSHA finds that this is also true for beryllium-exposed 
employees. As a result of participating in medical surveillance, those 
employees will receive information about any health condition they have 
that might put them at further risk with exposure to beryllium and 
allow them to make employment choices to benefit their health.
    Such an approach is not inconsistent with Materion's approach of 
letting employees make some employment decisions after learning that 
they are sensitized or have CBD, although Materion strongly supports 
providing employers with sensitization information (Document ID 1807, 
pp. 4-5; Attachment 6, pp. 75-76). At Materion, the confirmed positive 
finding is reported to management so an investigation can be conducted, 
and the Materion Medical Director informs the employee about the rates 
of progression from sensitization to CBD based on Materion's most 
recent epidemiological data. If the employee is diagnosed with CBD by 
his or her personal pulmonologist, the employee can choose to provide 
the information to Materion's Medical Director. Materion reported that 
employees ``often do [disclose their diagnosis of CBD] in choosing to 
apply for Materion benefits under its CBD policy'' (Document ID 1807, 
p. 4). Under the CBD policy, employees who are physically able to 
perform the job are given the choice of remaining in their current job, 
taking a job with lower beryllium exposures, or receiving benefits for 
12 months. OSHA agrees with Materion's approach of letting employees 
decide how to proceed if they are confirmed positive or diagnosed with 
CBD, but disagrees that the employer must receive specific health 
findings before that can happen.
    In review of this evidence, OSHA concludes that if employees decide 
to make employment changes to protect their health, there are ways to 
communicate recommended limitations or medical removal, without 
revealing the specific medical finding leading to those 
recommendations. Because of evolving views on medical privacy, such as 
those set forth in ACOEM's Confidentiality Guidelines, OSHA does not 
find that medical reasons for limitations or medical removal should be 
automatically reported to employers. In addition, providing 
confidential medical information to all employers presents challenges 
in some cases. Unlike Materion, many employers do not have medical 
departments and may not therefore be aware of medical privacy laws or 
have the resources to maintain medical records under strict 
confidentiality.
    Another factor that OSHA considered was the value of giving health 
information to all employers, when some companies, such as small 
businesses, may not have in-house health and safety personnel to answer 
employee questions or emphasize the importance of protective measures, 
such as work practices or proper use of respirators. In such cases, 
employees are not likely to benefit from having their medical findings 
given to employers, who may have no deeper knowledge about health risks 
than the employee. OSHA expects that the training required under the 
standards will give employees knowledge to understand protective 
measures recommended by the PLHCP, and will make it more likely they 
will authorize PLHCP recommendations to be disclosed to the employer.
    As was the case in the silica rulemaking, OSHA agrees that 
employees exposed to beryllium have the most at stake in terms of their 
health and employability, and they should not have to choose between 
continued employment and the health benefits offered by medical 
surveillance, which they are entitled to under the OSH Act. OSHA agrees 
that employees should make employment decisions, following discussions 
with the PLHCP that include the risks of continued exposure. Before 
that can happen, however, employees need to have confidence that 
participation in medical surveillance will not threaten their 
livelihoods. After considering the various viewpoints expressed during 
the rulemaking on these issues, OSHA concludes that the best way to 
maximize employee participation in medical surveillance, therefore 
promoting the protective and preventative purposes of this rule, is by 
limiting required disclosures of information to the employer to only 
the bare minimum of what the employer needs to know to protect employee 
health--recommended restrictions on respirator and protective clothing 
and equipment use and, only with consent of the employee, the licensed 
physician's recommended limitations on airborne exposure to beryllium 
and recommendations for evaluation at a CBD diagnostic center, 
continued medical surveillance, and removal from airborne exposure to 
beryllium. Thus, OSHA views this consent-based approach to reporting of 
medical surveillance findings critical to the ultimate success of this 
provision, which will be measured not just in the participation rate, 
but in the benefits to participating employees--early detection of 
beryllium-related disease so that employees can make decisions to 
mitigate adverse health effects and to possibly retard progression of 
the disease.
    In sum, OSHA concludes that the record offers compelling evidence 
for modifying the proposed content of the licensed physician's written 
medical opinion for the employer. The evidence includes employee 
privacy concerns, as well as evidence on the limited utility for giving 
specific medical findings to employers. OSHA is particularly concerned 
that the proposed requirements would have led to many employees not 
participating in medical surveillance and thus not receiving its 
benefits. OSHA therefore has limited the information to be given to the 
employer under this rule, but is requiring that the employee receive a 
separate written medical report with more detailed medical information.
    The requirements for the type of information provided to the 
employer are consistent with those in the Respirable Crystalline Silica 
standard (29 CFR 1910.1053), but are different from requirements in the 
majority of OSHA standards that were promulgated before that standard. 
The requirements in other standards remain in effect for those 
standards. The requirements for this rule are based on the evidence 
obtained during this rulemaking for beryllium, in particular that many 
employees, especially those who are not represented by a labor union or 
who work in a company that does not foster a strong health and safety 
culture, would not take advantage of medical surveillance without 
stronger privacy protections.
    Licensed Physician's written medical report for the employee. OSHA 
did not propose a separate report given directly by the licensed 
physician to the employee, but as discussed in detail above, several 
commenters requested that a report containing medical information be 
given to the employee only. OSHA agrees and in response to those 
comments, final paragraph (k)(5) requires the employer to ensure that 
the PLHCP explains the results of the medical examination and that the 
licensed physician provides the employee with a written medical report 
within 45 days of the examination (including any follow-up BeLPT 
required under paragraph (k)(3)(ii)(E) of this standard). In other 
words, the examination does not end (and trigger the 45-day disclosure 
period) until all of the follow-up BeLPTs have been administered. This 
deadline is consistent with the deadline for the licensed physician's 
written medical

[[Page 2714]]

opinion for the employer, which is discussed below.
    The contents of the licensed physician's written medical report for 
the employee are set forth in final paragraphs (k)(5)(i)-(v). They 
include: The results of the medical examination, including any medical 
condition(s), such as CBD or beryllium sensitization (i.e., the 
employee is confirmed positive, as is defined in paragraph (b) of the 
standard), that may place the employee at increased risk from further 
airborne exposure; any medical conditions related to airborne exposure 
that require further evaluation or treatment; any recommendations on 
the employee's use of respirators, protective clothing, or equipment; 
and any recommended limitations on airborne beryllium exposure. If the 
employee is confirmed positive or diagnosed with CBD, the written 
medical report must also contain any recommendations for referral to a 
CBD diagnostic center, continued medical surveillance, and medical 
removal from airborne beryllium exposures, as described in paragraph 
(l) of the standard. Paragraph (l) specifies that medical removal 
applies only to work scenarios where airborne exposures exceed the 
action level. Paragraph (k)(5)(iii) also states that the licensed 
physician may recommend evaluations at a CBD diagnostic center based on 
any other reason deemed appropriate. For example, the physician might 
recommend an evaluation at a CBD diagnostic center because he or she 
suspects that results from the BeLPT are questionable based on signs or 
symptoms in the employee or other clinical findings that are consistent 
with CBD and wants a specialist in beryllium disease to examine the 
employee. However, OSHA notes that recommendations for referrals for 
evaluations at CBD diagnostic centers under this standard should only 
be given for health-related reasons that pertain to beryllium.
    The health-related information in the licensed physician's written 
medical report for the employee is generally consistent with the 
proposed written medical opinion for the employer, with a few notable 
exceptions. The proposal required the written medical opinion to 
indicate ``whether the employee had any medical condition that would 
place the employee at increased risk of CBD from further [airborne] 
exposure.'' Although including a statement in the opinion that ``the 
employee has a medical condition that places him or her at increased 
risk of CBD'' implies that the employee is sensitized to beryllium, the 
proposal did not require that a specific finding such as ``confirmed 
beryllium sensitization'' be included in the opinion. Because only the 
employee will be receiving the written medical report, the written 
medical report will include any specific diagnoses, such as CBD or 
beryllium sensitization. OSHA added ``CBD'' as a condition to be 
included in the written medical report to the employee because 
employees who have CBD may be at risk of increased progression of the 
disease if they continue to be exposed. Including a confirmed positive 
finding or CBD diagnosis will also give the employee a record of his or 
her eligibility for medical removal. An additional change from the 
proposed to final requirement is that the proposed phrase of ``would 
place the employee at risk of CBD from further [airborne] exposure'' 
was changed to ``may place the employee at increased risk from further 
airborne exposure.'' The change of the word ``would'' to ``may'' was 
for clarification because the word ``would'' implies a certainty that 
does not exist.
    The phrase ``risk of CBD'' was also changed to ``risk'' to clarify 
that risks may be increased by conditions other than CBD-related 
disease. For example, the employee may have lung function loss related 
to a disease such as chronic obstructive pulmonary disease and that 
lung function loss might be compounded if the employee develops CBD. As 
noted in the introduction to the Summary and Explanation, the word 
``airborne'' was included as a modifier to the term ``exposure'' in 
many cases in the final standards to clarify that OSHA did not intend a 
change from the proposal. In this provision, OSHA included the term 
``airborne'' to reaffirm its intent that the report must discuss any 
detected medical conditions that may place the employee at increased 
risk from further airborne exposure, rather than dermal exposure. OSHA 
finds that this distinction is appropriate because it is inhalation 
exposure and not dermal contact that increases the risk of CBD 
development in a sensitized employee or increases the risk of 
progression in an employee who has CBD. (For this same reason the word 
``airborne'' was added to final paragraph (k)(5)(ii)(B).)
    Finally, the proposed phrase ``including the use and limitations of 
protective clothing and equipment, including respirators'' was changed 
to ``use of respirators, protective clothing or equipment'' in final 
paragraph (k)(5)(ii)(A). That change reflected an edit to remove 
superfluous language and the intent of that requirement has not 
changed. OSHA intends this provision to cover situations where the 
physician might have recommendations on the use of respirators, 
protective clothing or equipment in general, e.g., that the employee 
should wear long sleeves to limit the possibility of dermal exposure. 
OSHA also intends for the provision to address recommended limitations 
on an employee's use of respirators, protective clothing or equipment, 
e.g., that the employee cannot safely wear a negative pressure 
respirator.
    In addition to these changes, OSHA added a number of 
recommendations that the licensed physician is to include in the 
written medical report to the employee if the employee is confirmed 
positive or diagnosed with CBD: (1) Referral for an evaluation at a CBD 
diagnostic center (paragraph (k)(5)(iii)), (2) continued medical 
surveillance (paragraph (k)(5)(iv)), and (3) medical removal from 
airborne exposure to beryllium as described in paragraph (l) (paragraph 
(k)(5)(v). Aside from a confirmed positive or CBD diagnosis, if 
otherwise deemed appropriate by the licensed physician, the written 
medical report must also contain a referral for an evaluation at the 
CBD diagnostic center.
    Each of these recommendations reflects another requirement of the 
final standard. For example, proposed paragraph (k)(6)(i) and (ii) 
indicated that an evaluation at a CBD diagnostic center was to occur 
when an employee was confirmed positive and agreed to the examination. 
OSHA updated the requirement to make it clear that an evaluation at a 
CBD diagnostic center should not be limited to employees who have been 
confirmed positive and want to find out if they have CBD, and should be 
extended to employees already diagnosed with CBD. Such employees would 
benefit from having a pulmonologist familiar with beryllium disease 
select appropriate tests to monitor progression of the disease. OSHA 
therefore expanded the trigger for referral to a CBD diagnostic center 
to include CBD in addition to sensitization in final paragraphs 
(k)(5)(iii), (k)(6)(iii), and paragraph (k)(7)(i).
    The referral for continued medical surveillance for employees who 
are confirmed positive or have been diagnosed with CBD reflects the 
addition of paragraph (k)(1)(i)(D) that allows employees whose most 
recent medical opinion required by paragraph (k)(6) or (k)(7) 
recommends periodic medical surveillance to continue receiving medical 
examinations, even if they do not qualify under any other trigger; a 
more detailed discussion is included under the summary and explanation 
for final paragraph (k)(1)(i)(D).

[[Page 2715]]

    Finally, the triggers for a medical removal recommendation in 
paragraph (k)(5)(v) reflect the triggers under paragraph (l)(1)(i) and 
are discussed in more detail in the summary and explanation for final 
paragraph (l), medical removal protection. OSHA added these 
recommendations to the written medical report to make it clear to the 
licensed physician and employee that each of these recommendations is 
to occur when an employee is confirmed positive or diagnosed with CBD. 
A similar approach is applied in the Respirable Crystalline Silica 
standard, where the PLHCP is to include a statement that the employee 
should be examined by a specialist if that employee has X-ray evidence 
of silicosis.
    The requirements for the health-related information to be included 
in the written medical report for the employee are consistent with the 
overall goals of medical surveillance: To identify beryllium-related 
adverse health effects so that the employee can consider appropriate 
steps to manage his or her health; to let the employee know if he or 
she can be exposed to beryllium in the workplace without increased risk 
of experiencing adverse health effects; and to determine the employee's 
fitness to use respirators. By providing the licensed physician's 
written medical report to employees, those who might be at increased 
risk of health impairment from airborne beryllium exposure will be able 
to consider interventions (i.e., health management strategies) with 
guidance from the licensed physician. Such strategies might include 
employment choices to limit airborne exposures or using a respirator 
for additional protection.
    The requirement for a verbal explanation from the PLHCP in 
paragraph (k)(5) allows the employee to confidentially ask questions or 
discuss concerns with the PLHCP. It also allows the PLHCP to inform the 
employee about any non-occupationally related health conditions so that 
the employee can follow-up as needed with his or her personal 
healthcare provider at the employee's expense. The requirement for a 
written medical report ensures that the employee receives a record of 
all findings. Employees would also be able to provide the written 
medical report to future health care providers.
    Licensed physician's written medical opinion for the employer. As 
discussed in detail above, some commenters objected to OSHA's proposed 
content for the written medical opinion for the employer based on 
employee privacy concerns. OSHA shares these privacy concerns and is 
thus revising the contents of the written medical opinion. In 
developing the contents of the written medical opinion for the 
employer, OSHA considered what type of information needs to be included 
to provide employers with information to protect employee health, while 
at the same time protecting employee privacy as much as possible. NIOSH 
commented that the employer should only be provided with information on 
the employee's fitness for duty, in addition to restrictions and 
eligibility for medical removal benefits, as applicable (Document ID 
1725, page pp. 33-34). AFL-CIO recommended that OSHA use the language 
from the respirable crystalline silica rule promulgated in March of 
2016, and referred OSHA to the final brief it submitted for the silica 
rulemaking since the justifications for increased confidentiality apply 
to beryllium (Document ID 1809, p. 1; 1786). In the silica standard, 
OSHA required that only limitations on respirator use be included in 
the written medical opinion without the employee's consent. The 
decision was largely influence by physician testimony that giving the 
employer information on an employee's ability to use a respirator, but 
not specific medical information, strikes the appropriate balance 
between the employee's privacy and the employer's right to know because 
employees who are not fit to wear a respirator and then do so can be at 
risk of sudden incapacitation or death (81 FR 16835; see also Document 
ID 1786; pp. 89-90; 1805, Attachment 2, p. 133).
    Based on the record evidence, OSHA has determined that for the 
beryllium standards, the written medical opinion for the employer must 
contain only the date of the examination, a statement that the 
examination has met the requirements of this standard, and any 
recommended limitations on the employee's use of respirators, 
protective clothing, and equipment; and a statement that the PLHCP 
explained the results of the examination to the employee, including any 
tests conducted, any medical conditions related to airborne exposure 
that require further evaluation or treatment, and any special 
provisions for use of personal protective clothing or equipment. These 
requirements are set forth in paragraph (k)(6)(i) of the standards.
    OSHA is persuaded to include recommended limitations on the 
employee's use of respirators, protective clothing, and equipment, with 
no other medically-related information, in the written medical opinion 
for the employer without further consent from the employee. The Agency 
notes that the limitation on respirator use is consistent with 
information provided to the employer under the Respiratory Protection 
standard (29 CFR 1910.134). OSHA concludes that only providing 
information on respirator and protective clothing and equipment 
limitations in the written medical opinion for the employer is 
consistent with the ACOEM confidentiality guidelines that address the 
reporting of health and safety concerns to the employer (Document ID 
1815, Attachment 60, p. 1). The date and statement about the 
examination meeting the requirements of this standard are to provide 
both the employer and employee with evidence that compliance with the 
medical surveillance requirements are current. Employees will be able 
to show this opinion to future employers to demonstrate that they have 
received the medical examination.
    Paragraph (k)(6)(ii) states that if the employee provides written 
authorization, the written medical opinion for the employer must also 
contain any recommended limitations on the employee's airborne exposure 
to beryllium. Paragraphs (i)(6)(iii)-(v) state that if an employee is 
confirmed positive or diagnosed with CBD and the employee provides 
written authorization, the written opinion must also contain 
recommendations for evaluation at a CBD diagnostic center, continued 
medical surveillance, and medical removal from airborne exposure to 
beryllium as described in paragraph (l). If otherwise deemed 
appropriate by the licensed physician and the employee authorizes the 
information to be included in the written medical opinion, the opinion 
must also contain a referral for an evaluation at the CBD diagnostic 
center. As noted above, referrals for evaluations at CBD diagnostic 
centers under this standard should only be given for health-related 
reasons that pertain to beryllium.
    OSHA intends for this provision to allow the employee to give 
authorizations for the written medical opinion for the employer to 
contain only the referral for evaluation at a CBD diagnostic center, 
only the recommendation for continued periodic surveillance, or only 
the recommendation for medical removal, or both. This will allow 
employees to choose one or more options that best fit their needs. For 
example, an employee may choose to only let the employer know that he 
or she wants continued medical surveillance but not at the CBD 
diagnostic center because he or she is satisfied with the care provided 
by the current PLHCP. In another case, an employee may decide that he 
or she

[[Page 2716]]

wants only the recommendation for evaluation at a CBD diagnostic center 
reported to the employer because the employer wants to be evaluated by 
someone who is more specialized in beryllium disease before making any 
major employment decisions. In a third case, the employee may only want 
the recommendation for removal from airborne exposure reported to the 
employer because the employee is very concerned about his or her health 
and wants to be immediately removed without an evaluation at the CBD 
diagnostic center. OSHA expects that the written authorization could 
easily be accomplished through the use of a form that allows the 
employee to check, initial, or otherwise indicate which (if any) of 
these items discussed above the employee wishes to be included in the 
written medical opinion for the employer. OSHA concludes that allowing 
the employee to decide what if any additional information can be 
reported to the employer is warranted based on the seriousness and 
irreversibility of beryllium disease and the major impact that the 
decision may have on the employee's health and employment.
    OSHA is convinced that routinely including recommended limitations 
on airborne exposure, evaluations at a CBD diagnostic center, and 
especially medical removal in the written medical opinion for the 
employer absent employee consent could adversely affect employees' 
willingness to participate in medical surveillance. The requirements 
for this paragraph are consistent with recommendations to let employees 
make their own health decisions. OSHA stresses that information given 
to the employer should not include an underlying diagnosis--only the 
specific recommendation or referral called for under the standards. 
OSHA considers this a reasonable approach that balances the need to 
maintain employee confidentiality with the employer's need to know that 
it may want to reevaluate its beryllium program. Reporting that a 
referral or medical removal is recommended, when authorized by the 
employee, allows the employer to reevaluate its written exposure 
control plan, as required under paragraph (f)(1)(ii)(B).
    OSHA finds that this new format for the licensed physician's 
medical opinion for beryllium will better address concerns of ORCHSE, 
who feared it would be in violation if the written medical opinion for 
the employer included information that OSHA proposed the licensed 
physician or PLHCP not report to the employer, such as an unrelated 
diagnosis (Document ID 1691, p. 11). OSHA finds that removing the 
prohibition on unrelated diagnoses and instead specifying the only 
information that is to be included in the written medical opinion for 
the employer remedies this concern because it makes the contents of the 
opinion easier to understand and less subject to misinterpretation.
    OSHA recognizes that some employees might be exposed to multiple 
OSHA-regulated substances at levels that trigger medical surveillance 
and requirements for written opinions. For example, Newport News 
Shipbuilding indicated that their employees already undergo medical 
surveillance for arsenic (Document ID 1657, p. 2). The licensed 
physician can opt to prepare one written medical opinion for the 
employer for each employee that addresses the requirements of all 
relevant standards, as noted in preambles for past rulemakings, such as 
Chromium (VI) (71 FR 10100, 10365 (2/28/06)). However, the combined 
written medical opinion for the employer must include the information 
required under each relevant OSHA standard. For example, if the PLHCP 
opts to combine written medical opinions for an employee exposed to 
both inorganic arsenic and beryllium, then the combined opinion to the 
employer must contain the information required by paragraphs (n)(6)(i) 
of the inorganic arsenic standard (29 CFR 1910.1018) and the 
information required by paragraphs (k)(6)(i) (and paragraphs 
(k)(6)(ii)-(v) with written authorization from the employee) of the 
beryllium standards.
    NABTU noted that the black lung rule for coal miners protects 
confidentiality by prohibiting mine operators from requiring miners to 
provide a copy of their medical information (Document ID 1679, p. 13; 
30 CFR 90.3). NABTU requested that the beryllium rule protect 
confidentiality by prohibiting employers from asking employees or the 
PLHCP for medical information (Document ID 1679, p. 13). Consistent 
with the Respirable Crystalline Silica standard, OSHA is not including 
such a prohibition in the beryllium standard because employers may have 
legitimate reasons for requesting medical information, such as BeLPT 
results. For example, employers might request such information for 
doing an investigation or helping employees file compensation claims. 
If employees are not concerned about discrimination or retaliation, or 
need the employer's help in filing a claim, they could provide the 
health information to the employer. Paragraph (k)(6)(vi) requires the 
employer to ensure that employees receive a copy of the written medical 
opinion for the employer within 45 days of any medical examination 
(including any follow-up BeLPT required under paragraph (k)(3)(ii)(E) 
of this standard) performed for that employee. The reason for the 45-
day deadline to provide the written medical opinion is discussed below. 
OSHA is requiring that employees receive a copy of the written medical 
opinion for the employer, in addition to the written medical report, 
because they can present the written medical opinion as proof of a 
current medical examination to future employers. This is especially 
important in industries with high turnover because employees may work 
for more than one employer during a two-year period and this ensures 
that tests are not performed more frequently than required.
    On the topic of transient employment, NSC asked OSHA to consider 
workers employed by staffing agencies and assigned to multiple host 
employers and possibly employees of contractors to the host employer, 
who might not receive medical surveillance because of the transient 
nature of their employment (Document ID 1612, p. 3). OSHA's July 15, 
2014, memorandum titled Policy Background on the Temporary Worker 
Initiative indicates that both the host and staffing agency are 
responsible for the health and safety of temporary employees. For 
example, the policy memorandum indicates that host employers are well 
suited for assuming responsibility for compliance related to workplace 
hazards, while staffing agencies may be best positioned to provide 
medical surveillance. Under this policy, staffing agencies are expected 
to offer medical surveillance to eligible employees, and they could 
send a copy of the written medical opinion to the host employer so that 
the host employer would know about any limitations that might be 
recommended by the licensed physician. Similarly contract employers 
whose employees work at different job sites are expected to offer 
medical surveillance to their eligible employees. Also, OSHA revised 
the triggers for medical surveillance in paragraphs (k)(1)(i)(A) and 
(k)(2)(i)(A) so that employees must be offered medical surveillance 
within 30 days of when the employer determines they are reasonably 
expected to be exposed above the action level for 30 or more days a 
year. The revised trigger allows for more timely medical examinations 
than the proposed trigger, which would have allowed for the employee to 
be exposed for 30 days before the employer had to offer medical 
surveillance. As a result, more temporary workers who are

[[Page 2717]]

employed for short periods of time will meet the trigger for medical 
surveillance.
    As indicated above, the standards require that employers ensure 
that employees get a copy of the PLHCP's written medical report and 
opinion and that they get a copy of the written opinion within 45 days 
of each medical examination (including any follow-up BeLPT required 
under paragraph (k)(3)(ii)(E) of this standard) (paragraphs (k)(5), 
(k)(6)(i), (k)(6)(vi)). By contrast, the proposed rule would have 
required that the employer obtain the licensed physician's written 
medical opinion within 30 days of the medical examination and then 
provide a copy to the employee within 2 weeks after receiving it. NJH 
commented that 45 days is a better time period for notifying employers 
because it can take more than 2 weeks to process the BeLPT (Document ID 
1664, p. 8). ORCHSE expressed concern about the 30-day timeline, 
stating that the employer would be in violation if the physician took 
more than 30 days to deliver the report (Document ID 1691, pp. 11-12).
    In light of NJH and ORCHSE's comments, OSHA has revised the 
proposed 30-day timeline to allow for 45 days. OSHA expects that the 
new 45-day period will give the licensed physician sufficient time to 
consider the results of any tests, including a follow-up BeLPT, done as 
part of the examination. OSHA finds that delivering the report to the 
employer within 45 days will still ensure that the employee and 
employer are informed in a timely manner and allows the employer to 
take any necessary protective measures within a reasonable time period. 
To ensure timely delivery of reports and opinions containing the 
correct information and demonstrate a good faith effort in meeting 
these requirements of the standard, the employer could inform licensed 
physicians about the time deadline and other requirements of the 
beryllium standard in a written agreement and follow up with the 
physician if there is concern about timely delivery or content of these 
documents. Because the licensed physician will be providing the 
employee with a copy of the written medical report, he or she could 
give the employee a copy of the written medical opinion at the same 
time. This would eliminate the need for the employer to give the 
employee a copy of the PLHCP's written medical opinion for the 
employer, but the employer would still need to ensure timely delivery.
    OSHA has also revised this provision to account for the time to 
administer any follow-up BeLPT tests required under paragraph 
(k)(3)(ii)(E) of these standards. As discussed above, if the results of 
the BeLPT are other than normal, paragraph (k)(3)(ii)(E) requires a 
follow-up BeLPT to be offered within 30 days, unless the employee has 
been confirmed positive. In order to allow for the licensed physician 
to consider BeLPT results and prepare the written medical opinion, the 
Agency must allow time for the BeLPT to be administered, processed, and 
interpreted. Therefore, OSHA has decided to require the employer to 
obtain a written medical opinion from the licensed physician within 45 
days of the medical examination (including any follow-up BeLPT required 
under paragraph (k)(3)(ii)(E) of this standard).
    Evaluation at a CBD Diagnostic Center. OSHA proposed that within 30 
days after an employer learned that an employee was confirmed positive, 
the licensed physician was to consult with the employee to discuss 
referral to a CBD diagnostic center that was mutually agreed upon by 
the employer and employee (proposed paragraph (k)(6)(i)). Following the 
consultation, if the employee decided to be clinically evaluated at a 
CBD diagnostic center, the employer was to provide the examination at 
no cost to the employee (proposed paragraph (k)(6)(ii)).
    OSHA asked stakeholders to comment on the proposed requirement for 
evaluation at a CBD diagnostic center, especially whether the 
requirements for mutual agreement by the employee and employer is 
necessary and appropriate and how the diagnostic center should be 
chosen if the employer and employee cannot agree. OSHA also asked 
whether the standard should specify that evaluation at a diagnostic 
center must be at a reasonable location (80 FR 47574-47575).
    The term CBD diagnostic center is defined in paragraph (b), 
Definitions, of the standards. As provided in paragraph (b) and 
explained in the Summary and Explanation, the CBD diagnostic center can 
be a hospital or other facility that has an on-site pulmonary 
specialist who can interpret biopsy pathology and bronchoalveolar 
lavage (BAL) results. The diagnostic center must also have onsite 
facilities that can do a clinical evaluation for CBD that includes 
pulmonary function testing according to ATS guidelines, transbronchial 
biopsy, and BAL, with the ability to transfer BAL samples to a 
laboratory for diagnostic evaluation within 24 hours.
    Ameren supported a specialist exam but asserted that an examination 
by a pulmonologist was sufficient and that the pulmonologist could be 
allowed to work with a CBD diagnostic center to treat a sensitized 
employee (Document ID 1675, p. 17). Southern Company argued that rather 
than requiring an evaluation at a CBD diagnostic center, the standard 
should instead specify the types of exams required (Document ID 1668, 
pp. 2-3). DOD commented that employees should be referred to a board-
certified pulmonologist who is capable of doing bronchoscopy, bronchial 
biopsy, and broncho-alveolar lavage (Document ID 1684, Attachment 2, p. 
1-6), NSSP, NABTU, ACOEM, and ATS advocated for an examination at a CBD 
center for sensitized employees (Document ID 1677, p. 6; 1679, p. 12; 
1685, p. 5; 1688, p. 3).
    OSHA is not persuaded by Southern Company's argument that the final 
standards should detail specific tests for confirmed positive 
employees, instead of requiring an examination at a CBD diagnostic 
center. As described above, the types of evaluations required for an 
employee who has a confirmed positive finding or is diagnosed with CBD 
must be determined on a case-by-case basis, and therefore determining 
appropriate testing requires a pulmonologist with the expertise 
described in the definition for CBD diagnostic center. In addition, 
many of the procedures that a pulmonologist may recommend are invasive 
and therefore involve risks. As a result, these tests should only be 
performed by a pulmonologist familiar with beryllium disease at a 
facility that meets the definition of a CBD diagnostic center, after 
the pulmonologist has carefully considered the employee's medical and 
occupational history. For these reasons, OSHA reaffirms that it is 
essential that eligible employees be evaluated at a CBD diagnostic 
center. Requiring that the diagnostic center be able to perform all the 
functions described under the Definitions section also makes the exam 
more convenient for the employer and the employee because the employee 
will not have to go to multiple facilities in order to undergo 
different procedures.
    Southern Company disagreed with the proposed requirement that both 
the employee and employer agree upon the CBD diagnostic center, 
asserting that the requirement could conflict with selection of a 
physician under workers' compensation laws, because OSHA does not have 
a mechanism to settle disputes, and because similar requirements are 
not included in other OSHA standards (Document ID 1668, pp. 6-7). 
Ameren and ORCHSE also opposed the requirement for mutual agreement on 
a CBD diagnostic center and recommended that location be considered 
when the employee and employer cannot reach agreement

[[Page 2718]]

(Document ID 1675, p. 17; 1691, p. 10). NJH supported mutual agreement 
on the CBD diagnostic center between the employee and employer and 
stated that location, expertise of the center, and feasibility should 
all be accounted for when agreement cannot be reached (Document ID 
1664, p. 8).
    OSHA acknowledges the concerns of these stakeholders, but maintains 
that the employee should be given a choice in the selection of a CBD 
diagnostic center because of the risks involved with procedures that 
the employee may have to undergo and because of the life-changing 
decisions that the employee might have to make based on the results of 
the evaluation. The employer and employee should make a good faith 
effort to agree on a CBD diagnostic center that is acceptable to them 
both. In making the decision, the first consideration is identifying 
qualified CBD diagnostic centers. The next considerations in the 
decision should include requirements under other laws and geographical 
location. OSHA expects that once these criteria are considered, there 
will not be unlimited options, which will help the employee and 
employer come to a decision.
    Although OSHA was not convinced that changes needed to be made 
based on public comments, OSHA did find changes were required to make 
the final provision consistent with other requirements of the final 
standard. First, OSHA changed the trigger for referral to a CBD 
diagnostic center to include both confirmed positive and a CBD 
diagnosis for consistency with paragraphs (k)(5)(iii) and (k)(6)(iii). 
The reasoning for this change is described above in the discussion of 
paragraph (k)(5)(iii). Second, OSHA removed the requirement for a 
consultation between the physician and employee within 30 days after 
the employer learned that the employee was confirmed positive. Under 
paragraph (k)(6)(D), the employer already must ensure that the PLHCP 
explains findings to the employee, including conditions related to 
airborne beryllium exposures that require further evaluation or 
treatment within 30 days of the medical examination. The discussion 
about recommended referral can occur as part of that conversation, and 
OSHA does not find that a separate consultation with the physician or 
PLHCP is necessary.
    The third major change to this provision was detailing how the 
employer would be informed that the employee is eligible for an 
evaluation at a CBD diagnostic center. The change reflects updates made 
to paragraph (k)(6) to allow the employee more privacy and control over 
the type of information the employer receives. Under final paragraph 
(k)(6), the employee must authorize the written medical opinion to 
contain recommendations for an evaluation at a CBD diagnostic center, 
and the licensed physician would then provide the employer that 
recommendation in the written medical opinion. Under paragraph (k)(5), 
the employee's written medical report is to contain medical findings, 
including a confirmed positive test result and a CBD diagnosis. The 
report must also contain a referral for an evaluation at a CBD 
diagnostic center if the employee is confirmed positive or diagnosed 
with CBD or if the licensed physician otherwise deems it appropriate. 
The employee has the option of providing the employer with a copy of 
the written medical report indicating a confirmed positive finding or 
diagnosis of CBD, or recommending referral. OSHA is providing the 
option for a written medical report listing a confirmed positive 
finding or diagnoses of CBD to be offered as proof of eligibility for 
an evaluation at a CBD diagnostic center, in the event that a licensed 
physician did not recommend a referral to a CBD diagnostic center in 
either the written medical report or the written medical opinion.
    As the result of the changes discussed above, final paragraph 
(k)(7) requires that employers provide a no-cost evaluation at a CBD-
diagnostic center that is mutually agreed upon by the employee and 
employer within 30 days of receiving a medical opinion that recommends 
the referral (paragraph (k)(7)(i)(A)) or within 30 days after the 
employee presents the employer with a written medical report indicating 
that the employee has been confirmed positive or diagnosed with CBD, or 
recommending referral to a CBD diagnostic center (paragraph 
(k)(7)(i)(B)). As is the case with the PLHCP's examination, the 
employer is responsible for providing the employee with a medical 
examination at a CBD diagnostic center, at no cost, and at a reasonable 
time and place.
    Under paragraph (k)(7)(ii) of the standards the employer must 
ensure that the CBD diagnostic center explains medical findings to the 
employee and gives the employee a written medical report within 30 days 
of the examination. Like the licensed physician's written medical 
report, the written medical report from the CBD diagnostic center must 
contain the results of the examination, including conditions such as 
sensitization or CBD that might increase the employee's risk from 
airborne exposure to beryllium; any medical conditions related to 
beryllium that require further follow-up; any recommendations on the 
employee's use of respirators, protective clothing, or equipment; and 
any recommended limitations on beryllium exposure. If the employee is 
confirmed positive or diagnosed with CBD, the written medical report 
must also contain recommendations for continued periodic medical 
surveillance and recommendations for removal from exposure to 
beryllium, as described in paragraph (l). The reasons why the CBD 
diagnostic center is to give the employee this information are the same 
as discussed above, under the requirements for the licensed physician's 
written medical report for the employee. This provision was added to 
the final standards to ensure that the employee gets a written record 
from the CBD diagnostic center and to allow the employee to consult 
with the CBD diagnostic center about the findings.
    Paragraph (k)(7)(iii) requires that the CBD diagnostic center 
provides the employer with a written medical opinion within 30 days of 
the medical examination. The written medical opinion must contain the 
date of the examination, any recommended limitations on the employee's 
use of respirators, protective clothing, or equipment, and a statement 
that a PLHCP explained the results of the medical examination to the 
employee. It must also contain a statement that the examination met the 
requirements of the standard, if a periodic examination was conducted 
for an employee who chooses examinations conducted at the CBD 
diagnostic center as specified under paragraph (7)(iv). If the employee 
provides written authorization, the written medical opinion for the 
employer must also contain any recommended limitations on the 
employee's airborne exposure to beryllium. If an employee is confirmed 
positive or diagnosed with CBD and the employee provides written 
authorization, the written opinion must also contain recommendations 
for continued medical surveillance, and/or medical removal from 
exposure to beryllium, as described in paragraph (l).
    This provision was not in the proposed standard or the joint draft 
recommended standard by Materion and USW but was added to the final 
standards to allow for transmittal of CBD diagnostic center 
recommendations to the employer without revealing the specific medical 
reason for those recommendations. The structure parallels the written 
medical opinion from the licensed physician, which was developed based 
on stakeholder requests to increase confidentiality of

[[Page 2719]]

medical findings. A separate written medical opinion from the CBD 
diagnostic center is needed because the recommendations may differ from 
those of the licensed physician and usually comes from a different 
provider. For example, the employee may have wanted only a 
recommendation for evaluation at a CBD diagnostic center to be included 
on the written medical opinion from the physician, but, after 
evaluation at a CBD diagnostic center, may decide to include the 
recommendation for medical removal from exposure on the CBD diagnostic 
center's written medical opinion.
    Paragraph (k)(7)(iv) requires the employer to ensure that each 
employee receives a copy of the written medical opinion from the CBD 
diagnostic center described in paragraph (k)(7) of this standard within 
30 days of any medical examination performed for that employee. As 
discussed above with regard to paragraph (k)(6)(vi), requiring the 
provision of all written medical opinions to employees can permit 
employees to provide that information to future employers without 
divulging private medical information and also present the opinion as 
proof of a current examination that meets the requirements of the 
beryllium standard.
    The deadlines for submittal of the written medical opinion and 
report are shorter for the CBD diagnostic center (30 days) than the 
licensed physician (45 days). The reasoning is because CBD diagnostic 
centers are not expected to routinely conduct BeLPTs, which as noted 
above, take 2 weeks to process. They will not, therefore, be affected 
by the same time limitations as licensed physicians.
    In the NPRM, OSHA asked stakeholders to comment on whether 
sensitized employees should be given the opportunity to be examined at 
a CBD diagnostic center more than once and how frequently those 
employees should be evaluated (80 FR 47574). This provision was not 
included in the draft standard or the joint draft recommended standard 
by Materion and USW (Document ID 0754).
    NABTU commented that a sensitized employee should continue to be 
periodically evaluated at a CBD diagnostic center because it cannot be 
predicted when a sensitized employee will develop CBD (Document ID 
1679, p. 12). NSSP, ACOEM, and ATS agreed with continued periodic 
surveillance at a CBD diagnostic center for sensitized employees 
(Document ID 1677, p. 6; 1685, p. 5; 1688, p. 3). ATS recommended that 
sensitized employees be evaluated every one to three years and NSSP 
recommended that the original physician, CBD diagnostic center, and 
employee determine the frequency of medical examinations. Finally, 
Ameren stated that the standard should allow for follow-up based on 
pulmonologist recommendations (Document ID 1675, p. 16).
    OSHA agrees that continued evaluation at a CBD diagnostic center is 
appropriate for sensitized employees and employees diagnosed with CBD. 
Specialized evaluation is needed to determine the appropriate tests to 
monitor for possible progression from sensitization to CBD and to 
monitor the progression of CBD if it does occur. Therefore, after 
considering the record, OSHA added the requirement for continued 
evaluation at a CBD diagnostic center for these employees.
    This new requirement is contained in paragraph (k)(7)(v), which 
specifies that after an employee has received a clinical evaluation at 
a CBD diagnostic center described by paragraph (k)(7)(i) of the 
standards, the employee may choose to have any subsequent medical 
examinations for which the employee is eligible under paragraph (k) of 
this standard performed at a CBD diagnostic center. The evaluations 
must continue to be done at a CBD diagnostic center mutually agreed 
upon by the employee and employer and provided at no cost to the 
employee. To allow for continued medical surveillance for those 
employees who would not otherwise be entitled under (k)(1) or (k)(2), 
the employee must authorize the recommendation for continued periodic 
medical surveillance to be included in the most recent written medical 
opinion from the CBD diagnostic center (paragraph (k)(7)(iii)). Under 
paragraph (k)(2)(ii), the CBD diagnostic center can recommend continued 
surveillance every two years. OSHA is not including a provision for 
more frequent examinations because, as indicated above, surveillance 
done every two years is appropriate to monitor for sensitization and 
CBD progression in most employees.
    Proposed paragraph (k)(7) had required that employers were to 
convey the results of beryllium sensitization tests to OSHA for 
evaluation and analysis at the request of OSHA. The employer was to 
remove all personally identifiable information (e.g., names, social 
security numbers) before sending the results to OSHA. A similar 
provision was included in the joint draft recommended standard by 
Materion and USW. OSHA asked for comment on this provision, 
specifically if such a requirement would be burdensome for employers 
and whether it would be more appropriate to send the information to 
other organizations (80 FR 47575).
    Some commenters did not support the inclusion of this requirement 
in the final rule. For example, Ameren commented that the proposed 
requirement would be burdensome because it would be cumbersome to get 
signed releases for this information (Document ID 1675, p. 20). ORCHSE 
also argued that employees would have a difficult time complying with 
this requirement because employees would not likely sign a release 
(Document ID 1691, p. 13). DOD also claimed that the requirement would 
be burdensome and said that it would be better to send the results to 
NIOSH but not routinely (Document 1684, Attachment 2, pp. 1-7-1-8). On 
the other hand, NJH supported this requirement because it believed the 
information would help OSHA identify industries where sensitization is 
occurring (Document ID 1664, p. 9). However, NJH added that small 
companies may need help complying with this requirement (Document ID 
1664, p. 9). In addition, NJH and ATS recommended that the rule specify 
that employers routinely and systematically analyze medical screening 
results along with job and exposure data to identify employees who may 
be at risk of sensitization and working conditions contributing to 
sensitization and CBD risk (Document ID 1664, p. 8; 1688, 4).
    Consistent with the concerns of Ameren and ORCHSE regarding getting 
releases from employees, OSHA has given much thought to maintaining 
confidentiality of medical findings as discussed in detail above. As a 
result of changes made in the standards to enhance employee privacy, 
the Agency eliminated the proposed paragraph for the written medical 
opinion to the employer to include a statement about whether the 
employee had a condition that would put him or her at risk of 
developing CBD with further beryllium exposure. That provision 
suggested that the written medical opinion might include findings such 
as beryllium sensitization. In the final standard, it is explicit that 
the employer will not receive information about sensitization or CBD in 
the written medical opinion to the employer, and the employer will only 
receive that information when an employee presents the employer with 
the employee's written medical report. As a result, many employers may 
not have that information to submit to OSHA or to otherwise conduct a 
systematic analysis of medical screening results. As discussed above, 
even if employers were provided aggregated medical findings, it may 
still be difficult

[[Page 2720]]

to maintain confidentiality when companies are small or few employees 
are involved in a process.
    OSHA has other ways to obtain medical findings if needed. For 
example, as noted in the Summary and Explanation for paragraph (n), 
Recordkeeping, OSHA's Access to Employee Exposure and Medical Records 
standard (29 CFR 1910.1020) requires employers to ensure that most 
employee medical records are retained for the duration of employment 
plus 30 years for employees employed more than one year, and requires 
that those records be made available to OSHA upon request (29 CFR 
1910.1020 (d)(1)(i) and (e)(3)). OSHA therefore deleted proposed 
paragraph (k)(7) from the final standard.

(l) Medical Removal

    Paragraph (l) of the standards for general industry, shipyards, and 
construction provide for medical removal protection (MRP). This 
paragraph applies only to workers with airborne exposure to beryllium 
at or above the action level who are diagnosed with CBD or confirmed 
positive and provide documentation of their diagnosis of CBD or 
confirmed positive status or a physician's recommendations for removal 
from exposure to beryllium to their employers. Under this paragraph, 
employees must provide eligible employees with a choice of removal from 
exposure at or above the action level or remaining in their job with 
airborne exposure at or above the action level and wearing a 
respirator. If the employee chooses removal, the employer is required 
to remove the employee to comparable work in a work environment where 
the airborne exposure is below the action level, if such work is 
available. If comparable work is not available, the employer must 
maintain the employee's base earnings, seniority, and other rights and 
benefits that existed at the time of removal for six months or until 
such time that comparable work described in paragraph (l)(3)(i) becomes 
available, whichever comes first. The employee's earnings under MRP can 
be diminished by the amount of compensation received from certain other 
sources.
    OSHA included medical removal provisions in the proposed rule as a 
protective, preventative health mechanism that was intended to work in 
concert with the proposed medical surveillance provisions. As OSHA 
explained in the proposal, the Agency preliminarily found that medical 
removal is an important means of protecting employees who have become 
sensitized or developed CBD, and is an appropriate means to enable them 
to avoid further exposure. See 80 FR 47802. The Agency further 
explained that the inclusion of MRP in the proposal was in keeping with 
the recommendation of beryllium health specialists in the medical 
community and with the draft recommended standard provided by union and 
industry stakeholders (Document ID 0754).
    OSHA solicited comments on the health effects that should trigger 
MRP and the proposed provisions for MRP. In addition, the Agency 
included several specific questions to guide stakeholders in their 
response, including whether beryllium sensitization and CBD are 
appropriate triggers for medical removal, whether there were other 
medical conditions or findings that should trigger medical removal, and 
the amount of time for which a removed employee's benefits should be 
extended. OSHA also included questions regarding the costs and benefits 
of MRP (see 80 FR 47575).
    During the public comment periods and informal public hearing, 
numerous stakeholders submitted comments supporting the inclusion of 
MRP in this rulemaking (e.g., Document ID 1664, pp. 3-4, 9; 1680, pp. 
1, 7; 1681, p. 14-15; 1683, p. 3; 1688, p. 2; 1689, pp. 8, 13-14; 1690, 
pp. 1, 3-4; 1691, Attachment 1, pp. 13, 15; 1755, Tr. 26, 168; 1756, 
Tr. 142-143; 1809, p. 1; 1963, pp. 13-14). The commenters who commented 
on the issue supported MRP in general terms; none opposed inclusion of 
MRP in the final rule. Some of these stakeholders noted that they 
supported MRP because it promotes participation in medical surveillance 
programs. For example, National Council on Occupational Safety and 
Health (National COSH) argued that MRP benefits are crucial to a 
successful medical surveillance program (Document ID 1690, pp. 3-4). 
National COSH maintained that ``workers will not willingly participate 
in medical surveillance or disclose early signs and symptoms of disease 
if doing so means they lose their job and can no longer pay their 
bills. For this reason, an effective medical surveillance program for 
CBD must include . . . [MRP] benefits'' (Document ID 1690, p. 3). NIOSH 
similarly argued that ``[f]ear of job loss and associated loss of 
income and other benefits is an important barrier to translating 
medical screening and surveillance findings into secondary prevention. 
Inclusion of medical removal provisions is critical to addressing that 
barrier'' (Document ID 1755, Tr. 26). The American Association for 
Justice agreed, observing that ``MRP benefits are an essential tool to 
ensure that workers with signs and symptoms of disease step forward 
without fear of reprisal and seek medical advice'' (Document ID 1683, 
p. 3).
    Other commenters indicated that the option for removal was 
necessary for workers' health. For example, the USW argued that the 
inclusion of MRP is necessary to provide a safe and healthful workplace 
(Document ID 1963, p. 13). USW further commented that Section VIII 
(Significance of Risk) of the NPRM shows that existing evidence within 
the docket indicates that workers who are sensitized to beryllium or 
are in the early stages of chronic beryllium disease can significantly 
benefit from MRP (Document ID 1963, p. 13). National Jewish Health 
(NJH) generally agreed with USW's opinion, stating that ``removal from 
exposure is the best form of prevention'' (Document ID 1664, p. 4).
    Other stakeholders indicated that the inclusion of a medical 
removal provision might lower exposures in the workplace as a whole. 
For example, USW testified that MRP provides employers with a financial 
incentive to keep beryllium exposures low (Document ID 1755, Tr. 167-
68). Mike Wright from USW observed that this incentive helped to lower 
exposure levels in the context of the lead standard:

    But what really, I think, best protected workers was medical 
removal protection because employers did not want to pay people to 
stay at home until their blood leads got down. So I think if you 
look at the real benefits of MRP, it isn't simply that it removes 
workers from exposure, who might be harmed by further exposure. It 
is that it really provides an incentive for employers to keep 
exposures low in the first place. And that's been our experience 
(Document ID 1755, Tr. 167-68).

    After careful consideration of these comments, OSHA has decided to 
include MRP in the final standards. As noted by commenters, MRP serves 
three main interrelated purposes. First, it increases employee 
participation and confidence in the standards' medical surveillance 
program. Under paragraph (k)(1)(i)(B), employers must offer medical 
examinations to employees showing signs or symptoms of CBD. The success 
of that program will depend in part on employees' willingness to report 
their symptoms, submit to examinations, respond to questions, and 
comply with instructions. Guaranteeing comparable work or earnings, 
seniority, and other rights and benefits for a period of time can help 
allay an employee's fear that a CBD diagnosis or

[[Page 2721]]

being confirmed positive will negatively affect earnings or career 
prospects. MRP encourages employees to report their symptoms and seek 
treatment, as OSHA has previously recognized when including medical 
removal in regulations governing the exposure to Lead (43 FR 52952, 
52973, November 14, 1978), Benzene (52 FR 34460, 34557, September 11, 
1987), and Cadmium (57 FR 42102, 42367-42368, September 14, 1992). This 
reasoning was also cited by the Department of Energy in support of the 
medical removal provisions of its Chronic Beryllium Disease Prevention 
Program, stating that the availability of medical removal benefits 
encourages worker participation and cooperation in medical surveillance 
(64 FR 68893).
    Second, by requiring the employer to remove employees with the 
highest risk of suffering material impairment of health (if the 
employee chooses removal), MRP may benefit sensitized employees and 
those with CBD. OSHA notes that there remains some scientific 
uncertainty regarding the effects of exposure cessation on the 
development of CBD among sensitized individuals and the progression 
from early-stage to late-stage CBD. For example, Steven Markowitz, MD, 
a medical consultant for USW, acknowledged during the informal public 
hearing that ``there's a paucity of evidence that removal from exposure 
results in improvement of CBD'' (Document ID 1755, Tr. 101). 
Nonetheless, most members of the medical community support removal from 
beryllium exposure as a prudent step in the management of beryllium 
sensitization and CBD. As noted above, physicians at NJH recommend that 
individuals diagnosed with beryllium sensitization and CBD who continue 
to work in a beryllium industry should have exposure of no more than 
0.01 micrograms per cubic meter of beryllium as an 8-hour TWA, which is 
10 times below the action level of 0.1 micrograms per cubic meter 
(https://www.nationaljewish.org/healthinfo/conditions/beryllium-disease/environment-management/) (Document ID 0637). Furthermore, OSHA received 
comments from Lisa Maier, MD and Margaret Mroz, MSPH from NJH during 
the public comment period supporting MRP for workers with sensitization 
or CBD (Document ID 1664; 1806, pp. 3-4). Specifically, Ms. Mroz 
commented that ``eliminating or reducing exposure can lead to 
improvement in symptoms'' for beryllium workers and that ``[r]emoval or 
reduction in exposure may prevent the development of CBD'' (Document ID 
1806, p. 3-4). And, during the informal public hearing, Dr. Lee Newman, 
testifying on behalf of the American College of Occupational and 
Environmental Medicine (ACOEM), commented that ``removal from exposure 
is the right thing to do for somebody who is at a stage of being 
beryllium sensitized or any stage beyond that'' (Document ID 1756, Tr. 
143). Thus, even though CBD and sensitization are considered to be 
irreversible, OSHA finds removal may still benefit sensitized employees 
and those with CBD.
    Finally, MRP may provide employers with an additional incentive to 
keep employee exposures low. Precisely because MRP will impose 
additional costs on employers, MRP can increase the protection afforded 
workers by the beryllium standards not only directly by improving 
medical surveillance but also indirectly by providing employers with 
economic incentives to comply with other provisions of the standard. 
The costs of MRP are likely to decrease as employer compliance with 
other provisions of the standard increases. Employers who comply with 
other provisions of the standard may have to remove relatively few 
employees. With only a small number of employees requiring removal, 
complying employers are more likely to be able to find positions 
available to which removed employees can be transferred. By contrast, 
employers who make only cursory attempts to comply with the central 
provisions of these standards are likely to find that the greater their 
degree of noncompliance, the greater the number of employees requiring 
medical removal and the greater the associated MRP costs. Thus, as OSHA 
explained in the preambles to its substance-specific standards on 
Cadmium and Lead, the inclusion of MRP in a final rule can serve as a 
strong stimulus for employers to protect worker health and rewards 
employers who through innovation and creativity derive new ways of 
protecting worker health not contemplated by these standards (57 FR 
42102, 42368 (Sep. 14, 1992); 43 FR 54354, 54450 (Nov. 21, 1978)).
    OSHA has the authority to include MRP in this standard. Indeed, the 
Court of Appeals for the D.C. Circuit recognized the Agency's authority 
to adopt such provisions more than 35 years ago in its review of the 
Agency's Lead standard (Lead I, 647 F.2d at 1229-1236). There, the 
Court found that MRP ``appears to lie well within the general range of 
OSHA's powers,'' and reasonable in the case of lead because it would 
help prevent impermissibly high blood lead levels and mitigate 
potential employee concerns about cooperating with the medical 
surveillance program (Id. at 1232, 1237). And, in the three and a half 
decades since the Lead I decision, OSHA has adopted MRP in five other 
substance-specific health standards: Cadmium (29 CFR 1910.1027), 
Benzene (29 CFR 1910.1028), Formaldehyde (29 CFR 1910.1048), 
Methylenedianiline (29 CFR 1910.1050), and Methylene chloride 
(1910.1052).
    Paragraph (l)(1) of the proposed standard detailed the eligibility 
requirements for medical removal. The provision explained that an 
employee would be eligible for medical removal if he or she works in a 
job with exposure at or above the action level and is diagnosed with 
CBD or confirmed positive for sensitization. OSHA specifically asked 
for comments on whether beryllium sensitization and CBD are appropriate 
triggers for medical removal and whether there are other medical 
conditions or findings that should trigger medical removal.
    Stakeholders generally supported the proposed triggers. ORCHSE 
Strategies (ORCHSE) argued that confirmed beryllium sensitization and 
CBD are appropriate triggers for medical removal (Document ID 1691, 
Attachment 1, p. 15). ORCHSE explained that since CBD is a chronic, 
progressive lung disease with no known cure, it is imperative that 
signs of health impairment be found early and exposure be terminated to 
avoid further impairment (Document ID 1691, Attachment 1, p. 15). NJH 
also commented that confirmed beryllium sensitization and CBD are 
appropriate triggers for medical removal (Document ID 1664, p. 9). 
Ameren, North America's Building Trades Unions (NABTU), Materion 
Corporation (Materion), and USW agreed (Document ID 1675, p. 20; 1679, 
p. 14; 1680, p. 7; 1681, pp. 14-15). USW commented that medical removal 
could prevent the progression of disease in workers diagnosed with 
sensitization or CBD (Document ID 1681, p. 15). However the Department 
of Defense argued that CBD but not beryllium sensitization is an 
appropriate trigger for medical removal and that sensitization is an 
appropriate trigger for advising employees about risk and requiring use 
of personal protective equipment if the employee chooses to return to 
work (Document ID 1684, Attachment 2, p. 1-8). The American Federation 
of Labor and Congress of Industrial Organizations (AFL-CIO) indicated 
support for the action level exposure trigger (Document ID 1809, p. 1; 
1809, Attachment 2, Tr. 930-931; 942-943).
    After reviewing the record on this issue, OSHA has decided that a 
CBD diagnosis and a confirmed positive test for sensitization are 
appropriate triggers for medical removal. OSHA disagrees

[[Page 2722]]

with the DOD and concludes that sensitization is an appropriate trigger 
for medical removal because removal from exposure may prevent the onset 
of CBD. Therefore, OSHA is retaining the triggers of both sensitization 
and CBD.
    Final paragraph (l)(1), consistent with the proposal, states that 
the employee is eligible for medical removal if the employee works in a 
job with exposure at or above the action level, but contains more 
specificity about the types of documentation that are submitted to the 
employer to demonstrate eligibility for medical removal. This change 
was made to track employee privacy protections included in the licensed 
physician's medical opinion in paragraph (k)(6) and the CBD diagnostic 
center's medical opinion in paragraph (k)(7)(iii). Under paragraphs 
(k)(5) and (k)(7)(ii), the standards now specify that the licensed 
physician or CBD diagnostic center provides only the employee a medical 
report that contains detailed medical findings, such as confirmed 
positive findings or a diagnosis of CBD. In cases where the employee is 
confirmed positive or diagnosed with CBD, the physician or CBD 
diagnostic center also includes recommendations for removal from 
exposure in the written medical report. However, under paragraphs 
(k)(6) and (k)(7)(iii), employers do not receive a written medical 
opinion that contains an employee's medical information (other than any 
recommended limitations on the employee's use of respirators) without 
the employee's written consent. The written opinion to the employer may 
contain a recommendation for removal from exposure, without the medical 
reason for the recommendation, only if the employee authorizes that 
recommendation to be included in the opinion. This allows an employee 
who is eligible for medical removal and chooses that option to provide 
official documentation requesting removal, without disclosing a 
specific medical condition.
    Thus, paragraph (l)(1) allows an employee's eligibility for removal 
to be established by four different types of documentation:
     The employee may provide a (k)(5) or (k)(7)(ii) written 
medical report indicating a confirmed positive finding or diagnoses of 
CBD and recommending removal because of that finding or diagnosis.
     The employee may provide a (k)(5) or (k)(7)(ii) written 
medical report in which the confirmed positive finding or diagnosis has 
been obscured or removed, but still contains the recommendation of 
removal because of that finding or diagnosis. An employee might do this 
if, consistent with the approach of paragraph (k), the employee wishes 
to keep the details of the condition private.
     The employee may provide any reliable medical 
documentation establishing a confirmed positive finding or diagnosis of 
CBD, regardless of whether it was issued in compliance with paragraph 
(k)(5). An employee might do this if, for example, the documentation 
predates this standard. This documentation would be a ``written medical 
report'' for purposes of (l)(1)(i)(A).
     The employer receives a (k)(6) or (k)(7)(iii) written 
medical opinion recommending removal from the licensed physician or CBD 
diagnostic center.
    OSHA added the language ``in accordance with paragraph (k)(5)(v) or 
(k)(7)(ii) of this standard'' to (l)(1)(i)(B) and ``in accordance with 
paragraph (k)(6)(v) or (k)(7)(iii) of the standard'' to (l)(1)(ii) to 
be clear that medical removal is required under those provisions only 
when the removal recommendation is based on a confirmed positive 
finding or a diagnosis of CBD.
    Paragraph (l)(2) of the proposal laid out the options for employees 
who are eligible for MRP. Specifically, paragraph (l)(2) required 
eligible employees to choose removal, as described under paragraph 
(l)(3), or to remain in a job with exposure at or above the action 
level as long as they wear a respirator in accordance with paragraph 
(g) of this standard. While both ORCHSE and Public Citizen supported 
the MRP provision, neither supported making removal optional (Document 
ID 1691, Attachment 1, p. 13; 1756, Tr. 189). ORCHSE specifically 
stated that utilizing respiratory protection as a means of protecting 
workers violates the hierarchy of controls and removal is most prudent 
for worker protection (Document ID 1691, Attachment 1, p. 13).
    After careful consideration of these comments, OSHA has decided to 
allow employees to choose between removal and remaining in a job with 
airborne exposure at or above the action level, provided that the 
employee uses respiratory protection for exposures at or above the 
action level, as contemplated in the proposal. OSHA recognizes that 
removal may reduce the risk of the onset of CBD and lead to reduction 
of symptoms. However, CBD is unlike triggers for MRP in some other OSHA 
standards, such as lead and benzene, because CBD is not reversible. 
Thus, without the respirator option, mandatory removal would require 
that the employee switch careers permanently. OSHA believes the worker 
should be given a voice in such a fundamental life decision where the 
confirmed positive employee may be able to minimize the risk of CBD 
through the consistent and careful use of respiratory protection in a 
workplace where feasible controls are implemented to maintain exposures 
within the PEL. Indeed, mandatory permanent removal might lead workers 
to hide their symptoms or not seek treatment, which is directly 
contrary to the purpose of MRP. For these reasons, the Agency finds 
mandating removal is not appropriate in this rulemaking. Therefore, 
paragraph (l)(2) of the final standards requires employers to provide 
eligible employees with the employee's choice of: (i) Removal as 
described in paragraph (l)(3) of these standards; or (ii) remaining in 
a job with airborne exposure at or above the action level, provided 
that the employee uses respiratory protection that complies with 
paragraph (g) of these standards whenever exposures are at or above the 
action level.
    Although paragraph (l)(2) of the final standards tracks OSHA's 
intent as expressed in the proposal, the final provision contains 
several clarifying changes. First, final paragraph (l)(2) explicitly 
places the responsibility for providing the choices on the employer, 
while the proposal merely implied that the employer would do so. OSHA 
believes that this clarification eliminates the possibility of 
confusion. Second, final paragraph (l)(2)(ii) refers to paragraph (g) 
of these standards, instead of referring to the Respiratory Protection 
standard (29 CFR 1910.134). OSHA made this second change to bring this 
provision into line with a similar provision in paragraph (e) of the 
final standards; it does not affect the employer's obligations as set 
forth in the proposed rule. Third, final paragraph (l)(2)(ii) expressly 
requires employers to ensure that employees use the respiratory 
protection whenever airborne exposures meet or exceed the action level. 
Again, this requirement was implied in the proposal, but OSHA believes 
that making the requirement express helps employers understand their 
obligations under these standards.
    Proposed paragraph (l)(3) contained requirements that would have 
applied if an eligible employee elected removal. Under the proposal, 
when an employee chooses removal, the employer would have been required 
to remove the employee to comparable work if such work was available. 
Proposed paragraph (l)(3)(i) explained that comparable work is a 
position for which the employee is already qualified or can be trained

[[Page 2723]]

within one month, in an environment where beryllium exposure is below 
the action level. As explained in the preamble to the proposal, this 
provision would not have required an employer to place an employee on 
paid leave under proposed paragraph (l)(3)(iii) if the employee refused 
comparable work offered under paragraph (l)(3)(i).
    If comparable work was not immediately available, paragraph 
(l)(3)(ii) of the proposal would have required the employer to place 
the employee on paid leave for six months or until comparable work 
becomes available, whichever occurs first. Proposed paragraph 
(l)(3)(ii) further explained that if comparable work became available 
before the end of the six month paid leave period, the employer would 
have been obligated to offer the open position to the employee. 
However, OSHA explained that if the employee declined the position, the 
employer would have had no further obligation to provide paid leave.
    Proposed paragraph (l)(3)(iii) would have continued a removed 
employee's rights and benefits for six months, regardless of whether 
the employee was removed to comparable work or placed on paid leave. 
The six-month period would have begun when the employee was removed, 
which means either the day the employer transferred the employee to 
comparable work, or the day the employer placed the employee on paid 
leave. For this period, the provision would have required the employer 
to maintain the employee's base earnings, seniority, and other rights 
and benefits of employment as they existed at the time of removal. OSHA 
explained that this provision is typical of medical removal provisions 
in other OSHA standards, such as Cadmium (29 CFR 1910.1027), Benzene 
(29 CFR 1910.1028), Formaldehyde (29 CFR 1910.1048), Methylenedianiline 
(29 CFR 1910.1050), and Methylene Chloride (29 CFR 1910.1052).
    As detailed above, there is widespread support among stakeholders 
for the inclusion of removal and wage protection for eligible employees 
in this rulemaking. The provisions included in the proposal were 
consistent with the recommendation of beryllium health specialists in 
the medical community and with the draft recommended standard provided 
by Materion and USW (Document ID 0754). However, not all commenters 
agreed with the proposed provisions. One commenter, NABTU, argued that 
``[i]f an employer who has placed an employee at risk cannot offer 
alternative employment [within six months], then a better solution 
would be to provide MRP until the employee has obtained new and 
equivalent employment, provided that the employee is making a good 
faith effort at finding new employment [emphasis added].'' (Document ID 
1679, p. 15).
    OSHA is sympathetic to NABTU's position--some employers, especially 
small employers, may lack the flexibility and resources to provide 
comparable positions for MRP-eligible employees (Document ID 0345, p. 
24), and as a result, employees' base earnings and benefits would only 
be maintained for a six-month period. However, OSHA also recognizes 
that the requirement to maintain the employee's base earnings, 
seniority, and other rights and benefits that existed at the time of 
removal for even a six-month period may be difficult for some 
employers. After weighing these two concerns, OSHA finds that the 
requirement to provide medical removal protection for a six-month 
period strikes a reasonable balance between protecting employees and 
limiting the burden on employers. Therefore, OSHA has decided to retain 
these provisions in the final standard with minor edits, as follows.
    First, OSHA reorganized and edited paragraph (l)(3)(i) to clarify 
and emphasize the employer's responsibilities. Like the proposed 
provision, final paragraph (l)(3) applies where an eligible employee 
chooses removal. If a comparable job is available where exposures to 
beryllium are below the action level, and the employee is qualified for 
that job or can be trained within one month, final paragraph (l)(3)(i) 
requires the employer to remove the employee to that job. Although each 
of these requirements was expressly stated in the NPRM in either the 
regulatory text or the preamble (80 FR 47802), OSHA has chosen to make 
its intent express in the final regulatory text. For example, the NPRM 
implied in regulatory text and explained in the preamble that an 
employer's obligation under proposed paragraph (l)(3)(i) arose where 
comparable work was available, but the final text makes the trigger for 
this obligation explicit (see 80 FR 47802; proposed paragraph 
(l)(3)(ii) (which applied ``if comparable work is not available)).
    Second, OSHA omitted the proposed requirement in paragraph 
(l)(3)(i) that ``[t]he employee must accept comparable work if such 
work is available'' from final paragraph (l)(3)(i). As stated in the 
preamble to the proposal, OSHA included this statement in proposed 
paragraph (l)(3)(i), in part, to make clear that if the employee 
declines an offer of comparable work, then the employer was not 
obligated to place the employee on paid leave under paragraph 
(l)(3)(ii) (80 FR 47802). However, because OSHA regulates employers, 
this requirement is better expressed as a clarification to the 
employer's responsibilities. OSHA concludes that the opening clause to 
proposed and final paragraphs (l)(3)(ii), which indicates that an 
employer's obligation to maintain the employee's base earnings, 
seniority, and other rights and benefits that existed at the time of 
removal arises ``[i]f comparable work is not available'' makes this 
sufficiently clear.
    Third, OSHA eliminated proposed paragraphs (l)(3)(iii), which 
stated that ``whether the employee is removed to comparable work or 
placed on paid leave, the employer shall maintain for 6 months the 
employee's base earnings, seniority, and other rights and benefits that 
existed at the time of removal.'' In the final rule, proposed 
(l)(3)(iii)'s requirements have been incorporated into final paragraphs 
(l)(3)(i) and (ii). OSHA believes that this simplification will clarify 
the Agency's intent.
    OSHA has also omitted the phrase ``paid leave'' from final 
paragraph (l)(3)(ii) because, with the incorporation of proposed 
paragraph (l)(3)(iii)'s temporal and benefits requirements into final 
paragraph (l)(3)(ii), it is unnecessary to specify what an employee who 
has been removed but is not working in a comparable job would be doing. 
In addition, OSHA wishes to give employers the flexibility to work with 
removed employees to create alternatives to merely placing the employee 
on paid leave. For example, employers might choose to offer the 
employee the opportunity to train for more than one month so that he or 
she could qualify for a different job. Provided that the employer 
otherwise complied with final paragraph (l)(3)(ii), such an arrangement 
would be permissible under the final standards.
    Finally, proposed paragraph (l)(4) provided that an employer's 
obligation to provide MRP benefits to a removed employee would be 
reduced if, and to the extent that, the employee receives compensation 
from a publicly or employer-funded compensation program for earnings 
lost during the removal period, or receives income from another 
employer made possible by virtue of the employee's removal. OSHA 
retained this requirement unchanged in final paragraph (l)(4). OSHA 
clarifies that benefits received under the Energy Employees 
Occupational Illness Compensation Program Act (EEOICPA) do not 
constitute wage replacement; therefore, EEOICPA benefits would not 
offset the employee's MRP benefits.

[[Page 2724]]

    OSHA did not receive any comments specifically directed to this 
provision, but, as noted above, several stakeholders commented that 
they supported the MRP provisions contained in the proposal as a whole 
(i.e., Document ID 1664, pp. 3-4, 9; 1680, pp. 1, 7; 1681, pp. 14-15; 
1683, p. 3; 1688, p. 2; 1689, pp. 8, 13-14; 1690, pp. 1, 3-4; 1691, 
Attachment 1, pp. 13, 15; 1755, Tr. 26, 168; 1756, Tr. 142-143; 1809, 
p. 1; 1963, pp. 13-14). After considering all comments and the record 
as a whole on MRP, OSHA finds that a provision for MRP is a necessary 
part of the final rule. As discussed above, MRP protects an employee's 
rights and benefits during the first six months of removal, and OSHA 
structured the MRP provisions to provide for ways to reduce in certain 
circumstances an employer's obligation to compensate employees for 
earnings lost. OSHA emphasizes, however, that MRP is not intended to 
serve as a workers' compensation system. The primary reason the Agency 
is including MRP in this standard is to provide eligible employees a 
six-month period to adjust to the comparable work arrangement or to 
seek alternative employment, without any further exposure at or above 
the action level. The Agency finds that this provision accomplishes 
that goal while providing for allowing the employer to control costs in 
many cases. In addition, this provision is consistent with other 
standards such as Formaldehyde (29 CFR 1910.1048), Methylenedianiline 
(29 CFR 1910.1050), and Methylene Chloride (29 CFR 1910.1052).
    For the reasons discussed above, OSHA finds that maintaining the 
MRP provision, with the clarifying changes noted above, in the final 
rule provides workers the incentive to participate in the medical 
surveillance program and provides workers with sensitization or CBD the 
opportunity and means to minimize further exposure to beryllium.

(m) Communication of Hazards

    Paragraph (m) of the standards for general industry, construction, 
and shipyards sets forth the employer's obligations to comply with 
OSHA's Hazard Communication Standard (HCS) (29 CFR 1910.1200) relative 
to beryllium, and to take additional steps to warn and train employees 
about the hazards of beryllium. Employees need to know about the 
hazards to which they are exposed, along with the associated protective 
measures, in order to understand how they can minimize potential health 
hazards. As part of an overall hazard communication program, training 
serves to explain and reinforce the information presented on labels and 
safety data sheets (SDSs). These written forms of communication will be 
most effective when employees understand the information presented and 
are aware of how to avoid or minimize exposures, thereby reducing the 
possibility of experiencing adverse health effects. Several commenters, 
including Ameren Corporation (Ameren) and United Steelworkers (USW), 
generally supported inclusion of a hazard communication requirement in 
the beryllium standards (e.g., Document ID 1675, p. 7; 1681, p. 15).
    As a general matter, the HCS requires a comprehensive hazard 
evaluation and communication process, aimed at ensuring that the 
hazards of all chemicals are evaluated, and also requires that the 
information concerning chemical hazards and necessary protective 
measures is properly transmitted to employees. The HCS achieves this 
goal, in part, by requiring chemical manufacturers and importers to 
review available scientific evidence concerning the physical and health 
hazards of the chemicals they produce or import to determine if they 
are hazardous. For every chemical found to be hazardous, the chemical 
manufacturer or importer must develop a container label and an SDS, and 
provide both documents to downstream users of the chemical. All 
employers with employees exposed to hazardous chemicals must develop a 
hazard communication program and ensure that all containers of 
hazardous chemicals are labeled and employees are provided access to 
SDSs and are trained on the hazardous chemicals in their workplace. 
Because OSHA preliminarily found beryllium to be a hazardous chemical, 
the Agency determined that hazard communications provisions should be 
included in the proposal. OSHA intends for the hazard communication 
requirements in the final standards to be substantively as consistent 
as possible with the HCS, while including additional specific 
requirements needed to protect employees exposed to beryllium, in order 
to avoid duplicative administrative burden on employers who must comply 
with both the HCS and this rule. Proposed paragraph (m)(1)(i) required 
chemical manufacturers, importers, distributors, and employers to 
comply with all applicable requirements of the HCS (29 CFR 1910.1200) 
for beryllium. Stakeholders did not offer any comments on this 
provision. After reviewing the full record, including all available 
evidence, and as discussed in this preamble at Section V, Health 
Effects, and Section VI, Risk Assessment, OSHA finds that beryllium is 
a hazardous chemical for purposes of the HCS. Therefore, the Agency 
includes paragraph (m)(1)(i) of the final standards for general 
industry, construction, and shipyards to require chemical 
manufacturers, importers, distributors, and employers to comply with 
their duties under HCS. The final provision in these standards is 
substantively unchanged from the proposed provision. Paragraph 
(m)(1)(ii) of the proposal required employers to address at least the 
following, in classifying the hazards of beryllium: Cancer; lung 
effects (chronic beryllium disease and acute beryllium disease); 
beryllium sensitization; skin sensitization; and skin, eye, and 
respiratory tract irritation. According to the HCS, employers must 
classify hazards if they do not rely on the classifications of chemical 
manufacturers, importers, and distributors (see 29 CFR 
1910.1200(d)(1)). Commenters did not object to this provision. 
Therefore, after considering the record, including the general comments 
in favor of the proposed hazard communications provisions and the 
evidence presented in Section V, Health Effects, and Section VI, Risk 
Assessment, regarding the enumerated hazards of exposure to beryllium, 
OSHA has decided to retain this proposed provision substantively 
unchanged in final paragraph (m)(1)(ii) of the standards for general 
industry and shipyards. However, OSHA has revised the language to bring 
it into conformity with other substance specific standards so it is 
clear that chemical manufacturers, importers, and distributors are 
among the entities required to classify the hazards of beryllium (See 
77 FR 17748-50).
    OSHA has chosen not to include an equivalent requirement in the 
final standards for construction and shipyards since employers in 
construction and shipyards are downstream users of beryllium products 
(blasting media) and would not therefore be classifying chemicals 
(Chapter IV of the Final Economic Analysis).
    Proposed paragraph (m)(1)(iii) required employers to include 
beryllium in the hazard communication program established to comply 
with the HCS, and ensure that each employee has access to labels on 
containers and safety data sheets for beryllium and is trained in 
accordance with the HCS and paragraph (m)(4) of this section. 
Stakeholders did not object to any part of this provision. After 
reviewing the record, OSHA reaffirms that employees

[[Page 2725]]

exposed to beryllium need additional training and information. 
Therefore, OSHA has decided to include the approach set forth in the 
proposed rule in the final paragraph (m)(1)(iii) of the final standards 
for general industry and shipyards and final paragraph (m)(1)(ii) of 
the standard for construction. The final provisions are substantively 
unchanged from the proposal.
    Paragraph (m)(2)(i) of the proposed standard required employers to 
provide and display warning signs at each approach to a regulated area 
so that each employee is able to read and understand the signs and take 
necessary protective steps before entering the area. Proposed paragraph 
(m)(2)(ii) of the standards required employers to ensure that warning 
signs are legible and readily visible, and that they bear the following 
legend:

DANGER
BERYLLIUM
MAY CAUSE CANCER
CAUSES DAMAGE TO LUNGS
AUTHORIZED PERSONNEL ONLY
WEAR RESPIRATORY PROTECTION AND PROTECTIVE CLOTHING AND EQUIPMENT IN 
THIS AREA

A number of stakeholders offered opinions on these provisions. Some 
stakeholders, like the USW, supported the proposed provisions (e.g., 
Document ID 1681, p. 15). Other stakeholders offered specific critiques 
regarding the proposed required language for the signs. For example, 
NGK Metals Corporation (NGK) and Materion Corporation (Materion) 
strongly opposed having cancer warnings displayed on warning signs. 
These commenters requested that OSHA strike out the cancer warning 
based on the results of a recent study by Boffetta, et al. (2014) 
(Document ID 0403) that does not show an elevated risk of cancer to 
workers exposed to beryllium (Document ID 1663, p. 3; 0403; 1958, pp. 
3-5). Materion added that the cancer warning masks the true risk, CBD, 
and that the wording on warning signs should be changed to ``Causes 
Damage to Lungs'' to reflect the true hazard (Document ID 1958, pp. 4-
5).
    OSHA has decided to retain the hazard statement about cancer as a 
requirement for the warning signs. As discussed in this preamble at 
Section V, Health Effects, and Section VI, Risk Assessment, OSHA has 
reviewed the scientific literature for beryllium carcinogenicity, 
including the Boffeta study, and has concluded that beryllium is 
carcinogenic. The Agency's finding is based on the best available 
epidemiological data, reflects evidence from animal and mechanistic 
research, and is consistent with the conclusions of other government 
and public health organizations. Furthermore, the International Agency 
for Research on Cancer (IARC), National Toxicology Program (NTP), and 
American Conference of Governmental Industrial Hygienists (ACGIH) have 
all classified beryllium as a known human carcinogen (Document ID 0651; 
0389, pp. 1-3; 1304; 0345, p. 4). In light of this evidence, OSHA finds 
the comments opposing the cancer warning language on signs 
unpersuasive. However, with regard to Materion's suggested language, 
OSHA agrees that a warning that beryllium can cause damage to lungs is 
appropriate and retains that language, as proposed, in the final 
standards for general industry and shipyards.
    A few other stakeholders also suggested edits or additions to the 
proposed sign legend. For example, NGK recommended that the phrase, 
WEAR RESPIRATORY PROTECTION AND PROTECTIVE EQUIPMENT IN THIS AREA be 
changed to WEAR RESPIRATORY PROTECTION AND PROTECTIVE EQUIPMENT PRIOR 
TO ENTERING THIS AREA, on warning signs to emphasize that personal 
protective equipment (PPE) must be put on before entering the 
restricted work area (Document ID 1663, p. 3). OSHA agrees that 
employees need to don PPE prior to entering the regulated area, but 
finds the suggested language requiring respiratory protection and PPE 
``in this area'' is sufficient to alert the workers to put their 
equipment and respirators on prior to entering the restricted work 
area. Therefore, OSHA has decided to retain the text ``in this area'' 
as stated in the final standards for general industry and shipyards. 
OSHA also notes that this language is consistent with the HCS and other 
previous health standards, such as Benzene (29 CFR 1910.1028).
    One stakeholder proposed a provision particular to shipyards. In 
hearing testimony, Ashlee Fitch of USW commented that warning signs 
``demarking abrasive blasting operations with beryllium-containing 
materials'' should be posted (Document ID 1756, p. 245). OSHA has 
chosen not to incorporate this suggestion. The signs required by 
paragraph (m)(2) of this final rule are intended to serve as a warning 
to employees and others who may not be aware that they are entering a 
regulated area, and to remind them of the hazards of beryllium so that 
they take necessary protective steps before entering the area. These 
signs are also intended to supplement the training that employees must 
receive regarding the hazards of beryllium, since even trained 
employees need to be reminded of the locations of regulated areas and 
of the precautions necessary before entering these dangerous areas (see 
paragraph (m)(4) of this rule and 29 CFR 1910.1200(h) for training 
requirements). OSHA does not believe it is necessary for the signs to 
denote the precise activity occurring within the regulated area in 
order to accomplish these goals. However, employers may choose to 
include additional information on the signs required under this rule, 
provided that the additional information included is not confusing or 
misleading and does not detract from required warnings.
    Thus, paragraph (m)(2)(i)) of the final standards for general 
industry and shipyards requires employers to provide and display 
warning signs at each approach to a regulated area so that each 
employee is able to read and understand the signs and take necessary 
protective steps before entering the area. Pursuant to final paragraph 
(m)(2)(ii), employers must ensure that these warning signs legible and 
readily visible and include the specified legend. The only alteration 
to the legend from the proposal is the addition of the words, 
``REGULATED AREA'' following the word, ``DANGER.'' OSHA has not 
included these regulated area signage requirements in the final 
standard for construction, because the construction standard does not 
contain requirements for establishing regulated area and uses the 
competent person (paragraph (e) of the construction standard) to limit 
access to areas where exposures have the potential to be above the PEL. 
In summary, OSHA finds that the use of warning signs is important to 
make employees who are regularly scheduled to work at these sites aware 
of beryllium hazards, to alert employees who have limited access to 
these sites of beryllium hazards, and to warn those who do not require 
access to regulated areas to avoid those areas. Access must be limited 
to authorized personnel to ensure that those entering the area are 
adequately trained and equipped, and to limit exposure to those whose 
presence is absolutely necessary. By limiting access to authorized 
persons, employers can minimize employee exposure to beryllium in 
regulated areas and thereby minimize the number of employees who may 
require medical surveillance or may be subject to the other 
requirements associated with working in a regulated area.
    Proposed paragraph (m)(3) required that labels be affixed to all 
bags and containers of clothing, equipment, and materials visibly 
contaminated with beryllium. OSHA also included a requirement that the 
labels contain the following statement:

DANGER

[[Page 2726]]

CONTAINS BERYLLIUM
MAY CAUSE CANCER
CAUSES DAMAGE TO LUNGS
AVOID CREATING DUST
DO NOT GET ON SKIN

    The USW supported the proposal's requirement that bags and 
containers storing materials visibly contaminated with beryllium have 
specific warning labels to alert workers of the dangers of beryllium 
exposure (Document ID 1681, p. 15). However, as discussed in the 
Summary and Explanation on paragraph (h) on personal protective 
clothing and equipment, several commenters objected to the use of the 
term ``visibly contaminated.'' For example, the Non-Ferrous Founder's 
Society (NFFS) commented that the definition of ``visibly contaminated 
with beryllium'' was not provided in the proposed rule and was vague 
(Document ID 1679, p. 5). OSHA agrees that the term is ambiguous and 
has chosen to remove the term visibly from the final standards. OSHA 
has therefore relied on terminology that is commonly used in other 
substance specific standards for metals, such as Chromium (VI) (29 CFR 
1910.1026). NGK also recommended that OSHA insert the word 
``particulate'' (Document ID 1663, pp. 3-4). OSHA declines to adopt 
this suggestion. The addition of the term ``particulate'' is 
unnecessary and may cause confusion since the final standards cover 
beryllium in all forms, compounds, and mixtures. Several stakeholders 
also weighed in on other aspects of these provisions. For example, NGK 
and Materion offered comments on the proposed wording of the required 
labels, which restated their requests that the cancer warnings be 
struck from the proposed language (Document ID 1663, pp. 3-4; 1958, pp. 
3-5). OSHA has decided to retain the cancer warning labeling 
requirements in the final rule for the reasons discussed in response to 
their comments on paragraph (m)(2) above.
    ORCHSE Strategies (ORCHSE) also commented on the labeling 
requirements of containers and bags in paragraph (m)(3). First, it 
argued that the provision would require the precautionary statements 
``Avoid creating dust'' and ``Do not get on skin'' for all bags and 
containers which it maintained is inconsistent with the HCS 
precautionary statements (Document ID 1691, Attachment 1, p. 23). OSHA 
acknowledges that these ``precautionary statements'' are not from 
Appendix C of the HCS. However, OSHA is requiring alternate language 
for the unique situation for bags of contaminated clothing or equipment 
where workers handling these materials may not have access to other 
more in-depth forms of information. The Agency is therefore requiring 
that employers place appropriate warning language on bags and 
containers containing beryllium-contaminated materials. This provision 
is consistent with other substance-specific health standards.
    Second, ORSCHSE argued that the proposed labeling requirements are 
inconsistent with the HCS. It stated that paragraph (m)(1) required 
compliance with the HCS, which covers warning labels for hazardous 
chemicals other than beryllium, ``so using the same standard for 
beryllium labels would promote consistency throughout the workplace.'' 
Therefore, it suggested that paragraph (m)(3) be deleted, because 
paragraph (m)(1) already requires observation of ``all requirements'' 
of the HCS. Additionally, ORCHSE commented that the HCS does not 
require labeling for carcinogens on bags and containers unless the 
concentration is 1% or more (Document ID 1691, Attachment 1, pp. 23-
24).
    After considering these comments and the record on this issue, OSHA 
has decided to retain proposed paragraph (m)(3) with the minor 
alteration described above. The final provision, which appears in 
paragraph (m)(3) of the final standards for general industry and 
shipyards and paragraph (m)(2) of the final standard for construction, 
requires employers to label each bag and container of clothing, 
equipment, and materials contaminated with beryllium. The required 
label must, at a minimum, include the language specified in the 
proposal. The warning label language for the signal word (danger) and 
hazard statements (may cause cancer) are consistent with the GHS. 
However, OSHA has decided that the precautionary statements needed to 
be slightly different due to the nature of the exposure and the fact 
that sensitization can result from short term exposures (see Health 
Effects section V of this preamble).
    While ORCHSE correctly notes that the HCS contains a concentration 
cutoff (0.1% for category 1 carcinogens, and 1% for category 2 
carcinogens), that cutoff is difficult to apply in the case of clothing 
or other material that has been contaminated with beryllium-containing 
dust. As a practical matter, it may be difficult to determine whether 
the cutoffs have been exceeded with dust contamination. Moreover, the 
cutoffs were developed for mixtures that are products and more 
homogeneous in nature, rather than materials contaminated with dust. If 
contaminated clothing or other materials are handled in a way that 
generates dust, exposures of concern might occur more readily than with 
homogenous mixtures of similar concentration. OSHA believes the clearer 
approach is to require all contaminated materials with a uniform 
labelling scheme, as it has for other substance-specific standards 
(e.g., Lead, 29 CFR 1910.1025; Cadmium, 29 CFR 1910.1027; Coke Oven 
Emissions, 29 CFR 1910.1029). Including this provision will ensure that 
downstream workers who might receive the contaminated material have 
notice of the contamination. As discussed in the summary and 
explanation for paragraph (b) the term ``materials'' includes waste, 
scrap, debris, and any other items contaminated with beryllium.
    The Agency finds that the final labeling requirements will help 
ensure that all affected employees, not only the employees of a 
particular employer, are apprised of the presence of beryllium-
containing materials and the hazardous nature of beryllium exposure. 
With this knowledge, employees can take steps to protect themselves 
through proper work practices established by their employers. Employees 
are also better able to alert their employers if they believe exposures 
or skin contamination can occur.
    Proposed paragraph (m)(4) contained requirements for employee 
information and training. The proposed provisions applied to each 
employee who is or can reasonably be expected to be exposed to airborne 
beryllium. ORCHSE strongly urged OSHA to rewrite this provision to 
align with the HCS training, arguing that ``there is no need to include 
chemical hazard training requirements in a substance specific 
standard'' (Document ID 1691, Attachment 1, p. 20). While OSHA agrees 
that the HCS is designed to cover all chemical hazards in the 
workplace, an employer may choose to train by specific chemical or by 
hazard. In this substance specific standard, OSHA find that employees 
need to be trained on the hazards specifically associated with 
beryllium, in addition to the training they receive under the HCS. 
These types of requirements are not uncommon in substance specific 
hazards. For example, the Lead standard requires annual training on the 
specific hazards associated with lead exposure (see 29 CFR 1910.1025 
(l)(1)). Consequently, OSHA is not persuaded by ORCHSE that OSHA should 
substantially change the training provisions in the final rule.
    The Boeing Company (Boeing) suggested that OSHA add the text 
``within the scope of this standard'' to the end of this requirement 
(Document ID 1667, p. 7). It contended that its

[[Page 2727]]

recommended language would ``set a measurable boundary consistent with 
the scope of the standard,'' while the proposal would create an ``open 
ended boundary that would confuse compliance efforts.'' OSHA has 
considered the suggestion but does not find Boeing's argument 
persuasive. OSHA does not believe this adds additional clarity to 
employer on which employees should be trained. OSHA expects that once 
the employer is covered under the standard they are in the best 
position to determine who would be potentially exposed to beryllium. 
Additionally, this language is consistent with other substance specific 
standards, such as Benzene (29 CFR 1910.1028).
    NGK also commented on the proposed trigger. Specifically, it 
suggested the training requirements should be consistent with the lead 
standard (29 CFR 1910.1025(l)(1)(ii)) in that the training should be 
done for those workers exposed above the action level (Document ID 
1663, p. 4). OSHA declines to adopt this suggestion. As discussed in 
Section V, Health Effects, and Section VI, Risk Assessment, risk of 
material impairment to health remains at exposure levels below the 
action level. Because of this risk, OSHA concludes that it is necessary 
and appropriate to train all employees who may be exposed to airborne 
beryllium at any level. The Agency finds that all such employees will 
benefit from this training. Therefore, OSHA is continuing to trigger 
the training requirements proposed in paragraph (m)(4)(i) based on 
airborne exposure, or anticipated exposure, at any level. The final 
provisions are contained in paragraph (m)(4)(i) of the standards for 
general industry and shipyards and paragraph (m)(3)(i) of the standard 
for construction.
    Proposed paragraph (m)(4)(i)(A) required employers to provide 
employees who are or can reasonably be expected to be exposed to 
airborne beryllium with information and training in accordance with the 
requirements of the HCS (29 CFR 1910.1200(h)), including specific 
information on beryllium as well as any other hazards addressed in the 
workplace hazard communication program.
    OSHA did not receive any objections to or comments on this 
provision. After a review of the rulemaking record, the Agency 
continues to believe that the provision of information and training in 
accordance with the HCS will benefit employees. For example, under the 
HCS, employers must provide their employees with information such as 
the location and availability of the written hazard communication 
program, including lists of hazardous chemicals and safety data sheets, 
and the location of operations in their work areas where hazardous 
chemicals are present. The HCS also requires employers to train their 
employees on ways to detect the presence or release of hazardous 
chemicals in the work area, such as any monitoring conducted, the 
physical and health hazards of the chemicals in the work area, measures 
employees can take to protect themselves, and the details of the 
employer's hazard communication program (29 CFR 1910.1200(h)(3)). 
Therefore, OSHA has included proposed paragraph (m)(4)(i)(A) 
substantively unchanged from the proposal in paragraph (m)(4)(i)(A) of 
the final standards for general industry and shipyards and paragraph 
(m)(3)(i)(A) of the final standard for construction.
    Proposed paragraphs (m)(4)(i)(B) and (C) specified when an 
employer's obligation to train covered employees should begin and how 
often training should occur. Proposed paragraph (m)(4)(i)(B) required 
initial training by the time of initial assignment, which means before 
the employee's first day of work in a job that could reasonably be 
expected to involve exposure to airborne beryllium. Under proposed 
paragraph (m)(4)(i)(C), employers were required to repeat training at 
least annually thereafter. USW supported the requirement of initial and 
annual training for workers who are or can be reasonably expected to be 
exposed to beryllium (Document ID 1681, p. 15).
    After reviewing the record on this topic, OSHA has decided to 
retain proposed paragraphs (m)(4)(i)(B) and (m)(4)(i)(C) in paragraph 
(m)(4)(i)(B) and (C) of the final standards for general industry and 
shipyards and paragraph (m)(3)(i)(B) and (C) of the final standard for 
construction. OSHA finds that initial training and annual retraining 
are necessary due to the serious and debilitating health effects of 
beryllium exposure, and for reinforcement of employees' knowledge of 
those hazards. The initial training requirement is consistent with the 
HCS, which requires that employers provide employees with effective 
information and training on hazardous chemicals in their work area at 
the time of their initial assignment (29 CFR 1910.1200(h)(1)). In 
addition, while the triggers may be slightly different, the initial and 
annual training requirement are consistent with other OSHA standards 
such as those for Lead (29 CFR 1910.1025), Cadmium (29 CFR 1910.1027), 
Benzene (29 CFR 1910.1028), Coke Oven emissions (29 CFR 1910.1029), 
Cotton Dust (29 CFR 1910.1043), and 1,3-Butadiene (29 CFR 1910.1051).
    Proposed paragraph (m)(4)(ii) required the employer to ensure that 
each employee who is or can reasonably be expected to be exposed to 
airborne beryllium can demonstrate knowledge of nine enumerated 
categories of information. ORCHSE and NGK objected to this proposed 
requirement. ORCHSE suggested that OSHA replace ``can demonstrate 
knowledge of'' with ``has been informed of'' in paragraph (m)(4)(ii). 
ORCHSE also argued that employers can control what information they 
provide, but cannot control what information the employee retains, and 
a literal interpretation of the requirement that employees must 
``demonstrate knowledge of'' the nine enumerated categories of 
information will result in citations whenever ``any employee, at any 
moment, is unable to recite detail'' on those topics (Document ID 1691, 
Attachment 1, pp. 21-23). Similarly, NGK commented that the requirement 
that employers must ensure that employees who may be exposed to 
beryllium can demonstrate knowledge of enumerated subjects should be 
replaced with a requirement that employers ensure employee 
participation in a training program, consistent with the lead standard 
(29 CFR 1910.1025(l)(1)(ii)) (Document ID 1663, p. 4).
    OSHA does not find these arguments persuasive. Because beryllium is 
a hazardous chemical with serious and debilitating health effects, it 
is imperative that employers can ensure that employees can demonstrate 
that they understand the material and have knowledge of the topics 
covered during the training sessions, as previously indicated. To 
adjust the text to read ``has been informed of'' or to require the 
employer to ensure employee participation in training will not ensure 
employee comprehension and consequently could lead to employees not 
understanding the health effects associated with beryllium exposure and 
safety concerns to protect themselves from exposure. This language 
would also be inconsistent with the HCS, which requires effective 
training which OSHA indicates must be in a manner which an employee 
comprehends.
    The Agency understands that employers would like more clarity on 
how to determine whether training requirements are met. However, OSHA 
has decided that the training requirements under the final beryllium 
standards, like those in HCS, are best accomplished when they are 
performance-oriented. But, as in past

[[Page 2728]]

standards, the Agency does offer some suggestions.
    First, although OSHA finds that the employer is in the best 
position to determine how the training can most effectively be 
accomplished, the Agency notes that hands-on training, videotapes, DVD 
or slide presentations, classroom instruction, informal discussions 
during safety meetings, written materials, or any combination of these 
methods may be appropriate. Second, to ensure that employees comprehend 
the material presented during training, it is critical that trainees 
have the opportunity to ask questions and receive answers if they do 
not fully understand the material that is presented to them. When 
videotape presentations or computer-based programs are used, this 
requirement may be met by having a qualified trainer available to 
address questions after the presentation, or providing a telephone 
hotline so that trainees will have direct access to a qualified 
trainer. Although it is important that employees be able to ask 
questions, OSHA finds that the employer is in the best position to 
determine whether the instructor must be available for questions during 
training or if an instructor or trainer can answer questions after the 
training session. Such performance-oriented requirements are intended 
to encourage employers to tailor training to the needs of their 
workplaces, thereby resulting in the most effective training program 
for each workplace.
    Third, in addition to being performance-oriented, these training 
requirements are also results-oriented. As discussed in the respirable 
crystalline silica standard, there are a variety of methods employers 
can use to determine whether employees have the requisite knowledge. 
For example, employers may choose to facilitate discussions of the 
required training subjects or administer written tests or oral quizzes. 
Any of these methods could alert an employer to an employee knowledge 
gap.
    Finally, OSHA has included a modification in the final standards 
that was prompted by ORCHSE and NGK's questions. In the final standards 
(paragraph (m)(4)(ii) of the standards for general industry and 
shipyards and paragraph (m)(3)(ii) of the standard for construction), 
OSHA requires that the employer must ensure that employees demonstrate 
understanding, in addition to knowledge. As discussed above this is 
consistent with the HCS and emphasizes that it is not enough for an 
employee to simply be provided with the information; the employer must 
also ensure that the employee understands the topics on which he or she 
is trained.
    This change is consistent with Assistant Secretary David Michaels' 
memorandum to OSHA Regional Administrators (Document ID 1754, p. 2). 
The memorandum explains that because employees have varying educational 
levels, literacy, and language skills, training must be presented in a 
language, or languages, and at a level of understanding that accounts 
for these differences in order to ensure that employees understand the 
training. As stated by Assistant Secretary Michaels:

    [A]n employer must instruct its employees using both a language 
and vocabulary that the employees can understand. For example, if an 
employee does not speak or comprehend English, instruction must be 
provided in a language that the employee can understand. Similarly, 
if the employee's vocabulary is limited, the training must account 
for that limitation. By the same token, if employees are not 
literate, telling them to read training materials will not satisfy 
the employer's training obligation (Document ID 1754, p. 2).

This may mean, for example, providing materials, instruction, or 
assistance in Spanish rather than or in addition to English if some of 
the employees being trained are Spanish-speaking and do not understand 
English. However, the employer is not required to provide training in 
the employee's preferred language if the employee understands the 
language used for training.
    Finally, Boeing suggested that OSHA add the text ``or equally as 
effective documentation'' to paragraph (m)(4)(ii)(B), so that the 
employer could satisfy its obligations by ensuring that employees who 
are or can reasonably be expected to be exposed to airborne beryllium 
could demonstrate knowledge of ``[t]he written exposure control plan, 
or equally as effective documentation, with emphasis on the location(s) 
of beryllium work areas, including any regulated areas, and the 
specific nature of operations that could result in employee exposure, 
especially employee exposure above the TWA PEL or STEL.'' They contend 
that this added language would allow employers ``to provide the 
required information through the use of existing processes instead of 
through the creation of a second redundant document'' (Document ID 
1667, p. 7).
    OSHA has considered Boeing's suggestion but does not find its 
arguments persuasive. Paragraph (m)(4)(ii)(B) of the final standards 
specifically requires the employer to ensure that employees can 
demonstrate understanding and knowledge of the topics covered in the 
written control plan, not from a similar document. The suggested 
language makes it unclear whether the employee would get the 
appropriate training needed and still gain the same knowledge and 
understanding required by the beryllium standard. OSHA, therefore, has 
decided to retain paragraph (m)(4)(ii)(B)'s requirements from the 
proposed rule in these final standards. That said, employers are free 
to incorporate their current exposure control program into the written 
control program required by paragraph (f)(1) if their program meets the 
requirements of that paragraph. If they do so, and train their 
employees on that program, paragraph (m)(4)(ii)(B) requires no ``second 
redundant document.''
    Proposed paragraph (m)(4)(ii)(A)-(I) specified the contents of 
training for employees who are or can reasonably be expected to be 
exposed to airborne beryllium. The proposed list required employers to 
ensure that employees can demonstrate knowledge of: (1) The health 
hazards associated with exposure to soluble beryllium compounds, 
including the signs and symptoms of CBD; (2) the written exposure 
control plan, with emphasis on the location(s) of beryllium work areas, 
including any regulated areas, and the specific nature operations that 
could result in employee exposure, especially employee exposure above 
the TWA PEL or STEL; (3) the purpose, proper selection, fitting, proper 
use, and limitations of personal protective clothing and equipment, 
including respirators; (4) applicable emergency procedures; (5) 
measures employees can take to protect themselves from exposure to 
beryllium and contact with soluble beryllium compounds, including 
personal hygiene practices; (6) the purpose and a description of the 
medical surveillance program required by paragraph (k) of this 
standard, including risks and benefits of each test to be offered; (7) 
the purpose and a description of the medical removal protection 
provided under paragraph (l) of this standard; (8) the contents of this 
standard; and (9) the employee's right of access to records under the 
Records Access Standard (29 CFR 1910.1020).
    Stakeholders offered several comments on these proposed training 
topics. For example, ORCHSE commented that the employer should just 
``provide information and training as specified in the HCS'' (Document 
1691, Attachment 1, p. 23). OSHA has chosen not to adopt this 
suggestion because it finds that employees need training specific to 
beryllium and its hazards, not only the general training

[[Page 2729]]

required by the HCS on the hazards in the workplace. The Agency 
concludes that providing information and training on the topics 
proposed is essential to ensuring that employees are informed about the 
hazards attributed to beryllium exposures, the measures necessary to 
protect themselves, and the rights accorded to them under these 
standards.
    Stakeholder comments support OSHA's finding that training will lead 
to better work practices and hazard avoidance. For example, in hearing 
testimony, Chris Trahan from North America's Building Trades Unions 
(NABTU) commented that in construction, she does not ``see a high level 
of awareness about hazards related to beryllium'' (Document ID 1756, 
pp. 207-08). NABTU also commented that it ``developed a survey to 
determine the level of awareness of beryllium hazards and knowledge of 
exposures among building trades trainers,'' and found widespread 
ignorance of beryllium health risks even among survey respondents 
responsible for delivering hazard awareness training (Document ID 1679 
p. 5). Ashlee Fitch from the USW testified that in her experience in 
abrasive blasting, there was no training specific to what the material 
contained, and ``the health effects associated with . . . blasting 
media'' were not discussed (Document ID 1756, p. 247). Thus, OSHA 
concludes that mandating information and training on the topics 
specific to beryllium as outlined in proposed paragraph (m)(4)(ii) is 
particularly important.
    In light of these comments, OSHA reaffirms its finding that all 
nine of the training topics listed in proposed paragraph (m)(4)(ii)(A)-
(I) should be included in the final standards. The Agency has thus 
retained these topics in final paragraphs (m)(4)(ii)(A)-(I) of the 
standards for general industry and shipyards and paragraph 
(m)(3)(ii)(A)-(I) of the standard for construction, with minor 
alterations for consistency with triggers that were updated from the 
proposal to the final. For example, OSHA has changed the (m)(4)(ii)(A) 
from ``contact with soluble beryllium'' to ``contact with beryllium.''
    OSHA is not mandating additional training for a competent person in 
paragraph (m) of the standards for construction. As discussed in more 
detail in the summary and explanation of Written Exposure Control Plan, 
the knowledge required by an individual implementing the written 
exposure control plan required by these standards already ensure a high 
level of competence. OSHA recognizes that there may be situations in 
which an employee needs additional training in order to ensure that he 
or she has the knowledge, skill, and ability to be a designated 
competent person, but because of unique scenarios in the construction 
and shipyard environments, those training requirements would vary 
widely. OSHA concludes, therefore, that it is the employer's 
responsibility to identify and provide any additional training that the 
competent person would need to implement the written exposure control 
plan.
    Proposed paragraph (m)(4)(iii) required employers to provide 
additional training when workplace changes (such as modification of 
equipment, tasks, or procedures) result in new or increased employee 
exposure that exceeds or can reasonably be expected to exceed either 
the TWA PEL or the STEL. OSHA did not receive any comments on this 
provision, and retains it in the final to ensure that employees are 
aware of new or additional hazards. This training must be provided at 
the time of (or prior to) the new or increased exposure, even if a year 
has not passed since the previous training. New training would be 
required under the standard if the employer changes work production 
operations or personnel in a way that would require equipment to be 
operated differently to avoid exposures above the TWA PEL or STEL. 
Additional training would also be required if employers introduce new 
production or personal protective equipment to employees who do not yet 
know how to properly use the new equipment. Misuse of either the new 
production equipment or PPE could result in new exposures above the TWA 
PEL or STEL. Similarly, employers must provide additional training 
before employees repair or upgrade engineering controls if exposures 
during these activities will exceed or can reasonably be expected to 
exceed either the TWA PEL or the STEL. OSHA has concluded that the 
additional training requirement in this final rule is essential because 
it ensures that employees are able to actively participate in 
protecting themselves under the conditions found in the workplace, even 
if those conditions change.
    Proposed paragraph (m)(4)(iv) required the employer to make a copy 
of the standard and its appendices readily available at no cost to each 
employee and designated employee representative(s). OSHA did not 
receive any comments on this provision, and the Agency has retained the 
requirement in paragraph (m)(4)(iv) of the standards for general 
industry and shipyards and paragraph (m)(3)(iv) of the standard for 
construction. This is a common requirement in OSHA standards such as 
Chromium (VI) (29 CFR 1910.1026), Acrylonitrile (29 CFR 1910.1045), 
respirable crystalline silica (29 CFR 1910.1053), and Cotton Dust (29 
CFR 1910.1043). The provision leaves employers free to determine the 
best way to make the standard available, which could include giving the 
employer a copy of the standard or placing a printed or electronic copy 
in a central location that the employees can easily access. In order to 
help ensure employees are protected against beryllium hazards, they 
need to be familiar with and have access to the beryllium standard 
applicable to their workplace (general industry, shipyard, or 
construction), and be aware of the employer's obligations to comply 
with it.

(n) Recordkeeping

    Paragraph (n) of the final standards for general industry, 
construction, and shipyards sets forth the employer's obligation to 
comply with requirements to maintain records of air monitoring data, 
objective data, medical surveillance, and training. The recordkeeping 
requirements are in accordance with section 8(c) of the OSH Act (29 
U.S.C. 657(c)), which authorizes OSHA to require employers to keep and 
make available records as necessary or appropriate for the enforcement 
of the Act or for developing information regarding the causes and 
prevention of occupational injuries and illnesses. The recordkeeping 
provisions are also consistent with OSHA's Access to Employee Exposure 
and Medical Records (Records Access) standard at 29 CFR 1910.1020, 
which addresses access to employee exposure and medical records.
    As discussed in more detail below, the recordkeeping requirements 
in the final standards are similar to those included in the proposal. 
In the proposed rule, OSHA identified recordkeeping requirements for 
exposure measurements, historical monitoring data, objective data, 
medical surveillance, and training, and required employers to comply 
with Record Access standard requirements regarding access to and 
transfer of these records. Ameren Corporation (Ameren) expressed 
support for these requirements (Document ID 1675, p. 7). All other 
comments regarding the recordkeeping requirements focused on specific 
areas of the recordkeeping requirements and are discussed in the 
appropriate subject section.
    Proposed paragraph (n)(1)(i) required employers to maintain records 
of all

[[Page 2730]]

measurements taken to monitor employee exposure to beryllium as 
required by paragraph (d) of the standard. OSHA did not receive 
comments on this provision and has decided to retain it in the final 
rule, in part, because it will enable both employers and OSHA to ensure 
compliance with exposure assessment requirements under paragraph (d) of 
the standards. It will also allow employers to ascertain which of the 
final standards' provisions that are triggered at various exposure 
levels apply to their employees. Thus, OSHA is retaining the proposed 
provision with one minor modification. Specifically, the Agency has 
added the words ``make and'' prior to ``maintain'' in order to clarify 
that the employer's obligation is to create and preserve such records. 
This clarification has also been made for other records required by the 
final beryllium standards. The revised language is consistent with 
OSHA's Records Access standard, which refers to employee exposure and 
medical records that are made or maintained (29 CFR 1910.1020(b)(3)).
    Proposed paragraph (n)(1)(ii) required that records of all 
measurements taken to monitor employee exposure include at least the 
following information: The date of measurement for each sample taken; 
the operation being monitored; the sampling and analytical methods used 
and evidence of their accuracy; the number, duration, and results of 
samples taken; the type of personal protective clothing and equipment, 
including respirators, worn by monitored employees at the time of 
monitoring; and the name, social security number, and job 
classification of each employee represented by the monitoring, 
indicating which employees were actually monitored.
    The Sampling and Analysis Subcommittee Task Group of the Beryllium 
Health and Safety Committee (BHSC Task Group) recommended that the 
recordkeeping provision should include the purpose and rationale for 
the sampling performed as this would show that the exposure monitoring 
requirements are being met (Document ID 1665, p. 2). After careful 
consideration, OSHA has decided not to require that records include the 
purpose and rationale for the sampling. The Agency points out that the 
purpose and rationale for the sampling performed are dictated by the 
exposure assessment provision in paragraph (d), which requires the 
employer to assess the airborne exposure of each employee who is or may 
reasonably be expected to be exposed to airborne beryllium in 
accordance with either a performance option or the scheduled monitoring 
option. The air monitoring requirements described in paragraph (d) and 
the air monitoring data retention described in this section (paragraph 
(n)) provide adequate information to show whether the exposure 
monitoring requirements are being met. Furthermore, paragraphs 
(n)(1)(ii)(A)-(F) of the standards are generally consistent with other 
OSHA standards, such as respirable crystalline silica (29 CFR 
1910.1053), chromium (VI) (29 CFR 1910.1026), and methylene chloride 
(29 CFR 1910.1052).
    OSHA received several comments regarding the requirement in 
paragraph (n)(1)(ii)(F) that the employer include employee social 
security numbers in exposure measurement records. The American Dental 
Association (ADA), the Boeing Company (Boeing), and ORCHSE Strategies 
(ORCHSE) cited employee privacy and identity theft concerns (Document 
ID 1597, p. 4 (pdf); 1667, pp. 7-8; 1691, Attachment 1, p. 19). Boeing 
and ORCHSE suggested the use of an identifier other than the social 
security number, such as an employee identification number or another 
unique personal identification number. The ADA recommended that 
employers with fewer than ten employees should not be required to 
include employee social security numbers in records required by the 
standard. It further stated that some state statutes ``impose data 
security and breach notification requirements on those who collect 
social security numbers,'' and in small businesses, ``the risk to 
employees of identity theft outweighs the difficulty of identifying 
employee records'' (Document ID 1597, p. 2-4 (pdf)).
    OSHA has considered these comments and decided to retain the 
requirement for including the employee's social security number in the 
recordkeeping requirements of the rule. The requirement to use an 
employee's social security number is a long-standing OSHA practice, 
because a social security number is unique to an individual, is 
retained for a lifetime, and does not change when an employee changes 
employers. The social security number is therefore a useful tool for 
evaluating an individual's exposure over time, particularly where 
exposures are associated with chronic beryllium disease (CBD), which 
has a varying rate of progression during which time an employee may 
have several employers or had beryllium exposure sometime in the past.
    OSHA recognizes the privacy concerns expressed by commenters 
regarding this requirement, and understands the need to balance that 
interest against the public health interest in requiring the social 
security identifier. Instances of identity theft and breaches of 
personal privacy are widely reported and concerning. However, OSHA has 
concluded that this rule should adhere to the past, consistent practice 
of requiring employee social security numbers on exposure records 
mandated by every OSHA substance-specific health standard, and that any 
change to the Agency's requirements for including employee social 
security numbers on exposure records should be comprehensive and apply 
to all OSHA standards, not just the standards for beryllium.
    OSHA is proposing to delete the requirement that employers include 
employee social security numbers in records required by its substance-
specific standards in the Agency's Standards Improvement Project--Phase 
IV (SIP-IV) proposed rule (81 FR 68504, 68526-68528 (10/4/16)). OSHA 
will revisit, if necessary, its decision to require employers to 
maintain employee social security numbers in beryllium records in light 
of the decision it makes in the SIP-IV rulemaking. In the meantime, 
OSHA has included the requirement to use and retain social security 
numbers in the final standards.
    The ADA also urged OSHA to pursue Regulatory Alternative #1b, which 
would exempt, except for recordkeeping purposes, operations where the 
employer can show that employee exposures will not meet or exceed the 
action level or exceed the STEL. It further argued under this option 
that OSHA should limit employers' recordkeeping requirements to those 
records that show that employees' exposure will not meet or exceed the 
action level or exceed the STEL (Document ID 1597, p. 3 (pdf)). It 
maintained that this is reasonable because the ``employees are not at 
significant risk of exposure'' and ``the record retention period is 
onerous'' (Document ID 1597, p. 3 (pdf)).
    OSHA disagrees with this suggestion for several reasons. First, the 
OSH Act states that standards adopted by OSHA must require employers 
maintain ``accurate records of employee exposures to potentially toxic 
materials or harmful physical agents which are required to be monitored 
or measured under section 6.'' OSH Act Sec.  8(c)(3). Thus, on its 
face, the Act requires records of all exposure measurements required by 
the final standards to be maintained, not just high ones. The OSH Act 
also requires that employees have access to exposure records, (id.), 
and requiring the employer to maintain those records helps to fulfill 
that right. Further, as discussed in Section V,

[[Page 2731]]

Health Effects, and Section VII, Significant Risk, employees who are 
exposed below the action level may still be at risk. Maintaining 
records of those exposures may assist in the diagnosis of employee 
disease long after the exposure occurs. It also allows employees to 
have confidence that their exposures are within the requirements of the 
final standards, and valuable insights about exposure control methods 
may be gained through the review of exposure records, even those that 
are below the action level. In addition, as the Supreme Court noted in 
the Benzene case, air monitoring and medical testing, when done for 
employees exposed below the PEL, ``keep a constant check on the 
validity of the assumptions made in developing'' the PEL, giving a 
basis to lower the PEL if necessary. Benzene, 448 U.S. at 657-58. 
Requiring the employers to maintain those records furthers that 
purpose. Other OSHA substance-specific rules also require employee 
exposure records to be maintained, regardless of exposure level, such 
as the standards addressing exposure to respirable crystalline silica 
(29 CFR 1910.1053), methylene chloride (29 CFR 1910.1052), and chromium 
(VI) (29 CFR 1910.1026).
    Second, employee information and training requirements under 
paragraph (m) of the standards apply to each employee who is or can 
reasonably be expected to be exposed to airborne beryllium. As 
discussed in paragraph (m) of the Summary and Explanation in this 
preamble, OSHA finds that all employees who are or can be reasonably 
expected to be exposed in this manner will benefit from the specified 
forms of training. The creation and maintenance of training records 
will permit both OSHA and employers to ensure that the required 
training has occurred on schedule. Finally, OSHA notes that employers 
may reduce their recordkeeping burden in some cases by ensuring their 
employees are only exposed below the action level. For example, under 
paragraph (k), employers are required to offer medical surveillance 
those employees who meet certain exposure thresholds. By keeping 
exposures level below the action level, employers decrease the 
likelihood that their employees will fall into one of the enumerated 
groups. If employers do not have any employees covered by medical 
surveillance under paragraph (k), then they have no medical 
surveillance records to retain under these standards.
    As to the expense and difficulty of maintaining the records 
required under these standards, OSHA recognizes that there will be 
time, effort, and expense involved in maintaining medical records. 
However, as stated earlier, OSHA expects that employers will have a 
system for maintaining these records, just as they do for their other 
business records. In addition, the Agency allows employers to use 
whatever method works best for them in meeting these requirements, 
paper or electronic (29 CFR 1910.1020(d)(2)).
    In summary, paragraph (n)(1)(ii) in the final standards is 
substantively unchanged from the proposed rule. However, OSHA has made 
one editorial modification to paragraph (n)(1)(ii)(B), which is to 
change ``operation'' to ``task.'' Both ``task'' and ``operation'' are 
commonly used in describing work. However, OSHA uses the term ``task'' 
throughout the rule, and the Agency is using ``task'' in the 
recordkeeping provision for consistency and to avoid any potential 
misunderstanding that could result from using a different term. This 
editorial change neither increases nor decreases an employer's 
obligations as set forth in the proposed rule. The requirements of 
paragraph (n)(1)(ii) are generally consistent with those found in other 
OSHA standards, such as the standards for respirable crystalline silica 
(29 CFR 1910.1053), methylene chloride (29 CFR 1910.1052), and chromium 
(VI) (29 CFR 1910.1026).
    Proposed paragraph (n)(1)(iii) required the employer to maintain 
exposure records in accordance with OSHA's Records Access standard, 
which specifies that exposure records must be maintained for 30 years 
(29 CFR 1910.1020(d)(1)(ii)). The Agency did not receive comment on 
this provision. However, OSHA has changed the requirement that the 
employer ``maintain this record as required by'' OSHA's Records Access 
standard to ``ensure that exposure records are maintained and made 
available in accordance with'' that standard. OSHA believes that the 
language of the final standard more clearly conveys the Agency's intent 
that in addition to maintaining records, employers must make records 
available to employees and others as specified in the Records Access 
standard. As noted above, this clarifying change is editorial and 
neither increases nor decreases an employer's obligations as set forth 
in the proposed rule. This clarification has also been made for other 
records required by the final beryllium standards.
    Proposed paragraph (n)(2) contained the requirement to retain 
records of any historical monitoring data used to satisfy the proposed 
standard's the initial monitoring requirements. As explained in the 
Summary and Explanation of paragraphs (b) and (d) in this preamble, the 
definition of the term ``objective data'' in the final rule includes 
all information that demonstrates airborne exposure to beryllium 
associated with a particular product or material or a specific process, 
task, or activity. Historical data that reflects workplace conditions 
closely resembling or with a higher airborne exposure potential than 
the processes, types of material, control methods, work practices, and 
environmental conditions in the employer's current operations would be 
considered objective data under the final rule. The requirement to keep 
records of objective data is addressed under a separate paragraph. 
Therefore, OSHA has chosen to delete the separate recordkeeping 
requirement for historical data.
    Proposed paragraph (n)(3) contained the requirements to keep 
accurate records of objective data. Proposed paragraph (n)(3)(i) 
required employers to establish and maintain accurate records of the 
objective data relied upon to satisfy the requirement for initial 
monitoring in proposed paragraph (d)(2). Under proposed paragraph 
(n)(3)(ii), the record was required to contain at least the following 
information: The data relied upon; the beryllium-containing material in 
question; the source of the data; a description of the operation 
exempted from initial monitoring and how the data supported the 
exemption; and other information demonstrating that the data met the 
requirements for objective data in accordance with paragraph 
(d)(2)(ii).
    OSHA did not receive comments regarding this provision, and the 
Agency finds that it should be included in the final rule. Since 
objective data may be used to exempt the employer from certain types of 
monitoring, as specified in paragraph (d), it is critical that the use 
of these types of data be carefully documented. Objective data are 
intended to provide the same degree of assurance that employee 
exposures have been correctly characterized as would exposure 
assessment. The specified content elements are required to ensure that 
the records are capable of demonstrating to OSHA a reasonable basis for 
the conclusions drawn by the employer from the objective data.
    Therefore, OSHA has included proposed paragraph (n)(3) as paragraph 
(n)(2) in the final standards, with minor alterations. Specifically, in 
the final standards, OSHA has changed paragraphs (n)(2)(ii)(D) to 
require the record to contain ``[a] description of the process, task, 
or activity on which the objective data were based,'' and paragraph 
(n)(2)(ii)(E) to require the

[[Page 2732]]

record to contain ``[o]ther data relevant to the process, task, 
activity, material, or airborne exposure on which the objective data 
were based.'' These changes are editorial, and intended to clarify the 
maintenance and availability of objective data records. They are only 
intended to aid employers in determining the precise information to be 
retained. They do not affect the employer's obligations as set forth in 
the proposed rule.
    Proposed paragraph (n)(3)(iii) required the employer to maintain a 
record of objective data relied upon as required by the Records Access 
standard, which specifies that exposure records must be maintained for 
30 years (29 CFR 1910.1020(d)(1)(ii)). The Agency did not receive 
comment on this provision. Objective data may include employee exposure 
records that must be maintained, and therefore, the Agency has retained 
it in the final standards as paragraph (n)(2)(iii). OSHA notes that 
this final provision, like all of the final provisions in this 
paragraph related to the Records Access standard, includes the non-
substantive change from the proposed requirement to maintain the record 
as required by the Records Access standard, to the requirement to 
maintain and make available the record in accordance with the Records 
Access standard. OSHA's reasons for this change are discussed above.
    Paragraph (n)(3) of the final standards, like paragraph (n)(4) of 
the proposal, addresses medical surveillance records. Under proposed 
paragraph (n)(4)(i), employers had to establish and maintain medical 
surveillance records for each employee covered by the medical 
surveillance requirements in paragraph (k) of the proposed standard. 
Proposed paragraph (n)(4)(ii) listed the categories of information that 
an employer was required to record: The employee's name, social 
security number, and job classification; a copy of all licensed 
physicians' written medical opinions; and a copy of the information 
provided to the PLHCP as required by paragraph (k)(4) of the proposed 
standard.
    The ADA and ORCHSE questioned the requirement that the employee's 
social security number be included in medical surveillance records 
(Document ID 1597, pp. 2-4 (pdf); 1691, Attachment 1, p. 19). As noted 
above in the discussion on exposure measurement records, OSHA finds the 
privacy and security issues associated with the required use of social 
security numbers are of concern. However, for the same reasons 
discussed above, the Agency has decided to retain the requirement for 
use of social security numbers in medical records. OSHA is examining 
the requirements for social security numbers separately from this 
rulemaking.
    Medical records document the results of medical surveillance and 
are especially important when an employee's medical condition places 
him or her at increased risk of health impairment from further exposure 
to beryllium in the workplace. Furthermore, the records can be used by 
the Agency and others to identify illnesses and deaths that may be 
attributable to beryllium exposure, evaluate compliance programs, and 
assess the efficacy of the standards. OSHA concludes that medical 
surveillance records are necessary and appropriate for protection of 
employee health, enforcement of the standards, and development of 
information regarding the causes and prevention of occupational 
illnesses. Therefore, OSHA has decided to retain proposed paragraph 
(n)(4)(ii)'s requirements regarding medical surveillance records in 
paragraph (n)(3)(ii) of the final standards. However, OSHA has changed 
the requirement in proposed paragraph (n)(4)(ii)(B) that the record 
include copies of all licensed physicians' written opinions to the 
requirement that the record include copies of all licensed physicians' 
written medical opinions for each employee in paragraph (n)(3)(ii)(B) 
of the final standards. These changes are editorial and intended to 
clarify that employees are entitled to their own written medical 
opinion, not all written opinions. This change neither increases nor 
decreases an employer's obligations as set forth in the proposed rule.
    Proposed paragraph (n)(4)(iii) required the employer to maintain 
employee medical records for at least the duration of the employee's 
employment plus 30 years in accordance with OSHA's Records Access 
Standard at 29 CFR 1910.1020(d)(1)(i). The ADA objected to this 
provision, arguing that the proposed retention period is onerous 
(Document ID 1597, p. 3 (pdf)). OSHA has considered this comment and 
concluded that the best approach is to maintain consistency with 29 CFR 
1910.1020 and its required retention periods of (1) 30 years for 
exposure records and objective data, and (2) the duration of employment 
plus 30 years for medical surveillance records. It is necessary to keep 
medical records for these extended time periods because of the varying 
rate of progression for CBD and the long latency period between 
exposure and development of lung cancer. OSHA recognizes that in some 
cases, the latency period for beryllium-related cancer may extend 
beyond 30 years. However, the Agency concludes that the retention 
periods specified in 29 CFR 1910.1020 represent a reasonable balance 
between the need to maintain records and the administrative burdens 
associated with maintaining those records for extended time periods. 
Because the 30-year, and the duration of employment plus 30-year, 
record retention requirements are currently included in 29 CFR 
1910.1020, these time periods are consistent with longstanding Agency 
and employer practice. Other substance-specific rules are also subject 
to the retention requirements of 29 CFR 1910.1020, such as the 
standards addressing exposure to respirable crystalline silica (29 CFR 
1910.1053), methylene chloride (29 CFR 1910.1052), and chromium (VI) 
(29 CFR 1910.1026). Thus, OSHA finds that the 30-year retention period 
is necessary and appropriate for exposure records, historical 
monitoring data, and objective data, and that the duration of 
employment plus 30-year retention period is necessary and appropriate 
for medical surveillance records.
    Therefore, OSHA has decided to include the retention periods 
provided by the Records Access standard in paragraph (n)(3)(iii) of the 
final standards. For the reasons discussed above, OSHA has added ``and 
made available'' after ``maintained'' in paragraph (n)(3)(iii) of the 
standards. Under the final standards, the employer is responsible for 
the maintenance of records in his or her possession. The employer is 
also responsible for ensuring the retention of records in the 
possession of the licensed physician (e.g., the written medical reports 
described in paragraph (n)(3) that are created pursuant to this rule's 
medical surveillance requirements). This responsibility, which derives 
from 29 CFR 1910.1020(b), means that employers must ensure that the 
licensed physician retains a copy of medical records for the employee's 
duration of employment plus 30 years. The employer can generally 
fulfill this obligation by including the retention requirement in its 
agreement with the licensed physician. The requirements are consistent 
with other OSHA health standards, such as Hexavalent Chromium (VI) (29 
CFR 1910.1026), respirable crystalline silica (29 CFR 1910.1053), and 
Methylene Chloride (29 CFR 1910.1052).
    Paragraph (n)(4) of the final standards, like proposed paragraph 
(n)(5), addresses training records. Proposed paragraph (n)(5)(i) 
required employers to prepare records of any training required by these 
standards. At the completion of training, the employer

[[Page 2733]]

was required to prepare a record that included the name, social 
security number, and job classification of each employee trained; the 
date the training was completed; and the topic of the training. This 
record maintenance requirement also applied to records of annual 
retraining or additional training as described in paragraph (m)(4).
    The ADA and ORCHSE questioned the requirement that the employee's 
social security number be included in training records (Document ID 
1597, p. 2-4 (pdf); 1691, Attachment 1, p. 19). As noted above in the 
discussions on exposure measurement and medical surveillance records, 
OSHA finds the privacy and security issues associated with the required 
use of social security numbers are of concern. However, for the same 
reasons discussed above, the Agency has decided to retain the 
requirement for use of social security numbers in training records. As 
stated above, OSHA is examining the requirements for social security 
numbers separately from this rulemaking. In the meantime, OSHA has 
retained the social security requirement in the final standards.
    No other comments were received on this provision. Proposed 
paragraph (n)(5)(i) is now paragraph (n)(4)(i) in the final standards. 
Paragraph (n)(4)(i) in the final standards is substantively unchanged 
from the proposal.
    Proposed paragraph (n)(5)(ii) required employers to retain training 
records, including records of annual retraining or additional training 
required under these standards, for a period of three years after the 
completion of the training. North America's Building Trades Unions 
(NABTU) commented that employers ``must maintain documentation of [any] 
training'' required for beryllium construction workers (Document ID 
1679, p. 3). OSHA agrees. As noted above, OSHA finds that the creation 
and maintenance of training records will permit both OSHA and employers 
to ensure that the required training has occurred on schedule. Thus, 
the Agency has included this provision in the standard for 
construction, as well as the standards for general industry and 
shipyards. Proposed paragraph (n)(5)(ii) is now paragraph (n)(4)(ii) in 
the final standards, and is substantively unchanged from the proposal. 
The three-year time period is consistent with the Bloodborne Pathogens 
standard (29 CFR 1910.1030).
    Paragraph (n)(5) of the final standards, like proposed paragraph 
(n)(6), addresses access to records. Proposed paragraph (n)(6) required 
employers to make all records mandated by these standards available for 
examination and copying to the Assistant Secretary, the Director of 
NIOSH, each employee, and each employee's designated representative as 
stipulated by OSHA's Records Access standard (29 CFR 1910.1020). OSHA 
did not receive comment on this provision, and includes it in the final 
standards to emphasize and ensure proper employee and government access 
to records.
    Paragraph (n)(6) of the final standards, like proposed paragraph 
(n)(7), addresses transfer of records. Proposed paragraph (n)(7) 
required that employers comply with the Records Access standard 
regarding the transfer of records. The requirements for the transfer of 
records are explained in 29 CFR 1910.1020(h), which instructs employers 
either to transfer records to successor employers or, if there is no 
successor employer, to inform employees of their access rights at least 
three months before the cessation of the employer's business. OSHA did 
not receive comment on this provision, and includes it the final 
standards to help ensure consistent records access.

(o) Dates

    Paragraph (o) of the standards for general industry, construction, 
and shipyards sets forth the effective date of the standards and the 
dates for compliance with their requirements. OSHA proposed that the 
final rule would become effective 60 days after its publication in the 
Federal Register, and that employer obligations to comply with most 
requirements of the final rule would begin 90 days after the effective 
date (150 days after publication of the final rule), while the 
requirements for establishing change rooms and implementing engineering 
controls would begin one year and two years after the effective date, 
respectively. Ameren, AFL-CIO, and United Steelworkers expressed 
support for the proposed effective and compliance dates (Document ID 
1675, p. 7; 1681, Attachment 1, p. 15; 1689, p. 15).
    OSHA sets the effective date to allow sufficient time for employers 
to obtain the standard and read and understand its requirements. 
Unchanged from the proposal, paragraph (o)(1) provides that the 
standards will become effective on March 10, 2017.
    OSHA sets the compliance dates to allow sufficient time for 
employers to undertake the necessary planning and preparation for 
compliance with the various provisions of the standards. In addition to 
the default compliance date of 90 days that applied to most provisions, 
OSHA's proposal included extended compliance dates for the provisions 
that require the establishment of change rooms and the implementation 
of engineering controls in order to give affected employers sufficient 
time to design and construct change rooms where necessary, and to 
design, obtain, and install any required control equipment. In response 
to comments stating that more time is necessary to prepare for 
compliance, the compliance dates in the final rule have been extended 
from those proposed.
    Paragraph (o)(2) of the standards establishes the dates for 
compliance with the requirements of the standard. Several employers and 
industry representatives commented that the proposal's default 
compliance date (90 days after the effective date) provided inadequate 
time to prepare for compliance. ORCHSE Strategies (ORCHSE) commented 
that an additional six months are needed ``to make necessary changes to 
facilities, broad-based exposure assessments, and delineate work and 
regulated areas'' (Document ID 1691, Attachment 1, p. 24). Also, the 
Boeing Company (Boeing) commented that the standard should require 
compliance two years after the effective date, explaining that ``it 
will take, for a company of our size, between 1 and 2 years to 
accurately and comprehensively determine what our exposures are, prior 
to developing and implementing an exposure plan'' (Document ID 1667, p. 
8).
    The Sampling and Analysis Subcommittee Task Group of the Beryllium 
Health and Safety Committee (BHSC Task Group) also commented on the 
amount of time needed to comply with the ``Accuracy of Measurement'' 
requirement in paragraph (d)(1)(v) of the proposal, which has been 
renamed ``Methods of sample analysis'' and moved to paragraph (d)(5) in 
the final standards (Document ID 1665, p. 3). Specifically, BHSC Task 
Group expressed concern that laboratories would need to adopt newer 
analytical methods not widely used by the majority of analytical 
laboratories to perform beryllium measurements to the level of accuracy 
specified by the standard. BHSC Task Group acknowledges that although 
the OSHA rule does not require it, a Department of Energy requirement 
for accreditation that exists in their Beryllium Worker Safety and 
Health Program would drive laboratories to obtain accreditation by an 
external accrediting body to use these newer methods, which can take 
well over 150 days. (Document ID 1665, p. 3-4). OSHA rejects the 
reasoning behind BHSC Task Group's concern on the amount of time needed 
to comply the accuracy of measurement

[[Page 2734]]

requirement, as the newer analytical methods for beryllium are 
available and, as pointed out by BHSC Task Group, OSHA does not require 
laboratories to be accredited in these methods to comply with the 
standards.
    Nonetheless, OSHA recognizes the concerns expressed by Boeing, 
ORCHSE, and BHSC Task Group that employers may need additional time to 
assess exposures and undertake the necessary planning and preparation 
for compliance with the obligations of the standards, and has 
determined that some of those concerns are reasonable. OSHA has 
therefore extended the final standards' default compliance date, which 
applies to all provisions except for those with separate compliance 
dates under paragraphs (o)(2)(i) and (o)(2)(ii), to one year from the 
effective date.
    Paragraph (o)(2)(i) of the standards provides the date for 
compliance with the requirement in paragraph (i) to establish change 
rooms, and in the general industry standard, to provide showers. OSHA 
proposed a compliance date of one year after the effective date for 
establishing change rooms, but commenters indicated that more time was 
needed to modify their facilities. Boeing requested that the compliance 
date for establishing change rooms begin three years after the 
effective date, stating that ``for large facilities, modifications such 
as showers, clothing storage and change rooms need a significant amount 
of time to be planned, designed, contracted, and constructed within 
operating factory sites'' (Document ID 1667, p. 8). ORCHSE also 
indicated that additional time is needed to ``make necessary changes to 
facilities'' (Document ID 1691, Attachment 1, p. 24).
    OSHA expects that most employers will be able to establish change 
rooms and showers within a year of the effective date, but the Agency 
understands that some employers, both large and small, may need 
additional time to plan and construct these areas. OSHA is persuaded by 
the concerns expressed by the commenters that employers may need 
additional time to modify their facilities, and has extended the 
compliance date for the general industry standard's change rooms and 
showers requirements to two years after the effective date. Providing 
an extended compliance date for establishing change rooms and providing 
showers is consistent with the approach taken in OSHA's general 
industry standard for Cadmium (29 CFR 1910.1027(p)(2)(vi)(B)).
    The construction and shipyard standards do not require employers to 
provide showers, but OSHA recognizes that construction and shipyard 
employers may also need additional time to plan and establish change 
rooms at construction sites and shipyard industry establishments. 
Change room facilities in these industries may be permanent or 
temporary, including mobile units that can be purchased or rented. OSHA 
has thus set the compliance date for the construction and shipyard 
standards' requirement to establish change rooms to two years after the 
effective date.
    Paragraph (o)(2)(ii) of the standards provides the date for 
compliance with the requirements in paragraph (f) to implement 
engineering controls. OSHA proposed a compliance date of two years 
after the effective date for employers to comply with the engineering 
control requirements in paragraph (f). Boeing, however, commented that 
the compliance date for implementing engineering controls should be 
extended to four years after the effective date, explaining that ``for 
large companies, exposure assessments and feasibility studies would 
have to be completed on a vast scale, and then engineering controls may 
have to be installed,'' making four years ``a reasonable time frame for 
these compliance measures'' (Document ID 1667, pp. 8). The Non-Ferrous 
Founders' Society (NFFS) also commented that a two-year implementation 
period was insufficient because it takes 12 to 24 months to obtain an 
Environmental Protection Agency (EPA) permit for changes to ventilation 
systems, and foundries cannot begin work to modify ventilation systems 
until they obtain a permit (Document ID 1756, Tr. 61-62).
    OSHA recognizes the concerns expressed by Boeing regarding the time 
needed to implement engineering controls, but does not agree that four 
years are needed to comply with the engineering control requirements. 
OSHA expects that many workplaces with beryllium will already have 
engineering controls in place for other hazardous materials that will 
need only modification or updating to comply with the final standards. 
For new installations, most types of engineering controls for working 
with materials such as beryllium are readily available.
    Furthermore, because beryllium is regulated under EPA rules as a 
``hazardous air pollutant'' with a relatively low volume threshold for 
a permit requirement, foundries that already exhaust beryllium in any 
quantity would likely already be subjected to the permitting 
requirements. Therefore, OSHA predicts that any changes to ventilation 
systems to comply with the final beryllium standards would generally 
only be subject to routine reporting requirements or permit 
modifications. Cases that are unusually problematic, however, can be 
addressed through OSHA's enforcement discretion if the employer can 
show that it has made good faith efforts to implement engineering 
controls, but has been unable to implement such controls due to the 
time needed for environmental permitting.
    However, OSHA acknowledges that some general industry, construction 
and shipyard employers may need more than two years to comply with the 
engineering control obligations in paragraph (f), including the need to 
update any permits before modifying ventilation systems, and has 
extended the standards' compliance date for the engineering control 
requirements to three years from the effective date. OSHA has 
determined that setting a compliance date three years after the 
effective date will ensure that employers have sufficient time to 
complete the process of designing, obtaining, and installing the 
necessary control equipment.
    OSHA's decision here to provide employers with an extended deadline 
for complying with engineering control requirements is consistent with 
what the Agency has done in health standards, including standards for 
respirable crystalline silica (29 CFR 1910.1053(l)), Chromium (VI) (29 
CFR 1910.1026(n)(3), 29 CFR 1915.1026(l)(3), 29 CFR 1926.1126(l)(3)), 
and Cadmium (29 CFR 1910.1027(p)(2)(v)). Extending the compliance 
deadline for implementation of engineering controls will allow those 
firms that need extensive engineering controls time to adequately plan 
for and implement the controls, which will thus help to ensure that 
adequate protection is provided for workers. OSHA has also determined 
that the extension will have the ancillary benefit of limiting the 
economic impact of the rule by providing employers with additional time 
to plan for and absorb the costs associated with compliance. Based on 
its review of the rulemaking record, OSHA has concluded that employers 
will be able to implement engineering controls within the extended time 
frame that is established in the final rule.

(p) Appendix A to 29 CFR 1910.1024--Control Strategies To Minimize 
Beryllium Exposure

    Appendix A to the final standard for general industry, 29 CFR 
1910.1024, provides information to employers on

[[Page 2735]]

control options that employers could use to comply with paragraph 
(f)(2)(i) of the final rule, which requires employers to ensure that at 
least one of the types of controls listed in paragraph (f)(2)(i) is in 
place to reduce airborne exposure for each operation in a beryllium 
work area that releases airborne beryllium. Appendix A is for 
informational and guidance purposes only and none of the statements in 
Appendix A should be construed as imposing a mandatory requirement on 
employers that is not otherwise imposed by the standard. In addition, 
this appendix is not intended to detract from any obligation that the 
rule imposes.
    The control strategies to minimize beryllium exposure were in 
Appendix B of the proposed rule, but proposed Appendix B has been 
redesignated as Appendix A in the final standard for general industry, 
following the deletion (discussed below) of proposed Appendix A. The 
information on control strategies presented in the appendix was derived 
from OSHA's analysis of the technological feasibility of the PELs, 
presented in Chapter IV of the Final Economic Analysis. The content of 
Appendix A of the final standard for general industry remains unchanged 
from that contained in Appendix B of the proposal.
    The proposed rule also contained a non-mandatory appendix 
(designated in the proposal as Appendix A) that provided technical 
information on the BeLPT test. OSHA has determined that the information 
contained in proposed Appendix A is more suitable for separate guidance 
that will be issued in conjunction with the standards. OSHA will be 
able to more readily update this separate guidance to reflect 
technological advances and changes in recommendations from the medical 
community. Therefore, OSHA is not including proposed Appendix A in the 
final standards.
    OSHA has also not included any appendices in the final standards 
for construction and shipyards since OSHA has identified only one 
principle operation (abrasive blasting) in these sectors involving 
worker exposure to beryllium.

List of Subjects in 29 CFR Parts 1910, 1915, and 1926

    Beryllium, Cancer, Chemicals, Hazardous substances, Health, 
Occupational safety and health, Reporting and recordkeeping 
requirements.

Authority and Signature

    This document was prepared under the direction of David Michaels, 
Ph.D., MPH, Assistant Secretary of Labor for Occupational Safety and 
Health, U.S. Department of Labor, 200 Constitution Avenue NW., 
Washington, DC 20210.
    The Agency issues the sections under the following authorities: 29 
U.S.C. 653, 655, 657; 40 U.S.C. 3704; 33 U.S.C. 941; Secretary of 
Labor's Order 1-2012 (77 FR 3912 (1/25/2012)); and 29 CFR part 1911.

    Signed at Washington, DC, on December 14, 2016.
David Michaels,
Assistant Secretary of Labor for Occupational Safety and Health.

Amendments to Standards

    For the reasons set forth in the preamble, Chapter XVII of Title 
29, parts 1910, 1915, and 1926, of the Code of Federal Regulations is 
amended as follows:

PART 1910--OCCUPATIONAL SAFETY AND HEALTH STANDARDS

Subpart Z--[Amended]

0
1. The authority citation for subpart Z of part 1910 is revised to read 
as follows:

    Authority: 29 U.S.C. 653, 655, 657) Secretary of Labor's Order 
No. 12-71 (36 FR 8754), 8-76 (41 FR 25059), 9-83 (48 FR 35736), 1-90 
(55 FR 9033), 6-96 (62 FR 111), 3-2000 (65 FR 50017), 5-2002 (67 FR 
65008), 5-2007 (72 FR 31160), 4-2010 (75 FR 55355), or 1-2012 (77 FR 
3912), 29 CFR part 1911; and 5 U.S.C. 553, as applicable.
    Section 1910.1030 also issued under Pub. L. 106-430, 114 Stat. 
1901.
    Section 1910.1201 also issued under 49 U.S.C. 5101 et seq.


0
2. In Sec.  1910.1000, paragraph (e):
0
 a. Amend Table Z-1--Limits on Air Contaminants, by revising the entry 
for ``Beryllium and beryllium compounds (as Be)'' and adding footnote 
8.
0
 b. Amend Table Z-2 by revising the entry for ``Beryllium and beryllium 
compounds (Z37.29-1970)''; and adding footnote d.
    The revisions read as follows:


Sec.  1910.1000  Air contaminants.

* * * * *

                                     Table Z-1--Limits for Air Contaminants
----------------------------------------------------------------------------------------------------------------
                                                                                    mg/m\3\ (b)        Skin
                   Substance                       CAS No. (c)      ppm (a) \1\         \1\         designation
----------------------------------------------------------------------------------------------------------------
 
                                                  * * * * * * *
Beryllium and beryllium compounds (as Be); see        7440-41-7   ..............  ..............  ..............
 1910.1024 \8\.................................
 
                                                  * * * * * * *
----------------------------------------------------------------------------------------------------------------
 * * * * * * *
\8\ See Table Z-2 for the exposure limits for any operations or sectors where the exposure limits in Sec.
  1910.1024 are stayed or otherwise not in effect.


                                                    Table Z-2
----------------------------------------------------------------------------------------------------------------
                                                                             Acceptable maximum peak above the
                                                          Acceptable            acceptable ceiling average
            Substance                 8-hour time           ceiling           concentration for an 8-hr shift
                                   weighted  average     concentration   ---------------------------------------
                                                                             Concentration     Maximum  duration
----------------------------------------------------------------------------------------------------------------
 
                                                  * * * * * * *
Beryllium and beryllium           2 [mu]g/m\3\......  5 [mu]g/m\3\......  25 [mu]g/m\3\.....  30 minutes.
 compounds (Z37.29-1970) \d\.
 

[[Page 2736]]

 
                                                  * * * * * * *
----------------------------------------------------------------------------------------------------------------
 * * * * * * *
\d\ This standard applies to any operations or sectors for which the exposure limits in the beryllium standard,
  Sec.   1910.1024, are stayed or is otherwise not in effect.

* * * * *

0
3. Add Sec.  1910.1024 to read as follows:


Sec.  1910.1024  Beryllium.

    (a) Scope and application. (1) This standard applies to 
occupational exposure to beryllium in all forms, compounds, and 
mixtures in general industry, except those articles and materials 
exempted by paragraphs (a)(2) and (a)(3) of this standard.
    (2) This standard does not apply to articles, as defined in the 
Hazard Communication standard (HCS) (Sec.  1910.1200(c)), that contain 
beryllium and that the employer does not process.
    (3) This standard does not apply to materials containing less than 
0.1% beryllium by weight where the employer has objective data 
demonstrating that employee exposure to beryllium will remain below the 
action level as an 8-hour TWA under any foreseeable conditions.
    (b) Definitions. As used in this standard:
    Action level means a concentration of airborne beryllium of 0.1 
micrograms per cubic meter of air ([mu]g/m\3\) calculated as an 8-hour 
time-weighted average (TWA).
    Airborne exposure and airborne exposure to beryllium mean the 
exposure to airborne beryllium that would occur if the employee were 
not using a respirator.
    Assistant Secretary means the Assistant Secretary of Labor for 
Occupational Safety and Health, United States Department of Labor, or 
designee.
    Beryllium lymphocyte proliferation test (BeLPT) means the 
measurement of blood lymphocyte proliferation in a laboratory test when 
lymphocytes are challenged with a soluble beryllium salt.
    Beryllium work area means any work area containing a process or 
operation that can release beryllium where employees are, or can 
reasonably be expected to be, exposed to airborne beryllium at any 
level or where there is the potential for dermal contact with 
beryllium.
    CBD diagnostic center means a medical diagnostic center that has an 
on-site pulmonary specialist and on-site facilities to perform a 
clinical evaluation for the presence of chronic beryllium disease 
(CBD). This evaluation must include pulmonary function testing (as 
outlined by the American Thoracic Society criteria), bronchoalveolar 
lavage (BAL), and transbronchial biopsy. The CBD diagnostic center must 
also have the capacity to transfer BAL samples to a laboratory for 
appropriate diagnostic testing within 24 hours. The on-site pulmonary 
specialist must be able to interpret the biopsy pathology and the BAL 
diagnostic test results.
    Chronic beryllium disease (CBD) means a chronic lung disease 
associated with airborne exposure to beryllium.
    Confirmed positive means the person tested has beryllium 
sensitization, as indicated by two abnormal BeLPT test results, an 
abnormal and a borderline test result, or three borderline test 
results. It also means the result of a more reliable and accurate test 
indicating a person has been identified as having beryllium 
sensitization.
    Director means the Director of the National Institute for 
Occupational Safety and Health (NIOSH), U.S. Department of Health and 
Human Services, or designee.
    Emergency means any uncontrolled release of airborne beryllium.
    High-efficiency particulate air (HEPA) filter means a filter that 
is at least 99.97 percent efficient in removing particles 0.3 
micrometers in diameter.
    Objective data means information, such as air monitoring data from 
industry-wide surveys or calculations based on the composition of a 
substance, demonstrating airborne exposure to beryllium associated with 
a particular product or material or a specific process, task, or 
activity. The data must reflect workplace conditions closely resembling 
or with a higher airborne exposure potential than the processes, types 
of material, control methods, work practices, and environmental 
conditions in the employer's current operations.
    Physician or other licensed health care professional (PLHCP) means 
an individual whose legally permitted scope of practice (i.e., license, 
registration, or certification) allows the individual to independently 
provide or be delegated the responsibility to provide some or all of 
the health care services required by paragraph (k) of this standard.
    Regulated area means an area, including temporary work areas where 
maintenance or non-routine tasks are performed, where an employee's 
airborne exposure exceeds, or can reasonably be expected to exceed, 
either the time-weighted average (TWA) permissible exposure limit (PEL) 
or short term exposure limit (STEL).
    This standard means this beryllium standard, 29 CFR 1910.1024.
    (c) Permissible Exposure Limits (PELs)--(1) Time-weighted average 
(TWA) PEL. The employer must ensure that no employee is exposed to an 
airborne concentration of beryllium in excess of 0.2 [mu]g/m\3\ 
calculated as an 8-hour TWA.
    (2) Short-term exposure limit (STEL). The employer must ensure that 
no employee is exposed to an airborne concentration of beryllium in 
excess of 2.0 [mu]g/m\3\ as determined over a sampling period of 15 
minutes.
    (d) Exposure assessment--(1) General. The employer must assess the 
airborne exposure of each employee who is or may reasonably be expected 
to be exposed to airborne beryllium in accordance with either the 
performance option in paragraph (d)(2) or the scheduled monitoring 
option in paragraph (d)(3) of this standard.
    (2) Performance option. The employer must assess the 8-hour TWA 
exposure and the 15-minute short-term exposure for each employee on the 
basis of any combination of air monitoring data and objective data 
sufficient to accurately characterize airborne exposure to beryllium.
    (3) Scheduled monitoring option. (i) The employer must perform 
initial monitoring to assess the 8-hour TWA exposure for each employee 
on the basis of one or more personal breathing zone air samples that 
reflect the airborne

[[Page 2737]]

exposure of employees on each shift, for each job classification, and 
in each work area.
    (ii) The employer must perform initial monitoring to assess the 
short-term exposure from 15-minute personal breathing zone air samples 
measured in operations that are likely to produce airborne exposure 
above the STEL for each work shift, for each job classification, and in 
each work area.
    (iii) Where several employees perform the same tasks on the same 
shift and in the same work area, the employer may sample a 
representative fraction of these employees in order to meet the 
requirements of this paragraph (d)(3). In representative sampling, the 
employer must sample the employee(s) expected to have the highest 
airborne exposure to beryllium.
    (iv) If initial monitoring indicates that airborne exposure is 
below the action level and at or below the STEL, the employer may 
discontinue monitoring for those employees whose airborne exposure is 
represented by such monitoring.
    (v) Where the most recent exposure monitoring indicates that 
airborne exposure is at or above the action level but at or below the 
TWA PEL, the employer must repeat such monitoring within six months of 
the most recent monitoring.
    (vi) Where the most recent exposure monitoring indicates that 
airborne exposure is above the TWA PEL, the employer must repeat such 
monitoring within three months of the most recent 8-hour TWA exposure 
monitoring.
    (vii) Where the most recent (non-initial) exposure monitoring 
indicates that airborne exposure is below the action level, the 
employer must repeat such monitoring within six months of the most 
recent monitoring until two consecutive measurements, taken 7 or more 
days apart, are below the action level, at which time the employer may 
discontinue 8-hour TWA exposure monitoring for those employees whose 
exposure is represented by such monitoring, except as otherwise 
provided in paragraph (d)(4) of this standard.
    (viii) Where the most recent exposure monitoring indicates that 
airborne exposure is above the STEL, the employer must repeat such 
monitoring within three months of the most recent short-term exposure 
monitoring until two consecutive measurements, taken 7 or more days 
apart, are below the STEL, at which time the employer may discontinue 
short-term exposure monitoring for those employees whose exposure is 
represented by such monitoring, except as otherwise provided in 
paragraph (d)(4) of this standard.
    (4) Reassessment of exposure. The employer must reassess airborne 
exposure whenever a change in the production, process, control 
equipment, personnel, or work practices may reasonably be expected to 
result in new or additional airborne exposure at or above the action 
level or STEL, or when the employer has any reason to believe that new 
or additional airborne exposure at or above the action level or STEL 
has occurred.
    (5) Methods of sample analysis. The employer must ensure that all 
air monitoring samples used to satisfy the monitoring requirements of 
paragraph (d) of this standard are evaluated by a laboratory that can 
measure beryllium to an accuracy of plus or minus 25 percent within a 
statistical confidence level of 95 percent for airborne concentrations 
at or above the action level.
    (6) Employee notification of assessment results. (i) Within 15 
working days after completing an exposure assessment in accordance with 
paragraph (d) of this standard, the employer must notify each employee 
whose airborne exposure is represented by the assessment of the results 
of that assessment individually in writing or post the results in an 
appropriate location that is accessible to each of these employees.
    (ii) Whenever an exposure assessment indicates that airborne 
exposure is above the TWA PEL or STEL, the employer must describe in 
the written notification the corrective action being taken to reduce 
airborne exposure to or below the exposure limit(s) exceeded where 
feasible corrective action exists but had not been implemented when the 
monitoring was conducted.
    (7) Observation of monitoring. (i) The employer must provide an 
opportunity to observe any exposure monitoring required by this 
standard to each employee whose airborne exposure is measured or 
represented by the monitoring and each employee's representative(s).
    (ii) When observation of monitoring requires entry into an area 
where the use of personal protective clothing or equipment (which may 
include respirators) is required, the employer must provide each 
observer with appropriate personal protective clothing and equipment at 
no cost to the observer and must ensure that each observer uses such 
clothing and equipment.
    (iii) The employer must ensure that each observer follows all other 
applicable safety and health procedures.
    (e) Beryllium work areas and regulated areas--(1) Establishment. 
(i) The employer must establish and maintain a beryllium work area 
wherever the criteria for a ``beryllium work area'' set forth in 
paragraph (b) of this standard are met.
    (ii) The employer must establish and maintain a regulated area 
wherever employees are, or can reasonably be expected to be, exposed to 
airborne beryllium at levels above the TWA PEL or STEL.
    (2) Demarcation. (i) The employer must identify each beryllium work 
area through signs or any other methods that adequately establish and 
inform each employee of the boundaries of each beryllium work area.
    (ii) The employer must identify each regulated area in accordance 
with paragraph (m)(2) of this standard.
    (3) Access. The employer must limit access to regulated areas to:
    (i) Persons the employer authorizes or requires to be in a 
regulated area to perform work duties;
    (ii) Persons entering a regulated area as designated 
representatives of employees for the purpose of exercising the right to 
observe exposure monitoring procedures under paragraph (d)(7) of this 
standard; and
    (iii) Persons authorized by law to be in a regulated area.
    (4) Provision of personal protective clothing and equipment, 
including respirators. The employer must provide and ensure that each 
employee entering a regulated area uses:
    (i) Respiratory protection in accordance with paragraph (g) of this 
standard; and
    (ii) Personal protective clothing and equipment in accordance with 
paragraph (h) of this standard.
    (f) Methods of compliance--(1) Written exposure control plan. (i) 
The employer must establish, implement, and maintain a written exposure 
control plan, which must contain:
    (A) A list of operations and job titles reasonably expected to 
involve airborne exposure to or dermal contact with beryllium;
    (B) A list of operations and job titles reasonably expected to 
involve airborne exposure at or above the action level;
    (C) A list of operations and job titles reasonably expected to 
involve airborne exposure above the TWA PEL or STEL;
    (D) Procedures for minimizing cross-contamination, including 
preventing the transfer of beryllium between surfaces, equipment, 
clothing, materials, and articles within beryllium work areas;
    (E) Procedures for keeping surfaces as free as practicable of 
beryllium;
    (F) Procedures for minimizing the migration of beryllium from 
beryllium work areas to other locations within or outside the 
workplace;

[[Page 2738]]

    (G) A list of engineering controls, work practices, and respiratory 
protection required by paragraph (f)(2) of this standard;
    (H) A list of personal protective clothing and equipment required 
by paragraph (h) of this standard; and
    (I) Procedures for removing, laundering, storing, cleaning, 
repairing, and disposing of beryllium-contaminated personal protective 
clothing and equipment, including respirators.
    (ii) The employer must review and evaluate the effectiveness of 
each written exposure control plan at least annually and update it, as 
necessary, when:
    (A) Any change in production processes, materials, equipment, 
personnel, work practices, or control methods results, or can 
reasonably be expected to result, in new or additional airborne 
exposure to beryllium;
    (B) The employer is notified that an employee is eligible for 
medical removal in accordance with paragraph (l)(1) of this standard, 
referred for evaluation at a CBD diagnostic center, or shows signs or 
symptoms associated with airborne exposure to or dermal contact with 
beryllium; or
    (C) The employer has any reason to believe that new or additional 
airborne exposure is occurring or will occur.
    (iii) The employer must make a copy of the written exposure control 
plan accessible to each employee who is, or can reasonably be expected 
to be, exposed to airborne beryllium in accordance with OSHA's Access 
to Employee Exposure and Medical Records (Records Access) standard 
(Sec.  1910.1020(e)).
    (2) Engineering and work practice controls. (i) For each operation 
in a beryllium work area that releases airborne beryllium, the employer 
must ensure that at least one of the following is in place to reduce 
airborne exposure:
    (A) Material and/or process substitution;
    (B) Isolation, such as ventilated partial or full enclosures;
    (C) Local exhaust ventilation, such as at the points of operation, 
material handling, and transfer; or
    (D) Process control, such as wet methods and automation.
    (ii) An employer is exempt from using the controls listed in 
paragraph (f)(2)(i) of this standard to the extent that:
    (A) The employer can establish that such controls are not feasible; 
or
    (B) The employer can demonstrate that airborne exposure is below 
the action level, using no fewer than two representative personal 
breathing zone samples taken at least 7 days apart, for each affected 
operation.
    (iii) If airborne exposure exceeds the TWA PEL or STEL after 
implementing the control(s) required by paragraph (f)(2)(i) of this 
standard, the employer must implement additional or enhanced 
engineering and work practice controls to reduce airborne exposure to 
or below the exposure limit(s) exceeded.
    (iv) Wherever the employer demonstrates that it is not feasible to 
reduce airborne exposure to or below the PELs by the engineering and 
work practice controls required by paragraphs (f)(2)(i) and (f)(2)(iii) 
of this standard, the employer must implement and maintain engineering 
and work practice controls to reduce airborne exposure to the lowest 
levels feasible and supplement these controls by using respiratory 
protection in accordance with paragraph (g) of this standard.
    (3) Prohibition of rotation. The employer must not rotate employees 
to different jobs to achieve compliance with the PELs.
    (g) Respiratory protection--(1) General. The employer must provide 
respiratory protection at no cost to the employee and ensure that each 
employee uses respiratory protection:
    (i) During periods necessary to install or implement feasible 
engineering and work practice controls where airborne exposure exceeds, 
or can reasonably be expected to exceed, the TWA PEL or STEL;
    (ii) During operations, including maintenance and repair activities 
and non-routine tasks, when engineering and work practice controls are 
not feasible and airborne exposure exceeds, or can reasonably be 
expected to exceed, the TWA PEL or STEL;
    (iii) During operations for which an employer has implemented all 
feasible engineering and work practice controls when such controls are 
not sufficient to reduce airborne exposure to or below the TWA PEL or 
STEL;
    (iv) During emergencies; and
    (v) When an employee who is eligible for medical removal under 
paragraph (l)(1) chooses to remain in a job with airborne exposure at 
or above the action level, as permitted by paragraph (l)(2)(ii) of this 
standard.
    (2) Respiratory protection program. Where this standard requires an 
employer to provide respiratory protection, the selection and use of 
such respiratory protection must be in accordance with the Respiratory 
Protection standard (Sec.  1910.134).
    (3) The employer must provide at no cost to the employee a powered 
air-purifying respirator (PAPR) instead of a negative pressure 
respirator when
    (i) Respiratory protection is required by this standard;
    (ii) An employee entitled to such respiratory protection requests a 
PAPR; and
    (iii) The PAPR provides adequate protection to the employee in 
accordance with paragraph (g)(2) of this standard.
    (h) Personal protective clothing and equipment--(1) Provision and 
use. The employer must provide at no cost, and ensure that each 
employee uses, appropriate personal protective clothing and equipment 
in accordance with the written exposure control plan required under 
paragraph (f)(1) of this standard and OSHA's Personal Protective 
Equipment standards (subpart I of this part):
    (i) Where airborne exposure exceeds, or can reasonably be expected 
to exceed, the TWA PEL or STEL; or
    (ii) Where there is a reasonable expectation of dermal contact with 
beryllium.
    (2) Removal and storage. (i) The employer must ensure that each 
employee removes all beryllium-contaminated personal protective 
clothing and equipment at the end of the work shift, at the completion 
of tasks involving beryllium, or when personal protective clothing or 
equipment becomes visibly contaminated with beryllium, whichever comes 
first.
    (ii) The employer must ensure that each employee removes beryllium-
contaminated personal protective clothing and equipment as specified in 
the written exposure control plan required by paragraph (f)(1) of this 
standard.
    (iii) The employer must ensure that each employee stores and keeps 
beryllium-contaminated personal protective clothing and equipment 
separate from street clothing and that storage facilities prevent 
cross-contamination as specified in the written exposure control plan 
required by paragraph (f)(1) of this standard.
    (iv) The employer must ensure that no employee removes beryllium-
contaminated personal protective clothing or equipment from the 
workplace, except for employees authorized to do so for the purposes of 
laundering, cleaning, maintaining or disposing of beryllium-
contaminated personal protective clothing and equipment at an 
appropriate location or facility away from the workplace.
    (v) When personal protective clothing or equipment required by this 
standard is removed from the workplace for laundering, cleaning, 
maintenance or disposal, the employer must ensure that

[[Page 2739]]

personal protective clothing and equipment are stored and transported 
in sealed bags or other closed containers that are impermeable and are 
labeled in accordance with paragraph (m)(3) of this standard and the 
HCS (Sec.  1910.1200).
    (3) Cleaning and replacement. (i) The employer must ensure that all 
reusable personal protective clothing and equipment required by this 
standard is cleaned, laundered, repaired, and replaced as needed to 
maintain its effectiveness.
    (ii) The employer must ensure that beryllium is not removed from 
personal protective clothing and equipment by blowing, shaking or any 
other means that disperses beryllium into the air.
    (iii) The employer must inform in writing the persons or the 
business entities who launder, clean or repair the personal protective 
clothing or equipment required by this standard of the potentially 
harmful effects of airborne exposure to and dermal contact with 
beryllium and that the personal protective clothing and equipment must 
be handled in accordance with this standard.
    (i) Hygiene areas and practices--(1) General. For each employee 
working in a beryllium work area, the employer must:
    (i) Provide readily accessible washing facilities in accordance 
with this standard and the Sanitation standard (Sec.  1910.141) to 
remove beryllium from the hands, face, and neck; and
    (ii) Ensure that employees who have dermal contact with beryllium 
wash any exposed skin at the end of the activity, process, or work 
shift and prior to eating, drinking, smoking, chewing tobacco or gum, 
applying cosmetics, or using the toilet.
    (2) Change rooms. In addition to the requirements of paragraph 
(i)(1)(i) of this standard, the employer must provide employees who 
work in a beryllium work area with a designated change room in 
accordance with this standard and the Sanitation standard (Sec.  
1910.141) where employees are required to remove their personal 
clothing.
    (3) Showers. (i) The employer must provide showers in accordance 
with the Sanitation standard (Sec.  1910.141) where:
    (A) Airborne exposure exceeds, or can reasonably be expected to 
exceed, the TWA PEL or STEL; and
    (B) Beryllium can reasonably be expected to contaminate employees' 
hair or body parts other than hands, face, and neck.
    (ii) Employers required to provide showers under paragraph 
(i)(3)(i) of this standard must ensure that each employee showers at 
the end of the work shift or work activity if:
    (A) The employee reasonably could have had airborne exposure above 
the TWA PEL or STEL; and
    (B) Beryllium could reasonably have contaminated the employee's 
hair or body parts other than hands, face, and neck.
    (4) Eating and drinking areas. Wherever the employer allows 
employees to consume food or beverages at a worksite where beryllium is 
present, the employer must ensure that:
    (i) Surfaces in eating and drinking areas are as free as 
practicable of beryllium;
    (ii) No employees enter any eating or drinking area with personal 
protective clothing or equipment unless, prior to entry, surface 
beryllium has been removed from the clothing or equipment by methods 
that do not disperse beryllium into the air or onto an employee's body; 
and
    (iii) Eating and drinking facilities provided by the employer are 
in accordance with the Sanitation standard (Sec.  1910.141).
    (5) Prohibited activities. The employer must ensure that no 
employees eat, drink, smoke, chew tobacco or gum, or apply cosmetics in 
regulated areas.
    (j) Housekeeping--(1) General. (i) The employer must maintain all 
surfaces in beryllium work areas as free as practicable of beryllium 
and in accordance with the written exposure control plan required under 
paragraph (f)(1) and the cleaning methods required under paragraph 
(j)(2) of this standard; and
    (ii) The employer must ensure that all spills and emergency 
releases of beryllium are cleaned up promptly and in accordance with 
the written exposure control plan required under paragraph (f)(1) and 
the cleaning methods required under paragraph (j)(2) of this standard.
    (2) Cleaning methods. (i) The employer must ensure that surfaces in 
beryllium work areas are cleaned by HEPA-filtered vacuuming or other 
methods that minimize the likelihood and level of airborne exposure.
    (ii) The employer must not allow dry sweeping or brushing for 
cleaning surfaces in beryllium work areas unless HEPA-filtered 
vacuuming or other methods that minimize the likelihood and level of 
airborne exposure are not safe or effective.
    (iii) The employer must not allow the use of compressed air for 
cleaning beryllium-contaminated surfaces unless the compressed air is 
used in conjunction with a ventilation system designed to capture the 
particulates made airborne by the use of compressed air.
    (iv) Where employees use dry sweeping, brushing, or compressed air 
to clean beryllium-contaminated surfaces, the employer must provide, 
and ensure that each employee uses, respiratory protection and personal 
protective clothing and equipment in accordance with paragraphs (g) and 
(h) of this standard.
    (v) The employer must ensure that cleaning equipment is handled and 
maintained in a manner that minimizes the likelihood and level of 
airborne exposure and the re-entrainment of airborne beryllium in the 
workplace.
    (3) Disposal. The employer must ensure that:
    (i) Materials designated for disposal that contain or are 
contaminated with beryllium are disposed of in sealed, impermeable 
enclosures, such as bags or containers, that are labeled in accordance 
with paragraph (m)(3) of this standard; and
    (ii) Materials designated for recycling that contain or are 
contaminated with beryllium are cleaned to be as free as practicable of 
surface beryllium contamination and labeled in accordance with 
paragraph (m)(3) of this standard, or placed in sealed, impermeable 
enclosures, such as bags or containers, that are labeled in accordance 
with paragraph (m)(3) of this standard.
    (k) Medical surveillance--(1) General. (i) The employer must make 
medical surveillance required by this paragraph available at no cost to 
the employee, and at a reasonable time and place, to each employee:
    (A) Who is or is reasonably expected to be exposed at or above the 
action level for more than 30 days per year;
    (B) Who shows signs or symptoms of CBD or other beryllium-related 
health effects;
    (C) Who is exposed to beryllium during an emergency; or
    (D) Whose most recent written medical opinion required by paragraph 
(k)(6) or (k)(7) of this standard recommends periodic medical 
surveillance.
    (ii) The employer must ensure that all medical examinations and 
procedures required by this standard are performed by, or under the 
direction of, a licensed physician.
    (2) Frequency. The employer must provide a medical examination:
    (i) Within 30 days after determining that:
    (A) An employee meets the criteria of paragraph (k)(1)(i)(A), 
unless the employee has received a medical examination, provided in 
accordance

[[Page 2740]]

with this standard, within the last two years; or
    (B) An employee meets the criteria of paragraph (k)(1)(i)(B) or 
(C).
    (ii) At least every two years thereafter for each employee who 
continues to meet the criteria of paragraph (k)(1)(i)(A), (B), or (D) 
of this standard.
    (iii) At the termination of employment for each employee who meets 
any of the criteria of paragraph (k)(1)(i) of this standard at the time 
the employee's employment terminates, unless an examination has been 
provided in accordance with this standard during the six months prior 
to the date of termination.
    (3) Contents of examination. (i) The employer must ensure that the 
PLHCP conducting the examination advises the employee of the risks and 
benefits of participating in the medical surveillance program and the 
employee's right to opt out of any or all parts of the medical 
examination.
    (ii) The employer must ensure that the employee is offered a 
medical examination that includes:
    (A) A medical and work history, with emphasis on past and present 
airborne exposure to or dermal contact with beryllium, smoking history, 
and any history of respiratory system dysfunction;
    (B) A physical examination with emphasis on the respiratory system;
    (C) A physical examination for skin rashes;
    (D) Pulmonary function tests, performed in accordance with the 
guidelines established by the American Thoracic Society including 
forced vital capacity (FVC) and forced expiratory volume in one second 
(FEV1);
    (E) A standardized BeLPT or equivalent test, upon the first 
examination and at least every two years thereafter, unless the 
employee is confirmed positive. If the results of the BeLPT are other 
than normal, a follow-up BeLPT must be offered within 30 days, unless 
the employee has been confirmed positive. Samples must be analyzed in a 
laboratory certified under the College of American Pathologists/
Clinical Laboratory Improvement Amendments (CLIA) guidelines to perform 
the BeLPT.
    (F) A low dose computed tomography (LDCT) scan, when recommended by 
the PLHCP after considering the employee's history of exposure to 
beryllium along with other risk factors, such as smoking history, 
family medical history, sex, age, and presence of existing lung 
disease; and
    (G) Any other test deemed appropriate by the PLHCP.
    (4) Information provided to the PLHCP. The employer must ensure 
that the examining PLHCP (and the agreed-upon CBD diagnostic center, if 
an evaluation is required under paragraph (k)(7) of this standard) has 
a copy of this standard and must provide the following information, if 
known:
    (i) A description of the employee's former and current duties that 
relate to the employee's airborne exposure to and dermal contact with 
beryllium;
    (ii) The employee's former and current levels of airborne exposure;
    (iii) A description of any personal protective clothing and 
equipment, including respirators, used by the employee, including when 
and for how long the employee has used that personal protective 
clothing and equipment; and
    (iv) Information from records of employment-related medical 
examinations previously provided to the employee, currently within the 
control of the employer, after obtaining written consent from the 
employee.
    (5) Licensed physician's written medical report for the employee. 
The employer must ensure that the employee receives a written medical 
report from the licensed physician within 45 days of the examination 
(including any follow-up BeLPT required under paragraph (k)(3)(ii)(E) 
of this standard) and that the PLHCP explains the results of the 
examination to the employee. The written medical report must contain:
    (i) A statement indicating the results of the medical examination, 
including the licensed physician's opinion as to whether the employee 
has
    (A) Any detected medical condition, such as CBD or beryllium 
sensitization (i.e., the employee is confirmed positive, as defined in 
paragraph (b) of this standard), that may place the employee at 
increased risk from further airborne exposure, and
    (B) Any medical conditions related to airborne exposure that 
require further evaluation or treatment.
    (ii) Any recommendations on:
    (A) The employee's use of respirators, protective clothing, or 
equipment; or
    (B) Limitations on the employee's airborne exposure to beryllium.
    (iii) If the employee is confirmed positive or diagnosed with CBD 
or if the licensed physician otherwise deems it appropriate, the 
written report must also contain a referral for an evaluation at a CBD 
diagnostic center.
    (iv) If the employee is confirmed positive or diagnosed with CBD 
the written report must also contain a recommendation for continued 
periodic medical surveillance.
    (v) If the employee is confirmed positive or diagnosed with CBD the 
written report must also contain a recommendation for medical removal 
from airborne exposure to beryllium, as described in paragraph (l) of 
this standard.
    (6) Licensed physician's written medical opinion for the employer. 
(i) The employer must obtain a written medical opinion from the 
licensed physician within 45 days of the medical examination (including 
any follow-up BeLPT required under paragraph (k)(3)(ii)(E) of this 
standard). The written medical opinion must contain only the following:
    (A) The date of the examination;
    (B) A statement that the examination has met the requirements of 
this standard;
    (C) Any recommended limitations on the employee's use of 
respirators, protective clothing, or equipment; and
    (D) A statement that the PLHCP has explained the results of the 
medical examination to the employee, including any tests conducted, any 
medical conditions related to airborne exposure that require further 
evaluation or treatment, and any special provisions for use of personal 
protective clothing or equipment;
    (ii) If the employee provides written authorization, the written 
opinion must also contain any recommended limitations on the employee's 
airborne exposure to beryllium.
    (iii) If the employee is confirmed positive or diagnosed with CBD 
or if the licensed physician otherwise deems it appropriate, and the 
employee provides written authorization, the written opinion must also 
contain a referral for an evaluation at a CBD diagnostic center.
    (iv) If the employee is confirmed positive or diagnosed with CBD 
and the employee provides written authorization, the written opinion 
must also contain a recommendation for continued periodic medical 
surveillance.
    (v) If the employee is confirmed positive or diagnosed with CBD and 
the employee provides written authorization, the written opinion must 
also contain a recommendation for medical removal from airborne 
exposure to beryllium, as described in paragraph (l) of this standard.
    (vi) The employer must ensure that each employee receives a copy of 
the written medical opinion described in paragraph (k)(6) of this 
standard within 45 days of any medical examination (including any 
follow-up BeLPT required under paragraph (k)(3)(ii)(E) of

[[Page 2741]]

this standard) performed for that employee.
    (7) CBD diagnostic center. (i) The employer must provide an 
evaluation at no cost to the employee at a CBD diagnostic center that 
is mutually agreed upon by the employer and the employee. The 
examination must be provided within 30 days of:
    (A) The employer's receipt of a physician's written medical opinion 
to the employer that recommends referral to a CBD diagnostic center; or
    (B) The employee presenting to the employer a physician's written 
medical report indicating that the employee has been confirmed positive 
or diagnosed with CBD, or recommending referral to a CBD diagnostic 
center.
    (ii) The employer must ensure that the employee receives a written 
medical report from the CBD diagnostic center that contains all the 
information required in paragraph (k)(5)(i), (ii), (iv), and (v) of 
this standard and that the PLHCP explains the results of the 
examination to the employee within 30 days of the examination.
    (iii) The employer must obtain a written medical opinion from the 
CBD diagnostic center within 30 days of the medical examination. The 
written medical opinion must contain only the information in paragraph 
(k)(6)(i), as applicable, unless the employee provides written 
authorization to release additional information. If the employee 
provides written authorization, the written opinion must also contain 
the information from paragraphs (k)(6)(ii), (iv), and (v), if 
applicable.
    (iv) The employer must ensure that each employee receives a copy of 
the written medical opinion from the CBD diagnostic center described in 
paragraph (k)(7) of this standard within 30 days of any medical 
examination performed for that employee.
    (v) After an employee has received the initial clinical evaluation 
at a CBD diagnostic center described in paragraph (k)(7)(i) of this 
standard, the employee may choose to have any subsequent medical 
examinations for which the employee is eligible under paragraph (k) of 
this standard performed at a CBD diagnostic center mutually agreed upon 
by the employer and the employee, and the employer must provide such 
examinations at no cost to the employee.
    (l) Medical removal. (1) An employee is eligible for medical 
removal, if the employee works in a job with airborne exposure at or 
above the action level and either:
    (i) The employee provides the employer with:
    (A) A written medical report indicating a confirmed positive 
finding or CBD diagnosis; or
    (B) A written medical report recommending removal from airborne 
exposure to beryllium in accordance with paragraph (k)(5)(v) or 
(k)(7)(ii) of this standard; or
    (ii) The employer receives a written medical opinion recommending 
removal from airborne exposure to beryllium in accordance with 
paragraph (k)(6)(v) or (k)(7)(iii) of this standard.
    (2) If an employee is eligible for medical removal, the employer 
must provide the employee with the employee's choice of:
    (i) Removal as described in paragraph (l)(3) of this standard; or
    (ii) Remaining in a job with airborne exposure at or above the 
action level, provided that the employer provides, and ensures that the 
employee uses, respiratory protection that complies with paragraph (g) 
of this standard whenever airborne exposures are at or above the action 
level.
    (3) If the employee chooses removal:
    (i) If a comparable job is available where airborne exposures to 
beryllium are below the action level, and the employee is qualified for 
that job or can be trained within one month, the employer must remove 
the employee to that job. The employer must maintain for six months 
from the time of removal the employee's base earnings, seniority, and 
other rights and benefits that existed at the time of removal.
    (ii) If comparable work is not available, the employer must 
maintain the employee's base earnings, seniority, and other rights and 
benefits that existed at the time of removal for six months or until 
such time that comparable work described in paragraph (l)(3)(i) becomes 
available, whichever comes first.
    (4) The employer's obligation to provide medical removal protection 
benefits to a removed employee shall be reduced to the extent that the 
employee receives compensation for earnings lost during the period of 
removal from a publicly or employer-funded compensation program, or 
receives income from another employer made possible by virtue of the 
employee's removal.
    (m) Communication of hazards--(1) General. (i) Chemical 
manufacturers, importers, distributors, and employers must comply with 
all requirements of the HCS (Sec.  1910.1200) for beryllium.
    (ii) In classifying the hazards of beryllium, at least the 
following hazards must be addressed: Cancer; lung effects (CBD and 
acute beryllium disease); beryllium sensitization; skin sensitization; 
and skin, eye, and respiratory tract irritation.
    (iii) Employers must include beryllium in the hazard communication 
program established to comply with the HCS. Employers must ensure that 
each employee has access to labels on containers of beryllium and to 
safety data sheets, and is trained in accordance with the requirements 
of the HCS (Sec.  1910.1200) and paragraph (m)(4) of this standard.
    (2) Warning signs. (i) Posting. The employer must provide and 
display warning signs at each approach to a regulated area so that each 
employee is able to read and understand the signs and take necessary 
protective steps before entering the area.
    (ii) Sign specification. (A) The employer must ensure that the 
warning signs required by paragraph (m)(2)(i) of this standard are 
legible and readily visible.
    (B) The employer must ensure each warning sign required by 
paragraph (m)(2)(i) of this standard bears the following legend:

DANGER
REGULATED AREA
BERYLLIUM
MAY CAUSE CANCER
CAUSES DAMAGE TO LUNGS
AUTHORIZED PERSONNEL ONLY
WEAR RESPIRATORY PROTECTION AND PERSONAL PROTECTIVE CLOTHING AND 
EQUIPMENT IN THIS AREA

    (3) Warning labels. Consistent with the HCS (Sec.  1910.1200), the 
employer must label each bag and container of clothing, equipment, and 
materials contaminated with beryllium, and must, at a minimum, include 
the following on the label:

DANGER
CONTAINS BERYLLIUM
MAY CAUSE CANCER
CAUSES DAMAGE TO LUNGS
AVOID CREATING DUST
DO NOT GET ON SKIN

    (4) Employee information and training. (i) For each employee who 
has, or can reasonably be expected to have, airborne exposure to or 
dermal contact with beryllium:
    (A) The employer must provide information and training in 
accordance with the HCS (Sec.  1910.1200(h));
    (B) The employer must provide initial training to each employee by 
the time of initial assignment; and
    (C) The employer must repeat the training required under this 
standard annually for each employee.
    (ii) The employer must ensure that each employee who is, or can 
reasonably be expected to be, exposed to airborne beryllium can 
demonstrate

[[Page 2742]]

knowledge and understanding of the following:
    (A) The health hazards associated with airborne exposure to and 
contact with beryllium, including the signs and symptoms of CBD;
    (B) The written exposure control plan, with emphasis on the 
location(s) of beryllium work areas, including any regulated areas, and 
the specific nature of operations that could result in airborne 
exposure, especially airborne exposure above the TWA PEL or STEL;
    (C) The purpose, proper selection, fitting, proper use, and 
limitations of personal protective clothing and equipment, including 
respirators;
    (D) Applicable emergency procedures;
    (E) Measures employees can take to protect themselves from airborne 
exposure to and contact with beryllium, including personal hygiene 
practices;
    (F) The purpose and a description of the medical surveillance 
program required by paragraph (k) of this standard including risks and 
benefits of each test to be offered;
    (G) The purpose and a description of the medical removal protection 
provided under paragraph (l) of this standard;
    (H) The contents of the standard; and
    (I) The employee's right of access to records under the Records 
Access standard (Sec.  1910.1020).
    (iii) When a workplace change (such as modification of equipment, 
tasks, or procedures) results in new or increased airborne exposure 
that exceeds, or can reasonably be expected to exceed, either the TWA 
PEL or the STEL, the employer must provide additional training to those 
employees affected by the change in airborne exposure.
    (iv) Employee information. The employer must make a copy of this 
standard and its appendices readily available at no cost to each 
employee and designated employee representative(s).
    (n) Recordkeeping--(1) Air monitoring data. (i) The employer must 
make and maintain a record of all exposure measurements taken to assess 
airborne exposure as prescribed in paragraph (d) of this standard.
    (ii) This record must include at least the following information:
    (A) The date of measurement for each sample taken;
    (B) The task that is being monitored;
    (C) The sampling and analytical methods used and evidence of their 
accuracy;
    (D) The number, duration, and results of samples taken;
    (E) The type of personal protective clothing and equipment, 
including respirators, worn by monitored employees at the time of 
monitoring; and
    (F) The name, social security number, and job classification of 
each employee represented by the monitoring, indicating which employees 
were actually monitored.
    (iii) The employer must ensure that exposure records are maintained 
and made available in accordance with the Records Access standard 
(Sec.  1910.1020).
    (2) Objective data. (i) Where an employer uses objective data to 
satisfy the exposure assessment requirements under paragraph (d)(2) of 
this standard, the employer must make and maintain a record of the 
objective data relied upon.
    (ii) This record must include at least the following information:
    (A) The data relied upon;
    (B) The beryllium-containing material in question;
    (C) The source of the objective data;
    (D) A description of the process, task, or activity on which the 
objective data were based; and
    (E) Other data relevant to the process, task, activity, material, 
or airborne exposure on which the objective data were based.
    (iii) The employer must ensure that objective data are maintained 
and made available in accordance with the Records Access standard 
(Sec.  1910.1020).
    (3) Medical surveillance. (i) The employer must make and maintain a 
record for each employee covered by medical surveillance under 
paragraph (k) of this standard.
    (ii) The record must include the following information about each 
employee:
    (A) Name, social security number, and job classification;
    (B) A copy of all licensed physicians' written medical opinions for 
each employee; and
    (C) A copy of the information provided to the PLHCP as required by 
paragraph (k)(4) of this standard.
    (iii) The employer must ensure that medical records are maintained 
and made available in accordance with the Records Access standard 
(Sec.  1910.1020).
    (4) Training. (i) At the completion of any training required by 
this standard, the employer must prepare a record that indicates the 
name, social security number, and job classification of each employee 
trained, the date the training was completed, and the topic of the 
training.
    (ii) This record must be maintained for three years after the 
completion of training.
    (5) Access to records. Upon request, the employer must make all 
records maintained as a requirement of this standard available for 
examination and copying to the Assistant Secretary, the Director, each 
employee, and each employee's designated representative(s) in 
accordance the Records Access standard (Sec.  1910.1020).
    (6) Transfer of records. The employer must comply with the 
requirements involving transfer of records set forth in the Records 
Access standard (Sec.  1910.1020).
    (o) Dates--(1) Effective date. This standard shall become effective 
March 10, 2017.
    (2) Compliance dates. All obligations of this standard commence and 
become enforceable on March 12, 2018, except:
    (i) Change rooms and showers required by paragraph (i) of this 
standard must be provided by March 11, 2019; and
    (ii) Engineering controls required by paragraph (f) of this 
standard must be implemented by March 10, 2020.
    (p) Appendix. Appendix A--Control Strategies to Minimize Beryllium 
Exposure of this standard is non-mandatory.

Appendix A to Sec.  1910.1024--Control Strategies To Minimize Beryllium 
Exposure (Non-Mandatory)

    Paragraph (f)(2)(i) of this standard requires employers to use 
one or more of the control methods listed in paragraph (f)(2)(i) to 
minimize worker exposure in each operation in a beryllium work area, 
unless the operation is exempt under paragraph (f)(2)(ii). This 
appendix sets forth a non-exhaustive list of control options that 
employers could use to comply with paragraph (f)(2)(i) for a number 
of specific beryllium operations.

[[Page 2743]]



                                   Table A.1--Exposure Control Recommendations
----------------------------------------------------------------------------------------------------------------
                Operation                         Minimal control strategy *               Application group
----------------------------------------------------------------------------------------------------------------
Beryllium Oxide Forming (e.g., pressing,  For pressing operations:..................  Primary Beryllium
 extruding).                              (1) Install local exhaust ventilation        Production; Beryllium
                                           (LEV) on oxide press tables, oxide feed     Oxide Ceramics and
                                           drum breaks, press tumblers, powder         Composites.
                                           rollers, and die set disassembly
                                           stations;.
                                          (2) Enclose the oxide presses; and........
                                          (3) Install mechanical ventilation (make-
                                           up air) in processing areas.
                                          For extruding operations:
                                          (1) Install LEV on extruder powder loading
                                           hoods, oxide supply bottles, rod breaking
                                           operations, centerless grinders, rod
                                           laydown tables, dicing operations,
                                           surface grinders, discharge end of
                                           extrusion presses;.
                                          (2) Enclose the centerless grinders; and..
                                          (3) Install mechanical ventilation (make-
                                           up air) in processing areas.
Chemical Processing Operations (e.g.,     For medium and high gassing operations:...  Primary Beryllium
 leaching, pickling, degreasing,          (1) Perform operation with a hood having a   Production; Beryllium
 etching, plating).                        maximum of one open side; and.              Oxide Ceramics and
                                          (2) Design process so as to minimize         Composites; Copper
                                           spills; if accidental spills occur,         Rolling, Drawing and
                                           perform immediate cleanup.                  Extruding.
Finishing (e.g., grinding, sanding,       (1) Perform portable finishing operations   Secondary Smelting;
 polishing, deburring).                    in a ventilated hood. The hood should       Fabrication of Beryllium
                                           include both downdraft and backdraft        Alloy Products; Dental
                                           ventilation, and have at least two sides    Labs.
                                           and a top.
                                          (2) Perform stationary finishing
                                           operations using a ventilated and
                                           enclosed hood at the point of operation.
                                           The grinding wheel of the stationary unit
                                           should be enclosed and ventilated.
Furnace Operations (e.g., Melting and     (1) Use LEV on furnaces, pelletizer; arc    Primary Beryllium
 Casting).                                 furnace ingot machine discharge; pellet     Production; Beryllium
                                           sampling; arc furnace bins and conveyors;   Oxide Ceramics and
                                           beryllium hydroxide drum dumper and         Composites; Nonferrous
                                           dryer; furnace rebuilding; furnace tool     Foundries; Secondary
                                           holders; arc furnace tundish and tundish    Smelting.
                                           skimming, tundish preheat hood, and
                                           tundish cleaning hoods; dross handling
                                           equipment and drums; dross recycling; and
                                           tool repair station, charge make-up
                                           station, oxide screener, product sampling
                                           locations, drum changing stations, and
                                           drum cleaning stations
                                          (2) Use mechanical ventilation (make-up
                                           air) in furnace building.
Machining...............................  Use (1) LEV consistent with ACGIH[supreg]   Primary Beryllium
                                           ventilation guidelines on deburring         Production; Beryllium
                                           hoods, wet surface grinder enclosures,      Oxide Ceramics and
                                           belt sanding hoods, and electrical          Composites; Copper
                                           discharge machines (for operations such     Rolling, Drawing, and
                                           as polishing, lapping, and buffing);        Extruding; Precision
                                          (2) high velocity low volume hoods or        Turned Products.
                                           ventilated enclosures on lathes, vertical
                                           mills, CNC mills, and tool grinding
                                           operations;.
                                          (3) for beryllium oxide ceramics, LEV on
                                           lapping, dicing, and laser cutting; and.
                                          (4) wet methods (e.g., coolants)..........
Mechanical Processing (e.g., material     (1) Enclose and ventilate sources of        Primary Beryllium
 handling (including scrap), sorting,      emission;                                   Production; Beryllium
 crushing, screening, pulverizing,        (2) Prohibit open handling of materials;     Oxide Ceramics and
 shredding, pouring, mixing, blending).    and.                                        Composites; Aluminum and
                                          (3) Use mechanical ventilation (make-up      Copper Foundries;
                                           air) in processing areas.                   Secondary Smelting.
Metal Forming (e.g., rolling, drawing,    (1) For rolling operations, install LEV on  Primary Beryllium
 straightening, annealing, extruding).     mill stands and reels such that a hood      Production; Copper
                                           extends the length of the mill;             Rolling, Drawing, and
                                          (2) For point and chamfer operations,        Extruding; Fabrication of
                                           install LEV hoods at both ends of the       Beryllium Alloy Products.
                                           rod;.
                                          (3) For annealing operations, provide an
                                           inert atmosphere for annealing furnaces,
                                           and LEV hoods at entry and exit points;.
                                          (4) For swaging operations, install LEV on
                                           the cutting head;.
                                          (5) For drawing, straightening, and
                                           extruding operations, install LEV at
                                           entry and exit points; and.
                                          (6) For all metal forming operations,
                                           install mechanical ventilation (make-up
                                           air) for processing areas.
Welding.................................  For fixed welding operations:.............  Primary Beryllium
                                          (1) Enclose work locations around the        Production; Fabrication
                                           source of fume generation and use local     of Beryllium Alloy
                                           exhaust ventilation; and.                   Products; Welding.
                                          (2) Install close capture hood enclosure
                                           designed so as to minimize fume emission
                                           from the enclosure welding operation..
                                          For manual operations:....................
                                          (1) Use portable local exhaust and general
                                           ventilation.
----------------------------------------------------------------------------------------------------------------
* All LEV specifications should be in accordance with the ACGIH[supreg] Publication No. 2094, ``Industrial
  Ventilation--A Manual of Recommended Practice'' wherever applicable.


[[Page 2744]]

PART 1915--OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD 
EMPLOYMENT

0
4. The authority citation for part 1915 is revised to read as follows:

    Authority: 33 U.S.C. 941; 29 U.S.C. 653, 655, 657; Secretary of 
Labor's Order No. 12-71 (36 FR 8754); 8-76 (41 FR 25059), 9-83 (48 
FR 35736), 1-90 (55 FR 9033), 6-96 (62 FR 111), 3-2000 (65 FR 
50017), 5-2002 (67 FR 65008), 5-2007 (72 FR 31160), 4-2010 (75 FR 
55355), or 1-2012 (77 FR 3912); 29 CFR part 1911; and 5 U.S.C. 553, 
as applicable.


0
5. In Sec.  1915.1000 amend Table Z--Shipyards, by revising the entry 
for ``Beryllium and beryllium compounds (as Be)'' and adding footnote 
q.
    The revisions read as follows:
* * * * *


Sec.  1915.1000  Air contaminants.

* * * * *

                                               Table Z--Shipyards
----------------------------------------------------------------------------------------------------------------
                  Substance                       CAS No.d         ppm a*          mg/m3 b*     Skin designation
----------------------------------------------------------------------------------------------------------------
 
                                                  * * * * * * *
Beryllium and beryllium compounds (as Be);         7440-41-7   ..............           0.002   ................
 see 1915.1024 \(q)\........................
 
                                                  * * * * * * *
----------------------------------------------------------------------------------------------------------------
* The PELs are 8-hour TWAs unless otherwise noted; a (C) designation denotes a ceiling limit. They are to be
  determined from breathing-zone air samples.
\a\ Parts of vapor or gas per million parts of contaminated air by volume at 25 [deg]C and 760 torr.
\b\ Milligrams of substance per cubic meter of air. When entry is in this column only, the value is exact; when
  listed with a ppm entry, it is approximate.
 * * * * * * *
\d\ The CAS number is for information only. Enforcement is based on the substance name. For an entry covering
  more than one metal compound, measured as the metal, the CAS number for the metal is given--not CAS numbers
  for the individual compounds.
 * * * * * * *
\q\ This standard applies to any operations or sectors for which the beryllium standard, 1915.1024, is stayed or
  otherwise is not in effect.

* * * * *

0
6. Add Sec.  1915.1024 to read as follows:


Sec.  1915.1024  Beryllium.

    (a) Scope and application. (1) This standard applies to 
occupational exposure to beryllium in all forms, compounds, and 
mixtures in shipyards, except those articles and materials exempted by 
paragraphs (a)(2) and (a)(3) of this standard.
    (2) This standard does not apply to articles, as defined in the 
Hazard Communication standard (HCS) (29 CFR 1910.1200(c)), that contain 
beryllium and that the employer does not process.
    (3) This standard does not apply to materials containing less than 
0.1% beryllium by weight where the employer has objective data 
demonstrating that employee exposure to beryllium will remain below the 
action level as an 8-hour TWA under any foreseeable conditions.
    (b) Definitions. As used in this standard:
    Action level means a concentration of airborne beryllium of 0.1 
micrograms per cubic meter of air ([mu]g/m\3\) calculated as an 8-hour 
time-weighted average (TWA).
    Airborne exposure and airborne exposure to beryllium mean the 
exposure to airborne beryllium that would occur if the employee were 
not using a respirator.
    Assistant Secretary means the Assistant Secretary of Labor for 
Occupational Safety and Health, United States Department of Labor, or 
designee.
    Beryllium lymphocyte proliferation test (BeLPT) means the 
measurement of blood lymphocyte proliferation in a laboratory test when 
lymphocytes are challenged with a soluble beryllium salt.
    CBD diagnostic center means a medical diagnostic center that has an 
on-site pulmonary specialist and on-site facilities to perform a 
clinical evaluation for the presence of chronic beryllium disease 
(CBD). This evaluation must include pulmonary function testing (as 
outlined by the American Thoracic Society criteria), bronchoalveolar 
lavage (BAL), and transbronchial biopsy. The CBD diagnostic center must 
also have the capacity to transfer BAL samples to a laboratory for 
appropriate diagnostic testing within 24 hours. The on-site pulmonary 
specialist must be able to interpret the biopsy pathology and the BAL 
diagnostic test results.
    Chronic beryllium disease (CBD) means a chronic lung disease 
associated with airborne exposure to beryllium.
    Confirmed positive means the person tested has beryllium 
sensitization, as indicated by two abnormal BeLPT test results, an 
abnormal and a borderline test result, or three borderline test 
results. It also means the result of a more reliable and accurate test 
indicating a person has been identified as having beryllium 
sensitization.
    Director means the Director of the National Institute for 
Occupational Safety and Health (NIOSH), U.S. Department of Health and 
Human Services, or designee.
    Emergency means any uncontrolled release of airborne beryllium.
    High-efficiency particulate air (HEPA) filter means a filter that 
is at least 99.97 percent efficient in removing particles 0.3 
micrometers in diameter.
    Objective data means information, such as air monitoring data from 
industry-wide surveys or calculations based on the composition of a 
substance, demonstrating airborne exposure to beryllium associated with 
a particular product or material or a specific process, task, or 
activity. The data must reflect workplace conditions closely resembling 
or with a higher airborne exposure potential than the processes, types 
of material, control methods, work practices, and environmental 
conditions in the employer's current operations.
    Physician or other licensed health care professional (PLHCP) means 
an individual whose legally permitted scope of practice (i.e., license, 
registration, or certification) allows the individual to independently 
provide or be delegated the responsibility to provide some or all of 
the health care services required by paragraph (k) of this standard.
    Regulated area means an area, including temporary work areas where 
maintenance or non-routine tasks are performed, where an employee's 
airborne exposure exceeds, or can reasonably be expected to exceed, 
either the time-weighted average (TWA) permissible exposure limit (PEL) 
or short term exposure limit (STEL).

[[Page 2745]]

    This standard means this beryllium standard, 29 CFR 1915.1024.
    (c) Permissible Exposure Limits (PELs)--(1) Time-weighted average 
(TWA) PEL. The employer must ensure that no employee is exposed to an 
airborne concentration of beryllium in excess of 0.2 [mu]g/m\3\ 
calculated as an 8-hour TWA.
    (2) Short-term exposure limit (STEL). The employer must ensure that 
no employee is exposed to an airborne concentration of beryllium in 
excess of 2.0 [mu]g/m\3\ as determined over a sampling period of 15 
minutes.
    (d) Exposure assessment--(1) General. The employer must assess the 
airborne exposure of each employee who is or may reasonably be expected 
to be exposed to airborne beryllium in accordance with either the 
performance option in paragraph (d)(2) or the scheduled monitoring 
option in paragraph (d)(3) of this standard.
    (2) Performance option. The employer must assess the 8-hour TWA 
exposure and the 15-minute short-term exposure for each employee on the 
basis of any combination of air monitoring data and objective data 
sufficient to accurately characterize airborne exposure to beryllium.
    (3) Scheduled monitoring option. (i) The employer must perform 
initial monitoring to assess the 8-hour TWA exposure for each employee 
on the basis of one or more personal breathing zone air samples that 
reflect the airborne exposure of employees on each shift, for each job 
classification, and in each work area.
    (ii) The employer must perform initial monitoring to assess the 
short-term exposure from 15-minute personal breathing zone air samples 
measured in operations that are likely to produce airborne exposure 
above the STEL for each work shift, for each job classification, and in 
each work area.
    (iii) Where several employees perform the same tasks on the same 
shift and in the same work area, the employer may sample a 
representative fraction of these employees in order to meet the 
requirements of paragraph (d)(3) of this standard. In representative 
sampling, the employer must sample the employee(s) expected to have the 
highest airborne exposure to beryllium.
    (iv) If initial monitoring indicates that airborne exposure is 
below the action level and at or below the STEL, the employer may 
discontinue monitoring for those employees whose airborne exposure is 
represented by such monitoring.
    (v) Where the most recent exposure monitoring indicates that 
airborne exposure is at or above the action level but at or below the 
TWA PEL, the employer must repeat such monitoring within six months of 
the most recent monitoring.
    (vi) Where the most recent exposure monitoring indicates that 
airborne exposure is above the TWA PEL, the employer must repeat such 
monitoring within three months of the most recent 8-hour TWA exposure 
monitoring.
    (vii) Where the most recent (non-initial) exposure monitoring 
indicates that airborne exposure is below the action level, the 
employer must repeat such monitoring within six months of the most 
recent monitoring until two consecutive measurements, taken 7 or more 
days apart, are below the action level, at which time the employer may 
discontinue 8-hour TWA exposure monitoring for those employees whose 
exposure is represented by such monitoring, except as otherwise 
provided in paragraph (d)(4) of this standard.
    (viii) Where the most recent exposure monitoring indicates that 
airborne exposure is above the STEL, the employer must repeat such 
monitoring within three months of the most recent short-term exposure 
monitoring until two consecutive measurements, taken 7 or more days 
apart, are below the STEL, at which time the employer may discontinue 
short-term exposure monitoring for those employees whose exposure is 
represented by such monitoring, except as otherwise provided in 
paragraph (d)(4) of this standard.
    (4) Reassessment of exposure. The employer must reassess airborne 
exposure whenever a change in the production, process, control 
equipment, personnel, or work practices may reasonably be expected to 
result in new or additional airborne exposure at or above the action 
level or STEL, or when the employer has any reason to believe that new 
or additional airborne exposure at or above the action level or STEL 
has occurred.
    (5) Methods of sample analysis. The employer must ensure that all 
air monitoring samples used to satisfy the monitoring requirements of 
paragraph (d) of this standard are evaluated by a laboratory that can 
measure beryllium to an accuracy of plus or minus 25 percent within a 
statistical confidence level of 95 percent for airborne concentrations 
at or above the action level.
    (6) Employee notification of assessment results. (i) Within 15 
working days after completing an exposure assessment in accordance with 
paragraph (d) of this standard, the employer must notify each employee 
whose airborne exposure is represented by the assessment of the results 
of that assessment individually in writing or post the results in an 
appropriate location that is accessible to each of these employees.
    (ii) Whenever an exposure assessment indicates that airborne 
exposure is above the TWA PEL or STEL, the employer must describe in 
the written notification the corrective action being taken to reduce 
airborne exposure to or below the exposure limit(s) exceeded where 
feasible corrective action exists but had not been implemented when the 
monitoring was conducted.
    (7) Observation of monitoring. (i) The employer must provide an 
opportunity to observe any exposure monitoring required by this 
standard to each employee whose airborne exposure is measured or 
represented by the monitoring and each employee's representative(s).
    (ii) When observation of monitoring requires entry into an area 
where the use of personal protective clothing or equipment (which may 
include respirators) is required, the employer must provide each 
observer with appropriate personal protective clothing and equipment at 
no cost to the observer and must ensure that each observer uses such 
clothing and equipment.
    (iii) The employer must ensure that each observer follows all other 
applicable safety and health procedures.
    (e) Regulated areas--(1) Establishment. The employer must establish 
and maintain a regulated area wherever employees are, or can reasonably 
be expected to be, exposed to airborne beryllium at levels above the 
TWA PEL or STEL.
    (2) Demarcation. The employer must identify each regulated area in 
accordance with paragraph (m)(2) of this standard.
    (3) Access. The employer must limit access to regulated areas to:
    (i) Persons the employer authorizes or requires to be in a 
regulated area to perform work duties;
    (ii) Persons entering a regulated area as designated 
representatives of employees for the purpose of exercising the right to 
observe exposure monitoring procedures under paragraph (d)(7) of this 
standard; and
    (iii) Persons authorized by law to be in a regulated area.
    (4) Provision of personal protective clothing and equipment, 
including respirators. The employer must provide and ensure that each 
employee entering a regulated area uses:
    (i) Respiratory protection in accordance with paragraph (g) of this 
standard; and

[[Page 2746]]

    (ii) Personal protective clothing and equipment in accordance with 
paragraph (h) of this standard.
    (f) Methods of compliance--(1) Written exposure control plan. (i) 
The employer must establish, implement, and maintain a written exposure 
control plan, which must contain:
    (A) A list of operations and job titles reasonably expected to 
involve airborne exposure to or dermal contact with beryllium;
    (B) A list of operations and job titles reasonably expected to 
involve airborne exposure at or above the action level;
    (C) A list of operations and job titles reasonably expected to 
involve airborne exposure above the TWA PEL or STEL;
    (D) Procedures for minimizing cross-contamination;
    (E) Procedures for minimizing the migration of beryllium within or 
to locations outside the workplace;
    (F) A list of engineering controls, work practices, and respiratory 
protection required by paragraph (f)(2) of this standard;
    (G) A list of personal protective clothing and equipment required 
by paragraph (h) of this standard; and
    (H) Procedures for removing, laundering, storing, cleaning, 
repairing, and disposing of beryllium-contaminated personal protective 
clothing and equipment, including respirators.
    (ii) The employer must review and evaluate the effectiveness of 
each written exposure control plan at least annually and update it, as 
necessary, when:
    (A) Any change in production processes, materials, equipment, 
personnel, work practices, or control methods results, or can 
reasonably be expected to result, in new or additional airborne 
exposure to beryllium;
    (B) The employer is notified that an employee is eligible for 
medical removal in accordance with paragraph (l)(1) of this standard, 
referred for evaluation at a CBD diagnostic center, or shows signs or 
symptoms associated with airborne exposure to or dermal contact with 
beryllium; or
    (C) The employer has any reason to believe that new or additional 
airborne exposure is occurring or will occur.
    (iii) The employer must make a copy of the written exposure control 
plan accessible to each employee who is, or can reasonably be expected 
to be, exposed to airborne beryllium in accordance with OSHA's Access 
to Employee Exposure and Medical Records (Records Access) standard (29 
CFR 1910.1020(e)).
    (2) Engineering and work practice controls. (i) Where exposures 
are, or can reasonably be expected to be, at or above the action level, 
the employer must ensure that at least one of the following is in place 
to reduce airborne exposure:
    (A) Material and/or process substitution;
    (B) Isolation, such as ventilated partial or full enclosures;
    (C) Local exhaust ventilation, such as at the points of operation, 
material handling, and transfer; or
    (D) Process control, such as wet methods and automation.
    (ii) An employer is exempt from using the controls listed in 
paragraph (f)(2)(i) of this standard to the extent that:
    (A) The employer can establish that such controls are not feasible; 
or
    (B) The employer can demonstrate that airborne exposure is below 
the action level, using no fewer than two representative personal 
breathing zone samples taken at least 7 days apart, for each affected 
operation.
    (iii) If airborne exposure exceeds the TWA PEL or STEL after 
implementing the control(s) required by (f)(2)(i), the employer must 
implement additional or enhanced engineering and work practice controls 
to reduce airborne exposure to or below the exposure limit(s) exceeded.
    (iv) Wherever the employer demonstrates that it is not feasible to 
reduce airborne exposure to or below the PELs by the engineering and 
work practice controls required by paragraphs (f)(2)(i) and 
(f)(2)(iii), the employer must implement and maintain engineering and 
work practice controls to reduce airborne exposure to the lowest levels 
feasible and supplement these controls by using respiratory protection 
in accordance with paragraph (g) of this standard.
    (3) Prohibition of rotation. The employer must not rotate employees 
to different jobs to achieve compliance with the PELs.
    (g) Respiratory protection--(1) General. The employer must provide 
respiratory protection at no cost to the employee and ensure that each 
employee uses respiratory protection:
    (i) During periods necessary to install or implement feasible 
engineering and work practice controls where airborne exposure exceeds, 
or can reasonably be expected to exceed, the TWA PEL or STEL;
    (ii) During operations, including maintenance and repair activities 
and non-routine tasks, when engineering and work practice controls are 
not feasible and airborne exposure exceeds, or can reasonably be 
expected to exceed, the TWA PEL or STEL;
    (iii) During operations for which an employer has implemented all 
feasible engineering and work practice controls when such controls are 
not sufficient to reduce airborne exposure to or below the TWA PEL or 
STEL;
    (iv) During emergencies; and
    (v) When an employee who is eligible for medical removal under 
paragraph (l)(1) chooses to remain in a job with airborne exposure at 
or above the action level, as permitted by paragraph (l)(2)(ii).
    (2) Respiratory protection program. Where this standard requires an 
employer to provide respiratory protection, the selection and use of 
such respiratory protection must be in accordance with the Respiratory 
Protection standard (29 CFR 1910.134).
    (3) The employer must provide at no cost to the employee a powered 
air-purifying respirator (PAPR) instead of a negative pressure 
respirator when
    (i) Respiratory protection is required by this standard;
    (ii) An employee entitled to such respiratory protection requests a 
PAPR; and
    (iii) The PAPR provides adequate protection to the employee in 
accordance with paragraph (g)(2) of this standard.
    (h) Personal protective clothing and equipment--(1) Provision and 
use. The employer must provide at no cost, and ensure that each 
employee uses, appropriate personal protective clothing and equipment 
in accordance with the written exposure control plan required under 
paragraph (f)(1) of this standard and OSHA's Personal Protective 
Equipment standards for shipyards (subpart I of this part):
    (i) Where airborne exposure exceeds, or can reasonably be expected 
to exceed, the TWA PEL or STEL; or
    (ii) Where there is a reasonable expectation of dermal contact with 
beryllium.
    (2) Removal and storage. (i) The employer must ensure that each 
employee removes all beryllium-contaminated personal protective 
clothing and equipment at the end of the work shift, at the completion 
of tasks involving beryllium, or when personal protective clothing or 
equipment becomes visibly contaminated with beryllium, whichever comes 
first.
    (ii) The employer must ensure that each employee removes beryllium-
contaminated personal protective clothing and equipment as specified in 
the written exposure control plan required by paragraph (f)(1) of this 
standard.
    (iii) The employer must ensure that each employee stores and keeps 
beryllium-contaminated personal

[[Page 2747]]

protective clothing and equipment separate from street clothing and 
that storage facilities prevent cross-contamination as specified in the 
written exposure control plan required by paragraph (f)(1) of this 
standard.
    (iv) The employer must ensure that no employee removes beryllium-
contaminated personal protective clothing or equipment from the 
workplace, except for employees authorized to do so for the purposes of 
laundering, cleaning, maintaining or disposing of beryllium-
contaminated personal protective clothing and equipment at an 
appropriate location or facility away from the workplace.
    (v) When personal protective clothing or equipment required by this 
standard is removed from the workplace for laundering, cleaning, 
maintenance or disposal, the employer must ensure that personal 
protective clothing and equipment are stored and transported in sealed 
bags or other closed containers that are impermeable and are labeled in 
accordance with paragraph (m)(3) of this standard and the HCS (29 CFR 
1910.1200).
    (3) Cleaning and replacement. (i) The employer must ensure that all 
reusable personal protective clothing and equipment required by this 
standard is cleaned, laundered, repaired, and replaced as needed to 
maintain its effectiveness.
    (ii) The employer must ensure that beryllium is not removed from 
personal protective clothing and equipment by blowing, shaking or any 
other means that disperses beryllium into the air.
    (iii) The employer must inform in writing the persons or the 
business entities who launder, clean or repair the personal protective 
clothing or equipment required by this standard of the potentially 
harmful effects of airborne exposure to and dermal contact with 
beryllium and that the personal protective clothing and equipment must 
be handled in accordance with this standard.
    (i) Hygiene areas and practices--(1) General. For each employee 
required to use personal protective clothing or equipment by this 
standard, the employer must:
    (i) Provide readily accessible washing facilities in accordance 
with this standard and the Sanitation standard (Sec.  1915.88) to 
remove beryllium from the hands, face, and neck; and
    (ii) Ensure that employees who have dermal contact with beryllium 
wash any exposed skin at the end of the activity, process, or work 
shift and prior to eating, drinking, smoking, chewing tobacco or gum, 
applying cosmetics, or using the toilet.
    (2) Change rooms. In addition to the requirements of paragraph 
(i)(1)(i) of this standard, the employer must provide employees 
required to use personal protective clothing by this standard with a 
designated change room in accordance with the Sanitation standard 
(Sec.  1915.88) where employees are required to remove their personal 
clothing.
    (3) Eating and drinking areas. Wherever the employer allows 
employees to consume food or beverages at a worksite where beryllium is 
present, the employer must ensure that:
    (i) Surfaces in eating and drinking areas are as free as 
practicable of beryllium;
    (ii) No employees enter any eating or drinking area with personal 
protective clothing or equipment unless, prior to entry, surface 
beryllium has been removed from the clothing or equipment by methods 
that do not disperse beryllium into the air or onto an employee's body; 
and
    (iii) Eating and drinking facilities provided by the employer are 
in accordance with the Sanitation standard (29 CFR 1915.88).
    (4) Prohibited activities. The employer must ensure that no 
employees eat, drink, smoke, chew tobacco or gum, or apply cosmetics in 
regulated areas.
    (j) Housekeeping--(1) General. (i) When cleaning beryllium-
contaminated areas, the employer must follow the written exposure 
control plan required under paragraph (f)(1) of this standard; and
    (ii) The employer must ensure that all spills and emergency 
releases of beryllium are cleaned up promptly and in accordance with 
the written exposure control plan required under paragraph (f)(1).
    (2) Cleaning methods. (i) When cleaning beryllium-contaminated 
areas, the employer must ensure the use of HEPA-filtered vacuuming or 
other methods that minimize the likelihood and level of airborne 
exposure.
    (ii) The employer must not allow dry sweeping or brushing for 
cleaning in beryllium-contaminated areas unless HEPA-filtered vacuuming 
or other methods that minimize the likelihood and level of airborne 
exposure are not safe or effective.
    (iii) The employer must not allow the use of compressed air for 
cleaning in beryllium-contaminated areas unless the compressed air is 
used in conjunction with a ventilation system designed to capture the 
particulates made airborne by the use of compressed air.
    (iv) Where employees use dry sweeping, brushing, or compressed air 
to clean in beryllium-contaminated areas, the employer must provide, 
and ensure that each employee uses, respiratory protection and personal 
protective clothing and equipment in accordance with paragraphs (g) and 
(h) of this standard.
    (v) The employer must ensure that cleaning equipment is handled and 
maintained in a manner that minimizes the likelihood and level of 
airborne exposure and the re-entrainment of airborne beryllium in the 
workplace.
    (3) Disposal. When the employer transfers materials containing 
beryllium to another party for use or disposal, the employer must 
provide the recipient with a copy of the warning described in paragraph 
(m)(3) of this standard.
    (k) Medical surveillance--(1) General. (i) The employer must make 
medical surveillance required by this paragraph available at no cost to 
the employee, and at a reasonable time and place, to each employee:
    (A) Who is or is reasonably expected to be exposed at or above the 
action level for more than 30 days per year;
    (B) Who shows signs or symptoms of CBD or other beryllium-related 
health effects;
    (C) Who is exposed to beryllium during an emergency; or
    (D) Whose most recent written medical opinion required by paragraph 
(k)(6) or (k)(7) recommends periodic medical surveillance.
    (ii) The employer must ensure that all medical examinations and 
procedures required by this standard are performed by, or under the 
direction of, a licensed physician.
    (2) Frequency. The employer must provide a medical examination:
    (i) Within 30 days after determining that:
    (A) An employee meets the criteria of paragraph (k)(1)(i)(A) of 
this standard, unless the employee has received a medical examination, 
provided in accordance with this standard, within the last two years; 
or
    (B) An employee meets the criteria of paragraph (k)(1)(i)(B) or (C) 
of this standard.
    (ii) At least every two years thereafter for each employee who 
continues to meet the criteria of paragraph (k)(1)(i)(A), (B), or (D) 
of this standard.
    (iii) At the termination of employment for each employee who meets 
any of the criteria of paragraph (k)(1)(i) of this standard at the time 
the employee's employment terminates, unless an examination has been 
provided in accordance with this standard during the six months prior 
to the date of termination.

[[Page 2748]]

    (3) Contents of examination. (i) The employer must ensure that the 
PLHCP conducting the examination advises the employee of the risks and 
benefits of participating in the medical surveillance program and the 
employee's right to opt out of any or all parts of the medical 
examination.
    (ii) The employer must ensure that the employee is offered a 
medical examination that includes:
    (A) A medical and work history, with emphasis on past and present 
airborne exposure to or dermal contact with beryllium, smoking history, 
and any history of respiratory system dysfunction;
    (B) A physical examination with emphasis on the respiratory system;
    (C) A physical examination for skin rashes;
    (D) Pulmonary function tests, performed in accordance with the 
guidelines established by the American Thoracic Society including 
forced vital capacity (FVC) and forced expiratory volume in one second 
(FEV1);
    (E) A standardized BeLPT or equivalent test, upon the first 
examination and at least every two years thereafter, unless the 
employee is confirmed positive. If the results of the BeLPT are other 
than normal, a follow-up BeLPT must be offered within 30 days, unless 
the employee has been confirmed positive. Samples must be analyzed in a 
laboratory certified under the College of American Pathologists/
Clinical Laboratory Improvement Amendments (CLIA) guidelines to perform 
the BeLPT.
    (F) A low dose computed tomography (LDCT) scan, when recommended by 
the PLHCP after considering the employee's history of exposure to 
beryllium along with other risk factors, such as smoking history, 
family medical history, sex, age, and presence of existing lung 
disease; and
    (G) Any other test deemed appropriate by the PLHCP.
    (4) Information provided to the PLHCP. The employer must ensure 
that the examining PLHCP (and the agreed-upon CBD diagnostic center, if 
an evaluation is required under paragraph (k)(7) of this standard) has 
a copy of this standard and must provide the following information, if 
known:
    (i) A description of the employee's former and current duties that 
relate to the employee's airborne exposure to and dermal contact with 
beryllium;
    (ii) The employee's former and current levels of airborne exposure;
    (iii) A description of any personal protective clothing and 
equipment, including respirators, used by the employee, including when 
and for how long the employee has used that personal protective 
clothing and equipment; and
    (iv) Information from records of employment-related medical 
examinations previously provided to the employee, currently within the 
control of the employer, after obtaining written consent from the 
employee.
    (5) Licensed physician's written medical report for the employee. 
The employer must ensure that the employee receives a written medical 
report from the licensed physician within 45 days of the examination 
(including any follow-up BeLPT required under paragraph (k)(3)(ii)(E) 
of this standard) and that the PLHCP explains the results of the 
examination to the employee. The written medical report must contain:
    (i) A statement indicating the results of the medical examination, 
including the licensed physician's opinion as to whether the employee 
has
    (A) Any detected medical condition, such as CBD or beryllium 
sensitization (i.e., the employee is confirmed positive, as defined in 
paragraph (b) of this standard), that may place the employee at 
increased risk from further airborne exposure, and
    (B) Any medical conditions related to airborne exposure that 
require further evaluation or treatment.
    (ii) Any recommendations on:
    (A) The employee's use of respirators, protective clothing, or 
equipment; or
    (B) Limitations on the employee's airborne exposure to beryllium.
    (iii) If the employee is confirmed positive or diagnosed with CBD 
or if the licensed physician otherwise deems it appropriate, the 
written report must also contain a referral for an evaluation at a CBD 
diagnostic center.
    (iv) If the employee is confirmed positive or diagnosed with CBD 
the written report must also contain a recommendation for continued 
periodic medical surveillance.
    (v) If the employee is confirmed positive or diagnosed with CBD the 
written report must also contain a recommendation for medical removal 
from airborne exposure to beryllium, as described in paragraph (l).
    (6) Licensed physician's written medical opinion for the employer. 
(i) The employer must obtain a written medical opinion from the 
licensed physician within 45 days of the medical examination (including 
any follow-up BeLPT required under paragraph (k)(3)(ii)(E) of this 
standard). The written medical opinion must contain only the following:
    (A) The date of the examination;
    (B) A statement that the examination has met the requirements of 
this standard;
    (C) Any recommended limitations on the employee's use of 
respirators, protective clothing, or equipment; and
    (D) A statement that the PLHCP has explained the results of the 
medical examination to the employee, including any tests conducted, any 
medical conditions related to airborne exposure that require further 
evaluation or treatment, and any special provisions for use of personal 
protective clothing or equipment;
    (ii) If the employee provides written authorization, the written 
opinion must also contain any recommended limitations on the employee's 
airborne exposure to beryllium.
    (iii) If the employee is confirmed positive or diagnosed with CBD 
or if the licensed physician otherwise deems it appropriate, and the 
employee provides written authorization, the written opinion must also 
contain a referral for an evaluation at a CBD diagnostic center.
    (iv) If the employee is confirmed positive or diagnosed with CBD 
and the employee provides written authorization, the written opinion 
must also contain a recommendation for continued periodic medical 
surveillance.
    (v) If the employee is confirmed positive or diagnosed with CBD and 
the employee provides written authorization, the written opinion must 
also contain a recommendation for medical removal from airborne 
exposure to beryllium, as described in paragraph (l).
    (vi) The employer must ensure that each employee receives a copy of 
the written medical opinion described in paragraph (k)(6) of this 
standard within 45 days of any medical examination (including any 
follow-up BeLPT required under paragraph (k)(3)(ii)(E) of this 
standard) performed for that employee.
    (7) CBD diagnostic center. (i) The employer must provide an 
evaluation at no cost to the employee at a CBD diagnostic center that 
is mutually agreed upon by the employer and the employee. The 
examination must be provided within 30 days of:
    (A) The employer's receipt of a physician's written medical opinion 
to the employer that recommends referral to a CBD diagnostic center; or
    (B) The employee presenting to the employer a physician's written 
medical report indicating that the employee has been confirmed positive 
or diagnosed with CBD, or recommending referral to a CBD diagnostic 
center.

[[Page 2749]]

    (ii) The employer must ensure that the employee receives a written 
medical report from the CBD diagnostic center that contains all the 
information required in paragraph (k)(5)(i), (ii), (iv), and (v) and 
that the PLHCP explains the results of the examination to the employee 
within 30 days of the examination.
    (iii) The employer must obtain a written medical opinion from the 
CBD diagnostic center within 30 days of the medical examination. The 
written medical opinion must contain only the information in paragraphs 
(k)(6)(i), as applicable, unless the employee provides written 
authorization to release additional information. If the employee 
provides written authorization, the written opinion must also contain 
the information from paragraphs (k)(6)(ii), (iv), and (v), if 
applicable.
    (iv) The employer must ensure that each employee receives a copy of 
the written medical opinion from the CBD diagnostic center described in 
paragraph (k)(7) of this standard within 30 days of any medical 
examination performed for that employee.
    (v) After an employee has received the initial clinical evaluation 
at a CBD diagnostic center described in paragraph (k)(7)(i) of this 
standard, the employee may choose to have any subsequent medical 
examinations for which the employee is eligible under paragraph (k) of 
this standard performed at a CBD diagnostic center mutually agreed upon 
by the employer and the employee, and the employer must provide such 
examinations at no cost to the employee.
    (l) Medical removal. (1) An employee is eligible for medical 
removal, if the employee works in a job with airborne exposure at or 
above the action level and either:
    (i) The employee provides the employer with:
    (A) A written medical report indicating a confirmed positive 
finding or CBD diagnosis; or
    (B) A written medical report recommending removal from airborne 
exposure to beryllium in accordance with paragraph (k)(5)(v) or 
(k)(7)(ii) of this standard; or
    (ii) The employer receives a written medical opinion recommending 
removal from airborne exposure to beryllium in accordance with 
paragraph (k)(6)(v) or (k)(7)(iii) of this standard.
    (2) If an employee is eligible for medical removal, the employer 
must provide the employee with the employee's choice of:
    (i) Removal as described in paragraph (l)(3) of this standard; or
    (ii) Remaining in a job with airborne exposure at or above the 
action level, provided that the employer provides, and ensures that the 
employee uses, respiratory protection that complies with paragraph (g) 
of this standard whenever airborne exposures are at or above the action 
level.
    (3) If the employee chooses removal:
    (i) If a comparable job is available where airborne exposures to 
beryllium are below the action level, and the employee is qualified for 
that job or can be trained within one month, the employer must remove 
the employee to that job. The employer must maintain for six months 
from the time of removal the employee's base earnings, seniority, and 
other rights and benefits that existed at the time of removal.
    (ii) If comparable work is not available, the employer must 
maintain the employee's base earnings, seniority, and other rights and 
benefits that existed at the time of removal for six months or until 
such time that comparable work described in paragraph (l)(3)(i) becomes 
available, whichever comes first.
    (4) The employer's obligation to provide medical removal protection 
benefits to a removed employee shall be reduced to the extent that the 
employee receives compensation for earnings lost during the period of 
removal from a publicly or employer-funded compensation program, or 
receives income from another employer made possible by virtue of the 
employee's removal.
    (m) Communication of hazards--(1) General. (i) Chemical 
manufacturers, importers, distributors, and employers must comply with 
all requirements of the HCS (29 CFR 1910.1200) for beryllium.
    (ii) Employers must include beryllium in the hazard communication 
program established to comply with the HCS. Employers must ensure that 
each employee has access to labels on containers of beryllium and to 
safety data sheets, and is trained in accordance with the requirements 
of the HCS (29 CFR 1910.1200) and paragraph (m)(4) of this standard.
    (2) Warning signs. (i) Posting. The employer must provide and 
display warning signs at each approach to a regulated area so that each 
employee is able to read and understand the signs and take necessary 
protective steps before entering the area.
    (ii) Sign specification. (A) The employer must ensure that the 
warning signs required by paragraph (m)(2)(i) of this standard are 
legible and readily visible.
    (B) The employer must ensure each warning sign required by 
paragraph (m)(2)(i) of this standard bears the following legend:

DANGER
REGULATED AREA
BERYLLIUM
MAY CAUSE CANCER
CAUSES DAMAGE TO LUNGS
AUTHORIZED PERSONNEL ONLY
WEAR RESPIRATORY PROTECTION AND PERSONAL PROTECTIVE CLOTHING AND 
EQUIPMENT IN THIS AREA

    (3) Warning labels. Consistent with the HCS (29 CFR 1910.1200), the 
employer must label each bag and container of clothing, equipment, and 
materials contaminated with beryllium, and must, at a minimum, include 
the following on the label:

DANGER
CONTAINS BERYLLIUM
MAY CAUSE CANCER
CAUSES DAMAGE TO LUNGS
AVOID CREATING DUST
DO NOT GET ON SKIN

    (4) Employee information and training. (i) For each employee who 
has, or can reasonably be expected to have, airborne exposure to or 
dermal contact with beryllium:
    (A) The employer must provide information and training in 
accordance with the HCS (29 CFR 1910.1200(h));
    (B) The employer must provide initial training to each employee by 
the time of initial assignment; and
    (C) The employer must repeat the training required under this 
standard annually for each employee.
    (ii) The employer must ensure that each employee who is, or can 
reasonably be expected to be, exposed to airborne beryllium can 
demonstrate knowledge and understanding of the following:
    (A) The health hazards associated with airborne exposure to and 
contact with beryllium, including the signs and symptoms of CBD;
    (B) The written exposure control plan, with emphasis on the 
location(s) of any regulated areas, and the specific nature of 
operations that could result in airborne exposure, especially airborne 
exposure above the TWA PEL or STEL;
    (C) The purpose, proper selection, fitting, proper use, and 
limitations of personal protective clothing and equipment, including 
respirators;
    (D) Applicable emergency procedures;
    (E) Measures employees can take to protect themselves from airborne 
exposure to and contact with beryllium, including personal hygiene 
practices;
    (F) The purpose and a description of the medical surveillance 
program required by paragraph (k) of this

[[Page 2750]]

standard including risks and benefits of each test to be offered;
    (G) The purpose and a description of the medical removal protection 
provided under paragraph (l) of this standard;
    (H) The contents of the standard; and
    (I) The employee's right of access to records under the Records 
Access standard (29 CFR 1910.1020).
    (iii) When a workplace change (such as modification of equipment, 
tasks, or procedures) results in new or increased airborne exposure 
that exceeds, or can reasonably be expected to exceed, either the TWA 
PEL or the STEL, the employer must provide additional training to those 
employees affected by the change in airborne exposure.
    (iv) Employee information. The employer must make a copy of this 
standard and its appendices readily available at no cost to each 
employee and designated employee representative(s).
    (n) Recordkeeping--(1) Air monitoring data. (i) The employer must 
make and maintain a record of all exposure measurements taken to assess 
airborne exposure as prescribed in paragraph (d) of this standard.
    (ii) This record must include at least the following information:
    (A) The date of measurement for each sample taken;
    (B) The task that is being monitored;
    (C) The sampling and analytical methods used and evidence of their 
accuracy;
    (D) The number, duration, and results of samples taken;
    (E) The type of personal protective clothing and equipment, 
including respirators, worn by monitored employees at the time of 
monitoring; and
    (F) The name, social security number, and job classification of 
each employee represented by the monitoring, indicating which employees 
were actually monitored.
    (iii) The employer must ensure that exposure records are maintained 
and made available in accordance with the Records Access standard (29 
CFR 1910.1020).
    (2) Objective data. (i) Where an employer uses objective data to 
satisfy the exposure assessment requirements under paragraph (d)(2) of 
this standard, the employer must make and maintain a record of the 
objective data relied upon.
    (ii) This record must include at least the following information:
    (A) The data relied upon;
    (B) The beryllium-containing material in question;
    (C) The source of the objective data;
    (D) A description of the process, task, or activity on which the 
objective data were based; and
    (E) Other data relevant to the process, task, activity, material, 
or airborne exposure on which the objective data were based.
    (iii) The employer must ensure that objective data are maintained 
and made available in accordance with the Records Access standard (29 
CFR 1910.1020).
    (3) Medical surveillance. (i) The employer must make and maintain a 
record for each employee covered by medical surveillance under 
paragraph (k) of this standard.
    (ii) The record must include the following information about each 
employee:
    (A) Name, social security number, and job classification;
    (B) A copy of all licensed physicians' written medical opinions for 
each employee; and
    (C) A copy of the information provided to the PLHCP as required by 
paragraph (k)(4) of this standard.
    (iii) The employer must ensure that medical records are maintained 
and made available in accordance with the Records Access standard (29 
CFR 1910.1020).
    (4) Training. (i) At the completion of any training required by 
this standard, the employer must prepare a record that indicates the 
name, social security number, and job classification of each employee 
trained, the date the training was completed, and the topic of the 
training.
    (ii) This record must be maintained for three years after the 
completion of training.
    (5) Access to records. Upon request, the employer must make all 
records maintained as a requirement of this standard available for 
examination and copying to the Assistant Secretary, the Director, each 
employee, and each employee's designated representative(s) in 
accordance the Records Access standard (29 CFR 1910.1020).
    (6) Transfer of records. The employer must comply with the 
requirements involving transfer of records set forth in the Records 
Access standard (29 CFR 1910.1020).
    (o) Dates--(1) Effective date. This standard shall become effective 
March 10, 2017.
    (2) Compliance dates. All obligations of this standard commence and 
become enforceable on March 12, 2018, except:
    (i) Change rooms required by paragraph (i) of this standard must be 
provided by March 11, 2019; and
    (ii) Engineering controls required by paragraph (f) of this 
standard must be implemented by March 10, 2020.

PART 1926--SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION

Subpart D--Occupational Health and Environmental Controls

0
7. The authority citation for subpart D of part 1926 is revised to read 
as follows:

     Authority: 40 U.S.C. 3704; 29 U.S.C. 653, 655, 657; Secretary 
of Labor's Order No. 12-71 (36 FR 8754), 8-76 (41 FR 25059), 9-83 
(48 FR 35736), 1-90 (55 FR 9033), 6-96 (62 FR 111), 3-2000 (65 FR 
50017), 5-2002 (67 FR 65008), 5-2007 (72 FR 31160), 4-2010 (75 FR 
55355), or 1-2012 (77 FR 3912); 29 CFR part 1911; and 5 U.S.C. 553, 
as applicable.
    Section 1926.61 also issued under 49 U.S.C. 5101 et seq.
    Section 1926.62 also issued under 42 U.S.C. 4853.
    Section 1926.65 also issued under 126 of Public Law 99-499, 100 
Stat. 1613.

0
8. In Sec.  1926.55, amend appendix A by revising the entry for 
``Beryllium and beryllium compounds (as Be)'' and adding footnote q.
    The revisions read as follows:


Sec.  1926.55  Gases, vapors, fumes, dusts, and mists.

* * * * *

Appendix A to Sec.  1926.55--1970 American Conference of Governmental 
Industrial Hygienists' Threshold Limit Values of Airborne Contaminants

                        Threshold Limit Values of Airborne Contaminants for Construction
----------------------------------------------------------------------------------------------------------------
                 Substance                      CAS No.\d\         ppm a*          mg/m 3b      Skin designation
----------------------------------------------------------------------------------------------------------------
 
                                                  * * * * * * *
Beryllium and beryllium compounds (as Be);        7440-41-7   ...............           0.002   ................
 see 1926.1124 \(q)\.......................
 

[[Page 2751]]

 
                                                  * * * * * * *
----------------------------------------------------------------------------------------------------------------
\a\ Parts of vapor or gas per million parts of contaminated air by volume at 25 [deg]C and 760 torr.
\b\ Milligrams of substance per cubic meter of air. When entry is in this column only, the value is exact; when
  listed with a ppm entry, it is approximate.
 * * * * * * *
\d\ The CAS number is for information only. Enforcement is based on the substance name. For an entry covering
  more than one metal compound, measured as the metal, the CAS number for the metal is given--not CAS numbers
  for the individual compounds.
 * * * * * * *
\q\ This standard applies to any operations or sectors for which the beryllium standard, 1926.1124, is stayed or
  otherwise is not in effect.

* * * * *

Subpart Z--Toxic and Hazardous Substances

0
9. The authority for subpart Z of part 1926 is revised to read as 
follows:

    Authority: 40 U.S.C. 3704; 29 U.S.C. 653, 655, 657; Secretary of 
Labor's Order No. 12-71 (36 FR 8754), 8-76 (41 FR 25059), 9-83 (48 
FR 35736), 1-90 (55 FR 9033), 6-96 (62 FR 111), 3-2000 (65 FR 
50017), 5-2002 (67 FR 65008), 5-2007 (72 FR 31160), 4-2010 (75 FR 
55355), or 1-2012 (77 FR 3912); 29 CFR part 1911; and 5 U.S.C. 553, 
as applicable.

0
10. Add Sec.  1926.1124 to read as follows:


Sec.  1926.1124  Beryllium.

    (a) Scope and application. (1) This standard applies to 
occupational exposure to beryllium in all forms, compounds, and 
mixtures in construction, except those articles and materials exempted 
by paragraphs (a)(2) and (a)(3) of this standard.
    (2) This standard does not apply to articles, as defined in the 
Hazard Communication standard (HCS) (29 CFR 1910.1200(c)), that contain 
beryllium and that the employer does not process.
    (3) This standard does not apply to materials containing less than 
0.1% beryllium by weight where the employer has objective data 
demonstrating that employee exposure to beryllium will remain below the 
action level as an 8-hour TWA under any foreseeable conditions.
    (b) Definitions. As used in this standard:
    Action level means a concentration of airborne beryllium of 0.1 
micrograms per cubic meter of air ([mu]g/m\3\) calculated as an 8-hour 
time-weighted average (TWA).
    Airborne exposure and airborne exposure to beryllium mean the 
exposure to airborne beryllium that would occur if the employee were 
not using a respirator.
    Assistant Secretary means the Assistant Secretary of Labor for 
Occupational Safety and Health, United States Department of Labor, or 
designee.
    Beryllium lymphocyte proliferation test (BeLPT) means the 
measurement of blood lymphocyte proliferation in a laboratory test when 
lymphocytes are challenged with a soluble beryllium salt.
    CBD diagnostic center means a medical diagnostic center that has an 
on-site pulmonary specialist and on-site facilities to perform a 
clinical evaluation for the presence of chronic beryllium disease 
(CBD). This evaluation must include pulmonary function testing (as 
outlined by the American Thoracic Society criteria), bronchoalveolar 
lavage (BAL), and transbronchial biopsy. The CBD diagnostic center must 
also have the capacity to transfer BAL samples to a laboratory for 
appropriate diagnostic testing within 24 hours. The on-site pulmonary 
specialist must be able to interpret the biopsy pathology and the BAL 
diagnostic test results.
    Chronic beryllium disease (CBD) means a chronic lung disease 
associated with airborne exposure to beryllium.
    Competent person means an individual who is capable of identifying 
existing and foreseeable beryllium hazards in the workplace and who has 
authorization to take prompt corrective measures to eliminate or 
minimize them. The competent person must have the knowledge, ability, 
and authority necessary to fulfill the responsibilities set forth in 
paragraph (e) of this standard.
    Confirmed positive means the person tested has beryllium 
sensitization, as indicated by two abnormal BeLPT test results, an 
abnormal and a borderline test result, or three borderline test 
results. It also means the result of a more reliable and accurate test 
indicating a person has been identified as having beryllium 
sensitization.
    Director means the Director of the National Institute for 
Occupational Safety and Health (NIOSH), U.S. Department of Health and 
Human Services, or designee.
    Emergency means any uncontrolled release of airborne beryllium.
    High-efficiency particulate air (HEPA) filter means a filter that 
is at least 99.97 percent efficient in removing particles 0.3 
micrometers in diameter.
    Objective data means information, such as air monitoring data from 
industry-wide surveys or calculations based on the composition of a 
substance, demonstrating airborne exposure to beryllium associated with 
a particular product or material or a specific process, task, or 
activity. The data must reflect workplace conditions closely resembling 
or with a higher airborne exposure potential than the processes, types 
of material, control methods, work practices, and environmental 
conditions in the employer's current operations.
    Physician or other licensed health care professional (PLHCP) means 
an individual whose legally permitted scope of practice (i.e., license, 
registration, or certification) allows the individual to independently 
provide or be delegated the responsibility to provide some or all of 
the health care services required by paragraph (k) of this standard.
    This standard means this beryllium standard, 29 CFR 1926.1124.
    (c) Permissible Exposure Limits (PELs)--(1) Time-weighted average 
(TWA) PEL. The employer must ensure that no employee is exposed to an 
airborne concentration of beryllium in excess of 0.2 [mu]g/m\3\ 
calculated as an 8-hour TWA.
    (2) Short-term exposure limit (STEL). The employer must ensure that 
no employee is exposed to an airborne concentration of beryllium in 
excess of 2.0 [mu]g/m\3\ as determined over a sampling period of 15 
minutes.
    (d) Exposure assessment--(1) General. The employer must assess the 
airborne exposure of each employee who is or may reasonably be expected 
to be exposed to airborne beryllium in accordance with either the 
performance option in paragraph (d)(2) or the scheduled monitoring 
option in paragraph (d)(3) of this standard.
    (2) Performance option. The employer must assess the 8-hour TWA 
exposure and the 15-minute short-term exposure for each employee on the 
basis of any

[[Page 2752]]

combination of air monitoring data and objective data sufficient to 
accurately characterize airborne exposure to beryllium.
    (3) Scheduled monitoring option. (i) The employer must perform 
initial monitoring to assess the 8-hour TWA exposure for each employee 
on the basis of one or more personal breathing zone air samples that 
reflect the airborne exposure of employees on each shift, for each job 
classification, and in each work area.
    (ii) The employer must perform initial monitoring to assess the 
short-term exposure from 15-minute personal breathing zone air samples 
measured in operations that are likely to produce airborne exposure 
above the STEL for each work shift, for each job classification, and in 
each work area.
    (iii) Where several employees perform the same tasks on the same 
shift and in the same work area, the employer may sample a 
representative fraction of these employees in order to meet the 
requirements of paragraph (d)(3). In representative sampling, the 
employer must sample the employee(s) expected to have the highest 
airborne exposure to beryllium.
    (iv) If initial monitoring indicates that airborne exposure is 
below the action level and at or below the STEL, the employer may 
discontinue monitoring for those employees whose airborne exposure is 
represented by such monitoring.
    (v) Where the most recent exposure monitoring indicates that 
airborne exposure is at or above the action level but at or below the 
TWA PEL, the employer must repeat such monitoring within six months of 
the most recent monitoring.
    (vi) Where the most recent exposure monitoring indicates that 
airborne exposure is above the TWA PEL, the employer must repeat such 
monitoring within three months of the most recent 8-hour TWA exposure 
monitoring.
    (vii) Where the most recent (non-initial) exposure monitoring 
indicates that airborne exposure is below the action level, the 
employer must repeat such monitoring within six months of the most 
recent monitoring until two consecutive measurements, taken 7 or more 
days apart, are below the action level, at which time the employer may 
discontinue 8-hour TWA exposure monitoring for those employees whose 
exposure is represented by such monitoring, except as otherwise 
provided in paragraph (d)(4) of this standard.
    (viii) Where the most recent exposure monitoring indicates that 
airborne exposure is above the STEL, the employer must repeat such 
monitoring within three months of the most recent short-term exposure 
monitoring until two consecutive measurements, taken 7 or more days 
apart, are below the STEL, at which time the employer may discontinue 
short-term exposure monitoring for those employees whose exposure is 
represented by such monitoring, except as otherwise provided in 
paragraph (d)(4) of this standard.
    (4) Reassessment of exposure. The employer must reassess airborne 
exposure whenever a change in the production, process, control 
equipment, personnel, or work practices may reasonably be expected to 
result in new or additional airborne exposure at or above the action 
level or STEL, or when the employer has any reason to believe that new 
or additional airborne exposure at or above the action level or STEL 
has occurred.
    (5) Methods of sample analysis. The employer must ensure that all 
air monitoring samples used to satisfy the monitoring requirements of 
paragraph (d) of this standard are evaluated by a laboratory that can 
measure beryllium to an accuracy of plus or minus 25 percent within a 
statistical confidence level of 95 percent for airborne concentrations 
at or above the action level.
    (6) Employee notification of assessment results. (i) Within 15 
working days after completing an exposure assessment in accordance with 
paragraph (d) of this standard, the employer must notify each employee 
whose airborne exposure is represented by the assessment of the results 
of that assessment individually in writing or post the results in an 
appropriate location that is accessible to each of these employees.
    (ii) Whenever an exposure assessment indicates that airborne 
exposure is above the TWA PEL or STEL, the employer must describe in 
the written notification the corrective action being taken to reduce 
airborne exposure to or below the exposure limit(s) exceeded where 
feasible corrective action exists but had not been implemented when the 
monitoring was conducted.
    (7) Observation of monitoring. (i) The employer must provide an 
opportunity to observe any exposure monitoring required by this 
standard to each employee whose airborne exposure is measured or 
represented by the monitoring and each employee's representative(s).
    (ii) When observation of monitoring requires entry into an area 
where the use of personal protective clothing or equipment (which may 
include respirators) is required, the employer must provide each 
observer with appropriate personal protective clothing and equipment at 
no cost to the observer.
    (iii) The employer must ensure that each observer follows all other 
applicable safety and health procedures.
    (e) Competent person. Wherever employees are, or can reasonably be 
expected to be, exposed to airborne beryllium at levels above the TWA 
PEL or STEL, the employer must designate a competent person to
    (1) Make frequent and regular inspections of job sites, materials, 
and equipment;
    (2) Implement the written exposure control plan under paragraph (f) 
of this standard;
    (3) Ensure that all employees use respiratory protection in 
accordance with paragraph (g) of this standard; and
    (4) Ensure that all employees use personal protective clothing and 
equipment in accordance with paragraph (h) of this standard.
    (f) Methods of compliance--(1) Written exposure control plan. (i) 
The employer must establish, implement, and maintain a written exposure 
control plan, which must contain:
    (A) A list of operations and job titles reasonably expected to 
involve airborne exposure to or dermal contact with beryllium;
    (B) A list of operations and job titles reasonably expected to 
involve airborne exposure at or above the action level;
    (C) A list of operations and job titles reasonably expected to 
involve airborne exposure above the TWA PEL or STEL;
    (D) Procedures for minimizing cross-contamination;
    (E) Procedures for minimizing the migration of beryllium within or 
to locations outside the workplace;
    (F) A list of engineering controls, work practices, and respiratory 
protection required by paragraph (f)(2) of this standard;
    (G) A list of personal protective clothing and equipment required 
by paragraph (h) of this standard;
    (H) Procedures for removing, laundering, storing, cleaning, 
repairing, and disposing of beryllium-contaminated personal protective 
clothing and equipment, including respirators; and
    (I) Procedures used to restrict access to work areas when airborne 
exposures are, or can reasonably be expected to be, above the TWA PEL 
or STEL, to minimize the number of employees exposed to airborne 
beryllium and their level of exposure, including exposures generated by 
other employers or sole proprietors.
    (ii) The employer must review and evaluate the effectiveness of 
each

[[Page 2753]]

written exposure control plan at least annually and update it, as 
necessary, when:
    (A) Any change in production processes, materials, equipment, 
personnel, work practices, or control methods results, or can 
reasonably be expected to result, in new or additional airborne 
exposure to beryllium;
    (B) The employer is notified that an employee is eligible for 
medical removal in accordance with paragraph (l)(1) of this standard, 
referred for evaluation at a CBD diagnostic center, or shows signs or 
symptoms associated with airborne exposure to or dermal contact with 
beryllium; or
    (C) The employer has any reason to believe that new or additional 
airborne exposure is occurring or will occur.
    (iii) The employer must make a copy of the written exposure control 
plan accessible to each employee who is, or can reasonably be expected 
to be, exposed to airborne beryllium in accordance with OSHA's Access 
to Employee Exposure and Medical Records (Records Access) standard (29 
CFR 1910.1020(e)).
    (2) Engineering and work practice controls. (i) Where exposures 
are, or can reasonably be expected to be, at or above the action level, 
the employer must ensure that at least one of the following is in place 
to reduce airborne exposure:
    (A) Material and/or process substitution;
    (B) Isolation, such as ventilated partial or full enclosures;
    (C) Local exhaust ventilation, such as at the points of operation, 
material handling, and transfer; or
    (D) Process control, such as wet methods and automation.
    (ii) An employer is exempt from using the controls listed in 
paragraph (f)(2)(i) of this standard to the extent that:
    (A) The employer can establish that such controls are not feasible; 
or
    (B) The employer can demonstrate that airborne exposure is below 
the action level, using no fewer than two representative personal 
breathing zone samples taken at least 7 days apart, for each affected 
operation.
    (iii) If airborne exposure exceeds the TWA PEL or STEL after 
implementing the control(s) required by paragraph (f)(2)(i) of this 
standard, the employer must implement additional or enhanced 
engineering and work practice controls to reduce airborne exposure to 
or below the exposure limit(s) exceeded.
    (iv) Wherever the employer demonstrates that it is not feasible to 
reduce airborne exposure to or below the PELs by the engineering and 
work practice controls required by paragraphs (f)(2)(i) and 
(f)(2)(iii), the employer must implement and maintain engineering and 
work practice controls to reduce airborne exposure to the lowest levels 
feasible and supplement these controls by using respiratory protection 
in accordance with paragraph (g) of this standard.
    (3) Prohibition of rotation. The employer must not rotate employees 
to different jobs to achieve compliance with the PELs.
    (g) Respiratory protection--(1) General. The employer must provide 
respiratory protection at no cost to the employee and ensure that each 
employee uses respiratory protection:
    (i) During periods necessary to install or implement feasible 
engineering and work practice controls where airborne exposure exceeds, 
or can reasonably be expected to exceed, the TWA PEL or STEL;
    (ii) During operations, including maintenance and repair activities 
and non-routine tasks, when engineering and work practice controls are 
not feasible and airborne exposure exceeds, or can reasonably be 
expected to exceed, the TWA PEL or STEL;
    (iii) During operations for which an employer has implemented all 
feasible engineering and work practice controls when such controls are 
not sufficient to reduce airborne exposure to or below the TWA PEL or 
STEL;
    (iv) During emergencies; and
    (v) When an employee who is eligible for medical removal under 
paragraph (l)(1) chooses to remain in a job with airborne exposure at 
or above the action level, as permitted by paragraph (l)(2)(ii) of this 
standard.
    (2) Respiratory protection program. Where this standard requires an 
employer to provide respiratory protection, the selection and use of 
such respiratory protection must be in accordance with the Respiratory 
Protection standard (29 CFR 1910.134).
    (3) The employer must provide at no cost to the employee a powered 
air-purifying respirator (PAPR) instead of a negative pressure 
respirator when
    (i) Respiratory protection is required by this standard;
    (ii) An employee entitled to such respiratory protection requests a 
PAPR; and
    (iii) The PAPR provides adequate protection to the employee in 
accordance with paragraph (g)(2) of this standard.
    (h) Personal protective clothing and equipment--(1) Provision and 
use. The employer must provide at no cost, and ensure that each 
employee uses, appropriate personal protective clothing and equipment 
in accordance with the written exposure control plan required under 
paragraph (f)(1) of this standard and OSHA's Personal Protective and 
Life Saving Equipment standards for construction (29 CFR part 1926 
Subpart E):
    (i) Where airborne exposure exceeds, or can reasonably be expected 
to exceed, the TWA PEL or STEL; or
    (ii) Where there is a reasonable expectation of dermal contact with 
beryllium.
    (2) Removal and storage. (i) The employer must ensure that each 
employee removes all beryllium-contaminated personal protective 
clothing and equipment at the end of the work shift, at the completion 
of tasks involving beryllium, or when personal protective clothing or 
equipment becomes visibly contaminated with beryllium, whichever comes 
first.
    (ii) The employer must ensure that each employee removes beryllium-
contaminated personal protective clothing and equipment as specified in 
the written exposure control plan required by paragraph (f)(1) of this 
standard.
    (iii) The employer must ensure that each employee stores and keeps 
beryllium-contaminated personal protective clothing and equipment 
separate from street clothing and that storage facilities prevent 
cross-contamination as specified in the written exposure control plan 
required by paragraph (f)(1) of this standard.
    (iv) The employer must ensure that no employee removes beryllium-
contaminated personal protective clothing or equipment from the 
workplace, except for employees authorized to do so for the purposes of 
laundering, cleaning, maintaining or disposing of beryllium-
contaminated personal protective clothing and equipment at an 
appropriate location or facility away from the workplace.
    (v) When personal protective clothing or equipment required by this 
standard is removed from the workplace for laundering, cleaning, 
maintenance or disposal, the employer must ensure that personal 
protective clothing and equipment are stored and transported in sealed 
bags or other closed containers that are impermeable and are labeled in 
accordance with paragraph (m)(2) of this standard and the HCS (29 CFR 
1910.1200).
    (3) Cleaning and replacement. (i) The employer must ensure that all 
reusable personal protective clothing and equipment required by this 
standard is cleaned, laundered, repaired, and replaced as needed to 
maintain its effectiveness.

[[Page 2754]]

    (ii) The employer must ensure that beryllium is not removed from 
personal protective clothing and equipment by blowing, shaking or any 
other means that disperses beryllium into the air.
    (iii) The employer must inform in writing the persons or the 
business entities who launder, clean or repair the personal protective 
clothing or equipment required by this standard of the potentially 
harmful effects of airborne exposure to and dermal contact with 
beryllium and that the personal protective clothing and equipment must 
be handled in accordance with this standard.
    (i) Hygiene areas and practices--(1) General. For each employee 
required to use personal protective clothing or equipment by this 
standard, the employer must:
    (i) Provide readily accessible washing facilities in accordance 
with this standard and the Sanitation standard (Sec.  1926.51) to 
remove beryllium from the hands, face, and neck; and
    (ii) Ensure that employees who have dermal contact with beryllium 
wash any exposed skin at the end of the activity, process, or work 
shift and prior to eating, drinking, smoking, chewing tobacco or gum, 
applying cosmetics, or using the toilet.
    (2) Change rooms. In addition to the requirements of paragraph 
(i)(1)(i) of this standard, the employer must provide employees 
required to use personal protective clothing by this standard with a 
designated change room in accordance with this standard and the 
Sanitation standard (Sec.  1926.51) where employees are required to 
remove their personal clothing.
    (3) Eating and drinking areas. Wherever the employer allows 
employees to consume food or beverages at a worksite where beryllium is 
present, the employer must ensure that:
    (i) Surfaces in eating and drinking areas are as free as 
practicable of beryllium;
    (ii) No employees enter any eating or drinking area with personal 
protective clothing or equipment unless, prior to entry, surface 
beryllium has been removed from the clothing or equipment by methods 
that do not disperse beryllium into the air or onto an employee's body; 
and
    (iii) Eating and drinking facilities provided by the employer are 
in accordance with the Sanitation standard (Sec.  1926.51).
    (4) Prohibited activities. The employer must ensure that no 
employees eat, drink, smoke, chew tobacco or gum, or apply cosmetics in 
work areas where there is a reasonable expectation of exposure above 
the TWA PEL or STEL.
    (j) Housekeeping--(1) General. (i) When cleaning beryllium-
contaminated areas, the employer must follow the written exposure 
control plan required under paragraph (f)(1) of this standard;
    (ii) The employer must ensure that all spills and emergency 
releases of beryllium are cleaned up promptly and in accordance with 
the written exposure control plan required under paragraph (f)(1) of 
this standard.
    (2) Cleaning methods. (i) When cleaning beryllium-contaminated 
areas, the employer must ensure the use of HEPA-filtered vacuuming or 
other methods that minimize the likelihood and level of airborne 
exposure.
    (ii) The employer must not allow dry sweeping or brushing for 
cleaning in beryllium-contaminated areas unless HEPA-filtered vacuuming 
or other methods that minimize the likelihood and level of airborne 
exposure are not safe or effective.
    (iii) The employer must not allow the use of compressed air for 
cleaning in beryllium-contaminated areas unless the compressed air is 
used in conjunction with a ventilation system designed to capture the 
particulates made airborne by the use of compressed air.
    (iv) Where employees use dry sweeping, brushing, or compressed air 
to clean in beryllium-contaminated areas, the employer must provide, 
and ensure that each employee uses, respiratory protection and personal 
protective clothing and equipment in accordance with paragraphs (g) and 
(h) of this standard.
    (v) The employer must ensure that cleaning equipment is handled and 
maintained in a manner that minimizes the likelihood and level of 
airborne exposure and the re-entrainment of airborne beryllium in the 
workplace.
    (3) Disposal. When the employer transfers materials containing 
beryllium to another party for use or disposal, the employer must 
provide the recipient with a copy of the warning described in paragraph 
(m)(2) of this standard.
    (k) Medical surveillance--(1) General. (i) The employer must make 
medical surveillance required by this paragraph available at no cost to 
the employee, and at a reasonable time and place, to each employee:
    (A) Who is or is reasonably expected to be exposed at or above the 
action level for more than 30 days per year;
    (B) Who shows signs or symptoms of CBD or other beryllium-related 
health effects;
    (C) Who is exposed to beryllium during an emergency; or
    (D) Whose most recent written medical opinion required by paragraph 
(k)(6) or (k)(7) recommends periodic medical surveillance.
    (ii) The employer must ensure that all medical examinations and 
procedures required by this standard are performed by, or under the 
direction of, a licensed physician.
    (2) Frequency. The employer must provide a medical examination:
    (i) Within 30 days after determining that:
    (A) An employee meets the criteria of paragraph (k)(1)(i)(A), 
unless the employee has received a medical examination, provided in 
accordance with this standard, within the last two years; or
    (B) An employee meets the criteria of paragraph (k)(1)(i)(B) or 
(C).
    (ii) At least every two years thereafter for each employee who 
continues to meet the criteria of paragraph (k)(1)(i)(A), (B), or (D) 
of this standard.
    (iii) At the termination of employment for each employee who meets 
any of the criteria of paragraph (k)(1)(i) of this standard at the time 
the employee's employment terminates, unless an examination has been 
provided in accordance with this standard during the six months prior 
to the date of termination.
    (3) Contents of examination. (i) The employer must ensure that the 
PLHCP conducting the examination advises the employee of the risks and 
benefits of participating in the medical surveillance program and the 
employee's right to opt out of any or all parts of the medical 
examination.
    (ii) The employer must ensure that the employee is offered a 
medical examination that includes:
    (A) A medical and work history, with emphasis on past and present 
airborne exposure to or dermal contact with beryllium, smoking history, 
and any history of respiratory system dysfunction;
    (B) A physical examination with emphasis on the respiratory system;
    (C) A physical examination for skin rashes;
    (D) Pulmonary function tests, performed in accordance with the 
guidelines established by the American Thoracic Society including 
forced vital capacity (FVC) and forced expiratory volume in one second 
(FEV1);
    (E) A standardized BeLPT or equivalent test, upon the first 
examination and at least every two years thereafter, unless the 
employee is confirmed positive. If the results of the BeLPT are other 
than normal, a follow-up BeLPT must be offered within 30 days, unless 
the employee has been

[[Page 2755]]

confirmed positive. Samples must be analyzed in a laboratory certified 
under the College of American Pathologists/Clinical Laboratory 
Improvement Amendments (CLIA) guidelines to perform the BeLPT.
    (F) A low dose computed tomography (LDCT) scan, when recommended by 
the PLHCP after considering the employee's history of exposure to 
beryllium along with other risk factors, such as smoking history, 
family medical history, sex, age, and presence of existing lung 
disease; and
    (G) Any other test deemed appropriate by the PLHCP.
    (4) Information provided to the PLHCP. The employer must ensure 
that the examining PLHCP (and the agreed-upon CBD diagnostic center, if 
an evaluation is required under paragraph (k)(7) of this standard) has 
a copy of this standard and must provide the following information, if 
known:
    (i) A description of the employee's former and current duties that 
relate to the employee's airborne exposure to and dermal contact with 
beryllium;
    (ii) The employee's former and current levels of airborne exposure;
    (iii) A description of any personal protective clothing and 
equipment, including respirators, used by the employee, including when 
and for how long the employee has used that personal protective 
clothing and equipment; and
    (iv) Information from records of employment-related medical 
examinations previously provided to the employee, currently within the 
control of the employer, after obtaining written consent from the 
employee.
    (5) Licensed physician's written medical report for the employee. 
The employer must ensure that the employee receives a written medical 
report from the licensed physician within 45 days of the examination 
(including any follow-up BeLPT required under paragraph (k)(3)(ii)(E) 
of this standard) and that the PLHCP explains the results of the 
examination to the employee. The written medical report must contain:
    (i) A statement indicating the results of the medical examination, 
including the licensed physician's opinion as to whether the employee 
has
    (A) Any detected medical condition, such as CBD or beryllium 
sensitization (i.e., the employee is confirmed positive, as defined in 
paragraph (b) of this standard), that may place the employee at 
increased risk from further airborne exposure, and
    (B) Any medical conditions related to airborne exposure that 
require further evaluation or treatment.
    (ii) Any recommendations on:
    (A) The employee's use of respirators, protective clothing, or 
equipment; or
    (B) Limitations on the employee's airborne exposure to beryllium.
    (iii) If the employee is confirmed positive or diagnosed with CBD 
or if the licensed physician otherwise deems it appropriate, the 
written report must also contain a referral for an evaluation at a CBD 
diagnostic center.
    (iv) If the employee is confirmed positive or diagnosed with CBD 
the written report must also contain a recommendation for continued 
periodic medical surveillance.
    (v) If the employee is confirmed positive or diagnosed with CBD the 
written report must also contain a recommendation for medical removal 
from airborne exposure to beryllium, as described in paragraph (l).
    (6) Licensed physician's written medical opinion for the employer. 
(i) The employer must obtain a written medical opinion from the 
licensed physician within 45 days of the medical examination (including 
any follow-up BeLPT required under paragraph (k)(3)(ii)(E) of this 
standard). The written medical opinion must contain only the following:
    (A) The date of the examination;
    (B) A statement that the examination has met the requirements of 
this standard;
    (C) Any recommended limitations on the employee's use of 
respirators, protective clothing, or equipment; and
    (D) A statement that the PLHCP has explained the results of the 
medical examination to the employee, including any tests conducted, any 
medical conditions related to airborne exposure that require further 
evaluation or treatment, and any special provisions for use of personal 
protective clothing or equipment;
    (ii) If the employee provides written authorization, the written 
opinion must also contain any recommended limitations on the employee's 
airborne exposure to beryllium.
    (iii) If the employee is confirmed positive or diagnosed with CBD 
or if the licensed physician otherwise deems it appropriate, and the 
employee provides written authorization, the written opinion must also 
contain a referral for an evaluation at a CBD diagnostic center.
    (iv) If the employee is confirmed positive or diagnosed with CBD 
and the employee provides written authorization, the written opinion 
must also contain a recommendation for continued periodic medical 
surveillance.
    (v) If the employee is confirmed positive or diagnosed with CBD and 
the employee provides written authorization, the written opinion must 
also contain a recommendation for medical removal from airborne 
exposure to beryllium, as described in paragraph (l).
    (vi) The employer must ensure that each employee receives a copy of 
the written medical opinion described in paragraph (k)(6) of this 
standard within 45 days of any medical examination (including any 
follow-up BeLPT required under paragraph (k)(3)(ii)(E) of this 
standard) performed for that employee.
    (7) CBD diagnostic center. (i) The employer must provide an 
evaluation at no cost to the employee at a CBD diagnostic center that 
is mutually agreed upon by the employer and the employee. The 
examination must be provided within 30 days of:
    (A) The employer's receipt of a physician's written medical opinion 
to the employer that recommends referral to a CBD diagnostic center; or
    (B) The employee presenting to the employer a physician's written 
medical report indicating that the employee has been confirmed positive 
or diagnosed with CBD, or recommending referral to a CBD diagnostic 
center.
    (ii) The employer must ensure that the employee receives a written 
medical report from the CBD diagnostic center that contains all the 
information required in paragraphs (k)(5)(i), (ii), (iv), and (v) of 
this standard and that the PLHCP explains the results of the 
examination to the employee within 30 days of the examination.
    (iii) The employer must obtain a written medical opinion from the 
CBD diagnostic center within 30 days of the medical examination. The 
written medical opinion must contain only the information in paragraph 
(k)(6)(i) of this standard, as applicable, unless the employee provides 
written authorization to release additional information. If the 
employee provides written authorization, the written opinion must also 
contain the information from paragraphs (k)(6)(ii), (iv), and (v), if 
applicable.
    (iv) The employer must ensure that each employee receives a copy of 
the written medical opinion from the CBD diagnostic center described in 
paragraph (k)(7) of this standard within 30 days of any medical 
examination performed for that employee.
    (v) After an employee has received the initial clinical evaluation 
at a CBD diagnostic center described in paragraph (k)(7)(i) of this 
standard, the employee may choose to have any subsequent

[[Page 2756]]

medical examinations for which the employee is eligible under paragraph 
(k) of this standard performed at a CBD diagnostic center mutually 
agreed upon by the employer and the employee, and the employer must 
provide such examinations at no cost to the employee.
    (l) Medical removal. (1) An employee is eligible for medical 
removal, if the employee works in a job with airborne exposure at or 
above the action level and either:
    (i) The employee provides the employer with:
    (A) A written medical report indicating a confirmed positive 
finding or CBD diagnosis; or
    (B) A written medical report recommending removal from airborne 
exposure to beryllium in accordance with paragraph (k)(5)(v) or 
(k)(7)(ii) of this standard; or
    (ii) The employer receives a written medical opinion recommending 
removal from airborne exposure to beryllium in accordance with 
paragraph (k)(6)(v) or (k)(7)(iii) of this standard.
    (2) If an employee is eligible for medical removal, the employer 
must provide the employee with the employee's choice of:
    (i) Removal as described in paragraph (l)(3) of this standard; or
    (ii) Remaining in a job with airborne exposure at or above the 
action level, provided that the employer provides, and ensures that the 
employee uses, respiratory protection that complies with paragraph (g) 
of this standard whenever airborne exposures are at or above the action 
level.
    (3) If the employee chooses removal:
    (i) If a comparable job is available where airborne exposures to 
beryllium are below the action level, and the employee is qualified for 
that job or can be trained within one month, the employer must remove 
the employee to that job. The employer must maintain for six months 
from the time of removal the employee's base earnings, seniority, and 
other rights and benefits that existed at the time of removal.
    (ii) If comparable work is not available, the employer must 
maintain the employee's base earnings, seniority, and other rights and 
benefits that existed at the time of removal for six months or until 
such time that comparable work described in paragraph (l)(3)(i) becomes 
available, whichever comes first.
    (4) The employer's obligation to provide medical removal protection 
benefits to a removed employee shall be reduced to the extent that the 
employee receives compensation for earnings lost during the period of 
removal from a publicly or employer-funded compensation program, or 
receives income from another employer made possible by virtue of the 
employee's removal.
    (m) Communication of hazards--(1) General. (i) Chemical 
manufacturers, importers, distributors, and employers must comply with 
all requirements of the HCS (29 CFR 1910.1200) for beryllium.
    (ii) Employers must include beryllium in the hazard communication 
program established to comply with the HCS. Employers must ensure that 
each employee has access to labels on containers of beryllium and to 
safety data sheets, and is trained in accordance with the requirements 
of the HCS (29 CFR 1910.1200) and paragraph (m)(4) of this standard.
    (2) Warning labels. Consistent with the HCS (29 CFR 1910.1200), the 
employer must label each bag and container of clothing, equipment, and 
materials contaminated with beryllium, and must, at a minimum, include 
the following on the label:

DANGER
CONTAINS BERYLLIUM
MAY CAUSE CANCER
CAUSES DAMAGE TO LUNGS
AVOID CREATING DUST
DO NOT GET ON SKIN

    (3) Employee information and training. (i) For each employee who 
has, or can reasonably be expected to have, airborne exposure to or 
dermal contact with beryllium:
    (A) The employer must provide information and training in 
accordance with the HCS (29 CFR 1910.1200(h));
    (B) The employer must provide initial training to each employee by 
the time of initial assignment; and
    (C) The employer must repeat the training required under this 
standard annually for each employee.
    (ii) The employer must ensure that each employee who is, or can 
reasonably be expected to be, exposed to airborne beryllium can 
demonstrate knowledge and understanding of the following:
    (A) The health hazards associated with airborne exposure to and 
dermal contact with beryllium, including the signs and symptoms of CBD;
    (B) The written exposure control plan, with emphasis on the 
specific nature of operations that could result in airborne exposure, 
especially airborne exposure above the TWA PEL or STEL;
    (C) The purpose, proper selection, fitting, proper use, and 
limitations of personal protective clothing and equipment, including 
respirators;
    (D) Applicable emergency procedures;
    (E) Measures employees can take to protect themselves from airborne 
exposure to and dermal contact with beryllium, including personal 
hygiene practices;
    (F) The purpose and a description of the medical surveillance 
program required by paragraph (k) of this standard including risks and 
benefits of each test to be offered;
    (G) The purpose and a description of the medical removal protection 
provided under paragraph (l) of this standard;
    (H) The contents of the standard; and
    (I) The employee's right of access to records under the Records 
Access standard (29 CFR 1910.1020).
    (iii) When a workplace change (such as modification of equipment, 
tasks, or procedures) results in new or increased airborne exposure 
that exceeds, or can reasonably be expected to exceed, either the TWA 
PEL or the STEL, the employer must provide additional training to those 
employees affected by the change in airborne exposure.
    (iv) Employee information. The employer must make a copy of this 
standard and its appendices readily available at no cost to each 
employee and designated employee representative(s).
    (n) Recordkeeping--(1) Air monitoring data. (i) The employer must 
make and maintain a record of all exposure measurements taken to assess 
airborne exposure as prescribed in paragraph (d) of this standard.
    (ii) This record must include at least the following information:
    (A) The date of measurement for each sample taken;
    (B) The task that is being monitored;
    (C) The sampling and analytical methods used and evidence of their 
accuracy;
    (D) The number, duration, and results of samples taken;
    (E) The type of personal protective clothing and equipment, 
including respirators, worn by monitored employees at the time of 
monitoring; and
    (F) The name, social security number, and job classification of 
each employee represented by the monitoring, indicating which employees 
were actually monitored.
    (iii) The employer must ensure that exposure records are maintained 
and made available in accordance with the Records Access standard (29 
CFR 1910.1020).
    (2) Objective data. (i) Where an employer uses objective data to 
satisfy the exposure assessment requirements under paragraph (d)(2) of 
this standard, the employer must make and maintain

[[Page 2757]]

a record of the objective data relied upon.
    (ii) This record must include at least the following information:
    (A) The data relied upon;
    (B) The beryllium-containing material in question;
    (C) The source of the objective data;
    (D) A description of the process, task, or activity on which the 
objective data were based; and
    (E) Other data relevant to the process, task, activity, material, 
or airborne exposure on which the objective data were based.
    (iii) The employer must ensure that objective data are maintained 
and made available in accordance with the Records Access standard (29 
CFR 1910.1020).
    (3) Medical surveillance. (i) The employer must make and maintain a 
record for each employee covered by medical surveillance under 
paragraph (k) of this standard.
    (ii) The record must include the following information about each 
employee:
    (A) Name, social security number, and job classification;
    (B) A copy of all licensed physicians' written medical opinions for 
each employee; and
    (C) A copy of the information provided to the PLHCP as required by 
paragraph (k)(4) of this standard.
    (iii) The employer must ensure that medical records are maintained 
and made available in accordance with the Records Access standard (29 
CFR 1910.1020).
    (4) Training. (i) At the completion of any training required by 
this standard, the employer must prepare a record that indicates the 
name, social security number, and job classification of each employee 
trained, the date the training was completed, and the topic of the 
training.
    (ii) This record must be maintained for three years after the 
completion of training.
    (5) Access to records. Upon request, the employer must make all 
records maintained as a requirement of this standard available for 
examination and copying to the Assistant Secretary, the Director, each 
employee, and each employee's designated representative(s) in 
accordance the Records Access standard (29 CFR 1910.1020).
    (6) Transfer of records. The employer must comply with the 
requirements involving transfer of records set forth in the Records 
Access standard (29 CFR 1910.1020).
    (o) Dates--(1) Effective date. This standard shall become effective 
March 10, 2017.
    (2) Compliance dates. All obligations of this standard commence and 
become enforceable on March 12, 2018, except:
    (i) Change rooms required by paragraph (i) of this standard must be 
provided by March 11, 2019; and
    (ii) Engineering controls required by paragraph (f) of this 
standard must be implemented by March 10, 2020.

[FR Doc. 2016-30409 Filed 1-6-17; 8:45 am]
BILLING CODE 4510-26-P
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.