Harmonization of Airworthiness Standards-Gust and Maneuver Load Requirements, 31851-31860 [2013-12445]
Download as PDF
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Proposed Rules
Executive order, including E.O. 12968,
as amended, and the agency’s own
procedural regulations, and must:
(a) Ensure that the records used in
making the decision are accurate,
relevant, timely, and complete to the
extent reasonably necessary to assure
fairness to the individual in any
determination;
(b) Consider all available, relevant
information in reaching its final
decision; and
(c) At a minimum, subject to
requirements of law, rule, regulation, or
Executive order:
(1) Provide the individual concerned
notice of the specific reason(s) for the
decision, an opportunity to respond,
and notice of appeal rights, if any; and
(2) Keep any record of the agency
action required by OPM as published in
its issuances.
§ 1400.302
Reporting to OPM.
(a) Each agency conducting an
investigation under E.O. 10450 is
required to notify OPM when the
investigation is initiated and when it is
completed.
(b) Agencies must report to OPM an
adjudicative determination and action
taken with respect to an individual
investigated pursuant to E.O. 10450 as
soon as possible and in no event later
than 90 days after receipt of the final
report of investigation.
(c) To comply with process efficiency
requirements, additional data may be
collected from agencies conducting
investigations or taking action under
this part. These collections will be
identified in separate OPM guidance,
issued as necessary under 5 CFR
732.103.
[FR Doc. 2013–12556 Filed 5–23–13; 11:15 am]
BILLING CODE 6325–39–P; 3910–A7–P
DEPARTMENT OF TRANSPORTATION
Federal Aviation Administration
14 CFR Part 25
[Docket No.: FAA–2013–0142; Notice No.
25–139]
wreier-aviles on DSK5TPTVN1PROD with PROPOSALS
RIN 2120–AK12
Harmonization of Airworthiness
Standards—Gust and Maneuver Load
Requirements
Federal Aviation
Administration (FAA), DOT.
ACTION: Notice of proposed rulemaking
(NPRM).
AGENCY:
SUMMARY: The FAA proposes to amend
certain airworthiness regulations for
VerDate Mar<15>2010
15:06 May 24, 2013
Jkt 229001
transport category airplanes based on
recommendations from the Aviation
Rulemaking Advisory Committee
(ARAC). Adopting this proposal would
eliminate certain regulatory differences
between the airworthiness standards of
the FAA and European Aviation Safety
Agency (EASA) without affecting
current industry design practices. This
action would revise the pitch maneuver
design loads criteria; revise the gust and
turbulence design loads criteria; revise
the application of gust loads to engine
mounts, high lift devices, and other
control surfaces; add a ‘‘round-theclock’’ discrete gust criterion and a
multi-axis discrete gust criterion for
airplanes equipped with wing-mounted
engines; revise the engine torque loads
criteria; add an engine failure dynamic
load condition; revise the ground gust
design loads criteria; revise the criteria
used to establish the rough air design
speed, and require the establishment of
a rough air Mach number.
DATES: Send comments on or before
August 26, 2013.
ADDRESSES: Send comments identified
by docket number FAA–2013–0142
using any of the following methods:
• Federal eRulemaking Portal: Go to
https://www.regulations.gov and follow
the online instructions for sending your
comments electronically.
• Mail: Send comments to Docket
Operations, M–30; U.S. Department of
Transportation (DOT), 1200 New Jersey
Avenue SE., Room W12–140, West
Building Ground Floor, Washington, DC
20590–0001.
• Hand Delivery or Courier: Take
comments to Docket Operations in
Room W12–140 of the West Building
Ground Floor at 1200 New Jersey
Avenue SE., Washington, DC, between 9
a.m. and 5 p.m., Monday through
Friday, except Federal holidays.
• Fax: Fax comments to Docket
Operations at (202) 493–2251.
For more information on the
rulemaking process, see the
SUPPLEMENTARY INFORMATION section of
this document.
Privacy: The FAA will post all
comments it receives, without change,
to https://www.regulations.gov, including
any personal information the
commenter provides. Using the search
function of the docket Web site, anyone
can find and read the electronic form of
all comments received into any FAA
dockets, including the name of the
individual sending the comment (or
signing the comment for an association,
business, labor union, etc.). DOT’s
complete Privacy Act Statement can be
found in the Federal Register published
on April 11, 2000 (65 FR 19477–19478),
as well as at https://DocketsInfo.dot.gov.
PO 00000
Frm 00005
Fmt 4702
Sfmt 4702
31851
Docket: Background documents or
comments received may be read at
https://www.regulations.gov at any time.
Follow the online instructions for
accessing the docket or go to the Docket
Operations in Room W12–140 of the
West Building Ground Floor at 1200
New Jersey Avenue SE., Washington,
DC, between 9 a.m. and 5 p.m., Monday
through Friday, except Federal holidays.
FOR FURTHER INFORMATION CONTACT: For
technical questions concerning this
action, contact Todd Martin, Airframe
and Cabin Safety Branch, ANM–115,
Transport Airplane Directorate, Aircraft
Certification Service, Federal Aviation
Administration, 1601 Lind Avenue SW.,
Renton, WA 98057–3356; telephone
(425) 227–1178; facsimile (425) 227–
1232; email Todd.Martin@faa.gov.
For legal questions concerning this
action, contact Sean Howe, Office of the
Regional Counsel, ANM–7, Federal
Aviation Administration, 1601 Lind
Avenue SW., Renton, Washington
98057–3356; telephone (425) 227–2591;
facsimile (425) 227–1007; email
Sean.Howe@faa.gov.
SUPPLEMENTARY INFORMATION:
Authority for This Rulemaking
The FAA’s authority to issue rules on
aviation safety is found in Title 49 of the
United States Code. Subtitle I, Section
106 describes the authority of the FAA
Administrator. Subtitle VII, Aviation
Programs, describes in more detail the
scope of the agency’s authority.
This rulemaking is promulgated
under the authority described in
Subtitle VII, Part A, Subpart III, Section
44701, ‘‘General Requirements.’’ Under
that section, the FAA is charged with
promoting safe flight of civil aircraft in
air commerce by prescribing regulations
and minimum standards for the design
and performance of aircraft that the
Administrator finds necessary for safety
in air commerce. This regulation is
within the scope of that authority. It
prescribes new safety standards for the
design and operation of transport
category airplanes.
I. Overview of Proposed Rule
The FAA proposes to amend the
airworthiness regulations described
below. This action would harmonize
Title 14, Code of Federal Regulations
(14 CFR) part 25 requirements with the
corresponding requirements in Book 1
of EASA Certification Specifications
and Acceptable Means of Compliance
for Large Aeroplanes (CS–25).
The following proposals result from
ARAC recommendations made to the
FAA and EASA:
1. Amend § 25.331, ‘‘Symmetric
maneuvering conditions;’’
E:\FR\FM\28MYP1.SGM
28MYP1
31852
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Proposed Rules
2. Amend § 25.341, ‘‘Gust and
turbulence loads;’’
3. Amend § 25.343, ‘‘Design fuel and
oil loads;’’
4. Amend § 25.345, ‘‘High lift
devices;’’
5. Amend § 25.361, ‘‘Engine torque;’’
6. Add § 25.362, ‘‘Engine failure
loads;’’
7. Amend § 25.371, ‘‘Gyroscopic
loads;’’
8. Amend § 25.373, ‘‘Speed control
devices;’’
9. Amend § 25.391, ‘‘Control surface
loads: General;’’
10. Amend § 25.395, ‘‘Control
system;’’
11. Amend § 25.415, ‘‘Ground gust
conditions;’’
12. Amend § 25.1517, ‘‘Rough air
speed, VRA;’’
13. Remove appendix G, ‘‘Continuous
Gust Design Criteria.’’
wreier-aviles on DSK5TPTVN1PROD with PROPOSALS
II. Background
Part 25 prescribes airworthiness
standards for type certification of
transport category airplanes for products
certified in the United States. EASA CS–
25 Book 1 prescribes the corresponding
airworthiness standards for products
certified in Europe. While part 25 and
CS–25 Book 1 are similar, they differ in
several respects. To improve
certification efficiency, the FAA tasked
ARAC through the Loads and Dynamics
Harmonization Working Group
(LDHWG) to review existing structures
regulations and recommend changes
that would eliminate differences
between the U.S. and European
airworthiness standards, while
maintaining or improving the level of
safety in the current regulations.
All of the proposals below are based
on LDHWG recommendations, which
EASA has already incorporated into CS–
25 Book 1. The FAA agrees with the
ARAC recommendations as adopted by
EASA, and we propose to amend part 25
accordingly. The proposals are not
expected to be controversial and should
reduce certification costs to industry
without adversely affecting safety. The
complete analyses for the proposed
changes made in response to ARAC
recommendations can be found in the
ARAC recommendation reports, located
in the docket for this rulemaking.
Note: In most cases, the language and
diagrams in this proposed rule are similar to
related rules found in CS–25, Book 1 with
one exception: The FAA uses the term ‘‘flight
deck’’ where EASA uses the term ‘‘cockpit.’’
The meaning and intent of these terms are
the same.
VerDate Mar<15>2010
15:06 May 24, 2013
Jkt 229001
III. Discussion of the Proposal
A. Revise ‘‘Symmetric Maneuvering
Conditions’’ (§ 25.331)
Section 25.331(c)(2) currently
prescribes a checked pitching maneuver
(a design load condition) in which the
flight deck pitch control is first
displaced in a nose-up direction, then
the control is displaced in the opposite
direction sufficient to ‘‘check’’ the
pitching motion. The control
displacements must develop specified
nose-up and nose-down pitching
accelerations. The pitching
accelerations prescribed in the current
regulations do not account for the size,
configuration, or characteristics of the
airplane. Also, the current regulations
do not fully account for the
characteristics of advanced electronic
flight control systems in which the
achievable maneuvering load factors are
governed by computer control laws.
We propose to revise § 25.331(c)(2)
based on the recommendation from the
LDHWG. The proposed requirement
would prescribe both positive and
negative checked pitch maneuver loads
that take into account the size of the
airplane and any effects of the flight
control system. We would also revise
the introductory paragraph, § 25.331(c),
by moving some criteria to § 25.331(c)(2)
where those criteria apply.
The LDHWG recommended a checked
pitching maneuver requirement that was
based on the corresponding requirement
in the former Joint Aviation Regulations
(JAR) but with some modifications to
account for advanced flight control
systems. The proposal specifies a
control input in the form of a sine wave
as a baseline control motion. This
control motion is applied with the
initial movement in the nose-up
direction so that the maximum positive
limit maneuvering load factor is
achieved. As a separate condition, the
control motion is applied with the
initial movement in the nose-down
direction, so that a maneuvering load
factor of 0g is reached. In both cases, the
control motion is applied at a frequency
related to the short-period rigid body
mode of the airplane. The short-period
rigid body mode is one of the two
longitudinal stability modes that are
inherent in every airplane and
identified during the design phase.
In cases where the load factors are not
achievable with a simple sine wave
using amplitude that fits within the
limits of the control stops or the pilot
effort limits, a modified sine wave
within these limits is required with a
dwell at the maximum control
displacement. The time delay is varied
to the extent necessary to achieve the
PO 00000
Frm 00006
Fmt 4702
Sfmt 4702
specified load factors up to a maximum
time beyond which the maneuver would
no longer be considered rational.
These actions would harmonize
§ 25.331 with the corresponding EASA
standards.
B. Revise ‘‘Gust and Turbulence Loads’’
(§ 25.341) and ‘‘Continuous Gust Design
Criteria’’ (Appendix G to Part 25)
Section 25.341 requires that the
airplane be designed for gust and
turbulence loads. These loads are
currently specified in § 25.341(a)
Discrete Gust Design Criteria
(representing a singular gust), and
§ 25.341(b) Continuous Gust Design
Criteria (representing continuous
turbulence). Section 25.341(b)
references the continuous gust criteria
specified in appendix G of part 25 and
requires that these criteria be used for
the evaluation of continuous turbulence.
We propose to:
1. Remove appendix G and specify the
continuous turbulence requirement
directly in § 25.341(b); and remove the
optional mission analysis method
currently specified in appendix G in
favor of the design envelope analysis
method.
The elimination of the optional
mission analysis method would not be
significant since few manufacturers
currently use it as the primary means of
addressing continuous turbulence. The
LDHWG determined that predicting the
mission is not always reliable since
missions can change after the airplane
goes into operation. Furthermore, the
mission analysis design loads are
sensitive to small changes in the
definition of the aircraft mission.
Therefore, small variations in approach
can provide inconsistent results. The
elimination of the mission analysis
method leaves only the design envelope
analysis method.
2. Revise the turbulence intensity
criteria in § 25.341(b) to take into
account in-service measurements of
derived gust intensities.
The FAA and other organizations
have endeavored to better define the
atmospheric model to be used for gust
and turbulence loads. The Civil
Aviation Authority (CAA) of the United
Kingdom conducted a comprehensive
gust measurement program for transport
airplanes in airline service. The
program, called Civil Aircraft
Airworthiness Data Recording Program
(CAADRP), resulted in an extensive
collection of reliable gust data that
provided an improved insight into the
distribution of gusts in the atmosphere.
The FAA already revised § 25.341(a)
(Amendment 25–86, 61 FR 5218, dated
February 9, 1996) to provide a revised
E:\FR\FM\28MYP1.SGM
28MYP1
wreier-aviles on DSK5TPTVN1PROD with PROPOSALS
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Proposed Rules
discrete gust methodology along with a
refined gust distribution model of the
atmosphere based on the CAADRP data.
The FAA proposes to retain the design
envelope criterion and prescribe the
gust intensity distribution based on the
CAADRP data. In addition, the flight
profile alleviation factor already defined
for the discrete gust in § 25.341(a)
would be used to adjust the gust
intensity distribution according to
certain aircraft parameters that relate to
the intended use of the airplane. The
FAA considers this to be a reliable and
uniform means of accounting for
airplane mission.
The introduction of advanced flight
control systems into transport airplanes
has presented special problems in the
treatment of continuous turbulence.
Some of these systems can exhibit
significant non-linearities, while the
standard mathematical approaches to
continuous turbulence (i.e., frequency
domain solutions) are valid only for
linear systems. The proposed rule
would require that any significant nonlinearity be considered in a realistic or
conservative manner.
3. Revise § 25.341(a) to require
evaluation of discrete gust conditions at
airplane speeds from VB to design
cruising speed, VC, (currently required
only at VC) and to expand the definition
of gust speeds up to 60,000 feet
(currently defined up to 50,000 feet).
The change to the discrete gust
criteria is necessary to ensure airplanes
are designed to withstand gust loads at
lower speeds and is consistent with the
proposed continuous turbulence
criteria.
Some current part 25 airplanes have
maximum certified operating altitudes
up to 51,000 feet. To be fully applicable
to these and future part 25 airplanes,
this proposal defines gust intensities for
altitudes up to 60,000 feet. Currently,
§ 25.341(a) defines the discrete gust
velocities up to 50,000 feet. Therefore,
as a conforming change, we propose to
amend § 25.341(a)(5)(i) to define
discrete gust velocities up to 60,000 feet
for consistency between discrete gust
and continuous turbulence criteria.
■ 4. Add a new paragraph § 25.341(c)
that specifies a ‘‘round-the-clock’’
discrete gust criterion and a multi-axis
discrete gust criterion for airplanes
equipped with wing-mounted engines.
Following an accident in which an
airplane shed a large wing-mounted
nacelle, the National Transportation
Safety Board (NTSB) recommended that
the FAA amend the design load
requirements to consider multiple axis
loads encountered during severe
turbulence (NTSB Safety
VerDate Mar<15>2010
15:06 May 24, 2013
Jkt 229001
Recommendation A–93–137, November
15, 1993). This recommendation was
specifically aimed at gust loads on
wing-mounted engines. To address the
NTSB’s concern, the FAA contracted an
independent organization to develop a
method of performing multi-axis
discrete gust analysis for wing-mounted
nacelles. The results of that study were
reported to FAA in Stirling Dynamics
Limited Report No. SDL–571–TR–2
dated May 1999 (https://www.tc.faa.gov/
its/worldpac/techrpt/ar99-62.pdf). The
recommendations of that report were
accepted by ARAC and the FAA and are
set forth in this proposal. This proposal
would address the NTSB
recommendation by prescribing two
dynamic gust criteria for airplanes with
wing-mounted engines. These are
known as a ‘‘round-the-clock’’ discrete
gust criterion, which is a discrete gust
assumed to occur at any angle normal to
the flight path, and a multi-axis dual
discrete gust criterion, which is a pair
of discrete gusts—one vertical and one
lateral. These criteria would be set forth
in a new paragraph § 25.341(c).
These actions would harmonize
§ 25.341 with the corresponding EASA
standards.
C. Revise ‘‘Design Fuel and Oil Loads’’
(§ 25.343), ‘‘High Lift Devices’’
(§ 25.345), ‘‘Gyroscopic Loads’’
(§ 25.371), ‘‘Speed Control Devices’’
(§ 25.373), and ‘‘Control Surface Loads:
General’’ (§ 25.391)
Sections 25.343, 25.345, 25.371,
25.373, and 25.391 specify various
design load criteria and currently
require consideration of only the
discrete load criteria specified in
§ 25.341(a). However, the FAA believes
that both the continuous turbulence
criteria and the discrete gust criteria
should be included when evaluating
these other discrete load conditions
since they account for the response to
different, but still realistic, atmospheric
characteristics. Therefore, the FAA
proposes to add to each of these
regulations a requirement to evaluate
the continuous turbulence loads criteria
in § 25.341(b). These actions would
harmonize each of these requirements
with the corresponding EASA
standards.
D. Revise ‘‘Engine Torque’’ (§ 25.361)
and Add a New Section: ‘‘Engine
Failure Loads’’ (§ 25.362)
We propose to revise the engine loads
design requirements for engine mounts,
auxiliary power unit mounts, engine
pylons, and adjacent supporting
airframe structures. The proposed
amendment would differentiate between
various engine failure conditions and
PO 00000
Frm 00007
Fmt 4702
Sfmt 4702
31853
specify design loads criteria that depend
on the failure condition being
considered. This proposal is intended to
ensure that engine mounts and adjacent
supporting structures are able to
withstand the most severe loads
expected in service, which the current
regulations do not fully address. In
numerous recent certification programs,
the FAA has applied special conditions
(under the provisions of § 21.16) that
include the engine load design
requirements proposed here.
Section 25.361 currently requires that
the engine mounts and their supporting
structure be designed for engine torque
loads combined with flight loads,
engine torque loads due to maximum
acceleration, and engine torque loads
due to malfunction or structural failure.
Section 25.361 currently specifies
requirements for turbopropeller engines,
turbine engines, and reciprocating
engines, and does not explicitly refer to
auxiliary power unit (APU)
installations.
We propose to revise § 25.361 to (1)
remove the requirement to assess engine
torque loads due to engine structural
failures (this requirement is reestablished in the new § 25.362,
outlined below); (2) provide specific
engine torque load criteria for auxiliary
power unit installations; and (3) remove
the requirements that apply to
reciprocating engines. The title of
§ 25.361 would also be changed from
‘‘Engine torque’’ to ‘‘Engine and
auxiliary power unit torque.’’ The
proposed § 25.361(a) would apply to the
main engines, while § 25.361(b) would
apply to APUs. The proposed § 25.362,
discussed below, would not apply to
APUs.
We propose to establish a new
§ 25.362 that would require engine
mounts and supporting airframe
structure be designed for 1g flight loads
combined with the most critical
transient dynamic loads and vibrations
resulting from failure of a blade, shaft,
bearing or bearing support, or bird strike
event.
Studies made by the engine and the
airframe manufacturers have shown that
large turbofan engines exhibit two
distinct classes of sudden deceleration
events. The first type of event involves
transient deceleration conditions and
rapid slowing of the rotating system.
These events are usually associated with
temporary loss of power or thrust
capability, and often result in some
engine distress, such as blade and/or
wear strip damage. Examples are high
power compressor surges and blade tip
rub during maneuvers, or combinations
of these events. These events are
covered by the proposed § 25.361. Based
E:\FR\FM\28MYP1.SGM
28MYP1
31854
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Proposed Rules
wreier-aviles on DSK5TPTVN1PROD with PROPOSALS
on the frequency of occurrence, the FAA
considers these events to be limit load
conditions that require the 1.5 factor of
safety prescribed in § 25.303 to obtain
ultimate loads. (The terms ‘‘limit,’’
‘‘ultimate,’’ and ‘‘factor of safety’’ are
discussed in § 25.301, ‘‘Loads,’’
§ 25.303, ‘‘Factor of safety,’’ and
§ 25.305, ‘‘Strength and deformation.’’)
The second type of event, which
would be covered by the proposed
§ 25.362, involves structural failures
that result in extensive engine damage
and permanent loss of thrust-producing
capability. Examples of these types of
events are fan blade failures, bearing
failures, and shaft failures. It is evident
from service history that these more
severe sudden engine failure events are
sufficiently infrequent to be considered
ultimate load conditions. Because of the
rare occurrence of these events and the
conservative method in which the loads
are to be obtained, the FAA proposes
that these ultimate load conditions be
applied to engine mounts and pylon
structure without an additional factor of
safety. At the same time, to provide
additional protection for the more
critical airframe structure, the FAA
proposes that these ultimate loads be
multiplied by an additional factor of
1.25 when applied to the adjacent
supporting airframe structure.
For these ultimate load conditions,
deformation in the engine supporting
structure would be allowed. However,
any deformation resulting from these
conditions must not prevent continued
safe flight and landing. Lastly, the
proposed new conditions in § 25.362
would be required to be treated as
dynamic conditions, including all
significant input and response loads.
These actions would harmonize
§§ 25.361 and 25.362 with the
corresponding EASA standards.
E. Revise ‘‘Control Surface Loads:
General’’ (§ 25.391), ‘‘Control System’’
(§ 25.395), and ‘‘Ground Gust
Conditions’’ (§ 25.415)
Section 25.415 currently requires that
the flight control system be designed for
loads due to ground gusts when parked
or while taxiing. Section 25.415 is
intended to protect the airplane flight
control system and control surfaces
from damage in these conditions.
Although damage from ground gusts
may not be an immediate hazard, the
rule is intended to prevent damage to
the control system that may not be
detected before takeoff.
Several incidents have occurred in
which airplanes sustained such
undetected but severe damage to the
flight control system due to the dynamic
effects of ground gust conditions. The
VerDate Mar<15>2010
15:06 May 24, 2013
Jkt 229001
incidents occurred on airplanes with
unpowered mechanical controls with
significant flexibility between the
control surface and the gust locking
devices. This flexibility allows dynamic
loads, greater than the static design gust
loads, to occur.
This proposal would revise § 25.415
to stand alone in regard to the required
multiplying factors and provide an
additional multiplying factor to account
for dynamic amplification. The design
conditions would be set forth as two
design cases—one with gust locks
engaged and another as a taxiing case
with the gust locks disengaged but
controls restrained by the pilot and/or
powered system. A 1.25 factor would
apply to the design hinge moments to
obtain static limit loads for the design
of the control system. A further
multiplying factor of 1.6 (total
multiplying factor of 2.0) would be
applied for those parts of the control
system where dynamic effects could be
significant. A factor lower than 1.6, but
not less than 1.2, could be used if
substantiated by a rational analysis. If a
dynamic factor of 1.2 is accepted, the
total multiplying factor would then be
1.2 × 1.25 = 1.5.
These changes would provide the
greatest effect on mechanical,
unpowered control systems which have
shown the greatest susceptibility to
damage. Powered control systems have
hydraulic actuators that naturally
protect them against dynamic loads due
to ground gusts.
We also propose to revise § 25.415 to
reorganize and clarify the design
conditions to be considered, and to
identify the components and parts of the
control system to which each of the
conditions apply.
As a result of the changes to § 25.415,
we propose removing the references to
ground gusts in §§ 25.391 and 25.395(b).
These actions would harmonize
§§ 25.391, 25.395, and 25.415 with the
corresponding EASA standards.
F. Revise ‘‘Rough Air Speed, VRA’’
(§ 25.1517)
Section 25.1517 currently provides
criteria for establishing the rough air
speed, VRA, for use as the recommended
turbulence penetration airspeed to be
included in the airplane flight manual.
The rough air speed definition is
currently based on several
considerations, including VB.
We would revise § 25.1517 to remove
the reference to VB in the definition of
rough air speed and require that a rough
air Mach number, MRA, be established
in addition to rough air speed. Also, the
reference to § 25.1585, ‘‘Operating
procedures,’’ is no longer applicable
PO 00000
Frm 00008
Fmt 4702
Sfmt 4702
since that regulation was modified. The
reference would therefore be removed.
VB is the ‘‘design speed for maximum
gust intensity.’’ This is a design speed
and is specified in § 25.335(d). VRA is
the ‘‘rough air speed.’’ This is an
operational speed to be included in the
airplane flight manual (AFM) and is
defined in § 25.1517. In the presence of
turbulence, the AFM directs the pilot to
slow to the rough air speed, VRA.
In general, for a given gust intensity
(gust speed), the gust loads on an
airplane increase with increasing
airplane speed. In the past, the discrete
gust and continuous turbulence
requirements of § 25.341 specified the
highest gust speeds at VB. (Lower gust
speeds were specified at the higher
airplane speeds, VC and design diving
speed, VD.) The operational speed, VRA,
was established at a value less than or
equal to VB to ensure the airplane would
be travelling at a sufficiently low
airspeed to be able to withstand the
highest expected gust speed. In this
way, the airplane would not operate
beyond its design capability.
Section 25.341 would be revised as
described previously, and would no
longer specify a unique gust speed at
VB. Rather, the gust speed would be
assumed constant between VB and VC.
Therefore, there would be no particular
reason to link the rough air speed and
VB. The reference to VB would therefore
be removed, while the other criteria
used to define rough air speed are
maintained.
Above a certain altitude, the
maximum operating limit speed, VMO, is
typically limited by Mach number on
transport category airplanes. Therefore,
we propose to revise § 25.1517 to
require that a rough air Mach number,
MRA, also be established, in addition to
rough air speed, VRA.
These actions would harmonize
§ 25.1517 with the corresponding EASA
standards. We would include a minor
clarifying addition to the rule language
that would not change the intent of the
rule. We have notified EASA of this
addition.
G. Advisory Material
The FAA is developing three new
proposed advisory circulars (ACs) to be
published concurrently with the
proposed regulations contained in this
NPRM. The proposed ACs would
provide guidance material for
acceptable means, but not the only
means, of demonstrating compliance
with proposed §§ 25.341, 25.362, and
25.415, respectively. We will accept
public comments to the following
proposed ACs on the ‘‘Aviation Safety
Draft Documents Open for Comment’’
E:\FR\FM\28MYP1.SGM
28MYP1
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Proposed Rules
Internet Web site at https://www.faa.gov/
aircraft/draft_docs/:
• AC 25.341–X, ‘‘Dynamic Gust
Loads.’’
• AC 25.362–X, ‘‘Engine Failure
Loads.’’
• AC 25.415–X, ‘‘Ground Gust
Conditions.’’
IV. Regulatory Notices and Analyses
wreier-aviles on DSK5TPTVN1PROD with PROPOSALS
A. Regulatory Evaluation
Proposed changes to Federal
regulations must undergo several
economic analyses. First, Executive
Order 12866 and Executive Order 13563
directs that each Federal agency shall
propose or adopt a regulation only upon
a reasoned determination that the
benefits of the intended regulation
justify its costs. Second, the Regulatory
Flexibility Act of 1980 (Pub. L. 96–354)
requires agencies to analyze the
economic impact of regulatory changes
on small entities. Third, the Trade
Agreements Act (Pub. L. 96–39)
prohibits agencies from setting
standards that create unnecessary
obstacles to the foreign commerce of the
United States. In developing U.S.
standards, the Trade Act requires
agencies to consider international
standards and, where appropriate, that
they be the basis of U.S. standards.
Fourth, the Unfunded Mandates Reform
Act of 1995 (Pub. L. 104–4) requires
agencies to prepare a written assessment
of the costs, benefits, and other effects
of proposed or final rules that include
a Federal mandate likely to result in the
expenditure by State, local, or tribal
governments, in the aggregate, or by the
private sector, of $100 million or more
annually (adjusted for inflation with
base year of 1995). This portion of the
preamble summarizes the FAA’s
analysis of the economic impacts of this
proposed rule.
Department of Transportation Order
DOT 2100.5 prescribes policies and
procedures for simplification, analysis,
and review of regulations. If the
expected cost impact is so minimal that
a proposed or final rule does not
warrant a full evaluation, this order
permits that a statement to that effect
and the basis for it be included in the
preamble if a full regulatory evaluation
of the cost and benefits is not prepared.
Such a determination has been made for
this proposed rule. The reasoning for
this determination follows:
The FAA proposes to amend the
airworthiness regulations that would
harmonize 14 CFR part 25 requirements
with the corresponding requirements in
Book 1 of EASA CS–25. Meeting two
sets of certification requirements raises
the cost of developing a new transport
VerDate Mar<15>2010
15:06 May 24, 2013
Jkt 229001
category airplane often with no increase
in safety. In the interest of fostering
international trade, lowering the cost of
aircraft development, making the
certification process more efficient, and
improving certification efficiency, the
FAA tasked ARAC through the LDHWG
to review existing structures regulations
and recommend changes that would
eliminate differences between the U.S.
and European airworthiness standards,
while maintaining or improving the
level of safety in the current regulations.
All of the proposals below are based
on LDHWG recommendations, which
EASA has incorporated into CS–25. The
FAA agrees with the ARAC
recommendations as adopted by EASA,
and we propose to amend part 25
accordingly, with minor variations in
wording that do not change the intent.
The proposed changes would eliminate
differences between the U.S. and
European airworthiness standards.
These efforts are referred to as
harmonization.
This proposed rule would revise
§§ 25.331, ‘‘Symmetric maneuvering
conditions,’’ 25.341, ‘‘Gust and
turbulence loads,’’ 25.343, ‘‘Design fuel
and oil loads,’’ 25.345, ‘‘High lift
devices,’’ 25.361, ‘‘Engine torque,’’
25.371, ‘‘Gyroscopic loads,’’ 25.373,
‘‘Speed control devices,’’ 25.391,
‘‘Control surface loads: General,’’
25.395, ‘‘Control system,’’ 25.415,
‘‘Ground gust conditions,’’ and 25.1517,
‘‘Rough air speed;’’ add a new § 25.362,
‘‘Engine failure loads’’; and remove
appendix G to part 25 to remove
differences with EASA CS–25. The FAA
has concluded for the reasons
previously discussed in the preamble
that the adoption of these EASA
requirements into the FAA certification
standards is the most efficient way to
harmonize these sections and, in so
doing, the existing level of safety will be
preserved.
The FAA estimates that there are no
costs associated with this proposal. A
review of current manufacturers of
transport category aircraft certificated
under part 25 has revealed that all such
future aircraft are expected to be
certificated under both U.S. (part 25)
and EASA (CS–25). Since future
certificated transport category aircraft
are expected to meet the existing EASA
CS–25 Book 1 requirements, and this
proposed rule would adopt the same
EASA requirements, manufacturers
would incur no additional cost resulting
from this proposal. The FAA expects the
costs to be minimal and the benefits to
be positive but difficult to estimate as
this proposed rule is one part of a larger
effort to minimize differences between
U.S. and EASA certification standards.
PO 00000
Frm 00009
Fmt 4702
Sfmt 4702
31855
The FAA, however, has not attempted to
quantify the cost savings that may
accrue due to these specific proposals,
beyond noting that while they may be
minimal, they contribute to a large
potential harmonization savings. The
agency concludes that these proposed
changes would eliminate regulatory
differences between the airworthiness
standards of the FAA and EASA
without affecting current industry
practices and that savings will result.
Further analysis is not required.
The FAA requests comments with
supporting documentation in regard to
the conclusions contained in this
section.
FAA has, therefore, determined that
this proposed rule is not a ‘‘significant
regulatory action’’ as defined in section
3(f) of Executive Order 12866, and is not
‘‘significant’’ as defined in DOT’s
Regulatory Policies and Procedures.
B. Regulatory Flexibility Determination
The Regulatory Flexibility Act of 1980
(Pub. L. 96–354) (RFA) establishes ‘‘as a
principle of regulatory issuance that
agencies shall endeavor, consistent with
the objectives of the rule and of
applicable statutes, to fit regulatory and
informational requirements to the scale
of the businesses, organizations, and
governmental jurisdictions subject to
regulation. To achieve this principle,
agencies are required to solicit and
consider flexible regulatory proposals
and to explain the rationale for their
actions to assure that such proposals are
given serious consideration.’’ The RFA
covers a wide range of small entities,
including small businesses, not-forprofit organizations, and small
governmental jurisdictions.
Agencies must perform a review to
determine whether a rule will have a
significant economic impact on a
substantial number of small entities. If
the agency determines that it will, the
agency must prepare a regulatory
flexibility analysis as described in the
RFA.
However, if an agency determines that
a rule is not expected to have a
significant economic impact on a
substantial number of small entities,
section 605(b) of the RFA provides that
the head of the agency may so certify,
and a regulatory flexibility analysis is
not required. The certification must
include a statement providing the
factual basis for this determination, and
the reasoning should be clear.
As noted above, the proposed changes
to part 25 are cost relieving because this
proposed rule creates a single
certification standard and removes the
burden of having to meet two sets of
certification requirements. The FAA
E:\FR\FM\28MYP1.SGM
28MYP1
31856
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Proposed Rules
believes that this proposed rule would
not have a significant economic impact
on a substantial number of small
entities.
The net effect of the proposed rule is
minimum regulatory cost relief.
Airplane manufacturers already meet or
expect to meet this standard. The FAA
uses the size standards from the Small
Business Administration for Aircraft
Manufacturing specifying companies
having less than 1,500 employees are
small entities. Given that this proposed
rule is cost-relieving, and there are no
small entity manufacturers of part 25
airplanes with less than 1,500
employees, the FAA certifies that this
proposed rule will not have a significant
economic impact on a substantial
number of small entities. The FAA
requests comments regarding this
determination. Specifically, the FAA
requests comments on whether the
proposed rule creates any specific
compliance costs unique to small
entities. Please provide detailed
economic analysis to support any cost
claims.
C. International Trade Impact
Assessment
The Trade Agreements Act of 1979
(Pub. L. 96–39) prohibits Federal
agencies from establishing any
standards or engaging in related
activities that create unnecessary
obstacles to the foreign commerce of the
United States. Legitimate domestic
objectives, such as safety, are not
considered unnecessary obstacles. The
statute also requires consideration of
international standards and, where
appropriate, that they be the basis for
U.S. standards. The FAA has assessed
the potential effect of this proposed rule
and has determined that the proposed
rule is in accord with the Trade
Agreements Act as it uses European
standards as the basis for United States
regulation.
wreier-aviles on DSK5TPTVN1PROD with PROPOSALS
D. Unfunded Mandates Assessment
Title II of the Unfunded Mandates
Reform Act of 1995 (Pub. L. 104–4)
requires each Federal agency to prepare
a written statement assessing the effects
of any Federal mandate in a proposed or
final agency rule that may result in an
expenditure of $100 million or more (in
1995 dollars) in any one year by State,
local, and tribal governments, in the
aggregate, or by the private sector; such
a mandate is deemed to be a ‘‘significant
regulatory action.’’ The FAA currently
uses an inflation-adjusted value of
$143.1 million in lieu of $100 million.
This proposed rule does not contain
such a mandate; therefore, the
VerDate Mar<15>2010
15:06 May 24, 2013
Jkt 229001
requirements of Title II of the Act do not
apply.
involves no extraordinary
circumstances.
E. Paperwork Reduction Act
V. Executive Order Determinations
The Paperwork Reduction Act of 1995
(44 U.S.C. 3507(d)) requires that the
FAA consider the impact of paperwork
and other information collection
burdens imposed on the public. The
FAA has determined that there is no
new requirement for information
collection associated with this proposed
rule. To the extent you may have
comments on the information collection
burdens associated with the aircraft
certification application process, please
direct those comments to the
information collection associated with
OMB Control Number 2120–0018.
A. Executive Order 13132, Federalism
The FAA has analyzed this proposed
rule under the principles and criteria of
Executive Order 13132, Federalism. The
agency determined that this action will
not have a substantial direct effect on
the States, or the relationship between
the Federal Government and the States,
or on the distribution of power and
responsibilities among the various
levels of government, and, therefore,
will not have Federalism implications.
F. International Compatibility and
Cooperation
In keeping with U.S. obligations
under the Convention on International
Civil Aviation, it is FAA policy to
conform to International Civil Aviation
Organization (ICAO) Standards and
Recommended Practices to the
maximum extent practicable. The FAA
has reviewed the corresponding ICAO
Standards and Recommended Practices
and has identified no differences with
these proposed regulations.
Executive Order (EO) 13609,
Promoting International Regulatory
Cooperation, (77 FR 26413, May 4,
2012) promotes international regulatory
cooperation to meet shared challenges
involving health, safety, labor, security,
environmental, and other issues and
reduce, eliminate, or prevent
unnecessary differences in regulatory
requirements. The FAA has analyzed
this action under the policy and agency
responsibilities of Executive Order
13609, Promoting International
Regulatory Cooperation. The agency has
determined that this action would
eliminate differences between U.S.
aviation standards and those of other
civil aviation authorities by creating a
single set of certification requirements
for transport category airplanes that
would be acceptable in both the United
States and Europe.
G. Environmental Analysis
FAA Order 1050.1E identifies FAA
actions that are categorically excluded
from preparation of an environmental
assessment or environmental impact
statement under the National
Environmental Policy Act in the
absence of extraordinary circumstances.
The FAA has determined this
rulemaking action qualifies for the
categorical exclusion identified in
paragraph 312f of Order 1050.1E and
PO 00000
Frm 00010
Fmt 4702
Sfmt 4702
B. Executive Order 13211, Regulations
That Significantly Affect Energy Supply,
Distribution, or Use
The FAA has analyzed this proposed
rule under Executive Order 13211,
Actions Concerning Regulations that
Significantly Affect Energy Supply,
Distribution, or Use (May 18, 2001). The
agency has determined that it is not a
‘‘significant energy action’’ under the
executive order and would not be likely
to have a significant adverse effect on
the supply, distribution, or use of
energy.
VI. Additional Information
A. Comments Invited
The FAA invites interested persons to
participate in this rulemaking by
submitting written comments, data, or
views. The agency also invites
comments relating to the economic,
environmental, energy, or federalism
impacts that might result from adopting
the proposals in this document. The
most helpful comments reference a
specific portion of the proposal, explain
the reason for any recommended
change, and include supporting data. To
ensure the docket does not contain
duplicate comments, commenters
should send only one copy of written
comments, or if comments are filed
electronically, commenters should
submit only one time.
The FAA will file in the docket all
comments it receives, as well as a report
summarizing each substantive public
contact with FAA personnel concerning
this proposed rulemaking. Before acting
on this proposal, the FAA will consider
all comments it receives on or before the
closing date for comments. The FAA
will consider comments filed after the
comment period has closed if it is
possible to do so without incurring
expense or delay. The agency may
change this proposal in light of the
comments it receives.
Proprietary or Confidential Business
Information: Commenters should not
E:\FR\FM\28MYP1.SGM
28MYP1
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Proposed Rules
FOR FURTHER INFORMATION CONTACT
section of this document, and marked as
proprietary or confidential. If submitting
information on a disk or CD ROM, mark
the outside of the disk or CD ROM, and
identify electronically within the disk or
CD ROM the specific information that is
proprietary or confidential.
Under 14 CFR 11.35(b), if the FAA is
aware of proprietary information filed
with a comment, the agency does not
place it in the docket. It is held in a
separate file to which the public does
not have access, and the FAA places a
note in the docket that it has received
it. If the FAA receives a request to
examine or copy this information, it
treats it as any other request under the
Freedom of Information Act (5 U.S.C.
552). The FAA processes such a request
under Department of Transportation
procedures found in 49 CFR part 7.
B. Availability of Rulemaking
Documents
wreier-aviles on DSK5TPTVN1PROD with PROPOSALS
An electronic copy of rulemaking
documents may be obtained from the
Internet by—
1. Searching the Federal eRulemaking
Portal at https://www.regulations.gov,
2. Visiting the FAA’s Regulations and
Policies Web page at https://
www.faa.gov/regulations_policies, or
3. Accessing the Government Printing
Office’s Web page at https://
www.gpo.gov/fdsys/.
Copies may also be obtained by
sending a request to the Federal
Aviation Administration, Office of
Rulemaking, ARM–1, 800 Independence
Avenue SW., Washington, DC 20591, or
by calling (202) 267–9680. Commenters
must identify the docket or notice
number of this rulemaking.
All documents the FAA considered in
developing this proposed rule,
including economic analyses and
technical reports, may be accessed from
the Internet through the Federal
eRulemaking Portal referenced in item
(1) above.
VerDate Mar<15>2010
15:06 May 24, 2013
Jkt 229001
List of Subjects in 14 CFR Part 25
Aircraft, Aviation safety, Reporting
and recordkeeping requirements.
The Proposed Amendment
In consideration of the foregoing, the
Federal Aviation Administration
proposes to amend chapter I of title 14,
Code of Federal Regulations as follows:
PART 25—AIRWORTHINESS
STANDARDS: TRANSPORT
CATEGORY AIRPLANES
initial direction, d(t) is limited to d1. In
the reverse direction, d(t) may be
truncated at the maximum available
displacement of the flight deck pitch
control as limited by the control system
stops, control surface stops, or by pilot
effort in accordance with § 25.397(b);
tmax = 3p/2w;
w = the circular frequency (radians/second)
of the control deflection taken equal to the
undamped natural frequency of the short
period rigid mode of the airplane, with active
control system effects included where
appropriate; but not less than:
1. The authority citation for part 25
continues to read as follows:
■
Authority: 49 U.S.C. 106(g), 40113, 44701,
44702, and 44704.
2. Amend § 25.331 by revising
paragraph (c) introductory text and
paragraph (c)(2) to read as follows:
■
§ 25.331 Symmetric maneuvering
conditions.
*
Where—
V = the speed of the airplane at entry to the
maneuver.
VA = the design maneuvering speed
prescribed in § 25.335(c).
(ii) For nose-up pitching maneuvers,
the complete flight deck pitch control
displacement history may be scaled
down in amplitude to the extent just
necessary to ensure that the positive
limit load factor prescribed in § 25.337
is not exceeded. For nose-down pitching
maneuvers, the complete flight deck
control displacement history may be
scaled down in amplitude to the extent
just necessary to ensure that the normal
acceleration at the center of gravity does
not go below 0 g.
(iii) In addition, for cases where the
airplane response to the specified flight
deck pitch control motion does not
achieve the prescribed limit load
factors, then the following flight deck
pitch control motion must be used:
*
*
*
*
(c) Maneuvering pitching conditions.
The following conditions must be
investigated:
(1) * * *
(2) Checked maneuver between VA
and VD. Nose-up checked pitching
maneuvers must be analyzed in which
the positive limit load factor prescribed
in § 25.337 is achieved. As a separate
condition, nose-down checked pitching
maneuvers must be analyzed in which
a limit load factor of 0g is achieved. In
defining the airplane loads, the flight
deck pitch control motions described in
paragraphs (c)(2)(i) through (c)(2)(iv) of
this section must be used:
(i) The airplane is assumed to be
flying in steady level flight at any speed
between VA and VD and the flight deck
pitch control is moved in accordance
with the following formula:
d(t) = d1 sin(wt) for 0 ≤ t ≤ tmax
d(t) = d1 sin(wt) for 0 ≤ t ≤ t1
d(t) = d1 for t1 ≤ t ≤ t2
d(t) = d1 sin(w[t + t1 ¥ t2]) for t2 ≤ t ≤
tmax
Where—
d1 = the maximum available displacement of
the flight deck pitch control in the initial
direction, as limited by the control
system stops, control surface stops, or by
pilot effort in accordance with
§ 25.397(b);
d(t) = the displacement of the flight deck
pitch control as a function of time. In the
Where—
t1 = p/2w
t2 = t1 + Dt
tmax = t2 + p/w;
Dt = the minimum period of time necessary
to allow the prescribed limit load factor
to be achieved in the initial direction,
but it need not exceed five seconds (see
figure below).
PO 00000
Frm 00011
Fmt 4702
Sfmt 4702
E:\FR\FM\28MYP1.SGM
28MYP1
EP28MY13.016
file proprietary or confidential business
information in the docket. Such
information must be sent or delivered
directly to the person identified in the
31857
31858
wreier-aviles on DSK5TPTVN1PROD with PROPOSALS
§ 25.341
Gust and turbulence loads.
(a) * * *
(5) * * *
(i) At airplane speeds between VB and
VC: Positive and negative gusts with
reference gust velocities of 56.0 ft/sec
EAS must be considered at sea level.
The reference gust velocity may be
reduced linearly from 56.0 ft/sec EAS at
sea level to 44.0 ft/sec EAS at 15,000
feet. The reference gust velocity may be
further reduced linearly from 44.0 ft/sec
EAS at 15,000 feet to 20.86 ft/sec EAS
at 60,000 feet.
*
*
*
*
*
(b) Continuous turbulence design
criteria. The dynamic response of the
airplane to vertical and lateral
continuous turbulence must be taken
into account. The dynamic analysis
must take into account unsteady
aerodynamic characteristics and all
significant structural degrees of freedom
including rigid body motions. The limit
loads must be determined for all critical
altitudes, weights, and weight
distributions as specified in § 25.321(b),
VerDate Mar<15>2010
15:06 May 24, 2013
Jkt 229001
and all critical speeds within the ranges
indicated in § 25.341(b)(3).
(1) Except as provided in paragraphs
(b)(4) and (b)(5) of this section, the
following equation must be used:
PL = PL¥1g ± UσA
Where—
PL = limit load;
PL–1g = steady 1 g load for the condition;
A = ratio of root-mean-square incremental
load for the condition to root-meansquare turbulence velocity; and
Uσ = limit turbulence intensity in true
airspeed, specified in paragraph (b)(3) of
this section.
(2) Values of A must be determined
according to the following formula:
Where—
H(W) = the frequency response function,
determined by dynamic analysis, that
relates the loads in the aircraft structure
to the atmospheric turbulence; and
F(W) = normalized power spectral density of
atmospheric turbulence given by—
Where—
W = reduced frequency, radians per foot; and
L = scale of turbulence = 2,500 ft.
(3) The limit turbulence intensities, Uσ, in
feet per second true airspeed required for
compliance with this paragraph are—
(i) At airplane speeds between VB and VC:
Us = Uσρεφ Fg
Where—
Usref is the reference turbulence intensity
that varies linearly with altitude from 90 fps
(TAS) at sea level to 79 fps (TAS) at 24,000
feet and is then constant at 79 fps (TAS) up
to the altitude of 60,000 feet.
Fg is the flight profile alleviation factor
defined in paragraph (a)(6) of this section;
(ii) At speed VD: Us is equal to 1⁄2 the
values obtained under paragraph
(b)(3)(i) of this section.
PO 00000
Frm 00012
Fmt 4702
Sfmt 4702
(iii) At speeds between VC and VD: Uσ
is equal to a value obtained by linear
interpolation.
(iv) At all speeds, both positive and
negative incremental loads due to
continuous turbulence must be
considered.
(4) When an automatic system
affecting the dynamic response of the
airplane is included in the analysis, the
effects of system non-linearities on
loads at the limit load level must be
taken into account in a realistic or
conservative manner.
(5) If necessary for the assessment of
loads on airplanes with significant nonlinearities, it must be assumed that the
turbulence field has a root-mean-square
velocity equal to 40 percent of the Uσ
values specified in paragraph (b)(3) of
this section. The value of limit load is
that load with the same probability of
exceedance in the turbulence field as
AUσ of the same load quantity in a
linear approximated model.
(c) Supplementary gust conditions for
wing-mounted engines. For airplanes
equipped with wing-mounted engines,
the engine mounts, pylons, and wing
supporting structure must be designed
for the maximum response at the nacelle
center of gravity derived from the
following dynamic gust conditions
applied to the airplane:
(1) A discrete gust determined in
accordance with § 25.341(a) at each
angle normal to the flight path, and
separately,
(2) A pair of discrete gusts, one
vertical and one lateral. The length of
each of these gusts must be
independently tuned to the maximum
response in accordance with § 25.341(a).
The penetration of the airplane in the
combined gust field and the phasing of
the vertical and lateral component gusts
must be established to develop the
maximum response to the gust pair. In
the absence of a more rational analysis,
the following formula must be used for
each of the maximum engine loads in all
six degrees of freedom:
E:\FR\FM\28MYP1.SGM
28MYP1
EP28MY13.017 EP28MY13.018
(iv) In cases where the flight deck
pitch control motion may be affected by
inputs from systems (for example, by a
stick pusher that can operate at high
load factor as well as at 1 g), then the
effects of those systems shall be taken
into account.
(v) Airplane loads that occur beyond
the following times need not be
considered:
(A) For the nose-up pitching
maneuver, the time at which the normal
acceleration at the center of gravity goes
below 0 g;
(B) For the nose-down pitching
maneuver, the time at which the normal
acceleration at the center of gravity goes
above the positive limit load factor
prescribed in § 25.337;
(C) tmax..
■ 3. Amend § 25.341 by revising
paragraph (a)(5)(i) and paragraph (b),
and by adding a new paragraph (c) to
read as follows:
EP28MY13.019
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Proposed Rules
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Proposed Rules
4. Amend § 25.343 by revising
paragraph (b)(1)(ii) to read as follows:
■
§ 25.343
Design fuel and oil loads.
*
*
*
*
*
(b) * * *
(1) * * *
(ii) The gust and turbulence
conditions of § 25.341, but assuming
85% of the gust velocities prescribed in
§ 25.341(a)(4) and 85% of the turbulence
intensities prescribed in § 25.341(b)(3).
*
*
*
*
*
■ 5. Amend § 25.345 by revising
paragraph (c)(2) to read as follows:
§ 25.345
High lift devices.
*
*
*
*
*
(c) * * *
(2) The vertical gust and turbulence
conditions prescribed in § 25.341.
*
*
*
*
*
■ 6. Revise § 25.361 to read as follows:
wreier-aviles on DSK5TPTVN1PROD with PROPOSALS
§ 25.361
torque.
Engine and auxiliary power unit
§ 25.362
(a) For engine installations—
(1) Each engine mount, pylon, and
adjacent supporting airframe structures
must be designed for the effects of—
(i) A limit engine torque
corresponding to takeoff power/thrust
and, if applicable, corresponding
propeller speed, acting simultaneously
with 75% of the limit loads from flight
condition A of § 25.333(b);
(ii) A limit engine torque
corresponding to the maximum
continuous power/thrust and, if
applicable, corresponding propeller
speed, acting simultaneously with the
limit loads from flight condition A of
§ 25.333(b); and
(iii) For turbopropeller installations
only, in addition to the conditions
specified in paragraphs (a)(1)(i) and (ii)
of this section, a limit engine torque
corresponding to takeoff power and
propeller speed, multiplied by a factor
accounting for propeller control system
malfunction, including quick feathering,
acting simultaneously with 1g level
flight loads. In the absence of a rational
analysis, a factor of 1.6 must be used.
(2) The limit engine torque to be
considered under paragraph (a)(1) of
this section must be obtained by—
(i) For turbopropeller installations,
multiplying mean engine torque for the
VerDate Mar<15>2010
15:06 May 24, 2013
Jkt 229001
Frm 00013
Fmt 4702
Sfmt 4702
Speed control devices.
*
*
*
*
*
(a) The airplane must be designed for
the symmetrical maneuvers prescribed
in §§ 25.333 and 25.337, the yawing
maneuvers in § 25.351, and the vertical
and lateral gust and turbulence
conditions prescribed in § 25.341(a) and
(b) at each setting and the maximum
speed associated with that setting; and
*
*
*
*
*
■ 10. Amend § 25.391 by revising the
introductory text to read as follows:
§ 25.391
Control surface loads: General.
The control surfaces must be designed
for the limit loads resulting from the
flight conditions in §§ 25.331, 25.341(a)
and (b), 25.349, and 25.351, considering
the requirements for—
*
*
*
*
*
■ 11. Amend § 25.395 by revising
paragraph (b) to read as follows:
Control system.
*
*
*
*
*
(b) The system limit loads of
paragraph (a) of this section need not
exceed the loads that can be produced
by the pilot (or pilots) and by automatic
or power devices operating the controls.
*
*
*
*
*
■ 12. Revise § 25.415 to read as follows:
§ 25.415
Ground gust conditions.
(a) The flight control systems and
surfaces must be designed for the limit
loads generated when the aircraft is
subjected to a horizontal 65 knots
ground gust from any direction, while
taxiing with the controls locked and
unlocked and while parked with the
controls locked.
(b) The control system and surface
loads due to ground gust may be
assumed to be static loads, and the
hinge moments H must be computed
from the formula:
H = K (1⁄2) ro V2 c S
Gyroscopic loads.
The structure supporting any engine
or auxiliary power unit must be
designed for the loads, including
gyroscopic loads, arising from the
conditions specified in §§ 25.331,
25.341, 25.349, 25.351, 25.473, 25.479,
and 25.481, with the engine or auxiliary
power unit at the maximum rotating
PO 00000
§ 25.373
§ 25.395
Engine failure loads.
(a) For engine mounts, pylons, and
adjacent supporting airframe structure,
an ultimate loading condition must be
considered that combines 1g flight loads
with the most critical transient dynamic
loads and vibrations, as determined by
dynamic analysis, resulting from failure
of a blade, shaft, bearing or bearing
support, or bird strike event. Any
permanent deformation from these
ultimate load conditions must not
prevent continued safe flight and
landing.
(b) The ultimate loads developed from
the conditions specified in paragraph (a)
of this section are to be—
(1) Multiplied by a factor of 1.0 when
applied to engine mounts and pylons;
and
(2) Multiplied by a factor of 1.25
when applied to adjacent supporting
airframe structure.
■ 8. Revise § 25.371 to read as follows:
§ 25.371
speed appropriate to the condition. For
the purposes of compliance with this
paragraph, the pitch maneuver in
§ 25.331(c)(1) must be carried out until
the positive limit maneuvering load
factor (point A2 in § 25.333(b)) is
reached.
■ 9. Amend § 25.373 by revising
paragraph (a) to read as follows:
Where—
K = hinge moment factor for ground gusts
derived in paragraph (c) of this section;
ro = density of air at sea level;
V = 65 knots relative to the aircraft;
S = area of the control surface aft of the hinge
line;
c = mean aerodynamic chord of the control
surface aft of the hinge line.
E:\FR\FM\28MYP1.SGM
28MYP1
EP28MY13.020
Where—
PL = limit load;
PL¥1g = steady 1g load for the condition;
LV = peak incremental response load due to
a vertical gust according to § 25.341(a);
and
LL = peak incremental response load due to
a lateral gust according to § 25.341(a).
specified power/thrust and speed by a
factor of 1.25;
(ii) For other turbine engines, the
limit engine torque must be equal to the
maximum accelerating torque for the
case considered.
(3) The engine mounts, pylons, and
adjacent supporting airframe structure
must be designed to withstand 1g level
flight loads acting simultaneously with
the limit engine torque loads imposed
by each of the following conditions to
be considered separately:
(i) Sudden maximum engine
deceleration due to malfunction or
abnormal condition; and
(ii) The maximum acceleration of
engine.
(b) For auxiliary power unit
installations, the power unit mounts
and adjacent supporting airframe
structure must be designed to withstand
1g level flight loads acting
simultaneously with the limit torque
loads imposed by each of the following
conditions to be considered separately:
(1) Sudden maximum auxiliary power
unit deceleration due to malfunction or
abnormal condition or structural failure;
and
(2) The maximum acceleration of the
auxiliary power unit.
■ 7. Add a new § 25.362 to read as
follows:
31859
31860
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Proposed Rules
(c) The hinge moment factor K for
ground gusts must be taken from the
following table:
Surface
K
(a) Aileron ......................................................................................................
(b) Aileron ......................................................................................................
(c) Elevator ....................................................................................................
(d) Elevator ....................................................................................................
(e) Rudder ......................................................................................................
(f) Rudder .......................................................................................................
Position of controls
0.75
*±0.50
*±0.75
*±0.75
0.75
0.75
Control Column locked or lashed in mid-position.
Ailerons at full throw.
Elevator full down.
Elevator full up.
Rudder in neutral.
Rudder at full throw.
wreier-aviles on DSK5TPTVN1PROD with PROPOSALS
* A positive value of K indicates a moment tending to depress the surface, while a negative value of K indicates a moment tending to raise the
surface.
(d) The computed hinge moment of
paragraph (b) of this section must be
used to determine the limit loads due to
ground gust conditions for the control
surface. A 1.25 factor on the computed
hinge moments must be used in
calculating limit control system loads.
(e) Where control system flexibility is
such that the rate of load application in
the ground gust conditions might
produce transient stresses appreciably
higher than those corresponding to
static loads, in the absence of a rational
analysis, an additional factor of 1.6 must
be applied to the control system loads
of paragraph (d) of this section to obtain
limit loads. If a rational analysis is used,
the additional factor must not be less
than 1.2.
(f) For the condition of the control
locks engaged, the control surfaces, the
control system locks, and the parts of
the control systems (if any) between the
surfaces and the locks must be designed
to the resultant limit loads. Where
control locks are not provided, then the
control surfaces, the control system
stops nearest the surfaces, and the parts
of the control systems (if any) between
the surfaces and the stops must be
designed to the resultant limit loads. If
the control system design is such as to
allow any part of the control system to
impact with the stops due to flexibility,
then the resultant impact loads must be
taken into account in deriving the limit
loads due to ground gust.
(g) For the condition of taxiing with
the control locks disengaged, the
following apply:
(1) The control surfaces, the control
system stops nearest the surfaces, and
the parts of the control systems (if any)
between the surfaces and the stops must
be designed to the resultant limit loads.
(2) The parts of the control systems
between the stops nearest the surfaces
and the flight deck controls must be
designed to the resultant limit loads,
except that the parts of the control
system where loads are eventually
reacted by the pilot need not exceed:
VerDate Mar<15>2010
15:06 May 24, 2013
Jkt 229001
(i) The loads corresponding to the
maximum pilot loads in § 25.397(c) for
each pilot alone; or
(ii) 0.75 times these maximum loads
for each pilot when the pilot forces are
applied in the same direction.
■ 13. Revise § 25.1517 to read as
follows:
DEPARTMENT OF TRANSPORTATION
§ 25.1517
Airworthiness Directives; Bell
Helicopter Textron, Inc., Helicopters
Rough air speed, VRA.
(a) A rough air speed, VRA, for use as
the recommended turbulence
penetration airspeed, and a rough air
Mach number, MRA, for use as the
recommended turbulence penetration
Mach number, must be established.
VRA/MRA must be sufficiently less than
VMO/MMO to ensure that likely speed
variation during rough air encounters
will not cause the overspeed warning to
operate too frequently.
(b) At altitudes where VMO is not
limited by Mach number, in the absence
of a rational investigation substantiating
the use of other values, VRA must be less
than VMO–35 KTAS.
(c) At altitudes where VMO is limited
by Mach number, MRA may be chosen
to provide an optimum margin between
low and high speed buffet boundaries.
■ 14. Remove and reserve appendix G to
part 25.
Issued under authority provided by 49
U.S.C. 106(f), 44701(a), and 44703 in
Washington, DC, on May 6, 2013.
Dorenda D. Baker,
Director, Aircraft Certification Service.
[FR Doc. 2013–12445 Filed 5–24–13; 8:45 am]
BILLING CODE 4910–13–P
PO 00000
Frm 00014
Fmt 4702
Sfmt 4702
Federal Aviation Administration
14 CFR Part 39
[Docket No. FAA–2008–0288; Directorate
Identifier 2006–SW–25–AD]
RIN 2120–AA64
Federal Aviation
Administration (FAA), DOT.
ACTION: Supplemental notice of
proposed rulemaking (SNPRM);
reopening of comment period.
AGENCY:
SUMMARY: We are revising an earlier
proposed airworthiness directive (AD)
for Bell Helicopter Textron, Inc. (Bell),
Model 214B and B–1 helicopters, which
proposed to require inspecting certain
pylon support spindle assemblies
(spindles) for any corrosion, or a nick,
scratch, dent, or crack, and repairing or
replacing any unairworthy spindle
before further flight. This SNPRM
proposes to revise those requirements
by updating the cost of compliance,
revising the recording requirements,
adding a requirement to reduce the
retirement life of an installed spindle,
and adding Bell Model 214ST to the
applicability.
We must receive comments on
this proposed AD by July 29, 2013.
ADDRESSES: You may send comments by
any of the following methods:
• Federal eRulemaking Docket: Go to
https://www.regulations.gov. Follow the
online instructions for sending your
comments electronically.
• Fax: 202–493–2251.
• Mail: Send comments to the U.S.
Department of Transportation, Docket
Operations, M–30, West Building
Ground Floor, Room W12–140, 1200
New Jersey Avenue SE., Washington,
DC 20590–0001.
• Hand Delivery: Deliver to the
‘‘Mail’’ address between 9 a.m. and 5
DATES:
E:\FR\FM\28MYP1.SGM
28MYP1
Agencies
[Federal Register Volume 78, Number 102 (Tuesday, May 28, 2013)]
[Proposed Rules]
[Pages 31851-31860]
From the Federal Register Online via the Government Printing Office [www.gpo.gov]
[FR Doc No: 2013-12445]
=======================================================================
-----------------------------------------------------------------------
DEPARTMENT OF TRANSPORTATION
Federal Aviation Administration
14 CFR Part 25
[Docket No.: FAA-2013-0142; Notice No. 25-139]
RIN 2120-AK12
Harmonization of Airworthiness Standards--Gust and Maneuver Load
Requirements
AGENCY: Federal Aviation Administration (FAA), DOT.
ACTION: Notice of proposed rulemaking (NPRM).
-----------------------------------------------------------------------
SUMMARY: The FAA proposes to amend certain airworthiness regulations
for transport category airplanes based on recommendations from the
Aviation Rulemaking Advisory Committee (ARAC). Adopting this proposal
would eliminate certain regulatory differences between the
airworthiness standards of the FAA and European Aviation Safety Agency
(EASA) without affecting current industry design practices. This action
would revise the pitch maneuver design loads criteria; revise the gust
and turbulence design loads criteria; revise the application of gust
loads to engine mounts, high lift devices, and other control surfaces;
add a ``round-the-clock'' discrete gust criterion and a multi-axis
discrete gust criterion for airplanes equipped with wing-mounted
engines; revise the engine torque loads criteria; add an engine failure
dynamic load condition; revise the ground gust design loads criteria;
revise the criteria used to establish the rough air design speed, and
require the establishment of a rough air Mach number.
DATES: Send comments on or before August 26, 2013.
ADDRESSES: Send comments identified by docket number FAA-2013-0142
using any of the following methods:
Federal eRulemaking Portal: Go to https://www.regulations.gov and follow the online instructions for sending your
comments electronically.
Mail: Send comments to Docket Operations, M-30; U.S.
Department of Transportation (DOT), 1200 New Jersey Avenue SE., Room
W12-140, West Building Ground Floor, Washington, DC 20590-0001.
Hand Delivery or Courier: Take comments to Docket
Operations in Room W12-140 of the West Building Ground Floor at 1200
New Jersey Avenue SE., Washington, DC, between 9 a.m. and 5 p.m.,
Monday through Friday, except Federal holidays.
Fax: Fax comments to Docket Operations at (202) 493-2251.
For more information on the rulemaking process, see the
SUPPLEMENTARY INFORMATION section of this document.
Privacy: The FAA will post all comments it receives, without
change, to https://www.regulations.gov, including any personal
information the commenter provides. Using the search function of the
docket Web site, anyone can find and read the electronic form of all
comments received into any FAA dockets, including the name of the
individual sending the comment (or signing the comment for an
association, business, labor union, etc.). DOT's complete Privacy Act
Statement can be found in the Federal Register published on April 11,
2000 (65 FR 19477-19478), as well as at https://DocketsInfo.dot.gov.
Docket: Background documents or comments received may be read at
https://www.regulations.gov at any time. Follow the online instructions
for accessing the docket or go to the Docket Operations in Room W12-140
of the West Building Ground Floor at 1200 New Jersey Avenue SE.,
Washington, DC, between 9 a.m. and 5 p.m., Monday through Friday,
except Federal holidays.
FOR FURTHER INFORMATION CONTACT: For technical questions concerning
this action, contact Todd Martin, Airframe and Cabin Safety Branch,
ANM-115, Transport Airplane Directorate, Aircraft Certification
Service, Federal Aviation Administration, 1601 Lind Avenue SW., Renton,
WA 98057-3356; telephone (425) 227-1178; facsimile (425) 227-1232;
email Todd.Martin@faa.gov.
For legal questions concerning this action, contact Sean Howe,
Office of the Regional Counsel, ANM-7, Federal Aviation Administration,
1601 Lind Avenue SW., Renton, Washington 98057-3356; telephone (425)
227-2591; facsimile (425) 227-1007; email Sean.Howe@faa.gov.
SUPPLEMENTARY INFORMATION:
Authority for This Rulemaking
The FAA's authority to issue rules on aviation safety is found in
Title 49 of the United States Code. Subtitle I, Section 106 describes
the authority of the FAA Administrator. Subtitle VII, Aviation
Programs, describes in more detail the scope of the agency's authority.
This rulemaking is promulgated under the authority described in
Subtitle VII, Part A, Subpart III, Section 44701, ``General
Requirements.'' Under that section, the FAA is charged with promoting
safe flight of civil aircraft in air commerce by prescribing
regulations and minimum standards for the design and performance of
aircraft that the Administrator finds necessary for safety in air
commerce. This regulation is within the scope of that authority. It
prescribes new safety standards for the design and operation of
transport category airplanes.
I. Overview of Proposed Rule
The FAA proposes to amend the airworthiness regulations described
below. This action would harmonize Title 14, Code of Federal
Regulations (14 CFR) part 25 requirements with the corresponding
requirements in Book 1 of EASA Certification Specifications and
Acceptable Means of Compliance for Large Aeroplanes (CS-25).
The following proposals result from ARAC recommendations made to
the FAA and EASA:
1. Amend Sec. 25.331, ``Symmetric maneuvering conditions;''
[[Page 31852]]
2. Amend Sec. 25.341, ``Gust and turbulence loads;''
3. Amend Sec. 25.343, ``Design fuel and oil loads;''
4. Amend Sec. 25.345, ``High lift devices;''
5. Amend Sec. 25.361, ``Engine torque;''
6. Add Sec. 25.362, ``Engine failure loads;''
7. Amend Sec. 25.371, ``Gyroscopic loads;''
8. Amend Sec. 25.373, ``Speed control devices;''
9. Amend Sec. 25.391, ``Control surface loads: General;''
10. Amend Sec. 25.395, ``Control system;''
11. Amend Sec. 25.415, ``Ground gust conditions;''
12. Amend Sec. 25.1517, ``Rough air speed, VRA;''
13. Remove appendix G, ``Continuous Gust Design Criteria.''
II. Background
Part 25 prescribes airworthiness standards for type certification
of transport category airplanes for products certified in the United
States. EASA CS-25 Book 1 prescribes the corresponding airworthiness
standards for products certified in Europe. While part 25 and CS-25
Book 1 are similar, they differ in several respects. To improve
certification efficiency, the FAA tasked ARAC through the Loads and
Dynamics Harmonization Working Group (LDHWG) to review existing
structures regulations and recommend changes that would eliminate
differences between the U.S. and European airworthiness standards,
while maintaining or improving the level of safety in the current
regulations.
All of the proposals below are based on LDHWG recommendations,
which EASA has already incorporated into CS-25 Book 1. The FAA agrees
with the ARAC recommendations as adopted by EASA, and we propose to
amend part 25 accordingly. The proposals are not expected to be
controversial and should reduce certification costs to industry without
adversely affecting safety. The complete analyses for the proposed
changes made in response to ARAC recommendations can be found in the
ARAC recommendation reports, located in the docket for this rulemaking.
Note: In most cases, the language and diagrams in this proposed
rule are similar to related rules found in CS-25, Book 1 with one
exception: The FAA uses the term ``flight deck'' where EASA uses the
term ``cockpit.'' The meaning and intent of these terms are the
same.
III. Discussion of the Proposal
A. Revise ``Symmetric Maneuvering Conditions'' (Sec. 25.331)
Section 25.331(c)(2) currently prescribes a checked pitching
maneuver (a design load condition) in which the flight deck pitch
control is first displaced in a nose-up direction, then the control is
displaced in the opposite direction sufficient to ``check'' the
pitching motion. The control displacements must develop specified nose-
up and nose-down pitching accelerations. The pitching accelerations
prescribed in the current regulations do not account for the size,
configuration, or characteristics of the airplane. Also, the current
regulations do not fully account for the characteristics of advanced
electronic flight control systems in which the achievable maneuvering
load factors are governed by computer control laws.
We propose to revise Sec. 25.331(c)(2) based on the recommendation
from the LDHWG. The proposed requirement would prescribe both positive
and negative checked pitch maneuver loads that take into account the
size of the airplane and any effects of the flight control system. We
would also revise the introductory paragraph, Sec. 25.331(c), by
moving some criteria to Sec. 25.331(c)(2) where those criteria apply.
The LDHWG recommended a checked pitching maneuver requirement that
was based on the corresponding requirement in the former Joint Aviation
Regulations (JAR) but with some modifications to account for advanced
flight control systems. The proposal specifies a control input in the
form of a sine wave as a baseline control motion. This control motion
is applied with the initial movement in the nose-up direction so that
the maximum positive limit maneuvering load factor is achieved. As a
separate condition, the control motion is applied with the initial
movement in the nose-down direction, so that a maneuvering load factor
of 0g is reached. In both cases, the control motion is applied at a
frequency related to the short-period rigid body mode of the airplane.
The short-period rigid body mode is one of the two longitudinal
stability modes that are inherent in every airplane and identified
during the design phase.
In cases where the load factors are not achievable with a simple
sine wave using amplitude that fits within the limits of the control
stops or the pilot effort limits, a modified sine wave within these
limits is required with a dwell at the maximum control displacement.
The time delay is varied to the extent necessary to achieve the
specified load factors up to a maximum time beyond which the maneuver
would no longer be considered rational.
These actions would harmonize Sec. 25.331 with the corresponding
EASA standards.
B. Revise ``Gust and Turbulence Loads'' (Sec. 25.341) and ``Continuous
Gust Design Criteria'' (Appendix G to Part 25)
Section 25.341 requires that the airplane be designed for gust and
turbulence loads. These loads are currently specified in Sec.
25.341(a) Discrete Gust Design Criteria (representing a singular gust),
and Sec. 25.341(b) Continuous Gust Design Criteria (representing
continuous turbulence). Section 25.341(b) references the continuous
gust criteria specified in appendix G of part 25 and requires that
these criteria be used for the evaluation of continuous turbulence. We
propose to:
1. Remove appendix G and specify the continuous turbulence
requirement directly in Sec. 25.341(b); and remove the optional
mission analysis method currently specified in appendix G in favor of
the design envelope analysis method.
The elimination of the optional mission analysis method would not
be significant since few manufacturers currently use it as the primary
means of addressing continuous turbulence. The LDHWG determined that
predicting the mission is not always reliable since missions can change
after the airplane goes into operation. Furthermore, the mission
analysis design loads are sensitive to small changes in the definition
of the aircraft mission. Therefore, small variations in approach can
provide inconsistent results. The elimination of the mission analysis
method leaves only the design envelope analysis method.
2. Revise the turbulence intensity criteria in Sec. 25.341(b) to
take into account in-service measurements of derived gust intensities.
The FAA and other organizations have endeavored to better define
the atmospheric model to be used for gust and turbulence loads. The
Civil Aviation Authority (CAA) of the United Kingdom conducted a
comprehensive gust measurement program for transport airplanes in
airline service. The program, called Civil Aircraft Airworthiness Data
Recording Program (CAADRP), resulted in an extensive collection of
reliable gust data that provided an improved insight into the
distribution of gusts in the atmosphere. The FAA already revised Sec.
25.341(a) (Amendment 25-86, 61 FR 5218, dated February 9, 1996) to
provide a revised
[[Page 31853]]
discrete gust methodology along with a refined gust distribution model
of the atmosphere based on the CAADRP data. The FAA proposes to retain
the design envelope criterion and prescribe the gust intensity
distribution based on the CAADRP data. In addition, the flight profile
alleviation factor already defined for the discrete gust in Sec.
25.341(a) would be used to adjust the gust intensity distribution
according to certain aircraft parameters that relate to the intended
use of the airplane. The FAA considers this to be a reliable and
uniform means of accounting for airplane mission.
The introduction of advanced flight control systems into transport
airplanes has presented special problems in the treatment of continuous
turbulence. Some of these systems can exhibit significant non-
linearities, while the standard mathematical approaches to continuous
turbulence (i.e., frequency domain solutions) are valid only for linear
systems. The proposed rule would require that any significant non-
linearity be considered in a realistic or conservative manner.
3. Revise Sec. 25.341(a) to require evaluation of discrete gust
conditions at airplane speeds from VB to design cruising
speed, VC, (currently required only at VC) and to
expand the definition of gust speeds up to 60,000 feet (currently
defined up to 50,000 feet).
The change to the discrete gust criteria is necessary to ensure
airplanes are designed to withstand gust loads at lower speeds and is
consistent with the proposed continuous turbulence criteria.
Some current part 25 airplanes have maximum certified operating
altitudes up to 51,000 feet. To be fully applicable to these and future
part 25 airplanes, this proposal defines gust intensities for altitudes
up to 60,000 feet. Currently, Sec. 25.341(a) defines the discrete gust
velocities up to 50,000 feet. Therefore, as a conforming change, we
propose to amend Sec. 25.341(a)(5)(i) to define discrete gust
velocities up to 60,000 feet for consistency between discrete gust and
continuous turbulence criteria.
0
4. Add a new paragraph Sec. 25.341(c) that specifies a ``round-the-
clock'' discrete gust criterion and a multi-axis discrete gust
criterion for airplanes equipped with wing-mounted engines.
Following an accident in which an airplane shed a large wing-
mounted nacelle, the National Transportation Safety Board (NTSB)
recommended that the FAA amend the design load requirements to consider
multiple axis loads encountered during severe turbulence (NTSB Safety
Recommendation A-93-137, November 15, 1993). This recommendation was
specifically aimed at gust loads on wing-mounted engines. To address
the NTSB's concern, the FAA contracted an independent organization to
develop a method of performing multi-axis discrete gust analysis for
wing-mounted nacelles. The results of that study were reported to FAA
in Stirling Dynamics Limited Report No. SDL-571-TR-2 dated May 1999
(https://www.tc.faa.gov/its/worldpac/techrpt/ar99-62.pdf). The
recommendations of that report were accepted by ARAC and the FAA and
are set forth in this proposal. This proposal would address the NTSB
recommendation by prescribing two dynamic gust criteria for airplanes
with wing-mounted engines. These are known as a ``round-the-clock''
discrete gust criterion, which is a discrete gust assumed to occur at
any angle normal to the flight path, and a multi-axis dual discrete
gust criterion, which is a pair of discrete gusts--one vertical and one
lateral. These criteria would be set forth in a new paragraph Sec.
25.341(c).
These actions would harmonize Sec. 25.341 with the corresponding
EASA standards.
C. Revise ``Design Fuel and Oil Loads'' (Sec. 25.343), ``High Lift
Devices'' (Sec. 25.345), ``Gyroscopic Loads'' (Sec. 25.371), ``Speed
Control Devices'' (Sec. 25.373), and ``Control Surface Loads:
General'' (Sec. 25.391)
Sections 25.343, 25.345, 25.371, 25.373, and 25.391 specify various
design load criteria and currently require consideration of only the
discrete load criteria specified in Sec. 25.341(a). However, the FAA
believes that both the continuous turbulence criteria and the discrete
gust criteria should be included when evaluating these other discrete
load conditions since they account for the response to different, but
still realistic, atmospheric characteristics. Therefore, the FAA
proposes to add to each of these regulations a requirement to evaluate
the continuous turbulence loads criteria in Sec. 25.341(b). These
actions would harmonize each of these requirements with the
corresponding EASA standards.
D. Revise ``Engine Torque'' (Sec. 25.361) and Add a New Section:
``Engine Failure Loads'' (Sec. 25.362)
We propose to revise the engine loads design requirements for
engine mounts, auxiliary power unit mounts, engine pylons, and adjacent
supporting airframe structures. The proposed amendment would
differentiate between various engine failure conditions and specify
design loads criteria that depend on the failure condition being
considered. This proposal is intended to ensure that engine mounts and
adjacent supporting structures are able to withstand the most severe
loads expected in service, which the current regulations do not fully
address. In numerous recent certification programs, the FAA has applied
special conditions (under the provisions of Sec. 21.16) that include
the engine load design requirements proposed here.
Section 25.361 currently requires that the engine mounts and their
supporting structure be designed for engine torque loads combined with
flight loads, engine torque loads due to maximum acceleration, and
engine torque loads due to malfunction or structural failure. Section
25.361 currently specifies requirements for turbopropeller engines,
turbine engines, and reciprocating engines, and does not explicitly
refer to auxiliary power unit (APU) installations.
We propose to revise Sec. 25.361 to (1) remove the requirement to
assess engine torque loads due to engine structural failures (this
requirement is re-established in the new Sec. 25.362, outlined below);
(2) provide specific engine torque load criteria for auxiliary power
unit installations; and (3) remove the requirements that apply to
reciprocating engines. The title of Sec. 25.361 would also be changed
from ``Engine torque'' to ``Engine and auxiliary power unit torque.''
The proposed Sec. 25.361(a) would apply to the main engines, while
Sec. 25.361(b) would apply to APUs. The proposed Sec. 25.362,
discussed below, would not apply to APUs.
We propose to establish a new Sec. 25.362 that would require
engine mounts and supporting airframe structure be designed for 1g
flight loads combined with the most critical transient dynamic loads
and vibrations resulting from failure of a blade, shaft, bearing or
bearing support, or bird strike event.
Studies made by the engine and the airframe manufacturers have
shown that large turbofan engines exhibit two distinct classes of
sudden deceleration events. The first type of event involves transient
deceleration conditions and rapid slowing of the rotating system. These
events are usually associated with temporary loss of power or thrust
capability, and often result in some engine distress, such as blade
and/or wear strip damage. Examples are high power compressor surges and
blade tip rub during maneuvers, or combinations of these events. These
events are covered by the proposed Sec. 25.361. Based
[[Page 31854]]
on the frequency of occurrence, the FAA considers these events to be
limit load conditions that require the 1.5 factor of safety prescribed
in Sec. 25.303 to obtain ultimate loads. (The terms ``limit,''
``ultimate,'' and ``factor of safety'' are discussed in Sec. 25.301,
``Loads,'' Sec. 25.303, ``Factor of safety,'' and Sec. 25.305,
``Strength and deformation.'')
The second type of event, which would be covered by the proposed
Sec. 25.362, involves structural failures that result in extensive
engine damage and permanent loss of thrust-producing capability.
Examples of these types of events are fan blade failures, bearing
failures, and shaft failures. It is evident from service history that
these more severe sudden engine failure events are sufficiently
infrequent to be considered ultimate load conditions. Because of the
rare occurrence of these events and the conservative method in which
the loads are to be obtained, the FAA proposes that these ultimate load
conditions be applied to engine mounts and pylon structure without an
additional factor of safety. At the same time, to provide additional
protection for the more critical airframe structure, the FAA proposes
that these ultimate loads be multiplied by an additional factor of 1.25
when applied to the adjacent supporting airframe structure.
For these ultimate load conditions, deformation in the engine
supporting structure would be allowed. However, any deformation
resulting from these conditions must not prevent continued safe flight
and landing. Lastly, the proposed new conditions in Sec. 25.362 would
be required to be treated as dynamic conditions, including all
significant input and response loads.
These actions would harmonize Sec. Sec. 25.361 and 25.362 with the
corresponding EASA standards.
E. Revise ``Control Surface Loads: General'' (Sec. 25.391), ``Control
System'' (Sec. 25.395), and ``Ground Gust Conditions'' (Sec. 25.415)
Section 25.415 currently requires that the flight control system be
designed for loads due to ground gusts when parked or while taxiing.
Section 25.415 is intended to protect the airplane flight control
system and control surfaces from damage in these conditions. Although
damage from ground gusts may not be an immediate hazard, the rule is
intended to prevent damage to the control system that may not be
detected before takeoff.
Several incidents have occurred in which airplanes sustained such
undetected but severe damage to the flight control system due to the
dynamic effects of ground gust conditions. The incidents occurred on
airplanes with unpowered mechanical controls with significant
flexibility between the control surface and the gust locking devices.
This flexibility allows dynamic loads, greater than the static design
gust loads, to occur.
This proposal would revise Sec. 25.415 to stand alone in regard to
the required multiplying factors and provide an additional multiplying
factor to account for dynamic amplification. The design conditions
would be set forth as two design cases--one with gust locks engaged and
another as a taxiing case with the gust locks disengaged but controls
restrained by the pilot and/or powered system. A 1.25 factor would
apply to the design hinge moments to obtain static limit loads for the
design of the control system. A further multiplying factor of 1.6
(total multiplying factor of 2.0) would be applied for those parts of
the control system where dynamic effects could be significant. A factor
lower than 1.6, but not less than 1.2, could be used if substantiated
by a rational analysis. If a dynamic factor of 1.2 is accepted, the
total multiplying factor would then be 1.2 x 1.25 = 1.5.
These changes would provide the greatest effect on mechanical,
unpowered control systems which have shown the greatest susceptibility
to damage. Powered control systems have hydraulic actuators that
naturally protect them against dynamic loads due to ground gusts.
We also propose to revise Sec. 25.415 to reorganize and clarify
the design conditions to be considered, and to identify the components
and parts of the control system to which each of the conditions apply.
As a result of the changes to Sec. 25.415, we propose removing the
references to ground gusts in Sec. Sec. 25.391 and 25.395(b).
These actions would harmonize Sec. Sec. 25.391, 25.395, and 25.415
with the corresponding EASA standards.
F. Revise ``Rough Air Speed, VRA'' (Sec. 25.1517)
Section 25.1517 currently provides criteria for establishing the
rough air speed, VRA, for use as the recommended turbulence
penetration airspeed to be included in the airplane flight manual. The
rough air speed definition is currently based on several
considerations, including VB.
We would revise Sec. 25.1517 to remove the reference to
VB in the definition of rough air speed and require that a
rough air Mach number, MRA, be established in addition to
rough air speed. Also, the reference to Sec. 25.1585, ``Operating
procedures,'' is no longer applicable since that regulation was
modified. The reference would therefore be removed.
VB is the ``design speed for maximum gust intensity.''
This is a design speed and is specified in Sec. 25.335(d).
VRA is the ``rough air speed.'' This is an operational speed
to be included in the airplane flight manual (AFM) and is defined in
Sec. 25.1517. In the presence of turbulence, the AFM directs the pilot
to slow to the rough air speed, VRA.
In general, for a given gust intensity (gust speed), the gust loads
on an airplane increase with increasing airplane speed. In the past,
the discrete gust and continuous turbulence requirements of Sec.
25.341 specified the highest gust speeds at VB. (Lower gust
speeds were specified at the higher airplane speeds, VC and
design diving speed, VD.) The operational speed,
VRA, was established at a value less than or equal to
VB to ensure the airplane would be travelling at a
sufficiently low airspeed to be able to withstand the highest expected
gust speed. In this way, the airplane would not operate beyond its
design capability.
Section 25.341 would be revised as described previously, and would
no longer specify a unique gust speed at VB. Rather, the
gust speed would be assumed constant between VB and
VC. Therefore, there would be no particular reason to link
the rough air speed and VB. The reference to VB
would therefore be removed, while the other criteria used to define
rough air speed are maintained.
Above a certain altitude, the maximum operating limit speed,
VMO, is typically limited by Mach number on transport
category airplanes. Therefore, we propose to revise Sec. 25.1517 to
require that a rough air Mach number, MRA, also be
established, in addition to rough air speed, VRA.
These actions would harmonize Sec. 25.1517 with the corresponding
EASA standards. We would include a minor clarifying addition to the
rule language that would not change the intent of the rule. We have
notified EASA of this addition.
G. Advisory Material
The FAA is developing three new proposed advisory circulars (ACs)
to be published concurrently with the proposed regulations contained in
this NPRM. The proposed ACs would provide guidance material for
acceptable means, but not the only means, of demonstrating compliance
with proposed Sec. Sec. 25.341, 25.362, and 25.415, respectively. We
will accept public comments to the following proposed ACs on the
``Aviation Safety Draft Documents Open for Comment''
[[Page 31855]]
Internet Web site at https://www.faa.gov/aircraft/draft_docs/:
AC 25.341-X, ``Dynamic Gust Loads.''
AC 25.362-X, ``Engine Failure Loads.''
AC 25.415-X, ``Ground Gust Conditions.''
IV. Regulatory Notices and Analyses
A. Regulatory Evaluation
Proposed changes to Federal regulations must undergo several
economic analyses. First, Executive Order 12866 and Executive Order
13563 directs that each Federal agency shall propose or adopt a
regulation only upon a reasoned determination that the benefits of the
intended regulation justify its costs. Second, the Regulatory
Flexibility Act of 1980 (Pub. L. 96-354) requires agencies to analyze
the economic impact of regulatory changes on small entities. Third, the
Trade Agreements Act (Pub. L. 96-39) prohibits agencies from setting
standards that create unnecessary obstacles to the foreign commerce of
the United States. In developing U.S. standards, the Trade Act requires
agencies to consider international standards and, where appropriate,
that they be the basis of U.S. standards. Fourth, the Unfunded Mandates
Reform Act of 1995 (Pub. L. 104-4) requires agencies to prepare a
written assessment of the costs, benefits, and other effects of
proposed or final rules that include a Federal mandate likely to result
in the expenditure by State, local, or tribal governments, in the
aggregate, or by the private sector, of $100 million or more annually
(adjusted for inflation with base year of 1995). This portion of the
preamble summarizes the FAA's analysis of the economic impacts of this
proposed rule.
Department of Transportation Order DOT 2100.5 prescribes policies
and procedures for simplification, analysis, and review of regulations.
If the expected cost impact is so minimal that a proposed or final rule
does not warrant a full evaluation, this order permits that a statement
to that effect and the basis for it be included in the preamble if a
full regulatory evaluation of the cost and benefits is not prepared.
Such a determination has been made for this proposed rule. The
reasoning for this determination follows:
The FAA proposes to amend the airworthiness regulations that would
harmonize 14 CFR part 25 requirements with the corresponding
requirements in Book 1 of EASA CS-25. Meeting two sets of certification
requirements raises the cost of developing a new transport category
airplane often with no increase in safety. In the interest of fostering
international trade, lowering the cost of aircraft development, making
the certification process more efficient, and improving certification
efficiency, the FAA tasked ARAC through the LDHWG to review existing
structures regulations and recommend changes that would eliminate
differences between the U.S. and European airworthiness standards,
while maintaining or improving the level of safety in the current
regulations.
All of the proposals below are based on LDHWG recommendations,
which EASA has incorporated into CS-25. The FAA agrees with the ARAC
recommendations as adopted by EASA, and we propose to amend part 25
accordingly, with minor variations in wording that do not change the
intent. The proposed changes would eliminate differences between the
U.S. and European airworthiness standards. These efforts are referred
to as harmonization.
This proposed rule would revise Sec. Sec. 25.331, ``Symmetric
maneuvering conditions,'' 25.341, ``Gust and turbulence loads,''
25.343, ``Design fuel and oil loads,'' 25.345, ``High lift devices,''
25.361, ``Engine torque,'' 25.371, ``Gyroscopic loads,'' 25.373,
``Speed control devices,'' 25.391, ``Control surface loads: General,''
25.395, ``Control system,'' 25.415, ``Ground gust conditions,'' and
25.1517, ``Rough air speed;'' add a new Sec. 25.362, ``Engine failure
loads''; and remove appendix G to part 25 to remove differences with
EASA CS-25. The FAA has concluded for the reasons previously discussed
in the preamble that the adoption of these EASA requirements into the
FAA certification standards is the most efficient way to harmonize
these sections and, in so doing, the existing level of safety will be
preserved.
The FAA estimates that there are no costs associated with this
proposal. A review of current manufacturers of transport category
aircraft certificated under part 25 has revealed that all such future
aircraft are expected to be certificated under both U.S. (part 25) and
EASA (CS-25). Since future certificated transport category aircraft are
expected to meet the existing EASA CS-25 Book 1 requirements, and this
proposed rule would adopt the same EASA requirements, manufacturers
would incur no additional cost resulting from this proposal. The FAA
expects the costs to be minimal and the benefits to be positive but
difficult to estimate as this proposed rule is one part of a larger
effort to minimize differences between U.S. and EASA certification
standards. The FAA, however, has not attempted to quantify the cost
savings that may accrue due to these specific proposals, beyond noting
that while they may be minimal, they contribute to a large potential
harmonization savings. The agency concludes that these proposed changes
would eliminate regulatory differences between the airworthiness
standards of the FAA and EASA without affecting current industry
practices and that savings will result. Further analysis is not
required.
The FAA requests comments with supporting documentation in regard
to the conclusions contained in this section.
FAA has, therefore, determined that this proposed rule is not a
``significant regulatory action'' as defined in section 3(f) of
Executive Order 12866, and is not ``significant'' as defined in DOT's
Regulatory Policies and Procedures.
B. Regulatory Flexibility Determination
The Regulatory Flexibility Act of 1980 (Pub. L. 96-354) (RFA)
establishes ``as a principle of regulatory issuance that agencies shall
endeavor, consistent with the objectives of the rule and of applicable
statutes, to fit regulatory and informational requirements to the scale
of the businesses, organizations, and governmental jurisdictions
subject to regulation. To achieve this principle, agencies are required
to solicit and consider flexible regulatory proposals and to explain
the rationale for their actions to assure that such proposals are given
serious consideration.'' The RFA covers a wide range of small entities,
including small businesses, not-for-profit organizations, and small
governmental jurisdictions.
Agencies must perform a review to determine whether a rule will
have a significant economic impact on a substantial number of small
entities. If the agency determines that it will, the agency must
prepare a regulatory flexibility analysis as described in the RFA.
However, if an agency determines that a rule is not expected to
have a significant economic impact on a substantial number of small
entities, section 605(b) of the RFA provides that the head of the
agency may so certify, and a regulatory flexibility analysis is not
required. The certification must include a statement providing the
factual basis for this determination, and the reasoning should be
clear.
As noted above, the proposed changes to part 25 are cost relieving
because this proposed rule creates a single certification standard and
removes the burden of having to meet two sets of certification
requirements. The FAA
[[Page 31856]]
believes that this proposed rule would not have a significant economic
impact on a substantial number of small entities.
The net effect of the proposed rule is minimum regulatory cost
relief. Airplane manufacturers already meet or expect to meet this
standard. The FAA uses the size standards from the Small Business
Administration for Aircraft Manufacturing specifying companies having
less than 1,500 employees are small entities. Given that this proposed
rule is cost-relieving, and there are no small entity manufacturers of
part 25 airplanes with less than 1,500 employees, the FAA certifies
that this proposed rule will not have a significant economic impact on
a substantial number of small entities. The FAA requests comments
regarding this determination. Specifically, the FAA requests comments
on whether the proposed rule creates any specific compliance costs
unique to small entities. Please provide detailed economic analysis to
support any cost claims.
C. International Trade Impact Assessment
The Trade Agreements Act of 1979 (Pub. L. 96-39) prohibits Federal
agencies from establishing any standards or engaging in related
activities that create unnecessary obstacles to the foreign commerce of
the United States. Legitimate domestic objectives, such as safety, are
not considered unnecessary obstacles. The statute also requires
consideration of international standards and, where appropriate, that
they be the basis for U.S. standards. The FAA has assessed the
potential effect of this proposed rule and has determined that the
proposed rule is in accord with the Trade Agreements Act as it uses
European standards as the basis for United States regulation.
D. Unfunded Mandates Assessment
Title II of the Unfunded Mandates Reform Act of 1995 (Pub. L. 104-
4) requires each Federal agency to prepare a written statement
assessing the effects of any Federal mandate in a proposed or final
agency rule that may result in an expenditure of $100 million or more
(in 1995 dollars) in any one year by State, local, and tribal
governments, in the aggregate, or by the private sector; such a mandate
is deemed to be a ``significant regulatory action.'' The FAA currently
uses an inflation-adjusted value of $143.1 million in lieu of $100
million. This proposed rule does not contain such a mandate; therefore,
the requirements of Title II of the Act do not apply.
E. Paperwork Reduction Act
The Paperwork Reduction Act of 1995 (44 U.S.C. 3507(d)) requires
that the FAA consider the impact of paperwork and other information
collection burdens imposed on the public. The FAA has determined that
there is no new requirement for information collection associated with
this proposed rule. To the extent you may have comments on the
information collection burdens associated with the aircraft
certification application process, please direct those comments to the
information collection associated with OMB Control Number 2120-0018.
F. International Compatibility and Cooperation
In keeping with U.S. obligations under the Convention on
International Civil Aviation, it is FAA policy to conform to
International Civil Aviation Organization (ICAO) Standards and
Recommended Practices to the maximum extent practicable. The FAA has
reviewed the corresponding ICAO Standards and Recommended Practices and
has identified no differences with these proposed regulations.
Executive Order (EO) 13609, Promoting International Regulatory
Cooperation, (77 FR 26413, May 4, 2012) promotes international
regulatory cooperation to meet shared challenges involving health,
safety, labor, security, environmental, and other issues and reduce,
eliminate, or prevent unnecessary differences in regulatory
requirements. The FAA has analyzed this action under the policy and
agency responsibilities of Executive Order 13609, Promoting
International Regulatory Cooperation. The agency has determined that
this action would eliminate differences between U.S. aviation standards
and those of other civil aviation authorities by creating a single set
of certification requirements for transport category airplanes that
would be acceptable in both the United States and Europe.
G. Environmental Analysis
FAA Order 1050.1E identifies FAA actions that are categorically
excluded from preparation of an environmental assessment or
environmental impact statement under the National Environmental Policy
Act in the absence of extraordinary circumstances. The FAA has
determined this rulemaking action qualifies for the categorical
exclusion identified in paragraph 312f of Order 1050.1E and involves no
extraordinary circumstances.
V. Executive Order Determinations
A. Executive Order 13132, Federalism
The FAA has analyzed this proposed rule under the principles and
criteria of Executive Order 13132, Federalism. The agency determined
that this action will not have a substantial direct effect on the
States, or the relationship between the Federal Government and the
States, or on the distribution of power and responsibilities among the
various levels of government, and, therefore, will not have Federalism
implications.
B. Executive Order 13211, Regulations That Significantly Affect Energy
Supply, Distribution, or Use
The FAA has analyzed this proposed rule under Executive Order
13211, Actions Concerning Regulations that Significantly Affect Energy
Supply, Distribution, or Use (May 18, 2001). The agency has determined
that it is not a ``significant energy action'' under the executive
order and would not be likely to have a significant adverse effect on
the supply, distribution, or use of energy.
VI. Additional Information
A. Comments Invited
The FAA invites interested persons to participate in this
rulemaking by submitting written comments, data, or views. The agency
also invites comments relating to the economic, environmental, energy,
or federalism impacts that might result from adopting the proposals in
this document. The most helpful comments reference a specific portion
of the proposal, explain the reason for any recommended change, and
include supporting data. To ensure the docket does not contain
duplicate comments, commenters should send only one copy of written
comments, or if comments are filed electronically, commenters should
submit only one time.
The FAA will file in the docket all comments it receives, as well
as a report summarizing each substantive public contact with FAA
personnel concerning this proposed rulemaking. Before acting on this
proposal, the FAA will consider all comments it receives on or before
the closing date for comments. The FAA will consider comments filed
after the comment period has closed if it is possible to do so without
incurring expense or delay. The agency may change this proposal in
light of the comments it receives.
Proprietary or Confidential Business Information: Commenters should
not
[[Page 31857]]
file proprietary or confidential business information in the docket.
Such information must be sent or delivered directly to the person
identified in the FOR FURTHER INFORMATION CONTACT section of this
document, and marked as proprietary or confidential. If submitting
information on a disk or CD ROM, mark the outside of the disk or CD
ROM, and identify electronically within the disk or CD ROM the specific
information that is proprietary or confidential.
Under 14 CFR 11.35(b), if the FAA is aware of proprietary
information filed with a comment, the agency does not place it in the
docket. It is held in a separate file to which the public does not have
access, and the FAA places a note in the docket that it has received
it. If the FAA receives a request to examine or copy this information,
it treats it as any other request under the Freedom of Information Act
(5 U.S.C. 552). The FAA processes such a request under Department of
Transportation procedures found in 49 CFR part 7.
B. Availability of Rulemaking Documents
An electronic copy of rulemaking documents may be obtained from the
Internet by--
1. Searching the Federal eRulemaking Portal at https://www.regulations.gov,
2. Visiting the FAA's Regulations and Policies Web page at https://www.faa.gov/regulations_policies, or
3. Accessing the Government Printing Office's Web page at https://www.gpo.gov/fdsys/.
Copies may also be obtained by sending a request to the Federal
Aviation Administration, Office of Rulemaking, ARM-1, 800 Independence
Avenue SW., Washington, DC 20591, or by calling (202) 267-9680.
Commenters must identify the docket or notice number of this
rulemaking.
All documents the FAA considered in developing this proposed rule,
including economic analyses and technical reports, may be accessed from
the Internet through the Federal eRulemaking Portal referenced in item
(1) above.
List of Subjects in 14 CFR Part 25
Aircraft, Aviation safety, Reporting and recordkeeping
requirements.
The Proposed Amendment
In consideration of the foregoing, the Federal Aviation
Administration proposes to amend chapter I of title 14, Code of Federal
Regulations as follows:
PART 25--AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES
0
1. The authority citation for part 25 continues to read as follows:
Authority: 49 U.S.C. 106(g), 40113, 44701, 44702, and 44704.
0
2. Amend Sec. 25.331 by revising paragraph (c) introductory text and
paragraph (c)(2) to read as follows:
Sec. 25.331 Symmetric maneuvering conditions.
* * * * *
(c) Maneuvering pitching conditions. The following conditions must
be investigated:
(1) * * *
(2) Checked maneuver between VA and VD. Nose-up checked pitching
maneuvers must be analyzed in which the positive limit load factor
prescribed in Sec. 25.337 is achieved. As a separate condition, nose-
down checked pitching maneuvers must be analyzed in which a limit load
factor of 0g is achieved. In defining the airplane loads, the flight
deck pitch control motions described in paragraphs (c)(2)(i) through
(c)(2)(iv) of this section must be used:
(i) The airplane is assumed to be flying in steady level flight at
any speed between VA and VD and the flight deck
pitch control is moved in accordance with the following formula:
[delta](t) = [delta]1 sin([omega]t) for 0 <= t <=
tmax
Where--
[delta]1 = the maximum available displacement of the
flight deck pitch control in the initial direction, as limited by
the control system stops, control surface stops, or by pilot effort
in accordance with Sec. 25.397(b);
[delta](t) = the displacement of the flight deck pitch control as a
function of time. In the initial direction, [delta](t) is limited to
[delta]1. In the reverse direction, [delta](t) may be
truncated at the maximum available displacement of the flight deck
pitch control as limited by the control system stops, control
surface stops, or by pilot effort in accordance with Sec.
25.397(b);
tmax = 3[pi]/2[omega];
[omega] = the circular frequency (radians/second) of the control
deflection taken equal to the undamped natural frequency of the
short period rigid mode of the airplane, with active control system
effects included where appropriate; but not less than:
[GRAPHIC] [TIFF OMITTED] TP28MY13.016
Where--
V = the speed of the airplane at entry to the maneuver.
VA = the design maneuvering speed prescribed in Sec.
25.335(c).
(ii) For nose-up pitching maneuvers, the complete flight deck pitch
control displacement history may be scaled down in amplitude to the
extent just necessary to ensure that the positive limit load factor
prescribed in Sec. 25.337 is not exceeded. For nose-down pitching
maneuvers, the complete flight deck control displacement history may be
scaled down in amplitude to the extent just necessary to ensure that
the normal acceleration at the center of gravity does not go below 0 g.
(iii) In addition, for cases where the airplane response to the
specified flight deck pitch control motion does not achieve the
prescribed limit load factors, then the following flight deck pitch
control motion must be used:
[delta](t) = [delta]1 sin([omega]t) for 0 <= t <=
t1
[delta](t) = [delta]1 for t1 <= t <=
t2
[delta](t) = [delta]1 sin([omega][t + t1 -
t2]) for t2 <= t <= tmax
Where--
t1 = [pi]/2[omega]
t2 = t1 + [Delta]t
tmax = t2 + [pi]/[omega];
[Delta]t = the minimum period of time necessary to allow the
prescribed limit load factor to be achieved in the initial
direction, but it need not exceed five seconds (see figure below).
[[Page 31858]]
[GRAPHIC] [TIFF OMITTED] TP28MY13.017
(iv) In cases where the flight deck pitch control motion may be
affected by inputs from systems (for example, by a stick pusher that
can operate at high load factor as well as at 1 g), then the effects of
those systems shall be taken into account.
(v) Airplane loads that occur beyond the following times need not
be considered:
(A) For the nose-up pitching maneuver, the time at which the normal
acceleration at the center of gravity goes below 0 g;
(B) For the nose-down pitching maneuver, the time at which the
normal acceleration at the center of gravity goes above the positive
limit load factor prescribed in Sec. 25.337;
(C) tmax..
0
3. Amend Sec. 25.341 by revising paragraph (a)(5)(i) and paragraph
(b), and by adding a new paragraph (c) to read as follows:
Sec. 25.341 Gust and turbulence loads.
(a) * * *
(5) * * *
(i) At airplane speeds between VB and VC:
Positive and negative gusts with reference gust velocities of 56.0 ft/
sec EAS must be considered at sea level. The reference gust velocity
may be reduced linearly from 56.0 ft/sec EAS at sea level to 44.0 ft/
sec EAS at 15,000 feet. The reference gust velocity may be further
reduced linearly from 44.0 ft/sec EAS at 15,000 feet to 20.86 ft/sec
EAS at 60,000 feet.
* * * * *
(b) Continuous turbulence design criteria. The dynamic response of
the airplane to vertical and lateral continuous turbulence must be
taken into account. The dynamic analysis must take into account
unsteady aerodynamic characteristics and all significant structural
degrees of freedom including rigid body motions. The limit loads must
be determined for all critical altitudes, weights, and weight
distributions as specified in Sec. 25.321(b), and all critical speeds
within the ranges indicated in Sec. 25.341(b)(3).
(1) Except as provided in paragraphs (b)(4) and (b)(5) of this
section, the following equation must be used:
PL = PL-1g U[sigma]A
Where--
PL = limit load;
PL-1g = steady 1 g load for the condition;
A = ratio of root-mean-square incremental load for the condition to
root-mean-square turbulence velocity; and
U[sigma] = limit turbulence intensity in true airspeed, specified in
paragraph (b)(3) of this section.
(2) Values of A must be determined according to the following
formula:
[GRAPHIC] [TIFF OMITTED] TP28MY13.018
Where--
H([Omega]) = the frequency response function, determined by dynamic
analysis, that relates the loads in the aircraft structure to the
atmospheric turbulence; and
[Phi]([Omega]) = normalized power spectral density of atmospheric
turbulence given by--
[GRAPHIC] [TIFF OMITTED] TP28MY13.019
Where--
[Omega] = reduced frequency, radians per foot; and
L = scale of turbulence = 2,500 ft.
(3) The limit turbulence intensities, U[sigma], in feet per
second true airspeed required for compliance with this paragraph
are--
(i) At airplane speeds between VB and VC:
U[sigma] = U[sigma]ref Fg
Where--
U[sigma]ref is the reference turbulence intensity
that varies linearly with altitude from 90 fps (TAS) at sea level to
79 fps (TAS) at 24,000 feet and is then constant at 79 fps (TAS) up
to the altitude of 60,000 feet.
Fg is the flight profile alleviation factor defined
in paragraph (a)(6) of this section;
(ii) At speed VD: U[sigma] is equal to \1/2\
the values obtained under paragraph (b)(3)(i) of this section.
(iii) At speeds between VC and VD: U[sigma]
is equal to a value obtained by linear interpolation.
(iv) At all speeds, both positive and negative incremental loads
due to continuous turbulence must be considered.
(4) When an automatic system affecting the dynamic response of the
airplane is included in the analysis, the effects of system non-
linearities on loads at the limit load level must be taken into account
in a realistic or conservative manner.
(5) If necessary for the assessment of loads on airplanes with
significant non-linearities, it must be assumed that the turbulence
field has a root-mean-square velocity equal to 40 percent of the
U[sigma] values specified in paragraph (b)(3) of this section. The
value of limit load is that load with the same probability of
exceedance in the turbulence field as AU[sigma] of the same load
quantity in a linear approximated model.
(c) Supplementary gust conditions for wing-mounted engines. For
airplanes equipped with wing-mounted engines, the engine mounts,
pylons, and wing supporting structure must be designed for the maximum
response at the nacelle center of gravity derived from the following
dynamic gust conditions applied to the airplane:
(1) A discrete gust determined in accordance with Sec. 25.341(a)
at each angle normal to the flight path, and separately,
(2) A pair of discrete gusts, one vertical and one lateral. The
length of each of these gusts must be independently tuned to the
maximum response in accordance with Sec. 25.341(a). The penetration of
the airplane in the combined gust field and the phasing of the vertical
and lateral component gusts must be established to develop the maximum
response to the gust pair. In the absence of a more rational analysis,
the following formula must be used for each of the maximum engine loads
in all six degrees of freedom:
[[Page 31859]]
[GRAPHIC] [TIFF OMITTED] TP28MY13.020
Where--
PL = limit load;
PL-1g = steady 1g load for the condition;
LV = peak incremental response load due to a vertical
gust according to Sec. 25.341(a); and
LL = peak incremental response load due to a lateral gust
according to Sec. 25.341(a).
0
4. Amend Sec. 25.343 by revising paragraph (b)(1)(ii) to read as
follows:
Sec. 25.343 Design fuel and oil loads.
* * * * *
(b) * * *
(1) * * *
(ii) The gust and turbulence conditions of Sec. 25.341, but
assuming 85% of the gust velocities prescribed in Sec. 25.341(a)(4)
and 85% of the turbulence intensities prescribed in Sec. 25.341(b)(3).
* * * * *
0
5. Amend Sec. 25.345 by revising paragraph (c)(2) to read as follows:
Sec. 25.345 High lift devices.
* * * * *
(c) * * *
(2) The vertical gust and turbulence conditions prescribed in Sec.
25.341.
* * * * *
0
6. Revise Sec. 25.361 to read as follows:
Sec. 25.361 Engine and auxiliary power unit torque.
(a) For engine installations--
(1) Each engine mount, pylon, and adjacent supporting airframe
structures must be designed for the effects of--
(i) A limit engine torque corresponding to takeoff power/thrust
and, if applicable, corresponding propeller speed, acting
simultaneously with 75% of the limit loads from flight condition A of
Sec. 25.333(b);
(ii) A limit engine torque corresponding to the maximum continuous
power/thrust and, if applicable, corresponding propeller speed, acting
simultaneously with the limit loads from flight condition A of Sec.
25.333(b); and
(iii) For turbopropeller installations only, in addition to the
conditions specified in paragraphs (a)(1)(i) and (ii) of this section,
a limit engine torque corresponding to takeoff power and propeller
speed, multiplied by a factor accounting for propeller control system
malfunction, including quick feathering, acting simultaneously with 1g
level flight loads. In the absence of a rational analysis, a factor of
1.6 must be used.
(2) The limit engine torque to be considered under paragraph (a)(1)
of this section must be obtained by--
(i) For turbopropeller installations, multiplying mean engine
torque for the specified power/thrust and speed by a factor of 1.25;
(ii) For other turbine engines, the limit engine torque must be
equal to the maximum accelerating torque for the case considered.
(3) The engine mounts, pylons, and adjacent supporting airframe
structure must be designed to withstand 1g level flight loads acting
simultaneously with the limit engine torque loads imposed by each of
the following conditions to be considered separately:
(i) Sudden maximum engine deceleration due to malfunction or
abnormal condition; and
(ii) The maximum acceleration of engine.
(b) For auxiliary power unit installations, the power unit mounts
and adjacent supporting airframe structure must be designed to
withstand 1g level flight loads acting simultaneously with the limit
torque loads imposed by each of the following conditions to be
considered separately:
(1) Sudden maximum auxiliary power unit deceleration due to
malfunction or abnormal condition or structural failure; and
(2) The maximum acceleration of the auxiliary power unit.
0
7. Add a new Sec. 25.362 to read as follows:
Sec. 25.362 Engine failure loads.
(a) For engine mounts, pylons, and adjacent supporting airframe
structure, an ultimate loading condition must be considered that
combines 1g flight loads with the most critical transient dynamic loads
and vibrations, as determined by dynamic analysis, resulting from
failure of a blade, shaft, bearing or bearing support, or bird strike
event. Any permanent deformation from these ultimate load conditions
must not prevent continued safe flight and landing.
(b) The ultimate loads developed from the conditions specified in
paragraph (a) of this section are to be--
(1) Multiplied by a factor of 1.0 when applied to engine mounts and
pylons; and
(2) Multiplied by a factor of 1.25 when applied to adjacent
supporting airframe structure.
0
8. Revise Sec. 25.371 to read as follows:
Sec. 25.371 Gyroscopic loads.
The structure supporting any engine or auxiliary power unit must be
designed for the loads, including gyroscopic loads, arising from the
conditions specified in Sec. Sec. 25.331, 25.341, 25.349, 25.351,
25.473, 25.479, and 25.481, with the engine or auxiliary power unit at
the maximum rotating speed appropriate to the condition. For the
purposes of compliance with this paragraph, the pitch maneuver in Sec.
25.331(c)(1) must be carried out until the positive limit maneuvering
load factor (point A2 in Sec. 25.333(b)) is reached.
0
9. Amend Sec. 25.373 by revising paragraph (a) to read as follows:
Sec. 25.373 Speed control devices.
* * * * *
(a) The airplane must be designed for the symmetrical maneuvers
prescribed in Sec. Sec. 25.333 and 25.337, the yawing maneuvers in
Sec. 25.351, and the vertical and lateral gust and turbulence
conditions prescribed in Sec. 25.341(a) and (b) at each setting and
the maximum speed associated with that setting; and
* * * * *
0
10. Amend Sec. 25.391 by revising the introductory text to read as
follows:
Sec. 25.391 Control surface loads: General.
The control surfaces must be designed for the limit loads resulting
from the flight conditions in Sec. Sec. 25.331, 25.341(a) and (b),
25.349, and 25.351, considering the requirements for--
* * * * *
0
11. Amend Sec. 25.395 by revising paragraph (b) to read as follows:
Sec. 25.395 Control system.
* * * * *
(b) The system limit loads of paragraph (a) of this section need
not exceed the loads that can be produced by the pilot (or pilots) and
by automatic or power devices operating the controls.
* * * * *
0
12. Revise Sec. 25.415 to read as follows:
Sec. 25.415 Ground gust conditions.
(a) The flight control systems and surfaces must be designed for
the limit loads generated when the aircraft is subjected to a
horizontal 65 knots ground gust from any direction, while taxiing with
the controls locked and unlocked and while parked with the controls
locked.
(b) The control system and surface loads due to ground gust may be
assumed to be static loads, and the hinge moments H must be computed
from the formula:
H = K (\1/2\) [rho]o V\2\ c S
Where--
K = hinge moment factor for ground gusts derived in paragraph (c) of
this section;
[rho]o = density of air at sea level;
V = 65 knots relative to the aircraft;
S = area of the control surface aft of the hinge line;
c = mean aerodynamic chord of the control surface aft of the hinge
line.
[[Page 31860]]
(c) The hinge moment factor K for ground gusts must be taken from
the following table:
----------------------------------------------------------------------------------------------------------------
Surface K Position of controls
----------------------------------------------------------------------------------------------------------------
(a) Aileron.................... 0.75 Control Column locked or lashed in mid-position.
(b) Aileron.................... *0.5
0
(c) Elevator................... *0.7
5
(d) Elevator................... *0.7
5
(e) Rudder..................... 0.75 Rudder in neutral.
(f) Rudder..................... 0.75 Rudder at full throw.
----------------------------------------------------------------------------------------------------------------
* A positive value of K indicates a moment tending to depress the surface, while a negative value of K indicates
a moment tending to raise the surface.
(d) The computed hinge moment of paragraph (b) of this section must
be used to determine the limit loads due to ground gust conditions for
the control surface. A 1.25 factor on the computed hinge moments must
be used in calculating limit control system loads.
(e) Where control system flexibility is such that the rate of load
application in the ground gust conditions might produce transient
stresses appreciably higher than those corresponding to static loads,
in the absence of a rational analysis, an additional factor of 1.6 must
be applied to the control system loads of paragraph (d) of this section
to obtain limit loads. If a rational analysis is used, the additional
factor must not be less than 1.2.
(f) For the condition of the control locks engaged, the control
surfaces, the control system locks, and the parts of the control
systems (if any) between the surfaces and the locks must be designed to
the resultant limit loads. Where control locks are not provided, then
the control surfaces, the control system stops nearest the surfaces,
and the parts of the control systems (if any) between the surfaces and
the stops must be designed to the resultant limit loads. If the control
system design is such as to allow any part of the control system to
impact with the stops due to flexibility, then the resultant impact
loads must be taken into account in deriving the limit loads due to
ground gust.
(g) For the condition of taxiing with the control locks disengaged,
the following apply:
(1) The control surfaces, the control system stops nearest the
surfaces, and the parts of the control systems (if any) between the
surfaces and the stops must be designed to the resultant limit loads.
(2) The parts of the control systems between the stops nearest the
surfaces and the flight deck controls must be designed to the resultant
limit loads, except that the parts of the control system where loads
are eventually reacted by the pilot need not exceed:
(i) The loads corresponding to the maximum pilot loads in Sec.
25.397(c) for each pilot alone; or
(ii) 0.75 times these maximum loads for each pilot when the pilot
forces are applied in the same direction.
0
13. Revise Sec. 25.1517 to read as follows:
Sec. 25.1517 Rough air speed, VRA.
(a) A rough air speed, VRA, for use as the recommended
turbulence penetration airspeed, and a rough air Mach number,
MRA, for use as the recommended turbulence penetration Mach
number, must be established. VRA/MRA must be
sufficiently less than VMO/MMO to ensure that
likely speed variation during rough air encounters will not cause the
overspeed warning to operate too frequently.
(b) At altitudes where VMO is not limited by Mach
number, in the absence of a rational investigation substantiating the
use of other values, VRA must be less than VMO-35
KTAS.
(c) At altitudes where VMO is limited by Mach number,
MRA may be chosen to provide an optimum margin between low
and high speed buffet boundaries.
0
14. Remove and reserve appendix G to part 25.
Issued under authority provided by 49 U.S.C. 106(f), 44701(a),
and 44703 in Washington, DC, on May 6, 2013.
Dorenda D. Baker,
Director, Aircraft Certification Service.
[FR Doc. 2013-12445 Filed 5-24-13; 8:45 am]
BILLING CODE 4910-13-P