Endangered and Threatened Wildlife and Plants; Determination of Endangered Status for 38 Species on Molokai, Lanai, and Maui, 32013-32065 [2013-12105]
Download as PDF
Vol. 78
Tuesday,
No. 102
May 28, 2013
Part II
Department of the Interior
mstockstill on DSK4VPTVN1PROD with RULES2
Fish and Wildlife Service
50 CFR Part 17
Endangered and Threatened Wildlife and Plants; Determination of
Endangered Status for 38 Species on Molokai, Lanai, and Maui; Final
Rule
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
PO 00000
Frm 00001
Fmt 4717
Sfmt 4717
E:\FR\FM\28MYR2.SGM
28MYR2
32014
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
DEPARTMENT OF THE INTERIOR
Fish and Wildlife Service
50 CFR Part 17
[Docket No. FWS–R1–ES–2011–0098;
4500030113]
RIN 1018–AX14
Endangered and Threatened Wildlife
and Plants; Determination of
Endangered Status for 38 Species on
Molokai, Lanai, and Maui
Fish and Wildlife Service,
Interior.
ACTION: Final rule.
mstockstill on DSK4VPTVN1PROD with RULES2
AGENCY:
SUMMARY: We, the U.S. Fish and
Wildlife Service (Service), determine
endangered status under the
Endangered Species Act of 1973 (Act),
as amended, for 38 species on the
Hawaiian Islands of Molokai, Lanai, and
Maui, and reaffirm the listing of 2
endemic Hawaiian plants currently
listed as endangered. In this final rule,
we are also delisting the plant Gahnia
lanaiensis, due to new information that
this species is synonymous with G.
lacera, a widespread species from New
Zealand. The effect of this regulation is
to conserve these 40 species under the
Endangered Species Act.
DATES: This rule becomes effective on
June 27, 2013.
ADDRESSES: This final rule is available
on the Internet at https://
www.regulations.gov. Comments and
materials received, as well as supporting
documentation used in preparing this
final rule are available for public
inspection, by appointment, during
normal business hours, at U.S. Fish and
Wildlife Service, Pacific Islands Fish
and Wildlife Office, 300 Ala Moana
Boulevard, Box 50088, Honolulu, HI
96850; telephone 808–792–9400;
facsimile 808–792–9581.
FOR FURTHER INFORMATION CONTACT:
Loyal Mehrhoff, Field Supervisor, U.S.
Fish and Wildlife Service, Pacific
Islands Fish and Wildlife Office, 300
Ala Moana Boulevard, Box 50088,
Honolulu, HI 96850; by telephone at
808–792–9400; or by facsimile at 808–
792–9581. If you use a
telecommunications device for the deaf
(TDD), call the Federal Information
Relay Service (FIRS) at 800–877–8339.
SUPPLEMENTARY INFORMATION:
Executive Summary
Why we need to publish a rule. This
is a final rule to list 38 species (35
plants and 3 tree snails) as endangered
under the Act from the island cluster of
Maui Nui (Molokai, Lanai, Maui, and
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
Kahoolawe) in the State of Hawaii. In
addition, the rule reaffirms the listing of
two endemic Hawaiian plants currently
listed as endangered. Collectively, in
this document we refer to these 40
species as the ‘‘Maui Nui species.’’
The basis for our action. Under the
Endangered Species Act, we determine
that a species is endangered or
threatened based on any of five factors:
(A) The present or threatened
destruction, modification, or
curtailment of its habitat or range; (B)
overutilization for commercial,
recreational, scientific, or educational
purposes; (C) disease or predation; (D)
the inadequacy of existing regulatory
mechanisms; or (E) other natural or
manmade factors affecting its continued
existence. We have determined that the
40 Maui Nui species are currently in
danger of extinction throughout all their
ranges, as the result of the following
current and ongoing threats:
• All of these species face threats
from the present destruction and
modification of their habitat, primarily
from introduced ungulates (such as feral
pigs, goats, cattle, mouflon sheep, and
axis deer) and the spread of nonnative
plants.
• Thirteen plant species face threats
from habitat destruction and
modification from fire.
• All 37 plant species face threats
from destruction and modification of
their habitats from hurricanes,
landslides, rockfalls, and flooding. In
addition, hurricanes are a threat to all
three tree snail species.
• Nine of these species face threats
from habitat destruction and
modification from drought.
• The projected effects of climate
change will likely exacerbate the effects
of the other threats to these species.
• There is a serious threat of
widespread impacts of predation and
herbivory on all 37 plant species by
nonnative ungulates, rats, and
invertebrates; and predation on the
three tree snails by nonnative rats and
invertebrates.
• Some of the plant species face the
additional threat of trampling.
• The inadequacy of existing
regulatory mechanisms (specifically
inadequate protection of habitat and
inadequate protection from the
introduction of nonnative species) poses
a current and ongoing threat to all 40
species.
• There are current and ongoing
threats to 20 plant species and the 3 tree
snail species due to factors associated
with small numbers of populations and
individuals.
PO 00000
Frm 00002
Fmt 4701
Sfmt 4700
• Five plant species face threats from
hybridization and lack of or low levels
of regeneration.
• These threats are exacerbated by
these species’ inherent vulnerability to
extinction from stochastic events at any
time because of their endemism, small
numbers of individuals and
populations, and restricted habitats.
We fully considered comments from
the public, including comments
received during a public hearing and
comments received from peer reviewers,
on the proposed rule.
Peer reviewers support our methods.
We obtained opinions from four
knowledgeable individuals with
scientific expertise to review our
technical assumptions, analysis, and
whether or not we had used the best
available information. These peer
reviewers generally concurred with our
methods and conclusions, and provided
additional information, clarifications,
and suggestions to improve this final
rule.
This document consists of a final rule
to list 35 plant species and 3 tree snail
species as endangered and reaffirms the
listing as endangered for 2 plants (40
species total). We additionally delist the
plant Gahnia lanaiensis due to
taxonomic error.
Previous Federal Actions
Federal actions for these species prior
to June 11, 2012, are outlined in our
proposed rule (77 FR 34464), which was
published on that date. Publication of
the proposed rule opened a 60-day
comment period, which was extended
on August 9, 2012 (77 FR 47587), for an
additional 30 days and closed on
September 10, 2012. We published a
public notice of the proposed rule on
June 20, 2012, in the local Honolulu
Star Advertiser, Maui Times, and
Molokai Dispatch newspapers. On
January 31, 2013 (78 FR 6785), we
reopened the comment period for an
additional 30 days on the entire June 11,
2012, proposed rule (77 FR 34464), as
well as the draft economic analysis on
the proposed critical habitat
designation, and announced a public
information meeting and hearing that
we held in Kihei, Maui, on February 21,
2013. This second comment period
closed on March 4, 2013. In total, we
accepted public comments on the June
11, 2012, proposed rule for 120 days.
Background
On June 11, 2012, we published in the
Federal Register (77 FR 34464) a
proposed rule to list 38 species on the
Hawaiian Islands of Molokai, Lanai, and
Maui as endangered under the
Endangered Species Act of 1973, as
E:\FR\FM\28MYR2.SGM
28MYR2
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
amended (Act; 16 U.S.C. 1531 et seq.).
We also proposed to reaffirm the listing
of two endemic Hawaiian plants listed
as endangered. We further proposed to
designate critical habitat for 39 of these
40 plant and animal species, to
designate critical habitat for 11
previously listed plant and animal
species that do not have designated
critical habitat, and to revise critical
habitat for 85 plant species already
listed as endangered or threatened.
The final critical habitat
determination for the Maui Nui species
is still under development and
undergoing Service review. It will
publish in the Federal Register in the
near future under Docket No. FWS–R1–
ES–2013–0003. That document will also
provide our final determinations
regarding the name changes and
32015
spelling corrections proposed in our
June 1, 2012, proposed rule (77 FR
34464).
Maui Nui Species Addressed in this
Final Rule
The table below (Table 1) provides the
common name, scientific name, and
listing status for the species that are the
subject of this final rule.
TABLE 1—THE MAUI NUI SPECIES ADDRESSED IN THIS FINAL RULE
[Note that many of the species share the same common name]
Scientific name
Common name(s)
Listing Status
Species Listed as Endangered
Plants:
Bidens campylotheca ssp. pentamera .......................................................................................
Bidens campylotheca ssp. waihoiensis ......................................................................................
Bidens conjuncta ........................................................................................................................
Calamagrostis hillebrandii ..........................................................................................................
Canavalia pubescens .................................................................................................................
Cyanea asplenifolia ....................................................................................................................
Cyanea duvalliorum ....................................................................................................................
Cyanea horrida ...........................................................................................................................
Cyanea kunthiana ......................................................................................................................
Cyanea magnicalyx ....................................................................................................................
Cyanea maritae ..........................................................................................................................
Cyanea mauiensis ......................................................................................................................
Cyanea munroi ...........................................................................................................................
Cyanea obtusa ...........................................................................................................................
Cyanea profuga ..........................................................................................................................
Cyanea solanacea ......................................................................................................................
Cyrtandra ferripilosa ...................................................................................................................
Cyrtandra filipes .........................................................................................................................
Cyrtandra oxybapha ...................................................................................................................
Festuca molokaiensis .................................................................................................................
Geranium hanaense ...................................................................................................................
Geranium hillebrandii .................................................................................................................
Mucuna sloanei var. persericea .................................................................................................
Myrsine vaccinioides ..................................................................................................................
Peperomia subpetiolata ..............................................................................................................
Phyllostegia bracteata ................................................................................................................
Phyllostegia haliakalae ...............................................................................................................
Phyllostegia pilosa ......................................................................................................................
Pittosporum halophilum ..............................................................................................................
Pleomele fernaldii .......................................................................................................................
Schiedea jacobii .........................................................................................................................
Schiedea laui ..............................................................................................................................
Schiedea salicaria ......................................................................................................................
Stenogyne kauaulaensis ............................................................................................................
Wikstroemia villosa .....................................................................................................................
Animals:
Newcombia cumingi ...................................................................................................................
Partulina semicarinata ................................................................................................................
Partulina variabilis ......................................................................................................................
kookoolau ...........................
kookoolau ...........................
kookoolau ...........................
[NCN] 1 ...............................
awikiwiki .............................
haha ...................................
haha ...................................
haha nui .............................
haha ...................................
haha ...................................
haha ...................................
haha ...................................
haha ...................................
haha ...................................
haha ...................................
popolo .................................
haiwale ...............................
haiwale ...............................
haiwale ...............................
[NCN] ..................................
nohoanu .............................
nohoanu .............................
sea bean ............................
kolea ...................................
alaala wai nui .....................
[NCN] ..................................
[NCN] ..................................
[NCN] ..................................
hoawa .................................
hala pepe ...........................
[NCN] ..................................
[NCN] ..................................
[NCN] ..................................
[NCN] ..................................
akia .....................................
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Endangered.
Newcomb’s tree snail .........
Lanai tree snail ...................
Lanai tree snail ...................
Endangered.
Endangered.
Endangered.
haha ...................................
iliahi ....................................
Endangered.
Endangered.
Species Reevaluated for Listing
Cyanea grimesiana ssp. grimesiana .................................................................................................
Santalum haleakalae var. lanaiense (synonym = Santalum freycinetianum var. lanaiense) ...........
mstockstill on DSK4VPTVN1PROD with RULES2
1 NCN
= no common name.
Taxonomic Changes Since Listing for
Two Maui Nui Plant Species
At the time we listed Cyanea
grimesiana ssp. grimesiana as
endangered (61 FR 53108; October 10,
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
1996), we followed the taxonomic
treatment of Lammers in Wagner et al.
(1990, pp. 451–452). The distribution of
C. grimesiana ssp. grimesiana as
recognized at that time included the
islands of Oahu, Molokai, Lanai, and
PO 00000
Frm 00003
Fmt 4701
Sfmt 4700
Maui. Subsequently, Lammers (1998,
pp. 31–32) recognized morphological
differences in the broadly circumscribed
Cyanea grimesiana group and published
new combinations for the plants
reported from Maui (C. mauiensis) and
E:\FR\FM\28MYR2.SGM
28MYR2
32016
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
mstockstill on DSK4VPTVN1PROD with RULES2
Lanai (C. munroi). Plants reported from
Molokai were identified as either C.
munroi or C. grimesiana ssp.
grimesiana. In 2004, Lammers (pp. 85–
87) recognized further differences in the
plants reported from Maui and
described a new species, C. magnicalyx,
known only from west Maui. The range
of C. grimesiana ssp. grimesiana now
includes only Oahu and Molokai
(Lammers 1998, pp. 31–32; Lammers
2004, pp. 84–85). Because the range of
the listed entity has changed, we
evaluated the effects of the five factors
described in section 4(a)(1) of the Act on
C. grimesiana ssp. grimesiana as
currently recognized, and determine
that this species warrants endangered
status under the Act (see Summary of
Factors Affecting the 40 Maui Nui
Species, below).
We listed Santalum freycinetianum
var. lanaiense as endangered (51 FR
3182; January 24, 1986) in 1986. At that
time, the species was known only from
the island of Lanai. Our recovery plan
for this species, published in 1995,
recognized that the range of the species
additionally includes west Maui, as well
as Lanai, based on new information
(USFWS 1995a, pp. 35–36). In her
revision of the Hawaiian species of
Santalum, Harbaugh et al. (2010, pp.
834–835) moved the plants previously
recognized as S. freycinetianum var.
lanaiense to S. haleakalae var.
lanaiense. The range of S. haleakalae
var. lanaiense now includes Molokai,
Lanai, and east and west Maui (HBMP
2010; Harbaugh et al. 2010, pp. 834–
835). Because the range of the listed
entity has changed, we evaluated the
effects of the five factors described in
section 4(a)(1) of the Act on S.
haleakalae var. lanaiense as currently
recognized and determine that this
species as described herein warrants its
status as endangered under the Act (see
Summary of Factors Affecting the 40
Maui Nui Species, below).
Delisting of Gahnia lanaiensis
Gahnia lanaiensis was listed as
endangered in 1991 (56 FR 47686;
September 20, 1991). At that time, this
species was known from 15 or 16 large
‘‘clumped’’ plants growing on the
summit of Lanaihale, on the island of
Lanai. The distribution of these plants
was considered to be the entire known
range of the species. Gahnia lanaiensis
was listed as threatened due the small
number of individuals remaining and
resulting negative consequences of very
small populations, which increased the
potential for extinction of the species
due to stochastic events; the potential
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
for destruction of plants due their
proximity to a popular hiking and jeep
trail; and habitat degradation and
destruction by feral ungulates and
nonnative plants (56 FR 47686;
September 20, 1991).
In a recently published paper,
Koyama et al. (2010, pp. 29–30) found
that based on spikelet and achene
characters, Gahnia lanaiensis is a
complete match for G. lacera, a species
endemic to New Zealand. Koyama
further states that G. lacera likely
arrived on Lanai, either intentionally or
unintentionally, through the restoration
efforts of George Munro, the Resident
Manager of Lanai Ranch from 1911 to
1930 (Koyama 2010, p. 30). Born and
raised in New Zealand, Munro is known
to have used seeds of New Zealand’s
native plants for reforestation efforts on
Lanai (Koyama 2010, p. 30).
Because Gahnia lanaiensis is not
believed to be a uniquely valid species;
is synonymous with G. lacera, a species
endemic to New Zealand where it is
known to be common (Piha New
Zealand Plant Conservation Network
2010, in litt.); and is not in danger of
extinction or likely to become an
endangered species within the
foreseeable future throughout all or a
significant portion of its range, we delist
G. lanaiensis due to error in the original
listing. We did not receive any public
comments on our proposed delisting of
G. lanaiensis due to taxonomic error.
An Ecosystem-based Approach
On the islands of Molokai, Lanai, and
Maui, as on most of the Hawaiian
Islands, native species that occur in the
same habitat types (ecosystems) depend
on many of the same biological features
and the successful functioning of that
ecosystem to survive. We have therefore
organized the species addressed in this
final rule by common ecosystem.
Although the listing determination for
each species is analyzed separately, we
have organized the individual analysis
for each species within the context of
the broader ecosystem in which it
occurs to avoid redundancy. In
addition, native species that share
ecosystems often face a suite of common
factors that may negatively impact them,
and ameliorating or eliminating these
threats for each individual species often
requires the exact same management
actions in the exact same areas. Effective
management of these threats often
requires implementation of conservation
actions at the ecosystem scale to
enhance or restore critical ecological
processes and provide for long-term
viability of those species in their native
PO 00000
Frm 00004
Fmt 4701
Sfmt 4700
environment. Thus, by taking this
approach, we hope to not only organize
this rule efficiently, but also to more
effectively focus conservation
management efforts on the common
threats that occur across these
ecosystems. Those efforts would
facilitate restoration of ecosystem
functionality for the recovery of each
species, and provide conservation
benefits for associated native species,
thereby potentially precluding the need
to list other species under the Act that
occur in these shared ecosystems. In
addition, this approach is in
concordance with one of the primary
stated purposes of the Act, as stated in
section 2(b): ‘‘to provide a means
whereby the ecosystems upon which
endangered species and threatened
species depend may be conserved.’’
We are listing the plants Bidens
campylotheca ssp. pentamera, Bidens
campylotheca ssp. waihoiensis, Bidens
conjuncta, Calamagrostis hillebrandii,
Cyanea asplenifolia, Cyanea
duvalliorum, Cyanea horrida, Cyanea
kunthiana, Cyanea magnicalyx, Cyanea
maritae, Cyanea mauiensis, Cyanea
munroi, Cyanea obtusa, Cyanea
profuga, Cyanea solanacea, Cyrtandra
ferripilosa, Cyrtandra filipes, Cyrtandra
oxybapha, Festuca molokaiensis,
Geranium hanaense, Geranium
hillebrandii, Mucuna sloanei var.
persericea, Myrsine vaccinioides,
Peperomia subpetiolata, Phyllostegia
bracteata, Phyllostegia haliakalae,
Phyllostegia pilosa, Pittosporum
halophilum, Pleomele fernaldii,
Schiedea jacobii, Schiedea laui,
Schiedea salicaria, Stenogyne
kauaulaensis, and Wikstroemia villosa;
and the tree snails Newcombia cumingi,
Partulina semicarinata and Partulina
variabilis, from the islands of Molokai,
Lanai, and Maui as endangered species.
We are also listing the plant Canavalia
pubescens, known from the islands of
Niihau, Kauai, Lanai, and Maui as an
endangered species. In addition, we
reaffirm the listing of two plant species,
Santalum haleakalae var. lanaiense
(formerly Santalum freycinetianum var.
lanaiense) from the islands of Molokai,
Lanai, and Maui, and Cyanea
grimesiana ssp. grimesiana, known from
Oahu and Molokai, as endangered
species. These 40 species (37 plants and
3 tree snails) are found in 10 ecosystem
types: Coastal, lowland dry, lowland
mesic, lowland wet, montane dry,
montane wet, montane mesic,
subalpine, dry cliff, and wet cliff (Table
3).
E:\FR\FM\28MYR2.SGM
28MYR2
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
32017
TABLE 3—THE 40 MAUI NUI SPECIES 1 AND THE ECOSYSTEMS UPON WHICH THEY DEPEND
Island
Ecosystem
Molokai
Lanai
Coastal ...............
Lowland Dry .......
Pittosporum halophilum .........................
................................................................
Canavalia pubescens
Pleomele fernaldii ..................................
Lowland Mesic ...
Cyanea profuga .....................................
Cyanea solanacea .................................
Cyrtandra filipes .....................................
Festuca molokaiensis ............................
Phyllostegia haliakalae
Phyllostegia pilosa
Santalum haleakalae var. lanaiense
Cyanea grimesiana ssp. grimesiana ......
Cyanea solanacea .................................
Cyrtandra filipes .....................................
Pleomele fernaldii ..................................
Santalum haleakalae var. lanaiense ......
................................................................
................................................................
Lowland Wet ......
Pleomele fernaldii ..................................
Santalum haleakalae var. lanaiense ......
Partulina semicarinata ...........................
Partulina variabilis ..................................
................................................................
Cyanea solanacea .................................
Santalum haleakalae var. lanaiense ......
................................................................
................................................................
................................................................
Montane Wet .....
Cyanea profuga .....................................
Cyanea solanacea .................................
Phyllostegia pilosa .................................
Schiedea laui .........................................
Santalum haleakalae var. lanaiense ......
Partulina semicarinata ...........................
Partulina variabilis ..................................
................................................................
Subalpine ...........
Dry Cliff ..............
mstockstill on DSK4VPTVN1PROD with RULES2
Montane Dry ......
Montane Mesic ..
................................................................
Phyllostegia haliakalae ..........................
Wet Cliff .............
Cyanea grimesiana ssp. grimesiana ......
Cyanea munroi .......................................
................................................................
Pleomele fernaldii ..................................
Pleomele fernaldii ..................................
Cyanea munroi .......................................
Phyllostegia haliakalae ..........................
Pleomele fernaldii ..................................
Santalum haleakalae var. lanaiense ......
Partulina semicarinata ...........................
Partulina variabilis ..................................
VerDate Mar<15>2010
19:06 May 24, 2013
Jkt 229001
PO 00000
Frm 00005
Fmt 4701
Sfmt 4700
E:\FR\FM\28MYR2.SGM
Maui
Bidens campylotheca ssp. pentamera.
Canavalia pubescens.
Cyanea obtusa.
Santalum haleakalae var. lanaiense.
Schiedea salicaria.
Bidens campylotheca ssp. pentamera.
Cyanea asplenifolia.
Cyanea mauiensis.2
Santalum haleakalae var. lanaiense
Bidens campylotheca ssp. waihoiensis.
Bidens conjuncta.
Cyanea asplenifolia.
Cyanea duvalliorum.
Cyanea kunthiana.
Cyanea magnicalyx.
Cyanea maritae.
Cyrtandra filipes.
Mucuna sloanei var. persericea.
Phyllostegia bracteata
Santalum haleakalae var. lanaiense.
Wikstroemia villosa.
Newcombia cumingi.
Santalum haleakalae var. lanaiense.
Bidens campylotheca ssp.pentamera.
Cyanea horrida.
Cyanea kunthiana.
Cyanea magnicalyx.
Cyanea obtusa.
Cyrtandra ferripilosa.
Cyrtandra oxybapha
Geranium hillebrandii.
Phyllostegia bracteata.
Phyllostegia haliakalae.
Santalum haleakalae var. lanaiense.
Stenogyne kauaulaensis.
Wikstroemia villosa.
Bidens campylotheca ssp. pentamera.
Bidens campylotheca ssp. waihoiensis.
Bidens conjuncta.
Calamagrostis hillebrandii.
Cyanea duvalliorum.
Cyanea horrida.
Cyanea kunthiana.
Cyanea maritae.
Cyrtandra ferripilosa.
Cyrtandra oxybapha.
Geranium hanaense.
Geranium hillebrandii.
Myrsine vaccinioides.
Peperomia subpetiolata.
Phyllostegia bracteata.
Phyllostegia pilosa.
Schiedea jacobii.
Wikstroemia villosa.
Phyllostegia bracteata.
Bidens campylotheca ssp. pentamera.
Cyanea mauiensis. 2
Bidens campylotheca ssp. pentamera.
Bidens campylotheca ssp. waihoiensis.
Bidens conjuncta.
Cyanea horrida.
Cyanea magnicalyx.
Cyrtandra filipes.
Phyllostegia bracteata.
Phyllostegia haliakalae.
28MYR2
32018
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
TABLE 3—THE 40 MAUI NUI SPECIES 1 AND THE ECOSYSTEMS UPON WHICH THEY DEPEND—Continued
Island
Ecosystem
Molokai
Lanai
Maui
Santalum haleakalae var. lanaiense.
1 37
species are plants and 3 species (Newcombia cumingi, Partulina semicarinata, and Partulina variabilis) are tree snails.
2 Not seen since the 1800s.
imminence, and its scope. Beyond
ecosystem-level impacts, we further
identified and evaluated factors that
may represent unique adverse impacts
to certain species, but do not apply to
all species under consideration within
the same ecosystem. For example, the
threat of predation by nonnative snails
is unique to the three tree snails in this
rule, and is not applicable to any of the
other 37 species. We have identified
such threats, which apply only to
certain species within the ecosystems
addressed here, as ‘‘species-specific
threats.’’
The Islands of Maui Nui
The island of Molokai is the fifth
largest of the eight main Hawaiian
Islands. It was formed from three shield
volcanoes and is about 260 square miles
(sq mi) (673 square kilometers (sq km))
in area (Juvik and Juvik 1998, pp. 11,
13). The volcanoes that make up most
of the land mass of Molokai include the
west and east Molokai mountains, and
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
PO 00000
Frm 00006
Fmt 4701
Sfmt 4700
The islands of Maui Nui include
Molokai, Lanai, Maui, and Kahoolawe
(Figure 1). During the last Ice Age, about
21,000 years ago, when sea levels were
approximately 459 feet (ft) (140 meters
(m)) below their present level, these four
islands were connected by a broad
lowland plain and unified as a single
island (Nullet et al. 1998, p. 64; Ziegler
2002, p. 22). This land bridge allowed
the movement and interaction of each
island’s flora and fauna and contributed
to the present close relationships of
their biota (Nullet et al. 1998, p. 64).
E:\FR\FM\28MYR2.SGM
28MYR2
ER28MY13.000
mstockstill on DSK4VPTVN1PROD with RULES2
For each species, we identified and
evaluated those factors that adversely
impact the species and that may be
common to all of the species at the
ecosystem level. For example, the
degradation of habitat by nonnative
ungulates is considered a threat to 37 of
the 40 species, and is likely a threat to
many, if not most or even all, of the
native species within a given ecosystem.
We consider such a threat to be an
‘‘ecosystem-level threat,’’ as each
individual species within that
ecosystem faces an adverse impact that
is essentially identical in terms of the
nature of the its impact, its severity, its
mstockstill on DSK4VPTVN1PROD with RULES2
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
a volcano that formed Kalaupapa
peninsula. The taller and larger east
Molokai mountain rises 4,970 ft (1,514
m) above sea level and comprises
roughly 50 percent of the island’s area
(Juvik and Juvik 1998, p. 11).
Topographically, the windward (north)
side of east Molokai differs from the
leeward (south) side. Precipitous cliffs
line the windward coast and deep
valleys dissect the coastal area. The
annual rainfall on the windward side of
Molokai is 75 to more than 150 inches
(in) (200 to more than 375 centimeters
(cm)) (Giambelluca and Schroeder 1998,
p. 50).
The island of Lanai is the sixth largest
of the eight main Hawaiian Islands,
located southeast of Molokai and
northwest of Hawaii Island. It is located
in the lee or rain shadow of the taller
west Maui mountains. Lanai was formed
from a single shield volcano and built
by eruptions at its summit and along
three rift zones (Clague 1998, p. 42). The
island is about 140 sq mi (364 sq km)
in area and its highest point, Lanaihale,
has an elevation of 3,366 ft (1,027 m)
(Clague 1998, p. 42; Juvik and Juvik
1998, p. 13; Walker 1999, p. 21). Annual
rainfall on the summit is 30 to 40 in (76
to 102 cm), but is considerably less, 10
to 20 in (25 to 50 cm), over much of the
rest of the island (Giambelluca and
Schroeder 1998, p. 56).
The island of Maui is the second
largest of the eight main Hawaiian
Islands, located southeast of Molokai
and northwest of Hawaii Island (Juvik
and Juvik 1998, p. 14). It was formed
from two shield volcanoes and resulted
in the west Maui mountains, which are
about 1.3 million years old, and
Haleakala on east Maui, which is about
750,000 years old (Juvik and Juvik 1998,
p. 14). West and east Maui are
connected by the central Maui isthmus,
and the island’s total land area is 729 sq
mi (1,888 sq km) (Juvik and Juvik 1998,
p. 14; Walker 1999, p. 21). The west
Maui mountains have been eroded by
streams that created deep valleys and
ridges. The highest point on west Maui
is Puu Kukui at 5,788 ft (1,764 m) in
elevation, with with an average rainfall
greater than 400 in (1,020 cm) per year
(Juvik and Juvik 1998, p. 14; Wagner et
al. 1999b, p. 41; Giambelluca et al.
2011–Online Rainfall Atlas of Hawaii).
East Maui’s Haleakala volcano remains
volcanically active, with its last
eruption occurring less than 500 years
ago (Sherrod et al. 2007, p. 40).
Haleakala rises 10,023 ft (3,055 m) in
elevation, and despite being younger in
age, possesses areas of diverse
vegetation equal or greater than the
older and more eroded west Maui
mountains (Price 2004, p. 493). Rainfall
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
on the slopes of Haleakala ranges from
about 35 in (89 cm) to over 400 in (1,000
cm) per year, with its windward
(northeastern) slope receiving the most
precipitation (Giambelluca et al. 2011–
Online Rainfall Atlas of Hawaii).
However, Haleakala’s crater is a dry
cinder desert because it is above the
level at which precipitation develops
and is sheltered from moisture-laden
winds usually associated with
orographic (mountain) rainfall
(Giambelluca and Schroeder 1998, p.
55).
The island of Kahoolawe is the
smallest of the eight main Hawaiian
Islands, located southeast of Molokai
and northwest of Hawaii Island. The
island is about 45 sq mi (116 sq km) in
area, and was formed from a single
shield volcano (Clague 1998, p. 42;
Juvik and Juvik 1998, pp. 7, 16). The
maximum elevation on Kahoolawe is
1,477 ft (450 m) at the summit of Puu
Moaulanui (Juvik and Juvik 1998, pp.
15–16). Kahoolawe is in the rain
shadow of Haleakala and is arid,
receiving no more than 25 in (65 cm) of
rainfall annually (Juvik and Juvik 1998,
p. 16; Mitchell et al. 2005, pp. 6–66).
The vegetation of the islands of Maui
Nui has undergone extreme alterations
because of past and present land use
and other activities. Land with rich soils
was altered by the early Hawaiians and,
more recently, converted to agricultural
use in the production of sugar and
pineapple (Gagne and Cuddihy 1999, p.
45) or pasture. For example, on
Haleakala, on the island of Maui, the
upland slopes have been converted to
diversified agriculture and cattle
ranches (Juvik and Juvik 1998, p. 16).
Archaeological surveys suggest that the
early Hawaiians did not live in the
highest areas of Haleakala but instead
inhabited the area temporarily for
religious ceremonies, the creation of
adzes (tools used for smoothing or
carving wood), and bird hunting
(Burney 1997, p. 448). Intentional and
inadvertent introduction of alien plant
and animal species has also contributed
to the reduction in range of native
vegetation on the islands of Maui Nui
(throughout this rule, the terms ‘‘alien,’’
‘‘feral,’’ ‘‘nonnative,’’ and ‘‘introduced’’
all refer to species that are not naturally
native to the Hawaiian Islands).
Currently, most of the native vegetation
on the islands persists on upper
elevation slopes, valleys and ridges;
steep slopes; precipitous cliffs; valley
headwalls; and other regions where
unsuitable topography has prevented
urbanization and agricultural
development, or where inaccessibility
has limited encroachment by nonnative
plant and animal species.
PO 00000
Frm 00007
Fmt 4701
Sfmt 4700
32019
Maui Nui Ecosystems
There are 11 different ecosystems
(coastal, lowland dry, lowland mesic,
lowland wet, montane dry, montane
mesic, montane wet, subalpine, alpine,
dry cliff, and wet cliff) recognized on
the islands of Maui Nui. The 40 species
in this rule occur in 10 of these
ecosystems (all except the alpine). All
11 Maui Nui ecosystems are described
in the following section.
Coastal
The coastal ecosystem is found on all
of the main Hawaiian Islands, with the
highest native species diversity in the
least populated coastal areas of Kauai,
Oahu, Molokai, Maui, Kahoolawe,
Hawaii Island, and their associated
islets. On Molokai, Lanai, Maui, and
Kahoolawe, the coastal ecosystem
includes mixed herblands, shrublands,
and grasslands, from sea level to 980 ft
(300 m) in elevation, generally within a
narrow zone above the influence of
waves to within 330 ft (100 m) inland,
sometimes extending further inland if
strong prevailing onshore winds drive
sea spray and sand dunes into the
lowland zone (The Nature Conservancy
(TNC) 2006a). The coastal ecosystem is
typically dry, with annual rainfall of
less than 20 in (50 cm); however,
windward rainfall may be high enough
(up to 40 in (100 cm)) to support mesicassociated and sometimes wetassociated vegetation (Gagne and
Cuddihy 1999, pp. 54–66). Biological
diversity is low to moderate in this
ecosystem, but may include some
specialized plants and animals such as
nesting seabirds and the endangered
plant Sesbania tomentosa (ohai) (TNC
2006a). The plants Canavalia pubescens
and Pittosporum halophilum, which are
listed as endangered in this final rule,
are reported in this ecosystem on
Molokai or Lanai (Hawaii Biodiversity
and Mapping Program (HBMP) 2008;
TNC 2007).
Lowland Dry
The lowland dry ecosystem includes
shrublands and forests generally below
3,300 ft (1,000 m) elevation that receive
less than 50 in (130 cm) annual rainfall,
or are in otherwise prevailingly dry
substrate conditions that range from
weathered reddish silty loams to stony
clay soils, rocky ledges with very
shallow soil, or relatively recent littleweathered lava (Gagne and Cuddihy
1999, p. 67). Areas consisting of
predominantly native species in the
lowland dry ecosystem are now rare;
this ecosystem is found on the islands
of Kauai, Oahu, Molokai, Lanai, Maui,
Kahoolawe and Hawaii, and is best
E:\FR\FM\28MYR2.SGM
28MYR2
32020
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
substrate conditions (TNC 2006d). On
the islands of Maui Nui, this system is
best developed in wet valleys and
slopes on Molokai, Lanai, and Maui
(TNC 2006d). Native biological diversity
is high in this system (TNC 2006d). The
plants Bidens campylotheca ssp.
waihoiensis, B. conjuncta, Cyanea
asplenifolia, C. duvalliorum, C.
grimesiana ssp. grimesiana, C.
kunthiana, C. magnicalyx, C. maritae, C.
solanacea, Cyrtandra filipes, Mucuna
sloanei var. persericea, Phyllostegia
bracteata, Pleomele fernaldii, Santalum
haleakalae var. lanaiense, and
Wikstroemia villosa; and the tree snails
Newcombia cumingi, Partulina
semicarinata, and P. variabilis, which
are listed as endangered in this final
rule, are reported in this ecosystem on
Molokai, Lanai, or Maui (HBMP 2008;
TNC 2007).
Lowland Mesic
The lowland mesic ecosystem
includes a variety of grasslands,
shrublands, and forests, generally below
3,300 ft (1,000 m) elevation, that receive
between 50 and 75 in (130 and 190 cm)
annual rainfall (TNC 2006c). In the
Hawaiian Islands, this ecosystem is
found on Kauai, Molokai, Lanai, Maui,
and Hawaii, on both windward and
leeward sides of the islands. On the
islands of Maui Nui, this ecosystem is
typically found on the leeward slopes of
Molokai, Lanai, and Maui (Gagne and
Cuddihy 1999, p. 75; TNC 2006c).
Native biological diversity is high in
this system (TNC 2006c). The plants
Bidens campylotheca ssp. pentamera,
Cyanea asplenifolia, C. profuga, C.
solanacea, Cyrtandra filipes, Festuca
molokaiensis, Phyllostegia haliakalae,
P. pilosa, Pleomele fernaldii, and
Santalum haleakalae var. lanaiense,
which are listed as endangered in this
final rule, are reported in this ecosystem
on this islands of Molokai, Lanai, or
Maui (HBMP 2008; TNC 2007). In
addition, Cyanea mauiensis, also listed
as endangered in this final rule, may
have occurred in this ecosystem on
Maui, but this species has not been
observed for over 100 years. The
species-specific habitat needs of Cyanea
mauiensis are not known.
mstockstill on DSK4VPTVN1PROD with RULES2
represented on the leeward sides of the
islands (Gagne and Cuddihy 1999, p.
67). On the islands of Maui Nui, this
ecosystem is typically found on the
leeward side of the mountains (Gagne
and Cuddihy 1999, p. 67; TNC 2006b).
Native biological diversity is low to
moderate in this ecosystem, and
includes specialized animals and plants
such as the Hawaiian owl or pueo (Asio
flammeus sandwichensis) and Santalum
ellipticum (iliahialoe or coast
sandalwood) (Wagner et al. 1999c, pp.
1,220–1,221; TNC 2006b). The plants
Bidens campylotheca ssp. pentamera,
Canavalia pubescens, Cyanea obtusa,
Pleomele fernaldii, Santalum
haleakalae var. lanaiense, and Schiedea
salicaria, which are listed as
endangered in this final rule, are
reported from this ecosystem on Lanai
or Maui (HBMP 2008; TNC 2007).
Lowland Wet
The lowland wet ecosystem is
generally found below 3,300 ft (1,000 m)
elevation on the windward sides of the
main Hawaiian Islands, except Niihau
and Kahoolawe (Gagne and Cuddihy
1999, p. 85; TNC 2006d). These areas
include a variety of wet grasslands,
shrublands, and forests that receive
greater than 75 in (190 cm) annual
precipitation, or are in otherwise wet
Montane Wet
The montane wet ecosystem is
composed of natural communities
(grasslands, shrublands, forests, and
bogs) found at elevations between 3,300
and 6,500 ft (1,000 and 2,000 m), in
areas where annual precipitation is
greater than 75 in (190 cm) (TNC 2006e).
This system is found on all of the main
Hawaiian Islands except Niihau and
Kahoolawe, and only the islands of
Molokai, Maui, and Hawaii have areas
above 4,020 ft (1,225 m) (TNC 2006e).
On the islands of Maui Nui this
ecosystem is found on Molokai, Lanai,
and Maui (TNC 2007). Native biological
diversity is moderate to high (TNC
2006e). The plants Bidens campylotheca
ssp. pentamera, B. campylotheca ssp.
waihoiensis, B. conjuncta,
Calamagrostis hillebrandii, Cyanea
duvalliorum, C. horrida, C. kunthiana,
C. maritae, C. profuga, C. solanacea,
Cyrtandra ferripilosa, C. oxybapha,
Geranium hanaense, G. hillebrandii,
Myrsine vaccinioides, Peperomia
subpetiolata, Phyllostegia bracteata, P.
pilosa, Santalum haleakalae var.
lanaiense, Schiedea jacobii, S. laui, and
Wikstroemia villosa; and the tree snails
Partulina semicarinata and P. variabilis,
which are listed as endangered in this
final rule, are reported in this ecosystem
on the islands of Molokai, Lanai, or
Maui (HBMP 2008; TNC 2007).
Montane Mesic
The montane mesic ecosystem is
composed of natural communities
(forests and shrublands) found at
elevations between 3,300 and 6,500 ft
(1,000 and 2,000 m), in areas where
annual precipitation is between 50 and
75 in (130 and 190 cm), or are in
otherwise mesic substrate conditions
(TNC 2006f). This system is found on
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
PO 00000
Frm 00008
Fmt 4701
Sfmt 4700
Kauai, Molokai, Maui, and Hawaii
Island (Gagne and Cuddihy 1999, pp.
97–99; TNC 2007). Native biological
diversity is moderate, and this habitat is
important for Hawaiian forest birds
(Gagne and Cuddihy 1999, pp. 98–99;
TNC 2006f). The plants Bidens
campylotheca ssp. pentamera, Cyanea
horrida, C. kunthiana, C. magnicalyx, C.
obtusa, C. solanacea, Cyrtandra
ferripilosa, C. oxybapha, Geranium
hillebrandii, Phyllostegia bracteata,
Phyllostegia haliakalae, Santalum
haleakalae var. lanaiense, Stenogyne
kauaulaensis, and Wikstroemia villosa,
which are listed as endangered in this
final rule, are reported in this ecosystem
on Molokai or Maui (TNC 2007; HBMP
2008; HNP 2012, in litt.).
Montane Dry
The montane dry ecosystem is
composed of natural communities
(shrublands, grasslands, forests) found
at elevations between 3,300 and 6,500 ft
(1,000 and 2,000 m), in areas where
annual precipitation is less than 50 in
(130 cm), or are in otherwise dry
substrate conditions (TNC 2006g). This
system is found on the islands of Maui
and Hawaii (Gagne and Cuddihy 1999,
pp. 93–97). The only plant species listed
as endangered in this final rule that is
found in this ecosystem is Santalum
haleakalae var. lanaiense (TNC 2007;
HBMP 2008).
Subalpine
The subalpine ecosystem is composed
of natural communities (shrublands,
grasslands, forests) found at elevations
between 6,500 ft and 9,800 ft (2,000 and
3,000 m), in areas where annual
precipitation is seasonal, between 15
and 40 in (38 and 100 cm), or are in
otherwise dry substrate conditions (TNC
2006h). Fog drip is an important
moisture supplement (Gagne and
Cuddihy 1999, pp. 107–110). This
system is found on the islands of Maui
and Hawaii (Gagne and Cuddihy 1999,
pp. 107–110). Native biological diversity
is not high, but specialized invertebrates
and plants (Sophora chrysophylla
(mamane), Myoporum sandwicense
(naio), and Deschampsia nubigena
(hairgrass)) are reported in this
ecosystem (TNC 2006h). The plant
Phyllostegia bracteata, which is listed as
endangered in this final rule, is reported
in this ecosystem (TNC 2007; HBMP
2008).
Alpine
The alpine ecosystem is composed of
natural communities (shrublands,
alpine lake, aeolian (wind-shaped)
desert) found at elevations above 9,800
ft (3000 m), in areas where annual
E:\FR\FM\28MYR2.SGM
28MYR2
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
precipitation is infrequent, with frost
and snow, and intense solar radiation
(TNC 2006i). Fog drip is an important
moisture supplement (Gagne and
Cuddihy 1999, pp. 107–110). This
system is found on the islands of Maui
and Hawaii (Gagne and Cuddihy 1999,
pp. 107–110). Native biological diversity
is not high, but highly specialized
plants, such as the threatened
Argyroxiphium sandwicense ssp.
macrocephalum (ahinahina), occur in
this ecosystem on Maui (TNC 2006i).
None of the species being listed as
endangered in this final rule are
reported from this ecosystem (TNC
2007; HBMP 2008).
mstockstill on DSK4VPTVN1PROD with RULES2
Dry Cliff
The dry cliff ecosystem is composed
of vegetation communities occupying
steep slopes (greater than 65 degrees) in
areas that receive less than 75 in (190
cm) of rainfall annually, or are in
otherwise dry substrate conditions (TNC
2006j). This ecosystem is found on all
of the main Hawaiian Islands except
Niihau, and is best represented along
the leeward slopes of Lanai and Maui
(TNC 2006j). A variety of shrublands
occur within this ecosystem (TNC
2006j). Native biological diversity is low
to moderate (TNC 2006j). The plants
Bidens campylotheca ssp. pentamera,
Phyllostegia haliakalae, and Pleomele
fernaldii, which are listed as
endangered in this final rule, are
reported in this ecosystem on Lanai or
Maui (HBMP 2008; TNC 2007). In
addition, Cyanea mauiensis, also listed
as endangered in this final rule, may
have occurred in this ecosystem on
Maui, but this species has not been
observed for over 100 years. The
species-specific habitat needs of Cyanea
mauiensis are not known.
Wet Cliff
The wet cliff ecosystem is generally
composed of shrublands on nearvertical slopes (greater than 65 degrees)
in areas that receive more than 75 in
(190 cm) of annual precipitation, or in
otherwise wet substrate conditions
(TNC 2006k). This system is found on
the islands of Kauai, Oahu, Molokai,
Lanai, Maui, and Hawaii. On the islands
of Maui Nui, this system is typically
found along the windward sides of
Molokai, Lanai, and Maui (TNC 2006k).
Native biological diversity is low to
moderate (TNC 2006k). The plants
Bidens campylotheca ssp. pentamera, B.
campylotheca ssp. waihoiensis, B.
conjuncta, Cyanea grimesiana ssp.
grimesiana, C.horrida, C. magnicalyx, C.
munroi, Cyrtandra filipes, Phyllostegia
bracteata, P. haliakalae, Pleomele
fernaldii, and Santalum haleakalae var.
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
lanaiense, and the tree snails Partulina
semicarinata and P. variabilis, which
are listed as endangered in this final
rule, are reported in this ecosystem on
the islands of Molokai, Lanai, or Maui
(HBMP 2008; TNC 2007).
Description of the 40 Maui Nui Species
Below is a brief description of each of
the 40 Maui Nui species, presented in
alphabetical order by genus. Plants are
presented first, followed by animals.
Plants
In order to avoid confusion regarding
the number of locations of each species
(a location does not necessarily
represent a viable population, as in
some cases there may only be one or a
very few representatives of the species
present), we use the word ‘‘occurrence’’
instead of ‘‘population.’’ Each
occurrence is composed only of wild
(i.e., not propagated and outplanted)
individuals.
Bidens campylotheca ssp. pentamera
(kookoolau), a perennial herb in the
sunflower family (Asteraceae), occurs
only on the island of Maui (Ganders and
Nagata 1999, pp. 271, 273). Historically,
B. campylotheca spp. pentamera was
found on Maui’s eastern volcano
(Haleakala). Currently, this subspecies is
found on east Maui in the montane
mesic, montane wet, dry cliff, and wet
cliff ecosystems of Waikamoi Preserve
and Kipahulu Valley (in Haleakala
National Park) (TNC 2007; HBMP 2008;
Welton 2008, in litt.; National Tropical
Botanical Garden (NTBGa) 2009, pp. 1–
2; Fay 2010, in litt.). It is uncertain if
plants observed in the Hana Forest
Reserve at Waihoi Valley are B.
campylotheca ssp. pentamera
(Osterneck 2010, in litt.; Haleakala
National Park (HNP) 2012, in litt.). On
west Maui, B. campylotheca ssp.
pentamera is found on and near cliff
walls in the lowland dry and lowland
mesic ecosystems of Papalaua Gulch
(West Maui Forest Reserve) and Kauaula
Valley (NTBG 2009a, pp. 1–2; Perlman
2009a, in litt.). The 6 occurrences on
east and west Maui total approximately
200 individuals.
Bidens campylotheca ssp. waihoiensis
(kookoolau), a perennial herb in the
sunflower family (Asteraceae), occurs
only on the island of Maui (Ganders and
Nagata 1999, pp. 271, 273). Historically,
B. campylotheca ssp. waihoiensis was
found on Maui’s eastern volcano in
Waihoi Valley and Kaumakani ridge
(HBMP 2008). Currently, this subspecies
is found in the lowland wet, montane
wet, and wet cliff ecosystems in
Kipahulu Valley (Haleakala National
Park) and possibly in Waihoi Valley
(Hana Forest Reserve) on east Maui
PO 00000
Frm 00009
Fmt 4701
Sfmt 4700
32021
(TNC 2007; HBMP 2008; Welton 2008,
in litt.). Approximately 200 plants are
scattered over an area of about 2.5 miles
(4 km) in Kipahulu Valley (Welton
2010a, in litt.). In 1974, hundreds of
individuals were observed in Waihoi
Valley along Waiohonu stream (NTBG
2009b, p. 4).
Bidens conjuncta (kookoolau), a
perennial herb in the sunflower family
(Asteraceae), occurs only on the island
of Maui (Ganders and Nagata 1999, pp.
273–274). Historically, this species was
known only from the mountains of west
Maui in the Honokohau drainage basin
(Sherff 1923, p. 162). Currently, B.
conjuncta is found scattered throughout
the upper elevation drainages of the
west Maui mountains in the lowland
wet, montane wet, and wet cliff
ecosystems, in 9 occurrences totaling an
estimated 7,000 individuals (TNC 2007;
HBMP 2008; Oppenheimer 2008a, in
litt.; Perlman 2010, in litt.).
Calamagrostis hillebrandii (NCN), a
perennial in the grass family (Poaceae),
occurs only on the island of Maui
(O’Connor 1999, p. 1,509). Historically,
this species was known from Puu Kukui
in the west Maui mountains (Wagner et
al. 2005a–Flora of the Hawaiian Islands
database). Currently, this species is
found in bogs in the montane wet
ecosystem in the west Maui mountains,
from Honokohau to Kahoolewa ridge,
including East Bog and Eke Crater, in
three occurrences totaling a few
hundred individuals (TNC 2007; HBMP
2008; Oppenheimer 2010a, in litt.).
Canavalia pubescens (awikiwiki), a
perennial climber in the pea family
(Fabaceae), is currently found only on
the island of Maui, although it was also
historically known from Niihau, Kauai,
and Lanai (Wagner and Herbst 1999, p.
654). On Niihau, this species was
known from one population in Haao
Valley that was last observed in 1949
(HBMP 2008). On Kauai, this species
was known from six populations
ranging from Awaawapuhi to Wainiha,
where it was last observed in 1977
(HBMP 2008). On Lanai, this species
was known from Kaena Point to Huawai
Bay. Eight individuals were reported in
the coastal ecosystem west of Hulupoe,
but they have not been seen since 1998
(Oppenheimer 2007a, in litt.; HBMP
2008). At present, the only known
occurrence is on east Maui, from Puu o
Kali south to Pohakea, in the lowland
dry ecosystem (Starr 2006, in litt.;
Altenburg 2007, pp. 12–13;
Oppenheimer 2006a, in litt.; 2007a, in
litt.; Greenlee 2013, in litt.). All plants
of this species that formerly were found
in the Ahihi-Kinau Natural Area
Reserve on Maui were destroyed by feral
goats (Capra hircus) by the end of 2010
E:\FR\FM\28MYR2.SGM
28MYR2
mstockstill on DSK4VPTVN1PROD with RULES2
32022
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
(Fell-McDonald 2010, in litt.). In
addition, although approximately 20
individuals of Canavalia pubescens
were reported from the Palauea-Keahou
area as recently as 2010 (Altenberg
2010, in litt.), no individuals have been
found in site visits to this area over the
last 2 years (Greenlee 2013, in litt.).
Greenlee (2013, in litt.) reports that
these plants may have succumbed to
prolonged drought. In April of 2010, C.
pubescens totaled as many as 500
individuals; however, with the loss of
the plants at Ahihi-Kinau Natural Area
Reserve and the loss of plants at
Palauea-Keahou, C. pubescens may
currently total fewer than 200
individuals at a single location.
Cyanea asplenifolia (haha), a shrub in
the bellflower family (Campanulaceae),
is found only on the island of Maui.
This species was known historically
from Waihee Valley and Kaanapali on
west Maui, and Halehaku ridge on east
Maui (Lammers 1999, p. 445; HBMP
2008). On west Maui, in the lowland
wet ecosystem, there are 3 occurrences
totaling 14 individuals in the Puu Kukui
Preserve and two occurrences totaling 5
individuals in the West Maui Natural
Area Reserve. On east Maui, C.
asplenifolia is found in 1 occurrence
each in the lowland mesic ecosystem in
Haleakala National Park (53 individuals)
and Kipahulu Forest Reserve (FR) (140
individuals), and 1 occurrence in the
lowland wet ecosystem in the Makawao
FR (5 individuals) (TNC 2007; HBMP
2008; Oppenheimer 2008b, in litt,
2010b, in litt.; PEPP 2008, p. 48; Welton
and Haus 2008, p. 12; NTBG 2009c, pp.
3–5; Welton 2010a, in litt.). Currently,
C. asplenifolia is known from 8
occurrences totaling fewer than 200
individuals. The occurrence at
Haleakala National Park is protected by
a temporary exclosure (HNP 2012, in
litt.).
Cyanea duvalliorum (haha), a tree in
the bellflower family (Campanulaceae),
is found only in the east Maui
mountains (Lammers 2004, p. 89). This
species was described in 2004, after the
discovery of individuals of a previously
unknown species of Cyanea at
Waiohiwi Gulch (Lammers 2004, p. 91).
Studies of earlier collections of sterile
material extend the historical range of
this species on the windward slopes of
Haleakala in the lowland wet and
montane wet ecosystems, east of
Waiohiwi Stream, from Honomanu
Stream to Wailua Iki Streams, and to
Kipahulu Valley (Lammers 2004, p. 89).
In 2007, one individual was observed in
the lowland wet ecosystem of the
Makawao FR (NTBG 2009d, p. 2). In
2008, 71 individuals were found in 2
new locations in the Makawao FR, along
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
with many juveniles and seedlings
(NTBG 2009d, p. 2). Currently there are
2 occurrences with an approximate total
of 71 individuals in the montane wet
ecosystem near Makawao FR, with an
additional 135 individuals outplanted
in Waikamoi Preserve (TNC 2007; NTBG
2009d, p. 2; Oppenheimer 2010a, in
litt.).
Cyanea grimesiana ssp. grimesiana
(haha), a shrub in the bellflower family
(Campanulaceae), is known only from
Oahu and Molokai (Lammers 2004 p.
84; Lammers 1999, pp. 449, 451; 68 FR
35950, June 17, 2003). On Molokai, this
species was last observed in 1991 in the
wet cliff ecosystem at Wailau Valley
(PEPP 2010, p. 45). Currently, on Oahu
there are five to six individuals in four
occurrences in the Waianae and Koolau
Mountains (U.S. Army 2006; HBMP
2008).
Cyanea horrida (haha nui), a member
of the bellflower family
(Campanulaceae), is a palm-like tree
found only on the island of Maui. This
species was known historically from the
slopes of Haleakala (Lammers 1999, p.
453; HBMP 2008). Currently, C. horrida
is known from 12 occurrences totaling
44 individuals in the montane mesic,
montane wet, and wet cliff ecosystems
in Waikamoi Preserve, Hanawai Natural
Area Reserve, and Haleakala National
Park on east Maui (TNC 2007; HBMP
2008; PEPP 2009, p. 52; PEPP 2010, pp.
46–47; Oppenheimer 2010c, in litt.;
TNCH 2010a, p. 1).
Cyanea kunthiana (haha), a shrub in
the bellflower family (Campanulaceae),
is found only on Maui, and was
historically known from both the east
and west Maui mountains (Lammers
1999, p. 453; HBMP 2008). Cyanea
kunthiana was known to occur in the
montane mesic ecosystem in the east
Maui mountains in upper Kipahulu
Valley, in Haleakala National Park and
Kipahulu FR (HBMP 2008). Currently,
in the east Maui mountains, C.
kunthiana occurs in the lowland wet
and montane wet ecosystems in
Waikamoi Preserve, Hanawi Natural
Area Reserve, East Bog, Kaapahu, and
Kipahulu Valley. In the west Maui
mountains, C. kunthiana occurs in the
lowland wet and montane wet
ecosystems at Eke Crater, Kahoolewa
ridge, and at the junction of the
Honokowai, Hahakea, and Honokohau
gulches (TNC 2007; HBMP 2008; NTBG
2009e, pp. 1–3; Perlman 2010, in litt.;
Oppenheimer 2010a, in litt.). The 15
occurrences total 165 individuals,
although botanists speculate that this
species may total as many as 400
individuals with further surveys of
potential habitat on east and west Maui
(TNC 2007; HBMP 2008; Fay 2010, in
PO 00000
Frm 00010
Fmt 4701
Sfmt 4700
litt.; Oppenheimer 2010a, in litt.;
Osternak 2010, in litt.).
Cyanea magnicalyx (haha), a
perennial shrub in the bellflower family
(Campanulaceae), is known from west
Maui (Lammers 1999, pp. 449, 451;
Lammers 2004, p. 84). Currently, there
are seven individuals in three
occurrences on west Maui: two
individuals in Kaluanui, a subgulch of
Honokohau Valley, in the lowland wet
ecosystem; four individuals in Iao
Valley in the wet cliff ecosystem; and
one individual in a small drainage south
of the Kauaula rim, in the montane
mesic ecosystem (Lammers 2004, p. 87;
Perlman 2009b in litt.; Wood 2009, in
litt.).
Cyanea maritae (haha), a shrub in the
bellflower family (Campanulaceae), is
found only on Maui (Lammers 2004, p.
92). Sterile specimens were collected
from the northwestern slopes of
Haleakala in the Waiohiwi watershed
and east to Kipahulu in the early 1900s.
Between 2000 and 2002, fewer than 20
individuals were found in the Waiohiwi
area (Lammers 2004, pp. 92, 93).
Currently, there are 4 occurrences,
totaling between 23 to 50 individuals in
Kipahulu, Kaapahu, west Kahakapao,
and in the Koolau FR in the lowland
wet and montane wet ecosystems on
east Maui (TNC 2007; Oppenheimer
2010b, in litt.; Welton 2010b, in litt.).
Cyanea mauiensis (haha), a perennial
shrub in the bellflower family
(Campanulaceae), was last observed on
Maui about 100 years ago (Lammers
2004, pp. 84–85; TNC 2007). Although
there are no documented occurrences of
this species known today, botanists
believe this species may still be extant
as all potentially suitable lowland mesic
and dry cliff habitat has not been
surveyed.
Cyanea munroi (haha), a short-lived
shrub in the bellflower family
(Campanulaceae), is known from
Molokai and Lanai (Lammers 1999, pp.
449, 451; Lammers 2004, pp. 84–87).
Currently, there are no known
individuals on Molokai (last observed in
2001), and only two individuals on
Lanai at a single location, in the wet
cliff ecosystem (TNC 2007; HBMP 2008;
Perlman 2008a, in litt.; Wood 2009a, in
litt.; Oppenheimer 2010d, in litt.).
Cyanea obtusa (haha), a shrub in the
bellflower family (Campanulaceae), is
found only on Maui (Lammers 1999, p.
458). Historically, this species was
found in both the east and west Maui
mountains (Hillebrand 1888, p. 254;
HBMP 2008). Not reported since 1919
(Lammers 1999, p. 458), C. obtusa was
rediscovered in the early 1980s at one
site each on east and west Maui.
However, by 1989, plants in both
E:\FR\FM\28MYR2.SGM
28MYR2
mstockstill on DSK4VPTVN1PROD with RULES2
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
locations had disappeared (Hobdy et al.
1991, p. 3; Medeiros 1996, in litt.). In
1997, 4 individuals were observed in
Manawainui Gulch in Kahikinui, and
another occurrence of 5 to 10
individuals was found in Kahakapao
Gulch, both in the montane mesic
ecosystem on east Maui (Wood and
Perlman 1997, p. 11; Lau 2001, in litt.).
However, the individuals found at
Kahakapao Gulch are now considered to
be Cyanea elliptica or hybrids between
C. obtusa and C. elliptica (PEPP 2007, p.
40). In 2001, several individuals were
seen in Hanaula and Pohakea gulches
on west Maui; however, only hybrids
are currently known in this area (NTBG
2009f, p. 3). It is unknown if individuals
of C. obtusa remain at Kahikinui, as
access to the area to ascertain the status
of these plants is difficult and has not
been attempted since 2001 (PEPP 2008,
p. 55; PEPP 2009, p. 58). Two
individuals were observed on a cliff
along Wailaulau Stream in the montane
mesic ecosystem on east Maui in 2009
(Duvall 2010, in litt.). Currently, this
species is known from one occurrence
of only a few individuals in the
montane mesic ecosystem on east Maui.
Historically, this species also occurred
in the lowland dry ecosystem at
Manawainui on west Maui and at
Ulupalakua on east Maui (HBMP 2008).
Cyanea profuga (haha), a shrub in the
bellflower family (Campanulaceae),
occurs only on Molokai (Lammers 1999,
pp. 461–462; Wood and Perlman 2002,
p. 4). Historically, this species was
found in Mapulehu Valley and along
Pelekunu Trail, and has not been seen
in those locations since the early 1900s
(Wood and Perlman 2002, p. 4). In 2002,
six individuals were discovered along a
stream in Wawaia Gulch (Wood and
Perlman 2002, p. 4). In 2007, seven
individuals were known from Wawaia
Gulch, and an additional six individuals
were found in Kumueli (Wood 2005, p.
17; USFWS 2007a; PEPP 2010, p. 55). In
2009, only four individuals remained at
Wawaia Gulch; however, nine were
found in Kumueli Gulch (Bakutis 2010,
in litt.; Oppenheimer 2010e, in litt.;
Perlman 2010, in litt.; PEPP 2010, p. 55).
Currently, there are 4 occurrences
totaling up to 34 individuals in the
lowland mesic and montane wet
ecosystems on Molokai (TNC 2007;
Bakutis 2010, in litt.; Perlman 2010, in
litt.).
Cyanea solanacea (popolo, haha nui),
a shrub in the bellflower family
(Campanulaceae), is found only on
Molokai. According to Lammers (1999,
p. 464) and Wagner (et al. 2005a–Flora
of the Hawaiian Islands database) the
range of C. solanacea includes Molokai
and may also include west Maui. In his
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
treatment of the species of the Hawaiian
endemic genus Cyanea, Lammers (1999,
p. 464) included a few sterile specimens
of Cyanea from Puu Kukui, west Maui
and the type specimen (now destroyed)
for C. scabra var. sinuata from west
Maui in C. solanacea. However,
Oppenheimer recently reported
(Oppenheimer 2010a, in litt.) that the
plants on west Maui were misidentified
as C. solanacea and are actually C.
macrostegia. Based on Oppenheimer’s
recent field observations, the range of C.
solanacea is limited to Molokai.
Historically, Cyanea solanacea ranged
from central Molokai at Kalae, eastward
to Pukoo in the lowland mesic, lowland
wet, and montane mesic ecosystems
(HBMP 2008). Currently, there are four
small occurrences at Hanalilolilo, near
Pepeopae Bog, Kaunakakai Gulch, and
Kawela Gulch, in the montane wet
ecosystem. These occurrences total 26
individuals (Bakutis 2010, in litt.;
Oppenheimer 2010a, in litt.; TNCH
2011, pp. 21, 57).
Cyrtandra ferripilosa (haiwale), a
shrub in the African violet family
(Gesneriaceae), occurs only on Maui (St.
John 1987, pp. 497–498; Wagner and
Herbst 2003, p. 29). This species was
discovered in 1980 in the east Maui
mountains at Kuiki in Kipahulu Valley
(St. John 1987, pp. 497–498; Wagner et
al. 2005a–Flora of the Hawaiian Islands
database). Currently, there are a few
individuals each in two occurrences at
Kuiki and on the Manawainui plane in
the montane mesic and montane wet
ecosystems (Oppenheimer 2010f, in litt.;
Welton 2010a, in litt.).
Cyrtandra filipes (haiwale), a shrub in
the African violet family (Gesneriaceae),
is found on Maui (Wagner et al. 1999d,
pp. 753–754; Oppenheimer 2006b, in
litt.). According to Wagner et al. (1999d,
p. 754), the range of C. filipes includes
Maui and Molokai. Historical
collections from Kapunakea (1800) and
Olowalu (1971) on Maui indicate it once
had a wider range on this island. In
2004, it was believed there were over
2,000 plants at Honokohau and Waihee
in the west Maui mountains; however,
recent studies have shown that these
plants do not match the description for
C. filipes (Oppenheimer 2006b, in litt.).
Currently, there are between 134 and
155 individuals in 4 occurrences in the
lowland wet and wet cliff ecosystems at
Kapalaoa, Honokowai, Honolua, and
Waihee Valley on west Maui, and
approximately 7 individuals at
Mapulehu in the lowland mesic
ecosystem on Molokai, with an
historical occurrence in the lowland wet
ecosystem (Oppenheimer 2010c, in litt.).
Cyrtandra oxybapha (haiwale), a
shrub in the African violet family
PO 00000
Frm 00011
Fmt 4701
Sfmt 4700
32023
(Gesneriaceae), is found on Maui
(Wagner et al. 1999d, p. 771). This
species was discovered in the upper
Pohakea Gulch in Hanaula in the west
Maui mountains in 1986 (Wagner et al.
1989, p. 100; TNC 2007). Currently,
there are 2 known occurrences with a
total of 137 to 250 individuals.
Cyrtandra oxybapha occurs in the
montane wet ecosystem on west Maui,
from Hanaula to Pohakea Gulch. This
occurrence totals between 87 and 97
known individuals, with perhaps as
many as 150 or more (Oppenheimer
2008c, in litt.). The current status of the
50 to 100 individuals in the montane
mesic ecosystem in Manawainui Gulch
on east Maui is unknown, as these
plants have not been surveyed since
1997 (Oppenheimer 2010a, in litt.).
Festuca molokaiensis (NCN), a
member of the grass family (Poaceae), is
found on Molokai (Catalan et al. 2009,
p. 54). This species is only known from
the type locality at Kupaia Gulch, in the
lowland mesic ecosystem (Catalan et al.
2009, p. 55). Last seen in 2009, the
current number of individuals is
unknown; however, field surveys for F.
molokaiensis at Kupaia Gulch are
planned for 2011 (Oppenheimer 2010g,
in litt.). Oppenheimer (2011, pers.
comm.) suggests that the drought over
the past couple of years on Molokai may
have suppressed the growth of F.
molokaiensis and prevented its
observation by botanists in the field. He
also suggested that this species may be
an annual whose growth will be
stimulated by normal rainfall patterns.
Geranium hanaense (nohoanu), a
shrub in the geranium family
(Geraniaceae), is found on Maui
(Wagner et al. 1999e, pp. 730–732). This
species was first collected in 1973, from
two adjacent montane bogs on the
northeast rift of Haleakala, east Maui
(Medeiros and St. John 1988, pp. 214–
220). At that time, there were an
estimated 500 to 700 individuals
(Medeiros and St. John 1988, pp. 214–
220). Currently, G. hanaense occurs in
‘‘Big Bog’’ and ‘‘Mid Camp Bog’’ in the
montane wet ecosystem on the northeast
rift of Haleakala, with the same number
of estimated individuals (Welton 2008,
in litt.; Welton 2010a, in litt.; Welton
2010b, in litt.).
Geranium hillebrandii (nohoanu), a
shrub in the geranium family
(Geraniaceae), is found on Maui (Aedo
and Munoz Garmendia 1997; p. 725;
Wagner et al. 1999e, pp. 732–733;
Wagner and Herbst 2003, p. 28). Little
is known of the historical locations of G.
hillebrandii, other than the type
collection made in the 1800s at Eke
Crater, in the west Maui mountains
(Hillebrand 1888, p. 56). Currently, 4
E:\FR\FM\28MYR2.SGM
28MYR2
mstockstill on DSK4VPTVN1PROD with RULES2
32024
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
occurrences total over 10,000
individuals, with the largest 2
occurrences in the west Maui bogs, from
Puu Kukui to East Bog and Kahoolewa
ridge. A third occurrence is at Eke
Crater and the surrounding area, and the
fourth occurrence is at Lihau (HBMP
2008; Oppenheimer 2010h, in litt.).
These occurrences are found in the
montane wet and montane mesic
ecosystems on west Maui (TNC 2007).
Mucuna sloanei var. persericea (sea
bean), a vine in the pea family
(Fabaceae), is found on Maui (WilmotDear 1990, pp. 27–29; Wagner et al.
2005a–Flora of the Hawaiian Islands
database). In her revision of Mucuna in
the Pacific Islands, Wilmot-Dear
recognized this variety from Maui based
on leaf indumentum (covering of fine
hairs or bristles) (Wilmot-Dear 1990, p.
29). At the time of Wilmot-Dear’s
publication, M. sloanei var. persericea
ranged from Makawao to Wailua Iki, on
the windward slopes of the east Maui
mountains (Wagner et al. 2005a–Flora of
the Hawaiian Islands database).
Currently, there are possibly a few
hundred individuals in five
occurrences: Ulalena Hill, north of
Kawaipapa Gulch, lower Nahiku, Koki
Beach, and Piinau Road, all in the
lowland wet ecosystem on east Maui
(Duvall 2010, in litt.; Hobdy 2010, in
litt.).
Myrsine vaccinioides (kolea), a shrub
in the myrsine family (Myrsinaceae), is
found on Maui (Wagner et al. 1999f, p.
946; HBMP 2008). This species was
historically known from shrubby bogs
near Violet Lake on west Maui (Wagner
et al. 1999f, p. 946). In 2005, three
occurrences of a few hundred
individuals were reported at Eke, Puu
Kukui and near Violet Lake
(Oppenheimer 2006c, in litt.). Currently,
there are estimated to be several
hundred, but fewer than 1,000,
individuals scattered in the summit area
of the west Maui mountains at Eke
Crater, Puu Kukui, Honokowai-Honolua,
and Kahoolewa, in the montane wet
ecosystem (Oppenheimer 2010i, in litt.).
Peperomia subpetiolata (alaala wai
nui), a perennial herb in the pepper
family (Piperaceae), is found on Maui
(Wagner et al. 1999g, p. 1035; HBMP
2008). Historically, P. subpetiolata was
known only from the lower Waikamoi
(Kula pipeline) area on the windward
side of Haleakala on east Maui (Wagner
et al. 1999g, p. 1,035; HBMP 2008). In
2001, it was estimated that 40
individuals occurred just west of the
Makawao-Koolau FR boundary, in the
montane wet ecosystem. Peperomia
cookiana and P. hirtipetiola also occur
in this area, and are known to hybridize
with P. subpetiolata (NTBG 2009g, p. 2;
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
Oppenheimer 2010j, in litt.). In 2007, 20
to 30 hybrid plants were observed at
Maile Trail, and at three areas near the
Waikamoi Flume road (NTBG 2009g, p.
2). Based on the 2007 and 2010 surveys,
all known plants are now considered to
be hybrids mostly between P.
subpetiolata and P. cookiana, with a
smaller number of hybrids between P.
subpetiolata and P. hirtipetiola (NTBG
2009g, p. 2; Lau 2011, in litt.).
Peperomia subpetiolata is recognized as
a valid species, and botanists continue
to search for plants in its previously
known locations as well as in new
locations with potentially suitable
habitat (NTBG 2009g, p. 2; PEPP 2010,
p. 96; Lau 2011, pers. comm.).
Phyllostegia bracteata (NCN), a
perennial herb in the mint family
(Lamiaceae), is found on Maui (Wagner
et al. 1999h, pp. 814–815). Historically,
this species was known from the east
Maui mountains at Ukulele, Puu
Nianiau, Waikamoi Gulch, Koolau Gap,
Kipahulu, Nahiku-Kuhiwa trail, Waihoi
Valley, and Manawainui; and from the
west Maui mountains at Puu Kukui and
Hanakaoo (HBMP 2008). This species
appears to be short-lived, ephemeral,
and disturbance-dependent, in the
lowland wet, montane mesic, montane
wet, subalpine, and wet cliff ecosystems
(NTBG 2009h, p. 1). There have been
several reported sightings of P. bracteata
between 1981 and 2001, at Waihoi
Crater Bog, Waikamoi Preserve,
Waikamoi flume, and Kipahulu on east
Maui, and at Pohakea Gulch on west
Maui; however, none of these
individuals were extant as of 2009
(PEPP 2009, pp. 89–90). In 2009, one
individual was found at Kipahulu, near
Delta Camp, on east Maui, but was not
relocated on a follow-up survey during
that same year (NTBG 2009h, p. 3).
Botanists continue to search for P.
bracteata in previously reported
locations, as well as in other areas with
potentially suitable habitat (NTBG
2009h, p. 3; PEPP 2009, pp. 89–90).
Phyllostegia haliakalae (NCN), a vine
in the mint family (Lamiaceae), is
known from Molokai, Lanai, and east
Maui (Wagner 1999, p. 269). The type
specimen was collected by Wawra in
1869 or 1870, in a dry ravine at the foot
of Haleakala. An individual was found
in flower on the eastern slope of
Haleakala, in the wet cliff ecosystem, in
2009; however, this plant has died (TNC
2007; Oppenheimer 2010b, in litt.).
Collections were made before the plant
died, and propagules outplanted in the
Puu Mahoe Arboretum (three plants)
and Olinda Rare Plant Facility (four
plants) (Oppenheimer 2011b, in litt.). In
addition, this species has been
outplanted in the lowland wet, montane
PO 00000
Frm 00012
Fmt 4701
Sfmt 4700
wet, and montane mesic ecosystems of
Haleakala National Park (HNP 2012, in
litt.). Botanists continue to search in
areas with potentially suitable habitat
for wild individuals of this plant
(Oppenheimer 2010b, in litt.).
Phyllostegia haliakalae was last
reported from the lowland mesic
ecosystem on Molokai in 1928, and from
the dry cliff and wet cliff ecosystems on
Lanai in the early 1900s (TNC 2007;
HBMP 2008). Currently no individuals
are known in the wild on Maui,
Molokai, or Lanai; however, over 100
individuals have been outplanted (HNP
2012, in litt).
Phyllostegia pilosa (NCN), a vine in
the mint family (Lamiaceae), is known
from east Maui (Wagner 1999, p. 274).
There are two occurrences totaling
seven individuals west of Puu o Kakae
on east Maui, in the montane wet
ecosystem (TNC 2007; HBMP 2008). The
individuals identified as P. pilosa on
Molokai, at Kamoku Flats (montane wet
ecosystem) and at Mooloa (lowland
mesic ecosystem), have not been
observed since the early 1900s (TNC
2007; HBMP 2008).
Pittosporum halophilum (hoawa), a
shrub or small tree in the pittosporum
family (Pittosporaceae), is found on
Molokai (Wood 2005, pp. 2, 41). This
species was reported from Huelo islet,
Mokapu Island, Okala Island, and
Kukaiwaa peninsula. On Huelo islet,
there were two individuals in 1994, and
in 2001, only one individual remained
(Wood et al. 2001, p. 12; Wood et al.
2002, pp. 18–19). The current status of
this species on Huelo islet is unknown.
On Mokapu Island, there were 15
individuals in the coastal ecosystem in
2001, and in 2005, 10 individuals
remained. On Okala Island, there were
two individuals in 2005, and one
individual on the sea cliff at Kukaiwaa
peninsula (Wainene) (Wood 2005, pp. 2,
41). As of 2010, there were three
occurrences totaling five individuals:
Three individuals on Mokapu Island,
one individual on Okala Island, and one
individual on Kukaiwaa peninsula
(Bakutis 2010, in litt.; Hobdy 2010, in
litt.; Perlman 2010, in litt.). At least 17
individuals have been outplanted at 3
sites on the coastline of the nearby
Kalaupapa peninsula (Garnett 2010a, in
litt.).
Pleomele fernaldii (hala pepe), a tree
in the asparagus family (Asparagaceae),
is found only on the island of Lanai
(Wagner et al. 1999i, p. 1,352; Wagner
and Herbst 2003, p. 67). Historically
known throughout Lanai, this species is
currently found in the lowland dry,
lowland mesic, lowland wet, dry cliff,
and wet cliff ecosystems, from Hulopaa
and Kanoa gulches southeast to
E:\FR\FM\28MYR2.SGM
28MYR2
mstockstill on DSK4VPTVN1PROD with RULES2
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
Waiakeakua and Puhielelu (St. John
1947, pp. 39–42 cited in St. John 1985,
pp. 171, 177–179; HBMP 2006; HBMP
2008; PEPP 2008, p. 75; Oppenheimer
2010d, in litt.). Currently, there are
several hundred to perhaps as many as
1,000 individuals. The number of
individuals has decreased by about onehalf in the past 10 years (there were
more than 2,000 individuals in 1999),
with very little recruitment observed
recently (Oppenheimer 2008d, in litt.).
Santalum haleakalae var. lanaiense
(iliahi, Lanai sandalwood) is a tree in
the sandalwood family (Santalaceae).
Currently, S. haleakalae var. lanaiense
is known from Molokai, Lanai, and
Maui, in 26 occurrences totaling fewer
than 100 individuals (Wagner et al.
1999c, pp. 1,221–1,222; HBMP 2008;
Harbaugh et al. 2010, pp. 834–835). On
Molokai, there are more than 12
individuals in 4 occurrences from
Kikiakala to Kamoku Flats and Puu
Kokekole, with the largest concentration
at Kumueli Gulch, in the montane mesic
and lowland mesic ecosystems
(Harbaugh et al. 2010, pp. 834–835). On
Lanai, there are approximately 10
occurrences totaling 30 to 40
individuals: Kanepuu, in the lowland
mesic ecosystem (5 individuals); the
headwaters of Waiopae Gulch in the
lowland wet ecosystem (3 individuals);
the windward side of Hauola on the
upper side of Waiopae Gulch in the
lowland mesic ecosystem (1 individual);
the drainage to the north of Puhielelu
Ridge and exclosure, in the headwaters
of Lopa Gulch in the lowland mesic
ecosystem (3 individuals); 6 occurrences
near Lanaihale in the montane wet
ecosystem (21 individuals); and the
mountains east of Lanai City in the
lowland wet ecosystem (a few
individuals) (HBMP 2008; Harbaugh et
al. 2010, pp. 834–835; HBMP 2010;
Wood 2010a, in litt.). On west Maui,
there are eight single-individual
occurrences: Hanaulaiki Gulch in the
lowland dry ecosystem; Kauaula and
Puehuehunui Gulches in the lowland
mesic, montane mesic, and wet cliff
ecosystems; Kahanahaiki Gulch and
Honokowai Gulch in the lowland wet
ecosystem; Wakihuli in the wet cliff
ecosystem; and Manawainui Gulch in
the montane mesic and lowland dry
ecosystems (HBMP 2008; Harbaugh et
al. 2010, pp. 834–835; Wood 2010a, in
litt.). On east Maui, there are 4
occurrences (10 individuals) in Auwahi,
in the montane mesic, montane dry, and
lowland dry ecosystems (TNC 2007;
HBMP 2008; Harbaugh et al. 2010, pp.
834–835).
Schiedea jacobii (NCN), a perennial
herb or subshrub in the pink family
(Caryophyllaceae), occurs only on Maui
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
(Wagner et al. 1999j, p. 284). Discovered
in 1992, the single occurrence consisted
of nine individuals along wet cliffs
between Hanawi Stream and Kuhiwa
drainage (in Hanawi Natural Area
Reserve), in the montane wet ecosystem
on east Maui (Wagner et al. 1999j, p.
286). By 1995, only four plants could be
relocated in this location. It appeared
that the other five known individuals
had been destroyed by a landslide
(Wagner et al. 1999j, p. 286). In 2004,
one seedling was observed in the same
location, and in 2010, no individuals
were relocated (Perlman 2010, in litt.).
The State of Hawaii plans to outplant
propagated individuals in a fenced area
in Hanawi Natural Area Reserve in 2011
(Oppenheimer 2010a, in litt.; Perlman
2010, in litt.).
Schiedea laui (NCN), a perennial herb
or subshrub in the pink family
(Caryophyllaceae), is found only on
Molokai (Wagner et al. 2005b, pp. 90–
92). In 1998, when this species was first
observed, there were 19 individuals
located in a cave along a narrow stream
corridor at the base of a waterfall in the
Kamakou Preserve, in the montane wet
ecosystem (Wagner et al. 2005b, pp. 90–
92). By 2000, only 9 individuals with a
few immature plants and seedlings were
relocated, and in 2006, 13 plants were
seen (Wagner et al. 2005b, pp. 90–92;
PEPP 2007, p. 57). Currently, there are
24 to 34 individuals in the same
location in Kamakou Preserve (Bakutis
2010, in litt.).
Schiedea salicaria (NCN), a shrub in
the pink family (Caryophyllaceae),
occurs on Maui (Wagner et al. 1999j, pp.
519–520). It is historically known from
a small area on west Maui, from Lahaina
to Waikapu. Currently, this species is
found in three occurrences: Kaunoahua
gulch (500 to 1,000 individuals), Puu
Hona (about 50 individuals), and
Waikapu Stream (3 to 5 individuals), in
the lowland dry ecosystem on west
Maui (TNC 2007; Oppenheimer 2010k,
in litt.; Oppenheimer 2010l, in litt.).
Hybrids and hybrid swarms (hybrids
between parent species, and
subsequently formed progeny from
crosses among hybrids and crosses of
hybrids to parental species) between S.
salicaria and S. menziesii are known on
the western side of west Maui (Wagner
et al. 2005b, p. 138). However,
according to Weller (2012, in litt.) the
hybridization process is natural when S.
salicaria and S. menziesii co-occur and
because of the dynamics in this hybrid
zone, traits of S. salicaria prevail and
replace those of S. menziesii. Weller
(2012, in litt.) notes that populations of
both species will likely remain distinct
because the two species do not overlap
throughout much of their range.
PO 00000
Frm 00013
Fmt 4701
Sfmt 4700
32025
Stenogyne kauaulaensis (NCN), a vine
in the mint family (Lamiaceae), occurs
on Maui. This recently described (2008)
plant is found only along the
southeastern rim of Kauaula Valley, in
the montane mesic ecosystem on west
Maui (TNC 2007; Wood and
Oppenheimer 2008, pp. 544–545). At
the time S. kauaulaensis was described,
the authors reported a total of 15
individuals in one occurrence.
However, one of the authors reports that
due to the clonal (genetic duplicate)
growth habit of this species, botanists
believe it is currently represented by
only three genetically distinct
individuals (Oppenheimer 2010k, in
litt.).
Wikstroemia villosa (akia), a shrub or
tree in the akia family (Thymelaeaceae),
is found on Maui (Peterson 1999, pp.
1,290–1,291). Historically known from
the lowland wet, montane wet, and
montane mesic ecosystems on east and
west Maui, this species is currently
known from a recent discovery (2007) of
one individual on the windward side of
Haleakala (on east Maui), in the
montane wet ecosystem (Peterson 1999,
p. 1,291; TNC 2007; HBMP 2008). As of
2010, there was one individual and one
seedling at the same location
(Oppenheimer 2010m, in litt.). In
addition, three individuals have been
outplanted in Waikamoi Preserve
(Oppenheimer 2010m, in litt.).
Animals
Newcomb’s tree snail (Newcombia
cumingi), a member of the family
Achatinellidae and the endemic
Hawaiian subfamily Achatinellinae
(Newcomb 1853, p. 25), is known only
from the island of Maui (Cowie et al.
1995, p. 62). All members of this species
have sinistral (left-coiling), oblong,
spindle-shaped shells of five to seven
whorls that are coarsely sculptured
(Cooke and Kondo 1960, pp. 9, 33).
Newcomb’s tree snail reaches an adult
length of approximately 0.8 in (21 mm)
and its shell is mottled in shades of
brown that blend with the bark of its
native host plant, Metrosideros
polymorpha (ohia) (Pilsbry and Cooke
1912–1914, p. 10; Thacker and Hadfield
1998, p. 4). The exact life span and
fecundity of Newcomb’s tree snails is
unknown, but they attain adult size
within 4 to 5 years (Thacker and
Hadfield 1998, p. 2). Newcomb’s tree
snail is believed to exhibit the low
reproductive rate of other Hawaiian tree
snails belonging to the same family
(Thacker and Hadfield 1998, p. 2). It
feeds on fungi and algae that grow on
the leaves and trunks of its host plant
(Pilsbry and Cooke 1912–1914, p. 103).
Historically, this species was distributed
E:\FR\FM\28MYR2.SGM
28MYR2
mstockstill on DSK4VPTVN1PROD with RULES2
32026
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
from the west Maui mountains (near
Lahaina and Wailuku) to the slopes of
Haleakala (Makawao) on east Maui
(Pilsbry and Cooke 1912–1914, p. 10). In
1994, a small population of Newcomb’s
tree snail was found on a single ridge on
the northeastern slope of the west Maui
mountains, in the lowland wet
ecosystem (Thacker and Hadfield 1998,
p. 3; TNC 2007). Eighty-six snails were
documented in the same location in
1998; in 2006, only nine individuals
were located; and, in 2012, only one
individual was located (Thacker and
Hadfield 1998, p. 2; Hadfield 2007, p. 8;
Higashino 2013, in litt.).
Partulina semicarinata (Lanai tree
snail, pupu kani oe), a member of the
family Achatinellidae and the endemic
Hawaiian subfamily Achatinellinae, is
known only from the island of Lanai
(Pilsbry and Cooke 1912–1914, p. 86).
The shell may coil to the right (dextral)
or left (sinistral), but appears to be
constant within a population. The
oblong to ovate shells of the adult are
0.6 to 0.8 in (16 to 20 mm) long, have
5 to 7 whorls, and range in color from
rusty brown to white, with some
individuals having bands around the
shells. The shell has a distinctive keel
that runs along the last whorl, and is
more distinctive in juveniles (Pilsbry
and Cooke 1912–1914, pp. 86–88).
Adults may attain an age exceeding 15
to 20 years, and reproductive output is
low, with an adult snail giving birth to
4 to 6 live young per year (Hadfield and
Miller 1989, pp. 10–12). Partulina
semicarinata is arboreal and nocturnal,
and grazes on fungi and algae growing
on leaf surfaces (Pilsbry and Cooke
1912–1914, p. 103). This snail species is
found on the following native host
plants: Metrosideros polymorpha,
Broussaisia arguta (kanawao),
Psychotria spp. (kopiko), Coprosma spp.
(pilo), Melicope spp. (alani), and dead
Cibotium glaucum (tree fern, hapuu).
Occasionally the snail is found on
nonnative plants such as Psidium
guajava (guava), Cordyline australis
(New Zealand tea tree), and Phormium
tenax (New Zealand flax) (Hadfield
1994, p. 2). Historically, P. semicarinata
was found in wet and mesic M.
polymorpha forests on Lanai. There are
no historical population estimates for
this snail, but qualitative accounts of
Hawaiian tree snails indicates they were
widespread and abundant, possibly
numbering in the tens of thousands
between the 1800s and early 1900s
(Hadfield 1986, p. 69). In 1993, 105
individuals of P. semicarinata were
found during surveys conducted in its
historical range. Subsequent surveys in
1994, 2000, 2001, and 2005 documented
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
55, 12, 4, and 29 individuals,
respectively, in the lowland wet,
montane wet, and wet cliff ecosystems
in central Lanai (Hadfield 2005, pp. 3–
5; TNC 2007).
Partulina variabilis (Lanai tree snail,
pupu kani oe), a member of the family
Achatinellidae and the endemic
Hawaiian subfamily Achatinellinae, is
known only from the island of Lanai
(Pilsbry and Cooke 1912–1914, p. 86).
The shell may coil to the right (dextral)
or left (sinistral), and both types can be
found within a single population. The
oblong to ovate shells of the adult are
0.5 to 0.6 in (14 to 16 mm) long, have
5 to 7 whorls, and have a white base
color with no bands or a variable
number of spiral bands around the
shells (Pilsbry and Cooke 1912–1914,
pp. 67, 83–86). Adults may attain an age
exceeding 15 to 20 years, and
reproductive output is low, with an
adult snail giving birth to 4 to 6 live
young per year (Hadfield and Miller
1989, pp. 10–12). Partulina variabilis is
arboreal and nocturnal, and grazes on
fungi and algae growing on leaf surfaces
(Pilsbry and Cooke 1912–1914, p. 103).
This snail is found on the following
native host plants: Metrosideros
polymorpha, Broussaisia arguta,
Psychotria spp., Coprosma spp.,
Melicope spp., and dead Cibotium
glaucum. Occasionally Partulina
variabilis is found on nonnative plants
such as Psidium guajava and Cordyline
australis (Hadfield 1994, p. 2).
Historically, Partulina variabilis was
found in wet and mesic M. polymorpha
forests on Lanai. There are no historical
population estimates for this snail, but
qualitative accounts of Hawaiian tree
snails indicate they were widespread
and abundant, possibly numbering in
the tens of thousands between the 1800s
and early 1900s (Hadfield 1986, p. 69).
In 1993, 111 individuals of P.variabilis
were found during surveys conducted in
its historical range. Subsequent surveys
in 1994, 2000, 2001, and 2005
documented 175, 14, 6, and 90
individuals, respectively, in the lowland
wet, montane wet, and wet cliff
ecosystems in central Lanai (Hadfield
2005, pp. 3–5; TNC 2007).
Summary of Comments and
Recommendations
On June 11, 2012, we published a
proposed rule to list 38 Maui Nui
species (35 plants and 3 tree snails) as
endangered and reevaluate the listing of
2 Maui Nui plant species as endangered
throughout their ranges, and to
designate critical habitat for 135 species
(77 FR 34464). The proposed rule
opened a 60-day comment period. On
August 9, 2012 (77 FR 47587), we
PO 00000
Frm 00014
Fmt 4701
Sfmt 4700
extended the comment period for the
proposed rule for an additional 30 days,
ending September 10, 2012. We
requested that all interested parties
submit comments or information
concerning the proposed listing and
designation of critical habitat for 135
species. We contacted all appropriate
State and Federal agencies, county
governments, elected officials, scientific
organizations, and other interested
parties and invited them to comment. In
addition, we published a public notice
of the proposed rule on June 20, 2012,
in the local Honolulu Star Advertiser,
Maui Times, and Molokai Dispatch
newspapers, at the beginning of the
comment period. We received three
requests for public hearings. On January
31, 2013, we published a notice (78 FR
6785) reopening the comment period on
the June 11, 2012, proposed rule (77 FR
34464), announcing the availability of
our draft economic analysis (DEA) on
the proposed critical habitat, and
requesting comments on both the
proposed rule and the DEA. This
comment period closed on March 4,
2013. In addition, in that same notice
(January 31, 2013; 78 FR 6785) we
announced a public information
meeting and hearing, which we held in
Kihei, Maui, on February 21, 2013.
During the comment periods, we
received a total of 47 comment letters on
the proposed listing of 38 species,
reevaluation of listing for 2 species, and
proposed designation of critical habitat.
For the reasons stated above, in this
final rule we address only the comments
regarding the proposed listing of 38
species and reevaluation of listing for 2
species. Ten of the 47 letters contained
comments on both the proposed listing
and proposed designation of critical
habitat. Two of the 47 letters contained
comments only on the proposed listing
of 38 species and reevaluation of listing
for 2 species. Three of the four peer
reviewers who provided comments
commented on the proposed listing of
one or more of the 38 species or on the
proposed listing and proposed critical
habitat designation. One commenter
was a State of Hawaii agency (Hawaii
Department of Health), one was a
Federal agency (Kalaupapa National
Historical Park), and eight were
nongovernmental organizations or
individuals. During the February 21,
2013, public hearing, 25 individuals or
organizations made comments on the
proposed listing.
All substantive information provided
during the comment periods related to
the listing decisions has either been
incorporated directly into this final
determination or is addressed below.
Information we received related to the
E:\FR\FM\28MYR2.SGM
28MYR2
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
proposed critical habitat designation
will be addressed in that final rule.
Comments received are grouped into
general issues specifically relating to the
proposed listing status of the 35 plants
or the proposed listing status of the 3
tree snails, and are addressed in the
following summary and incorporated
into the final rule as appropriate. No
comments were received regarding the
reevaluation of listing for Cyanea
grimesiana ssp. grimesiana or Santalam
healeakalae var. lanaiense. No
comments were received regarding the
delisting of Gahnia lanaiensis due to
taxonomic error.
mstockstill on DSK4VPTVN1PROD with RULES2
Peer Review
In accordance with our peer review
policy published in the Federal Register
on July 1, 1994 (59 FR 34270), we
solicited expert opinions from 10
knowledgeable individuals with
scientific expertise on the Maui Nui
plants, snails, and forest birds and their
habitats, including familiarity with the
species, the geographic region in which
these species occur, and conservation
biology principles. We received
responses from four of the peer
reviewers. Of these four peer reviewers,
one provided comments only on the
proposed critical habitat designation for
two endangered forest birds. These
comments are not addressed in this final
rule, which addresses only the listing of
the 38 Maui Nui species (35 plants and
3 tree snails), and the reaffirmation of
listing of 2 Maui Nui plant species.
Three peer reviewers provided
comments on the listing of the 38 Maui
Nui species and reevaluation of listing
for 2 species. These peer reviewers
generally supported our methodology
and conclusions. Two reviewers
supported the Service’s ecosystembased approach for organizing the rule
and for focusing on the actions needed
for species conservation and
management, and all three reviewers
provided new information on one or
more of the Maui Nui species, which we
incorporated into this final rule. In
addition, peer reviewers provided
information on citations for published
studies on ungulate exclusions and
nonnative plant control. We reviewed
all comments we received from the peer
reviewers for substantive issues and
new information regarding the listing of
38 species and reevaluation of the
listing of 2 species. Peer reviewer
comments are addressed in the
following summary and incorporated
into the final rule as appropriate.
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
General Peer Review Comments
(1) Comment: One peer reviewer
noted the absence of a literature cited
section for the proposed rule.
Our Response: Although not included
with the proposed rule itself,
information on how to obtain a list of
our supporting documentation used was
provided in the proposed rule under
Public Comments and References Cited
(77 FR 34464; June 11, 2012). In
addition, lists of references cited in the
proposed rule (77 FR 34464; June 11,
2012) and in this final rule are available
on the Internet at https://
www.regulations.gov at Docket No.
FWS–R1–ES–2011–0098, and upon
request from the Pacific Islands Fish
and Wildlife Office (see FOR FURTHER
INFORMATION CONTACT).
(2) Comment: One peer reviewer
provided additional information
regarding the biogeographical
differences between east and west Maui.
Our Response: We have included this
information in this final rule and
corrected statements about the range of
annual rainfall on east Maui
(Giambelluca et al. 2011), the diversity
of vegetation in the mesic and wet
ecosystems of east Maui relative to west
Maui (Price 2004, p. 493), and the
geologic age of the youngest lava flows
found within the Cape Kinau region of
east Maui (Sherrod et al. 2007, p. 40)
(see The Islands of Maui Nui, above).
Peer Review Comments on Plants
(3) Comment: One peer reviewer
suggested that the proposed rule’s
discussion about invasive plant species
did not emphasize a comparison of the
wide-ranging level of impacts between
the various invasive plant species.
Our Response: In the proposed rule,
we provided a list of 71 nonnative plant
species that have been documented as
serious and ongoing threats to 36 of the
40 species proposed or reevaluated for
listing throughout their ranges by
destroying or modifying habitat. We
provided a short description for each of
the 71 nonnative plant species that
included the best available information
on growth form, place of origin,
reproductive biology, dispersal,
competition with native species,
environmental tolerance, and measures
for their control in Hawaiian habitats, as
well as synergistic impacts with other
habitat modifying threat factors such as
nonnative ungulates, agricultural
development, and fire. In addition, we
identified the nonnative plant species
documented as threats in each of the 10
ecosystems. Finally, we identified each
species that is considered invasive by
one or more of the following sources:
PO 00000
Frm 00015
Fmt 4701
Sfmt 4700
32027
Hawaii-Pacific Weed Risk Assessment,
U.S. Department of Agriculture-Natural
Resources Conservation Service (USDA–
NRCS) plant database (2011), or the
Hawaii State noxious weed list (H.A.R.
Title 4, Subtitle 6, Chapter 68).
Therefore, we believe the information
we provided in the proposed rule
adequately emphasizes a comparison of
the wide-ranging level of impacts
between the various invasive plant
species.
(4) Comment: One peer reviewer
suggested that we understated the
seriousness of the effects of the invasive
plant species Blechnum
appendiculatum and provided
additional information about the
ecology of this species to better
illustrate its impacts.
Our Response: We appreciate the
information provided for the invasive
plant Blechnum appendiculatum and
have included it in our final rule (see
Summary of Changes From Proposed
Rule, below).
(5) Comment: One peer reviewer
recommended that we include, where
applicable, further elaboration on the
synergistic interactions between
nonnative plants and animals, and
global climate change, and their
confluent impacts upon native habitats
described in the proposed rule.
Our Response: We discuss the
synergistic effects of climate change and
nonnative species under ‘‘Habitat
Destruction and Modification by
Climate Change’’ and ‘‘Summary of
Habitat Destruction and Modification,’’
below; however, the magnitude and
intensity of the impacts of global
climate change and increasing
temperatures on native Hawaiian
ecosystems are unknown at this time.
(6) Comment: Although drought was
not identified as a threat to Schiedea
laui in our proposed rule, one peer
reviewer suggested that it may also be
a threat to this species. According to the
reviewer, between 1998 and 2000, 7 of
the 16 known mature individuals died
from prolonged drought. In addition, the
reviewer suggested that drought should
be considered a threat to S. salicaria as
it exacerbates the likelihood of fire,
which is identified as a threat to this
species.
Our Response: Drought was indicated
as a threat to Schiedea laui with the
observation of the extirpation of 7 of the
16 individuals by 2000 in Wagner et al.
(2005b); however, we have information
from more recent botanical surveys and
observations that the current threats to
individuals at this location are flooding
and landslides (MNTF 2010). In the long
term, drought may be a threat if this
species is dependent upon the constant
E:\FR\FM\28MYR2.SGM
28MYR2
mstockstill on DSK4VPTVN1PROD with RULES2
32028
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
water source provided at the grotto in
which it occurs, and annual
precipitation amounts fall due to
weather changes associated with the
global warming trend. Also, we agree
that drought can lead to increased
incidences of wildfire, especially in the
area of west Maui where S. salicaria
occurs. We appreciate the information
provided by the reviewer and have
incorporated it, as appropriate, into
TABLE 4—SUMMARY OF PRIMARY
THREATS IDENTIFIED FOR EACH OF
THE 40 MAUI NUI SPECIES and
‘‘Habitat Destruction and Modification
Due to Landslides, Rockfalls, Treefalls,
Flooding, and Drought’’ in this final rule
(see below).
(7) Comment: One peer reviewer
noted that our proposed rule states that
nonnative plants in the lowland mesic
ecosystem and the lowland dry
ecosystem are a threat to the plant
Schiedea salicaria. According to the
reviewer, S. salicaria is usually found in
lowland dry habitats, not in lowland
mesic habitat.
Our Response: In our proposed rule,
Schiedea salicaria is reported from
three occurrences in the lowland dry
ecosystem on west Maui (77 FR 34464,
Table 2C and p. 34481; June 11, 2012).
This species was included as one of the
proposed species affected by nonnative
plants in the lowland mesic ecosystem
(see ‘‘Nonnative Plants in the Lowland
Mesic Ecosystem’’ in the proposed rule)
in error. We appreciate the correction.
(8) Comment: One peer reviewer
corrected our description of hybrid
swarms in the discussion of the
proposed plant Schiedea salicaria to say
that a hybrid swarm consists of hybrids
between parent species, and
subsequently formed progeny from
crosses among hybrids and crosses of
hybrids to parental species. While this
process is noted as a threat to S.
salicaria in Table 3 and in Proposed
Determination for 40 Species in our
proposed rule, the reviewer points out
that the hybridization process is natural
when S. salicaria and S. menziesii cooccur and because of the dynamics in
this hybrid zone, traits of S. salicaria
prevail and replace those of S.
menziesii. The reviewer notes, however,
that populations of both species will
likely remain distinct because the two
species do not overlap throughout much
of their range.
Our Response: We appreciate the peer
reviewer’s comments and have added
that the traits of Schiedea salicaria
prevail and replace those of S. menziesii
in hybrid zones (see Description of the
40 Maui Nui Species, above). In
addition, we have removed
hybridization as a threat to S. salicaria
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
in this final rule; however, wildfires
could possibly adversely impact the
remaining non-hybridizing occurrences
of S. salicaria on west Maui (see
‘‘Habitat Destruction and Modification
by Fire,’’ below).
(9) Comment: One peer reviewer
suggested that we highlight the positive
interactions between drought and
nonnative plant species, to the
detriment of native plant species, in our
discussion of ‘‘Climate Change and
Precipitation.’’ According to this
reviewer, these effects may be subtle, as
demonstrated by Blechnum
appendiculatum (see Comment 4,
above), or dramatic, as demonstrated
during a fire on west Maui that occurred
in the area of the two largest
populations of Schiedea salicaria, and
likely spread rapidly due to the
presence of invasive nonnative grasses
and drought conditions.
Our Response: We agree that in the
Hawaiian Islands there is a positive
correlation between drought (caused by
a reduction in moisture availability due
to long periods of decline in annual
precipitation), the presence of nonnative
plants (particularly fire-prone grasses),
and wildfire. We discuss the effects of
the grass/fire cycle and the contribution
to this cycle by drying trends caused by
global warming (see ‘‘Habitat
Destruction and Modification by Fire,’’
and ‘‘Climate Change and
Precipitation,’’ below).
(10) Comment: One peer reviewer
suggested that our discussion of the
effects of the nonnative grass
Pennisetum setaceum (Cenchrus
setaceus; fountain grass) on dry forests
on Hawaii Island should include direct
competition with native species in
addition to the threat it poses to native
habitat from wildfires.
Our Response: The peer reviewer is
referring to our discussion of ‘‘Habitat
Destruction and Modification by Fire.’’
In that discussion, we note that on a
post-burn survey at Puu Waawaa on
Hawaii Island no regeneration of native
canopy plants was occurring within the
burn area. According to Takeuchi (1991,
pp. 4, 6) nonnative Pennisetum sp.
increased the number of fires and
suppressed the establishment of native
plants after a fire. We appreciate the
additional information provided by the
reviewer, including citations for
published articles on the effects of
nonnative fountain grass on wildfire
and competition with native plant
species, and we have added the
information to our final rule (see
‘‘Habitat Destruction and Modification
by Fire,’’ below).
(11) Comment: One peer reviewer
noted that the discussion on invasive
PO 00000
Frm 00016
Fmt 4701
Sfmt 4700
plant species did not include sufficient
information regarding those species for
which the State of Hawaii has
introduced biological control agents.
The peer reviewer specifically
highlighted four invasive plants,
Psidium cattleianum (strawberry guava),
Clidemia hirta (Koster’s curse),
Hedychium gardnerianum (kahili
ginger), and Cyathea cooperi
(Sphaeropteris cooperi, Australian tree
fern) and suggested that we include
further discussion on the potential
importance of biocontrol in addressing
the very severe threats posed by these
otherwise intractable invasive plant
species.
Our Response: We agree that the use
of biological control is a significant
contribution to a multi-layered
approach at management of the various
nonnative plants threatening Hawaiian
native flora. Between 1902 and 2010,
approximately 84 insect and fungal
agents have been introduced in Hawaii
to control approximately 24 target
nonnative plants (Conant et al. [in
press], pp. 1–2, 15–19). Approximately
42 of these biological control agents are
established in the Hawaiian Islands, and
12 of these have demonstrated
substantial effects (i.e., the targeted
nonnative plant species have been
suppressed over a large portion of their
ranges) toward control of their intended
nonnative plant target, including
Ageratina adenophora (Maui
pamakani), A. riparia (Hamakua
pamakani), and Lantana camara
(lantana) (McFadyen 2000, pp. 4–7;
Conant et al. [in press], pp. 1–2, 15–19).
These three nonnative plants pose
serious and ongoing threats to habitat in
six of the ecosystems (lowland dry,
lowland wet, montane mesic, montane
wet, dry cliff, and wet cliff), that
support one or more of the 40 species
addressed in this final rule (see ‘‘Habitat
Destruction and Modification by
Nonnative Plants’’ in the June 11, 2012
(77 FR 34464), proposed rule). The
Service remains cautiously optimistic
about the use of biological control
agents as a potentially significant
contribution to a multi-layered
approach to management of the various
nonnative plants threatening Hawaiian
native flora, including the recent
introductions to control the ubiquitous,
nonnative strawberry guava that poses a
serious and ongoing threat to habitat in
five of the ecosystems (lowland mesic,
lowland wet, montane dry, montane
mesic, and montane wet) that support
one or more of the 40 species addressed
in this final rule (see ‘‘Habitat
Destruction and Modification by
Nonnative Plants’’ in the June 11, 2012
E:\FR\FM\28MYR2.SGM
28MYR2
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
(77 FR 34464), proposed rule). However,
the lack of post-introduction monitoring
for most past introductions is of
concern, and the largely anectodal
evaluations of past introductions
precludes our ability to sufficiently
evaluate and conjecture, upon their
long-term success.
mstockstill on DSK4VPTVN1PROD with RULES2
Peer Review Comment on Lanai Tree
Snails
(12) Comment: One peer reviewer
recommended additional emphasis on
the impacts of axis deer and mouflon
sheep upon the habitat of the snails. The
reviewer stated that the feeding and
trampling activities of these ungulates
removes the fern and vegetation layer
around the snails’ host trees, so that
dispersal of snails between host
substrates is either prevented or greatly
reduced.
Our Response: We agree with the peer
reviewer that the feeding and trampling
activities of ungulates removes the fern
and vegetation layer around the snails’
host trees, and we have included
information regarding the impact of axis
deer and mouflon sheep upon the
habitat of the Lanai tree snails in this
final rule (see TABLE 4–SUMMARY OF
PRIMARY THREATS IDENTIFIED FOR
EACH OF THE 40 MAUI NUI SPECIES
and ‘‘Habitat Destruction and
Modification by Introduced Ungulates,’’
below).
Comments From the State of Hawaii
(13) Comment: The Hawaii
Department of Health stated that they
had no comments on the proposed rule
but reserved the right to future
comments. In addition, their letter
directed us to their Standard Comments
on their Web site (https://
www.hawaii.gov/health/environmental/
env-planning/landuse/landuse.html)
and stated that any comments
specifically applicable to our proposed
rule should be adhered to.
Our Response: We reviewed the
Department of Health’s Web site, and
specifically the Landuse Planning
Review Program, and determined that
the Standard Comments referred to
above do not apply to our June 11, 2012,
proposed rulemaking or to this final
rule. Standard Comments provided by
the seven environmental programs
(Hazard Evaluation and Emergency
Response Office, Clean Air Branch,
Clean Water Branch, Safe Drinking
Water Branch, Solid and Hazardous
Waste Branch, Wastewater Branch, and
Indoor and Radiological Health Branch)
within the Hawaii Department of Health
are intended to help developers to better
prepare land use planning documents
such as environmental assessments,
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
environmental impact statements, or
permit applications.
Comments From Federal Agencies
Haleakala National Park (Park)
provided information on one or more of
the 37 plant species addressed in this
final rule which occur in the Park, and
this information was incorporated, as
appropriate, into Description of the 40
Maui Nui Species, above.
(14) Comment: Kalaupapa National
Historical Park (KNHP) agreed with and
supported the ecosystem-based
approach in our June 11, 2012, proposed
rule, for grouping plants and defining
their habitat consistently. According to
KNHP, this approach will aid the
management of endangered and
threatened plants as part of the
collection of native communities across
the landscape. Descriptions of
individual listed species, habitat, and
threats will be a good resource to
managers and will serve as a basis for
planning future conservation measures.
The proposed listing of the ‘‘rarest of the
rare’’ PEPP [Plant Extinction Prevention
Program] species will provide a benefit
to the National Park Service by
improving their ability to gain funds for
the protection, propagation, and
outplanting of these rare plants.
Improved funding will help with
KNHP’s ongoing collaboration with
partners, including the Molokai Plant
Extinction Prevention Program and The
Nature Conservancy.
Our Response: We appreciate the
Park’s comments regarding the proposal
to list the 38 Maui Nui species and to
reevaluate the listing of 2 species. We
agree that using an ecosystem-based
approach to organize this rule will help
provide for more focused conservation
efforts and concerted management
efforts to address the common threats
that occur across these ecosystems.
Public Comments on the Proposed
Listing of 38 Species and Reevaluation
of Listing of 2 Species
(15) Comment: One commenter stated
that much of the referenced material is
not available for public review. The
commenter further stated that reliance
on certain ‘‘unpublished, non-public
data deprives the public of the
opportunity to review and comment on
the basis for the Service’s asserted
justification in the proposed rule.’’
According to the commenter, ‘‘such
action is arbitrary, capricious and an
abuse of the Service’s discretion,
otherwise not in accordance with law,
in excess of statutory jurisdiction,
authority, or limitations, and short of
statutory right, without observance of
PO 00000
Frm 00017
Fmt 4701
Sfmt 4700
32029
procedure required by law; and
unsupported by substantial evidence.’’
Our Response: See also Comment (1)
Response, above. Complete lists of
references, including unpublished
information, cited in the proposed rule
(77 FR 34464; June 11, 2012) and in this
final rule are available on the Internet at
https://www.regulations.gov at Docket
No. FWS–R1–ES–2011–0098, and upon
request from the Pacific Islands Fish
and Wildlife Office (see ADDRESSES,
above). In addition, as stated in our
proposed rule, all supporting
documentation used in preparing the
proposed rule was available upon
request and for public inspection, by
appointment, at the U.S. Fish and
Wildlife Service Pacific Islands Fish and
Wildlife Office. All supporting
documentation used in our rulemakings
is a matter of public record; however,
the number of sources referenced are
often voluminous or subject to copyright
restrictions. Therefore, it is not possible
for us to post all information sources
used on the Internet. However, any of
our supporting references cited in this
or any rulemaking are always available
upon request.
(16) Comment: One commenter
objected to the proposed listing of the
two Lanai tree snails, Partulina
semicarinata and Partulina variabilis,
because, in their view, the Service does
not have sufficient information
regarding the historical population
estimates and the lack of comprehensive
surveys. The commenter disagreed with
our determination in the proposed rule
that these tree snails are ‘‘vulnerable to
extinction due to threats associated with
low number of individuals and
populations’’ (77 FR 34507; June 11,
2012).
Our Response: Under the Act, we
determine whether a species is an
endangered species or a threatened
species because of any of five factors
(see Summary of Factors Affecting the
40 Maui Nui Species, below), and we
are required to make listing
determinations solely on the basis of the
best available scientific and commercial
data available (see 16 U.S.C. 1533(a)(1)
and (b)(1)(A)). The threats to the two
Lanai tree snail species, as well as other
endangered tree snails in the Hawaiian
Islands, are well-documented (see
Summary of Factors Affecting the 40
Maui Nui Species, below). Although
there are no historical population
estimates for these two tree snails,
qualitative accounts of Hawaiian tree
snails indicate they were widespread
and abundant, possibly numbering in
the tens of thousands between the 1800s
and early 1900s (Hadfield 1986, p. 69).
However, the best available survey
E:\FR\FM\28MYR2.SGM
28MYR2
32030
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
mstockstill on DSK4VPTVN1PROD with RULES2
information, conducted between 1993
and 2005, indicates that currently
Partulina semicarinata and Partulina
variabilis total fewer than 120
individuals on Lanai (Hadfield 2005,
pp. 3–5). Based on the information
regarding the current status of the
species and ongoing threats to the
remaining few individuals, we have
determined that these species are
presently in danger of extinction;
definitive quantitative data regarding
historical population numbers are not
necessary to make this determination.
The problems associated with small
population size (e.g., inbreeding
depression for snails) and vulnerability
to random demographic fluctuations or
natural catastrophes are magnified by
synergistic interactions with other
threats (e.g., predation by nonnative rats
or habitat destruction or modification by
nonnative ungulates). Therefore, we
disagree with the commenter, and
believe these two tree snail species are
vulnerable to extinction due to their low
number of individuals and populations.
(17) Comment: Several commenters
noted the threat of deer and goats to
Canavalia pubescens throughout its
range on Maui, with specific impacts to
populations on the Palauea lava flow
and Ahihi-Kinau. The commenters also
recommended that fenced areas and
regular monitoring are necessary to
protect this species from the threat of
ungulates in these areas.
Our Response: We agree that deer and
goats constitute a threat to the coastal
and lowland dry ecosystems in which
Canavalia pubescens is known to occur
(see ‘‘Habitat Destruction and
Modification by Introduced Ungulates,’’
below). In this final rule, we noted the
destruction of Canavalia pubescens at
Ahihi-Kinau Natural Area Reserve in
2010 (see Description of the 40 Maui
Nui Species, above) and acknowledge
the threat of herbivory by deer and goats
on Canavalia pubescens (see
‘‘Introduced Ungulates’’ in Disease or
Predation, below).
(18) Comment: Several commenters
noted the occurrence of Canavalia
pubescens or awikiwiki on lands owned
by Honuaula Partners.
Our Response: We appreciate this
information and note that information
in our files indicates that Canavalia
pubescens or awikiwiki occurs in this
area.
Summary of Changes From Proposed
Rule
In preparing this final rule, we
reviewed and fully considered
comments from the public on the
proposed listing for 38 species and
reevaluation of listing for 2 species. This
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
final rule incorporates the following
substantive changes to our proposed
listing, based on the comments we
received:
(1) We added the montane mesic
ecosystem to the listed plant
Phyllostegia haliakalae in the following
locations in this final rule: Description
of the 40 Maui Nui Species (above),
Table 3 (above), and Table 4 (below),
based on comments we received.
(2) We are revising the specific
negative impacts of the nonnative plant
Blechnum appendiculatum as follows,
based on peer review comments:
Blechnum appendiculatum (NCN) is a
fern with fronds to 23 in (60 cm) long
that forms large colonies, outcompeting
many native fern species (Palmer 2003,
p. 81). This species is far more drought
tolerant than native fern species. It
forms thick mats that prevent
regeneration from seeds of native
species, and appears to successfully
outcompete native ferns. All of these
attributes compound the effects of the
presence of this nonnative fern on
native habitat (Weller et al. 2011, pp.
676–677).
(3) We added drought as a threat to
the listed plants Canavalia pubescens
and Schiedea salicaria in the following
locations in this final rule: Table 4 and
‘‘Habitat Destruction and Modification
Due to Landslides, Rockfalls, Treefalls,
Flooding, and Drought,’’ below, based
on comments we received.
Status Assessment for the 40 Maui Nui
Species
Summary of Factors Affecting the 40
Maui Nui Species
Section 4 of the Act (16 U.S.C. 1533)
and its implementing regulations (50
CFR part 424) set forth the procedures
for adding species to the Federal Lists
of Endangered and Threatened Wildlife
and Plants. A species may be
determined to be an endangered or
threatened species due to one or more
of the five factors described in section
4(a)(1) of the Act: (A) The present or
threatened destruction, modification, or
curtailment of its habitat or range; (B)
overutilization for commercial,
recreational, scientific, or educational
purposes; (C) disease or predation; (D)
the inadequacy of existing regulatory
mechanisms; and (E) other natural or
manmade factors affecting its continued
existence. Listing actions may be
warranted based on any of the above
threat factors, singly or in combination.
Each of these factors is discussed below.
In considering what factors might
constitute threats to a species we must
look beyond the exposure of the species
to a particular factor to evaluate whether
PO 00000
Frm 00018
Fmt 4701
Sfmt 4700
the species may respond to that factor
in a way that causes actual impacts to
the species. If there is exposure to a
factor and the species responds
negatively, the factor may be a threat
and, during the status review, we
attempt to determine how significant a
threat it is. The threat is significant if it
drives, or contributes to, the risk of
extinction of the species such that the
species warrants listing as endangered
or threatened as those terms are defined
in the Act. However, the identification
of factors that could impact a species
negatively may not be sufficient to
warrant listing the species under the
Act. The information must include
evidence sufficient to show that these
factors are operative threats that act on
the species to the point that the species
meets the definition of endangered or
threatened under the Act.
If we determine that the level of a
threat posed to a species by one or more
of the five listing factors is such that the
species meets the definition of either
endangered or threatened under section
3 of the Act, that species may then be
listed as endangered or threatened. The
Act defines an endangered species as
‘‘in danger of extinction throughout all
or a significant portion of its range,’’ and
a threatened species as ‘‘likely to
become an endangered species within
the foreseeable future throughout all or
a significant portion of its range.’’ The
threats to each of the individual 40
Maui Nui species are summarized in
Table 4, and discussed in detail below.
Assumptions
We acknowledge that the specific
nature of the threats to the individual
species in this final rule are not
completely understood. Scientific
research directed toward each of the 40
species is limited because of their rarity
and the challenging logistics associated
with conducting field work in Hawaii
(e.g., areas are typically remote, difficult
to access and work in, and expensive to
survey in a comprehensive manner).
However, there is information available
on many of the threats that act on
Hawaiian ecosystems, and, for some
ecosystems, these threats are well
studied and understood. Each of the
native species that occurs in Hawaiian
ecosystems suffers from exposure to
those threats. For the purposes of our
listing determination, our assumption is
that the threats that act at the ecosystem
level also act on each of the species that
occurs in those ecosystems (although in
some cases we have additionally
identified species-specific threats, such
as predation by nonnative
invertebrates).
E:\FR\FM\28MYR2.SGM
28MYR2
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
mstockstill on DSK4VPTVN1PROD with RULES2
The following constitutes a list of
ecosystem-level threats that affect the 40
species in 10 ecosystems on the islands
of Maui Nui:
(1) Foraging and trampling of native
plants by ungulates, including feral pigs
(Sus scrofa), goats, cattle (Bos taurus),
axis deer (Axis axis), or mouflon sheep
(Ovis gmelini musimon), which can
result in severe erosion of watersheds
because these mammals inhabit terrain
that is often steep and remote (Cuddihy
and Stone 1990, p. 63). Foraging and
trampling events destabilize soils that
support native plant communities, bury
or damage native plants, and have
adverse water quality effects due to
runoff over exposed soils.
(2) Disturbance of soils by feral pigs
from rooting, which can create fertile
seedbeds for alien plants (Cuddihy and
Stone 1990, p. 65).
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
(3) Increased nutrient availability as a
result of pigs rooting in nitrogen-poor
soils, which facilitates establishment of
alien weeds. Alien weeds are more
adapted to nutrient rich soils than
native plants (Cuddihy and Stone 1990,
p. 63), and rooting activity creates open
areas in forests allowing alien species to
completely replace native stands.
(4) Ungulate destruction of seeds and
seedlings of native plant species
(Cuddihy and Stone 1990, p. 63), which
facilitates the conversion of disturbed
areas from native to nonnative
vegetative communities.
(5) Rodent damage to plant
propagules, seedlings, or native trees,
which changes forest composition and
structure (Cuddihy and Stone 1990, p.
67).
(6) Feeding or defoliation of native
plants from alien insects, which can
PO 00000
Frm 00019
Fmt 4701
Sfmt 4700
32031
reduce geographic ranges of some
species because of damage (Cuddihy
and Stone 1990, p. 71).
(7) Alien insect predation on native
insects, which affects pollination of
native plant species (Cuddihy and Stone
1990, p. 71).
(8) Significant changes in nutrient
cycling processes because of large
numbers of alien invertebrates such as
earthworms, ants, slugs, isopods,
millipedes, and snails, resulting in
changes to the composition and
structure of plant communities
(Cuddihy and Stone 1990, p. 73).
Each of the above threats is discussed
in more detail below, and summarized
in Table 4.
BILLING CODE 4310–55–P
E:\FR\FM\28MYR2.SGM
28MYR2
VerDate Mar<15>2010
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
17:59 May 24, 2013
Jkt 229001
PO 00000
Frm 00020
Fmt 4701
Sfmt 4725
E:\FR\FM\28MYR2.SGM
28MYR2
ER28MY13.001
mstockstill on DSK4VPTVN1PROD with RULES2
32032
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
PO 00000
Frm 00021
Fmt 4701
Sfmt 4725
E:\FR\FM\28MYR2.SGM
28MYR2
32033
ER28MY13.002
mstockstill on DSK4VPTVN1PROD with RULES2
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
VerDate Mar<15>2010
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
17:59 May 24, 2013
Jkt 229001
PO 00000
Frm 00022
Fmt 4701
Sfmt 4725
E:\FR\FM\28MYR2.SGM
28MYR2
ER28MY13.003
mstockstill on DSK4VPTVN1PROD with RULES2
32034
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
PO 00000
Frm 00023
Fmt 4701
Sfmt 4725
E:\FR\FM\28MYR2.SGM
28MYR2
32035
ER28MY13.004
mstockstill on DSK4VPTVN1PROD with RULES2
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
VerDate Mar<15>2010
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
17:59 May 24, 2013
Jkt 229001
PO 00000
Frm 00024
Fmt 4701
Sfmt 4725
E:\FR\FM\28MYR2.SGM
28MYR2
ER28MY13.005
mstockstill on DSK4VPTVN1PROD with RULES2
32036
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
PO 00000
Frm 00025
Fmt 4701
Sfmt 4725
E:\FR\FM\28MYR2.SGM
28MYR2
32037
ER28MY13.006
mstockstill on DSK4VPTVN1PROD with RULES2
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
VerDate Mar<15>2010
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
17:59 May 24, 2013
Jkt 229001
PO 00000
Frm 00026
Fmt 4701
Sfmt 4725
E:\FR\FM\28MYR2.SGM
28MYR2
ER28MY13.007
mstockstill on DSK4VPTVN1PROD with RULES2
32038
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
PO 00000
Frm 00027
Fmt 4701
Sfmt 4725
E:\FR\FM\28MYR2.SGM
28MYR2
32039
ER28MY13.008
mstockstill on DSK4VPTVN1PROD with RULES2
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
BILLING CODE 4310–55–C
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
PO 00000
Frm 00028
Fmt 4701
Sfmt 4700
E:\FR\FM\28MYR2.SGM
28MYR2
ER28MY13.009
mstockstill on DSK4VPTVN1PROD with RULES2
32040
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
A. The Present or Threatened
Destruction, Modification, or
Curtailment of Its Habitat or Range
The Hawaiian Islands are located over
2,000 mi (3,200 km) from the nearest
continent. This isolation has allowed
the few plants and animals that arrived
in the Hawaiian Islands to evolve into
many highly varied and endemic
species (species that occur nowhere else
in the world). The only native terrestrial
mammals in the Hawaiian Islands are
two bat taxa, the extant Hawaiian hoary
bat (Lasiurus cinereus semotus) and an
extinct, unnamed insectivorous bat
(Ziegler 2002, p. 245). The native plants
of the Hawaiian Islands, therefore,
evolved in the absence of mammalian
predators, browsers, or grazers. Many of
the native species have lost unneeded
defenses against threats such as
mammalian predation and competition
with aggressive, weedy plant species
that are typical of continental
environments (Loope 1992, p. 11; Gagne
and Cuddihy 1999, p. 45; Wagner et al.
1999l, pp. 3–6). For example, Carlquist
(in Carlquist and Cole 1974, p. 29) notes
‘‘Hawaiian plants are notably free from
many characteristics thought to be
deterrents to herbivores (toxins, oils,
resins, stinging hairs, coarse texture).’’
Native Hawaiian plants are therefore
highly vulnerable to the impacts of
introduced mammals and alien plants.
In addition, species restricted and
adapted to highly specialized locations
(e.g., Calamagrostis hillebrandii) are
particularly vulnerable to changes (from
nonnative species, hurricanes, fire, and
climate change) in their habitat
(Carlquist and Cole 1974, pp. 28–29;
Loope 1992, pp. 3–6; Stone 1989, pp.
88–95).
mstockstill on DSK4VPTVN1PROD with RULES2
Habitat Destruction and Modification by
Agriculture and Urban Development
The consequences of past land use
practices such as agricultural or urban
development have resulted in little or
no native vegetation below 2,000 ft (600
m) throughout the Hawaiian Islands
(TNC 2007), largely impacting the
coastal, lowland dry, lowland mesic,
and lowland wet ecosystems. Although
agriculture has been declining in
importance, large tracts of former
agricultural lands are being converted
into residential areas or left fallow (TNC
2007). In addition, Hawaii’s population
increased almost 7 percent in the past
10 years, further increasing demands on
limited land and water resources in the
islands (Hawaii Department of Business,
Economic Development and Tourism
2010).
Development and urbanization of
coastal and lowland dry ecosystems on
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
Maui are a serious threat to one species
in this final rule, Canavalia pubescens,
which is dependent on these ecosystems
and is currently found only in east
Maui. Two individuals at PalaueaKeahou were destroyed by development
prior to 2001 (Oppenheimer 2000, in
litt.). Future development plans for this
area include a golf course and
associated infrastructure, and housing
(Altenberg 2007, p. 2–5; Greenlee 2013,
in litt.). Although fewer than 20
individuals were known in this area as
recently as 2010, no individuals have
been found in site visits over the last 2
years (Altenberg 2010, in litt.; Greenlee
2013, in litt.).
Habitat Destruction and Modification by
Introduced Ungulates
Introduced mammals have greatly
impacted the native vegetation, as well
as the native fauna, of the Hawaiian
Islands. Impacts to the native species
and ecosystems of Hawaii accelerated
following the arrival of Captain James
Cook in 1778. The Cook expedition and
subsequent explorers intentionally
introduced a European race of pigs or
boars and other livestock, such as goats,
to serve as food sources for seagoing
explorers (Tomich 1986, pp. 120–121;
Loope 1998, p. 752). The mild climate
of the islands, combined with the lack
of competitors or predators, led to the
successful establishment of large
populations of these introduced
mammals, to the detriment of native
Hawaiian species and ecosystems. The
presence of introduced alien mammals
is considered one of the primary factors
underlying the alteration and
degradation of native plant communities
and habitats on Molokai, Lanai, and
Maui. Ten ecosystems (coastal, lowland
dry, lowland mesic, lowland wet,
montane dry, montane mesic, montane
wet, subalpine, dry cliff, and wet cliff)
on Molokai, Lanai, and Maui and their
associated species are currently
impacted by threats of the destruction or
degradation of habitat due to nonnative
ungulates (hoofed mammals), including
pigs, goats, axis deer, mouflon, and
cattle. Thirty-five of the 37 plant species
and both species of Partulina tree snails
(Partulina semicarinata and P.
variabilis) in this final rule are exposed
to direct and indirect negative impacts
of feral ungulates (pigs, goats, axis deer,
mouflon, and cattle), which result in the
destruction and degradation of habitat
for these native Maui Nui species (Table
4).
Pigs have been described as the most
pervasive and disruptive nonnative
influence on the unique native forests of
the Hawaiian Islands, and are widely
recognized as one of the greatest current
PO 00000
Frm 00029
Fmt 4701
Sfmt 4700
32041
threats to forest ecosystems in Hawaii
(Aplet et al. 1991, p. 56; Anderson and
Stone 1993, p. 195). European pigs,
introduced to Hawaii by Captain James
Cook in 1778, hybridized with
domesticated Polynesian pigs, became
feral, and invaded forested areas,
especially wet and mesic forests and dry
areas at high elevations. The Hawaii
Territorial Board of Agriculture and
Forestry started a feral pig eradication
project in the early 1900s that continued
through 1958, removing 170,000 pigs
from forests Statewide (Diong 1982, p.
63). Feral pigs are currently present on
Niihau, Kauai, Oahu, Molokai, Maui,
and Hawaii.
These feral animals are extremely
destructive and have both direct and
indirect impacts on native plant
communities. While rooting in the earth
in search of invertebrates and plant
material, pigs directly impact native
plants by disturbing and destroying
vegetative cover, and trampling plants
and seedlings. It has been estimated that
at a conservative rooting rate of 2 square
(sq)-yards (yd) per minute, with only 4
hours of foraging a day, a single pig
could disturb over 1,600 sq-yd of
groundcover per week (Anderson et al.
2007, p. 2).
Pigs may also reduce or eliminate
plant regeneration by damaging or
eating seeds and seedlings (further
discussion of predation by nonnative
ungulates is provided under Factor C,
below). Pigs are a major vector for the
establishment and spread of competing
invasive nonnative plant species by
dispersing plant seeds on their hooves
and fur, and in their feces (Diong 1982,
pp. 169–170), which also serves to
fertilize disturbed soil (Matson 1990, p.
245; Siemann et al. 2009, p. 547). Pigs
feed on the fruits of many nonnative
plants, such as Passiflora tarminiana
(banana poka) and Psidium cattleianum
(strawberry guava), spreading the seeds
of these invasive species through their
feces as they travel in search of food. In
addition, rooting pigs contribute to
erosion by clearing vegetation and
creating large areas of disturbed soil,
especially on slopes (Smith 1985, pp.
190, 192, 196, 200, 204, 230–231; Stone
1985, pp. 254–255, 262–264; Medeiros
et al. 1986, pp. 27–28; Scott et al. 1986,
pp. 360–361; Tomich 1986, pp. 120–
126; Cuddihy and Stone 1990, pp. 64–
65; Aplet et al. 1991, p. 56; Loope et al.
1991, pp. 1–21; Gagne and Cuddihy
1999, p. 52). Ten of the Maui Nui
ecosystems (coastal, lowland dry,
lowland mesic, lowland wet, montane
dry, montane mesic, montane wet,
subalpine, dry cliff, and wet cliff) and
their associated species are adversely
impacted by the destruction or
E:\FR\FM\28MYR2.SGM
28MYR2
mstockstill on DSK4VPTVN1PROD with RULES2
32042
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
degradation of habitat due to pigs (see
Table 4, above).
Goats native to the Middle East and
India were also successfully introduced
to the Hawaiian Islands in the late
1700s. Actions to control feral goat
populations began in the 1920s (Tomich
1986, pp. 152–153); however, they still
occupy a wide variety of habitats on
Molokai and Maui and to a lesser degree
on Lanai, where they consume native
vegetation, trample roots and seedlings,
accelerate erosion, and promote the
invasion of alien plants (van Riper and
van Riper 1982, pp. 34–35; Stone 1985,
p. 261; Kessler 2010, pers. comm.).
Goats are able to access, and forage in,
extremely rugged terrain, and they have
a high reproductive capacity (Clarke and
Cuddihy 1980, pp. C–19, C–20; Culliney
1988, p. 336; Cuddihy and Stone 1990,
p. 64). Because of these factors, goats are
believed to have completely eliminated
some plant species from islands
(Atkinson and Atkinson 2000, p. 21).
Goats can be highly destructive to native
vegetation, and contribute to erosion by
eating young trees and young shoots of
plants before they can become
established, creating trails that damage
native vegetative cover, promoting
erosion by destabilizing substrate and
creating gullies that convey water, and
dislodging stones from ledges that can
cause rockfalls and landslides and
damage vegetation below (Cuddihy and
Stone 1990, pp. 63–64). Nine of the
described ecosystems on Molokai,
Lanai, and Maui (coastal, lowland dry,
lowland mesic, lowland wet, montane
dry, montane mesic, montane wet, dry
cliff, and wet cliff) and their associated
species are adversely impacted by the
destruction or degradation of habitat
due to goats (see Table 4, above).
Axis deer were first introduced to
Molokai in 1868, Lanai in 1920, and
Maui in 1959 (Hobdy 1993, p. 207;
Erdman 1996, pers. comm. cited in
Waring 1996, in litt., p. 2; Hess 2008, p.
2). On Molokai, axis deer have likely
spread throughout the island at all
elevations (from the coast to the summit
area at 4,961 ft (1,512 m)) (Kessler 2011,
pers. comm.). The most current
population estimate of axis deer on
Molokai is between 4,000 and 5,000
individuals (Anderson 2003, p. 130). It
is likely this is an underestimate of the
total number of individuals as it was
published almost a decade ago, and
little management for deer control has
been implemented. On Lanai, as of
2007, axis deer were reported to number
approximately 6,000 to 8,000
individuals (The Aloha Insider 2008, in
litt.; WCities 2010, in litt.). On Maui,
five adults were released east of Kihei
in 1959 (Hobdy 1993, p. 207; Hess 2008,
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
p. 2). By 1968, the population was
estimated to be 85 to 90 animals, and by
1995, there were over 500 individuals
on Ulupalakua Ranch alone (Erdman
1996, pers. comm. cited in Waring 1996,
in litt., p. 2). As of 2001, there was
concern that their numbers on Maui
could expand to between 15,000 to
20,000 or more individuals within a few
years (Anderson 2001, in litt.;
Nishibayashi 2001, in litt.). According
to Medeiros (2010a, pers. comm.) axis
deer can be found in all but the
uppermost ecosystems (subalpine and
alpine) and montane bogs on Maui.
Medeiros (2010a, pers. comm.) also
observed that axis deer are increasing at
such high rates on Maui that native
forests are changing in unprecedented
ways. According to Medeiros (2010a,
pers. comm.), native plants will only
survive in habitat that is fenced or
otherwise protected from the grazing
and trampling effects of axis deer.
Kessler (2010, pers. comm.) and Hess
(2010, pers. comm.) report axis deer up
to 9,000 ft (2,743 m) in elevation on
Maui, and Kessler suggests that no
ecosystem is safe from the negative
impacts of these animals. Montane bogs
are also susceptible to impacts from axis
deer. As the native vegetation dies off
from the combined effects of grazing
and trampling by axis deer, the soil
dries out, and invasive nonnative plants
gain a foothold. Eventually, the bog
habitat and its associated native plants
and animals are replaced by a grassland,
shrubland, or forest habitat dominated
by nonnative plants.
Axis deer are primarily grazers, but
also browse numerous palatable plant
species including those grown as
commercial crops (Waring 1996, p. 3;
Simpson 2001, in litt.). They prefer the
lower, more openly vegetated areas for
browsing and grazing; however, during
episodes of drought (e.g., from 1998–
2001 on Maui (Medeiros 2010a, pers.
comm.)), axis deer move into urban and
forested areas in search of food (Waring
1996, in litt., p. 5; Nishibayashi 2001, in
litt.). Like goats, axis deer can be highly
destructive to native vegetation and
contribute to erosion by eating young
trees and young shoots of plants before
they can become established, creating
trails that can damage native vegetative
cover, promoting erosion by
destabilizing substrate and creating
gullies that convey water, and
dislodging stones from ledges that can
cause rockfalls and landslides and
damage vegetation below (Cuddihy and
Stone 1990, pp. 63–64). Browsing and
trampling by axis deer also removes
vegetation surrounding the host trees of
the two Lanai tree snails so that
PO 00000
Frm 00030
Fmt 4701
Sfmt 4700
dispersal of snails between host
substrates is either prevented or greatly
reduced (Duvall 2012, in litt.). Nine of
the described Maui Nui ecosystems
(coastal, lowland dry, lowland mesic,
lowland wet, montane dry, montane
mesic, montane wet, dry cliff, and wet
cliff) and their associated species are
adversely impacted by the destruction
or degradation of habitat due to axis
deer (see Table 4, above).
The mouflon sheep, native to Asia
Minor, was introduced to the islands of
Lanai and Hawaii in the 1950s as a
managed game species, and has become
widely established on these islands
(Tomich 1986, pp. 163–168; Cuddihy
and Stone 1990, p. 66; Hess 2008, p. 1).
Mouflon have high reproduction rates;
for example, the original population of
11 individuals on the island of Hawaii
has increased to more than 2,500 in 36
years, even though hunted as a game
animal (Hess 2008, p. 3). Mouflon only
form large groups when breeding, thus
limiting control techniques and hunting
efficiency (Hess 2008, p. 3). Mouflon
sheep are both grazers and browsers,
and have decimated vast areas of native
forest and shrubland through browsing
and bark stripping (Stone 1985, p. 271;
Cuddihy and Stone 1990, pp. 63, 66;
Hess 2008, p. 3). In range studies done
on the effects of mouflon grazing and
browsing on the island of Hawaii, plant
species found to be most affected were
Argyroxiphium sandwicense ssp.
sandwicense (ahinahina), an endangered
species; Acacia koa; Geranium spp.
(nohoanu or hinahina); Sophora
chrysophylla; Vaccinium spp. (ohelo);
and native grasses (Giffin 1981, pp. 22–
23; Scowcroft and Conrad 1992, pp.
628–662; Hess 2008, p. 3). Mouflon also
create trails and pathways through thick
vegetation, leading to increased runoff
and erosion through soil compaction. In
some areas, the interaction of browsing
and soil compaction leads to a change
from native rainforest to grassy
scrublands (Hess 2008, p. 3). Duvall
(2012, in litt.) reports that mouflon
sheep browsing and trampling removes
vegetation surrounding host trees of the
two Lanai tree snails, thus reducing or
preventing snail dispersal between host
trees. Seven of the described ecosystems
(coastal, lowland dry, lowland mesic,
lowland wet, montane wet, dry cliff,
and wet cliff) on Lanai and their
associated species are adversely
impacted by the destruction or
degradation of habitat due to mouflon
sheep (see Table 4, above).
Cattle, the wild ancestors of which
were native to Europe, northern Africa,
and southwestern Asia, were introduced
to the Hawaiian Islands in 1793. Large
feral herds (as many as 12,000 on the
E:\FR\FM\28MYR2.SGM
28MYR2
mstockstill on DSK4VPTVN1PROD with RULES2
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
island of Hawaii) developed as a result
of restrictions on killing cattle decreed
by King Kamehameha I (Cuddihy and
Stone 1990, p. 40). While small cattle
ranches were developed on Kauai,
Oahu, Molokai, west Maui, and
Kahoolawe, very large ranches of tens of
thousands of acres were created on east
Maui and Hawaii Island (Stone 1985,
pp. 256, 260; Broadbent 2010, in litt.).
Logging of native Acacia koa was
combined with establishment of cattle
ranches, quickly converting native forest
to grassland (Tomich 1986, p. 140;
Cuddihy and Stone 1990, p. 47). Feral
cattle can presently be found on the
islands of Maui and Hawaii, where
ranching is still a major commercial
activity. According to Kessler (2011,
pers. comm.), there are approximately
300 individuals roaming east Maui up to
the alpine ecosystem (i.e., 1,000 to 9,900
ft (305 to 3,000 m) elevation) with
occasional observations on west Maui.
Cattle eat native vegetation, trample
roots and seedlings, cause erosion,
create disturbed areas into which alien
plants invade, and spread seeds of alien
plants in their feces and on their bodies.
The forest in areas grazed by cattle
degrades to grassland pasture, and plant
cover is reduced for many years
following removal of cattle from an area.
In addition, several alien grasses and
legumes purposely introduced for cattle
forage have become noxious weeds
(Tomich 1986, pp. 140–150; Cuddihy
and Stone 1990, p. 29). Five of the
described ecosystems (lowland dry,
lowland mesic, lowland wet, montane
mesic, and montane wet) on Maui and
their associated species are adversely
impacted by the destruction or
degradation of habitat due to feral cattle
(see Table 4, above).
In summary, 37 of the 40 species
dependent upon the 10 ecosystems
identified in this final rule (coastal,
lowland dry, lowland mesic, lowland
wet, montane dry, montane mesic,
montane wet, subalpine, dry cliff, and
wet cliff) are exposed to both direct and
indirect negative impacts of feral
ungulates (pigs, goats, axis deer,
mouflon, and cattle). These negative
impacts result in the destruction and
degradation of habitat for these 37
native species on Molokai, Lanai, and
Maui. The effects of these nonnative
animals include the destruction of
vegetative cover; trampling of plants
and seedlings; direct consumption of
native vegetation; soil disturbance;
dispersal of alien plant seeds on hooves
and coats, and through the spread of
seeds in feces; and creation of open,
disturbed areas conducive to further
invasion by nonnative pest plant
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
species. All of these impacts lead to the
subsequent conversion of a plant
community dominated by native species
to one dominated by nonnative species
(see ‘‘Habitat Destruction and
Modification by Nonnative Plants,’’
below). In addition, because these
mammals inhabit terrain that is often
steep and remote (Cuddihy and Stone
1990, p. 59), foraging and trampling
contributes to severe erosion of
watersheds and degradation of streams.
As early as 1900, there was increasing
concern expressed about the integrity of
island watersheds, due to effects of
ungulates and other factors, leading to
the establishment of a professional
forestry program emphasizing soil and
water conservation (Nelson 1989, p. 3).
Habitat Destruction and Modification by
Nonnative Plants
Native vegetation on all of the main
Hawaiian Islands has undergone
extreme alteration because of past and
present land management practices,
including ranching, the deliberate
introduction of nonnative plants and
animals, and agricultural development
(Cuddihy and Stone 1990, pp. 27, 58).
The original native flora of Hawaii
(species that were present before
humans arrived) consisted of about
1,000 taxa, 89 percent of which were
endemic (species that occur only in the
Hawaiian Islands). Over 800 plant taxa
have been introduced from elsewhere,
and nearly 100 of these have become
pests (e.g., injurious plants) in Hawaii
(Smith 1985, p. 180; Cuddihy and Stone
1990, p. 73; Gagne and Cuddihy 1999,
p. 45). Of these 100 nonnative pest plant
species, close to 70 species have altered
the habitat of 36 of the 40 species in this
final rule (only Cyrtandra ferripilosa,
Schiedea jacobii, Partulina
semicarinata, and P. variabilis are not
directly impacted by nonnative plants;
see Table 4). Some of the nonnative
plants were brought to Hawaii by
various groups of people, including the
Polynesians, for food or cultural
reasons. Plantation owners (and the
territorial government of Hawaii),
alarmed at the reduction of water
resources for their crops caused by the
destruction of native forest cover by
grazing feral and domestic animals,
introduced nonnative trees for
reforestation. Ranchers intentionally
introduced pasture grasses and other
nonnative plants for agriculture, and
sometimes inadvertently introduced
weeds as well. Other plants were
brought to Hawaii for their potential
horticultural value (Scott et al. 1986, pp.
361–363; Cuddihy and Stone 1990, p.
73).
PO 00000
Frm 00031
Fmt 4701
Sfmt 4700
32043
Nonnative plants adversely impact
native habitat in Hawaii, including the
10 Maui Nui ecosystems that support
the 40 species identified in this final
rule, and directly adversely impact 36 of
these species, by: (1) Modifying the
availability of light; (2) altering soilwater regimes; (3) modifying nutrient
cycling; (4) altering the fire regime
affecting native plant communities (e.g.,
successive fires that burn farther and
farther into native habitat, destroying
native plants and removing habitat for
native species by altering microclimatic
conditions to favor alien species); and
(5) ultimately, converting nativedominated plant communities to
nonnative plant communities (Smith
1985, pp. 180–181; Cuddihy and Stone
1990, p. 74; D’Antonio and Vitousek
1992, p. 73; Vitousek et al. 1997, p. 6).
Nonnative plants (and animals) have
contributed to the extinction of native
species in the lowlands of Hawaii and
have been a primary cause of extinction
in upland habitats (Vitousek et al. 1987,
in Cuddihy and Stone 1990, p. 74). The
most-often cited effects of nonnative
plants on native plant species are
displacement through competition.
Competition may be for water or
nutrients, or it may involve allelopathy
(chemical inhibition of other plants)
(Smith 1985, in Cuddihy and Stone
1990, p. 74). Nonnative plants may also
displace native species by preventing
their reproduction, usually by shading
and taking up available sites for
seedling establishment (Vitousek et al.
1987 in Cuddihy and Stone 1990, p. 74).
Alteration of fire regimes clearly
represents an ecosystem-level change
caused by the invasion of nonnative
grasses (D’Antonio and Viousek 1992, p.
73). The grass life form supports
standing dead material that burns
readily, and grass tissues have large
surface-to-volume ratios and can dry out
quickly (D’Antonio and Viousek 1992,
p. 73). The flammability of biological
materials is determined primarily by
their surface-to-volume ratio and
moisture content, and secondarily by
mineral content and tissue chemistry
(D’Antonio and Viousek 1992, p. 73).
The finest size classes of material
(mainly grasses) ignite and spread fires
under a broader range of conditions
than do woody fuels or even surface
litter (D’Antonio and Viousek 1992, p.
73). The grass life form allows rapid
recovery following fire; there is little
above-ground structural tissue, so
almost all new tissue fixes carbon and
contributes to growth (D’Antonio and
Viousek 1992, p. 73). Grass canopies
also support a microclimate in which
surface temperatures are hotter, vapor
E:\FR\FM\28MYR2.SGM
28MYR2
32044
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
mstockstill on DSK4VPTVN1PROD with RULES2
pressure deficits are larger, and the
drying of tissues occurs more rapidly
than in forest or woodlands (D’Antonio
and Viousek 1992, p. 73). Thus,
conditions that favor fires are much
more frequent in grasslands (D’Antonio
and Viousek 1992, p. 73). In summary,
nonnative plants directly and indirectly
affect 36 of the 40 species in this final
rule by modifying or destroying their
terrestrial habitat. Please refer to the
proposed rule (77 FR 34464; June 11,
2012) for a list of nonnative plants and
a discussion of their specific negative
effects on the 36 affected Maui Nui
species.
Habitat Destruction and Modification by
Fire
Fire is an increasing, humanexacerbated threat to native species and
native ecosystems in Hawaii. The
historical fire regime in Hawaii was
characterized by infrequent, low
severity fires, as few natural ignition
sources existed (Cuddihy and Stone
1990, p. 91; Smith and Tunison 1992,
pp. 395–397). It is believed that prior to
human colonization, fuel was sparse
and inflammable in wet plant
communities and seasonally flammable
in mesic and dry plant communities.
The primary ignition sources were
volcanism and lightning (Baker et al.
2009, p. 43). Natural fuel beds were
often discontinuous, and rainfall in
many areas on most islands was, and is,
moderate to high. Fires inadvertently or
intentionally ignited by the original
Polynesians in Hawaii probably
contributed to the initial decline of
native vegetation in the drier plains and
foothills. These early settlers practiced
slash-and-burn agriculture that created
open lowland areas suitable for the later
colonization of nonnative, fire-adapted
grasses (Kirch 1982, pp. 5–6, 8; Cuddihy
and Stone 1990, pp. 30–31). Beginning
in the late 18th century, Europeans and
Americans introduced plants and
animals that further degraded native
Hawaiian ecosystems. Pasturage and
ranching, in particular, created high
fire-prone areas of nonnative grasses
and shrubs (D’Antonio and Vitousek
1992, p. 67). Although fires were
historically infrequent in mountainous
regions, extensive fires have recently
occurred in lowland dry and lowland
mesic areas, leading to grass-fire cycles
that convert forest to grasslands
(D’Antonio and Vitousek 1992, p. 77).
Because several Hawaiian plants
show some tolerance of fire, Vogl
proposed that naturally occurring fires
may have been important in the
development of the original Hawaiian
flora (Vogl 1969 in Cuddihy and Stone
1990, p. 91; Smith and Tunison 1992, p.
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
394). However, Mueller-Dombois (1981
in Cuddihy and Stone 1990, p. 91)
points out that most natural vegetation
types of Hawaii would not carry fire
before the introduction of alien grasses,
and Smith and Tunison (1992, p. 396)
state that native plant fuels typically
have low flammability. Because of the
greater frequency, intensity, and
duration of fires that have resulted from
the introduction of nonnative plants
(especially grasses), fires are now
destructive to native Hawaiian
ecosystems (Brown and Smith 2000, p.
172), and a single grass-fueled fire can
kill most native trees and shrubs in the
burned area (D’Antonio and Vitousek
1992, p. 74).
Fire represents a threat to 13 native
plant species found in the coastal,
lowland dry, lowland mesic, montane
dry, montane mesic, and dry cliff
ecosystems addressed in this final rule:
Bidens campylotheca ssp. pentamera,
Canavalia pubescens, Cyanea
magnicalyx, C. mauiensis, C. obtusa,
Festuca molokaiensis, Phyllostegia
bracteata, P. haliakalae, Pittosporum
halophilum, Pleomele fernaldii,
Santalum haleakalae var. lanaiense,
Schiedea salicaria, and Stenogyne
kauaulaensis (see Table 4). Fire can
destroy dormant seeds of these species
as well as plants themselves, even in
steep or inaccessible areas. Successive
fires that burn farther and farther into
native habitat destroy native plants and
remove habitat for native species by
altering microclimate conditions
favorable to alien plants. Alien plant
species most likely to be spread as a
consequence of fire are those that
produce a high fuel load, are adapted to
survive and regenerate after fire, and
establish rapidly in newly burned areas.
Drought-tolerant grasses and ferns,
particularly those that produce mats of
dry material or retain a mass of standing
dead leaves (e.g., Pennisetum setaceum,
Blechnum appendiculatum) invade
native forests and shrublands and
provide fuels that allow fire to burn
areas that would not otherwise easily
burn (Fujioka and Fujii 1980, in
Cuddihy and Stone 1990, p. 93;
D’Antonio and Vitousek 1992, pp. 70,
73–74; Tunison et al. 2002, p. 122;
Weller et al. 2011, pp. 676–677; Weller
2012, in litt.). Other nonnative plants
such as Clidemia hirta and pines (Pinus
spp.) rapidly outcompete native plants
and dominate areas opened by fire
(Weller 2012, in litt.). Native woody
plants may recover from fire to some
degree, but fire shifts the competitive
balance toward alien species (National
Park Service 1989, in Cuddihy and
Stone 1990, p. 93). On a post-burn
PO 00000
Frm 00032
Fmt 4701
Sfmt 4700
survey at Puuwaawaa on the island of
Hawaii, an area of native Diospyros
forest with undergrowth of the
nonnative grass Pennisetum setaceum,
Takeuchi noted that ‘‘no regeneration of
native canopy is occurring within the
Puuwaawaa burn area’’ (Takeuchi 1991,
p. 2). Takeuchi (1991, pp. 4, 6) also
stated that ‘‘burn events served to
accelerate a decline process already in
place, compressing into days a sequence
which would ordinarily take decades,’’
and concluded that in addition to
increasing the number of fires, the
nonnative Pennisetum acted to suppress
the establishment of native plants after
a fire.
For decades, fires have impacted rare
or endangered species and their habitat
(Gima 1998, in litt.; Pacific Disaster
Center 2011; Hamilton 2009, in litt.;
Honolulu Advertiser, 2010). The islands
of Molokai, Lanai, Maui, and Kahoolawe
have experienced 1,291 brush fires
between the years 1972 and 1999 that
burned a total of 64,248 ac (26,000 ha)
(Pacific Disaster Center 2011; County of
Maui 2009, Chapter 3, p. 3). Between
2000 and 2003, the annual number of
wildfires on Molokai, Lanai, and Maui
jumped from 118 to 271, many of which
each consumed more than 5,000 ac
(2,023 ha) (Pacific Disaster Center 2011).
During the summer of 1998, a raging
fire that began in Kaunakakai consumed
over 15,000 ac (6,070 ha) on Molokai,
including a portion of the Molokai
Forest Reserve, consuming roughly 10
percent of the entire island (Gima 1998,
in litt.). Molokai experienced three
10,000 ac (4,047 ha) wildfires between
the years 2003 and 2004 (Pacific
Disaster Center 2011). In late August
through early September 2009, a
massive wildfire burned for days and
consumed approximately 8,000 ac
(3,237 ha), including 600 ac (243 ha) of
the remote Makakupaia section of the
Molokai Forest Reserve, a small portion
of TNC’s Kamakou Preserve, and
encroached upon Onini Gulch,
Kalamaula and Kawela (Hamilton 2009,
in litt.). Three species reported from
Molokai’s coastal and lowland mesic
ecosystems (Festuca molokaiensis,
Phyllostegia haliakalae, and
Pittosporum halophilum) are at risk of
negative impacts by fire because
individuals of these species or their
habitat are located in or near areas that
were burned in previous fires.
The island of Lanai has experienced
several wildfires in the last decade. In
2006, a wildfire burned 600 ac (243 ha)
between Manele Road and the Palawai
basin (2.5 mi (4 km) south of Lanai City)
(The Maui News 2006, in litt.). In 2007,
a brush fire occurred in the Mahana
area, burning an estimated 30 ac (12 ha),
E:\FR\FM\28MYR2.SGM
28MYR2
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
mstockstill on DSK4VPTVN1PROD with RULES2
and in 2008, another 1,000 ac (405 ha)
were burned by wildfire in the Palawai
basin (The Maui News 2007, in litt.;
KITV Honolulu 2008, in litt.). All
known individuals of Pleomele fernaldii
lie just southeast of the area burned
during the Mahana fire and east of the
Palawai basin fires. Many of these
individuals could be decimated by one
large fire.
Between the years 2007 and 2010,
wildfires burned more than 8,650 ac
(3,501 ha) on west Maui (Shimogawa
2010, in litt.; Honolulu Advertiser 2010,
in litt.). In 2007, a fire that started along
Honoapiilani Highway on the south
coast of west Maui burned a total of
1,350 ac (546 ha), encroached into the
West Maui Natural Area Reserve
(Panaewa section), and placed at risk
Phyllostegia bracteata and Schiedea
salicaria (HDLNR 1989, pp. 53–63;
KITV 2007, in litt.). In May 2010,
another fire occurred farther south along
the same highway, moved up the ridges
of Olowalu, and eventually
encompassed 1,100 ac (445 ha). Later
the same year, a fire that started at
Maalaea initially destroyed 200 ac (81
ha), and because of strong winds and
drought conditions, continued to burn
for 8 days, moved up Kealaloloa and
nearby ridges, and encompassed a total
of 6,200 ac (2,509 ha). This fire is on
record as the largest brush fire that has
occurred on Maui. Nine species
reported from Maui’s lowland dry,
lowland mesic, montane dry, montane
mesic, and dry cliff ecosystems (Bidens
campylotheca ssp. pentamera,
Canavalia pubescens, Cyanea
magnicalyx, C. mauiensis, C. obtusa,
Phyllostegia bracteata, Santalum
haleakalae var. lanaiense, Schiedea
salicaria, and Stenogyne kauaulaensis)
are adversely impacted by fire because
individuals of these species or their
habitat are located in or near areas that
were burned in previous fires or in areas
at risk for fire due to the presence of
highly flammable nonnative grasses and
pine trees.
Habitat Destruction and Modification by
Hurricanes
Hurricanes adversely impact native
Hawaiian terrestrial habitat, including
each of the 10 Maui Nui ecosystems
addressed here and their associated
species identified in this final rule.
They do this by destroying native
vegetation, opening the canopy and thus
modifying the availability of light, and
creating disturbed areas conducive to
invasion by nonnative pest species (see
‘‘Specific Nonnative Plant Species
Impacts,’’ in our June 11, 2012,
proposed rule (77 FR 34464)) (Asner
and Goldstein 1997, p. 148; Harrington
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
et al. 1997, pp. 539–540). Canopy gaps
allow for the establishment of nonnative
plant species, which may be present as
plants or as seeds incapable of growing
under shaded conditions. Because many
Hawaiian plant and animal species,
including the 40 species in this final
rule, persist in low numbers and in
restricted ranges, natural disasters, such
as hurricanes, can be particularly
devastating (Mitchell et al. 2005, pp. 3–
4).
Hurricanes affecting Hawaii were only
rarely reported from ships in the area
from the 1800s until 1949. Between
1950 and 1997, 22 hurricanes passed
near or over the Hawaiian Islands, 5 of
which caused serious damage (Businger
1998, pp. 1–2). In November 1982,
Hurricane Iwa struck the Hawaiian
Islands, with wind gusts exceeding 100
miles per hour (mph) (161 kilometers
per hour (kph)), causing extensive
damage, especially on the islands of
Niihau, Kauai, and Oahu (Businger
1998, pp. 2, 6). Many forest trees were
destroyed (Perlman 1992, pp. 1–9),
which opened the canopy and
facilitated the invasion of nonnative
plants (Kitayama and Mueller-Dombois
1995, p. 671). Historically (prior to the
introduction of nonnative, invasive
plants to the Hawaiian Islands), it is
likely that areas affected by hurricanes
would eventually have been
repopulated by native plants. However,
any area affected by hurricanes will
likely be invaded by nonnative plants as
nonnative plants are present in all
ecosystems throughout the Hawaiian
Islands and competition with nonnative
plants is exacerbated by hurricanes.
Therefore, hurricanes represent a threat
to each of the 10 ecosystems and to all
of the 37 plant species addressed in this
final rule. In addition, biologists have
reported that hurricanes are a threat to
the three tree snails in this final rule
(Newcombia cumingi, Partulina
semicarinata, and P. variabilis). High
winds and intense rains from hurricanes
can dislodge snails from the leaves and
branches of their host plants and
deposit them on the forest floor where
they may be crushed by falling
vegetation or exposed to predation by
nonnative rats and snails (see Disease or
Predation, below) (Hadfield 2011, pers.
comm.). Although there is historical
evidence of only one hurricane that
approached from the east and impacted
the islands of Maui and Hawaii
(Businger 1998, p. 3), damage by future
hurricanes could further decrease the
remaining native plant-dominated
habitat areas that support the Maui Nui
ecosystems (Bellingham et al. 2005, p.
681).
PO 00000
Frm 00033
Fmt 4701
Sfmt 4700
32045
Habitat Destruction and Modification
Due to Landslides, Rockfalls, Treefalls,
Flooding, and Drought
Landslides, rockfalls, treefalls, and
flooding destabilize substrates, damage
and destroy individual plants, and alter
hydrological patterns, which result in
changes to native plant and animal
communities. In the open sea near
Hawaii, rainfall averages 25 to 30 in
(635 to 762 mm) per year, yet the
islands may receive up to 15 times this
amount in some places, caused by
orographic features (physical geography
of mountains) (Wagner et al. 1999b;
adapted from Price (1983) and Carlquist
(1980)), pp. 38 and 39). During storms,
rain may fall at 3 in (76 mm) per hour
or more, and sometimes may reach
nearly 40 in (1,000 mm) in 24 hours,
causing destructive flash-flooding in
streams and narrow gulches (Wagner et
al. 1999b; adapted from Price (1983) and
Carlquist (1980)), pp. 38–39). Due to the
steep topography of much of the areas
on Molokai, Lanai, and Maui where
these 40 species remain, erosion and
disturbance caused by introduced
ungulates exacerbate the potential for
landslides, rockfalls, or flooding, which
in turn negatively impact native plants.
For those species that occur in small
numbers in highly restricted geographic
areas, such events have the potential to
eradicate all individuals of a
population, or even all populations of a
species, resulting in extinction.
Landslides, rockfalls, and treefalls
likely adversely impact 14 of the species
addressed in this proposed rule,
including Cyanea asplenifolia, C.
grimesiana ssp. grimesiana, C. horrida,
C. magnicalyx, C. maritae, C. mauiensis,
C. munroi, C. profuga, C. solanacea,
Cyrtandra filipes, Schiedea jacobii, S.
laui, Stenogyne kauaulaensis, and
Wikstroemia villosa, as documented in
observations by field botanists and
surveyors (HBMP 2008). Monitoring
data from PEPP and the HBMP suggest
that these 14 species face threats from
landslides or falling rocks, as they are
found in landscape settings susceptible
to these events (e.g., steep slopes and
cliffs). Field survey data presented by
Oppenheimer documented the direct
damage from landslides to individuals
of Cyanea solanacea located along a
stream bank and steep slope beneath a
cliff (PEPP 2007, p. 41). Since C.
solanacea is known from a total of 26
individuals in steep-walled stream
valleys, one or several landslides could
lead to near extirpation of the species by
direct destruction of the individual
plants, mechanical damage to
individual plants that could lead to
their death, destabilization of the cliff
E:\FR\FM\28MYR2.SGM
28MYR2
mstockstill on DSK4VPTVN1PROD with RULES2
32046
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
habitat leading to additional landslides,
and alteration of hydrological patterns
(e.g., affecting the availability of soil
moisture). In addition, Perlman (2009b,
in litt.) noted the threat of rolling or
falling rocks to one population of
Cyanea magnicalyx.
Monitoring data presented by HBMP
and the PEPP program suggest that
flooding is a likely threat to five plant
species included in this final rule,
Bidens campylotheca ssp. waihoiensis,
Cyanea duvalliorum, C. horrida, C.
profuga, and Schiedea laui. Field survey
data presented by PEPP (2008, pp. 107–
108) and by Bakutis (2010, in litt.)
suggest that catastrophic flooding or
landslides are possible at one
population of Schiedea laui located in
a cave along a narrow stream corridor at
the base of a waterfall in the Kamakou
Preserve.
Six plant species, Canavalia
pubescens, Cyanea horrida, Festuca
molokaiensis, Schiedea jacobii, S.
salicaria, and Stenogyne kauaulaensis,
and the three tree snails in this rule may
be affected by habitat loss or
degradation associated with droughts,
which are not uncommon in the
Hawaiian Islands. Between 1860 and
2006, there have been 30 periods of
Statewide drought that have also
affected the islands of Molokai, Lanai,
and Maui (Giambelluca et al. 1991, pp.
3–4; Hawaii Commission on Water
Resource Management 2009a and
2009b). In 2006, Maui County was
designated a primary disaster area
because of a severe drought from April
to September 2006 (Pacific Disaster
Center, 2010). More recently, the U.S.
Department of Agriculture has
designated Maui County as a primary
natural disaster area due to losses
caused by an ongoing drought,
beginning January 1, 2012 (https://
www.fsa.usda.gov/FSA, accessed
January 17, 2013). It is suggested that
Festuca molokaiensis, a purported
annual plant, has not been observed at
its known location in recent years due
to drought conditions on Molokai
(Oppenheimer 2011, pers. comm.).
Drought also leads to an increase in the
number of forest and brush fires
(Giambelluca et al. 1991, p. v), causing
a reduction of native plant cover and
habitat (D’Antonio and Vitousek 1992,
pp. 77–79) and a reduction in
availability of host plants for the three
tree snails. Recent episodes of drought
have also driven axis deer farther into
urban and forested areas for food,
increasing their negative impacts to
native vegetation from herbivory and
trampling (see Disease or Predation,
below) (Waring 1996, in litt., p. 5;
Nishibayashi 2001, in litt.).
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
Habitat Destruction and Modification by
Climate Change
Our analyses under the Endangered
Species Act include consideration of
ongoing and projected changes in
climate. The terms ‘‘climate’’ and
‘‘climate change’’ are defined by the
Intergovernmental Panel on Climate
Change (IPCC). ‘‘Climate’’ refers to the
mean and variability of different types
of weather conditions over time, with 30
years being a typical period for such
measurements, although shorter or
longer periods also may be used (IPCC
2007, p. 78). The term ‘‘climate change’’
thus refers to a change in the mean or
variability of one or more measures of
climate (e.g., temperature or
precipitation) that persists for an
extended period, typically decades or
longer, whether the change is due to
natural variability, human activity, or
both (IPCC 2007, p. 78). Various types
of changes in climate can have direct or
indirect effects on species. These effects
may be positive, neutral, or negative and
they may change over time, depending
on the species and other relevant
considerations, such as the effects of
interactions of climate with other
variables (e.g., habitat fragmentation)
(IPCC 2007, pp. 8–14, 18–19). In our
analyses, we use our expert judgment to
weigh relevant information, including
uncertainty, in our consideration of
various aspects of climate change.
Climate change will be a particular
challenge for the conservation of
biodiversity because the introduction
and interaction of additional stressors
may push species beyond their ability to
survive (Lovejoy 2005, pp. 325–326).
The synergistic implications of climate
change and habitat fragmentation are
the most threatening facet of climate
change for biodiversity (Hannah et al.
2005, p. 4). The magnitude and intensity
of the impacts of global climate change
and increasing temperatures on native
Hawaiian ecosystems are unknown.
Currently, there are no climate change
studies that specifically address impacts
to the 10 Maui Nui ecosystems
described in this final rule, or the 40
species at issue in this rule. Based on
the best available information, climate
change impacts could lead to the
decline or loss of native species that
comprise the communities in which the
40 species occur (Pounds et al. 1999, pp.
611–612; Still et al. 1999, p. 610;
Benning et al. 2002, pp. 14,246–14,248;
Allen et al. 2010, pp. 660–662; Sturrock
et al. 2011, p. 144; Towsend et al. 2011,
p. 15; Warren 2011, pp. 221–226). In
addition, weather regime changes (e.g.,
droughts, floods) will likely result from
increased annual average temperatures
PO 00000
Frm 00034
Fmt 4701
Sfmt 4700
˜
related to more frequent El Nino
episodes in Hawaii (Giambelluca et al.
1991, p. v). Future changes in
precipitation and the forecast of those
changes are highly uncertain because
they depend, in part, on how the El
˜
˜
Nino-La Nina weather cycle (a
disruption of the ocean atmospheric
system in the tropical Pacific having
important global consequences for
weather and climate) might change
(State of Hawaii 1998, pp. 2–10). The 40
species in this final rule may be
especially vulnerable to extinction due
to anticipated environmental changes
that may result from global climate
change, due to their small population
size and highly restricted ranges.
Environmental changes that may affect
these species are expected to include
habitat loss or alteration and changes in
disturbance regimes (e.g., storms and
hurricanes). The probability of a species
going extinct as a result of these factors
increases when its range is restricted,
habitat decreases, and population
numbers decline (IPCC 2007, p. 8). The
40 species have limited environmental
tolerances, limited ranges, restricted
habitat requirements, small population
sizes, and low numbers of individuals.
Therefore, we would expect these
species to be particularly vulnerable to
projected environmental impacts that
may result from changes in climate, and
subsequent impacts to their habitats
(e.g., Pounds et al. 1999, pp. 611–612;
Still et al. 1999, p. 610; Benning et al.
2002, pp. 14,246–14,248). We believe
changes in environmental conditions
that may result from climate change
may impact these 40 species and their
habitat, and we do not anticipate a
reduction in this potential threat in the
near future.
Climate Change and Ambient
Temperature
The average ambient air temperature
(at sea level) is projected to increase by
about 4.1 degrees Fahrenheit (°F) (2.3
°Centigrade (C)) with a range of 2.7 °F
to 6.7 °F (1.5 °C to 3.7 °C) by 2100
worldwide (IPCC 2007). These changes
would increase the monthly average
temperature of the Hawaiian Islands
from the current value of 74 °F (23.3 °C)
to between 77 °F to 86 °F (25 °C to 30
°C). Historically, temperature has been
rising over the last 100 years with the
greatest increase after 1975 (Alexander
et al. 2006, pp. 1–22; Giambelluca et al.
2008, p. 1). The rate of increase at low
elevation (0.16 °F; 0.09 °C) per decade
is below the observed global
temperature rise of 0.32 °F (0.18 °C) per
decade (IPCC 2007). However, at high
elevations, the rate of increase (0.48 °F
E:\FR\FM\28MYR2.SGM
28MYR2
mstockstill on DSK4VPTVN1PROD with RULES2
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
(0.27 °C) per decade) greatly exceeds the
global rate (IPCC 2007).
Overall, the daily temperature range
in Hawaii is decreasing, resulting in a
warmer environment, especially at
higher elevations and at night. In the
main Hawaiian Islands, predicted
changes associated with increases in
temperature include a shift in vegetation
zones upslope, shift in animal species’
ranges, changes in mean precipitation
with unpredictable effects on local
environments, increased occurrence of
drought cycles, and increases in the
intensity and number of hurricanes
(Loope and Giambelluca 1998, pp. 514–
515; U.S. Global Change Research
Program (US–GCRP) 2009). In addition,
weather regime changes (e.g., droughts,
floods) will likely result from increased
annual average temperatures related to
˜
more frequent El Nino episodes in
Hawaii (Giambelluca et al. 1991, p. v).
However, despite considerable progress
made by expert scientists toward
understanding the impacts of climate
change on many of the processes that
˜
contribute to El Nino variability, it is
not possible to say whether or not El
˜
Nino activity will be affected by climate
change (Collins et al. 2010, p. 391).
The warming atmosphere is creating a
plethora of anticipated and
unanticipated environmental changes
such as melting ice caps, decline in
annual snow mass, sea-level rise, ocean
acidification, increase in storm
frequency and intensity (e.g.,
hurricanes, cyclones, and tornadoes),
and altered precipitation patterns that
contribute to regional increases in
floods, heat waves, drought, and
wildfires that also displace species and
alter or destroy natural ecosystems
(Pounds et al. 1999, pp. 611–612; IPCC
2007; Marshall et al. 2008, p. 273; U.S.
Climate Change Science Program 2008;
Flannigan et al. 2009, p. 483; US–GCRP
2009; Allen et al. 2010, pp. 660–662;
Warren 2011, pp. 221–226). These
environmental changes are predicted to
alter species migration patterns,
lifecycles, and ecosystem processes
such as nutrient cycles, water
availability, and decomposition (IPCC
2007; Pounds et al. 1999, pp. 611–612;
Sturrock et al. 2011, p. 144; Townsend
et al. 2011, p. 15; Warren 2011, pp. 221–
226). The species extinction rate is
predicted to increase congruent with
ambient temperature increase (US–
GCRP 2009).
Climate Change and Precipitation
As global surface temperature rises,
the evaporation of water vapor
increases, resulting in higher
concentrations of water vapor in the
atmosphere, further resulting in altered
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
global precipitation patterns (U.S.
National Science and Technology
Council (US–NSTC) 2008; US–GCRP
2009). While annual global precipitation
has increased over the last 100 years,
the combined effect of increases in
evaporation and evapotranspiration is
causing land surface drying in some
regions leading to a greater incidence
and severity of drought (US–NSTC
2008; US–GCRP 2009). Over the the past
100 years, the Hawaiian Islands have
experienced an overall decline in
annual precipitation of just over 9
percent (US–NSTC 2008). Other data on
precipitation in Hawaii, which includes
sea level precipitation and the added
orographic effects, show a steady and
significant decline of about 15 percent
over the last 15 to 20 years (Chu and
Chen 2005, p. 4,881–4,900; Diaz et al.
2005, pp. 1–3). Exact future changes in
precipitation in Hawaii and the forecast
of those changes are uncertain because
they depend, in part, on how the El
˜
˜
Nino-La Nina weather cycle might
change (State of Hawaii 1998, pp. 2–10).
In the oceans around Hawaii, the
average annual rainfall at sea level is
about 25 in (63.5 cm). The orographic
features of the islands increase this
annual average to about 70 in (177.8 cm)
but can exceed 240 in (609.6 cm) in the
wettest mountain areas. Rainfall is
distributed unevenly across each high
island, and rainfall gradients are
extreme (approximately 25 in (63.5 cm)
per mile), creating both very dry and
very wet areas. Global climate modeling
predicts that, by 2100, net precipitation
at sea level near the Hawaiian Islands
will decrease in winter by about 4 to 6
percent, with no significant change
during summer (IPCC 2007).
Downscaling of global climate models
indicates that wet-season (winter)
precipitation will decrease by 5 percent
to 10 percent, while dry-season
(summer) precipitation will increase by
about 5 percent (Timm and Diaz 2009,
pp. 4,261–4,280). These data are also
supported by a steady decline in stream
flow beginning in the early 1940s (Oki
2004, p. 1). Altered seasonal moisture
regimes can have negative impacts on
plant growth cycles and overall negative
impacts on natural ecosystems (US–
GCRP 2009). Long periods of decline in
annual precipitation result in a
reduction in moisture availability, an
increase in drought frequency and
intensity, and a self-perpetuating cycle
of nonnative plants (such as nonnative
grasses adapted to fire), fire, and erosion
(US–GCRP 2009; Warren 2011, pp. 221–
226) (see ‘‘Habitat Destruction and
Modification by Fire,’’ above). These
impacts may negatively affect the 40
PO 00000
Frm 00035
Fmt 4701
Sfmt 4700
32047
species in this final rule and the 10
ecosystems that support them.
Climate Change, and Tropical Cyclone
Frequency and Intensity
A tropical cyclone is the generic term
for a medium- to large-scale lowpressure system over tropical or
subtropical waters with organized
convection (i.e., thunderstorm activity)
and definite cyclonic surface wind
circulation (counterclockwise direction
in the Northern Hemisphere) (Holland
1993, pp. 1–8). In the Northeast Pacific
Ocean, east of the International Date
Line, once a tropical cyclone reaches an
intensity with winds of at least 74 mi
per hour (33 m per second) it is
considered a hurricane (Neumann 1993,
pp. 1–2). Climate modeling has
projected changes in tropical cyclone
frequency and intensity due to global
warming over the next 100 to 200 years
(Vecchi and Soden 2007, pp. 1,068–
1,069, Figures 2 and 3; Emanuel et al.
2008, p. 360, Figure 8; Yu et al. 2010,
p. 1,371, Figure 14). The frequency of
hurricanes generated by tropical
cyclones is projected to decrease in the
central Pacific (e.g., the main and
Northwestern Hawaiian Islands) while
storm intensity (strength) is projected to
increase by a few percent over this
period (Vecchi and Soden 2007, pp.
1,068–1,069, Figures 2 and 3; Emanuel
et al. 2008, p. 360, Figure 8; Yu et al.
2010, p. 1,371, Figure 14). There are no
climate model predictions for a change
in the duration of Pacific tropical
cyclone storm season (which generally
runs from May through November).
In general, tropical cyclones with the
intensities of hurricanes have been a
rare occurrence in the Hawaiian Islands.
For more information on this topic, see
‘‘Habitat Destruction and Modification
by Hurricanes,’’ above.
Climate Change, and Sea Level Rise and
Coastal Inundation
On a global scale, sea level is rising
as a result of thermal expansion of
warming ocean water; the melting of ice
sheets, glaciers, and ice caps; and the
addition of water from terrestrial
systems (Climate Institute 2011). Sea
level rose at an average rate of 0.1 in (1.8
mm) per year between 1961 and 2003
(IPCC 2007, p. 5), and the predicted
increase by the end of this century,
without accounting for ice sheet flow,
ranges from 0.6 ft to 2.0 ft (0.18 m to 0.6
m) (IPCC 2007, p. 13). When ice sheet
and glacial melt are incorporated into
models, the average estimated increase
in sea level by the year 2100 is
approximately 3 to 4 ft (0.9 to 1.2 m),
with some estimates as high as 6.6 ft
(2.0 m) to 7.8 ft (2.4 m) (Rahmstorf 2007,
E:\FR\FM\28MYR2.SGM
28MYR2
32048
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
mstockstill on DSK4VPTVN1PROD with RULES2
pp. 368–370; Pfeffer et al. 2008, p.
1,340; Fletcher 2009, p. 7; US–GCRP
2009, p. 18). There is no specific
information available on how sea level
rise and coastal inundation will impact
the coastal ecosystems on Maui and
Molokai where two of the species in this
rule, Canavalia pubescens and
Pittosporum halophilum, are currently
found.
Increased interannual variability of
ambient temperature, precipitation,
hurricanes, and sea level rise and
inundation would provide additional
stresses on the 10 ecosystems and each
of the associated 40 species in this final
rule because they are highly vulnerable
to disturbance and related invasion of
nonnative species. The probability of a
species going extinct as a result of such
factors increases when its range is
restricted, habitat decreases, and
population numbers decline (IPCC 2007,
p. 8). The 40 species have limited
environmental tolerances, ranges,
restricted habitat requirements, small
population sizes, and low numbers of
individuals. Therefore, we would expect
these species to be particularly
vulnerable to projected environmental
impacts that may result from changes in
climate and subsequent impacts to their
habitats (e.g., Loope and Giambelluca
1998, pp. 504–505; Pounds et al. 1999,
pp. 611–612; Still et al. 1999, p. 610;
Benning et al. 2002, pp. 14,246–14,248,
Giambelluca and Luke 2007, pp. 13–18).
Based on the above information, we
conclude that changes in environmental
conditions that result from climate
change are likely to negatively impact
these 40 species, and we do not
anticipate a reduction in this potential
threat in the near future.
Conservation Efforts To Reduce Habitat
Destruction, Modification, or
Curtailment of Its Range
There are no approved habitat
conservation plans (HCPs), safe harbor
agreements (SHAs), or candidate
conservation agreements (CCAs) that
specifically address these 40 species
and threats from habitat destruction or
modification. We are aware of several
memoranda of understanding (MOUs)
that are under development that will
specifically address one or more of these
40 species and the threats from habitat
destruction or modification. We
acknowledge that in the State of Hawaii
there are several voluntary conservation
efforts that may be helping to ameliorate
the threats to the 40 species addressed
in this final rule due to habitat
destruction and modification by
nonnative species, fire, natural
disasters, and climate change, and the
interaction of these threats. However,
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
these efforts are overwhelmed by the
number of threats, the extent of these
threats across the landscape, and the
lack of sufficient resources (e.g.,
funding) to control or eradicate them
from all areas where these 40 species
occur now or occurred historically.
Some of the voluntary conservation
efforts include the 11 island-based
watershed partnerships, including the 4
partnerships in Maui Nui (West Maui
Mountains Watershed Partnership, East
Maui Watershed Partnership, East
Molokai Watershed Partnership, and
Lanai Forest and Watershed
Partnership). These partnerships are
voluntary alliances of public and private
landowners ‘‘committed to the common
value of protecting forested watersheds
for water recharge, conservation, and
other ecosystem services through
collaborative management’’ (https://
hawp.org/partnerships). Most of the
ongoing conservation management
actions undertaken by the watershed
partnerships address threats to upland
habitat from nonnative species (e.g.,
feral ungulates, nonnative plants) and
may include fencing, ungulate removal,
nonnative plant control, and
outplanting of native, as well as rare
native, species on lands within the
partnership. Funding for the watershed
partnerships is provided through a
variety of State and Federal sources,
public and private grants, and in-kind
services provided by the partners or
volunteers.
The State of Hawaii’s Plant Extinction
Prevention (PEP) Program supports
conservation of plant species by
securing seeds or cuttings (with
permission from the State, Federal, or
private landowners) from the rarest and
most critically endangered native
species for propagation and outplanting
(https://pepphi.org). The PEP Program
focusses on species that have fewer than
50 plants remaining in the wild.
Funding for this program is from the
State of Hawaii, Federal agencies (e.g.,
Service), and public and private grants.
The PEP Program collects, propagates,
or outplants 14 plant species that are
addressed in this final rule (Cyanea
asplenifolia, C. horrida, C. magnicalyx,
C. maritae, C. munroi, C. profuga, C.
solanacea, Phyllostegia haliakalae, P.
pilosa, Pittosporum halophilum,
Schiedea jacobii, S. laui, Stenogyne
kauaulaensis, and Wikstroemia villosa)
PEPP 2011, pp. 75, 166, 191; PEPP 2012,
pp. 6, 13, 34–36, 66–70, 73–81, 150,
159–160). However, the program has not
yet been able to directly address broadscale habitat threats to plants by
invasive species.
The State’s University of Hawaii
receives funding from the Service and
PO 00000
Frm 00036
Fmt 4701
Sfmt 4700
other sources to propagate and maintain
in captivity the two Lanai tree snails,
Partulina semicarinata and P. variabilis,
and Newcomb’s tree snail (Newcombia
cumingi). However, the numbers of
individuals of both Lanai tree snail
species appear to be declining in
captivity, and individuals of Newcomb’s
tree snail do not survive long in
captivity (Hadfield 2008, p. 1–11;
Hadfield 2010, pers. comm.; Hadfield
2011, pers. comm.). This program does
not address broad-scale threats to tree
snail habitat by invasive species.
Recently (August 2012), the Service and
Maui Land and Pineapple Co., Inc.
(MLP), entered into a cooperative
agreement to provide funding for the
construction of a fenced snail exclosure
at the only known site for Newcomb’s
tree snail (Service 2012, in litt.). The
purpose of the fenced exclosure is to
protect individuals of this tree snail insitu from predation by rodents (e.g., rats
and mice) and predatory nonnative
snails. In addition, restoration of snail
habitat will be undertaken as funding is
available. Construction of the fenced
exclosure has not yet been inititated.
Voluntary conservation actions
undertaken by The Nature Conservancy
of Hawaii (TNC) on their preserves on
Maui (Kapunakea Preserve and
Waikamoi Preserve), and two of their
preserves on Molokai (Kamakou
Preserve and Moomomi Preserve), by
the Maui Land and Pineapple Company
on their Puu Kukui Watershed Preserve
on west Maui, by Ulupalakua Ranch and
Haleakala Ranch on their lands on
Maui, and by East Maui Irrigation
Company, Ltd., are described in our
June 11, 2012, proposed rule (77 FR
34464). These conservation actions
provide a conservation benefit and
ameliorate some of the threats from
nonnative species to one or more of the
36 plants (not Cyanea mauiensis) and 3
tree snails addressed in this final rule.
In addition, other private landowners
on Maui are engaged in, or initiating,
voluntary conservation actions on their
lands, including fencing to exclude
ungulates, removing ungulates,
controlling nonnative plants, and
outplanting native and rare plants.
These private landowners include
Kaanapali Land Development Company
(in cooperation with TNC), Nuu Mauka
Ranch, Kaupo Ranch, Makila Land
Company, Kahoma Land Company, and
Wailuku Water Company. All of these
landowners are partners in one of the
watershed partnerships on Maui, or
cooperate or work collaboratively with
watershed partners. The conservation
actions provided by these landowners
ameliorate some of the threats from
nonnative species to one or more of the
E:\FR\FM\28MYR2.SGM
28MYR2
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
mstockstill on DSK4VPTVN1PROD with RULES2
36 plants (not Cyanea mauiensis) and 3
tree snails addressed in this final rule.
In addition to the the voluntary
conservation efforts of TNC on Molokai
(see above), we are aware of voluntary
conservation efforts by Puu o Hoku
Ranch associated with the safe harbor
agreement (SHA) for the nene or
Hawaiian goose (Branta sandvicensis).
Although the SHA does not provide
specific management actions for the
conservation of one or more of the 11
species on Molokai addressed in this
final rule, some habitat conservation
measures (e.g., enhancement of native
plant species) that may be undertaken
by the ranch may benefit these species
and their habitat.
Recently, the private landowners of
the island of Lanai (Lanai Resorts and
Castle & Cooke Properties, Inc. (CCPI))
began development of an island-wide
conservation plan. This plan, when
completed and implemented, should
provide landscape-scale management
that will benefit the unique native
species and their habitats on the entire
island of Lanai. The plan should help
ameliorate the primary threats to, and
needed recovery actions for, the seven
species (five plants and two tree snails)
addressed in this final rule and Lanai’s
already listed species and their habitat,
including: Control of nonnative species
(including ungulates), in-situ protection
of tree snails, implementation of
immediate protective intervention
efforts for rare plants, and restoration of
terrestrial habitat for plants and
animals.
Summary of Habitat Destruction and
Modification
The threats to the habitats of each of
the 40 species in this final rule are
occurring throughout the entire range of
each of the species. These threats
include land conversion by agriculture
and urbanization, nonnative ungulates
and plants, fire, natural disasters, and
climate change, and the interaction of
these threats. While the conservation
measures described above are a step in
the right direction toward addressing
the threats to the 40 species, due to the
pervasive and expansive nature of the
threats resulting in habitat degradation,
these measures are insufficient across
the landscape to eliminate these threats
to any of the 40 species in this final
rule.
Development and urbanization of
coastal and lowland dry habitat on Maui
represents a serious and ongoing threat
to the remaining individuals of
Canavalia pubescens remaining at
Palauea-Keahou.
The effects from ungulates are
ongoing because ungulates currently
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
occur in the 10 ecosystems that support
the 40 species in this rule. The threat
posed by introduced ungulates to the
species and their habitats in this final
rule that occur in these 10 ecosystems
(see Table 4) is serious, because they
cause: (1) Trampling and grazing that
directly impact the plant communities,
which include 35 of the 37 plant species
listed in this final rule, and impact host
plants used by the two Lanai tree snails,
Partulina semicarinata and P. variabilis,
for foraging, shelter, and reproduction;
(2) increased soil disturbance, leading to
mechanical damage to individuals of the
plant species listed in this final rule,
and plants used by the two tree snails
for foraging, shelter, and reproduction;
and (3) creation of open, disturbed areas
conducive to weedy plant invasion and
establishment of alien plants from
dispersed fruits and seeds, which
results over time in the conversion of a
community dominated by native
vegetation to one dominated by
nonnative vegetation (leading to all of
the negative impacts associated with
nonnative plants, listed below). These
threats are expected to continue or
increase without ungulate control or
eradication.
Nonnative plants represent a serious
and ongoing threat to 36 of the 40
species listed in this final rule (35 plant
species and the tree snail Newcombia
cumingi; see Table 4) through habitat
destruction and modification because
they: (1) Adversely impact microhabitat
by modifying the availability of light; (2)
alter soil-water regimes; (3) modify
nutrient cycling processes; (4) alter fire
characteristics of native plant habitat,
leading to incursions of fire-tolerant
nonnative plant species into native
habitat; and (5) outcompete, and
possibly directly inhibit the growth of,
native plant species. Each of these
threats can convert native-dominated
plant communities to nonnative plant
communities (Cuddihy and Stone 1990,
p. 74; Vitousek 1992, pp. 33–35). This
conversion has negative impacts on 35
of the 37 plant species addressed here,
as well as the native plant species upon
which Newcombia cumingi depends for
essential life-history needs.
The threat from fire to 13 of the 40
species in this final rule that depend on
coastal, lowland dry, lowland mesic,
montane dry, montane mesic, and dry
cliff ecosystems (Bidens campylotheca
ssp. pentamera, Canavalia pubescens,
Cyanea magnicalyx, C. mauiensis, C.
obtusa, Festuca molokaiensis,
Phyllostegia bracteata, P. haliakalae,
Pittosporum halophilum, Pleomele
fernaldii, Santalum haleakalae var.
lanaiensis, Schiedea salicaria, and
Stenogyne kauaulaensis; see Table 4) is
PO 00000
Frm 00037
Fmt 4701
Sfmt 4700
32049
serious and ongoing because fire
damages and destroys native vegetation,
including dormant seeds, seedlings, and
juvenile and adult plants. Many
nonnative invasive plants, particularly
fire-tolerant grasses, outcompete native
plants and inhibit their regeneration
(D’Antonio and Vitousek 1992, pp. 70,
73–74; Tunison et al. 2002, p. 122).
Successive fires that burn farther and
farther into native habitat destroy native
plants and remove habitat for native
species by altering microclimatic
conditions and creating conditions
favorable to alien plants. The threat
from fire is unpredictable but increasing
in frequency in ecosystems that have
been invaded by nonnative, fire-prone
grasses.
Natural disasters, such as hurricanes,
represent a serious threat to the habitats
of all 37 plant species addressed in this
final rule because they open the forest
canopy, modify available light, and
create disturbed areas that are
conducive to invasion by nonnative pest
plants (Asner and Goldstein 1997, p.
148; Harrington et al. 1997, pp. 346–
347). The discussion under ‘‘Habitat
Destruction and Modification by
Nonnative Plants,’’ above provides
additional information related to canopy
gaps, light availability, and the
establishment of nonnative plant
species. In addition, hurricanes can
negatively impact the three tree snail
species in this final rule because strong
winds and intense rainfall can dislodge
individual snails from their host plants
and deposit them on the ground where
they may be crushed by falling debris or
eaten by nonnative rats and snails. The
impacts of hurricanes and other
stochastic natural events can be
particularly devastating to the 40
species because, as a result of other
threats, they now persist in low
numbers or occur in restricted ranges
and are therefore less resilient to such
disturbances, rendering them highly
vulnerable. Furthermore, a particularly
destructive hurricane holds the
potential of driving a localized endemic
species to extinction in a single event.
Hurricanes pose an ongoing and everpresent threat because they can happen
at any time, although their occurrence is
not predictable.
Landslides, rockfalls, treefalls, and
flooding adversely impact the habitats
of 16 of the species in this final rule
(Bidens campylotheca ssp. waihoiensis,
Cyanea asplenifolia, C. duvalliorum, C.
grimesiana ssp. grimesiana, C. horrida,
C. magnicalyx, C. maritae, C. mauiensis,
C. munroi, C. profuga, C. solanacea,
Cyrtandra filipes, Schiedea jacobii, S.
laui, Stenogyne kauaulaensis, and
Wikstroemia villosa; see Table 4) by
E:\FR\FM\28MYR2.SGM
28MYR2
32050
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
destabilizing substrates, damaging and
destroying individual plants, and
altering hydrological patterns, which
result in habitat destruction or
modification and changes to native
plant and animal communities. Drought
is a threat to six plant species—
Canavalia pubescens, Cyanea horrida,
Festuca molokaiensis, Schiedea jacobii,
S. salicaria, and Stenogyne
kauaulaensis—and all three tree
snails—Newcombia cumingi, Partulina
semicarinata, and P. variabilis—by the
loss or degradation of habitat due to
death of individual native plants and
host tree species, as well as an increase
in forest and brush fires. These threats
are serious and have the potential to
occur at any time, although their
occurrence is not predictable.
Changes in environmental conditions
that may result from global climate
change include increasing temperatures,
decreasing precipitation, increasing
storm intensities, and sea level rise and
coastal inundation. The consequent
impacts on the 40 species addressed in
this final rule are related to changes in
microclimatic conditions in their
habitats. These changes may lead to the
loss of native species due to direct
physiological stress, the loss or
alteration of habitat, increased
competition from nonnative species,
and changes in disturbance regimes
(e.g., droughts, fire, storms, and
hurricanes). Because the specific and
cumulative effects of climate change on
these 40 species are presently unknown,
we are not able to determine the severity
of this possible threat with confidence.
B. Overutilization for Commercial,
Recreational, Scientific, or Educational
Purposes
Plants
We are not aware of any threats to the
37 plant species addressed in this final
rule that are attributable to
overutilization for commercial,
recreational, scientific, or educational
purposes.
mstockstill on DSK4VPTVN1PROD with RULES2
Tree Snails
Tree snails can be found around the
world in tropical and subtropical
regions and have been valued as
collectibles for centuries. Evidence of
tree snail trading among prehistoric
Polynesians was discovered by a genetic
characterization of the enigmatic multiarchipelagic distribution of the Tahitian
endemic Partula hyalina and related
taxa (Lee et al. 2007, pp. 2,907, 2,910).
In their study, Lee et al. (2007, pp.
2,908–2,910) found evidence that
Partula hyalina had been traded as far
away as Mangaia in the Southern Cook
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
Islands, a distance of over 500 mi (805
km). The endemic Hawaiian tree snails
within the family Achatinellidae
(subfamily Achatinellinae) were
extensively collected for scientific as
well as recreational purposes by
Europeans in the 18th to early 20th
centuries (Hadfield 1986, p. 322).
During the 1800s, collectors observed
500 to 2,000 snails per tree, and
sometimes collected over 4,000 snails in
just several hours (Hadfield 1986, p.
322). We may infer that the repeated
collections of hundreds to thousands of
individuals at a time by early collectors
resulted in decreased population sizes
and reduction of reproduction potential
due to the removal of potential breeding
adults. The Achatinellinae do not reach
reproductive age until nearly 10 years
old, after which they produce only 4 to
6 offspring per year (Hadfield 2011,
pers. comm.). The allure of tree snails
persists to this day, and there is a
market for rare tree snails that may serve
as an incentive to collect them. A search
of the Internet (e.g., eBay.com,
google.com) reveals Web sites that offer
Hawaiian tree snail shells for sale,
including other species of the endemic
Hawaiian tree snail genus Partulina.
Based on the history of collection of
endemic Hawaiian tree snails, the
market for Hawaiian tree snail shells,
and the vulnerability of the small
populations of Newcombia cumingi,
Partulina semicarinata, and P. variabilis
to the negative impacts of any
collection, we consider the potential
overcollection of these three Hawaiian
tree snails to pose a serious and ongoing
threat, because it can occur at any time,
although its occurrence is not
predictable.
Conservation Efforts to Reduce
Overutilization for Commercial,
Recreational, Scientific or Educational
Purposes
We are unaware of voluntary
conservation efforts to reduce
overcollection of the three Hawaiian
tree snails. There are no approved HCPs,
SHAs, or MOUs, or other voluntary
actions that specifically address these
three species and the threat from
overcollection.
Summary of Overutilization for
Commercial, Recreational, Scientific, or
Educational Purposes
We have no evidence to suggest that
overutilization for commercial,
recreational, scientific, or educational
purposes poses a threat to any the 37
plant species in this final rule. We
consider the three species of tree snails
vulnerable to the impacts of
overutilization due to collection for
PO 00000
Frm 00038
Fmt 4701
Sfmt 4700
trade or market. Based on the history of
collection of endemic Hawaiian tree
snails, the market for Hawaiian tree
snail shells, and the inherent
vulnerability of the small populations of
Newcombia cumingi, Partulina
semicarinata, and P. variabilis to the
removal of breeding adults, we consider
collection to pose a serious and ongoing
threat to these species.
C. Disease or Predation
Disease
We are not aware of any threats to the
37 plant species addressed in this final
rule that would be attributable to
disease. Disease is a potential threat to
the three tree snails in this rule,
Newcombia cumingi, Partulina
semicarinata, and P. variabilis; evidence
for this is based on attempts to raise
these species in captivity. Due to the
extremely low numbers and threat of
extinction of Hawaiian tree snails in the
wild, captive breeding of over 20
species has been implemented over the
past decade. Hadfield (2010, pers.
comm.) notes that individuals of
Newcombia cumingi do not survive long
in captivity, and individuals of
Partulina spp. sometimes die off for
unknown reasons (Hadfield 2011, pers.
comm.). According to Hadfield (2011,
pers. comm.), the London Zoo found
evidence of protozoan presence in a
non-Hawaiian species of Partulina,
which is indicative of disease. Hadfield
(2011, pers. comm.) also suggests there
is a negative correlation between
reproductive potential in Hawaiian tree
snails and time in captivity, likely due
to inbreeding depression or
environmental conditions, including
disease.
Because we have no evidence that
disease may be impacting natural
populations of the three tree snail
species, we cannot conclude that this
threat may have contributed to the
current population status of Newcombia
cumingi, Partulina semicarinata, and P.
variabilis. However, we note that
disease is a potential threat to captive
bred Hawaiian tree snails and may be of
particular concern for Newcombia
cumingi, which is not successfully
surviving or reproducing in captivity,
potentially due to disease, and is only
known from one individual in one
location in the wild. Recovery of this
species will likely depend on successful
captive propagation and eventual
translocation to protected sites in the
wild.
Predation and Herbivory
Hawaii’s plants and animals evolved
in nearly complete isolation from
E:\FR\FM\28MYR2.SGM
28MYR2
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
mstockstill on DSK4VPTVN1PROD with RULES2
continental influences. Successful
colonization of these remote volcanic
islands was infrequent, and many
organisms never succeeded in
establishing populations. As an
example, Hawaii lacks any native ants
or conifers, has very few families of
birds, and has only a single extant
native land mammal, a bat (Loope 1998,
p. 748). In the absence of any grazing or
browsing mammals, plants that became
established did not need mechanical or
chemical defenses against mammalian
herbivory such as thorns, prickles, and
production of toxins. As the
evolutionary pressure to either produce
or maintain such defenses was lacking,
Hawaiian plants either lost or never
developed these adaptations (Carlquist
1980, p. 173). Likewise native Hawaiian
birds and insects experienced no
evolutionary pressure to develop antipredator mechanisms against mammals
or invertebrates that were not
historically present on the island. The
native flora and fauna of the islands are
thus particularly vulnerable to the
impacts of introduced nonnative
species, as discussed below.
Introduced Ungulates
In addition to the habitat impacts
discussed above (see ‘‘Habitat
Destruction and Modification by
Introduced Ungulates’’ under Factor A),
introduced ungulates pose a threat to
the following 35 of the 37 plant species
in this final rule by trampling and eating
individual plants (this information is
also presented in Table 4): Bidens
campylotheca ssp. pentamera (pigs,
goats, and axis deer), B. campylotheca
ssp. waihoiensis (pigs, goats, and axis
deer), B. conjuncta (pigs and goats),
Calamagrostis hillebrandii (pigs),
Canavalia pubescens (pigs, goats, cattle,
and axis deer), Cyanea asplenifolia
(pigs, goats, cattle, and axis deer), C.
duvalliorum (pigs), C. grimesiana ssp.
grimesiana (pigs, goats, and axis deer),
C. horrida (pigs), C. kunthiana (pigs), C.
magnicalyx (pigs), C. maritae (pigs), C.
mauiensis (pigs), C. munroi (goats and
axis deer), C. obtusa (pigs, goats, cattle,
and axis deer), C. profuga (pigs and
goats), C. solanacea (pigs and goats),
Cyrtandra ferripilosa (pigs and goats), C.
filipes (pigs, goats, and axis deer), C.
oxybapha (pigs, goats, and cattle),
Festuca molokaiensis (goats), Geranium
hanaense (pigs), G. hillebrandii (pigs),
Mucuna sloanei var. persericea (pigs
and cattle), Myrsine vaccinioides (pigs),
Peperomia subpetiolata (pigs),
Phyllostegia bracteata (pigs and cattle),
P. haliakalae (cattle), P. pilosa (pigs and
goats), Pittosporum halophilum (pigs),
Pleomele fernaldii (axis deer and
mouflon), Santalum haleakalae var.
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
lanaiense (pigs, goats, axis deer, and
mouflon), Schiedea jacobii (goats, cattle,
and axis deer), S. salicaria (goats, cattle,
and axis deer), and Wikstroemia villosa
(pigs).
We have direct evidence of ungulate
damage to some of these species, but for
many, due to their remote locations or
lack of study, ungulate damage is
presumed based on the known presence
of these introduced ungulates in the
areas where these species occur and the
results of studies conducted in Hawaii
and elsewhere (Diong 1982, p. 160). For
example, in a study conducted by Diong
(1982, p. 160) on Maui, feral pigs were
observed browsing on young shoots,
leaves, and fronds of a wide variety of
plants, of which over 75 percent were
endemic species. A stomach content
analysis in this study showed that 60
percent of the pigs’ food source
consisted of the endemic Cibotium
(hapuu, tree fern). Pigs were observed to
fell plants and remove the bark from
native plant species within the genera
Cibotium, Clermontia, Coprosma,
Hedyotis, Psychotria, and Scaevola,
resulting in larger trees being killed over
a few months of repeated feeding (Diong
1982, p. 144). Beach (1997, pp. 3–4)
found that feral pigs in Texas spread
disease and parasites, and their rooting
and wallowing behavior led to spoilage
of watering holes and loss of soil
through leaching and erosion. Rooting
activities also decreased the
survivability of some plant species
through disruption at root level of
mature plants and seedlings (Beach
1997, pp. 3–4; Anderson et al. 2007, pp.
2–3). In Hawaii, pigs dig up forest
ground cover consisting of delicate and
rare species of orchids, ferns, mints,
lobeliads, and other taxa, including
roots, tubers, and rhizomes (Stone and
Anderson 1988, p. 137). In addition,
there are direct observations of pig
herbivory on four of the plant species in
this final rule, including Cyanea
magnicalyx (PEPP 2010, p. 49), C.
maritae (PEPP 2010, p. 50), Peperomia
subpetiolata (PEPP 2010, p. 97), and
Phyllostegia pilosa (PEPP 2009, p. 93).
As pigs occur in 10 ecosystems (coastal,
lowland dry, lowland mesic, lowland
wet, montane dry, montane mesic,
montane wet, subalpine, dry cliff, and
wet cliff) on Molokai and Maui, the
results of the studies described above
suggest that pigs can also alter these
ecosystems and directly damage or
destroy native plants by their browsing
activity.
Feral goats thrive on a variety of food
plants, and are instrumental in the
decline of native vegetation in many
areas (Cuddihy and Stone 1990, p. 64).
Feral goats trample roots and seedlings,
PO 00000
Frm 00039
Fmt 4701
Sfmt 4700
32051
cause erosion, and promote the invasion
of alien plants. They are able to forage
in extremely rugged terrain and have a
high reproductive capacity (Clarke and
Cuddihy 1980, p. C–20; van Riper and
van Riper 1982, pp. 34–35; Tomich
1986, pp. 153–156; Cuddihy and Stone
1990, p. 64). Goats were observed to
browse on native plant species in the
following genera: Argyroxiphium,
Canavalia, Plantago, Schiedea, and
Stenogyne (Cuddihy and Stone 1990, p.
64). A study on the island of Hawaii
demonstrated that Acacia koa seedlings
are unable to survive due to browsing
and grazing by goats (Spatz and
Mueller-Dombois 1973, p. 874). If goats
are present at high numbers, mature
trees will eventually die, and with them
the root systems that support suckers
and vegetative reproduction. One study
demonstrated a positive height-growth
response of Acacia koa suckers to the 3year exclusion of goats (1968–1971)
inside a fenced area, whereas suckers
were similarly abundant, but very small,
outside of the fenced area (Spatz and
Mueller-Dombois 1973, p. 873). Another
study at Puuwaawaa on the island of
Hawaii demonstrated that prior to
management actions in 1985,
regeneration of endemic shrubs and
trees in the goat-grazed area was almost
totally lacking, contributing to the
invasion of the forest understory by
exotic grasses and weeds. After the
removal of grazing animals in 1985, A.
koa and Metrosideros spp. seedlings
were observed germinating by the
thousands (HDLNR 2002, p. 52). Based
on a comparison of fenced and unfenced
areas, it is clear that goats can devastate
native ecosystems (Loope et al. 1988, p.
277). As goats occur in nine of the
described ecosystems (coastal, lowland
dry, lowland mesic, lowland wet,
montane dry, montane mesic, montane
wet, dry cliff, and wet cliff), on Molokai,
Lanai, and Maui, the results of the
studies described above suggest that
goats can also alter these ecosystems
and directly damage or destroy native
plants by their browsing activity.
Therefore, goats pose a threat of
predation to 18 species in this rule, as
delineated in Table 4.
Axis deer were introduced to Molokai
in 1868, Lanai in 1920, and Maui in
1959. Most of the available information
on axis deer in the Hawaiian Islands
concerns observations and reports from
the island of Maui. On Maui, axis deer
were introduced as a game animal, but
their numbers have steadily increased,
especially in recent years on Haleakala
(Luna 2003, p. 44). During the 4-year El
˜
Nino drought from 1998 through 2001,
Maui experienced an 80 to 90 percent
E:\FR\FM\28MYR2.SGM
28MYR2
mstockstill on DSK4VPTVN1PROD with RULES2
32052
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
decline in shrub and vine species
caused by deer browsing and girdling of
young saplings. High mortality of rare
and native plant species was observed
(Medeiros 2010, pers. comm.). Axis deer
consume progressively less palatable
plants until no edible vegetation is left
(Hess 2008, p. 3). Axis deer are highly
adaptable to changing conditions, and
are characterized as ‘‘plastic’’ (meaning
flexible in their behavior) by Ables
(1977, cited in Anderson in litt. 1999, p.
5). They exhibit a high degree of
opportunism regarding their choice of
forage (Dinerstein 1987, cited in
Anderson 1999, p. 5) and can be found
in all but the highest elevation
ecosystems (subalpine and alpine) and
montane bogs, according to Medeiros
(2010, pers. comm.).
Axis deer on Maui follow a cycle of
grazing and browsing in open lowland
grasslands during the rainy season
(November–March) and then migrate to
the lava flows of montane mesic forests
during the dry summer months to graze
and browse native plants (Medeiros
2010, pers. comm.). Axis deer favor the
native plants Abutilon menziesii (an
endangered species), Erythrina
sandwicensis (wiliwili), and Sida fallax
(ilima) (Medeiros 2010, pers. comm.).
During the driest months of summer
(July-August), axis deer can be found
along Maui’s coastal roads as they
search for food. Hunting pressure
appears to drive the deer into native
forests, particularly the lower rainforests
up to 4,000 to 5,000 ft (1,220 and 1,525
m) in elevation (Medeiros 2010, pers.
comm.), and according to Kessler and
Hess (2010, pers. comms.) axis deer can
be found up to 9,000 ft (2,743 m)
elevation.
Other native Hawaiian plant species
have been reported as grazed and
browsed by axis deer. For example, on
Lanai, grazing by axis deer has been
reported as a major threat to the
endangered Gardenia brighamii (nau)
(Mehrhoff 1993, p. 11), and on Molokai,
browsing by axis deer has been reported
on Erythrina sandwicensis and
Nototrichium sandwicense (kului)
(Medeiros et al. 1996, pp. 11, 19).
Swedberg and Walker (1978, cited in
Anderson 2003, pp. 124–125) reported
that in the upper forests of Lanai, the
native plants Osteomeles anthyllidifolia
(uulei) and Leptecophylla tameiameiae
(pukiawe) comprised more than 30
percent of axis deer rumen volume.
Other native plant species consumed by
axis deer include Abutilon menziesii
and Geranium multiflorum (nohoanu)
(both endangered species); the species
Bidens campylotheca ssp. pentamera
and B. campylotheca ssp. waihoiensis,
which are addressed in this final rule;
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
and Achyranthes splendens (NCN),
Chamaesyce lorifolia (akoko), Diospyros
sandwicensis (lama), Lipochaeta rockii
var. dissecta (nehe), Osmanthus
sandwicensis (ulupua), Panicum
torridum (kakonakona), and Santalum
ellipticum (laau ala) (Anderson 2002,
poster; Perlman 2009c, in litt., pp. 4–5).
As axis deer occur in nine of the
described ecosystems on Molokai,
Lanai, and Maui (coastal, lowland dry,
lowland mesic, lowland wet, montane
dry, montane mesic, montane wet, dry
cliff, and wet cliff), the results from the
studies above, in addition to the direct
observations from field biologists,
suggest that axis deer can also alter
these ecosystems and directly damage or
destroy native plants by their browsing
activity (see Table 4).
Mouflon sheep graze native
vegetation, trample undergrowth, spread
weeds, and cause erosion. On the island
of Hawaii, mouflon browsing led to the
decline in the largest population of the
endangered Argyroxiphium kauense
(kau silversword, Mauna Loa
silversword, or ahinahina) located on
the former Kahuku Ranch, reducing it
from a ‘‘magnificent population of
several thousand’’ (Degener et al. 1976,
pp. 173–174) to fewer than 2,000
individuals (unpublished data in Powell
1992, in litt., p. 312) over a period of 10
years (1974–1984). The native tree
Sophora chrysophylla is also a preferred
browse species for mouflon. According
to Scowcroft and Sakai (1983, p. 495),
mouflon eat the shoots, leaves, flowers,
and bark of this species. Bark stripping
on the thin bark of a young tree is
potentially lethal. Mouflon are also
reported to strip bark from Acacia koa
trees (Hess 2008, p. 3) and to seek out
the threatened plant Silene hawaiiensis
(Benitez et al. 2008, p. 57). In the
Kahuku section of Hawaii Volcanoes
National Park, mouflon sheep jumped
the park boundary fence and reduced
one population of S. hawaiiensis to half
its original size over a 3-year period
(Belfield and Pratt 2002, p. 8). Other
native species browsed by mouflon
include Geranium cuneatum ssp.
cuneatum (hinahina, silver geranium),
G. cuneatum ssp. hypoleucum
(hinahina, silver geranium), and
Sanicula sandwicensis (NCN) (Benitez
et al. 2008, pp. 59, 61). On Lanai,
mouflon sheep were once cited as one
of the greatest threats to the endangered
Gardenia brighamii (Mehrhoff 1993, p.
11), although fencing has now proven to
be an effective mechanism against
mouflon herbivory on this plant
(Mehrhoff 1993, pp. 22–23). While
mouflon sheep were introduced to the
islands of Lanai and Hawaii as a
PO 00000
Frm 00040
Fmt 4701
Sfmt 4700
managed game species, a private game
ranch on Maui has added mouflon to its
stock and it is likely that over time some
individuals may escape (Hess 2010,
pers. comm.; Kessler 2010, pers.
comm.). As mouflon occur in seven of
the described ecosystems (coastal,
lowland dry, lowland mesic, lowland
wet, montane wet, dry cliff, and wet
cliff) on Lanai, the data from the studies
above, in addition to direct observation
of field biologists, suggest that mouflon
can also alter these ecosystems and
directly damage or destroy native plants
by their browsing activity (see Table 4).
Cattle, either feral or domestic, are
considered one of the most important
factors in the destruction of Hawaiian
forests (Baldwin and Fagerlund 1943,
pp. 118–122). Captain George
Vancouver of the British Royal Navy is
attributed with introducing cattle to the
Hawaiian Islands in 1793 (Fischer 2007,
p. 350) by way of a gift to King
Kamehameha I on the island of Hawaii.
Over time, cattle became established on
all of the main Hawaiian Islands, and
historically feral cattle were found on
the islands of Kauai, Oahu, Molokai,
Maui, Kahoolawe, and Hawaii.
Currently, feral cattle are found only on
Maui and Hawaii, typically in accessible
forests and certain coastal and lowland
leeward habitats (Tomich 1986, pp.
140–144). In Hawaii Volcanoes National
Park on the island of Hawaii, Cuddihy
reported that there were twice as many
native plant species as nonnatives found
in areas that had been fenced to exclude
feral cattle, whereas on the adjacent,
nonfenced cattle ranch, there were twice
as many nonnative plant species as
natives (Cuddihy 1984, pp. 16, 34).
Skolmen and Fujii (1980, pp. 301–310)
found that Acacia koa seedlings were
able to reestablish in a moist Acacia
koa-Metrosideros polymorpha forest on
Hawaii Island after the area was fenced
to exclude feral cattle (Skolmen and
Fujii 1980, pp. 301–310). Cattle eat
native vegetation, trample roots and
seedlings, cause erosion, create
disturbed areas conducive to invasion
by nonnative plants, and spread seeds of
nonnative plants in their feces and on
their bodies. As feral cattle occur in five
of the described ecosystems (lowland
dry, lowland mesic, lowland wet,
montane mesic, and montane wet) on
Maui, the results from the above studies,
in addition to the direct observations
from field biologists, suggest that feral
cattle can alter these ecosystems and
directly damage or destroy native plants
by their browsing activity (see Table 4).
The blackbuck antelope (Antilope
cervicapra) is an endangered antelope
from India brought to a private game
reserve on Molokai about 10 years ago
E:\FR\FM\28MYR2.SGM
28MYR2
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
from an Indian zoo (Kessler 2010, pers.
comm.). According to Kessler (2010,
pers. comm.), at some time in the last 10
years, a few individuals escaped from
the game reserve and established a wild
population of an unknown number of
individuals on the lower, dry plains of
western Molokai. Blackbuck primarily
use grassland habitat for grazing. In
India, foraging consumption and
nutrient digestibility are high in the
moist winter months and low in the dry
summer months (Jhala 1997, pp. 1,348;
1,351). Although most plant species are
grazed intensely when they are green,
some are grazed only after they are dry
(Jhala 1997, pp. 1,348; 1,351). While the
habitat effects from the blackbuck
antelope are unknown at this time, we
consider these ungulates a potential
threat to native plant species, including
the 11 plant species in this final rule
found on Molokai (Kessler 2010, pers.
comm.), because blackbuck antelope
have foraging and grazing habits similar
to feral goats, cattle, axis deer and
mouflon.
mstockstill on DSK4VPTVN1PROD with RULES2
Other Introduced Vertebrates
Rats
There are three species of introduced
rats in the Hawaiian Islands. Studies of
Polynesian rat (Rattus exulans) DNA
suggest they first appeared in the
Hawaiian Islands along with emigrants
from the Marquesas about 400 A.D.,
with a second interaction around 1100
A.D. (Ziegler 2002, p. 315). The black rat
(R. rattus) and the Norway rat (R.
norvegicus) most likely arrived in the
Hawaiian Islands more recently, as
stowaways on ships sometime in the
late 19th century (Atkinson and
Atkinson 2000, p. 25). The Polynesian
rat and the black rat are primarily found
in the wild, in dry to wet habitats, while
the Norway rat is typically found in
manmade habitats such as urban areas
or agricultural fields (Tomich 1986, p.
41). The black rat is widely distributed
among the main Hawaiian Islands and
can be found in a broad range of
ecosystems up to 9,744 ft (2,970 m), but
it is most common at low- to midelevations (Tomich 1986, pp. 38–40).
While Sugihara (1997, p. 194) found
both the black and Polynesian rats up to
6,972-ft (2,125-m) elevation on Maui,
the Norway rat was not seen at the
higher elevations in his study. Rats
occur in nine of the described
ecosystems (coastal, lowland dry,
lowland mesic, lowland wet, montane
dry, montane mesic, montane wet, dry
cliff, and wet cliff), and predation by
rats is a threat to 23 of the 37 plant
species, and all 3 species of tree snails,
in this final rule (see Table 4).
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
Rat Impacts on Plants
Rats impact native plants by eating
fleshy fruits, seeds, flowers, stems,
leaves, roots, and other plant parts
(Atkinson and Atkinson 2000, p. 23),
and can seriously affect regeneration.
Research on rats in forests in New
Zealand has also demonstrated that,
over time, differential regeneration as a
consequence of rat predation may alter
the species composition of forested
areas (Cuddihy and Stone 1990, pp. 68–
69). Rats have caused declines or even
the total elimination of island plant
species (Campbell and Atkinson 1999,
cited in Atkinson and Atkinson 2000, p.
24). In the Hawaiian Islands, rats may
consume as much as 90 percent of the
seeds produced by some trees, or in
some cases prevent the regeneration of
forest species completely (Cuddihy and
Stone 1990, pp. 68–69). All three
species of rat (black, Norway, and
Polynesian) have been reported to
adversely impact many endangered and
threatened Hawaiian plants (Stone 1985,
p. 264; Cuddihy and Stone 1990, pp.
67–69). Plants with fleshy fruits are
particularly susceptible to rat predation,
including some of the species addressed
in this final rule. For example, the fruits
of plants in the bellflower family (e.g.,
Cyanea spp.) appear to be a target of rat
predation (Cuddihy and Stone 1990, pp.
67–69). In addition to all 12 species of
Cyanea (Cyanea asplenifolia, C.
duvalliorum, C. grimesiana ssp.
grimesiana, C. horrida, C. kunthiana, C.
magnicalyx, C. maritae, C. mauiensis, C.
munroi, C. obtusa, C. profuga, and C.
solanacea), 11 other species of plants in
this final rule are adversely impacted by
rat predation, including Bidens
campylotheca ssp. pentamera, B.
campylotheca ssp. waihoiensis, B.
conjucta (Bily et al. 2003, pp. 1–16),
Mucuna sloanei var. persericea, Myrsine
vaccinioides, Peperomia subpetiolata,
Pittosporum halophilum, Pleomele
fernaldii, Santalum haleakalae var.
lanaiense, Schiedea laui, and
Wikstroemia villosa (HBMP 2008;
Harbaugh et al. 2010, p. 835). As rats
occur in nine of the described
ecosystems (coastal, lowland dry,
lowland mesic, lowland wet, montane
dry, montane mesic, montane wet, dry
cliff, and wet cliff) on Molokai, Lanai,
and Maui, the results from the above
studies, in addition to direct
observations from field biologists,
suggest that rats can directly damage or
destroy native plants.
Rat Impacts on Tree Snails
Rats (Rattus spp.) have been suggested
as the invasive animal responsible for
likely the greatest number of animal
PO 00000
Frm 00041
Fmt 4701
Sfmt 4700
32053
extinctions on islands throughout the
world, including extinctions of various
snail species (Towns et al. 2006, p. 88).
In the Hawaiian Islands, rats are known
to prey upon endemic arboreal snails
(Hadfield et al. 1993, p. 621). In the
Waianae Mountains of Oahu, Meyer and
Shiels (2009, p. 344) found shells of the
endangered endemic Oahu tree snail
(Achatinella mustelina) with
characteristic rat damage (e.g., damage
to the shell opening and cone tip), but
noted that rat crushing of shells may
limit the ability to adequately quantify
the threat. On Lanai, Hobdy (1993, p.
208) found numerous shells of Partulina
variabilis, one of the tree snails in this
final rule, on the ground with damage
characteristic of rat predation. Likewise
in a 2005 survey on Lanai, Hadfield
(2005, pp. 3–4) found shells of Partulina
semicarinata, another tree snail species
in this rule, on the ground with
characteristic rat damage. Surveys in
2009 led Hadfield and colleagues to
conclude that populations of Partulina
redfieldi (a tree snail endemic to
lowland and montane forests on
Molokai) had declined by 85 percent
since 1995 due to rat predation
(Hadfield and Saufler 2009, p. 1). On
Maui, rat predation on the tree snail
species Newcombia cumingi, addressed
in this final rule, has led to a decrease
in the number of individuals (Hadfield
2006 in litt., p. 3; 2007, p. 9; 2011, pers.
comm.). As rats are found in nine of the
described ecosystems on Lanai and
Maui (the islands on which Newcombia
cumingi, Partulina semicarinata, and P.
variabilis occur), including the three
ecosystems (lowland wet, montane wet,
and wet cliff) in which the three tree
snails in this rule are found, the results
of the above studies, in addition to
direct observations from field biologists,
suggest that rats directly damage or
destroy Hawaiian tree snails and are a
serious and ongoing threat to the three
tree snail species in this final rule.
Jackson’s Chameleon
Several dozen Jackson’s chameleons
(Chamaeleo jacksonii), native to Kenya
and Tanzania, were introduced to
Hawaii in the early 1970s through the
pet trade (Holland et al. 2010, p. 1,438).
Inter-island transport of Jackson’s
chameleons for the pet trade was
unrestricted until 1997, when they were
classified as ‘‘injurious wildlife,’’ and
export as well as inter-island transport
was prohibited (State of Hawaii 1996,
H.A.R. 13–124–3; Holland et al. 2010, p.
1,439). Currently, there are established
populations on all of the main Hawaiian
Islands, with the greatest number of
individuals on the islands of Hawaii,
Maui, and Oahu (Holland et al. 2010, p.
E:\FR\FM\28MYR2.SGM
28MYR2
32054
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
1,438). Jackson’s chameleons prey on
native insects and tree snails, including
the endangered Oahu tree snail
(Achatinella mustelina) (Holland et al.
2010, p. 1,438; Hadfield 2011, pers.
comm.). Jackson’s chameleons may be
expanding their range in the wild from
low-elevation to higher elevation
pristine native forest, which may result
in catastrophic impacts to native
ecosystems and the species supported
by those ecosystems, including the
lowland wet ecosystems on Maui and
Lanai that support the tree snails
Newcombia cumingi, Partulina
semicarinata, and P. variabilis, and the
montane wet and wet cliff ecosystems
on Lanai that support P. semicarinata
and P. variabilis. Because Jackson’s
chameleons are likely found in, or
expanding their range into, all of the
ecosystems in which the three tree
snails addressed in this final rule are
found, and are known to prey on tree
snails, predation by Jackson’s
chameleon is a potentially serious threat
to the tree snails Newcombia cumingi,
Partulina semicarinata, and P.
variabilis.
mstockstill on DSK4VPTVN1PROD with RULES2
Invertebrates
Nonnative Slugs
Predation by nonnative snails and
slugs adversely impacts 26 of the 37
plant species (Bidens campylotheca ssp.
waihoiensis, B. conjuncta, Cyanea
asplenifolia, C. duvalliorum, C.
grimesiana ssp. grimesiana, C. horrida,
C. kunthiana, C. magnicalyx, C. maritae,
C. mauiensis, C. munroi, C. obtusa, C.
profuga, C. solanacea, Cyrtandra filipes,
Geranium hillebrandii, Myrsine
vaccinioides, Peperomia subpetiolata,
Phyllostegia bracteata, P. haliakalae, P.
pilosa, Santalum haleakalae var.
lanaiense, Schiedea jacobii, S. laui,
Stenogyne kauaulaensis, and
Wikstroemia villosa; see Table 4) in this
final rule through mechanical damage,
destruction of plant parts, and mortality
(Mitchell et al. 2005; Joe 2006, p. 10;
HBMP 2008; PEPP 2008, pp. 48–49, 52–
53, 57, 70; PEPP 2010, pp. 1–121). On
Oahu, slugs have been reported to
destroy the endangered plants Cyanea
calycina and Cyrtandra kaulantha in
the wild, and have been observed eating
leaves and fruit of wild and cultivated
individuals of Cyanea (Mehrhoff 1995,
in litt.; U.S. Army Garrison 2005, pp. 3–
34, 3–51). In addition, slugs have
damaged individuals of other Cyanea
and Cyrtandra species in the wild
(Wood 2001, in litt.; Sailer and Kier
2002, in litt., p. 3; PEPP 2007, p. 38;
PEPP 2008, pp. 23, 49, 52–53, 57).
Little is known about predation of
certain rare plants by slugs; however,
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
information in the U.S. Army’s 2005
‘‘Status Report for the Makua
Implementation Plan’’ and from Keir
(2013, in litt.) indicates that slugs can be
a threat to all species of Cyanea (U.S.
Army Garrison 2005, p. 3–51; Keir 2013,
in litt.). Research investigating slug
herbivory and control methods shows
that slug impacts on seedlings of Cyanea
spp. results in up to 80 percent seedling
mortality (U.S. Army Garrison 2005, p.
3–51). Slug damage has also been
reported on other Hawaiian plants
including Argyroxiphium grayanum
(greensword), Alsinidendron sp.,
Hibiscus sp., the endangered plant
Schiedea kaalae (maolioli), the
endangered plant Solanum sandwicense
(popolo aiakeakua), and Urera sp.
(Gagne 1983, p. 190–191; Sailer, pers.
comm. cited in Joe 2006, pp. 28–34).
Joe and Daehler (2008, p. 252) found
that native Hawaiian plants are more
vulnerable to slug damage than
nonnative plants. In particular, they
found that the individuals of the
endangered plants Cyanea superba and
Schiedea obovata had 50 percent higher
mortality when exposed to slugs when
compared to individuals of the same
species that were protected within slug
exclosures. As slugs are found in eight
of the described ecosystems (lowland
dry, lowland mesic, lowland wet,
montane dry, montane mesic, montane
wet, dry cliff, and wet cliff) on Molokai,
Lanai, and Maui, the data from the
above studies, in addition to direct
observations from field biologists,
suggest that slugs can directly damage
or destroy native plants.
Nonnative Snails
Several species of nonnative snails
have been inadvertently introduced to
Hawaii. However, in 1955, the rosy wolf
snail (Euglandina rosea) was purposely
introduced to Hawaii from Florida in an
attempt to control another nonnative,
the giant African snail (Achatina fulica).
The giant African snail is commonly
found in Honolulu gardens and is one
of the largest snails in the world, in
addition to being recognized as one of
the world’s most damaging pests to crop
plants (Peterson 1957, pp. 643–658;
Stone and Anderson 1988, p. 134). The
giant African snail appears to have
declined throughout the Hawaiian
Islands although it is unclear if this
decline is due to the rosy wolf snail or
other unrelated reasons (Cowie 1997, p.
15). The rosy wolf snail is now found
on six of the eight main Hawaiian
Islands (its presence on Niihau and
Kahoolawe has not been confirmed) and
has expanded its range on those islands
to include cooler, mid-elevation forests
where many endemic tree snails are
PO 00000
Frm 00042
Fmt 4701
Sfmt 4700
found. This nonnative snail is likely
responsible for the decline and
extinction of many of Hawaii’s native
tree snails (Stone and Anderson 1988, p.
134; Hadfield et al. 1993, p. 621;
Hadfield 2010a, in litt.). In 1979, the
rosy wolf snail decimated a population
of the endangered Oahu tree snail
(Achatinella mustelina), as well as all
other tree snails at the same study site
(Hadfield and Mountain 1980, p. 357).
According to Hadfield (2007, pp. 6–9),
the rosy wolf snail is currently the
greatest threat to the only known
population of Newcombia cumingi, one
of the three tree snails addressed in this
final rule. In addition, the nonnative
garlic snail (Oxychilus alliarius), a
predator on the smaller achatinellid
snails, may be a potential threat to
Newcombia cumingi (Hadfield 2010a, in
litt.). Hadfield (2007, pp. 6–9) reported
finding many shells of the garlic snail
within the habitat of N. cumingi on
Maui. As the rosy wolf snail can be
found in three of the described
ecosystems (lowland wet, montane wet,
and wet cliff) on Lanai and Maui (the
islands on which N. cumingi, Partulina
semicarinata, and P. variabilis occur),
the results from the studies above, in
addition to observations by field
biologists, suggest that the rosy wolf
snail has the potential to severely
impact the three tree snails in this final
rule.
Nonnative Flatworms
The extinction of native land snails
on several Pacific Islands has been
attributed to the terrestrial flatworm
Platydemus manokwari (Sugiura 2010,
p. 1,499). This flatworm has decimated
populations of native tree snails on
Guam (Hopper and Smith 1992, pp. 78,
82–83). In the Hawaiian Islands,
Platydemus manokwari has been found
on the islands of Oahu and Hawaii, and
is likely on all of the main islands
(Miller 2011, pers. comm.). Although P.
manokwari has not been reported from
the same locations as the three tree
snails addressed in this final rule, it is
a potential threat to these species
because it likely co-occurs on the
islands of Molokai, Lanai, and Maui,
and it is a known predator on tree
snails.
Conservation Efforts To Reduce Disease
or Predation
There are no approved HCPs, SHAs,
or CCAs that specifically address these
40 species and threats from predation.
In addition, we are unaware of any
voluntary actions that address the three
species of tree snails and the threat from
disease. We are aware of several MOUs
that are under development that will
E:\FR\FM\28MYR2.SGM
28MYR2
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
mstockstill on DSK4VPTVN1PROD with RULES2
specifically address one or more of these
40 species and may address threats from
predation. We acknowledge that in the
State of Hawaii there are several
voluntary conservation efforts (e.g.,
construction of fences) that may be
helping to ameliorate the threats to the
40 species addressed in this final rule
due to predation by nonnative animal
species, specifically predation by feral
ungulates. However, these efforts are
overwhelmed by the number of threats,
the extent of these threats across the
landscape, and the lack of sufficient
resources (e.g., funding) to control or
eradicate them from all areas where
these 40 species occur now or occurred
historically. See above, ‘‘Conservation
Efforts to Reduce Habitat Destruction,
Modification, or Curtailment of Its
Range,’’ for a summary of some
voluntary conservation actions to
address threats from feral ungulates.
The State’s University of Hawaii
receives funding from the Service and
other sources to propagate and maintain
in captivity the two Lanai tree snails
and Newcomb’s tree snail. However, the
numbers of individuals of both Lanai
tree snail species appear to be declining
in captivity and individuals of
Newcomb’s tree snail do not survive
long in captivity (Hadfield 2008, p. 1–
11; Hadfield 2010, pers. comm.;
Hadfield 2011, pers. comm.). This
program does not address threats to
these three tree snails from predation by
nonnative species in the wild nor
threats from disease in captivity.
Recently (August 2012), the Service and
MLP entered into a cooperative
agreement to provide funding for the
construction of a fenced snail exclosure
at the only known site for Newcomb’s
tree snail (Service 2012, in litt.). The
purpose of the fenced exclosure is to
protect individuals of this tree snail insitu from predation by rodents (e.g., rats
and mice) and predatory nonnative
snails. Construction of the fenced
exclosure has not yet been inititated.
Summary of Disease or Predation
We are unaware of any information
that indicates that disease is a threat to
the 37 plant species in this final rule.
Disease is a potential threat to the three
species of tree snails in this rule, as
recovery of these species likely will
include captive propagation and disease
is suspected to be a cause of currently
unsuccessful captive propagation of
Newcombia cumingi, Partulina
semicarinata, and P. variabilis.
However, at this time, we have no
evidence to suggest that disease is acting
on the wild populations such that it
may be considered a significant threat to
the species.
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
Although conservation measures are
in place in some areas where each of the
40 species in this final rule occur,
information does not indicate that they
are ameliorating the threat of predation.
Therefore, we consider predation by
nonnative animal species (pigs, goats,
axis deer, mouflon sheep, cattle, rats,
Jackson’s chameleon, slugs, snails, and
flatworms) to pose an ongoing threat to
all 40 species in this final rule
throughout their ranges for the
following reasons:
(1) Observations and reports have
documented that pigs, goats, axis deer,
mouflon sheep, and cattle browse and
trample 35 of the 37 plant species (see
Table 4), in addition to other studies
demonstrating the negative impacts of
ungulate browsing and trampling on
native plant species of the islands
(Spatz and Mueller-Dombois 1973, p.
874; Diong 1982, p. 160; Cuddihy and
Stone 1990, p. 67).
(2) Nonnative rats and slugs cause
mechanical damage to plants and
destruction of plant parts (branches,
fruits, and seeds), and are considered a
threat to 30 of the 37 plant species in
this rule (see Table 4). All 40 species in
this final rule are impacted by either
introduced ungulates, as noted in item
1, above, or nonnative rats and slugs, or
both.
(3) Rat damage has been observed on
shells of dead individuals of the tree
snails Partulina variabilis and P.
semicarinata on Lanai, as well as on
other native tree snails on Oahu and
Molokai, indicating rats are a likely
cause of mortality of these species.
Predation by rats has been linked with
the dramatic declines of some
populations of native tree snails (Hobdy
1993, p. 208; Hadfield and Saufler 2009,
p. 1; Meyer and Shields 2009, p. 344).
Rat predation has been documented on
the tree snail species Newcombia
cumingi (Hadfield 2006 in litt., p. 3;
Hadfield 2007, p. 9; Hadfield 2010a, in
litt.). Although funding has recently
been provided to construct a fenced
exclosure to protect individuals of this
tree snail in-situ from predation by
rodents (e.g., rats and mice) and
predatory nonnative snails, construction
has not yet been inititated. Because rats
are found in all of the ecosystems in
which the three tree snails addressed in
this final rule are found, and rats are
known to prey on tree snails, we
consider predation by rats to be a
serious and ongoing threat to
Newcombia cumingi, Partulina
semicarinata, and P. variabilis.
(4) Jackson’s chameleon, which preys
on native insects and tree snails, has
established populations in the wild on
all the main Hawaiian Islands. Jackson’s
PO 00000
Frm 00043
Fmt 4701
Sfmt 4700
32055
chameleon is likely found in, or is in the
process of expanding its range to
include, all of the ecosystems that
support the three tree snails addressed
in this final rule. Predation by this
nonnative reptile is a potentially serious
threat to Newcombia cumingi, Partulina
semicarinata, and P. variabilis.
(5) Hawaiian tree snails are vulnerable
to predation by the nonnative rosy wolf
snail, which is found on all the main
Hawaiian Islands and whose range
likely overlaps that of the three tree
snail species we are listing. We
therefore consider Newcombia cumingi,
Partulina semicarinata, and P. variabilis
to be adversely impacted by predation
by the nonnative rosy wolf snail.
Although funding has recently been
provided to construct a fenced exclosure
to protect individuals of Newcombia
cumingi in-situ from predation by
rodents and predatory nonnative snails,
construction has not yet been inititated.
In addition, the nonnative garlic snail
may be a potential threat to one of the
tree snails addressed in this final rule,
N. cumingi, because it is a known
predator on smaller tree snails in the
same family as N. cumingi and shells of
the garlic snail have been found in N.
cumingi habitat (Stone and Anderson
1988, p. 134; Hadfield et al. 1993, p.
621; Hadfield 2010a, in litt.).
(6) The nonnative flatworm,
Platydemus manokwari, is a potential
threat to all three species of tree snails
addressed in this final rule (Hadfield
2010b, in litt.; Sugiura 2010, pp. 1,499–
1,501) because this flatworm has
decimated native tree snail populations
on other Pacific Islands and likely
occurs on all the main Hawaiian
Islands, including the islands of Lanai
and Maui, where the three tree snails
are found.
These threats are serious and ongoing,
act in concert with other threats to the
species, and are expected to continue or
increase in severity and intensity into
the future without effective management
actions to control or eradicate them. In
addition, negative impacts to native
Hawaiian plants on Molokai from
grazing and browsing by the blackbuck
antelope are likely should this
nonnative ungulate increase in numbers
and range on the island. The combined
threat of ungulate, rat, and invertebrate
predation on native Hawaiian flora and
fauna suggests the need for immediate
implementation of recovery and
conservation methodologies.
E:\FR\FM\28MYR2.SGM
28MYR2
32056
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
D. The Inadequacy of Existing
Regulatory Mechanisms
mstockstill on DSK4VPTVN1PROD with RULES2
Inadequate Habitat Protection
Currently, there are no existing
Federal, State, or local laws, treaties, or
regulations that specifically conserve or
protect the 40 species addressed in this
final rule, or adequately address the
threats described in this rule. Although
the State of Hawaii’s Plant Extinction
Prevention Program supports
conservation of the plant species by
securing seeds or cuttings from the
rarest and most critically endangered
native species for propagation, the
program is nonregulatory and has not
yet been able to directly address broadscale threats to plants by invasive
species.
The capacity of Federal and State
agencies and their nongovernmental
partners in Hawaii to mitigate the effects
of introduced pests, such as ungulates
and weeds, is limited due to the large
number of taxa currently causing
damage (Coordinating Group on Alien
Pest Species (CGAPS) 2009). Many
invasive weeds established on Molokai,
Lanai, and Maui have currently limited
but expanding ranges and are of
concern. Resources available to reduce
the spread of these species and counter
their negative ecological effects are
limited. Control of established pests is
largely focused on a few invasive
species that cause significant economic
or environmental damage to public and
private lands. Comprehensive control of
an array of invasive pests and
management to reduce disturbance
regimes that favor certain invasive
species remains limited in scope. If
current levels of funding and regulatory
support for invasive species control are
maintained on Molokai, Lanai, and
Maui, the Service expects existing
programs to continue to exclude or, on
a very limited basis, control invasive
species only in high-priority areas.
Threats from established pests (e.g.,
nonnative ungulates, weeds, and
invertebrates) are ongoing and expected
to continue into the future.
Feral Ungulates
Nonnative ungulates pose a major
ongoing threat to 35 of the 37 plant
species and 2 of the 3 tree snail
species—Partulina semicarninata and P.
variabilis—through destruction and
degradation of terrestrial habitat, and
through direct predation of 35 of the
plant species (see Table 4). The State of
Hawaii provides game mammal (feral
pigs and goats, axis deer, and mouflon
sheep) hunting opportunities on 15
State-designated public hunting areas
on the islands of Molokai, Lanai, and
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
Maui (State of Hawaii 1999, H.A.R. 13–
123; HDLNR 2009, pp. 20–21). The
State’s management objectives for game
animals range from maximizing public
hunting opportunities (e.g., ‘‘sustained
yield’’) in some areas to removal by
State staff, or their designees, in other
areas (State of Hawaii, H.A.R. 13–123).
Thirty-four of the 37 plant species have
populations in areas where terrestrial
habitat may be manipulated for game
enhancement and game populations are
maintained at prescribed levels using
public hunting (HBMP 2008; State of
Hawaii, H.A.R. 13–123). Public hunting
areas are not fenced, and game
mammals have unrestricted access to
most areas across the landscape,
regardless of underlying land-use
designation. While fences are sometimes
built to protect areas from game
mammals, the current number and
locations of fences are not adequate to
prevent habitat degradation and
destruction for 37 of the 40 species, or
the direct predation of 35 of the 37 plant
species on Molokai, Lanai, and Maui
(see Table 4). However, the State game
animal regulations are not designed nor
intended to provide habitat protection,
and there are no other regulations
designed to address habitat protection
from ungulates.
Introduction of Nonnative Species
Currently, four agencies are
responsible for inspection of goods
arriving in Hawaii (CGAPS 2009). The
Hawaii Department of Agriculture
(HDOA) inspects domestic cargo and
vessels and focuses on pests of concern
to Hawaii, especially insects or plant
diseases not yet known to be present in
the State. The U.S. Department of
Homeland Security-Customs and Border
Protection (CBP) is responsible for
inspecting commercial, private, and
military vessels and aircraft and related
cargo and passengers arriving from
foreign locations. CBP focuses on a wide
range of quarantine issues involving
non-propagative plant materials
(processed and unprocessed); wooden
packing materials, timber, and products;
internationally regulated commercial
species under the Convention on
International Trade in Endangered
Species of Wild Fauna and Flora
(CITES); federally listed noxious seeds
and plants; soil; and pests of concern to
the greater United States, such as pests
of mainland U.S. forests and agriculture.
The U.S. Department of AgricultureAnimal and Plant Health Inspection
Service-Plant Protection and Quarantine
(USDA–APHIS–PPQ) inspects
propagative plant material, provides
identification services for arriving
plants and pests, conducts pest risk
PO 00000
Frm 00044
Fmt 4701
Sfmt 4700
assessments, trains CBP personnel,
conducts permitting and preclearance
inspections for products originating in
foreign countries, and maintains a pest
database that, again, has a focus on pests
of wide concern across the United States
(HDOA 2009). The Service inspects
arriving wildlife products, enforces the
injurious wildlife provisions of the
Lacey Act (18 U.S.C. 42; 16 U.S.C. 3371
et seq.), and prosecutes CITES
violations.
The State of Hawaii’s unique
biosecurity needs are not recognized by
Federal import regulations. Under the
USDA–APHIS–PPQ’s commodity risk
assessments for plant pests, regulations
are based on species considered threats
to the mainland United States and do
not address many species that could be
pests in Hawaii (Hawaii Legislative
Reference Bureau (HLRB 2002; USDA–
APHIS–PPQ 2010; CGAPS 2009).
Interstate commerce provides the
pathway for invasive species and
commodities infested with non-federal
quarantine pests to enter Hawaii. Pests
of quarantine concern for Hawaii may
be intercepted at Hawaiian ports by
Federal agents but are not always acted
on by them because these pests are not
regulated under Federal mandates.
Hence, Federal protection against pest
species of concern to Hawaii has
historically been inadequate. It is
possible for the USDA to grant Hawaii
protective exemptions under the
‘‘Special Local Needs Rule,’’ when clear
and comprehensive arguments for both
agricultural and conservation issues are
provided; however, this exemption
procedure operates on a case-by-case
basis and is extremely time-consuming
to satisfy. Therefore, that avenue may
only provide minimal protection against
the large diversity of foreign pests that
negatively impact Hawaii.
Adequate staffing, facilities, and
equipment for Federal and State pest
inspectors and identifiers in Hawaii
devoted to invasive species interdiction
are critical biosecurity gaps (HLRB
2002; USDA–APHIS–PPQ 2010; CGAPS
2009). State laws have recently been
passed that allow the HDOA to collect
fees for quarantine inspection of freight
entering Hawaii (e.g., Act 36 (2011)
H.R.S. 150A–5.3). Legislation enacted in
2011 (H.B. 1568) requires commercial
harbors and airports in Hawaii to
provide biosecurity and to facilitate
cargo inspections. The introduction of
new pests to the State of Hawaii is a
significant risk to federally listed
species because the existing regulations
are inadequate for the reasons discussed
in the sections below.
In 1995, CGAPS, a partnership
composed primarily of managers from
E:\FR\FM\28MYR2.SGM
28MYR2
mstockstill on DSK4VPTVN1PROD with RULES2
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
every major Federal, State, County, and
private agency and organization
involved in invasive species work in
Hawaii, was formed in an effort to
improve communication, increase
collaboration, and promote public
awareness (CGAPS 2009). This group
facilitated the formation of the Hawaii
Invasive Species Council (HISC), which
was created by gubernatorial executive
order in 2002, to coordinate local
initiatives for the prevention and
control of invasive species by providing
policy level direction and planning for
the State departments responsible for
invasive species issues. In 2003, the
Governor signed into law Act 85, which
conveys statutory authority to the HISC
to continue to coordinate approaches
among the various State and Federal
agencies, and international and local
initiatives for the prevention and
control of invasive species (HDLNR
2003, p. 3–15; HISC 2009; H.R.S. 194–
2(a)). Some of the recent priorities for
the HISC include interagency efforts to
control nonnative species such as the
plants Miconia calvescens (miconia) and
Cortaderia spp. (pampas grass), coqui
frogs (Eleutherodactylus coqui), and
ants (HISC 2009). Since 2009, State
funding for HISC has been cut by
approximately 50 percent (total funding
dropped from $4 million in fiscal year
(FY) 2009 to $2 million in FY 2010, and
to $1.8 million for FY 2011 to FY 2013
(Atwood 2012, in litt.; Atwood 2013, in
litt.). Congressional earmarks made up
some of the shortfall in State funding in
2010 and into 2011. These funds
supported ground crew staff that would
otherwise have been laid off due to the
shortfall in State funding (Clark 2012, in
litt.). Following a 50 percent reduction
from FY 2009 funding, the HISC budget
has remained relatively flat (i.e., State
funding is equal to funding provided in
2009) from FY 2010 to FY 2013 (Atwood
2013, in litt.). Current positions
provided by HISC are fewer than those
supported in 2009; most of the positions
have been lost through attrition and
have not been refilled (Atwood 2012, in
litt.). In addition, HISC funds fewer
projects and provides fewer services
(Atwood 2012, in litt.; Clark 2012, in
litt.) than in 2009 and earlier. Many
projects (such as invasive species and
biological control research) that were
previously funded by HISC are receiving
negligible HISC funding or remain
unfunded (Atwood 2012, in litt.; Clark
2012, in litt.).
Nonnative Animal Species
Vertebrate Species
The State of Hawaii’s laws prohibit
the importation of all animals unless
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
they are specifically placed on a list of
allowable species (HLRB 2002; CGAPS
2010). The importation and interstate
transport of invasive vertebrates is
federally regulated by the Service under
the Lacey Act as ‘‘injurious wildlife’’
(Fowler et al. 2007, pp. 353¥359); the
current list of vertebrates considered as
‘‘injurious wildlife’’ is provided at 50
CFR 16. The law in its current form has
limited effectiveness in preventing
invasive vertebrate introductions into
the State of Hawaii because the list of
vertebrates considered to be ‘‘injurious
wildlife’’ under the Lacey Act is
relatively limited.
Nonnative Invertebrate Species
Predation by nonnative invertebrate
pests (flatworms, slugs, snails) adversely
impacts 26 of the plant species and the
3 tree snails addressed in this rule (see
Table 4 and Factor C. Disease or
Predation, above). It is likely that the
introduction of most nonnative
invertebrate pests to the State has been
and continues to be accidental and
incidental to other intentional and
permitted activities. The prevention and
control of introduction of pest species in
Hawaii is the responsibility of Hawaii
State government and Federal agencies,
and is being voluntarily addressed by a
few private organizations. Even though
these agencies have regulations and
some controls in place (see above), the
introduction and movement of
nonnative invertebrate pest species
between islands and from one
watershed to the next continues. For
example, an average of 20 new alien
invertebrate species were introduced to
Hawaii per year since 1970, an increase
of 25 percent over the previous totals
between 1930 and 1970 (TNCH 1992, p.
8). Existing regulatory mechanisms
therefore appear inadequate to
ameliorate the threat of introductions of
nonnative invertebrates, and we have no
evidence to suggest that any change to
this situation is anticipated in the
future.
Nonnative Plant Species
Nonnative plants destroy and modify
habitat throughout the ranges of 36 of
the 40 species being addressed in this
final rule (see Table 4, above). As such,
they represent a serious and ongoing
threat to each of these species. In
addition, nonnative plants have been
shown to outcompete native plants and
convert native-dominated plant
communities to nonnative plant
communities (See ‘‘Habitat Destruction
and Modification by Nonnative Plants,’’
under Factor A, above).
The State of Hawaii allows the
importation of most plant taxa, with
PO 00000
Frm 00045
Fmt 4701
Sfmt 4700
32057
limited exceptions, if shipped from
domestic ports (HLRB 2002; USDA–
APHIS–PPQ 2010; CGAPS 2009).
Hawaii’s plant import rules (H.A.R. 4–
70) regulate the importation of 13 plant
taxa of economic interest; regulated
crops include pineapple, sugarcane,
palms, and pines. Certain horticultural
crops (e.g., orchids) may require import
permits and have pre-entry
requirements that include treatment or
quarantine or both either prior to or
following entry into the State. The State
noxious weed list (H.A.R. 4–68) and
USDA–APHIS–PPQ’s Restricted Plants
List restrict the import of a limited
number of noxious weeds. If not
specifically prohibited, current Federal
regulations allow plants to be imported
from international ports with some
restrictions. The Federal Noxious Weed
List (see 7 CFR 360.200) includes few of
the many globally known invasive
plants, and plants in general do not
require a weed risk assessment prior to
importation from international ports.
The USDA–APHIS–PPQ is in the
process of finalizing rules to include a
weed risk assessment for newly
imported plants. Although the State has
general guidelines for the importation of
plants, and regulations are in place
regarding the plant crops mentioned
above, the intentional or inadvertent
introduction of nonnative plants outside
the regulatory process and movement of
species between islands and from one
watershed to the next continues, and
represents a threat to native flora for the
reasons described above. In addition,
government funding is inadequate to
provide for sufficient inspection
services and monitoring. One study
concluded that the plant importation
laws virtually ensure new invasive
plants will be introduced via the
nursery and ornamental trade, and that
outreach efforts cannot keep up with the
multitude of new invasive plants being
distributed. The author states the only
thing that wide-scale public outreach
can do in this regard is to let the public
know new invasive plants are still being
sold, and they should ask for
noninvasive or native plants instead
(Martin 2007, in litt.).
On the basis of the above information,
existing State and Federal regulatory
mechanisms are not preventing
introduction of nonnative species into
Hawaii via interstate and international
mechanisms, or via intrastate movement
of nonnative species between islands
and watersheds in Hawaii. Therefore,
State and Federal regulatory
mechanisms do not adequately protect
the 40 species being addressed in this
final rule from the threat of new
E:\FR\FM\28MYR2.SGM
28MYR2
32058
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
introductions of nonnative species or
the continued expansion of nonnative
species populations on and between
islands and watersheds. Nonnative
species may prey upon, modify or
destroy habitat of, or directly compete
with one or more of the 40 species for
food, space, and other necessary
resources. The impacts from these
introduced threats are ongoing and are
expected to continue into the future.
Summary of Inadequacy of Existing
Regulatory Mechanisms
Existing State and Federal regulatory
mechanisms are not preventing the
introduction into Hawaii of nonnative
species or the spread of nonnative
species between islands and
watersheds. Habitat-altering nonnative
plant species (Factor A) and predation
by nonnative animal species (Factor C)
pose a major ongoing threat to the 40
species being addressed in this final
rule. Thirty-five of the 37 plant species
experience threats from habitat
degradation and loss by nonnative
plants (Factor A), and all 37 plants
experience threats from nonnative
animals (Factor A and Factor C). All
three tree snail species experience
threats from habitat degradation and
loss by nonnative plants (Newcombia
cumingi) or nonnative animals
(Partulina semicarinata and P.
variabilis). The three tree snails
experience threats from predation by
nonnative animals (Factor C). Therefore,
we conclude these existing regulatory
mechanisms are inadequate to
sufficiently reduce these threats to all 40
species.
mstockstill on DSK4VPTVN1PROD with RULES2
E. Other Natural or Manmade Factors
Affecting Their Continued Existence
Other factors that pose threats to some
or all of the 40 species include small
numbers of individuals and small
numbers of populations, hybridization,
lack of regeneration, and human
trampling as a result of hiking and other
activities. Each threat is discussed in
detail below, along with identification
of which species are affected by these
threats.
Small Number of Individuals and
Populations
Species that are endemic to single
islands are inherently more vulnerable
to extinction than are widespread
species, because of the increased risk of
genetic bottlenecks, random
demographic fluctuations, climate
change effects, and localized
catastrophes such as hurricanes,
landslides, rockfalls, drought, and
disease outbreaks (Pimm et al. 1988, p.
757; Mangel and Tier 1994, p. 607).
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
These problems are further magnified
when populations are few and restricted
to a very small geographic area, and
when the number of individuals in each
population is very small. Populations
with these characteristics face an
increased likelihood of stochastic
extinction due to changes in
demography, the environment, genetics,
´
or other factors (Gilpin and Soule 1986,
pp. 24–34). A single, stochastic event
can result in the extinction of an entire
species, if all the representatives of that
species are concentrated in a single area.
In addition, small, isolated populations
often exhibit reduced levels of genetic
variability, which diminishes the
species’ capacity to adapt and respond
to environmental changes, thereby
lessening the probability of long-term
persistence (e.g., Barrett and Kohn 1991,
p. 4; Newman and Pilson 1997, p. 361).
Very small, isolated populations are also
more susceptible to reduced
reproductive vigor due to ineffective
pollination (plants), inbreeding
depression (plants and snails), and
hybridization (plants). The problems
associated with small population size
and vulnerability to random
demographic fluctuations or natural
catastrophes are further magnified by
synergistic interactions with other
threats, such as those discussed above
(see Factors A and C, above).
Plants
The following 20 plant species in this
final rule face the threat of limited
numbers (i.e., they total fewer than 50
individuals in the wild): Cyanea
grimesiana ssp. grimesiana, C. horrida,
C. magnicalyx, C. maritae, C. mauiensis,
C. munroi, C. obtusa, C. profuga, C.
solanacea, Cyrtandra ferripilosa,
Festuca molokaiensis, Peperomia
subpetiolata, Phyllostegia bracteata, P.
haliakalae, P. pilosa, Pittosporum
halophilum, Schiedea jacobii, S. laui,
Stenogyne kauaulaensis, and
Wikstroemia villosa. We consider small
population size to be a threat to these
species for the following reasons:
• Cyanea grimesiana ssp. grimesiana
has not been observed since 1991 on
Molokai (PEPP 2010, p. 45).
• The only known wild occurrences
of Cyanea horrida, C. magnicalyx, C.
maritae, and C. munroi are susceptible
to threats from habitat degradation or
loss by flooding, landslides, or tree falls,
or a combination of these, because of
their locations in lowland wet, montane
wet, and wet cliff ecosystems (TNC
2007; TNCH 2010a; HBMP 2008; PEPP
2009, pp. 23–24, 49–58).
• The last confirmed observation of
Cyanea mauiensis in the wild was over
100 years ago. Botanists believe
PO 00000
Frm 00046
Fmt 4701
Sfmt 4700
individuals of this species still remain,
as potentially suitable habitat has not
been searched. However, there are no
tissues, propagules, or seeds in storage
or propagation (Lammers 2004, pp. 84–
85; TNC 2007).
• Cyanea obtusa is susceptible to
predation by feral pigs, goats, axis deer,
and cattle, and to direct destruction and
habitat degradation and loss by fire
because the only two known individuals
of this species are not protected from
direct predation by ungulates, or from
fire (Lau 2001, in litt.; PEPP 2007, p. 40;
HBMP 2008; PEPP 2008, p. 55; Duvall
2010, in litt.).
• Cyanea profuga and C. solanacea
are each known from fewer than five
scattered occurrences in the montane
wet ecosystem. These two plant species
are susceptible to predation by
nonnative pigs and goats, as well as
habitat degradation or destruction by
these nonnative animals and by
landslides, rock and tree falls, or
flooding, or a combination of these
(HBMP 2008; PEPP 2009, pp. 23–24, 49–
58; Bakutis 2010, in litt.; Perlman 2010,
in litt.; Oppenheimer 2010a, in litt.;
TNCH 2011, pp. 21, 57).
• Cyrtandra ferripilosa is known from
two disparate occurrences totaling only
a few individuals that are not protected
from direct predation by nonnative pigs
and goats (Oppenheimer 2010f, in litt.;
Welton 2010b, in litt.).
• Festuca molokaiensis, known only
from its original collection location on
Molokai, has not been relocated for 2
years. Threats to this species include
habitat destruction or direct predation
by nonnative goats, nonnative plants,
and fire (Oppenheimer 2011a, pers.
comm.).
• Historically known from lower
Waikamoi on east Maui, the
identification of wild individuals of
Peperomia subpetiolata has not been
confirmed since 2001, although hybrids
between this species and other species
of Peperomia are reported in this area
(HBMP 2008; NTBG 2009g, p. 2;
Oppenheimer 2010a, in litt.; PEPP 2010,
p. 96).
• Only one individual of Phyllostegia
bracteata was known as recently as
2009, but even this single individual
was not relocated later in the same year.
Botanists continue to search potentially
suitable habitat near the last known
location for this ephemeral species
(NTBG 2009h, p. 3; PEPP 2009, pp. 89–
90; Oppenheimer 2010c, in litt.).
• The last known wild individual of
Phyllostegia haliakalae on Maui had
died by 2010, although there are
outplantings of this species near the
location of this individual. Botanists
continue to search potentially suitable
E:\FR\FM\28MYR2.SGM
28MYR2
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
mstockstill on DSK4VPTVN1PROD with RULES2
habitat on Maui for this species.
Phyllostegia haliakalae has not been
relocated on Molokai or Lanai for close
to 100 years (TNC 2007; HBMP 2008;
Oppenheimer 2010c, in litt.;
Oppenheimer 2011b, in litt.).
• The seven known individuals of
Phyllostegia pilosa are not protected
from direct predation by feral pigs and
goats on Maui. This species has not
been observed on Molokai for over 100
years (TNC 2007; HBMP 2008).
• Pittosporum halophilum is known
from three disparate locations, each
with one to three individuals, on
Molokai and its offshore islets. These
individuals are not protected from
predation by feral pigs or rats, or from
the threat of fire (Wood 2005, pp. 2, 41;
Bakutis 2010, in litt.; Hobdy 2010, in
litt.; Perlman 2010, in litt.).
• The only known wild individuals of
Schiedea jacobii were likely destroyed
by landslides because of their location
along wet cliffs between Hanawi Stream
and Kuhiwa drainage in the montane
wet ecosystem on east Maui. The State
plans to outplant propagated
individuals in Hanawi Natural Area
Reserve in 2011 (Wagner et al. 1999j, p.
286; HBMP 2008; Oppenheimer 2010a,
in litt.; Perlman 2010, in litt.).
• The 24 to 34 individuals of
Schiedea laui are facing imminent
threats from flooding and landslides
because of their location in a grotto
(HBMP 2008; Bakutis 2010, in litt.).
• Stenogyne kauaulaensis is only
known from three individuals. These
plants face imminent threats from
landslides and rockfalls because of their
location on steep slopes, and from
drought and fire in the montane mesic
ecosystem on west Maui (Wood and
Oppenheimer 2008, pp. 544–545;
Oppenheimer 2010a, in litt.).
• Wikstroemia villosa is known only
from a single occurrence, with two
individuals (Peterson 1999, p. 1,291;
TNC 2007; HBMP 2008; Oppenheimer
2010a, in litt.).
Tree Snails
Like most native island biota, the
endemic Hawaiian tree snails are
particularly sensitive to disturbances
due to low population numbers and
small geographic ranges (Hadfield et al.
1993, p. 610). We consider the three tree
snail species at risk of decline and
extinction due to threats associated with
low numbers of individuals and
populations because:
• Newcombia cumingi is known only
from a single wild population of one
individual and has not been
successfully maintained in captivity
(Hadfield 2007, pp. 2, 8; Hadfield 2008,
p. 10; Higashino 2013, in litt.).
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
• The only known wild populations
of Newcombia cumingi, Partulina
semicarinata, and P. variabilis face
serious threats from predation by
nonnative rats, Jackson’s chameleons,
and snails (Solem 1990, p. 35; Hadfield
1986, p. 325; Hadfield et al. 1993, p.
611; Hadfield 2007, p. 9; Hadfield 2009,
p. 11; Hadfield and Saufler 2009, p.
1595; Holland et al. 2010, p. 1,437).
• The number of individuals of
Partulina semicarinata and P. variabilis
has declined by approximately 50
percent between 1993 and 2005 at
known locations (Hadfield 2005, p.
305).
Hybridization
Natural hybridization is a frequent
phenomenon in plants and can lead to
the formation of new species (Orians
2000, p. 1,949), or sometimes to the
decline of species through genetic
assimilation or ‘‘introgression’’
(Ellstrand 1992, pp. 77, 81; Levin et al.
1996, pp. 10–16; Rhymer and Simberloff
1996, p. 85). Hybridization, however, is
especially problematic for rare species
that come into contact with species that
are abundant or more common (Rhymer
and Simberloff 1996, p. 83). We
consider hybridization to adversely
impact four species in this final rule
because it may lead to extinction of one
or both of the original genotypically
distinct species. Hybrids have been
reported between Bidens campylotheca
ssp. pentamera and B. campylotheca
ssp. waihoiensis, two subspecies in this
rule that occur in close proximity on
east Maui. In addition, on east Maui, the
species Cyanea obtusa is known from
two individuals, but only hybrids
between C. obtusa and the more
abundant C. elliptica are known on west
Maui. Furthermore, the current status of
the species Peperomia subpetiolata is
unknown because only hybrids between
P. subpetiolata and P. cookiana, and
perhaps P. hertapetiola, are known from
its historically reported locations on
east Maui.
Regeneration
Lack of, or low levels of, regeneration
(reproduction and recruitment) in the
wild has been observed and is a threat
to Pleomele fernaldii (Oppenheimer
2010a, in litt.). Although there are
currently approximately several
hundred to 1,000 individuals, very little
recruitment has been observed at the
known locations over the past 10 years
(Oppenheimer 2008d, in litt.). The
reasons for this are not clearly
understood.
PO 00000
Frm 00047
Fmt 4701
Sfmt 4700
32059
Human Trampling and Hiking
Human impacts, including trampling
by hikers, have been documented as a
threat to Cyanea maritae and
Wikstroemia villosa (Oppenheimer
2010o, in litt.; PEPP 2010, p. 51; Welton
2010b, in litt.) because individuals of
these species are found near climbing or
hiking trails. Individuals climbing and
hiking off established trails could
trample individual plants and
contribute to soil compaction and
erosion, preventing growth and
establishment of seedlings
(Oppenheimer 2010a, in litt.), as has
been observed with other native species
(Wood 2001, in litt.; MLP 2005, p. 23).
Conservation Efforts to Reduce Other
Natural or Manmade Factors Affecting
Its Continued Existence
There are no approved HCPs, SHAs,
CCAs, MOUs, or other voluntary actions
that specifically address the threats to
these 40 species from other natural or
manmade factors. The State’s PEP
Program collects, propagates, or
outplants 14 plant species that are
addressed in this final rule (Cyanea
asplenifolia, C. horrida, C. magnicalyx,
C. maritae, C. munroi, C. profuga, C.
solanacea, Phyllostegia haliakalae, P.
pilosa, Pittosporum halophilum,
Schiedea jacobii, S. laui, Stenogyne
kauaulaensis, and Wikstroemia villosa)
(PEPP 2011, pp. 75, 166, 191; PEPP
2012, pp. 6, 13, 34–36, 66–70, 73–81,
150, 159–160). While these actions are
a step toward increasing the overall
numbers and populations of these
species in the wild, these actions are
insufficient to eliminate the threat of
limited numbers to the 14 plant species
because the actions are relatively recent
(i.e., in the last few years) and
successful reproduction and
replacement of outplanted individuals
by seedlings, juveniles, and adults has
not yet been observed in the wild. We
are unaware of any voluntary
conservation actions to address the
threat to four plant species from
hybridization, the threat of lack of
regeneration to Pleomele fernaldii, or
the threat from human trampling to
Cyanea maritae and Wikstroemia
villosa.
The State’s University of Hawaii
receives funding from the Service and
other sources to propagate and maintain
in captivity the two Lanai tree snails,
Partulina semicarinata and P. variabilis,
and Newcomb’s tree snail (Newcombia
cumingi). While these actions appear to
be a step toward increasing the overall
numbers of these species in captivity,
both Lanai tree snail species appear to
be declining in captivity and
E:\FR\FM\28MYR2.SGM
28MYR2
32060
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
mstockstill on DSK4VPTVN1PROD with RULES2
individuals of Newcomb’s tree snail do
not survive long in captivity (Hadfield
2008, p. 1–11; Hadfield 2010, pers.
comm.; Hadfield 2011, pers. comm.)
(see Disease or Predation, above).
Summary of Other Natural or Manmade
Factors Affecting Their Continued
Existence
The conservation measures described
above are insufficient to eliminate the
threat from other natural or manmade
factors to each of the 40 species
addressed in this final rule. We consider
the limited numbers of populations and
few individuals (less than 50) to be a
serious and ongoing threat to 20 of the
37 plant species in this final rule
(Cyanea grimesiana ssp. grimesiana, C.
horrida, C. magnicalyx, C. maritae, C.
mauiensis, C. munroi, C. obtusa, C.
profuga, C. solanacea, Cyrtandra
ferripilosa, Festuca molokaiensis,
Peperomia subpetiolata, Phyllostegia
bracteata, P. haliakalae, P. pilosa,
Pittosporum halophilum, Schiedea
jacobii, S. laui, Stenogyne kauaulaensis,
and Wikstroemia villosa) because: (1)
These species may experience reduced
reproductive vigor due to ineffective
pollination or inbreeding depression; (2)
they may experience reduced levels of
genetic variability, leading to
diminished capacity to adapt and
respond to environmental changes,
thereby lessening the probability of
long-term persistence; and (3) a single
catastrophic event may result in
extirpation of remaining populations
and extinction of the species. This
threat applies to the entire range of each
species.
The threat to the three tree snails
Newcombia cumingi, Partulina
semicarinata, and P. variabilis from
limited numbers of populations and
individuals is ongoing and is expected
to continue into the future because: (1)
These species may experience reduced
reproductive vigor due to inbreeding
depression; (2) they may experience
reduced levels of genetic variability
leading to diminished capacity to adapt
and respond to environmental changes,
thereby lessening the probability of
long-term persistence; and (3) a single
catastrophic event (e.g., hurricane,
drought) may result in extirpation of
remaining populations and extinction of
these species. The limited distribution
of these three species thus compounds
the severity of the impact of the other
threats discussed in this final rule.
In addition, the threat to Bidens
campylotheca ssp. pentamera, B.
campylotheca ssp. waihoiensis, Cyanea
obtusa, and Peperomia subpetiolata
from hybridization is ongoing and
expected to continue into the future
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
because hybrids are reported between
these species and other, more abundant
species, and no efforts are being
implemented in the wild to prevent
potential hybridizations. In addition, we
consider the threat to Pleomele fernaldii
from lack of regeneration to be ongoing
and to continue into the future because
the reasons for the lack of recruitment
in the wild are unknown and
uncontrolled, and any competition from
nonnative plants or habitat modification
by ungulates or fire, or predation by
ungulates or rats, could lead to the
extirpation of this species. Also,
ongoing human activities (e.g.,
trampling and hiking) are a threat to
Cyanea maritae and Wikstroemia villosa
and are expected to continue into the
future because field biologists have
reported trampling of vegetation near
populations of Cyanea maritae and the
two remaining wild individuals of
Wikstroemia villosa, and the effects of
these activities could lead to injury and
death of individual plants, potentially
resulting in extirpation from the wild.
Summary of Factors
The primary factors that pose serious
and ongoing threats to one or more of
the 40 species throughout their ranges
in this final rule include: Habitat
degradation and destruction by
agriculture and urbanization, nonnative
ungulates and plants, fire, natural
disasters, and climate change, and the
interaction of these threats (Factor A);
overutilization due to collection of the
three tree snail species for trade or
market (Factor B); predation by
nonnative animal species (pigs, goats,
axis deer, mouflon sheep, cattle, rats,
Jackson’s chameleon, slugs, snails, and
flatworms) (Factor C); inadequate
regulatory mechanisms to address the
threats posed by nonnative species
(Factor D); and limited numbers of
populations and individuals,
hybridization, lack of regeneration, and
ongoing human activities (e.g.,
trampling and hiking) (Factor E). While
we acknowledge the voluntary
conservation measures described above
may help to ameliorate one or more of
the threats to the 40 species addressed
in this final rule, these conservation
measures are insufficient to control or
eradicate these threats from all areas
where these species occur now or
occurred historically.
Determination
We have carefully assessed the best
scientific and commercial data available
regarding the past, present, and future
threats to each of the 40 Maui Nui
species. We find that all of these species
face significant threats to their
PO 00000
Frm 00048
Fmt 4701
Sfmt 4700
existence, which are ongoing and
expected to continue into the future
throughout their ranges, from the
present destruction and modification of
their habitats, primarly from nonnative
feral ungulates and nonnative plants.
Thirteen of the plant species (Bidens
campylotheca ssp. pentamera,
Canavalia pubescens, Cyanea
magnicalyx, C. mauiensis, C. obtusa,
Festuca molokaiensis, Phyllostegia
bracteata, P. haliakalae, Pittosporum
halophilum, Pleomele fernaldii,
Santalum haleakalae var. lanaiense,
Schiedea salicaria, and Stenogyne
kauaulaensis) experience threats from
habitat destruction and modification
from fire, and 16 plant species (Bidens
campylotheca ssp. waihoiensis, Cyanea
asplenifolia, C. duvalliorum, C.
grimesiana ssp. grimesiana, C. horrida,
C. magnicalyx, C. maritae, C. mauiensis,
C. munroi, C. profuga, C. solanacea,
Cyrtandra filipes, Schiedea jacobii, S.
laui, Stenogyne kauaulaensis, and
Wikstroemia villosa) experience threats
from habitat destruction and
modification from landslides, rockfalls,
treefalls, or flooding. The plants
Canavalia pubescens, Cyanea horrida,
Festuca molokaiensis, Schiedea jacobii,
S. salicaria, and Stenogyne
kauaulaensis, as well as the tree snails
Newcombia cumingi, Partulina
semicarinata, and P. variabilis,
experience threats from habitat loss or
degradation due to drought. All 40
species experience threats from the
destruction and modification of their
habitats from hurricanes, although their
occurrence is not predictable. In
addition, we are concerned about the
effects of projected climate change on
all species, particularly rising
temperatures, but recognize there is
limited information on the exact nature
of impacts that these species may
experience (Factor A).
Overcollection for commercial and
recreational purposes poses a serious
potential threat to all three tree snail
species (Factor B). Predation and
herbivory on all 37 plant species by
feral pigs, goats, cattle, axis deer,
mouflon, rats, and slugs poses a serious
and ongoing threat, as does predation of
all three tree snail species (N. cumingi,
P. semicarinata, and P. variabilis) by
rats, nonnative snails, and potentially
Jackson’s chameleon (Factor C). Existing
regulatory mechanisms are inadequate
to reduce current and ongoing threats
posed by nonnative plants and animals
to all 40 species (Factor D). There are
current and ongoing threats to 20 plant
species (Cyanea grimesiana ssp.
grimesiana, C. horrida, C. magnicalyx,
C. maritae, C. mauiensis, C. munroi, C.
E:\FR\FM\28MYR2.SGM
28MYR2
mstockstill on DSK4VPTVN1PROD with RULES2
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
obtusa, C. profuga, C. solanacea,
Cyrtandra ferripilosa, Festuca
molokaiensis, Peperomia subpetiolata,
Phyllostegia bracteata, P. haliakalae, P.
pilosa, Pittosporum halophilum,
Schiedea jacobii, S. laui, Stenogyne
kauaulaensis, and Wikstroemia villosa)
and the three tree snails due to factors
associated with small numbers of
populations and individuals; to Bidens
campylotheca ssp. pentamera, B.
campylotheca ssp. waihoiensis, Cyanea
obtusa, and Peperomia subpetiolata
from hybridization; to Pleomele
fernaldii from the lack of regeneration in
the wild; and to Cyanea maritae and
Wikstroemia villosa from hiking and
trampling (Factor E) (see Table 4). These
threats are exacerbated by these species’
inherent vulnerability to extinction from
stochastic events at any time because of
their endemism, small numbers of
individuals and populations, and
restricted habitats.
The Act defines an endangered
species as any species that is ‘‘in danger
of extinction throughout all or a
significant portion of its range’’ and a
threatened species as any species ‘‘that
is likely to become endangered
throughout all or a significant portion of
its range within the foreseeable future.’’
We find that each of these endemic
species is presently in danger of
extinction throughout its entire range,
based on the immediacy, severity, and
scope of the threats described above.
Based on our analysis, we have no
reason to believe that population trends
for any of the species addressed in this
final rule will improve, nor will the
negative impacts of current threats
acting on the species be effectively
ameliorated in the future. Therefore, on
the basis of the best available scientific
and commercial data, we are listing,
or—in the case of Cyanea grimesiana
ssp. grimesiana and Santalum
haleakalae var. lanaiense—reaffirming
the listing of, the following 40 species
as endangered in accordance with
section 3(6) of the Act: the plants Bidens
campylotheca ssp. pentamera, Bidens
campylotheca ssp. waihoiensis, Bidens
conjuncta, Calamagrostis hillebrandii,
Canavalia pubescens, Cyanea
asplenifolia, Cyanea duvalliorum,
Cyanea grimesiana ssp. grimesiana,
Cyanea horrida, Cyanea kunthiana,
Cyanea magnicalyx, Cyanea maritae,
Cyanea mauiensis, Cyanea munroi,
Cyanea obtusa, Cyanea profuga, Cyanea
solanacea, Cyrtandra ferripilosa,
Cyrtandra filipes, Cyrtandra oxybapha,
Festuca molokaiensis, Geranium
hanaense, Geranium hillebrandii,
Mucuna sloanei var. persericea, Myrsine
vaccinioides, Peperomia subpetiolata,
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
Phyllostegia bracteata, Phyllostegia
haliakalae, Phyllostegia pilosa,
Pittosporum halophilum, Pleomele
fernaldii, Santalum haleakalae var.
lanaiense, Schiedea jacobii, Schiedea
laui, Schiedea salicaria, Stenogyne
kauaulaensis, and Wikstroemia villosa;
and the tree snails Newcombia cumingi,
Partulina semicarinata, and Partulina
variabilis.
Under the Act and our implementing
regulations, a species may warrant
listing if it is endangered or threatened
throughout all or a significant portion of
its range. Each of the 40 endemic Maui
Nui species in this final rule is highly
restricted in its range, and the threats
occur throughout its range. Therefore,
we assessed the status of each species
throughout its entire range. In each case,
the threats to the survival of these
species occur throughout the species’
range and are not restricted to any
particular portion of that range.
Accordingly, our assessment and
determination applies to each species
throughout its entire range.
Available Conservation Measures
Conservation measures provided to
species listed as endangered or
threatened under the Act include
recognition, recovery actions,
requirements for Federal protection, and
prohibitions against certain activities.
Recognition through listing results in
public awareness and conservation by
Federal, State, and local agencies,
private organizations, and individuals.
The Act encourages cooperation with
the States and requires that recovery
actions be carried out for all listed
species. The protection measures
required of Federal agencies and the
prohibitions against certain activities
involving listed animals and plants are
discussed, in part, below.
The primary purpose of the Act is the
conservation of endangered and
threatened species and the ecosystems
upon which they depend. The ultimate
goal of such conservation efforts is the
recovery of these listed species, so that
they no longer need the protective
measures of the Act. Subsection 4(f) of
the Act requires the Service to develop
and implement recovery plans for the
conservation of endangered and
threatened species. The recovery
planning process involves the
identification of actions that are
necessary to halt or reverse the species’
decline by addressing the threats to its
survival and recovery. The goal of this
process is to restore listed species to a
point where they are secure, selfsustaining, and functioning components
of their ecosystems.
PO 00000
Frm 00049
Fmt 4701
Sfmt 4700
32061
Recovery planning includes the
development of a recovery outline
shortly after a species is listed,
preparation of a draft and final recovery
plan, and revisions to the plan as
significant new information becomes
available. The recovery outline guides
the immediate implementation of urgent
recovery actions and describes the
process to be used to develop a recovery
plan. The recovery plan identifies sitespecific management actions that will
achieve recovery of the species,
measurable criteria that help to
determine when a species may be
downlisted or delisted, and methods for
monitoring recovery progress. Recovery
plans also establish a framework for
agencies to coordinate their recovery
efforts and provide estimates of the cost
of implementing recovery tasks.
Recovery teams (composed of species
experts, Federal and State agencies,
non-government organizations, and
stakeholders) are often established to
develop recovery plans. When
completed, the recovery outlines, draft
recovery plans, and the final recovery
plans will be available from our Web
site (https://www.fws.gov/endangered),
or from our Pacific Islands Fish and
Wildlife Office (see FOR FURTHER
INFORMATION CONTACT).
Implementation of recovery actions
generally requires the participation of a
broad range of partners, including other
Federal agencies, States,
nongovernmental organizations,
businesses, and private landowners.
Examples of recovery actions include
habitat restoration (e.g., restoration of
native vegetation, control of nonnative
plants), management of threats from
predation (e.g., feral ungulate control,
rat control), research, captive
propagation and reintroduction, and
outreach and education. The recovery of
many listed species cannot be
accomplished solely on Federal lands
because their range may occur primarily
or solely on non-Federal lands. To
achieve recovery of these species
requires cooperative conservation efforts
on private and State lands.
Funding for recovery actions may be
available from a variety of sources,
including Federal budgets, State
programs, and cost share grants for nonFederal landowners, the academic
community, and nongovernmental
organizations. In addition, under section
6 of the Act, the State of Hawaii will be
eligible for Federal funds to implement
management actions that promote the
protection and recovery of the 40
species. Information on our grant
programs that are available to aid
species recovery can be found at:
https://www.fws.gov/grants.
E:\FR\FM\28MYR2.SGM
28MYR2
mstockstill on DSK4VPTVN1PROD with RULES2
32062
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
Please let us know if you are
interested in participating in recovery
efforts for these listed species.
Additionally, we invite you to submit
any new information on these species
whenever it becomes available and any
information you may have for recovery
planning purposes (see FOR FURTHER
INFORMATION CONTACT).
Section 7(a) of the Act, as amended,
requires Federal agencies to evaluate
their actions with respect to any species
that is proposed or listed as endangered
or threatened with respect to its critical
habitat, if any is designated. Regulations
implementing this interagency
cooperation provision of the Act are
codified at 50 CFR part 402. Section
7(a)(1) of the Act mandates that all
Federal agencies shall utilize their
authorities in furtherance of the
purposes of the Act by carrying out
programs for the conservation of
endangered and threatened species
listed under section 4 of the Act.
Section 7(a)(2) of the Act requires
Federal agencies to ensure that activities
they authorize, fund, or carry out are not
likely to jeopardize the continued
existence of a listed species or result in
destruction or adverse modification of
critical habitat. If a Federal action may
affect the continued existence of a listed
species or its critical habitat, the
responsible Federal agency must enter
into consultation with the Service.
For the 40 plants and animals listed
or reaffirmed as endangered in this final
rule, Federal agency actions that may
require consultation as described in the
preceding paragraph include, but are
not limited to, actions within the
jurisdiction of the Natural Resources
Conservation Service (NRCS), the U.S.
Army Corps of Engineers, the U.S. Fish
and Wildlife Service, and branches of
the Department of Defense (DOD).
Examples of these types of actions
include activities funded or authorized
under the Farm Bill Program,
Environmental Quality Incentives
Program, Ground and Surface Water
Conservation Program, Clean Water Act
(33 U.S.C. 1251 et seq.), Partners for
Fish and Wildlife Program, and DOD
construction activities related to
training or other military missions.
The Act and its implementing
regulations set forth a series of general
prohibitions and exceptions that apply
to all endangered wildlife and plants.
The prohibitions, codified at 50 CFR
17.21 and 17.61, apply. These
prohibitions, in part, make it illegal for
any person subject to the jurisdiction of
the United States to take (includes
harass, harm, pursue, hunt, shoot,
wound, kill, trap, capture, or collect; or
to attempt any of these), import, export,
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
ship in interstate commerce in the
course of commercial activity, or sell or
offer for sale in interstate or foreign
commerce any listed wildlife species. It
is also illegal to possess, sell, deliver,
carry, transport, or ship any such
wildlife that has been taken illegally. In
addition, for plants listed as
endangered, the Act prohibits the
malicious damage or destruction on
areas under Federal jurisdiction and the
removal, cutting, digging up, or
damaging or destroying of such plants
in knowing violation of any State law or
regulation, including State criminal
trespass law. Certain exceptions to the
prohibitions apply to agents of the
Service and State conservation agencies.
We may issue permits to carry out
otherwise prohibited activities
involving endangered or threatened
wildlife and plant species under certain
circumstances. Regulations governing
permits are codified at 50 CFR 17.22
and 17.62 for endangered species. With
regard to endangered wildlife, a permit
must be issued for the following
purposes: For scientific purposes, to
enhance the propagation and survival of
the species, and for incidental take in
connection with otherwise lawful
activities. With regard to endangered
plants, a permit must be issued for the
following purposes: For scientific
purposes or for the enhancement of
propagation or survival. Requests for
copies of the regulations regarding listed
species and inquiries about prohibitions
and permits may be addressed to U.S.
Fish and Wildlife Service, Pacific
Region, Ecological Services, Eastside
Federal Complex, 911 NE. 11th Avenue,
Portland, OR 97232–4181 (telephone
503–231–6131; facsimile 503–231–
6243).
It is our policy, as published in the
Federal Register on July 1, 1994 (59 FR
34272), to identify to the maximum
extent practicable at the time a species
is listed, those activities that would or
would not constitute a violation of
section 9 of the Act. The intent of this
policy is to increase public awareness of
the effect of a listing on proposed and
ongoing activities within the range of a
listed species. The following activities
could potentially result in a violation of
section 9 of the Act; this list is not
comprehensive:
(1) Unauthorized collecting, handling,
possessing, selling, delivering, carrying,
or transporting of the species, including
import or export across State lines and
international boundaries, except for
properly documented antique
specimens of these taxa at least 100
years old, as defined by section 10(h)(1)
of the Act;
PO 00000
Frm 00050
Fmt 4701
Sfmt 4700
(2) Activities that take or harm the
three tree snail species by causing
significant habitat modification or
degradation such that it causes actual
injury by significantly impairing
essential behavioral patterns. This may
include introduction of nonnative
species that compete with or prey upon
the three species of tree snails or the
unauthorized release of biological
control agents that attack any life stage
of these three species; and
(3) Damaging or destroying any of the
37 listed plants in violation of the
Hawaii State law prohibiting the take of
listed species.
Questions regarding whether specific
activities would constitute a violation of
section 9 of the Act should be directed
to the Pacific Islands Fish and Wildlife
Office (see FOR FURTHER INFORMATION
CONTACT). Requests for copies of the
regulations concerning listed species
and general inquiries regarding
prohibitions and permits may be
addressed to the U.S. Fish and Wildlife
Service, Pacific Region, Ecological
Services, Endangered Species Permits,
Eastside Federal Complex, 911 NE. 11th
Avenue, Portland, OR 97232–4181
(telephone 503–231–6131; facsimile
503–231–6243).
The State of Hawaii’s endangered
species law (HRS, Section 195–D) is
automatically invoked when a species is
listed, and provides supplemental
protection, including prohibiting take of
these species and encouraging
conservation by State government
agencies. Further, the State may enter
into agreements with Federal agencies
to administer and manage any area
required for the conservation,
management, enhancement, or
protection of endangered species (H.R.S.
195D–5). Funds for these activities
could be made available under section
6 of the Act (Cooperation with the
States). Thus, the Federal protection
afforded to listed species is reinforced
and supplemented by protection under
State law.
Required Determinations
National Environmental Policy Act
(NEPA)
We have determined that
environmental assessments and
environmental impact statements, as
defined under the authority of the
National Environmental Policy Act
(NEPA; 42 U.S.C. 4321 et seq.), need not
be prepared in connection with listing
a species as an endangered or
threatened species under the
Endangered Species Act. We published
a notice outlining our reasons for this
E:\FR\FM\28MYR2.SGM
28MYR2
32063
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
determination in the Federal Register
on October 25, 1983 (48 FR 49244).
References Cited
A complete list of references cited in
this rule is available on the Internet at
https://www.regulations.gov under
Docket No. FWS–R1–ES–2011–0098 and
upon request from the Pacific Islands
Fish and Wildlife Office (see
ADDRESSES, above).
Authors
The primary authors of this document
are the staff members of the Pacific
Islands Fish and Wildlife Office.
Endangered and threatened species,
Exports, Imports, Reporting and
recordkeeping requirements,
Transportation.
Accordingly, we amend part 17,
subchapter B of chapter I, title 50 of the
Code of Federal Regulations, as set forth
below:
PART 17—AMENDED
§ 17.11 Endangered and threatened
wildlife.
1. The authority citation for Part 17
continues to read as follows:
*
■
*
*
*
(h) * * *
Historic
range
*
Vertebrate
population
where
endangered or
threatened
*
Scientific name
*
2. Amend § 17.11(h), the List of
Endangered and Threatened Wildlife, by
adding entries for ‘‘Snail, Lanai tree’’
(Partulina semicarinata), ‘‘Snail, Lanai
tree’’ (Partulina variabilis), and ‘‘Snail,
Newcomb’s tree’’ (Newcombia cumingi),
in alphabetical order under SNAILS, to
read as follows:
■
Regulation Promulgation
Species
Common name
Authority: 16 U.S.C. 1361–1407; 16 U.S.C.
1531–1544; 16 U.S.C. 4201–4245; Pub. L. 99–
625, 100 Stat. 3500; unless otherwise noted.
List of Subjects in 50 CFR Part 17
*
*
When
listed
Status
*
Critical
habitat
*
Special
rules
*
SNAILS
*
*
Snail, Lanai tree ............................
Snail, Lanai tree ............................
*
Partulina semicarinata ...
Partulina variabilis .........
*
U.S.A. (HI) ........
U.S.A. (HI) ........
*
NA .......................
NA .......................
E .......
E .......
*
*
Snail, Newcomb’s tree ..................
*
Newcombia cumingi ......
*
U.S.A. (HI) ........
*
NA .......................
E .......
*
*
*
*
*
3. Amend § 17.12(h), the List of
Endangered and Threatened Plants, as
follows:
■ a. By removing the entries for Gahnia
lanaiensis and Santalum freycinetianum
var. lanaiense under FLOWERING
PLANTS;
■ b. By revising the entry for Cyanea
grimesiana ssp. grimesiana under
FLOWERING PLANTS; and
■ c. By adding entries for Bidens
campylotheca ssp. pentamera, Bidens
campylotheca ssp. waihoiensis, Bidens
conjuncta, Calamagrostis hillebrandii,
■
Canavalia pubescens, Cyanea
asplenifolia, Cyanea duvalliorum,
Cyanea horrida, Cyanea kunthiana,
Cyanea magnicalyx, Cyanea maritae,
Cyanea mauiensis, Cyanea munroi,
Cyanea obtusa, Cyanea profuga, Cyanea
solanacea, Cyrtandra ferripilosa,
Cyrtandra filipes, Cyrtandra oxybapha,
Festuca molokaiensis, Geranium
hanaense, Geranium hillebrandii,
Mucuna sloanei var. persericea, Myrsine
vaccinioides, Peperomia subpetiolata,
Phyllostegia bracteata, Phyllostegia
*
*
815
815
NA ...........
NA ...........
815
NA ...........
*
NA
NA
*
*
NA
*
haliakalae, Phyllostegia pilosa,
Pittosporum halophilum, Pleomele
fernaldii, Santalum haleakalae var.
lanaiense, Schiedea jacobii, Schiedea
laui, Schiedea salicaria, Stenogyne
kauaulaensis, and Wikstroemia villosa
in alphabetical order under
FLOWERING PLANTS, to read as
follows:
§ 17.12
*
Endangered and threatened plants.
*
*
(h) * * *
Species
*
When
listed
*
Critical
habitat
Historic range
Family
Status
*
Kookoolau ....................
*
U.S.A. (HI) ......
*
Asteraceae ........
E .......
*
815
*
Kookoolau ....................
*
U.S.A. (HI) ......
*
Asteraceae ........
E .......
*
815
NA ...................
*
*
Bidens conjuncta ........................
*
Kookoolau ....................
*
U.S.A. (HI) ......
*
Asteraceae ........
E .......
*
815
NA ...................
*
*
Calamagrostis hillebrandii ...........
*
None ............................
*
U.S.A. (HI) ......
*
Poaceae ............
E .......
*
815
NA ...................
Special
rules
NA ...................
Scientific name
Common name
FLOWERING PLANTS
mstockstill on DSK4VPTVN1PROD with RULES2
*
Bidens campylotheca ssp.
pentamera.
*
*
Bidens campylotheca ssp.
waihoiensis.
*
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
PO 00000
Frm 00051
Fmt 4701
Sfmt 4700
E:\FR\FM\28MYR2.SGM
28MYR2
*
NA
*
NA
*
NA
*
NA
32064
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
Species
When
listed
Critical
habitat
Historic range
Family
Status
*
Awikiwiki ......................
*
U.S.A. (HI) ......
*
Fabaceae ...........
E .......
*
815
*
*
Cyanea asplenifolia ....................
*
Haha ............................
*
U.S.A. (HI) ......
*
Campanulaceae
E .......
*
815
NA ...................
*
*
Cyanea duvalliorum ....................
*
Haha ............................
*
U.S.A. (HI) ......
*
Campanulaceae
E .......
*
815
NA ...................
*
Cyanea grimesiana ssp.
grimesiana.
*
Haha ............................
*
U.S.A. (HI) ......
*
Campanulaceae
E .......
*
592,
815
17.99(c), (e)(1),
and (i).
*
*
Cyanea horrida ...........................
*
Haha nui ......................
*
U.S.A. (HI) ......
*
Campanulaceae
E .......
*
815
NA ...................
*
*
Cyanea kunthiana .......................
*
Haha ............................
*
U.S.A. (HI) ......
*
Campanulaceae
E .......
*
815
NA ...................
*
*
Cyanea magnicalyx ....................
*
Haha ............................
*
U.S.A. (HI) ......
*
Campanulaceae
E .......
*
815
NA ...................
*
*
Cyanea maritae ..........................
*
Haha ............................
*
U.S.A. (HI) ......
*
Campanulaceae
E .......
*
815
NA ...................
*
*
Cyanea mauiensis ......................
*
Haha ............................
*
U.S.A. (HI) ......
*
Campanulaceae
E .......
*
815
NA ...................
*
*
Cyanea munroi ...........................
*
Haha ............................
*
U.S.A. (HI) ......
*
Campanulaceae
E .......
*
815
NA ...................
*
*
Cyanea obtusa ............................
*
Haha ............................
*
U.S.A. (HI) ......
*
Campanulaceae
E .......
*
815
NA ...................
*
*
Cyanea profuga ..........................
*
Haha ............................
*
U.S.A. (HI) ......
*
Campanulaceae
E .......
*
815
NA ...................
*
*
Cyanea solanacea ......................
*
Popolo ..........................
*
U.S.A. (HI) ......
*
Campanulaceae
E .......
*
815
NA ...................
*
*
Cyrtandra ferripilosa ...................
*
Haiwale ........................
*
U.S.A. (HI) ......
*
Gesneriaceae ....
E .......
*
815
NA ...................
*
*
Cyrtandra filipes ..........................
*
Haiwale ........................
*
U.S.A. (HI) ......
*
Gesneriaceae ....
E .......
*
815
NA ...................
*
*
Cyrtandra oxybapha ...................
*
Haiwale ........................
*
U.S.A. (HI) ......
*
Gesneriaceae ....
E .......
*
815
NA ...................
*
*
Festuca molokaiensis .................
*
None ............................
*
U.S.A. (HI) ......
*
Poaceae ............
E .......
*
815
NA ...................
*
*
Geranium hanaense ...................
*
Nohoanu ......................
*
U.S.A. (HI) ......
*
Geraniaceae ......
E .......
*
815
NA ...................
*
*
Geranium hillebrandii ..................
*
Nohoanu ......................
*
U.S.A. (HI) ......
*
Geraniaceae ......
E .......
*
815
NA ...................
*
*
Mucuna sloanei var. persericea
*
Sea bean .....................
*
U.S.A. (HI) ......
*
Fabaceae ...........
E .......
*
815
NA ...................
*
*
Myrsine vaccinioides ...................
*
Kolea ............................
*
U.S.A. (HI) ......
*
Myrsinaceae ......
E .......
*
815
NA ...................
*
*
Peperomia subpetiolata ..............
*
Alaala wai nui ..............
*
U.S.A. (HI) ......
*
Piperaceae ........
E .......
*
815
NA ...................
*
*
Phyllostegia bracteata ................
*
None ............................
*
U.S.A. (HI) ......
*
Lamiaceae .........
E .......
*
815
NA ...................
*
*
Phyllostegia haliakalae ...............
*
None ............................
*
U.S.A. (HI) ......
*
Lamiaceae .........
E .......
*
815
NA ...................
Common name
*
*
Canavalia pubescens .................
mstockstill on DSK4VPTVN1PROD with RULES2
Special
rules
NA ...................
Scientific name
VerDate Mar<15>2010
*
17:59 May 24, 2013
Jkt 229001
PO 00000
Frm 00052
Fmt 4701
Sfmt 4700
E:\FR\FM\28MYR2.SGM
28MYR2
*
NA
*
NA
*
NA
*
NA
*
NA
*
NA
*
NA
*
NA
*
NA
*
NA
*
NA
*
NA
*
NA
*
NA
*
NA
*
NA
*
NA
*
NA
*
NA
*
NA
*
NA
*
NA
*
NA
*
NA
32065
Federal Register / Vol. 78, No. 102 / Tuesday, May 28, 2013 / Rules and Regulations
Species
When
listed
Critical
habitat
Historic range
Family
Status
*
None ............................
*
U.S.A. (HI) ......
*
Lamiaceae .........
E .......
*
815
*
*
Pittosporum halophilum ..............
*
Hoawa ..........................
*
U.S.A. (HI) ......
*
Pittosporaceae ...
E .......
*
815
NA ...................
*
*
Pleomele fernaldii .......................
*
Hala pepe ....................
*
U.S.A. (HI) ......
*
Asparagaceae ...
E .......
*
815
NA ...................
*
Santalum haleakalae var.
lanaiense.
*
Lanai sandalwood or
iliahi.
*
U.S.A. (HI) ......
*
Santalaceae .......
E .......
*
215,
815
NA ...................
*
*
Schiedea jacobii ..........................
*
None ............................
*
U.S.A. (HI) ......
*
Caryophyllaceae
E .......
*
815
NA ...................
*
*
Schiedea laui ..............................
*
None ............................
*
U.S.A. (HI) ......
*
Caryophyllaceae
E .......
*
815
NA ...................
*
*
Schiedea salicaria .......................
*
None ............................
*
U.S.A. (HI) ......
*
Caryophyllaceae
E .......
*
815
NA ...................
*
*
Stenogyne kauaulaensis .............
*
None ............................
*
U.S.A. (HI) ......
*
Lamiaceae .........
E .......
*
815
NA ...................
*
*
Wikstroemia villosa .....................
*
Akia ..............................
*
U.S.A. (HI) ......
*
Thymelaeaceae
E .......
*
815
NA ...................
Common name
*
*
Phyllostegia pilosa ......................
*
*
*
*
*
Dated: May 14, 2013.
Stephen Guertin,
Deputy Director, U.S. Fish and Wildlife
Service.
*
[FR Doc. 2013–12105 Filed 5–24–13; 8:45 am]
BILLING CODE 4310–55–P
mstockstill on DSK4VPTVN1PROD with RULES2
Special
rules
NA ...................
Scientific name
VerDate Mar<15>2010
17:59 May 24, 2013
Jkt 229001
PO 00000
Frm 00053
Fmt 4701
Sfmt 9990
E:\FR\FM\28MYR2.SGM
28MYR2
*
NA
*
NA
*
NA
*
NA
*
NA
*
NA
*
NA
*
NA
*
NA
Agencies
[Federal Register Volume 78, Number 102 (Tuesday, May 28, 2013)]
[Rules and Regulations]
[Pages 32013-32065]
From the Federal Register Online via the Government Printing Office [www.gpo.gov]
[FR Doc No: 2013-12105]
[[Page 32013]]
Vol. 78
Tuesday,
No. 102
May 28, 2013
Part II
Department of the Interior
-----------------------------------------------------------------------
Fish and Wildlife Service
-----------------------------------------------------------------------
50 CFR Part 17
Endangered and Threatened Wildlife and Plants; Determination of
Endangered Status for 38 Species on Molokai, Lanai, and Maui; Final
Rule
Federal Register / Vol. 78 , No. 102 / Tuesday, May 28, 2013 / Rules
and Regulations
[[Page 32014]]
-----------------------------------------------------------------------
DEPARTMENT OF THE INTERIOR
Fish and Wildlife Service
50 CFR Part 17
[Docket No. FWS-R1-ES-2011-0098; 4500030113]
RIN 1018-AX14
Endangered and Threatened Wildlife and Plants; Determination of
Endangered Status for 38 Species on Molokai, Lanai, and Maui
AGENCY: Fish and Wildlife Service, Interior.
ACTION: Final rule.
-----------------------------------------------------------------------
SUMMARY: We, the U.S. Fish and Wildlife Service (Service), determine
endangered status under the Endangered Species Act of 1973 (Act), as
amended, for 38 species on the Hawaiian Islands of Molokai, Lanai, and
Maui, and reaffirm the listing of 2 endemic Hawaiian plants currently
listed as endangered. In this final rule, we are also delisting the
plant Gahnia lanaiensis, due to new information that this species is
synonymous with G. lacera, a widespread species from New Zealand. The
effect of this regulation is to conserve these 40 species under the
Endangered Species Act.
DATES: This rule becomes effective on June 27, 2013.
ADDRESSES: This final rule is available on the Internet at https://www.regulations.gov. Comments and materials received, as well as
supporting documentation used in preparing this final rule are
available for public inspection, by appointment, during normal business
hours, at U.S. Fish and Wildlife Service, Pacific Islands Fish and
Wildlife Office, 300 Ala Moana Boulevard, Box 50088, Honolulu, HI
96850; telephone 808-792-9400; facsimile 808-792-9581.
FOR FURTHER INFORMATION CONTACT: Loyal Mehrhoff, Field Supervisor, U.S.
Fish and Wildlife Service, Pacific Islands Fish and Wildlife Office,
300 Ala Moana Boulevard, Box 50088, Honolulu, HI 96850; by telephone at
808-792-9400; or by facsimile at 808-792-9581. If you use a
telecommunications device for the deaf (TDD), call the Federal
Information Relay Service (FIRS) at 800-877-8339.
SUPPLEMENTARY INFORMATION:
Executive Summary
Why we need to publish a rule. This is a final rule to list 38
species (35 plants and 3 tree snails) as endangered under the Act from
the island cluster of Maui Nui (Molokai, Lanai, Maui, and Kahoolawe) in
the State of Hawaii. In addition, the rule reaffirms the listing of two
endemic Hawaiian plants currently listed as endangered. Collectively,
in this document we refer to these 40 species as the ``Maui Nui
species.''
The basis for our action. Under the Endangered Species Act, we
determine that a species is endangered or threatened based on any of
five factors: (A) The present or threatened destruction, modification,
or curtailment of its habitat or range; (B) overutilization for
commercial, recreational, scientific, or educational purposes; (C)
disease or predation; (D) the inadequacy of existing regulatory
mechanisms; or (E) other natural or manmade factors affecting its
continued existence. We have determined that the 40 Maui Nui species
are currently in danger of extinction throughout all their ranges, as
the result of the following current and ongoing threats:
All of these species face threats from the present
destruction and modification of their habitat, primarily from
introduced ungulates (such as feral pigs, goats, cattle, mouflon sheep,
and axis deer) and the spread of nonnative plants.
Thirteen plant species face threats from habitat
destruction and modification from fire.
All 37 plant species face threats from destruction and
modification of their habitats from hurricanes, landslides, rockfalls,
and flooding. In addition, hurricanes are a threat to all three tree
snail species.
Nine of these species face threats from habitat
destruction and modification from drought.
The projected effects of climate change will likely
exacerbate the effects of the other threats to these species.
There is a serious threat of widespread impacts of
predation and herbivory on all 37 plant species by nonnative ungulates,
rats, and invertebrates; and predation on the three tree snails by
nonnative rats and invertebrates.
Some of the plant species face the additional threat of
trampling.
The inadequacy of existing regulatory mechanisms
(specifically inadequate protection of habitat and inadequate
protection from the introduction of nonnative species) poses a current
and ongoing threat to all 40 species.
There are current and ongoing threats to 20 plant species
and the 3 tree snail species due to factors associated with small
numbers of populations and individuals.
Five plant species face threats from hybridization and
lack of or low levels of regeneration.
These threats are exacerbated by these species' inherent
vulnerability to extinction from stochastic events at any time because
of their endemism, small numbers of individuals and populations, and
restricted habitats.
We fully considered comments from the public, including comments
received during a public hearing and comments received from peer
reviewers, on the proposed rule.
Peer reviewers support our methods. We obtained opinions from four
knowledgeable individuals with scientific expertise to review our
technical assumptions, analysis, and whether or not we had used the
best available information. These peer reviewers generally concurred
with our methods and conclusions, and provided additional information,
clarifications, and suggestions to improve this final rule.
This document consists of a final rule to list 35 plant species and
3 tree snail species as endangered and reaffirms the listing as
endangered for 2 plants (40 species total). We additionally delist the
plant Gahnia lanaiensis due to taxonomic error.
Previous Federal Actions
Federal actions for these species prior to June 11, 2012, are
outlined in our proposed rule (77 FR 34464), which was published on
that date. Publication of the proposed rule opened a 60-day comment
period, which was extended on August 9, 2012 (77 FR 47587), for an
additional 30 days and closed on September 10, 2012. We published a
public notice of the proposed rule on June 20, 2012, in the local
Honolulu Star Advertiser, Maui Times, and Molokai Dispatch newspapers.
On January 31, 2013 (78 FR 6785), we reopened the comment period for an
additional 30 days on the entire June 11, 2012, proposed rule (77 FR
34464), as well as the draft economic analysis on the proposed critical
habitat designation, and announced a public information meeting and
hearing that we held in Kihei, Maui, on February 21, 2013. This second
comment period closed on March 4, 2013. In total, we accepted public
comments on the June 11, 2012, proposed rule for 120 days.
Background
On June 11, 2012, we published in the Federal Register (77 FR
34464) a proposed rule to list 38 species on the Hawaiian Islands of
Molokai, Lanai, and Maui as endangered under the Endangered Species Act
of 1973, as
[[Page 32015]]
amended (Act; 16 U.S.C. 1531 et seq.). We also proposed to reaffirm the
listing of two endemic Hawaiian plants listed as endangered. We further
proposed to designate critical habitat for 39 of these 40 plant and
animal species, to designate critical habitat for 11 previously listed
plant and animal species that do not have designated critical habitat,
and to revise critical habitat for 85 plant species already listed as
endangered or threatened.
The final critical habitat determination for the Maui Nui species
is still under development and undergoing Service review. It will
publish in the Federal Register in the near future under Docket No.
FWS-R1-ES-2013-0003. That document will also provide our final
determinations regarding the name changes and spelling corrections
proposed in our June 1, 2012, proposed rule (77 FR 34464).
Maui Nui Species Addressed in this Final Rule
The table below (Table 1) provides the common name, scientific
name, and listing status for the species that are the subject of this
final rule.
Table 1--the Maui Nui Species Addressed in This Final Rule
[Note that many of the species share the same common name]
----------------------------------------------------------------------------------------------------------------
Scientific name Common name(s) Listing Status
----------------------------------------------------------------------------------------------------------------
Species Listed as Endangered
----------------------------------------------------------------------------------------------------------------
Plants:
Bidens campylotheca ssp. pentamera kookoolau.................................. Endangered.
Bidens campylotheca ssp. kookoolau.................................. Endangered.
waihoiensis.
Bidens conjuncta.................. kookoolau.................................. Endangered.
Calamagrostis hillebrandii........ [NCN] \1\.................................. Endangered.
Canavalia pubescens............... awikiwiki.................................. Endangered.
Cyanea asplenifolia............... haha....................................... Endangered.
Cyanea duvalliorum................ haha....................................... Endangered.
Cyanea horrida.................... haha nui................................... Endangered.
Cyanea kunthiana.................. haha....................................... Endangered.
Cyanea magnicalyx................. haha....................................... Endangered.
Cyanea maritae.................... haha....................................... Endangered.
Cyanea mauiensis.................. haha....................................... Endangered.
Cyanea munroi..................... haha....................................... Endangered.
Cyanea obtusa..................... haha....................................... Endangered.
Cyanea profuga.................... haha....................................... Endangered.
Cyanea solanacea.................. popolo..................................... Endangered.
Cyrtandra ferripilosa............. haiwale.................................... Endangered.
Cyrtandra filipes................. haiwale.................................... Endangered.
Cyrtandra oxybapha................ haiwale.................................... Endangered.
Festuca molokaiensis.............. [NCN]...................................... Endangered.
Geranium hanaense................. nohoanu.................................... Endangered.
Geranium hillebrandii............. nohoanu.................................... Endangered.
Mucuna sloanei var. persericea.... sea bean................................... Endangered.
Myrsine vaccinioides.............. kolea...................................... Endangered.
Peperomia subpetiolata............ alaala wai nui............................. Endangered.
Phyllostegia bracteata............ [NCN]...................................... Endangered.
Phyllostegia haliakalae........... [NCN]...................................... Endangered.
Phyllostegia pilosa............... [NCN]...................................... Endangered.
Pittosporum halophilum............ hoawa...................................... Endangered.
Pleomele fernaldii................ hala pepe.................................. Endangered.
Schiedea jacobii.................. [NCN]...................................... Endangered.
Schiedea laui..................... [NCN]...................................... Endangered.
Schiedea salicaria................ [NCN]...................................... Endangered.
Stenogyne kauaulaensis............ [NCN]...................................... Endangered.
Wikstroemia villosa............... akia....................................... Endangered.
Animals:
Newcombia cumingi................. Newcomb's tree snail....................... Endangered.
Partulina semicarinata............ Lanai tree snail........................... Endangered.
Partulina variabilis.............. Lanai tree snail........................... Endangered.
----------------------------------------------------------------------------------------------------------------
Species Reevaluated for Listing
----------------------------------------------------------------------------------------------------------------
Cyanea grimesiana ssp. grimesiana..... haha....................................... Endangered.
Santalum haleakalae var. lanaiense iliahi..................................... Endangered.
(synonym = Santalum freycinetianum
var. lanaiense).
----------------------------------------------------------------------------------------------------------------
\1\ NCN = no common name.
Taxonomic Changes Since Listing for Two Maui Nui Plant Species
At the time we listed Cyanea grimesiana ssp. grimesiana as
endangered (61 FR 53108; October 10, 1996), we followed the taxonomic
treatment of Lammers in Wagner et al. (1990, pp. 451-452). The
distribution of C. grimesiana ssp. grimesiana as recognized at that
time included the islands of Oahu, Molokai, Lanai, and Maui.
Subsequently, Lammers (1998, pp. 31-32) recognized morphological
differences in the broadly circumscribed Cyanea grimesiana group and
published new combinations for the plants reported from Maui (C.
mauiensis) and
[[Page 32016]]
Lanai (C. munroi). Plants reported from Molokai were identified as
either C. munroi or C. grimesiana ssp. grimesiana. In 2004, Lammers
(pp. 85-87) recognized further differences in the plants reported from
Maui and described a new species, C. magnicalyx, known only from west
Maui. The range of C. grimesiana ssp. grimesiana now includes only Oahu
and Molokai (Lammers 1998, pp. 31-32; Lammers 2004, pp. 84-85). Because
the range of the listed entity has changed, we evaluated the effects of
the five factors described in section 4(a)(1) of the Act on C.
grimesiana ssp. grimesiana as currently recognized, and determine that
this species warrants endangered status under the Act (see Summary of
Factors Affecting the 40 Maui Nui Species, below).
We listed Santalum freycinetianum var. lanaiense as endangered (51
FR 3182; January 24, 1986) in 1986. At that time, the species was known
only from the island of Lanai. Our recovery plan for this species,
published in 1995, recognized that the range of the species
additionally includes west Maui, as well as Lanai, based on new
information (USFWS 1995a, pp. 35-36). In her revision of the Hawaiian
species of Santalum, Harbaugh et al. (2010, pp. 834-835) moved the
plants previously recognized as S. freycinetianum var. lanaiense to S.
haleakalae var. lanaiense. The range of S. haleakalae var. lanaiense
now includes Molokai, Lanai, and east and west Maui (HBMP 2010;
Harbaugh et al. 2010, pp. 834-835). Because the range of the listed
entity has changed, we evaluated the effects of the five factors
described in section 4(a)(1) of the Act on S. haleakalae var. lanaiense
as currently recognized and determine that this species as described
herein warrants its status as endangered under the Act (see Summary of
Factors Affecting the 40 Maui Nui Species, below).
Delisting of Gahnia lanaiensis
Gahnia lanaiensis was listed as endangered in 1991 (56 FR 47686;
September 20, 1991). At that time, this species was known from 15 or 16
large ``clumped'' plants growing on the summit of Lanaihale, on the
island of Lanai. The distribution of these plants was considered to be
the entire known range of the species. Gahnia lanaiensis was listed as
threatened due the small number of individuals remaining and resulting
negative consequences of very small populations, which increased the
potential for extinction of the species due to stochastic events; the
potential for destruction of plants due their proximity to a popular
hiking and jeep trail; and habitat degradation and destruction by feral
ungulates and nonnative plants (56 FR 47686; September 20, 1991).
In a recently published paper, Koyama et al. (2010, pp. 29-30)
found that based on spikelet and achene characters, Gahnia lanaiensis
is a complete match for G. lacera, a species endemic to New Zealand.
Koyama further states that G. lacera likely arrived on Lanai, either
intentionally or unintentionally, through the restoration efforts of
George Munro, the Resident Manager of Lanai Ranch from 1911 to 1930
(Koyama 2010, p. 30). Born and raised in New Zealand, Munro is known to
have used seeds of New Zealand's native plants for reforestation
efforts on Lanai (Koyama 2010, p. 30).
Because Gahnia lanaiensis is not believed to be a uniquely valid
species; is synonymous with G. lacera, a species endemic to New Zealand
where it is known to be common (Piha New Zealand Plant Conservation
Network 2010, in litt.); and is not in danger of extinction or likely
to become an endangered species within the foreseeable future
throughout all or a significant portion of its range, we delist G.
lanaiensis due to error in the original listing. We did not receive any
public comments on our proposed delisting of G. lanaiensis due to
taxonomic error.
An Ecosystem-based Approach
On the islands of Molokai, Lanai, and Maui, as on most of the
Hawaiian Islands, native species that occur in the same habitat types
(ecosystems) depend on many of the same biological features and the
successful functioning of that ecosystem to survive. We have therefore
organized the species addressed in this final rule by common ecosystem.
Although the listing determination for each species is analyzed
separately, we have organized the individual analysis for each species
within the context of the broader ecosystem in which it occurs to avoid
redundancy. In addition, native species that share ecosystems often
face a suite of common factors that may negatively impact them, and
ameliorating or eliminating these threats for each individual species
often requires the exact same management actions in the exact same
areas. Effective management of these threats often requires
implementation of conservation actions at the ecosystem scale to
enhance or restore critical ecological processes and provide for long-
term viability of those species in their native environment. Thus, by
taking this approach, we hope to not only organize this rule
efficiently, but also to more effectively focus conservation management
efforts on the common threats that occur across these ecosystems. Those
efforts would facilitate restoration of ecosystem functionality for the
recovery of each species, and provide conservation benefits for
associated native species, thereby potentially precluding the need to
list other species under the Act that occur in these shared ecosystems.
In addition, this approach is in concordance with one of the primary
stated purposes of the Act, as stated in section 2(b): ``to provide a
means whereby the ecosystems upon which endangered species and
threatened species depend may be conserved.''
We are listing the plants Bidens campylotheca ssp. pentamera,
Bidens campylotheca ssp. waihoiensis, Bidens conjuncta, Calamagrostis
hillebrandii, Cyanea asplenifolia, Cyanea duvalliorum, Cyanea horrida,
Cyanea kunthiana, Cyanea magnicalyx, Cyanea maritae, Cyanea mauiensis,
Cyanea munroi, Cyanea obtusa, Cyanea profuga, Cyanea solanacea,
Cyrtandra ferripilosa, Cyrtandra filipes, Cyrtandra oxybapha, Festuca
molokaiensis, Geranium hanaense, Geranium hillebrandii, Mucuna sloanei
var. persericea, Myrsine vaccinioides, Peperomia subpetiolata,
Phyllostegia bracteata, Phyllostegia haliakalae, Phyllostegia pilosa,
Pittosporum halophilum, Pleomele fernaldii, Schiedea jacobii, Schiedea
laui, Schiedea salicaria, Stenogyne kauaulaensis, and Wikstroemia
villosa; and the tree snails Newcombia cumingi, Partulina semicarinata
and Partulina variabilis, from the islands of Molokai, Lanai, and Maui
as endangered species. We are also listing the plant Canavalia
pubescens, known from the islands of Niihau, Kauai, Lanai, and Maui as
an endangered species. In addition, we reaffirm the listing of two
plant species, Santalum haleakalae var. lanaiense (formerly Santalum
freycinetianum var. lanaiense) from the islands of Molokai, Lanai, and
Maui, and Cyanea grimesiana ssp. grimesiana, known from Oahu and
Molokai, as endangered species. These 40 species (37 plants and 3 tree
snails) are found in 10 ecosystem types: Coastal, lowland dry, lowland
mesic, lowland wet, montane dry, montane wet, montane mesic, subalpine,
dry cliff, and wet cliff (Table 3).
[[Page 32017]]
Table 3--The 40 Maui NUI Species \1\ and the Ecosystems Upon Which They
Depend
------------------------------------------------------------------------
Island
Ecosystem --------------------------------------------------
Molokai Lanai Maui
------------------------------------------------------------------------
Coastal.............. Pittosporum Canavalia
halophilum. pubescens
Lowland Dry.......... ............... Pleomele Bidens
fernaldii. campylotheca
ssp.
pentamera.
Canavalia
pubescens.
Cyanea obtusa.
Santalum
haleakalae
var.
lanaiense.
Schiedea
salicaria.
Lowland Mesic........ Cyanea profuga. Pleomele Bidens
fernaldii. campylotheca
ssp.
pentamera.
Cyanea Santalum Cyanea
solanacea. haleakalae asplenifolia.
var. lanaiense.
Cyrtandra ............... Cyanea
filipes. mauiensis.\2\
Festuca ............... Santalum
molokaiensis. haleakalae
var. lanaiense
Phyllostegia ...............
haliakalae
Phyllostegia ...............
pilosa
Santalum ...............
haleakalae
var. lanaiense
Lowland Wet.......... Cyanea Pleomele Bidens
grimesiana fernaldii. campylotheca
ssp. ssp.
grimesiana. waihoiensis.
Cyanea Santalum Bidens
solanacea. haleakalae conjuncta.
var. lanaiense.
Cyrtandra Partulina Cyanea
filipes. semicarinata. asplenifolia.
Partulina Cyanea
variabilis. duvalliorum.
Cyanea
kunthiana.
Cyanea
magnicalyx.
Cyanea maritae.
Cyrtandra
filipes.
Mucuna sloanei
var.
persericea.
Phyllostegia
bracteata
Santalum
haleakalae
var.
lanaiense.
Wikstroemia
villosa.
Newcombia
cumingi.
Montane Dry.......... ............... ............... Santalum
haleakalae
var.
lanaiense.
Montane Mesic........ Cyanea ............... Bidens
solanacea. campylotheca
ssp.pentamera.
Santalum ............... Cyanea horrida.
haleakalae
var. lanaiense.
Cyanea
kunthiana.
Cyanea
magnicalyx.
Cyanea obtusa.
Cyrtandra
ferripilosa.
Cyrtandra
oxybapha
Geranium
hillebrandii.
Phyllostegia
bracteata.
Phyllostegia
haliakalae.
Santalum
haleakalae
var.
lanaiense.
Stenogyne
kauaulaensis.
Wikstroemia
villosa.
Montane Wet.......... Cyanea profuga. Santalum Bidens
haleakalae campylotheca
var. lanaiense. ssp.
pentamera.
Cyanea Partulina Bidens
solanacea. semicarinata. campylotheca
ssp.
waihoiensis.
Phyllostegia Partulina Bidens
pilosa. variabilis. conjuncta.
Schiedea laui.. ............... Calamagrostis
hillebrandii.
Cyanea
duvalliorum.
Cyanea horrida.
Cyanea
kunthiana.
Cyanea maritae.
Cyrtandra
ferripilosa.
Cyrtandra
oxybapha.
Geranium
hanaense.
Geranium
hillebrandii.
Myrsine
vaccinioides.
Peperomia
subpetiolata.
Phyllostegia
bracteata.
Phyllostegia
pilosa.
Schiedea
jacobii.
Wikstroemia
villosa.
Subalpine............ ............... ............... Phyllostegia
bracteata.
Dry Cliff............ Phyllostegia Pleomele Bidens
haliakalae. fernaldii. campylotheca
ssp.
pentamera.
Pleomele Cyanea
fernaldii. mauiensis. \2\
Wet Cliff............ Cyanea Cyanea munroi.. Bidens
grimesiana campylotheca
ssp. ssp.
grimesiana. pentamera.
Cyanea munroi.. Phyllostegia Bidens
haliakalae. campylotheca
ssp.
waihoiensis.
Pleomele Bidens
fernaldii. conjuncta.
Santalum Cyanea horrida.
haleakalae
var. lanaiense.
Partulina Cyanea
semicarinata. magnicalyx.
Partulina Cyrtandra
variabilis. filipes.
Phyllostegia
bracteata.
Phyllostegia
haliakalae.
[[Page 32018]]
Santalum
haleakalae
var.
lanaiense.
------------------------------------------------------------------------
\1\ 37 species are plants and 3 species (Newcombia cumingi, Partulina
semicarinata, and Partulina variabilis) are tree snails.
\2\ Not seen since the 1800s.
For each species, we identified and evaluated those factors that
adversely impact the species and that may be common to all of the
species at the ecosystem level. For example, the degradation of habitat
by nonnative ungulates is considered a threat to 37 of the 40 species,
and is likely a threat to many, if not most or even all, of the native
species within a given ecosystem. We consider such a threat to be an
``ecosystem-level threat,'' as each individual species within that
ecosystem faces an adverse impact that is essentially identical in
terms of the nature of the its impact, its severity, its imminence, and
its scope. Beyond ecosystem-level impacts, we further identified and
evaluated factors that may represent unique adverse impacts to certain
species, but do not apply to all species under consideration within the
same ecosystem. For example, the threat of predation by nonnative
snails is unique to the three tree snails in this rule, and is not
applicable to any of the other 37 species. We have identified such
threats, which apply only to certain species within the ecosystems
addressed here, as ``species-specific threats.''
The Islands of Maui Nui
The islands of Maui Nui include Molokai, Lanai, Maui, and Kahoolawe
(Figure 1). During the last Ice Age, about 21,000 years ago, when sea
levels were approximately 459 feet (ft) (140 meters (m)) below their
present level, these four islands were connected by a broad lowland
plain and unified as a single island (Nullet et al. 1998, p. 64;
Ziegler 2002, p. 22). This land bridge allowed the movement and
interaction of each island's flora and fauna and contributed to the
present close relationships of their biota (Nullet et al. 1998, p. 64).
[GRAPHIC] [TIFF OMITTED] TR28MY13.000
The island of Molokai is the fifth largest of the eight main
Hawaiian Islands. It was formed from three shield volcanoes and is
about 260 square miles (sq mi) (673 square kilometers (sq km)) in area
(Juvik and Juvik 1998, pp. 11, 13). The volcanoes that make up most of
the land mass of Molokai include the west and east Molokai mountains,
and
[[Page 32019]]
a volcano that formed Kalaupapa peninsula. The taller and larger east
Molokai mountain rises 4,970 ft (1,514 m) above sea level and comprises
roughly 50 percent of the island's area (Juvik and Juvik 1998, p. 11).
Topographically, the windward (north) side of east Molokai differs from
the leeward (south) side. Precipitous cliffs line the windward coast
and deep valleys dissect the coastal area. The annual rainfall on the
windward side of Molokai is 75 to more than 150 inches (in) (200 to
more than 375 centimeters (cm)) (Giambelluca and Schroeder 1998, p.
50).
The island of Lanai is the sixth largest of the eight main Hawaiian
Islands, located southeast of Molokai and northwest of Hawaii Island.
It is located in the lee or rain shadow of the taller west Maui
mountains. Lanai was formed from a single shield volcano and built by
eruptions at its summit and along three rift zones (Clague 1998, p.
42). The island is about 140 sq mi (364 sq km) in area and its highest
point, Lanaihale, has an elevation of 3,366 ft (1,027 m) (Clague 1998,
p. 42; Juvik and Juvik 1998, p. 13; Walker 1999, p. 21). Annual
rainfall on the summit is 30 to 40 in (76 to 102 cm), but is
considerably less, 10 to 20 in (25 to 50 cm), over much of the rest of
the island (Giambelluca and Schroeder 1998, p. 56).
The island of Maui is the second largest of the eight main Hawaiian
Islands, located southeast of Molokai and northwest of Hawaii Island
(Juvik and Juvik 1998, p. 14). It was formed from two shield volcanoes
and resulted in the west Maui mountains, which are about 1.3 million
years old, and Haleakala on east Maui, which is about 750,000 years old
(Juvik and Juvik 1998, p. 14). West and east Maui are connected by the
central Maui isthmus, and the island's total land area is 729 sq mi
(1,888 sq km) (Juvik and Juvik 1998, p. 14; Walker 1999, p. 21). The
west Maui mountains have been eroded by streams that created deep
valleys and ridges. The highest point on west Maui is Puu Kukui at
5,788 ft (1,764 m) in elevation, with with an average rainfall greater
than 400 in (1,020 cm) per year (Juvik and Juvik 1998, p. 14; Wagner et
al. 1999b, p. 41; Giambelluca et al. 2011-Online Rainfall Atlas of
Hawaii). East Maui's Haleakala volcano remains volcanically active,
with its last eruption occurring less than 500 years ago (Sherrod et
al. 2007, p. 40). Haleakala rises 10,023 ft (3,055 m) in elevation, and
despite being younger in age, possesses areas of diverse vegetation
equal or greater than the older and more eroded west Maui mountains
(Price 2004, p. 493). Rainfall on the slopes of Haleakala ranges from
about 35 in (89 cm) to over 400 in (1,000 cm) per year, with its
windward (northeastern) slope receiving the most precipitation
(Giambelluca et al. 2011-Online Rainfall Atlas of Hawaii). However,
Haleakala's crater is a dry cinder desert because it is above the level
at which precipitation develops and is sheltered from moisture-laden
winds usually associated with orographic (mountain) rainfall
(Giambelluca and Schroeder 1998, p. 55).
The island of Kahoolawe is the smallest of the eight main Hawaiian
Islands, located southeast of Molokai and northwest of Hawaii Island.
The island is about 45 sq mi (116 sq km) in area, and was formed from a
single shield volcano (Clague 1998, p. 42; Juvik and Juvik 1998, pp. 7,
16). The maximum elevation on Kahoolawe is 1,477 ft (450 m) at the
summit of Puu Moaulanui (Juvik and Juvik 1998, pp. 15-16). Kahoolawe is
in the rain shadow of Haleakala and is arid, receiving no more than 25
in (65 cm) of rainfall annually (Juvik and Juvik 1998, p. 16; Mitchell
et al. 2005, pp. 6-66).
The vegetation of the islands of Maui Nui has undergone extreme
alterations because of past and present land use and other activities.
Land with rich soils was altered by the early Hawaiians and, more
recently, converted to agricultural use in the production of sugar and
pineapple (Gagne and Cuddihy 1999, p. 45) or pasture. For example, on
Haleakala, on the island of Maui, the upland slopes have been converted
to diversified agriculture and cattle ranches (Juvik and Juvik 1998, p.
16). Archaeological surveys suggest that the early Hawaiians did not
live in the highest areas of Haleakala but instead inhabited the area
temporarily for religious ceremonies, the creation of adzes (tools used
for smoothing or carving wood), and bird hunting (Burney 1997, p. 448).
Intentional and inadvertent introduction of alien plant and animal
species has also contributed to the reduction in range of native
vegetation on the islands of Maui Nui (throughout this rule, the terms
``alien,'' ``feral,'' ``nonnative,'' and ``introduced'' all refer to
species that are not naturally native to the Hawaiian Islands).
Currently, most of the native vegetation on the islands persists on
upper elevation slopes, valleys and ridges; steep slopes; precipitous
cliffs; valley headwalls; and other regions where unsuitable topography
has prevented urbanization and agricultural development, or where
inaccessibility has limited encroachment by nonnative plant and animal
species.
Maui Nui Ecosystems
There are 11 different ecosystems (coastal, lowland dry, lowland
mesic, lowland wet, montane dry, montane mesic, montane wet, subalpine,
alpine, dry cliff, and wet cliff) recognized on the islands of Maui
Nui. The 40 species in this rule occur in 10 of these ecosystems (all
except the alpine). All 11 Maui Nui ecosystems are described in the
following section.
Coastal
The coastal ecosystem is found on all of the main Hawaiian Islands,
with the highest native species diversity in the least populated
coastal areas of Kauai, Oahu, Molokai, Maui, Kahoolawe, Hawaii Island,
and their associated islets. On Molokai, Lanai, Maui, and Kahoolawe,
the coastal ecosystem includes mixed herblands, shrublands, and
grasslands, from sea level to 980 ft (300 m) in elevation, generally
within a narrow zone above the influence of waves to within 330 ft (100
m) inland, sometimes extending further inland if strong prevailing
onshore winds drive sea spray and sand dunes into the lowland zone (The
Nature Conservancy (TNC) 2006a). The coastal ecosystem is typically
dry, with annual rainfall of less than 20 in (50 cm); however, windward
rainfall may be high enough (up to 40 in (100 cm)) to support mesic-
associated and sometimes wet-associated vegetation (Gagne and Cuddihy
1999, pp. 54-66). Biological diversity is low to moderate in this
ecosystem, but may include some specialized plants and animals such as
nesting seabirds and the endangered plant Sesbania tomentosa (ohai)
(TNC 2006a). The plants Canavalia pubescens and Pittosporum halophilum,
which are listed as endangered in this final rule, are reported in this
ecosystem on Molokai or Lanai (Hawaii Biodiversity and Mapping Program
(HBMP) 2008; TNC 2007).
Lowland Dry
The lowland dry ecosystem includes shrublands and forests generally
below 3,300 ft (1,000 m) elevation that receive less than 50 in (130
cm) annual rainfall, or are in otherwise prevailingly dry substrate
conditions that range from weathered reddish silty loams to stony clay
soils, rocky ledges with very shallow soil, or relatively recent
little-weathered lava (Gagne and Cuddihy 1999, p. 67). Areas consisting
of predominantly native species in the lowland dry ecosystem are now
rare; this ecosystem is found on the islands of Kauai, Oahu, Molokai,
Lanai, Maui, Kahoolawe and Hawaii, and is best
[[Page 32020]]
represented on the leeward sides of the islands (Gagne and Cuddihy
1999, p. 67). On the islands of Maui Nui, this ecosystem is typically
found on the leeward side of the mountains (Gagne and Cuddihy 1999, p.
67; TNC 2006b). Native biological diversity is low to moderate in this
ecosystem, and includes specialized animals and plants such as the
Hawaiian owl or pueo (Asio flammeus sandwichensis) and Santalum
ellipticum (iliahialoe or coast sandalwood) (Wagner et al. 1999c, pp.
1,220-1,221; TNC 2006b). The plants Bidens campylotheca ssp. pentamera,
Canavalia pubescens, Cyanea obtusa, Pleomele fernaldii, Santalum
haleakalae var. lanaiense, and Schiedea salicaria, which are listed as
endangered in this final rule, are reported from this ecosystem on
Lanai or Maui (HBMP 2008; TNC 2007).
Lowland Mesic
The lowland mesic ecosystem includes a variety of grasslands,
shrublands, and forests, generally below 3,300 ft (1,000 m) elevation,
that receive between 50 and 75 in (130 and 190 cm) annual rainfall (TNC
2006c). In the Hawaiian Islands, this ecosystem is found on Kauai,
Molokai, Lanai, Maui, and Hawaii, on both windward and leeward sides of
the islands. On the islands of Maui Nui, this ecosystem is typically
found on the leeward slopes of Molokai, Lanai, and Maui (Gagne and
Cuddihy 1999, p. 75; TNC 2006c). Native biological diversity is high in
this system (TNC 2006c). The plants Bidens campylotheca ssp. pentamera,
Cyanea asplenifolia, C. profuga, C. solanacea, Cyrtandra filipes,
Festuca molokaiensis, Phyllostegia haliakalae, P. pilosa, Pleomele
fernaldii, and Santalum haleakalae var. lanaiense, which are listed as
endangered in this final rule, are reported in this ecosystem on this
islands of Molokai, Lanai, or Maui (HBMP 2008; TNC 2007). In addition,
Cyanea mauiensis, also listed as endangered in this final rule, may
have occurred in this ecosystem on Maui, but this species has not been
observed for over 100 years. The species-specific habitat needs of
Cyanea mauiensis are not known.
Lowland Wet
The lowland wet ecosystem is generally found below 3,300 ft (1,000
m) elevation on the windward sides of the main Hawaiian Islands, except
Niihau and Kahoolawe (Gagne and Cuddihy 1999, p. 85; TNC 2006d). These
areas include a variety of wet grasslands, shrublands, and forests that
receive greater than 75 in (190 cm) annual precipitation, or are in
otherwise wet substrate conditions (TNC 2006d). On the islands of Maui
Nui, this system is best developed in wet valleys and slopes on
Molokai, Lanai, and Maui (TNC 2006d). Native biological diversity is
high in this system (TNC 2006d). The plants Bidens campylotheca ssp.
waihoiensis, B. conjuncta, Cyanea asplenifolia, C. duvalliorum, C.
grimesiana ssp. grimesiana, C. kunthiana, C. magnicalyx, C. maritae, C.
solanacea, Cyrtandra filipes, Mucuna sloanei var. persericea,
Phyllostegia bracteata, Pleomele fernaldii, Santalum haleakalae var.
lanaiense, and Wikstroemia villosa; and the tree snails Newcombia
cumingi, Partulina semicarinata, and P. variabilis, which are listed as
endangered in this final rule, are reported in this ecosystem on
Molokai, Lanai, or Maui (HBMP 2008; TNC 2007).
Montane Wet
The montane wet ecosystem is composed of natural communities
(grasslands, shrublands, forests, and bogs) found at elevations between
3,300 and 6,500 ft (1,000 and 2,000 m), in areas where annual
precipitation is greater than 75 in (190 cm) (TNC 2006e). This system
is found on all of the main Hawaiian Islands except Niihau and
Kahoolawe, and only the islands of Molokai, Maui, and Hawaii have areas
above 4,020 ft (1,225 m) (TNC 2006e). On the islands of Maui Nui this
ecosystem is found on Molokai, Lanai, and Maui (TNC 2007). Native
biological diversity is moderate to high (TNC 2006e). The plants Bidens
campylotheca ssp. pentamera, B. campylotheca ssp. waihoiensis, B.
conjuncta, Calamagrostis hillebrandii, Cyanea duvalliorum, C. horrida,
C. kunthiana, C. maritae, C. profuga, C. solanacea, Cyrtandra
ferripilosa, C. oxybapha, Geranium hanaense, G. hillebrandii, Myrsine
vaccinioides, Peperomia subpetiolata, Phyllostegia bracteata, P.
pilosa, Santalum haleakalae var. lanaiense, Schiedea jacobii, S. laui,
and Wikstroemia villosa; and the tree snails Partulina semicarinata and
P. variabilis, which are listed as endangered in this final rule, are
reported in this ecosystem on the islands of Molokai, Lanai, or Maui
(HBMP 2008; TNC 2007).
Montane Mesic
The montane mesic ecosystem is composed of natural communities
(forests and shrublands) found at elevations between 3,300 and 6,500 ft
(1,000 and 2,000 m), in areas where annual precipitation is between 50
and 75 in (130 and 190 cm), or are in otherwise mesic substrate
conditions (TNC 2006f). This system is found on Kauai, Molokai, Maui,
and Hawaii Island (Gagne and Cuddihy 1999, pp. 97-99; TNC 2007). Native
biological diversity is moderate, and this habitat is important for
Hawaiian forest birds (Gagne and Cuddihy 1999, pp. 98-99; TNC 2006f).
The plants Bidens campylotheca ssp. pentamera, Cyanea horrida, C.
kunthiana, C. magnicalyx, C. obtusa, C. solanacea, Cyrtandra
ferripilosa, C. oxybapha, Geranium hillebrandii, Phyllostegia
bracteata, Phyllostegia haliakalae, Santalum haleakalae var. lanaiense,
Stenogyne kauaulaensis, and Wikstroemia villosa, which are listed as
endangered in this final rule, are reported in this ecosystem on
Molokai or Maui (TNC 2007; HBMP 2008; HNP 2012, in litt.).
Montane Dry
The montane dry ecosystem is composed of natural communities
(shrublands, grasslands, forests) found at elevations between 3,300 and
6,500 ft (1,000 and 2,000 m), in areas where annual precipitation is
less than 50 in (130 cm), or are in otherwise dry substrate conditions
(TNC 2006g). This system is found on the islands of Maui and Hawaii
(Gagne and Cuddihy 1999, pp. 93-97). The only plant species listed as
endangered in this final rule that is found in this ecosystem is
Santalum haleakalae var. lanaiense (TNC 2007; HBMP 2008).
Subalpine
The subalpine ecosystem is composed of natural communities
(shrublands, grasslands, forests) found at elevations between 6,500 ft
and 9,800 ft (2,000 and 3,000 m), in areas where annual precipitation
is seasonal, between 15 and 40 in (38 and 100 cm), or are in otherwise
dry substrate conditions (TNC 2006h). Fog drip is an important moisture
supplement (Gagne and Cuddihy 1999, pp. 107-110). This system is found
on the islands of Maui and Hawaii (Gagne and Cuddihy 1999, pp. 107-
110). Native biological diversity is not high, but specialized
invertebrates and plants (Sophora chrysophylla (mamane), Myoporum
sandwicense (naio), and Deschampsia nubigena (hairgrass)) are reported
in this ecosystem (TNC 2006h). The plant Phyllostegia bracteata, which
is listed as endangered in this final rule, is reported in this
ecosystem (TNC 2007; HBMP 2008).
Alpine
The alpine ecosystem is composed of natural communities
(shrublands, alpine lake, aeolian (wind-shaped) desert) found at
elevations above 9,800 ft (3000 m), in areas where annual
[[Page 32021]]
precipitation is infrequent, with frost and snow, and intense solar
radiation (TNC 2006i). Fog drip is an important moisture supplement
(Gagne and Cuddihy 1999, pp. 107-110). This system is found on the
islands of Maui and Hawaii (Gagne and Cuddihy 1999, pp. 107-110).
Native biological diversity is not high, but highly specialized plants,
such as the threatened Argyroxiphium sandwicense ssp. macrocephalum
(ahinahina), occur in this ecosystem on Maui (TNC 2006i). None of the
species being listed as endangered in this final rule are reported from
this ecosystem (TNC 2007; HBMP 2008).
Dry Cliff
The dry cliff ecosystem is composed of vegetation communities
occupying steep slopes (greater than 65 degrees) in areas that receive
less than 75 in (190 cm) of rainfall annually, or are in otherwise dry
substrate conditions (TNC 2006j). This ecosystem is found on all of the
main Hawaiian Islands except Niihau, and is best represented along the
leeward slopes of Lanai and Maui (TNC 2006j). A variety of shrublands
occur within this ecosystem (TNC 2006j). Native biological diversity is
low to moderate (TNC 2006j). The plants Bidens campylotheca ssp.
pentamera, Phyllostegia haliakalae, and Pleomele fernaldii, which are
listed as endangered in this final rule, are reported in this ecosystem
on Lanai or Maui (HBMP 2008; TNC 2007). In addition, Cyanea mauiensis,
also listed as endangered in this final rule, may have occurred in this
ecosystem on Maui, but this species has not been observed for over 100
years. The species-specific habitat needs of Cyanea mauiensis are not
known.
Wet Cliff
The wet cliff ecosystem is generally composed of shrublands on
near-vertical slopes (greater than 65 degrees) in areas that receive
more than 75 in (190 cm) of annual precipitation, or in otherwise wet
substrate conditions (TNC 2006k). This system is found on the islands
of Kauai, Oahu, Molokai, Lanai, Maui, and Hawaii. On the islands of
Maui Nui, this system is typically found along the windward sides of
Molokai, Lanai, and Maui (TNC 2006k). Native biological diversity is
low to moderate (TNC 2006k). The plants Bidens campylotheca ssp.
pentamera, B. campylotheca ssp. waihoiensis, B. conjuncta, Cyanea
grimesiana ssp. grimesiana, C.horrida, C. magnicalyx, C. munroi,
Cyrtandra filipes, Phyllostegia bracteata, P. haliakalae, Pleomele
fernaldii, and Santalum haleakalae var. lanaiense, and the tree snails
Partulina semicarinata and P. variabilis, which are listed as
endangered in this final rule, are reported in this ecosystem on the
islands of Molokai, Lanai, or Maui (HBMP 2008; TNC 2007).
Description of the 40 Maui Nui Species
Below is a brief description of each of the 40 Maui Nui species,
presented in alphabetical order by genus. Plants are presented first,
followed by animals.
Plants
In order to avoid confusion regarding the number of locations of
each species (a location does not necessarily represent a viable
population, as in some cases there may only be one or a very few
representatives of the species present), we use the word ``occurrence''
instead of ``population.'' Each occurrence is composed only of wild
(i.e., not propagated and outplanted) individuals.
Bidens campylotheca ssp. pentamera (kookoolau), a perennial herb in
the sunflower family (Asteraceae), occurs only on the island of Maui
(Ganders and Nagata 1999, pp. 271, 273). Historically, B. campylotheca
spp. pentamera was found on Maui's eastern volcano (Haleakala).
Currently, this subspecies is found on east Maui in the montane mesic,
montane wet, dry cliff, and wet cliff ecosystems of Waikamoi Preserve
and Kipahulu Valley (in Haleakala National Park) (TNC 2007; HBMP 2008;
Welton 2008, in litt.; National Tropical Botanical Garden (NTBGa) 2009,
pp. 1-2; Fay 2010, in litt.). It is uncertain if plants observed in the
Hana Forest Reserve at Waihoi Valley are B. campylotheca ssp. pentamera
(Osterneck 2010, in litt.; Haleakala National Park (HNP) 2012, in
litt.). On west Maui, B. campylotheca ssp. pentamera is found on and
near cliff walls in the lowland dry and lowland mesic ecosystems of
Papalaua Gulch (West Maui Forest Reserve) and Kauaula Valley (NTBG
2009a, pp. 1-2; Perlman 2009a, in litt.). The 6 occurrences on east and
west Maui total approximately 200 individuals.
Bidens campylotheca ssp. waihoiensis (kookoolau), a perennial herb
in the sunflower family (Asteraceae), occurs only on the island of Maui
(Ganders and Nagata 1999, pp. 271, 273). Historically, B. campylotheca
ssp. waihoiensis was found on Maui's eastern volcano in Waihoi Valley
and Kaumakani ridge (HBMP 2008). Currently, this subspecies is found in
the lowland wet, montane wet, and wet cliff ecosystems in Kipahulu
Valley (Haleakala National Park) and possibly in Waihoi Valley (Hana
Forest Reserve) on east Maui (TNC 2007; HBMP 2008; Welton 2008, in
litt.). Approximately 200 plants are scattered over an area of about
2.5 miles (4 km) in Kipahulu Valley (Welton 2010a, in litt.). In 1974,
hundreds of individuals were observed in Waihoi Valley along Waiohonu
stream (NTBG 2009b, p. 4).
Bidens conjuncta (kookoolau), a perennial herb in the sunflower
family (Asteraceae), occurs only on the island of Maui (Ganders and
Nagata 1999, pp. 273-274). Historically, this species was known only
from the mountains of west Maui in the Honokohau drainage basin (Sherff
1923, p. 162). Currently, B. conjuncta is found scattered throughout
the upper elevation drainages of the west Maui mountains in the lowland
wet, montane wet, and wet cliff ecosystems, in 9 occurrences totaling
an estimated 7,000 individuals (TNC 2007; HBMP 2008; Oppenheimer 2008a,
in litt.; Perlman 2010, in litt.).
Calamagrostis hillebrandii (NCN), a perennial in the grass family
(Poaceae), occurs only on the island of Maui (O'Connor 1999, p. 1,509).
Historically, this species was known from Puu Kukui in the west Maui
mountains (Wagner et al. 2005a-Flora of the Hawaiian Islands database).
Currently, this species is found in bogs in the montane wet ecosystem
in the west Maui mountains, from Honokohau to Kahoolewa ridge,
including East Bog and Eke Crater, in three occurrences totaling a few
hundred individuals (TNC 2007; HBMP 2008; Oppenheimer 2010a, in litt.).
Canavalia pubescens (awikiwiki), a perennial climber in the pea
family (Fabaceae), is currently found only on the island of Maui,
although it was also historically known from Niihau, Kauai, and Lanai
(Wagner and Herbst 1999, p. 654). On Niihau, this species was known
from one population in Haao Valley that was last observed in 1949 (HBMP
2008). On Kauai, this species was known from six populations ranging
from Awaawapuhi to Wainiha, where it was last observed in 1977 (HBMP
2008). On Lanai, this species was known from Kaena Point to Huawai Bay.
Eight individuals were reported in the coastal ecosystem west of
Hulupoe, but they have not been seen since 1998 (Oppenheimer 2007a, in
litt.; HBMP 2008). At present, the only known occurrence is on east
Maui, from Puu o Kali south to Pohakea, in the lowland dry ecosystem
(Starr 2006, in litt.; Altenburg 2007, pp. 12-13; Oppenheimer 2006a, in
litt.; 2007a, in litt.; Greenlee 2013, in litt.). All plants of this
species that formerly were found in the Ahihi-Kinau Natural Area
Reserve on Maui were destroyed by feral goats (Capra hircus) by the end
of 2010
[[Page 32022]]
(Fell-McDonald 2010, in litt.). In addition, although approximately 20
individuals of Canavalia pubescens were reported from the Palauea-
Keahou area as recently as 2010 (Altenberg 2010, in litt.), no
individuals have been found in site visits to this area over the last 2
years (Greenlee 2013, in litt.). Greenlee (2013, in litt.) reports that
these plants may have succumbed to prolonged drought. In April of 2010,
C. pubescens totaled as many as 500 individuals; however, with the loss
of the plants at Ahihi-Kinau Natural Area Reserve and the loss of
plants at Palauea-Keahou, C. pubescens may currently total fewer than
200 individuals at a single location.
Cyanea asplenifolia (haha), a shrub in the bellflower family
(Campanulaceae), is found only on the island of Maui. This species was
known historically from Waihee Valley and Kaanapali on west Maui, and
Halehaku ridge on east Maui (Lammers 1999, p. 445; HBMP 2008). On west
Maui, in the lowland wet ecosystem, there are 3 occurrences totaling 14
individuals in the Puu Kukui Preserve and two occurrences totaling 5
individuals in the West Maui Natural Area Reserve. On east Maui, C.
asplenifolia is found in 1 occurrence each in the lowland mesic
ecosystem in Haleakala National Park (53 individuals) and Kipahulu
Forest Reserve (FR) (140 individuals), and 1 occurrence in the lowland
wet ecosystem in the Makawao FR (5 individuals) (TNC 2007; HBMP 2008;
Oppenheimer 2008b, in litt, 2010b, in litt.; PEPP 2008, p. 48; Welton
and Haus 2008, p. 12; NTBG 2009c, pp. 3-5; Welton 2010a, in litt.).
Currently, C. asplenifolia is known from 8 occurrences totaling fewer
than 200 individuals. The occurrence at Haleakala National Park is
protected by a temporary exclosure (HNP 2012, in litt.).
Cyanea duvalliorum (haha), a tree in the bellflower family
(Campanulaceae), is found only in the east Maui mountains (Lammers
2004, p. 89). This species was described in 2004, after the discovery
of individuals of a previously unknown species of Cyanea at Waiohiwi
Gulch (Lammers 2004, p. 91). Studies of earlier collections of sterile
material extend the historical range of this species on the windward
slopes of Haleakala in the lowland wet and montane wet ecosystems, east
of Waiohiwi Stream, from Honomanu Stream to Wailua Iki Streams, and to
Kipahulu Valley (Lammers 2004, p. 89). In 2007, one individual was
observed in the lowland wet ecosystem of the Makawao FR (NTBG 2009d, p.
2). In 2008, 71 individuals were found in 2 new locations in the
Makawao FR, along with many juveniles and seedlings (NTBG 2009d, p. 2).
Currently there are 2 occurrences with an approximate total of 71
individuals in the montane wet ecosystem near Makawao FR, with an
additional 135 individuals outplanted in Waikamoi Preserve (TNC 2007;
NTBG 2009d, p. 2; Oppenheimer 2010a, in litt.).
Cyanea grimesiana ssp. grimesiana (haha), a shrub in the bellflower
family (Campanulaceae), is known only from Oahu and Molokai (Lammers
2004 p. 84; Lammers 1999, pp. 449, 451; 68 FR 35950, June 17, 2003). On
Molokai, this species was last observed in 1991 in the wet cliff
ecosystem at Wailau Valley (PEPP 2010, p. 45). Currently, on Oahu there
are five to six individuals in four occurrences in the Waianae and
Koolau Mountains (U.S. Army 2006; HBMP 2008).
Cyanea horrida (haha nui), a member of the bellflower family
(Campanulaceae), is a palm-like tree found only on the island of Maui.
This species was known historically from the slopes of Haleakala
(Lammers 1999, p. 453; HBMP 2008). Currently, C. horrida is known from
12 occurrences totaling 44 individuals in the montane mesic, montane
wet, and wet cliff ecosystems in Waikamoi Preserve, Hanawai Natural
Area Reserve, and Haleakala National Park on east Maui (TNC 2007; HBMP
2008; PEPP 2009, p. 52; PEPP 2010, pp. 46-47; Oppenheimer 2010c, in
litt.; TNCH 2010a, p. 1).
Cyanea kunthiana (haha), a shrub in the bellflower family
(Campanulaceae), is found only on Maui, and was historically known from
both the east and west Maui mountains (Lammers 1999, p. 453; HBMP
2008). Cyanea kunthiana was known to occur in the montane mesic
ecosystem in the east Maui mountains in upper Kipahulu Valley, in
Haleakala National Park and Kipahulu FR (HBMP 2008). Currently, in the
east Maui mountains, C. kunthiana occurs in the lowland wet and montane
wet ecosystems in Waikamoi Preserve, Hanawi Natural Area Reserve, East
Bog, Kaapahu, and Kipahulu Valley. In the west Maui mountains, C.
kunthiana occurs in the lowland wet and montane wet ecosystems at Eke
Crater, Kahoolewa ridge, and at the junction of the Honokowai, Hahakea,
and Honokohau gulches (TNC 2007; HBMP 2008; NTBG 2009e, pp. 1-3;
Perlman 2010, in litt.; Oppenheimer 2010a, in litt.). The 15
occurrences total 165 individuals, although botanists speculate that
this species may total as many as 400 individuals with further surveys
of potential habitat on east and west Maui (TNC 2007; HBMP 2008; Fay
2010, in litt.; Oppenheimer 2010a, in litt.; Osternak 2010, in litt.).
Cyanea magnicalyx (haha), a perennial shrub in the bellflower
family (Campanulaceae), is known from west Maui (Lammers 1999, pp. 449,
451; Lammers 2004, p. 84). Currently, there are seven individuals in
three occurrences on west Maui: two individuals in Kaluanui, a subgulch
of Honokohau Valley, in the lowland wet ecosystem; four individuals in
Iao Valley in the wet cliff ecosystem; and one individual in a small
drainage south of the Kauaula rim, in the montane mesic ecosystem
(Lammers 2004, p. 87; Perlman 2009b in litt.; Wood 2009, in litt.).
Cyanea maritae (haha), a shrub in the bellflower family
(Campanulaceae), is found only on Maui (Lammers 2004, p. 92). Sterile
specimens were collected from the northwestern slopes of Haleakala in
the Waiohiwi watershed and east to Kipahulu in the early 1900s. Between
2000 and 2002, fewer than 20 individuals were found in the Waiohiwi
area (Lammers 2004, pp. 92, 93). Currently, there are 4 occurrences,
totaling between 23 to 50 individuals in Kipahulu, Kaapahu, west
Kahakapao, and in the Koolau FR in the lowland wet and montane wet
ecosystems on east Maui (TNC 2007; Oppenheimer 2010b, in litt.; Welton
2010b, in litt.).
Cyanea mauiensis (haha), a perennial shrub in the bellflower family
(Campanulaceae), was last observed on Maui about 100 years ago (Lammers
2004, pp. 84-85; TNC 2007). Although there are no documented
occurrences of this species known today, botanists believe this species
may still be extant as all potentially suitable lowland mesic and dry
cliff habitat has not been surveyed.
Cyanea munroi (haha), a short-lived shrub in the bellflower family
(Campanulaceae), is known from Molokai and Lanai (Lammers 1999, pp.
449, 451; Lammers 2004, pp. 84-87). Currently, there are no known
individuals on Molokai (last observed in 2001), and only two
individuals on Lanai at a single location, in the wet cliff ecosystem
(TNC 2007; HBMP 2008; Perlman 2008a, in litt.; Wood 2009a, in litt.;
Oppenheimer 2010d, in litt.).
Cyanea obtusa (haha), a shrub in the bellflower family
(Campanulaceae), is found only on Maui (Lammers 1999, p. 458).
Historically, this species was found in both the east and west Maui
mountains (Hillebrand 1888, p. 254; HBMP 2008). Not reported since 1919
(Lammers 1999, p. 458), C. obtusa was rediscovered in the early 1980s
at one site each on east and west Maui. However, by 1989, plants in
both
[[Page 32023]]
locations had disappeared (Hobdy et al. 1991, p. 3; Medeiros 1996, in
litt.). In 1997, 4 individuals were observed in Manawainui Gulch in
Kahikinui, and another occurrence of 5 to 10 individuals was found in
Kahakapao Gulch, both in the montane mesic ecosystem on east Maui (Wood
and Perlman 1997, p. 11; Lau 2001, in litt.). However, the individuals
found at Kahakapao Gulch are now considered to be Cyanea elliptica or
hybrids between C. obtusa and C. elliptica (PEPP 2007, p. 40). In 2001,
several individuals were seen in Hanaula and Pohakea gulches on west
Maui; however, only hybrids are currently known in this area (NTBG
2009f, p. 3). It is unknown if individuals of C. obtusa remain at
Kahikinui, as access to the area to ascertain the status of these
plants is difficult and has not been attempted since 2001 (PEPP 2008,
p. 55; PEPP 2009, p. 58). Two individuals were observed on a cliff
along Wailaulau Stream in the montane mesic ecosystem on east Maui in
2009 (Duvall 2010, in litt.). Currently, this species is known from one
occurrence of only a few individuals in the montane mesic ecosystem on
east Maui. Historically, this species also occurred in the lowland dry
ecosystem at Manawainui on west Maui and at Ulupalakua on east Maui
(HBMP 2008).
Cyanea profuga (haha), a shrub in the bellflower family
(Campanulaceae), occurs only on Molokai (Lammers 1999, pp. 461-462;
Wood and Perlman 2002, p. 4). Historically, this species was found in
Mapulehu Valley and along Pelekunu Trail, and has not been seen in
those locations since the early 1900s (Wood and Perlman 2002, p. 4). In
2002, six individuals were discovered along a stream in Wawaia Gulch
(Wood and Perlman 2002, p. 4). In 2007, seven individuals were known
from Wawaia Gulch, and an additional six individuals were found in
Kumueli (Wood 2005, p. 17; USFWS 2007a; PEPP 2010, p. 55). In 2009,
only four individuals remained at Wawaia Gulch; however, nine were
found in Kumueli Gulch (Bakutis 2010, in litt.; Oppenheimer 2010e, in
litt.; Perlman 2010, in litt.; PEPP 2010, p. 55). Currently, there are
4 occurrences totaling up to 34 individuals in the lowland mesic and
montane wet ecosystems on Molokai (TNC 2007; Bakutis 2010, in litt.;
Perlman 2010, in litt.).
Cyanea solanacea (popolo, haha nui), a shrub in the bellflower
family (Campanulaceae), is found only on Molokai. According to Lammers
(1999, p. 464) and Wagner (et al. 2005a-Flora of the Hawaiian Islands
database) the range of C. solanacea includes Molokai and may also
include west Maui. In his treatment of the species of the Hawaiian
endemic genus Cyanea, Lammers (1999, p. 464) included a few sterile
specimens of Cyanea from Puu Kukui, west Maui and the type specimen
(now destroyed) for C. scabra var. sinuata from west Maui in C.
solanacea. However, Oppenheimer recently reported (Oppenheimer 2010a,
in litt.) that the plants on west Maui were misidentified as C.
solanacea and are actually C. macrostegia. Based on Oppenheimer's
recent field observations, the range of C. solanacea is limited to
Molokai. Historically, Cyanea solanacea ranged from central Molokai at
Kalae, eastward to Pukoo in the lowland mesic, lowland wet, and montane
mesic ecosystems (HBMP 2008). Currently, there are four small
occurrences at Hanalilolilo, near Pepeopae Bog, Kaunakakai Gulch, and
Kawela Gulch, in the montane wet ecosystem. These occurrences total 26
individuals (Bakutis 2010, in litt.; Oppenheimer 2010a, in litt.; TNCH
2011, pp. 21, 57).
Cyrtandra ferripilosa (haiwale), a shrub in the African violet
family (Gesneriaceae), occurs only on Maui (St. John 1987, pp. 497-498;
Wagner and Herbst 2003, p. 29). This species was discovered in 1980 in
the east Maui mountains at Kuiki in Kipahulu Valley (St. John 1987, pp.
497-498; Wagner et al. 2005a-Flora of the Hawaiian Islands database).
Currently, there are a few individuals each in two occurrences at Kuiki
and on the Manawainui plane in the montane mesic and montane wet
ecosystems (Oppenheimer 2010f, in litt.; Welton 2010a, in litt.).
Cyrtandra filipes (haiwale), a shrub in the African violet family
(Gesneriaceae), is found on Maui (Wagner et al. 1999d, pp. 753-754;
Oppenheimer 2006b, in litt.). According to Wagner et al. (1999d, p.
754), the range of C. filipes includes Maui and Molokai. Historical
collections from Kapunakea (1800) and Olowalu (1971) on Maui indicate
it once had a wider range on this island. In 2004, it was believed
there were over 2,000 plants at Honokohau and Waihee in the west Maui
mountains; however, recent studies have shown that these plants do not
match the description for C. filipes (Oppenheimer 2006b, in litt.).
Currently, there are between 134 and 155 individuals in 4 occurrences
in the lowland wet and wet cliff ecosystems at Kapalaoa, Honokowai,
Honolua, and Waihee Valley on west Maui, and approximately 7
individuals at Mapulehu in the lowland mesic ecosystem on Molokai, with
an historical occurrence in the lowland wet ecosystem (Oppenheimer
2010c, in litt.).
Cyrtandra oxybapha (haiwale), a shrub in the African violet family
(Gesneriaceae), is found on Maui (Wagner et al. 1999d, p. 771). This
species was discovered in the upper Pohakea Gulch in Hanaula in the
west Maui mountains in 1986 (Wagner et al. 1989, p. 100; TNC 2007).
Currently, there are 2 known occurrences with a total of 137 to 250
individuals. Cyrtandra oxybapha occurs in the montane wet ecosystem on
west Maui, from Hanaula to Pohakea Gulch. This occurrence totals
between 87 and 97 known individuals, with perhaps as many as 150 or
more (Oppenheimer 2008c, in litt.). The current status of the 50 to 100
individuals in the montane mesic ecosystem in Manawainui Gulch on east
Maui is unknown, as these plants have not been surveyed since 1997
(Oppenheimer 2010a, in litt.).
Festuca molokaiensis (NCN), a member of the grass family (Poaceae),
is found on Molokai (Catalan et al. 2009, p. 54). This species is only
known from the type locality at Kupaia Gulch, in the lowland mesic
ecosystem (Catalan et al. 2009, p. 55). Last seen in 2009, the current
number of individuals is unknown; however, field surveys for F.
molokaiensis at Kupaia Gulch are planned for 2011 (Oppenheimer 2010g,
in litt.). Oppenheimer (2011, pers. comm.) suggests that the drought
over the past couple of years on Molokai may have suppressed the growth
of F. molokaiensis and prevented its observation by botanists in the
field. He also suggested that this species may be an annual whose
growth will be stimulated by normal rainfall patterns.
Geranium hanaense (nohoanu), a shrub in the geranium family
(Geraniaceae), is found on Maui (Wagner et al. 1999e, pp. 730-732).
This species was first collected in 1973, from two adjacent montane
bogs on the northeast rift of Haleakala, east Maui (Medeiros and St.
John 1988, pp. 214-220). At that time, there were an estimated 500 to
700 individuals (Medeiros and St. John 1988, pp. 214-220). Currently,
G. hanaense occurs in ``Big Bog'' and ``Mid Camp Bog'' in the montane
wet ecosystem on the northeast rift of Haleakala, with the same number
of estimated individuals (Welton 2008, in litt.; Welton 2010a, in
litt.; Welton 2010b, in litt.).
Geranium hillebrandii (nohoanu), a shrub in the geranium family
(Geraniaceae), is found on Maui (Aedo and Munoz Garmendia 1997; p. 725;
Wagner et al. 1999e, pp. 732-733; Wagner and Herbst 2003, p. 28).
Little is known of the historical locations of G. hillebrandii, other
than the type collection made in the 1800s at Eke Crater, in the west
Maui mountains (Hillebrand 1888, p. 56). Currently, 4
[[Page 32024]]
occurrences total over 10,000 individuals, with the largest 2
occurrences in the west Maui bogs, from Puu Kukui to East Bog and
Kahoolewa ridge. A third occurrence is at Eke Crater and the
surrounding area, and the fourth occurrence is at Lihau (HBMP 2008;
Oppenheimer 2010h, in litt.). These occurrences are found in the
montane wet and montane mesic ecosystems on west Maui (TNC 2007).
Mucuna sloanei var. persericea (sea bean), a vine in the pea family
(Fabaceae), is found on Maui (Wilmot-Dear 1990, pp. 27-29; Wagner et
al. 2005a-Flora of the Hawaiian Islands database). In her revision of
Mucuna in the Pacific Islands, Wilmot-Dear recognized this variety from
Maui based on leaf indumentum (covering of fine hairs or bristles)
(Wilmot-Dear 1990, p. 29). At the time of Wilmot-Dear's publication, M.
sloanei var. persericea ranged from Makawao to Wailua Iki, on the
windward slopes of the east Maui mountains (Wagner et al. 2005a-Flora
of the Hawaiian Islands database). Currently, there are possibly a few
hundred individuals in five occurrences: Ulalena Hill, north of
Kawaipapa Gulch, lower Nahiku, Koki Beach, and Piinau Road, all in the
lowland wet ecosystem on east Maui (Duvall 2010, in litt.; Hobdy 2010,
in litt.).
Myrsine vaccinioides (kolea), a shrub in the myrsine family
(Myrsinaceae), is found on Maui (Wagner et al. 1999f, p. 946; HBMP
2008). This species was historically known from shrubby bogs near
Violet Lake on west Maui (Wagner et al. 1999f, p. 946). In 2005, three
occurrences of a few hundred individuals were reported at Eke, Puu
Kukui and near Violet Lake (Oppenheimer 2006c, in litt.). Currently,
there are estimated to be several hundred, but fewer than 1,000,
individuals scattered in the summit area of the west Maui mountains at
Eke Crater, Puu Kukui, Honokowai-Honolua, and Kahoolewa, in the montane
wet ecosystem (Oppenheimer 2010i, in litt.).
Peperomia subpetiolata (alaala wai nui), a perennial herb in the
pepper family (Piperaceae), is found on Maui (Wagner et al. 1999g, p.
1035; HBMP 2008). Historically, P. subpetiolata was known only from the
lower Waikamoi (Kula pipeline) area on the windward side of Haleakala
on east Maui (Wagner et al. 1999g, p. 1,035; HBMP 2008). In 2001, it
was estimated that 40 individuals occurred just west of the Makawao-
Koolau FR boundary, in the montane wet ecosystem. Peperomia cookiana
and P. hirtipetiola also occur in this area, and are known to hybridize
with P. subpetiolata (NTBG 2009g, p. 2; Oppenheimer 2010j, in litt.).
In 2007, 20 to 30 hybrid plants were observed at Maile Trail, and at
three areas near the Waikamoi Flume road (NTBG 2009g, p. 2). Based on
the 2007 and 2010 surveys, all known plants are now considered to be
hybrids mostly between P. subpetiolata and P. cookiana, with a smaller
number of hybrids between P. subpetiolata and P. hirtipetiola (NTBG
2009g, p. 2; Lau 2011, in litt.). Peperomia subpetiolata is recognized
as a valid species, and botanists continue to search for plants in its
previously known locations as well as in new locations with potentially
suitable habitat (NTBG 2009g, p. 2; PEPP 2010, p. 96; Lau 2011, pers.
comm.).
Phyllostegia bracteata (NCN), a perennial herb in the mint family
(Lamiaceae), is found on Maui (Wagner et al. 1999h, pp. 814-815).
Historically, this species was known from the east Maui mountains at
Ukulele, Puu Nianiau, Waikamoi Gulch, Koolau Gap, Kipahulu, Nahiku-
Kuhiwa trail, Waihoi Valley, and Manawainui; and from the west Maui
mountains at Puu Kukui and Hanakaoo (HBMP 2008). This species appears
to be short-lived, ephemeral, and disturbance-dependent, in the lowland
wet, montane mesic, montane wet, subalpine, and wet cliff ecosystems
(NTBG 2009h, p. 1). There have been several reported sightings of P.
bracteata between 1981 and 2001, at Waihoi Crater Bog, Waikamoi
Preserve, Waikamoi flume, and Kipahulu on east Maui, and at Pohakea
Gulch on west Maui; however, none of these individuals were extant as
of 2009 (PEPP 2009, pp. 89-90). In 2009, one individual was found at
Kipahulu, near Delta Camp, on east Maui, but was not relocated on a
follow-up survey during that same year (NTBG 2009h, p. 3). Botanists
continue to search for P. bracteata in previously reported locations,
as well as in other areas with potentially suitable habitat (NTBG
2009h, p. 3; PEPP 2009, pp. 89-90).
Phyllostegia haliakalae (NCN), a vine in the mint family
(Lamiaceae), is known from Molokai, Lanai, and east Maui (Wagner 1999,
p. 269). The type specimen was collected by Wawra in 1869 or 1870, in a
dry ravine at the foot of Haleakala. An individual was found in flower
on the eastern slope of Haleakala, in the wet cliff ecosystem, in 2009;
however, this plant has died (TNC 2007; Oppenheimer 2010b, in litt.).
Collections were made before the plant died, and propagules outplanted
in the Puu Mahoe Arboretum (three plants) and Olinda Rare Plant
Facility (four plants) (Oppenheimer 2011b, in litt.). In addition, this
species has been outplanted in the lowland wet, montane wet, and
montane mesic ecosystems of Haleakala National Park (HNP 2012, in
litt.). Botanists continue to search in areas with potentially suitable
habitat for wild individuals of this plant (Oppenheimer 2010b, in
litt.). Phyllostegia haliakalae was last reported from the lowland
mesic ecosystem on Molokai in 1928, and from the dry cliff and wet
cliff ecosystems on Lanai in the early 1900s (TNC 2007; HBMP 2008).
Currently no individuals are known in the wild on Maui, Molokai, or
Lanai; however, over 100 individuals have been outplanted (HNP 2012, in
litt).
Phyllostegia pilosa (NCN), a vine in the mint family (Lamiaceae),
is known from east Maui (Wagner 1999, p. 274). There are two
occurrences totaling seven individuals west of Puu o Kakae on east
Maui, in the montane wet ecosystem (TNC 2007; HBMP 2008). The
individuals identified as P. pilosa on Molokai, at Kamoku Flats
(montane wet ecosystem) and at Mooloa (lowland mesic ecosystem), have
not been observed since the early 1900s (TNC 2007; HBMP 2008).
Pittosporum halophilum (hoawa), a shrub or small tree in the
pittosporum family (Pittosporaceae), is found on Molokai (Wood 2005,
pp. 2, 41). This species was reported from Huelo islet, Mokapu Island,
Okala Island, and Kukaiwaa peninsula. On Huelo islet, there were two
individuals in 1994, and in 2001, only one individual remained (Wood et
al. 2001, p. 12; Wood et al. 2002, pp. 18-19). The current status of
this species on Huelo islet is unknown. On Mokapu Island, there were 15
individuals in the coastal ecosystem in 2001, and in 2005, 10
individuals remained. On Okala Island, there were two individuals in
2005, and one individual on the sea cliff at Kukaiwaa peninsula
(Wainene) (Wood 2005, pp. 2, 41). As of 2010, there were three
occurrences totaling five individuals: Three individuals on Mokapu
Island, one individual on Okala Island, and one individual on Kukaiwaa
peninsula (Bakutis 2010, in litt.; Hobdy 2010, in litt.; Perlman 2010,
in litt.). At least 17 individuals have been outplanted at 3 sites on
the coastline of the nearby Kalaupapa peninsula (Garnett 2010a, in
litt.).
Pleomele fernaldii (hala pepe), a tree in the asparagus family
(Asparagaceae), is found only on the island of Lanai (Wagner et al.
1999i, p. 1,352; Wagner and Herbst 2003, p. 67). Historically known
throughout Lanai, this species is currently found in the lowland dry,
lowland mesic, lowland wet, dry cliff, and wet cliff ecosystems, from
Hulopaa and Kanoa gulches southeast to
[[Page 32025]]
Waiakeakua and Puhielelu (St. John 1947, pp. 39-42 cited in St. John
1985, pp. 171, 177-179; HBMP 2006; HBMP 2008; PEPP 2008, p. 75;
Oppenheimer 2010d, in litt.). Currently, there are several hundred to
perhaps as many as 1,000 individuals. The number of individuals has
decreased by about one-half in the past 10 years (there were more than
2,000 individuals in 1999), with very little recruitment observed
recently (Oppenheimer 2008d, in litt.).
Santalum haleakalae var. lanaiense (iliahi, Lanai sandalwood) is a
tree in the sandalwood family (Santalaceae). Currently, S. haleakalae
var. lanaiense is known from Molokai, Lanai, and Maui, in 26
occurrences totaling fewer than 100 individuals (Wagner et al. 1999c,
pp. 1,221-1,222; HBMP 2008; Harbaugh et al. 2010, pp. 834-835). On
Molokai, there are more than 12 individuals in 4 occurrences from
Kikiakala to Kamoku Flats and Puu Kokekole, with the largest
concentration at Kumueli Gulch, in the montane mesic and lowland mesic
ecosystems (Harbaugh et al. 2010, pp. 834-835). On Lanai, there are
approximately 10 occurrences totaling 30 to 40 individuals: Kanepuu, in
the lowland mesic ecosystem (5 individuals); the headwaters of Waiopae
Gulch in the lowland wet ecosystem (3 individuals); the windward side
of Hauola on the upper side of Waiopae Gulch in the lowland mesic
ecosystem (1 individual); the drainage to the north of Puhielelu Ridge
and exclosure, in the headwaters of Lopa Gulch in the lowland mesic
ecosystem (3 individuals); 6 occurrences near Lanaihale in the montane
wet ecosystem (21 individuals); and the mountains east of Lanai City in
the lowland wet ecosystem (a few individuals) (HBMP 2008; Harbaugh et
al. 2010, pp. 834-835; HBMP 2010; Wood 2010a, in litt.). On west Maui,
there are eight single-individual occurrences: Hanaulaiki Gulch in the
lowland dry ecosystem; Kauaula and Puehuehunui Gulches in the lowland
mesic, montane mesic, and wet cliff ecosystems; Kahanahaiki Gulch and
Honokowai Gulch in the lowland wet ecosystem; Wakihuli in the wet cliff
ecosystem; and Manawainui Gulch in the montane mesic and lowland dry
ecosystems (HBMP 2008; Harbaugh et al. 2010, pp. 834-835; Wood 2010a,
in litt.). On east Maui, there are 4 occurrences (10 individuals) in
Auwahi, in the montane mesic, montane dry, and lowland dry ecosystems
(TNC 2007; HBMP 2008; Harbaugh et al. 2010, pp. 834-835).
Schiedea jacobii (NCN), a perennial herb or subshrub in the pink
family (Caryophyllaceae), occurs only on Maui (Wagner et al. 1999j, p.
284). Discovered in 1992, the single occurrence consisted of nine
individuals along wet cliffs between Hanawi Stream and Kuhiwa drainage
(in Hanawi Natural Area Reserve), in the montane wet ecosystem on east
Maui (Wagner et al. 1999j, p. 286). By 1995, only four plants could be
relocated in this location. It appeared that the other five known
individuals had been destroyed by a landslide (Wagner et al. 1999j, p.
286). In 2004, one seedling was observed in the same location, and in
2010, no individuals were relocated (Perlman 2010, in litt.). The State
of Hawaii plans to outplant propagated individuals in a fenced area in
Hanawi Natural Area Reserve in 2011 (Oppenheimer 2010a, in litt.;
Perlman 2010, in litt.).
Schiedea laui (NCN), a perennial herb or subshrub in the pink
family (Caryophyllaceae), is found only on Molokai (Wagner et al.
2005b, pp. 90-92). In 1998, when this species was first observed, there
were 19 individuals located in a cave along a narrow stream corridor at
the base of a waterfall in the Kamakou Preserve, in the montane wet
ecosystem (Wagner et al. 2005b, pp. 90-92). By 2000, only 9 individuals
with a few immature plants and seedlings were relocated, and in 2006,
13 plants were seen (Wagner et al. 2005b, pp. 90-92; PEPP 2007, p. 57).
Currently, there are 24 to 34 individuals in the same location in
Kamakou Preserve (Bakutis 2010, in litt.).
Schiedea salicaria (NCN), a shrub in the pink family
(Caryophyllaceae), occurs on Maui (Wagner et al. 1999j, pp. 519-520).
It is historically known from a small area on west Maui, from Lahaina
to Waikapu. Currently, this species is found in three occurrences:
Kaunoahua gulch (500 to 1,000 individuals), Puu Hona (about 50
individuals), and Waikapu Stream (3 to 5 individuals), in the lowland
dry ecosystem on west Maui (TNC 2007; Oppenheimer 2010k, in litt.;
Oppenheimer 2010l, in litt.). Hybrids and hybrid swarms (hybrids
between parent species, and subsequently formed progeny from crosses
among hybrids and crosses of hybrids to parental species) between S.
salicaria and S. menziesii are known on the western side of west Maui
(Wagner et al. 2005b, p. 138). However, according to Weller (2012, in
litt.) the hybridization process is natural when S. salicaria and S.
menziesii co-occur and because of the dynamics in this hybrid zone,
traits of S. salicaria prevail and replace those of S. menziesii.
Weller (2012, in litt.) notes that populations of both species will
likely remain distinct because the two species do not overlap
throughout much of their range.
Stenogyne kauaulaensis (NCN), a vine in the mint family
(Lamiaceae), occurs on Maui. This recently described (2008) plant is
found only along the southeastern rim of Kauaula Valley, in the montane
mesic ecosystem on west Maui (TNC 2007; Wood and Oppenheimer 2008, pp.
544-545). At the time S. kauaulaensis was described, the authors
reported a total of 15 individuals in one occurrence. However, one of
the authors reports that due to the clonal (genetic duplicate) growth
habit of this species, botanists believe it is currently represented by
only three genetically distinct individuals (Oppenheimer 2010k, in
litt.).
Wikstroemia villosa (akia), a shrub or tree in the akia family
(Thymelaeaceae), is found on Maui (Peterson 1999, pp. 1,290-1,291).
Historically known from the lowland wet, montane wet, and montane mesic
ecosystems on east and west Maui, this species is currently known from
a recent discovery (2007) of one individual on the windward side of
Haleakala (on east Maui), in the montane wet ecosystem (Peterson 1999,
p. 1,291; TNC 2007; HBMP 2008). As of 2010, there was one individual
and one seedling at the same location (Oppenheimer 2010m, in litt.). In
addition, three individuals have been outplanted in Waikamoi Preserve
(Oppenheimer 2010m, in litt.).
Animals
Newcomb's tree snail (Newcombia cumingi), a member of the family
Achatinellidae and the endemic Hawaiian subfamily Achatinellinae
(Newcomb 1853, p. 25), is known only from the island of Maui (Cowie et
al. 1995, p. 62). All members of this species have sinistral (left-
coiling), oblong, spindle-shaped shells of five to seven whorls that
are coarsely sculptured (Cooke and Kondo 1960, pp. 9, 33). Newcomb's
tree snail reaches an adult length of approximately 0.8 in (21 mm) and
its shell is mottled in shades of brown that blend with the bark of its
native host plant, Metrosideros polymorpha (ohia) (Pilsbry and Cooke
1912-1914, p. 10; Thacker and Hadfield 1998, p. 4). The exact life span
and fecundity of Newcomb's tree snails is unknown, but they attain
adult size within 4 to 5 years (Thacker and Hadfield 1998, p. 2).
Newcomb's tree snail is believed to exhibit the low reproductive rate
of other Hawaiian tree snails belonging to the same family (Thacker and
Hadfield 1998, p. 2). It feeds on fungi and algae that grow on the
leaves and trunks of its host plant (Pilsbry and Cooke 1912-1914, p.
103). Historically, this species was distributed
[[Page 32026]]
from the west Maui mountains (near Lahaina and Wailuku) to the slopes
of Haleakala (Makawao) on east Maui (Pilsbry and Cooke 1912-1914, p.
10). In 1994, a small population of Newcomb's tree snail was found on a
single ridge on the northeastern slope of the west Maui mountains, in
the lowland wet ecosystem (Thacker and Hadfield 1998, p. 3; TNC 2007).
Eighty-six snails were documented in the same location in 1998; in
2006, only nine individuals were located; and, in 2012, only one
individual was located (Thacker and Hadfield 1998, p. 2; Hadfield 2007,
p. 8; Higashino 2013, in litt.).
Partulina semicarinata (Lanai tree snail, pupu kani oe), a member
of the family Achatinellidae and the endemic Hawaiian subfamily
Achatinellinae, is known only from the island of Lanai (Pilsbry and
Cooke 1912-1914, p. 86). The shell may coil to the right (dextral) or
left (sinistral), but appears to be constant within a population. The
oblong to ovate shells of the adult are 0.6 to 0.8 in (16 to 20 mm)
long, have 5 to 7 whorls, and range in color from rusty brown to white,
with some individuals having bands around the shells. The shell has a
distinctive keel that runs along the last whorl, and is more
distinctive in juveniles (Pilsbry and Cooke 1912-1914, pp. 86-88).
Adults may attain an age exceeding 15 to 20 years, and reproductive
output is low, with an adult snail giving birth to 4 to 6 live young
per year (Hadfield and Miller 1989, pp. 10-12). Partulina semicarinata
is arboreal and nocturnal, and grazes on fungi and algae growing on
leaf surfaces (Pilsbry and Cooke 1912-1914, p. 103). This snail species
is found on the following native host plants: Metrosideros polymorpha,
Broussaisia arguta (kanawao), Psychotria spp. (kopiko), Coprosma spp.
(pilo), Melicope spp. (alani), and dead Cibotium glaucum (tree fern,
hapuu). Occasionally the snail is found on nonnative plants such as
Psidium guajava (guava), Cordyline australis (New Zealand tea tree),
and Phormium tenax (New Zealand flax) (Hadfield 1994, p. 2).
Historically, P. semicarinata was found in wet and mesic M. polymorpha
forests on Lanai. There are no historical population estimates for this
snail, but qualitative accounts of Hawaiian tree snails indicates they
were widespread and abundant, possibly numbering in the tens of
thousands between the 1800s and early 1900s (Hadfield 1986, p. 69). In
1993, 105 individuals of P. semicarinata were found during surveys
conducted in its historical range. Subsequent surveys in 1994, 2000,
2001, and 2005 documented 55, 12, 4, and 29 individuals, respectively,
in the lowland wet, montane wet, and wet cliff ecosystems in central
Lanai (Hadfield 2005, pp. 3-5; TNC 2007).
Partulina variabilis (Lanai tree snail, pupu kani oe), a member of
the family Achatinellidae and the endemic Hawaiian subfamily
Achatinellinae, is known only from the island of Lanai (Pilsbry and
Cooke 1912-1914, p. 86). The shell may coil to the right (dextral) or
left (sinistral), and both types can be found within a single
population. The oblong to ovate shells of the adult are 0.5 to 0.6 in
(14 to 16 mm) long, have 5 to 7 whorls, and have a white base color
with no bands or a variable number of spiral bands around the shells
(Pilsbry and Cooke 1912-1914, pp. 67, 83-86). Adults may attain an age
exceeding 15 to 20 years, and reproductive output is low, with an adult
snail giving birth to 4 to 6 live young per year (Hadfield and Miller
1989, pp. 10-12). Partulina variabilis is arboreal and nocturnal, and
grazes on fungi and algae growing on leaf surfaces (Pilsbry and Cooke
1912-1914, p. 103). This snail is found on the following native host
plants: Metrosideros polymorpha, Broussaisia arguta, Psychotria spp.,
Coprosma spp., Melicope spp., and dead Cibotium glaucum. Occasionally
Partulina variabilis is found on nonnative plants such as Psidium
guajava and Cordyline australis (Hadfield 1994, p. 2). Historically,
Partulina variabilis was found in wet and mesic M. polymorpha forests
on Lanai. There are no historical population estimates for this snail,
but qualitative accounts of Hawaiian tree snails indicate they were
widespread and abundant, possibly numbering in the tens of thousands
between the 1800s and early 1900s (Hadfield 1986, p. 69). In 1993, 111
individuals of P.variabilis were found during surveys conducted in its
historical range. Subsequent surveys in 1994, 2000, 2001, and 2005
documented 175, 14, 6, and 90 individuals, respectively, in the lowland
wet, montane wet, and wet cliff ecosystems in central Lanai (Hadfield
2005, pp. 3-5; TNC 2007).
Summary of Comments and Recommendations
On June 11, 2012, we published a proposed rule to list 38 Maui Nui
species (35 plants and 3 tree snails) as endangered and reevaluate the
listing of 2 Maui Nui plant species as endangered throughout their
ranges, and to designate critical habitat for 135 species (77 FR
34464). The proposed rule opened a 60-day comment period. On August 9,
2012 (77 FR 47587), we extended the comment period for the proposed
rule for an additional 30 days, ending September 10, 2012. We requested
that all interested parties submit comments or information concerning
the proposed listing and designation of critical habitat for 135
species. We contacted all appropriate State and Federal agencies,
county governments, elected officials, scientific organizations, and
other interested parties and invited them to comment. In addition, we
published a public notice of the proposed rule on June 20, 2012, in the
local Honolulu Star Advertiser, Maui Times, and Molokai Dispatch
newspapers, at the beginning of the comment period. We received three
requests for public hearings. On January 31, 2013, we published a
notice (78 FR 6785) reopening the comment period on the June 11, 2012,
proposed rule (77 FR 34464), announcing the availability of our draft
economic analysis (DEA) on the proposed critical habitat, and
requesting comments on both the proposed rule and the DEA. This comment
period closed on March 4, 2013. In addition, in that same notice
(January 31, 2013; 78 FR 6785) we announced a public information
meeting and hearing, which we held in Kihei, Maui, on February 21,
2013.
During the comment periods, we received a total of 47 comment
letters on the proposed listing of 38 species, reevaluation of listing
for 2 species, and proposed designation of critical habitat. For the
reasons stated above, in this final rule we address only the comments
regarding the proposed listing of 38 species and reevaluation of
listing for 2 species. Ten of the 47 letters contained comments on both
the proposed listing and proposed designation of critical habitat. Two
of the 47 letters contained comments only on the proposed listing of 38
species and reevaluation of listing for 2 species. Three of the four
peer reviewers who provided comments commented on the proposed listing
of one or more of the 38 species or on the proposed listing and
proposed critical habitat designation. One commenter was a State of
Hawaii agency (Hawaii Department of Health), one was a Federal agency
(Kalaupapa National Historical Park), and eight were nongovernmental
organizations or individuals. During the February 21, 2013, public
hearing, 25 individuals or organizations made comments on the proposed
listing.
All substantive information provided during the comment periods
related to the listing decisions has either been incorporated directly
into this final determination or is addressed below. Information we
received related to the
[[Page 32027]]
proposed critical habitat designation will be addressed in that final
rule. Comments received are grouped into general issues specifically
relating to the proposed listing status of the 35 plants or the
proposed listing status of the 3 tree snails, and are addressed in the
following summary and incorporated into the final rule as appropriate.
No comments were received regarding the reevaluation of listing for
Cyanea grimesiana ssp. grimesiana or Santalam healeakalae var.
lanaiense. No comments were received regarding the delisting of Gahnia
lanaiensis due to taxonomic error.
Peer Review
In accordance with our peer review policy published in the Federal
Register on July 1, 1994 (59 FR 34270), we solicited expert opinions
from 10 knowledgeable individuals with scientific expertise on the Maui
Nui plants, snails, and forest birds and their habitats, including
familiarity with the species, the geographic region in which these
species occur, and conservation biology principles. We received
responses from four of the peer reviewers. Of these four peer
reviewers, one provided comments only on the proposed critical habitat
designation for two endangered forest birds. These comments are not
addressed in this final rule, which addresses only the listing of the
38 Maui Nui species (35 plants and 3 tree snails), and the
reaffirmation of listing of 2 Maui Nui plant species. Three peer
reviewers provided comments on the listing of the 38 Maui Nui species
and reevaluation of listing for 2 species. These peer reviewers
generally supported our methodology and conclusions. Two reviewers
supported the Service's ecosystem-based approach for organizing the
rule and for focusing on the actions needed for species conservation
and management, and all three reviewers provided new information on one
or more of the Maui Nui species, which we incorporated into this final
rule. In addition, peer reviewers provided information on citations for
published studies on ungulate exclusions and nonnative plant control.
We reviewed all comments we received from the peer reviewers for
substantive issues and new information regarding the listing of 38
species and reevaluation of the listing of 2 species. Peer reviewer
comments are addressed in the following summary and incorporated into
the final rule as appropriate.
General Peer Review Comments
(1) Comment: One peer reviewer noted the absence of a literature
cited section for the proposed rule.
Our Response: Although not included with the proposed rule itself,
information on how to obtain a list of our supporting documentation
used was provided in the proposed rule under Public Comments and
References Cited (77 FR 34464; June 11, 2012). In addition, lists of
references cited in the proposed rule (77 FR 34464; June 11, 2012) and
in this final rule are available on the Internet at https://www.regulations.gov at Docket No. FWS-R1-ES-2011-0098, and upon request
from the Pacific Islands Fish and Wildlife Office (see FOR FURTHER
INFORMATION CONTACT).
(2) Comment: One peer reviewer provided additional information
regarding the biogeographical differences between east and west Maui.
Our Response: We have included this information in this final rule
and corrected statements about the range of annual rainfall on east
Maui (Giambelluca et al. 2011), the diversity of vegetation in the
mesic and wet ecosystems of east Maui relative to west Maui (Price
2004, p. 493), and the geologic age of the youngest lava flows found
within the Cape Kinau region of east Maui (Sherrod et al. 2007, p. 40)
(see The Islands of Maui Nui, above).
Peer Review Comments on Plants
(3) Comment: One peer reviewer suggested that the proposed rule's
discussion about invasive plant species did not emphasize a comparison
of the wide-ranging level of impacts between the various invasive plant
species.
Our Response: In the proposed rule, we provided a list of 71
nonnative plant species that have been documented as serious and
ongoing threats to 36 of the 40 species proposed or reevaluated for
listing throughout their ranges by destroying or modifying habitat. We
provided a short description for each of the 71 nonnative plant species
that included the best available information on growth form, place of
origin, reproductive biology, dispersal, competition with native
species, environmental tolerance, and measures for their control in
Hawaiian habitats, as well as synergistic impacts with other habitat
modifying threat factors such as nonnative ungulates, agricultural
development, and fire. In addition, we identified the nonnative plant
species documented as threats in each of the 10 ecosystems. Finally, we
identified each species that is considered invasive by one or more of
the following sources: Hawaii-Pacific Weed Risk Assessment, U.S.
Department of Agriculture-Natural Resources Conservation Service (USDA-
NRCS) plant database (2011), or the Hawaii State noxious weed list
(H.A.R. Title 4, Subtitle 6, Chapter 68). Therefore, we believe the
information we provided in the proposed rule adequately emphasizes a
comparison of the wide-ranging level of impacts between the various
invasive plant species.
(4) Comment: One peer reviewer suggested that we understated the
seriousness of the effects of the invasive plant species Blechnum
appendiculatum and provided additional information about the ecology of
this species to better illustrate its impacts.
Our Response: We appreciate the information provided for the
invasive plant Blechnum appendiculatum and have included it in our
final rule (see Summary of Changes From Proposed Rule, below).
(5) Comment: One peer reviewer recommended that we include, where
applicable, further elaboration on the synergistic interactions between
nonnative plants and animals, and global climate change, and their
confluent impacts upon native habitats described in the proposed rule.
Our Response: We discuss the synergistic effects of climate change
and nonnative species under ``Habitat Destruction and Modification by
Climate Change'' and ``Summary of Habitat Destruction and
Modification,'' below; however, the magnitude and intensity of the
impacts of global climate change and increasing temperatures on native
Hawaiian ecosystems are unknown at this time.
(6) Comment: Although drought was not identified as a threat to
Schiedea laui in our proposed rule, one peer reviewer suggested that it
may also be a threat to this species. According to the reviewer,
between 1998 and 2000, 7 of the 16 known mature individuals died from
prolonged drought. In addition, the reviewer suggested that drought
should be considered a threat to S. salicaria as it exacerbates the
likelihood of fire, which is identified as a threat to this species.
Our Response: Drought was indicated as a threat to Schiedea laui
with the observation of the extirpation of 7 of the 16 individuals by
2000 in Wagner et al. (2005b); however, we have information from more
recent botanical surveys and observations that the current threats to
individuals at this location are flooding and landslides (MNTF 2010).
In the long term, drought may be a threat if this species is dependent
upon the constant
[[Page 32028]]
water source provided at the grotto in which it occurs, and annual
precipitation amounts fall due to weather changes associated with the
global warming trend. Also, we agree that drought can lead to increased
incidences of wildfire, especially in the area of west Maui where S.
salicaria occurs. We appreciate the information provided by the
reviewer and have incorporated it, as appropriate, into TABLE 4--
SUMMARY OF PRIMARY THREATS IDENTIFIED FOR EACH OF THE 40 MAUI NUI
SPECIES and ``Habitat Destruction and Modification Due to Landslides,
Rockfalls, Treefalls, Flooding, and Drought'' in this final rule (see
below).
(7) Comment: One peer reviewer noted that our proposed rule states
that nonnative plants in the lowland mesic ecosystem and the lowland
dry ecosystem are a threat to the plant Schiedea salicaria. According
to the reviewer, S. salicaria is usually found in lowland dry habitats,
not in lowland mesic habitat.
Our Response: In our proposed rule, Schiedea salicaria is reported
from three occurrences in the lowland dry ecosystem on west Maui (77 FR
34464, Table 2C and p. 34481; June 11, 2012). This species was included
as one of the proposed species affected by nonnative plants in the
lowland mesic ecosystem (see ``Nonnative Plants in the Lowland Mesic
Ecosystem'' in the proposed rule) in error. We appreciate the
correction.
(8) Comment: One peer reviewer corrected our description of hybrid
swarms in the discussion of the proposed plant Schiedea salicaria to
say that a hybrid swarm consists of hybrids between parent species, and
subsequently formed progeny from crosses among hybrids and crosses of
hybrids to parental species. While this process is noted as a threat to
S. salicaria in Table 3 and in Proposed Determination for 40 Species in
our proposed rule, the reviewer points out that the hybridization
process is natural when S. salicaria and S. menziesii co-occur and
because of the dynamics in this hybrid zone, traits of S. salicaria
prevail and replace those of S. menziesii. The reviewer notes, however,
that populations of both species will likely remain distinct because
the two species do not overlap throughout much of their range.
Our Response: We appreciate the peer reviewer's comments and have
added that the traits of Schiedea salicaria prevail and replace those
of S. menziesii in hybrid zones (see Description of the 40 Maui Nui
Species, above). In addition, we have removed hybridization as a threat
to S. salicaria in this final rule; however, wildfires could possibly
adversely impact the remaining non-hybridizing occurrences of S.
salicaria on west Maui (see ``Habitat Destruction and Modification by
Fire,'' below).
(9) Comment: One peer reviewer suggested that we highlight the
positive interactions between drought and nonnative plant species, to
the detriment of native plant species, in our discussion of ``Climate
Change and Precipitation.'' According to this reviewer, these effects
may be subtle, as demonstrated by Blechnum appendiculatum (see Comment
4, above), or dramatic, as demonstrated during a fire on west Maui that
occurred in the area of the two largest populations of Schiedea
salicaria, and likely spread rapidly due to the presence of invasive
nonnative grasses and drought conditions.
Our Response: We agree that in the Hawaiian Islands there is a
positive correlation between drought (caused by a reduction in moisture
availability due to long periods of decline in annual precipitation),
the presence of nonnative plants (particularly fire-prone grasses), and
wildfire. We discuss the effects of the grass/fire cycle and the
contribution to this cycle by drying trends caused by global warming
(see ``Habitat Destruction and Modification by Fire,'' and ``Climate
Change and Precipitation,'' below).
(10) Comment: One peer reviewer suggested that our discussion of
the effects of the nonnative grass Pennisetum setaceum (Cenchrus
setaceus; fountain grass) on dry forests on Hawaii Island should
include direct competition with native species in addition to the
threat it poses to native habitat from wildfires.
Our Response: The peer reviewer is referring to our discussion of
``Habitat Destruction and Modification by Fire.'' In that discussion,
we note that on a post-burn survey at Puu Waawaa on Hawaii Island no
regeneration of native canopy plants was occurring within the burn
area. According to Takeuchi (1991, pp. 4, 6) nonnative Pennisetum sp.
increased the number of fires and suppressed the establishment of
native plants after a fire. We appreciate the additional information
provided by the reviewer, including citations for published articles on
the effects of nonnative fountain grass on wildfire and competition
with native plant species, and we have added the information to our
final rule (see ``Habitat Destruction and Modification by Fire,''
below).
(11) Comment: One peer reviewer noted that the discussion on
invasive plant species did not include sufficient information regarding
those species for which the State of Hawaii has introduced biological
control agents. The peer reviewer specifically highlighted four
invasive plants, Psidium cattleianum (strawberry guava), Clidemia hirta
(Koster's curse), Hedychium gardnerianum (kahili ginger), and Cyathea
cooperi (Sphaeropteris cooperi, Australian tree fern) and suggested
that we include further discussion on the potential importance of
biocontrol in addressing the very severe threats posed by these
otherwise intractable invasive plant species.
Our Response: We agree that the use of biological control is a
significant contribution to a multi-layered approach at management of
the various nonnative plants threatening Hawaiian native flora. Between
1902 and 2010, approximately 84 insect and fungal agents have been
introduced in Hawaii to control approximately 24 target nonnative
plants (Conant et al. [in press], pp. 1-2, 15-19). Approximately 42 of
these biological control agents are established in the Hawaiian
Islands, and 12 of these have demonstrated substantial effects (i.e.,
the targeted nonnative plant species have been suppressed over a large
portion of their ranges) toward control of their intended nonnative
plant target, including Ageratina adenophora (Maui pamakani), A.
riparia (Hamakua pamakani), and Lantana camara (lantana) (McFadyen
2000, pp. 4-7; Conant et al. [in press], pp. 1-2, 15-19). These three
nonnative plants pose serious and ongoing threats to habitat in six of
the ecosystems (lowland dry, lowland wet, montane mesic, montane wet,
dry cliff, and wet cliff), that support one or more of the 40 species
addressed in this final rule (see ``Habitat Destruction and
Modification by Nonnative Plants'' in the June 11, 2012 (77 FR 34464),
proposed rule). The Service remains cautiously optimistic about the use
of biological control agents as a potentially significant contribution
to a multi-layered approach to management of the various nonnative
plants threatening Hawaiian native flora, including the recent
introductions to control the ubiquitous, nonnative strawberry guava
that poses a serious and ongoing threat to habitat in five of the
ecosystems (lowland mesic, lowland wet, montane dry, montane mesic, and
montane wet) that support one or more of the 40 species addressed in
this final rule (see ``Habitat Destruction and Modification by
Nonnative Plants'' in the June 11, 2012
[[Page 32029]]
(77 FR 34464), proposed rule). However, the lack of post-introduction
monitoring for most past introductions is of concern, and the largely
anectodal evaluations of past introductions precludes our ability to
sufficiently evaluate and conjecture, upon their long-term success.
Peer Review Comment on Lanai Tree Snails
(12) Comment: One peer reviewer recommended additional emphasis on
the impacts of axis deer and mouflon sheep upon the habitat of the
snails. The reviewer stated that the feeding and trampling activities
of these ungulates removes the fern and vegetation layer around the
snails' host trees, so that dispersal of snails between host substrates
is either prevented or greatly reduced.
Our Response: We agree with the peer reviewer that the feeding and
trampling activities of ungulates removes the fern and vegetation layer
around the snails' host trees, and we have included information
regarding the impact of axis deer and mouflon sheep upon the habitat of
the Lanai tree snails in this final rule (see TABLE 4-SUMMARY OF
PRIMARY THREATS IDENTIFIED FOR EACH OF THE 40 MAUI NUI SPECIES and
``Habitat Destruction and Modification by Introduced Ungulates,''
below).
Comments From the State of Hawaii
(13) Comment: The Hawaii Department of Health stated that they had
no comments on the proposed rule but reserved the right to future
comments. In addition, their letter directed us to their Standard
Comments on their Web site (https://www.hawaii.gov/health/environmental/env-planning/landuse/landuse.html) and stated that any comments
specifically applicable to our proposed rule should be adhered to.
Our Response: We reviewed the Department of Health's Web site, and
specifically the Landuse Planning Review Program, and determined that
the Standard Comments referred to above do not apply to our June 11,
2012, proposed rulemaking or to this final rule. Standard Comments
provided by the seven environmental programs (Hazard Evaluation and
Emergency Response Office, Clean Air Branch, Clean Water Branch, Safe
Drinking Water Branch, Solid and Hazardous Waste Branch, Wastewater
Branch, and Indoor and Radiological Health Branch) within the Hawaii
Department of Health are intended to help developers to better prepare
land use planning documents such as environmental assessments,
environmental impact statements, or permit applications.
Comments From Federal Agencies
Haleakala National Park (Park) provided information on one or more
of the 37 plant species addressed in this final rule which occur in the
Park, and this information was incorporated, as appropriate, into
Description of the 40 Maui Nui Species, above.
(14) Comment: Kalaupapa National Historical Park (KNHP) agreed with
and supported the ecosystem-based approach in our June 11, 2012,
proposed rule, for grouping plants and defining their habitat
consistently. According to KNHP, this approach will aid the management
of endangered and threatened plants as part of the collection of native
communities across the landscape. Descriptions of individual listed
species, habitat, and threats will be a good resource to managers and
will serve as a basis for planning future conservation measures. The
proposed listing of the ``rarest of the rare'' PEPP [Plant Extinction
Prevention Program] species will provide a benefit to the National Park
Service by improving their ability to gain funds for the protection,
propagation, and outplanting of these rare plants. Improved funding
will help with KNHP's ongoing collaboration with partners, including
the Molokai Plant Extinction Prevention Program and The Nature
Conservancy.
Our Response: We appreciate the Park's comments regarding the
proposal to list the 38 Maui Nui species and to reevaluate the listing
of 2 species. We agree that using an ecosystem-based approach to
organize this rule will help provide for more focused conservation
efforts and concerted management efforts to address the common threats
that occur across these ecosystems.
Public Comments on the Proposed Listing of 38 Species and Reevaluation
of Listing of 2 Species
(15) Comment: One commenter stated that much of the referenced
material is not available for public review. The commenter further
stated that reliance on certain ``unpublished, non-public data deprives
the public of the opportunity to review and comment on the basis for
the Service's asserted justification in the proposed rule.'' According
to the commenter, ``such action is arbitrary, capricious and an abuse
of the Service's discretion, otherwise not in accordance with law, in
excess of statutory jurisdiction, authority, or limitations, and short
of statutory right, without observance of procedure required by law;
and unsupported by substantial evidence.''
Our Response: See also Comment (1) Response, above. Complete lists
of references, including unpublished information, cited in the proposed
rule (77 FR 34464; June 11, 2012) and in this final rule are available
on the Internet at https://www.regulations.gov at Docket No. FWS-R1-ES-
2011-0098, and upon request from the Pacific Islands Fish and Wildlife
Office (see ADDRESSES, above). In addition, as stated in our proposed
rule, all supporting documentation used in preparing the proposed rule
was available upon request and for public inspection, by appointment,
at the U.S. Fish and Wildlife Service Pacific Islands Fish and Wildlife
Office. All supporting documentation used in our rulemakings is a
matter of public record; however, the number of sources referenced are
often voluminous or subject to copyright restrictions. Therefore, it is
not possible for us to post all information sources used on the
Internet. However, any of our supporting references cited in this or
any rulemaking are always available upon request.
(16) Comment: One commenter objected to the proposed listing of the
two Lanai tree snails, Partulina semicarinata and Partulina variabilis,
because, in their view, the Service does not have sufficient
information regarding the historical population estimates and the lack
of comprehensive surveys. The commenter disagreed with our
determination in the proposed rule that these tree snails are
``vulnerable to extinction due to threats associated with low number of
individuals and populations'' (77 FR 34507; June 11, 2012).
Our Response: Under the Act, we determine whether a species is an
endangered species or a threatened species because of any of five
factors (see Summary of Factors Affecting the 40 Maui Nui Species,
below), and we are required to make listing determinations solely on
the basis of the best available scientific and commercial data
available (see 16 U.S.C. 1533(a)(1) and (b)(1)(A)). The threats to the
two Lanai tree snail species, as well as other endangered tree snails
in the Hawaiian Islands, are well-documented (see Summary of Factors
Affecting the 40 Maui Nui Species, below). Although there are no
historical population estimates for these two tree snails, qualitative
accounts of Hawaiian tree snails indicate they were widespread and
abundant, possibly numbering in the tens of thousands between the 1800s
and early 1900s (Hadfield 1986, p. 69). However, the best available
survey
[[Page 32030]]
information, conducted between 1993 and 2005, indicates that currently
Partulina semicarinata and Partulina variabilis total fewer than 120
individuals on Lanai (Hadfield 2005, pp. 3-5). Based on the information
regarding the current status of the species and ongoing threats to the
remaining few individuals, we have determined that these species are
presently in danger of extinction; definitive quantitative data
regarding historical population numbers are not necessary to make this
determination. The problems associated with small population size
(e.g., inbreeding depression for snails) and vulnerability to random
demographic fluctuations or natural catastrophes are magnified by
synergistic interactions with other threats (e.g., predation by
nonnative rats or habitat destruction or modification by nonnative
ungulates). Therefore, we disagree with the commenter, and believe
these two tree snail species are vulnerable to extinction due to their
low number of individuals and populations.
(17) Comment: Several commenters noted the threat of deer and goats
to Canavalia pubescens throughout its range on Maui, with specific
impacts to populations on the Palauea lava flow and Ahihi-Kinau. The
commenters also recommended that fenced areas and regular monitoring
are necessary to protect this species from the threat of ungulates in
these areas.
Our Response: We agree that deer and goats constitute a threat to
the coastal and lowland dry ecosystems in which Canavalia pubescens is
known to occur (see ``Habitat Destruction and Modification by
Introduced Ungulates,'' below). In this final rule, we noted the
destruction of Canavalia pubescens at Ahihi-Kinau Natural Area Reserve
in 2010 (see Description of the 40 Maui Nui Species, above) and
acknowledge the threat of herbivory by deer and goats on Canavalia
pubescens (see ``Introduced Ungulates'' in Disease or Predation,
below).
(18) Comment: Several commenters noted the occurrence of Canavalia
pubescens or awikiwiki on lands owned by Honuaula Partners.
Our Response: We appreciate this information and note that
information in our files indicates that Canavalia pubescens or
awikiwiki occurs in this area.
Summary of Changes From Proposed Rule
In preparing this final rule, we reviewed and fully considered
comments from the public on the proposed listing for 38 species and
reevaluation of listing for 2 species. This final rule incorporates the
following substantive changes to our proposed listing, based on the
comments we received:
(1) We added the montane mesic ecosystem to the listed plant
Phyllostegia haliakalae in the following locations in this final rule:
Description of the 40 Maui Nui Species (above), Table 3 (above), and
Table 4 (below), based on comments we received.
(2) We are revising the specific negative impacts of the nonnative
plant Blechnum appendiculatum as follows, based on peer review
comments:
Blechnum appendiculatum (NCN) is a fern with fronds to 23 in (60
cm) long that forms large colonies, outcompeting many native fern
species (Palmer 2003, p. 81). This species is far more drought tolerant
than native fern species. It forms thick mats that prevent regeneration
from seeds of native species, and appears to successfully outcompete
native ferns. All of these attributes compound the effects of the
presence of this nonnative fern on native habitat (Weller et al. 2011,
pp. 676-677).
(3) We added drought as a threat to the listed plants Canavalia
pubescens and Schiedea salicaria in the following locations in this
final rule: Table 4 and ``Habitat Destruction and Modification Due to
Landslides, Rockfalls, Treefalls, Flooding, and Drought,'' below, based
on comments we received.
Status Assessment for the 40 Maui Nui Species
Summary of Factors Affecting the 40 Maui Nui Species
Section 4 of the Act (16 U.S.C. 1533) and its implementing
regulations (50 CFR part 424) set forth the procedures for adding
species to the Federal Lists of Endangered and Threatened Wildlife and
Plants. A species may be determined to be an endangered or threatened
species due to one or more of the five factors described in section
4(a)(1) of the Act: (A) The present or threatened destruction,
modification, or curtailment of its habitat or range; (B)
overutilization for commercial, recreational, scientific, or
educational purposes; (C) disease or predation; (D) the inadequacy of
existing regulatory mechanisms; and (E) other natural or manmade
factors affecting its continued existence. Listing actions may be
warranted based on any of the above threat factors, singly or in
combination. Each of these factors is discussed below.
In considering what factors might constitute threats to a species
we must look beyond the exposure of the species to a particular factor
to evaluate whether the species may respond to that factor in a way
that causes actual impacts to the species. If there is exposure to a
factor and the species responds negatively, the factor may be a threat
and, during the status review, we attempt to determine how significant
a threat it is. The threat is significant if it drives, or contributes
to, the risk of extinction of the species such that the species
warrants listing as endangered or threatened as those terms are defined
in the Act. However, the identification of factors that could impact a
species negatively may not be sufficient to warrant listing the species
under the Act. The information must include evidence sufficient to show
that these factors are operative threats that act on the species to the
point that the species meets the definition of endangered or threatened
under the Act.
If we determine that the level of a threat posed to a species by
one or more of the five listing factors is such that the species meets
the definition of either endangered or threatened under section 3 of
the Act, that species may then be listed as endangered or threatened.
The Act defines an endangered species as ``in danger of extinction
throughout all or a significant portion of its range,'' and a
threatened species as ``likely to become an endangered species within
the foreseeable future throughout all or a significant portion of its
range.'' The threats to each of the individual 40 Maui Nui species are
summarized in Table 4, and discussed in detail below.
Assumptions
We acknowledge that the specific nature of the threats to the
individual species in this final rule are not completely understood.
Scientific research directed toward each of the 40 species is limited
because of their rarity and the challenging logistics associated with
conducting field work in Hawaii (e.g., areas are typically remote,
difficult to access and work in, and expensive to survey in a
comprehensive manner). However, there is information available on many
of the threats that act on Hawaiian ecosystems, and, for some
ecosystems, these threats are well studied and understood. Each of the
native species that occurs in Hawaiian ecosystems suffers from exposure
to those threats. For the purposes of our listing determination, our
assumption is that the threats that act at the ecosystem level also act
on each of the species that occurs in those ecosystems (although in
some cases we have additionally identified species-specific threats,
such as predation by nonnative invertebrates).
[[Page 32031]]
The following constitutes a list of ecosystem-level threats that
affect the 40 species in 10 ecosystems on the islands of Maui Nui:
(1) Foraging and trampling of native plants by ungulates, including
feral pigs (Sus scrofa), goats, cattle (Bos taurus), axis deer (Axis
axis), or mouflon sheep (Ovis gmelini musimon), which can result in
severe erosion of watersheds because these mammals inhabit terrain that
is often steep and remote (Cuddihy and Stone 1990, p. 63). Foraging and
trampling events destabilize soils that support native plant
communities, bury or damage native plants, and have adverse water
quality effects due to runoff over exposed soils.
(2) Disturbance of soils by feral pigs from rooting, which can
create fertile seedbeds for alien plants (Cuddihy and Stone 1990, p.
65).
(3) Increased nutrient availability as a result of pigs rooting in
nitrogen-poor soils, which facilitates establishment of alien weeds.
Alien weeds are more adapted to nutrient rich soils than native plants
(Cuddihy and Stone 1990, p. 63), and rooting activity creates open
areas in forests allowing alien species to completely replace native
stands.
(4) Ungulate destruction of seeds and seedlings of native plant
species (Cuddihy and Stone 1990, p. 63), which facilitates the
conversion of disturbed areas from native to nonnative vegetative
communities.
(5) Rodent damage to plant propagules, seedlings, or native trees,
which changes forest composition and structure (Cuddihy and Stone 1990,
p. 67).
(6) Feeding or defoliation of native plants from alien insects,
which can reduce geographic ranges of some species because of damage
(Cuddihy and Stone 1990, p. 71).
(7) Alien insect predation on native insects, which affects
pollination of native plant species (Cuddihy and Stone 1990, p. 71).
(8) Significant changes in nutrient cycling processes because of
large numbers of alien invertebrates such as earthworms, ants, slugs,
isopods, millipedes, and snails, resulting in changes to the
composition and structure of plant communities (Cuddihy and Stone 1990,
p. 73).
Each of the above threats is discussed in more detail below, and
summarized in Table 4.
BILLING CODE 4310-55-P
[[Page 32032]]
[GRAPHIC] [TIFF OMITTED] TR28MY13.001
[[Page 32033]]
[GRAPHIC] [TIFF OMITTED] TR28MY13.002
[[Page 32034]]
[GRAPHIC] [TIFF OMITTED] TR28MY13.003
[[Page 32035]]
[GRAPHIC] [TIFF OMITTED] TR28MY13.004
[[Page 32036]]
[GRAPHIC] [TIFF OMITTED] TR28MY13.005
[[Page 32037]]
[GRAPHIC] [TIFF OMITTED] TR28MY13.006
[[Page 32038]]
[GRAPHIC] [TIFF OMITTED] TR28MY13.007
[[Page 32039]]
[GRAPHIC] [TIFF OMITTED] TR28MY13.008
[[Page 32040]]
[GRAPHIC] [TIFF OMITTED] TR28MY13.009
BILLING CODE 4310-55-C
[[Page 32041]]
A. The Present or Threatened Destruction, Modification, or Curtailment
of Its Habitat or Range
The Hawaiian Islands are located over 2,000 mi (3,200 km) from the
nearest continent. This isolation has allowed the few plants and
animals that arrived in the Hawaiian Islands to evolve into many highly
varied and endemic species (species that occur nowhere else in the
world). The only native terrestrial mammals in the Hawaiian Islands are
two bat taxa, the extant Hawaiian hoary bat (Lasiurus cinereus semotus)
and an extinct, unnamed insectivorous bat (Ziegler 2002, p. 245). The
native plants of the Hawaiian Islands, therefore, evolved in the
absence of mammalian predators, browsers, or grazers. Many of the
native species have lost unneeded defenses against threats such as
mammalian predation and competition with aggressive, weedy plant
species that are typical of continental environments (Loope 1992, p.
11; Gagne and Cuddihy 1999, p. 45; Wagner et al. 1999l, pp. 3-6). For
example, Carlquist (in Carlquist and Cole 1974, p. 29) notes ``Hawaiian
plants are notably free from many characteristics thought to be
deterrents to herbivores (toxins, oils, resins, stinging hairs, coarse
texture).'' Native Hawaiian plants are therefore highly vulnerable to
the impacts of introduced mammals and alien plants. In addition,
species restricted and adapted to highly specialized locations (e.g.,
Calamagrostis hillebrandii) are particularly vulnerable to changes
(from nonnative species, hurricanes, fire, and climate change) in their
habitat (Carlquist and Cole 1974, pp. 28-29; Loope 1992, pp. 3-6; Stone
1989, pp. 88-95).
Habitat Destruction and Modification by Agriculture and Urban
Development
The consequences of past land use practices such as agricultural or
urban development have resulted in little or no native vegetation below
2,000 ft (600 m) throughout the Hawaiian Islands (TNC 2007), largely
impacting the coastal, lowland dry, lowland mesic, and lowland wet
ecosystems. Although agriculture has been declining in importance,
large tracts of former agricultural lands are being converted into
residential areas or left fallow (TNC 2007). In addition, Hawaii's
population increased almost 7 percent in the past 10 years, further
increasing demands on limited land and water resources in the islands
(Hawaii Department of Business, Economic Development and Tourism 2010).
Development and urbanization of coastal and lowland dry ecosystems
on Maui are a serious threat to one species in this final rule,
Canavalia pubescens, which is dependent on these ecosystems and is
currently found only in east Maui. Two individuals at Palauea-Keahou
were destroyed by development prior to 2001 (Oppenheimer 2000, in
litt.). Future development plans for this area include a golf course
and associated infrastructure, and housing (Altenberg 2007, p. 2-5;
Greenlee 2013, in litt.). Although fewer than 20 individuals were known
in this area as recently as 2010, no individuals have been found in
site visits over the last 2 years (Altenberg 2010, in litt.; Greenlee
2013, in litt.).
Habitat Destruction and Modification by Introduced Ungulates
Introduced mammals have greatly impacted the native vegetation, as
well as the native fauna, of the Hawaiian Islands. Impacts to the
native species and ecosystems of Hawaii accelerated following the
arrival of Captain James Cook in 1778. The Cook expedition and
subsequent explorers intentionally introduced a European race of pigs
or boars and other livestock, such as goats, to serve as food sources
for seagoing explorers (Tomich 1986, pp. 120-121; Loope 1998, p. 752).
The mild climate of the islands, combined with the lack of competitors
or predators, led to the successful establishment of large populations
of these introduced mammals, to the detriment of native Hawaiian
species and ecosystems. The presence of introduced alien mammals is
considered one of the primary factors underlying the alteration and
degradation of native plant communities and habitats on Molokai, Lanai,
and Maui. Ten ecosystems (coastal, lowland dry, lowland mesic, lowland
wet, montane dry, montane mesic, montane wet, subalpine, dry cliff, and
wet cliff) on Molokai, Lanai, and Maui and their associated species are
currently impacted by threats of the destruction or degradation of
habitat due to nonnative ungulates (hoofed mammals), including pigs,
goats, axis deer, mouflon, and cattle. Thirty-five of the 37 plant
species and both species of Partulina tree snails (Partulina
semicarinata and P. variabilis) in this final rule are exposed to
direct and indirect negative impacts of feral ungulates (pigs, goats,
axis deer, mouflon, and cattle), which result in the destruction and
degradation of habitat for these native Maui Nui species (Table 4).
Pigs have been described as the most pervasive and disruptive
nonnative influence on the unique native forests of the Hawaiian
Islands, and are widely recognized as one of the greatest current
threats to forest ecosystems in Hawaii (Aplet et al. 1991, p. 56;
Anderson and Stone 1993, p. 195). European pigs, introduced to Hawaii
by Captain James Cook in 1778, hybridized with domesticated Polynesian
pigs, became feral, and invaded forested areas, especially wet and
mesic forests and dry areas at high elevations. The Hawaii Territorial
Board of Agriculture and Forestry started a feral pig eradication
project in the early 1900s that continued through 1958, removing
170,000 pigs from forests Statewide (Diong 1982, p. 63). Feral pigs are
currently present on Niihau, Kauai, Oahu, Molokai, Maui, and Hawaii.
These feral animals are extremely destructive and have both direct
and indirect impacts on native plant communities. While rooting in the
earth in search of invertebrates and plant material, pigs directly
impact native plants by disturbing and destroying vegetative cover, and
trampling plants and seedlings. It has been estimated that at a
conservative rooting rate of 2 square (sq)-yards (yd) per minute, with
only 4 hours of foraging a day, a single pig could disturb over 1,600
sq-yd of groundcover per week (Anderson et al. 2007, p. 2).
Pigs may also reduce or eliminate plant regeneration by damaging or
eating seeds and seedlings (further discussion of predation by
nonnative ungulates is provided under Factor C, below). Pigs are a
major vector for the establishment and spread of competing invasive
nonnative plant species by dispersing plant seeds on their hooves and
fur, and in their feces (Diong 1982, pp. 169-170), which also serves to
fertilize disturbed soil (Matson 1990, p. 245; Siemann et al. 2009, p.
547). Pigs feed on the fruits of many nonnative plants, such as
Passiflora tarminiana (banana poka) and Psidium cattleianum (strawberry
guava), spreading the seeds of these invasive species through their
feces as they travel in search of food. In addition, rooting pigs
contribute to erosion by clearing vegetation and creating large areas
of disturbed soil, especially on slopes (Smith 1985, pp. 190, 192, 196,
200, 204, 230-231; Stone 1985, pp. 254-255, 262-264; Medeiros et al.
1986, pp. 27-28; Scott et al. 1986, pp. 360-361; Tomich 1986, pp. 120-
126; Cuddihy and Stone 1990, pp. 64-65; Aplet et al. 1991, p. 56; Loope
et al. 1991, pp. 1-21; Gagne and Cuddihy 1999, p. 52). Ten of the Maui
Nui ecosystems (coastal, lowland dry, lowland mesic, lowland wet,
montane dry, montane mesic, montane wet, subalpine, dry cliff, and wet
cliff) and their associated species are adversely impacted by the
destruction or
[[Page 32042]]
degradation of habitat due to pigs (see Table 4, above).
Goats native to the Middle East and India were also successfully
introduced to the Hawaiian Islands in the late 1700s. Actions to
control feral goat populations began in the 1920s (Tomich 1986, pp.
152-153); however, they still occupy a wide variety of habitats on
Molokai and Maui and to a lesser degree on Lanai, where they consume
native vegetation, trample roots and seedlings, accelerate erosion, and
promote the invasion of alien plants (van Riper and van Riper 1982, pp.
34-35; Stone 1985, p. 261; Kessler 2010, pers. comm.). Goats are able
to access, and forage in, extremely rugged terrain, and they have a
high reproductive capacity (Clarke and Cuddihy 1980, pp. C-19, C-20;
Culliney 1988, p. 336; Cuddihy and Stone 1990, p. 64). Because of these
factors, goats are believed to have completely eliminated some plant
species from islands (Atkinson and Atkinson 2000, p. 21). Goats can be
highly destructive to native vegetation, and contribute to erosion by
eating young trees and young shoots of plants before they can become
established, creating trails that damage native vegetative cover,
promoting erosion by destabilizing substrate and creating gullies that
convey water, and dislodging stones from ledges that can cause
rockfalls and landslides and damage vegetation below (Cuddihy and Stone
1990, pp. 63-64). Nine of the described ecosystems on Molokai, Lanai,
and Maui (coastal, lowland dry, lowland mesic, lowland wet, montane
dry, montane mesic, montane wet, dry cliff, and wet cliff) and their
associated species are adversely impacted by the destruction or
degradation of habitat due to goats (see Table 4, above).
Axis deer were first introduced to Molokai in 1868, Lanai in 1920,
and Maui in 1959 (Hobdy 1993, p. 207; Erdman 1996, pers. comm. cited in
Waring 1996, in litt., p. 2; Hess 2008, p. 2). On Molokai, axis deer
have likely spread throughout the island at all elevations (from the
coast to the summit area at 4,961 ft (1,512 m)) (Kessler 2011, pers.
comm.). The most current population estimate of axis deer on Molokai is
between 4,000 and 5,000 individuals (Anderson 2003, p. 130). It is
likely this is an underestimate of the total number of individuals as
it was published almost a decade ago, and little management for deer
control has been implemented. On Lanai, as of 2007, axis deer were
reported to number approximately 6,000 to 8,000 individuals (The Aloha
Insider 2008, in litt.; WCities 2010, in litt.). On Maui, five adults
were released east of Kihei in 1959 (Hobdy 1993, p. 207; Hess 2008, p.
2). By 1968, the population was estimated to be 85 to 90 animals, and
by 1995, there were over 500 individuals on Ulupalakua Ranch alone
(Erdman 1996, pers. comm. cited in Waring 1996, in litt., p. 2). As of
2001, there was concern that their numbers on Maui could expand to
between 15,000 to 20,000 or more individuals within a few years
(Anderson 2001, in litt.; Nishibayashi 2001, in litt.). According to
Medeiros (2010a, pers. comm.) axis deer can be found in all but the
uppermost ecosystems (subalpine and alpine) and montane bogs on Maui.
Medeiros (2010a, pers. comm.) also observed that axis deer are
increasing at such high rates on Maui that native forests are changing
in unprecedented ways. According to Medeiros (2010a, pers. comm.),
native plants will only survive in habitat that is fenced or otherwise
protected from the grazing and trampling effects of axis deer. Kessler
(2010, pers. comm.) and Hess (2010, pers. comm.) report axis deer up to
9,000 ft (2,743 m) in elevation on Maui, and Kessler suggests that no
ecosystem is safe from the negative impacts of these animals. Montane
bogs are also susceptible to impacts from axis deer. As the native
vegetation dies off from the combined effects of grazing and trampling
by axis deer, the soil dries out, and invasive nonnative plants gain a
foothold. Eventually, the bog habitat and its associated native plants
and animals are replaced by a grassland, shrubland, or forest habitat
dominated by nonnative plants.
Axis deer are primarily grazers, but also browse numerous palatable
plant species including those grown as commercial crops (Waring 1996,
p. 3; Simpson 2001, in litt.). They prefer the lower, more openly
vegetated areas for browsing and grazing; however, during episodes of
drought (e.g., from 1998-2001 on Maui (Medeiros 2010a, pers. comm.)),
axis deer move into urban and forested areas in search of food (Waring
1996, in litt., p. 5; Nishibayashi 2001, in litt.). Like goats, axis
deer can be highly destructive to native vegetation and contribute to
erosion by eating young trees and young shoots of plants before they
can become established, creating trails that can damage native
vegetative cover, promoting erosion by destabilizing substrate and
creating gullies that convey water, and dislodging stones from ledges
that can cause rockfalls and landslides and damage vegetation below
(Cuddihy and Stone 1990, pp. 63-64). Browsing and trampling by axis
deer also removes vegetation surrounding the host trees of the two
Lanai tree snails so that dispersal of snails between host substrates
is either prevented or greatly reduced (Duvall 2012, in litt.). Nine of
the described Maui Nui ecosystems (coastal, lowland dry, lowland mesic,
lowland wet, montane dry, montane mesic, montane wet, dry cliff, and
wet cliff) and their associated species are adversely impacted by the
destruction or degradation of habitat due to axis deer (see Table 4,
above).
The mouflon sheep, native to Asia Minor, was introduced to the
islands of Lanai and Hawaii in the 1950s as a managed game species, and
has become widely established on these islands (Tomich 1986, pp. 163-
168; Cuddihy and Stone 1990, p. 66; Hess 2008, p. 1). Mouflon have high
reproduction rates; for example, the original population of 11
individuals on the island of Hawaii has increased to more than 2,500 in
36 years, even though hunted as a game animal (Hess 2008, p. 3).
Mouflon only form large groups when breeding, thus limiting control
techniques and hunting efficiency (Hess 2008, p. 3). Mouflon sheep are
both grazers and browsers, and have decimated vast areas of native
forest and shrubland through browsing and bark stripping (Stone 1985,
p. 271; Cuddihy and Stone 1990, pp. 63, 66; Hess 2008, p. 3). In range
studies done on the effects of mouflon grazing and browsing on the
island of Hawaii, plant species found to be most affected were
Argyroxiphium sandwicense ssp. sandwicense (ahinahina), an endangered
species; Acacia koa; Geranium spp. (nohoanu or hinahina); Sophora
chrysophylla; Vaccinium spp. (ohelo); and native grasses (Giffin 1981,
pp. 22-23; Scowcroft and Conrad 1992, pp. 628-662; Hess 2008, p. 3).
Mouflon also create trails and pathways through thick vegetation,
leading to increased runoff and erosion through soil compaction. In
some areas, the interaction of browsing and soil compaction leads to a
change from native rainforest to grassy scrublands (Hess 2008, p. 3).
Duvall (2012, in litt.) reports that mouflon sheep browsing and
trampling removes vegetation surrounding host trees of the two Lanai
tree snails, thus reducing or preventing snail dispersal between host
trees. Seven of the described ecosystems (coastal, lowland dry, lowland
mesic, lowland wet, montane wet, dry cliff, and wet cliff) on Lanai and
their associated species are adversely impacted by the destruction or
degradation of habitat due to mouflon sheep (see Table 4, above).
Cattle, the wild ancestors of which were native to Europe, northern
Africa, and southwestern Asia, were introduced to the Hawaiian Islands
in 1793. Large feral herds (as many as 12,000 on the
[[Page 32043]]
island of Hawaii) developed as a result of restrictions on killing
cattle decreed by King Kamehameha I (Cuddihy and Stone 1990, p. 40).
While small cattle ranches were developed on Kauai, Oahu, Molokai, west
Maui, and Kahoolawe, very large ranches of tens of thousands of acres
were created on east Maui and Hawaii Island (Stone 1985, pp. 256, 260;
Broadbent 2010, in litt.). Logging of native Acacia koa was combined
with establishment of cattle ranches, quickly converting native forest
to grassland (Tomich 1986, p. 140; Cuddihy and Stone 1990, p. 47).
Feral cattle can presently be found on the islands of Maui and Hawaii,
where ranching is still a major commercial activity. According to
Kessler (2011, pers. comm.), there are approximately 300 individuals
roaming east Maui up to the alpine ecosystem (i.e., 1,000 to 9,900 ft
(305 to 3,000 m) elevation) with occasional observations on west Maui.
Cattle eat native vegetation, trample roots and seedlings, cause
erosion, create disturbed areas into which alien plants invade, and
spread seeds of alien plants in their feces and on their bodies. The
forest in areas grazed by cattle degrades to grassland pasture, and
plant cover is reduced for many years following removal of cattle from
an area. In addition, several alien grasses and legumes purposely
introduced for cattle forage have become noxious weeds (Tomich 1986,
pp. 140-150; Cuddihy and Stone 1990, p. 29). Five of the described
ecosystems (lowland dry, lowland mesic, lowland wet, montane mesic, and
montane wet) on Maui and their associated species are adversely
impacted by the destruction or degradation of habitat due to feral
cattle (see Table 4, above).
In summary, 37 of the 40 species dependent upon the 10 ecosystems
identified in this final rule (coastal, lowland dry, lowland mesic,
lowland wet, montane dry, montane mesic, montane wet, subalpine, dry
cliff, and wet cliff) are exposed to both direct and indirect negative
impacts of feral ungulates (pigs, goats, axis deer, mouflon, and
cattle). These negative impacts result in the destruction and
degradation of habitat for these 37 native species on Molokai, Lanai,
and Maui. The effects of these nonnative animals include the
destruction of vegetative cover; trampling of plants and seedlings;
direct consumption of native vegetation; soil disturbance; dispersal of
alien plant seeds on hooves and coats, and through the spread of seeds
in feces; and creation of open, disturbed areas conducive to further
invasion by nonnative pest plant species. All of these impacts lead to
the subsequent conversion of a plant community dominated by native
species to one dominated by nonnative species (see ``Habitat
Destruction and Modification by Nonnative Plants,'' below). In
addition, because these mammals inhabit terrain that is often steep and
remote (Cuddihy and Stone 1990, p. 59), foraging and trampling
contributes to severe erosion of watersheds and degradation of streams.
As early as 1900, there was increasing concern expressed about the
integrity of island watersheds, due to effects of ungulates and other
factors, leading to the establishment of a professional forestry
program emphasizing soil and water conservation (Nelson 1989, p. 3).
Habitat Destruction and Modification by Nonnative Plants
Native vegetation on all of the main Hawaiian Islands has undergone
extreme alteration because of past and present land management
practices, including ranching, the deliberate introduction of nonnative
plants and animals, and agricultural development (Cuddihy and Stone
1990, pp. 27, 58). The original native flora of Hawaii (species that
were present before humans arrived) consisted of about 1,000 taxa, 89
percent of which were endemic (species that occur only in the Hawaiian
Islands). Over 800 plant taxa have been introduced from elsewhere, and
nearly 100 of these have become pests (e.g., injurious plants) in
Hawaii (Smith 1985, p. 180; Cuddihy and Stone 1990, p. 73; Gagne and
Cuddihy 1999, p. 45). Of these 100 nonnative pest plant species, close
to 70 species have altered the habitat of 36 of the 40 species in this
final rule (only Cyrtandra ferripilosa, Schiedea jacobii, Partulina
semicarinata, and P. variabilis are not directly impacted by nonnative
plants; see Table 4). Some of the nonnative plants were brought to
Hawaii by various groups of people, including the Polynesians, for food
or cultural reasons. Plantation owners (and the territorial government
of Hawaii), alarmed at the reduction of water resources for their crops
caused by the destruction of native forest cover by grazing feral and
domestic animals, introduced nonnative trees for reforestation.
Ranchers intentionally introduced pasture grasses and other nonnative
plants for agriculture, and sometimes inadvertently introduced weeds as
well. Other plants were brought to Hawaii for their potential
horticultural value (Scott et al. 1986, pp. 361-363; Cuddihy and Stone
1990, p. 73).
Nonnative plants adversely impact native habitat in Hawaii,
including the 10 Maui Nui ecosystems that support the 40 species
identified in this final rule, and directly adversely impact 36 of
these species, by: (1) Modifying the availability of light; (2)
altering soil-water regimes; (3) modifying nutrient cycling; (4)
altering the fire regime affecting native plant communities (e.g.,
successive fires that burn farther and farther into native habitat,
destroying native plants and removing habitat for native species by
altering microclimatic conditions to favor alien species); and (5)
ultimately, converting native-dominated plant communities to nonnative
plant communities (Smith 1985, pp. 180-181; Cuddihy and Stone 1990, p.
74; D'Antonio and Vitousek 1992, p. 73; Vitousek et al. 1997, p. 6).
Nonnative plants (and animals) have contributed to the extinction of
native species in the lowlands of Hawaii and have been a primary cause
of extinction in upland habitats (Vitousek et al. 1987, in Cuddihy and
Stone 1990, p. 74). The most-often cited effects of nonnative plants on
native plant species are displacement through competition. Competition
may be for water or nutrients, or it may involve allelopathy (chemical
inhibition of other plants) (Smith 1985, in Cuddihy and Stone 1990, p.
74). Nonnative plants may also displace native species by preventing
their reproduction, usually by shading and taking up available sites
for seedling establishment (Vitousek et al. 1987 in Cuddihy and Stone
1990, p. 74).
Alteration of fire regimes clearly represents an ecosystem-level
change caused by the invasion of nonnative grasses (D'Antonio and
Viousek 1992, p. 73). The grass life form supports standing dead
material that burns readily, and grass tissues have large surface-to-
volume ratios and can dry out quickly (D'Antonio and Viousek 1992, p.
73). The flammability of biological materials is determined primarily
by their surface-to-volume ratio and moisture content, and secondarily
by mineral content and tissue chemistry (D'Antonio and Viousek 1992, p.
73). The finest size classes of material (mainly grasses) ignite and
spread fires under a broader range of conditions than do woody fuels or
even surface litter (D'Antonio and Viousek 1992, p. 73). The grass life
form allows rapid recovery following fire; there is little above-ground
structural tissue, so almost all new tissue fixes carbon and
contributes to growth (D'Antonio and Viousek 1992, p. 73). Grass
canopies also support a microclimate in which surface temperatures are
hotter, vapor
[[Page 32044]]
pressure deficits are larger, and the drying of tissues occurs more
rapidly than in forest or woodlands (D'Antonio and Viousek 1992, p.
73). Thus, conditions that favor fires are much more frequent in
grasslands (D'Antonio and Viousek 1992, p. 73). In summary, nonnative
plants directly and indirectly affect 36 of the 40 species in this
final rule by modifying or destroying their terrestrial habitat. Please
refer to the proposed rule (77 FR 34464; June 11, 2012) for a list of
nonnative plants and a discussion of their specific negative effects on
the 36 affected Maui Nui species.
Habitat Destruction and Modification by Fire
Fire is an increasing, human-exacerbated threat to native species
and native ecosystems in Hawaii. The historical fire regime in Hawaii
was characterized by infrequent, low severity fires, as few natural
ignition sources existed (Cuddihy and Stone 1990, p. 91; Smith and
Tunison 1992, pp. 395-397). It is believed that prior to human
colonization, fuel was sparse and inflammable in wet plant communities
and seasonally flammable in mesic and dry plant communities. The
primary ignition sources were volcanism and lightning (Baker et al.
2009, p. 43). Natural fuel beds were often discontinuous, and rainfall
in many areas on most islands was, and is, moderate to high. Fires
inadvertently or intentionally ignited by the original Polynesians in
Hawaii probably contributed to the initial decline of native vegetation
in the drier plains and foothills. These early settlers practiced
slash-and-burn agriculture that created open lowland areas suitable for
the later colonization of nonnative, fire-adapted grasses (Kirch 1982,
pp. 5-6, 8; Cuddihy and Stone 1990, pp. 30-31). Beginning in the late
18th century, Europeans and Americans introduced plants and animals
that further degraded native Hawaiian ecosystems. Pasturage and
ranching, in particular, created high fire-prone areas of nonnative
grasses and shrubs (D'Antonio and Vitousek 1992, p. 67). Although fires
were historically infrequent in mountainous regions, extensive fires
have recently occurred in lowland dry and lowland mesic areas, leading
to grass-fire cycles that convert forest to grasslands (D'Antonio and
Vitousek 1992, p. 77).
Because several Hawaiian plants show some tolerance of fire, Vogl
proposed that naturally occurring fires may have been important in the
development of the original Hawaiian flora (Vogl 1969 in Cuddihy and
Stone 1990, p. 91; Smith and Tunison 1992, p. 394). However, Mueller-
Dombois (1981 in Cuddihy and Stone 1990, p. 91) points out that most
natural vegetation types of Hawaii would not carry fire before the
introduction of alien grasses, and Smith and Tunison (1992, p. 396)
state that native plant fuels typically have low flammability. Because
of the greater frequency, intensity, and duration of fires that have
resulted from the introduction of nonnative plants (especially
grasses), fires are now destructive to native Hawaiian ecosystems
(Brown and Smith 2000, p. 172), and a single grass-fueled fire can kill
most native trees and shrubs in the burned area (D'Antonio and Vitousek
1992, p. 74).
Fire represents a threat to 13 native plant species found in the
coastal, lowland dry, lowland mesic, montane dry, montane mesic, and
dry cliff ecosystems addressed in this final rule: Bidens campylotheca
ssp. pentamera, Canavalia pubescens, Cyanea magnicalyx, C. mauiensis,
C. obtusa, Festuca molokaiensis, Phyllostegia bracteata, P. haliakalae,
Pittosporum halophilum, Pleomele fernaldii, Santalum haleakalae var.
lanaiense, Schiedea salicaria, and Stenogyne kauaulaensis (see Table
4). Fire can destroy dormant seeds of these species as well as plants
themselves, even in steep or inaccessible areas. Successive fires that
burn farther and farther into native habitat destroy native plants and
remove habitat for native species by altering microclimate conditions
favorable to alien plants. Alien plant species most likely to be spread
as a consequence of fire are those that produce a high fuel load, are
adapted to survive and regenerate after fire, and establish rapidly in
newly burned areas. Drought-tolerant grasses and ferns, particularly
those that produce mats of dry material or retain a mass of standing
dead leaves (e.g., Pennisetum setaceum, Blechnum appendiculatum) invade
native forests and shrublands and provide fuels that allow fire to burn
areas that would not otherwise easily burn (Fujioka and Fujii 1980, in
Cuddihy and Stone 1990, p. 93; D'Antonio and Vitousek 1992, pp. 70, 73-
74; Tunison et al. 2002, p. 122; Weller et al. 2011, pp. 676-677;
Weller 2012, in litt.). Other nonnative plants such as Clidemia hirta
and pines (Pinus spp.) rapidly outcompete native plants and dominate
areas opened by fire (Weller 2012, in litt.). Native woody plants may
recover from fire to some degree, but fire shifts the competitive
balance toward alien species (National Park Service 1989, in Cuddihy
and Stone 1990, p. 93). On a post-burn survey at Puuwaawaa on the
island of Hawaii, an area of native Diospyros forest with undergrowth
of the nonnative grass Pennisetum setaceum, Takeuchi noted that ``no
regeneration of native canopy is occurring within the Puuwaawaa burn
area'' (Takeuchi 1991, p. 2). Takeuchi (1991, pp. 4, 6) also stated
that ``burn events served to accelerate a decline process already in
place, compressing into days a sequence which would ordinarily take
decades,'' and concluded that in addition to increasing the number of
fires, the nonnative Pennisetum acted to suppress the establishment of
native plants after a fire.
For decades, fires have impacted rare or endangered species and
their habitat (Gima 1998, in litt.; Pacific Disaster Center 2011;
Hamilton 2009, in litt.; Honolulu Advertiser, 2010). The islands of
Molokai, Lanai, Maui, and Kahoolawe have experienced 1,291 brush fires
between the years 1972 and 1999 that burned a total of 64,248 ac
(26,000 ha) (Pacific Disaster Center 2011; County of Maui 2009, Chapter
3, p. 3). Between 2000 and 2003, the annual number of wildfires on
Molokai, Lanai, and Maui jumped from 118 to 271, many of which each
consumed more than 5,000 ac (2,023 ha) (Pacific Disaster Center 2011).
During the summer of 1998, a raging fire that began in Kaunakakai
consumed over 15,000 ac (6,070 ha) on Molokai, including a portion of
the Molokai Forest Reserve, consuming roughly 10 percent of the entire
island (Gima 1998, in litt.). Molokai experienced three 10,000 ac
(4,047 ha) wildfires between the years 2003 and 2004 (Pacific Disaster
Center 2011). In late August through early September 2009, a massive
wildfire burned for days and consumed approximately 8,000 ac (3,237
ha), including 600 ac (243 ha) of the remote Makakupaia section of the
Molokai Forest Reserve, a small portion of TNC's Kamakou Preserve, and
encroached upon Onini Gulch, Kalamaula and Kawela (Hamilton 2009, in
litt.). Three species reported from Molokai's coastal and lowland mesic
ecosystems (Festuca molokaiensis, Phyllostegia haliakalae, and
Pittosporum halophilum) are at risk of negative impacts by fire because
individuals of these species or their habitat are located in or near
areas that were burned in previous fires.
The island of Lanai has experienced several wildfires in the last
decade. In 2006, a wildfire burned 600 ac (243 ha) between Manele Road
and the Palawai basin (2.5 mi (4 km) south of Lanai City) (The Maui
News 2006, in litt.). In 2007, a brush fire occurred in the Mahana
area, burning an estimated 30 ac (12 ha),
[[Page 32045]]
and in 2008, another 1,000 ac (405 ha) were burned by wildfire in the
Palawai basin (The Maui News 2007, in litt.; KITV Honolulu 2008, in
litt.). All known individuals of Pleomele fernaldii lie just southeast
of the area burned during the Mahana fire and east of the Palawai basin
fires. Many of these individuals could be decimated by one large fire.
Between the years 2007 and 2010, wildfires burned more than 8,650
ac (3,501 ha) on west Maui (Shimogawa 2010, in litt.; Honolulu
Advertiser 2010, in litt.). In 2007, a fire that started along
Honoapiilani Highway on the south coast of west Maui burned a total of
1,350 ac (546 ha), encroached into the West Maui Natural Area Reserve
(Panaewa section), and placed at risk Phyllostegia bracteata and
Schiedea salicaria (HDLNR 1989, pp. 53-63; KITV 2007, in litt.). In May
2010, another fire occurred farther south along the same highway, moved
up the ridges of Olowalu, and eventually encompassed 1,100 ac (445 ha).
Later the same year, a fire that started at Maalaea initially destroyed
200 ac (81 ha), and because of strong winds and drought conditions,
continued to burn for 8 days, moved up Kealaloloa and nearby ridges,
and encompassed a total of 6,200 ac (2,509 ha). This fire is on record
as the largest brush fire that has occurred on Maui. Nine species
reported from Maui's lowland dry, lowland mesic, montane dry, montane
mesic, and dry cliff ecosystems (Bidens campylotheca ssp. pentamera,
Canavalia pubescens, Cyanea magnicalyx, C. mauiensis, C. obtusa,
Phyllostegia bracteata, Santalum haleakalae var. lanaiense, Schiedea
salicaria, and Stenogyne kauaulaensis) are adversely impacted by fire
because individuals of these species or their habitat are located in or
near areas that were burned in previous fires or in areas at risk for
fire due to the presence of highly flammable nonnative grasses and pine
trees.
Habitat Destruction and Modification by Hurricanes
Hurricanes adversely impact native Hawaiian terrestrial habitat,
including each of the 10 Maui Nui ecosystems addressed here and their
associated species identified in this final rule. They do this by
destroying native vegetation, opening the canopy and thus modifying the
availability of light, and creating disturbed areas conducive to
invasion by nonnative pest species (see ``Specific Nonnative Plant
Species Impacts,'' in our June 11, 2012, proposed rule (77 FR 34464))
(Asner and Goldstein 1997, p. 148; Harrington et al. 1997, pp. 539-
540). Canopy gaps allow for the establishment of nonnative plant
species, which may be present as plants or as seeds incapable of
growing under shaded conditions. Because many Hawaiian plant and animal
species, including the 40 species in this final rule, persist in low
numbers and in restricted ranges, natural disasters, such as
hurricanes, can be particularly devastating (Mitchell et al. 2005, pp.
3-4).
Hurricanes affecting Hawaii were only rarely reported from ships in
the area from the 1800s until 1949. Between 1950 and 1997, 22
hurricanes passed near or over the Hawaiian Islands, 5 of which caused
serious damage (Businger 1998, pp. 1-2). In November 1982, Hurricane
Iwa struck the Hawaiian Islands, with wind gusts exceeding 100 miles
per hour (mph) (161 kilometers per hour (kph)), causing extensive
damage, especially on the islands of Niihau, Kauai, and Oahu (Businger
1998, pp. 2, 6). Many forest trees were destroyed (Perlman 1992, pp. 1-
9), which opened the canopy and facilitated the invasion of nonnative
plants (Kitayama and Mueller-Dombois 1995, p. 671). Historically (prior
to the introduction of nonnative, invasive plants to the Hawaiian
Islands), it is likely that areas affected by hurricanes would
eventually have been repopulated by native plants. However, any area
affected by hurricanes will likely be invaded by nonnative plants as
nonnative plants are present in all ecosystems throughout the Hawaiian
Islands and competition with nonnative plants is exacerbated by
hurricanes. Therefore, hurricanes represent a threat to each of the 10
ecosystems and to all of the 37 plant species addressed in this final
rule. In addition, biologists have reported that hurricanes are a
threat to the three tree snails in this final rule (Newcombia cumingi,
Partulina semicarinata, and P. variabilis). High winds and intense
rains from hurricanes can dislodge snails from the leaves and branches
of their host plants and deposit them on the forest floor where they
may be crushed by falling vegetation or exposed to predation by
nonnative rats and snails (see Disease or Predation, below) (Hadfield
2011, pers. comm.). Although there is historical evidence of only one
hurricane that approached from the east and impacted the islands of
Maui and Hawaii (Businger 1998, p. 3), damage by future hurricanes
could further decrease the remaining native plant-dominated habitat
areas that support the Maui Nui ecosystems (Bellingham et al. 2005, p.
681).
Habitat Destruction and Modification Due to Landslides, Rockfalls,
Treefalls, Flooding, and Drought
Landslides, rockfalls, treefalls, and flooding destabilize
substrates, damage and destroy individual plants, and alter
hydrological patterns, which result in changes to native plant and
animal communities. In the open sea near Hawaii, rainfall averages 25
to 30 in (635 to 762 mm) per year, yet the islands may receive up to 15
times this amount in some places, caused by orographic features
(physical geography of mountains) (Wagner et al. 1999b; adapted from
Price (1983) and Carlquist (1980)), pp. 38 and 39). During storms, rain
may fall at 3 in (76 mm) per hour or more, and sometimes may reach
nearly 40 in (1,000 mm) in 24 hours, causing destructive flash-flooding
in streams and narrow gulches (Wagner et al. 1999b; adapted from Price
(1983) and Carlquist (1980)), pp. 38-39). Due to the steep topography
of much of the areas on Molokai, Lanai, and Maui where these 40 species
remain, erosion and disturbance caused by introduced ungulates
exacerbate the potential for landslides, rockfalls, or flooding, which
in turn negatively impact native plants. For those species that occur
in small numbers in highly restricted geographic areas, such events
have the potential to eradicate all individuals of a population, or
even all populations of a species, resulting in extinction.
Landslides, rockfalls, and treefalls likely adversely impact 14 of
the species addressed in this proposed rule, including Cyanea
asplenifolia, C. grimesiana ssp. grimesiana, C. horrida, C. magnicalyx,
C. maritae, C. mauiensis, C. munroi, C. profuga, C. solanacea,
Cyrtandra filipes, Schiedea jacobii, S. laui, Stenogyne kauaulaensis,
and Wikstroemia villosa, as documented in observations by field
botanists and surveyors (HBMP 2008). Monitoring data from PEPP and the
HBMP suggest that these 14 species face threats from landslides or
falling rocks, as they are found in landscape settings susceptible to
these events (e.g., steep slopes and cliffs). Field survey data
presented by Oppenheimer documented the direct damage from landslides
to individuals of Cyanea solanacea located along a stream bank and
steep slope beneath a cliff (PEPP 2007, p. 41). Since C. solanacea is
known from a total of 26 individuals in steep-walled stream valleys,
one or several landslides could lead to near extirpation of the species
by direct destruction of the individual plants, mechanical damage to
individual plants that could lead to their death, destabilization of
the cliff
[[Page 32046]]
habitat leading to additional landslides, and alteration of
hydrological patterns (e.g., affecting the availability of soil
moisture). In addition, Perlman (2009b, in litt.) noted the threat of
rolling or falling rocks to one population of Cyanea magnicalyx.
Monitoring data presented by HBMP and the PEPP program suggest that
flooding is a likely threat to five plant species included in this
final rule, Bidens campylotheca ssp. waihoiensis, Cyanea duvalliorum,
C. horrida, C. profuga, and Schiedea laui. Field survey data presented
by PEPP (2008, pp. 107-108) and by Bakutis (2010, in litt.) suggest
that catastrophic flooding or landslides are possible at one population
of Schiedea laui located in a cave along a narrow stream corridor at
the base of a waterfall in the Kamakou Preserve.
Six plant species, Canavalia pubescens, Cyanea horrida, Festuca
molokaiensis, Schiedea jacobii, S. salicaria, and Stenogyne
kauaulaensis, and the three tree snails in this rule may be affected by
habitat loss or degradation associated with droughts, which are not
uncommon in the Hawaiian Islands. Between 1860 and 2006, there have
been 30 periods of Statewide drought that have also affected the
islands of Molokai, Lanai, and Maui (Giambelluca et al. 1991, pp. 3-4;
Hawaii Commission on Water Resource Management 2009a and 2009b). In
2006, Maui County was designated a primary disaster area because of a
severe drought from April to September 2006 (Pacific Disaster Center,
2010). More recently, the U.S. Department of Agriculture has designated
Maui County as a primary natural disaster area due to losses caused by
an ongoing drought, beginning January 1, 2012 (https://www.fsa.usda.gov/FSA, accessed January 17, 2013). It is suggested that Festuca
molokaiensis, a purported annual plant, has not been observed at its
known location in recent years due to drought conditions on Molokai
(Oppenheimer 2011, pers. comm.). Drought also leads to an increase in
the number of forest and brush fires (Giambelluca et al. 1991, p. v),
causing a reduction of native plant cover and habitat (D'Antonio and
Vitousek 1992, pp. 77-79) and a reduction in availability of host
plants for the three tree snails. Recent episodes of drought have also
driven axis deer farther into urban and forested areas for food,
increasing their negative impacts to native vegetation from herbivory
and trampling (see Disease or Predation, below) (Waring 1996, in litt.,
p. 5; Nishibayashi 2001, in litt.).
Habitat Destruction and Modification by Climate Change
Our analyses under the Endangered Species Act include consideration
of ongoing and projected changes in climate. The terms ``climate'' and
``climate change'' are defined by the Intergovernmental Panel on
Climate Change (IPCC). ``Climate'' refers to the mean and variability
of different types of weather conditions over time, with 30 years being
a typical period for such measurements, although shorter or longer
periods also may be used (IPCC 2007, p. 78). The term ``climate
change'' thus refers to a change in the mean or variability of one or
more measures of climate (e.g., temperature or precipitation) that
persists for an extended period, typically decades or longer, whether
the change is due to natural variability, human activity, or both (IPCC
2007, p. 78). Various types of changes in climate can have direct or
indirect effects on species. These effects may be positive, neutral, or
negative and they may change over time, depending on the species and
other relevant considerations, such as the effects of interactions of
climate with other variables (e.g., habitat fragmentation) (IPCC 2007,
pp. 8-14, 18-19). In our analyses, we use our expert judgment to weigh
relevant information, including uncertainty, in our consideration of
various aspects of climate change.
Climate change will be a particular challenge for the conservation
of biodiversity because the introduction and interaction of additional
stressors may push species beyond their ability to survive (Lovejoy
2005, pp. 325-326). The synergistic implications of climate change and
habitat fragmentation are the most threatening facet of climate change
for biodiversity (Hannah et al. 2005, p. 4). The magnitude and
intensity of the impacts of global climate change and increasing
temperatures on native Hawaiian ecosystems are unknown. Currently,
there are no climate change studies that specifically address impacts
to the 10 Maui Nui ecosystems described in this final rule, or the 40
species at issue in this rule. Based on the best available information,
climate change impacts could lead to the decline or loss of native
species that comprise the communities in which the 40 species occur
(Pounds et al. 1999, pp. 611-612; Still et al. 1999, p. 610; Benning et
al. 2002, pp. 14,246-14,248; Allen et al. 2010, pp. 660-662; Sturrock
et al. 2011, p. 144; Towsend et al. 2011, p. 15; Warren 2011, pp. 221-
226). In addition, weather regime changes (e.g., droughts, floods) will
likely result from increased annual average temperatures related to
more frequent El Ni[ntilde]o episodes in Hawaii (Giambelluca et al.
1991, p. v). Future changes in precipitation and the forecast of those
changes are highly uncertain because they depend, in part, on how the
El Ni[ntilde]o-La Ni[ntilde]a weather cycle (a disruption of the ocean
atmospheric system in the tropical Pacific having important global
consequences for weather and climate) might change (State of Hawaii
1998, pp. 2-10). The 40 species in this final rule may be especially
vulnerable to extinction due to anticipated environmental changes that
may result from global climate change, due to their small population
size and highly restricted ranges. Environmental changes that may
affect these species are expected to include habitat loss or alteration
and changes in disturbance regimes (e.g., storms and hurricanes). The
probability of a species going extinct as a result of these factors
increases when its range is restricted, habitat decreases, and
population numbers decline (IPCC 2007, p. 8). The 40 species have
limited environmental tolerances, limited ranges, restricted habitat
requirements, small population sizes, and low numbers of individuals.
Therefore, we would expect these species to be particularly vulnerable
to projected environmental impacts that may result from changes in
climate, and subsequent impacts to their habitats (e.g., Pounds et al.
1999, pp. 611-612; Still et al. 1999, p. 610; Benning et al. 2002, pp.
14,246-14,248). We believe changes in environmental conditions that may
result from climate change may impact these 40 species and their
habitat, and we do not anticipate a reduction in this potential threat
in the near future.
Climate Change and Ambient Temperature
The average ambient air temperature (at sea level) is projected to
increase by about 4.1 degrees Fahrenheit ([deg]F) (2.3 [deg]Centigrade
(C)) with a range of 2.7 [deg]F to 6.7 [deg]F (1.5 [deg]C to 3.7
[deg]C) by 2100 worldwide (IPCC 2007). These changes would increase the
monthly average temperature of the Hawaiian Islands from the current
value of 74 [deg]F (23.3 [deg]C) to between 77 [deg]F to 86 [deg]F (25
[deg]C to 30 [deg]C). Historically, temperature has been rising over
the last 100 years with the greatest increase after 1975 (Alexander et
al. 2006, pp. 1-22; Giambelluca et al. 2008, p. 1). The rate of
increase at low elevation (0.16 [deg]F; 0.09 [deg]C) per decade is
below the observed global temperature rise of 0.32 [deg]F (0.18 [deg]C)
per decade (IPCC 2007). However, at high elevations, the rate of
increase (0.48 [deg]F
[[Page 32047]]
(0.27 [deg]C) per decade) greatly exceeds the global rate (IPCC 2007).
Overall, the daily temperature range in Hawaii is decreasing,
resulting in a warmer environment, especially at higher elevations and
at night. In the main Hawaiian Islands, predicted changes associated
with increases in temperature include a shift in vegetation zones
upslope, shift in animal species' ranges, changes in mean precipitation
with unpredictable effects on local environments, increased occurrence
of drought cycles, and increases in the intensity and number of
hurricanes (Loope and Giambelluca 1998, pp. 514-515; U.S. Global Change
Research Program (US-GCRP) 2009). In addition, weather regime changes
(e.g., droughts, floods) will likely result from increased annual
average temperatures related to more frequent El Ni[ntilde]o episodes
in Hawaii (Giambelluca et al. 1991, p. v). However, despite
considerable progress made by expert scientists toward understanding
the impacts of climate change on many of the processes that contribute
to El Ni[ntilde]o variability, it is not possible to say whether or not
El Ni[ntilde]o activity will be affected by climate change (Collins et
al. 2010, p. 391).
The warming atmosphere is creating a plethora of anticipated and
unanticipated environmental changes such as melting ice caps, decline
in annual snow mass, sea-level rise, ocean acidification, increase in
storm frequency and intensity (e.g., hurricanes, cyclones, and
tornadoes), and altered precipitation patterns that contribute to
regional increases in floods, heat waves, drought, and wildfires that
also displace species and alter or destroy natural ecosystems (Pounds
et al. 1999, pp. 611-612; IPCC 2007; Marshall et al. 2008, p. 273; U.S.
Climate Change Science Program 2008; Flannigan et al. 2009, p. 483; US-
GCRP 2009; Allen et al. 2010, pp. 660-662; Warren 2011, pp. 221-226).
These environmental changes are predicted to alter species migration
patterns, lifecycles, and ecosystem processes such as nutrient cycles,
water availability, and decomposition (IPCC 2007; Pounds et al. 1999,
pp. 611-612; Sturrock et al. 2011, p. 144; Townsend et al. 2011, p. 15;
Warren 2011, pp. 221-226). The species extinction rate is predicted to
increase congruent with ambient temperature increase (US-GCRP 2009).
Climate Change and Precipitation
As global surface temperature rises, the evaporation of water vapor
increases, resulting in higher concentrations of water vapor in the
atmosphere, further resulting in altered global precipitation patterns
(U.S. National Science and Technology Council (US-NSTC) 2008; US-GCRP
2009). While annual global precipitation has increased over the last
100 years, the combined effect of increases in evaporation and
evapotranspiration is causing land surface drying in some regions
leading to a greater incidence and severity of drought (US-NSTC 2008;
US-GCRP 2009). Over the the past 100 years, the Hawaiian Islands have
experienced an overall decline in annual precipitation of just over 9
percent (US-NSTC 2008). Other data on precipitation in Hawaii, which
includes sea level precipitation and the added orographic effects, show
a steady and significant decline of about 15 percent over the last 15
to 20 years (Chu and Chen 2005, p. 4,881-4,900; Diaz et al. 2005, pp.
1-3). Exact future changes in precipitation in Hawaii and the forecast
of those changes are uncertain because they depend, in part, on how the
El Ni[ntilde]o-La Ni[ntilde]a weather cycle might change (State of
Hawaii 1998, pp. 2-10).
In the oceans around Hawaii, the average annual rainfall at sea
level is about 25 in (63.5 cm). The orographic features of the islands
increase this annual average to about 70 in (177.8 cm) but can exceed
240 in (609.6 cm) in the wettest mountain areas. Rainfall is
distributed unevenly across each high island, and rainfall gradients
are extreme (approximately 25 in (63.5 cm) per mile), creating both
very dry and very wet areas. Global climate modeling predicts that, by
2100, net precipitation at sea level near the Hawaiian Islands will
decrease in winter by about 4 to 6 percent, with no significant change
during summer (IPCC 2007). Downscaling of global climate models
indicates that wet-season (winter) precipitation will decrease by 5
percent to 10 percent, while dry-season (summer) precipitation will
increase by about 5 percent (Timm and Diaz 2009, pp. 4,261-4,280).
These data are also supported by a steady decline in stream flow
beginning in the early 1940s (Oki 2004, p. 1). Altered seasonal
moisture regimes can have negative impacts on plant growth cycles and
overall negative impacts on natural ecosystems (US-GCRP 2009). Long
periods of decline in annual precipitation result in a reduction in
moisture availability, an increase in drought frequency and intensity,
and a self-perpetuating cycle of nonnative plants (such as nonnative
grasses adapted to fire), fire, and erosion (US-GCRP 2009; Warren 2011,
pp. 221-226) (see ``Habitat Destruction and Modification by Fire,''
above). These impacts may negatively affect the 40 species in this
final rule and the 10 ecosystems that support them.
Climate Change, and Tropical Cyclone Frequency and Intensity
A tropical cyclone is the generic term for a medium- to large-scale
low-pressure system over tropical or subtropical waters with organized
convection (i.e., thunderstorm activity) and definite cyclonic surface
wind circulation (counterclockwise direction in the Northern
Hemisphere) (Holland 1993, pp. 1-8). In the Northeast Pacific Ocean,
east of the International Date Line, once a tropical cyclone reaches an
intensity with winds of at least 74 mi per hour (33 m per second) it is
considered a hurricane (Neumann 1993, pp. 1-2). Climate modeling has
projected changes in tropical cyclone frequency and intensity due to
global warming over the next 100 to 200 years (Vecchi and Soden 2007,
pp. 1,068-1,069, Figures 2 and 3; Emanuel et al. 2008, p. 360, Figure
8; Yu et al. 2010, p. 1,371, Figure 14). The frequency of hurricanes
generated by tropical cyclones is projected to decrease in the central
Pacific (e.g., the main and Northwestern Hawaiian Islands) while storm
intensity (strength) is projected to increase by a few percent over
this period (Vecchi and Soden 2007, pp. 1,068-1,069, Figures 2 and 3;
Emanuel et al. 2008, p. 360, Figure 8; Yu et al. 2010, p. 1,371, Figure
14). There are no climate model predictions for a change in the
duration of Pacific tropical cyclone storm season (which generally runs
from May through November).
In general, tropical cyclones with the intensities of hurricanes
have been a rare occurrence in the Hawaiian Islands. For more
information on this topic, see ``Habitat Destruction and Modification
by Hurricanes,'' above.
Climate Change, and Sea Level Rise and Coastal Inundation
On a global scale, sea level is rising as a result of thermal
expansion of warming ocean water; the melting of ice sheets, glaciers,
and ice caps; and the addition of water from terrestrial systems
(Climate Institute 2011). Sea level rose at an average rate of 0.1 in
(1.8 mm) per year between 1961 and 2003 (IPCC 2007, p. 5), and the
predicted increase by the end of this century, without accounting for
ice sheet flow, ranges from 0.6 ft to 2.0 ft (0.18 m to 0.6 m) (IPCC
2007, p. 13). When ice sheet and glacial melt are incorporated into
models, the average estimated increase in sea level by the year 2100 is
approximately 3 to 4 ft (0.9 to 1.2 m), with some estimates as high as
6.6 ft (2.0 m) to 7.8 ft (2.4 m) (Rahmstorf 2007,
[[Page 32048]]
pp. 368-370; Pfeffer et al. 2008, p. 1,340; Fletcher 2009, p. 7; US-
GCRP 2009, p. 18). There is no specific information available on how
sea level rise and coastal inundation will impact the coastal
ecosystems on Maui and Molokai where two of the species in this rule,
Canavalia pubescens and Pittosporum halophilum, are currently found.
Increased interannual variability of ambient temperature,
precipitation, hurricanes, and sea level rise and inundation would
provide additional stresses on the 10 ecosystems and each of the
associated 40 species in this final rule because they are highly
vulnerable to disturbance and related invasion of nonnative species.
The probability of a species going extinct as a result of such factors
increases when its range is restricted, habitat decreases, and
population numbers decline (IPCC 2007, p. 8). The 40 species have
limited environmental tolerances, ranges, restricted habitat
requirements, small population sizes, and low numbers of individuals.
Therefore, we would expect these species to be particularly vulnerable
to projected environmental impacts that may result from changes in
climate and subsequent impacts to their habitats (e.g., Loope and
Giambelluca 1998, pp. 504-505; Pounds et al. 1999, pp. 611-612; Still
et al. 1999, p. 610; Benning et al. 2002, pp. 14,246-14,248,
Giambelluca and Luke 2007, pp. 13-18). Based on the above information,
we conclude that changes in environmental conditions that result from
climate change are likely to negatively impact these 40 species, and we
do not anticipate a reduction in this potential threat in the near
future.
Conservation Efforts To Reduce Habitat Destruction, Modification, or
Curtailment of Its Range
There are no approved habitat conservation plans (HCPs), safe
harbor agreements (SHAs), or candidate conservation agreements (CCAs)
that specifically address these 40 species and threats from habitat
destruction or modification. We are aware of several memoranda of
understanding (MOUs) that are under development that will specifically
address one or more of these 40 species and the threats from habitat
destruction or modification. We acknowledge that in the State of Hawaii
there are several voluntary conservation efforts that may be helping to
ameliorate the threats to the 40 species addressed in this final rule
due to habitat destruction and modification by nonnative species, fire,
natural disasters, and climate change, and the interaction of these
threats. However, these efforts are overwhelmed by the number of
threats, the extent of these threats across the landscape, and the lack
of sufficient resources (e.g., funding) to control or eradicate them
from all areas where these 40 species occur now or occurred
historically. Some of the voluntary conservation efforts include the 11
island-based watershed partnerships, including the 4 partnerships in
Maui Nui (West Maui Mountains Watershed Partnership, East Maui
Watershed Partnership, East Molokai Watershed Partnership, and Lanai
Forest and Watershed Partnership). These partnerships are voluntary
alliances of public and private landowners ``committed to the common
value of protecting forested watersheds for water recharge,
conservation, and other ecosystem services through collaborative
management'' (https://hawp.org/partnerships). Most of the ongoing
conservation management actions undertaken by the watershed
partnerships address threats to upland habitat from nonnative species
(e.g., feral ungulates, nonnative plants) and may include fencing,
ungulate removal, nonnative plant control, and outplanting of native,
as well as rare native, species on lands within the partnership.
Funding for the watershed partnerships is provided through a variety of
State and Federal sources, public and private grants, and in-kind
services provided by the partners or volunteers.
The State of Hawaii's Plant Extinction Prevention (PEP) Program
supports conservation of plant species by securing seeds or cuttings
(with permission from the State, Federal, or private landowners) from
the rarest and most critically endangered native species for
propagation and outplanting (https://pepphi.org). The PEP Program
focusses on species that have fewer than 50 plants remaining in the
wild. Funding for this program is from the State of Hawaii, Federal
agencies (e.g., Service), and public and private grants. The PEP
Program collects, propagates, or outplants 14 plant species that are
addressed in this final rule (Cyanea asplenifolia, C. horrida, C.
magnicalyx, C. maritae, C. munroi, C. profuga, C. solanacea,
Phyllostegia haliakalae, P. pilosa, Pittosporum halophilum, Schiedea
jacobii, S. laui, Stenogyne kauaulaensis, and Wikstroemia villosa) PEPP
2011, pp. 75, 166, 191; PEPP 2012, pp. 6, 13, 34-36, 66-70, 73-81, 150,
159-160). However, the program has not yet been able to directly
address broad-scale habitat threats to plants by invasive species.
The State's University of Hawaii receives funding from the Service
and other sources to propagate and maintain in captivity the two Lanai
tree snails, Partulina semicarinata and P. variabilis, and Newcomb's
tree snail (Newcombia cumingi). However, the numbers of individuals of
both Lanai tree snail species appear to be declining in captivity, and
individuals of Newcomb's tree snail do not survive long in captivity
(Hadfield 2008, p. 1-11; Hadfield 2010, pers. comm.; Hadfield 2011,
pers. comm.). This program does not address broad-scale threats to tree
snail habitat by invasive species. Recently (August 2012), the Service
and Maui Land and Pineapple Co., Inc. (MLP), entered into a cooperative
agreement to provide funding for the construction of a fenced snail
exclosure at the only known site for Newcomb's tree snail (Service
2012, in litt.). The purpose of the fenced exclosure is to protect
individuals of this tree snail in-situ from predation by rodents (e.g.,
rats and mice) and predatory nonnative snails. In addition, restoration
of snail habitat will be undertaken as funding is available.
Construction of the fenced exclosure has not yet been inititated.
Voluntary conservation actions undertaken by The Nature Conservancy
of Hawaii (TNC) on their preserves on Maui (Kapunakea Preserve and
Waikamoi Preserve), and two of their preserves on Molokai (Kamakou
Preserve and Moomomi Preserve), by the Maui Land and Pineapple Company
on their Puu Kukui Watershed Preserve on west Maui, by Ulupalakua Ranch
and Haleakala Ranch on their lands on Maui, and by East Maui Irrigation
Company, Ltd., are described in our June 11, 2012, proposed rule (77 FR
34464). These conservation actions provide a conservation benefit and
ameliorate some of the threats from nonnative species to one or more of
the 36 plants (not Cyanea mauiensis) and 3 tree snails addressed in
this final rule.
In addition, other private landowners on Maui are engaged in, or
initiating, voluntary conservation actions on their lands, including
fencing to exclude ungulates, removing ungulates, controlling nonnative
plants, and outplanting native and rare plants. These private
landowners include Kaanapali Land Development Company (in cooperation
with TNC), Nuu Mauka Ranch, Kaupo Ranch, Makila Land Company, Kahoma
Land Company, and Wailuku Water Company. All of these landowners are
partners in one of the watershed partnerships on Maui, or cooperate or
work collaboratively with watershed partners. The conservation actions
provided by these landowners ameliorate some of the threats from
nonnative species to one or more of the
[[Page 32049]]
36 plants (not Cyanea mauiensis) and 3 tree snails addressed in this
final rule.
In addition to the the voluntary conservation efforts of TNC on
Molokai (see above), we are aware of voluntary conservation efforts by
Puu o Hoku Ranch associated with the safe harbor agreement (SHA) for
the nene or Hawaiian goose (Branta sandvicensis). Although the SHA does
not provide specific management actions for the conservation of one or
more of the 11 species on Molokai addressed in this final rule, some
habitat conservation measures (e.g., enhancement of native plant
species) that may be undertaken by the ranch may benefit these species
and their habitat.
Recently, the private landowners of the island of Lanai (Lanai
Resorts and Castle & Cooke Properties, Inc. (CCPI)) began development
of an island-wide conservation plan. This plan, when completed and
implemented, should provide landscape-scale management that will
benefit the unique native species and their habitats on the entire
island of Lanai. The plan should help ameliorate the primary threats
to, and needed recovery actions for, the seven species (five plants and
two tree snails) addressed in this final rule and Lanai's already
listed species and their habitat, including: Control of nonnative
species (including ungulates), in-situ protection of tree snails,
implementation of immediate protective intervention efforts for rare
plants, and restoration of terrestrial habitat for plants and animals.
Summary of Habitat Destruction and Modification
The threats to the habitats of each of the 40 species in this final
rule are occurring throughout the entire range of each of the species.
These threats include land conversion by agriculture and urbanization,
nonnative ungulates and plants, fire, natural disasters, and climate
change, and the interaction of these threats. While the conservation
measures described above are a step in the right direction toward
addressing the threats to the 40 species, due to the pervasive and
expansive nature of the threats resulting in habitat degradation, these
measures are insufficient across the landscape to eliminate these
threats to any of the 40 species in this final rule.
Development and urbanization of coastal and lowland dry habitat on
Maui represents a serious and ongoing threat to the remaining
individuals of Canavalia pubescens remaining at Palauea-Keahou.
The effects from ungulates are ongoing because ungulates currently
occur in the 10 ecosystems that support the 40 species in this rule.
The threat posed by introduced ungulates to the species and their
habitats in this final rule that occur in these 10 ecosystems (see
Table 4) is serious, because they cause: (1) Trampling and grazing that
directly impact the plant communities, which include 35 of the 37 plant
species listed in this final rule, and impact host plants used by the
two Lanai tree snails, Partulina semicarinata and P. variabilis, for
foraging, shelter, and reproduction; (2) increased soil disturbance,
leading to mechanical damage to individuals of the plant species listed
in this final rule, and plants used by the two tree snails for
foraging, shelter, and reproduction; and (3) creation of open,
disturbed areas conducive to weedy plant invasion and establishment of
alien plants from dispersed fruits and seeds, which results over time
in the conversion of a community dominated by native vegetation to one
dominated by nonnative vegetation (leading to all of the negative
impacts associated with nonnative plants, listed below). These threats
are expected to continue or increase without ungulate control or
eradication.
Nonnative plants represent a serious and ongoing threat to 36 of
the 40 species listed in this final rule (35 plant species and the tree
snail Newcombia cumingi; see Table 4) through habitat destruction and
modification because they: (1) Adversely impact microhabitat by
modifying the availability of light; (2) alter soil-water regimes; (3)
modify nutrient cycling processes; (4) alter fire characteristics of
native plant habitat, leading to incursions of fire-tolerant nonnative
plant species into native habitat; and (5) outcompete, and possibly
directly inhibit the growth of, native plant species. Each of these
threats can convert native-dominated plant communities to nonnative
plant communities (Cuddihy and Stone 1990, p. 74; Vitousek 1992, pp.
33-35). This conversion has negative impacts on 35 of the 37 plant
species addressed here, as well as the native plant species upon which
Newcombia cumingi depends for essential life-history needs.
The threat from fire to 13 of the 40 species in this final rule
that depend on coastal, lowland dry, lowland mesic, montane dry,
montane mesic, and dry cliff ecosystems (Bidens campylotheca ssp.
pentamera, Canavalia pubescens, Cyanea magnicalyx, C. mauiensis, C.
obtusa, Festuca molokaiensis, Phyllostegia bracteata, P. haliakalae,
Pittosporum halophilum, Pleomele fernaldii, Santalum haleakalae var.
lanaiensis, Schiedea salicaria, and Stenogyne kauaulaensis; see Table
4) is serious and ongoing because fire damages and destroys native
vegetation, including dormant seeds, seedlings, and juvenile and adult
plants. Many nonnative invasive plants, particularly fire-tolerant
grasses, outcompete native plants and inhibit their regeneration
(D'Antonio and Vitousek 1992, pp. 70, 73-74; Tunison et al. 2002, p.
122). Successive fires that burn farther and farther into native
habitat destroy native plants and remove habitat for native species by
altering microclimatic conditions and creating conditions favorable to
alien plants. The threat from fire is unpredictable but increasing in
frequency in ecosystems that have been invaded by nonnative, fire-prone
grasses.
Natural disasters, such as hurricanes, represent a serious threat
to the habitats of all 37 plant species addressed in this final rule
because they open the forest canopy, modify available light, and create
disturbed areas that are conducive to invasion by nonnative pest plants
(Asner and Goldstein 1997, p. 148; Harrington et al. 1997, pp. 346-
347). The discussion under ``Habitat Destruction and Modification by
Nonnative Plants,'' above provides additional information related to
canopy gaps, light availability, and the establishment of nonnative
plant species. In addition, hurricanes can negatively impact the three
tree snail species in this final rule because strong winds and intense
rainfall can dislodge individual snails from their host plants and
deposit them on the ground where they may be crushed by falling debris
or eaten by nonnative rats and snails. The impacts of hurricanes and
other stochastic natural events can be particularly devastating to the
40 species because, as a result of other threats, they now persist in
low numbers or occur in restricted ranges and are therefore less
resilient to such disturbances, rendering them highly vulnerable.
Furthermore, a particularly destructive hurricane holds the potential
of driving a localized endemic species to extinction in a single event.
Hurricanes pose an ongoing and ever-present threat because they can
happen at any time, although their occurrence is not predictable.
Landslides, rockfalls, treefalls, and flooding adversely impact the
habitats of 16 of the species in this final rule (Bidens campylotheca
ssp. waihoiensis, Cyanea asplenifolia, C. duvalliorum, C. grimesiana
ssp. grimesiana, C. horrida, C. magnicalyx, C. maritae, C. mauiensis,
C. munroi, C. profuga, C. solanacea, Cyrtandra filipes, Schiedea
jacobii, S. laui, Stenogyne kauaulaensis, and Wikstroemia villosa; see
Table 4) by
[[Page 32050]]
destabilizing substrates, damaging and destroying individual plants,
and altering hydrological patterns, which result in habitat destruction
or modification and changes to native plant and animal communities.
Drought is a threat to six plant species--Canavalia pubescens, Cyanea
horrida, Festuca molokaiensis, Schiedea jacobii, S. salicaria, and
Stenogyne kauaulaensis--and all three tree snails--Newcombia cumingi,
Partulina semicarinata, and P. variabilis--by the loss or degradation
of habitat due to death of individual native plants and host tree
species, as well as an increase in forest and brush fires. These
threats are serious and have the potential to occur at any time,
although their occurrence is not predictable.
Changes in environmental conditions that may result from global
climate change include increasing temperatures, decreasing
precipitation, increasing storm intensities, and sea level rise and
coastal inundation. The consequent impacts on the 40 species addressed
in this final rule are related to changes in microclimatic conditions
in their habitats. These changes may lead to the loss of native species
due to direct physiological stress, the loss or alteration of habitat,
increased competition from nonnative species, and changes in
disturbance regimes (e.g., droughts, fire, storms, and hurricanes).
Because the specific and cumulative effects of climate change on these
40 species are presently unknown, we are not able to determine the
severity of this possible threat with confidence.
B. Overutilization for Commercial, Recreational, Scientific, or
Educational Purposes
Plants
We are not aware of any threats to the 37 plant species addressed
in this final rule that are attributable to overutilization for
commercial, recreational, scientific, or educational purposes.
Tree Snails
Tree snails can be found around the world in tropical and
subtropical regions and have been valued as collectibles for centuries.
Evidence of tree snail trading among prehistoric Polynesians was
discovered by a genetic characterization of the enigmatic multi-
archipelagic distribution of the Tahitian endemic Partula hyalina and
related taxa (Lee et al. 2007, pp. 2,907, 2,910). In their study, Lee
et al. (2007, pp. 2,908-2,910) found evidence that Partula hyalina had
been traded as far away as Mangaia in the Southern Cook Islands, a
distance of over 500 mi (805 km). The endemic Hawaiian tree snails
within the family Achatinellidae (subfamily Achatinellinae) were
extensively collected for scientific as well as recreational purposes
by Europeans in the 18th to early 20th centuries (Hadfield 1986, p.
322). During the 1800s, collectors observed 500 to 2,000 snails per
tree, and sometimes collected over 4,000 snails in just several hours
(Hadfield 1986, p. 322). We may infer that the repeated collections of
hundreds to thousands of individuals at a time by early collectors
resulted in decreased population sizes and reduction of reproduction
potential due to the removal of potential breeding adults. The
Achatinellinae do not reach reproductive age until nearly 10 years old,
after which they produce only 4 to 6 offspring per year (Hadfield 2011,
pers. comm.). The allure of tree snails persists to this day, and there
is a market for rare tree snails that may serve as an incentive to
collect them. A search of the Internet (e.g., eBay.com, google.com)
reveals Web sites that offer Hawaiian tree snail shells for sale,
including other species of the endemic Hawaiian tree snail genus
Partulina. Based on the history of collection of endemic Hawaiian tree
snails, the market for Hawaiian tree snail shells, and the
vulnerability of the small populations of Newcombia cumingi, Partulina
semicarinata, and P. variabilis to the negative impacts of any
collection, we consider the potential overcollection of these three
Hawaiian tree snails to pose a serious and ongoing threat, because it
can occur at any time, although its occurrence is not predictable.
Conservation Efforts to Reduce Overutilization for Commercial,
Recreational, Scientific or Educational Purposes
We are unaware of voluntary conservation efforts to reduce
overcollection of the three Hawaiian tree snails. There are no approved
HCPs, SHAs, or MOUs, or other voluntary actions that specifically
address these three species and the threat from overcollection.
Summary of Overutilization for Commercial, Recreational, Scientific, or
Educational Purposes
We have no evidence to suggest that overutilization for commercial,
recreational, scientific, or educational purposes poses a threat to any
the 37 plant species in this final rule. We consider the three species
of tree snails vulnerable to the impacts of overutilization due to
collection for trade or market. Based on the history of collection of
endemic Hawaiian tree snails, the market for Hawaiian tree snail
shells, and the inherent vulnerability of the small populations of
Newcombia cumingi, Partulina semicarinata, and P. variabilis to the
removal of breeding adults, we consider collection to pose a serious
and ongoing threat to these species.
C. Disease or Predation
Disease
We are not aware of any threats to the 37 plant species addressed
in this final rule that would be attributable to disease. Disease is a
potential threat to the three tree snails in this rule, Newcombia
cumingi, Partulina semicarinata, and P. variabilis; evidence for this
is based on attempts to raise these species in captivity. Due to the
extremely low numbers and threat of extinction of Hawaiian tree snails
in the wild, captive breeding of over 20 species has been implemented
over the past decade. Hadfield (2010, pers. comm.) notes that
individuals of Newcombia cumingi do not survive long in captivity, and
individuals of Partulina spp. sometimes die off for unknown reasons
(Hadfield 2011, pers. comm.). According to Hadfield (2011, pers.
comm.), the London Zoo found evidence of protozoan presence in a non-
Hawaiian species of Partulina, which is indicative of disease. Hadfield
(2011, pers. comm.) also suggests there is a negative correlation
between reproductive potential in Hawaiian tree snails and time in
captivity, likely due to inbreeding depression or environmental
conditions, including disease.
Because we have no evidence that disease may be impacting natural
populations of the three tree snail species, we cannot conclude that
this threat may have contributed to the current population status of
Newcombia cumingi, Partulina semicarinata, and P. variabilis. However,
we note that disease is a potential threat to captive bred Hawaiian
tree snails and may be of particular concern for Newcombia cumingi,
which is not successfully surviving or reproducing in captivity,
potentially due to disease, and is only known from one individual in
one location in the wild. Recovery of this species will likely depend
on successful captive propagation and eventual translocation to
protected sites in the wild.
Predation and Herbivory
Hawaii's plants and animals evolved in nearly complete isolation
from
[[Page 32051]]
continental influences. Successful colonization of these remote
volcanic islands was infrequent, and many organisms never succeeded in
establishing populations. As an example, Hawaii lacks any native ants
or conifers, has very few families of birds, and has only a single
extant native land mammal, a bat (Loope 1998, p. 748). In the absence
of any grazing or browsing mammals, plants that became established did
not need mechanical or chemical defenses against mammalian herbivory
such as thorns, prickles, and production of toxins. As the evolutionary
pressure to either produce or maintain such defenses was lacking,
Hawaiian plants either lost or never developed these adaptations
(Carlquist 1980, p. 173). Likewise native Hawaiian birds and insects
experienced no evolutionary pressure to develop anti-predator
mechanisms against mammals or invertebrates that were not historically
present on the island. The native flora and fauna of the islands are
thus particularly vulnerable to the impacts of introduced nonnative
species, as discussed below.
Introduced Ungulates
In addition to the habitat impacts discussed above (see ``Habitat
Destruction and Modification by Introduced Ungulates'' under Factor A),
introduced ungulates pose a threat to the following 35 of the 37 plant
species in this final rule by trampling and eating individual plants
(this information is also presented in Table 4): Bidens campylotheca
ssp. pentamera (pigs, goats, and axis deer), B. campylotheca ssp.
waihoiensis (pigs, goats, and axis deer), B. conjuncta (pigs and
goats), Calamagrostis hillebrandii (pigs), Canavalia pubescens (pigs,
goats, cattle, and axis deer), Cyanea asplenifolia (pigs, goats,
cattle, and axis deer), C. duvalliorum (pigs), C. grimesiana ssp.
grimesiana (pigs, goats, and axis deer), C. horrida (pigs), C.
kunthiana (pigs), C. magnicalyx (pigs), C. maritae (pigs), C. mauiensis
(pigs), C. munroi (goats and axis deer), C. obtusa (pigs, goats,
cattle, and axis deer), C. profuga (pigs and goats), C. solanacea (pigs
and goats), Cyrtandra ferripilosa (pigs and goats), C. filipes (pigs,
goats, and axis deer), C. oxybapha (pigs, goats, and cattle), Festuca
molokaiensis (goats), Geranium hanaense (pigs), G. hillebrandii (pigs),
Mucuna sloanei var. persericea (pigs and cattle), Myrsine vaccinioides
(pigs), Peperomia subpetiolata (pigs), Phyllostegia bracteata (pigs and
cattle), P. haliakalae (cattle), P. pilosa (pigs and goats),
Pittosporum halophilum (pigs), Pleomele fernaldii (axis deer and
mouflon), Santalum haleakalae var. lanaiense (pigs, goats, axis deer,
and mouflon), Schiedea jacobii (goats, cattle, and axis deer), S.
salicaria (goats, cattle, and axis deer), and Wikstroemia villosa
(pigs).
We have direct evidence of ungulate damage to some of these
species, but for many, due to their remote locations or lack of study,
ungulate damage is presumed based on the known presence of these
introduced ungulates in the areas where these species occur and the
results of studies conducted in Hawaii and elsewhere (Diong 1982, p.
160). For example, in a study conducted by Diong (1982, p. 160) on
Maui, feral pigs were observed browsing on young shoots, leaves, and
fronds of a wide variety of plants, of which over 75 percent were
endemic species. A stomach content analysis in this study showed that
60 percent of the pigs' food source consisted of the endemic Cibotium
(hapuu, tree fern). Pigs were observed to fell plants and remove the
bark from native plant species within the genera Cibotium, Clermontia,
Coprosma, Hedyotis, Psychotria, and Scaevola, resulting in larger trees
being killed over a few months of repeated feeding (Diong 1982, p.
144). Beach (1997, pp. 3-4) found that feral pigs in Texas spread
disease and parasites, and their rooting and wallowing behavior led to
spoilage of watering holes and loss of soil through leaching and
erosion. Rooting activities also decreased the survivability of some
plant species through disruption at root level of mature plants and
seedlings (Beach 1997, pp. 3-4; Anderson et al. 2007, pp. 2-3). In
Hawaii, pigs dig up forest ground cover consisting of delicate and rare
species of orchids, ferns, mints, lobeliads, and other taxa, including
roots, tubers, and rhizomes (Stone and Anderson 1988, p. 137). In
addition, there are direct observations of pig herbivory on four of the
plant species in this final rule, including Cyanea magnicalyx (PEPP
2010, p. 49), C. maritae (PEPP 2010, p. 50), Peperomia subpetiolata
(PEPP 2010, p. 97), and Phyllostegia pilosa (PEPP 2009, p. 93). As pigs
occur in 10 ecosystems (coastal, lowland dry, lowland mesic, lowland
wet, montane dry, montane mesic, montane wet, subalpine, dry cliff, and
wet cliff) on Molokai and Maui, the results of the studies described
above suggest that pigs can also alter these ecosystems and directly
damage or destroy native plants by their browsing activity.
Feral goats thrive on a variety of food plants, and are
instrumental in the decline of native vegetation in many areas (Cuddihy
and Stone 1990, p. 64). Feral goats trample roots and seedlings, cause
erosion, and promote the invasion of alien plants. They are able to
forage in extremely rugged terrain and have a high reproductive
capacity (Clarke and Cuddihy 1980, p. C-20; van Riper and van Riper
1982, pp. 34-35; Tomich 1986, pp. 153-156; Cuddihy and Stone 1990, p.
64). Goats were observed to browse on native plant species in the
following genera: Argyroxiphium, Canavalia, Plantago, Schiedea, and
Stenogyne (Cuddihy and Stone 1990, p. 64). A study on the island of
Hawaii demonstrated that Acacia koa seedlings are unable to survive due
to browsing and grazing by goats (Spatz and Mueller-Dombois 1973, p.
874). If goats are present at high numbers, mature trees will
eventually die, and with them the root systems that support suckers and
vegetative reproduction. One study demonstrated a positive height-
growth response of Acacia koa suckers to the 3-year exclusion of goats
(1968-1971) inside a fenced area, whereas suckers were similarly
abundant, but very small, outside of the fenced area (Spatz and
Mueller-Dombois 1973, p. 873). Another study at Puuwaawaa on the island
of Hawaii demonstrated that prior to management actions in 1985,
regeneration of endemic shrubs and trees in the goat-grazed area was
almost totally lacking, contributing to the invasion of the forest
understory by exotic grasses and weeds. After the removal of grazing
animals in 1985, A. koa and Metrosideros spp. seedlings were observed
germinating by the thousands (HDLNR 2002, p. 52). Based on a comparison
of fenced and unfenced areas, it is clear that goats can devastate
native ecosystems (Loope et al. 1988, p. 277). As goats occur in nine
of the described ecosystems (coastal, lowland dry, lowland mesic,
lowland wet, montane dry, montane mesic, montane wet, dry cliff, and
wet cliff), on Molokai, Lanai, and Maui, the results of the studies
described above suggest that goats can also alter these ecosystems and
directly damage or destroy native plants by their browsing activity.
Therefore, goats pose a threat of predation to 18 species in this rule,
as delineated in Table 4.
Axis deer were introduced to Molokai in 1868, Lanai in 1920, and
Maui in 1959. Most of the available information on axis deer in the
Hawaiian Islands concerns observations and reports from the island of
Maui. On Maui, axis deer were introduced as a game animal, but their
numbers have steadily increased, especially in recent years on
Haleakala (Luna 2003, p. 44). During the 4-year El Ni[ntilde]o drought
from 1998 through 2001, Maui experienced an 80 to 90 percent
[[Page 32052]]
decline in shrub and vine species caused by deer browsing and girdling
of young saplings. High mortality of rare and native plant species was
observed (Medeiros 2010, pers. comm.). Axis deer consume progressively
less palatable plants until no edible vegetation is left (Hess 2008, p.
3). Axis deer are highly adaptable to changing conditions, and are
characterized as ``plastic'' (meaning flexible in their behavior) by
Ables (1977, cited in Anderson in litt. 1999, p. 5). They exhibit a
high degree of opportunism regarding their choice of forage (Dinerstein
1987, cited in Anderson 1999, p. 5) and can be found in all but the
highest elevation ecosystems (subalpine and alpine) and montane bogs,
according to Medeiros (2010, pers. comm.).
Axis deer on Maui follow a cycle of grazing and browsing in open
lowland grasslands during the rainy season (November-March) and then
migrate to the lava flows of montane mesic forests during the dry
summer months to graze and browse native plants (Medeiros 2010, pers.
comm.). Axis deer favor the native plants Abutilon menziesii (an
endangered species), Erythrina sandwicensis (wiliwili), and Sida fallax
(ilima) (Medeiros 2010, pers. comm.). During the driest months of
summer (July-August), axis deer can be found along Maui's coastal roads
as they search for food. Hunting pressure appears to drive the deer
into native forests, particularly the lower rainforests up to 4,000 to
5,000 ft (1,220 and 1,525 m) in elevation (Medeiros 2010, pers. comm.),
and according to Kessler and Hess (2010, pers. comms.) axis deer can be
found up to 9,000 ft (2,743 m) elevation.
Other native Hawaiian plant species have been reported as grazed
and browsed by axis deer. For example, on Lanai, grazing by axis deer
has been reported as a major threat to the endangered Gardenia
brighamii (nau) (Mehrhoff 1993, p. 11), and on Molokai, browsing by
axis deer has been reported on Erythrina sandwicensis and Nototrichium
sandwicense (kului) (Medeiros et al. 1996, pp. 11, 19). Swedberg and
Walker (1978, cited in Anderson 2003, pp. 124-125) reported that in the
upper forests of Lanai, the native plants Osteomeles anthyllidifolia
(uulei) and Leptecophylla tameiameiae (pukiawe) comprised more than 30
percent of axis deer rumen volume. Other native plant species consumed
by axis deer include Abutilon menziesii and Geranium multiflorum
(nohoanu) (both endangered species); the species Bidens campylotheca
ssp. pentamera and B. campylotheca ssp. waihoiensis, which are
addressed in this final rule; and Achyranthes splendens (NCN),
Chamaesyce lorifolia (akoko), Diospyros sandwicensis (lama), Lipochaeta
rockii var. dissecta (nehe), Osmanthus sandwicensis (ulupua), Panicum
torridum (kakonakona), and Santalum ellipticum (laau ala) (Anderson
2002, poster; Perlman 2009c, in litt., pp. 4-5). As axis deer occur in
nine of the described ecosystems on Molokai, Lanai, and Maui (coastal,
lowland dry, lowland mesic, lowland wet, montane dry, montane mesic,
montane wet, dry cliff, and wet cliff), the results from the studies
above, in addition to the direct observations from field biologists,
suggest that axis deer can also alter these ecosystems and directly
damage or destroy native plants by their browsing activity (see Table
4).
Mouflon sheep graze native vegetation, trample undergrowth, spread
weeds, and cause erosion. On the island of Hawaii, mouflon browsing led
to the decline in the largest population of the endangered
Argyroxiphium kauense (kau silversword, Mauna Loa silversword, or
ahinahina) located on the former Kahuku Ranch, reducing it from a
``magnificent population of several thousand'' (Degener et al. 1976,
pp. 173-174) to fewer than 2,000 individuals (unpublished data in
Powell 1992, in litt., p. 312) over a period of 10 years (1974-1984).
The native tree Sophora chrysophylla is also a preferred browse species
for mouflon. According to Scowcroft and Sakai (1983, p. 495), mouflon
eat the shoots, leaves, flowers, and bark of this species. Bark
stripping on the thin bark of a young tree is potentially lethal.
Mouflon are also reported to strip bark from Acacia koa trees (Hess
2008, p. 3) and to seek out the threatened plant Silene hawaiiensis
(Benitez et al. 2008, p. 57). In the Kahuku section of Hawaii Volcanoes
National Park, mouflon sheep jumped the park boundary fence and reduced
one population of S. hawaiiensis to half its original size over a 3-
year period (Belfield and Pratt 2002, p. 8). Other native species
browsed by mouflon include Geranium cuneatum ssp. cuneatum (hinahina,
silver geranium), G. cuneatum ssp. hypoleucum (hinahina, silver
geranium), and Sanicula sandwicensis (NCN) (Benitez et al. 2008, pp.
59, 61). On Lanai, mouflon sheep were once cited as one of the greatest
threats to the endangered Gardenia brighamii (Mehrhoff 1993, p. 11),
although fencing has now proven to be an effective mechanism against
mouflon herbivory on this plant (Mehrhoff 1993, pp. 22-23). While
mouflon sheep were introduced to the islands of Lanai and Hawaii as a
managed game species, a private game ranch on Maui has added mouflon to
its stock and it is likely that over time some individuals may escape
(Hess 2010, pers. comm.; Kessler 2010, pers. comm.). As mouflon occur
in seven of the described ecosystems (coastal, lowland dry, lowland
mesic, lowland wet, montane wet, dry cliff, and wet cliff) on Lanai,
the data from the studies above, in addition to direct observation of
field biologists, suggest that mouflon can also alter these ecosystems
and directly damage or destroy native plants by their browsing activity
(see Table 4).
Cattle, either feral or domestic, are considered one of the most
important factors in the destruction of Hawaiian forests (Baldwin and
Fagerlund 1943, pp. 118-122). Captain George Vancouver of the British
Royal Navy is attributed with introducing cattle to the Hawaiian
Islands in 1793 (Fischer 2007, p. 350) by way of a gift to King
Kamehameha I on the island of Hawaii. Over time, cattle became
established on all of the main Hawaiian Islands, and historically feral
cattle were found on the islands of Kauai, Oahu, Molokai, Maui,
Kahoolawe, and Hawaii. Currently, feral cattle are found only on Maui
and Hawaii, typically in accessible forests and certain coastal and
lowland leeward habitats (Tomich 1986, pp. 140-144). In Hawaii
Volcanoes National Park on the island of Hawaii, Cuddihy reported that
there were twice as many native plant species as nonnatives found in
areas that had been fenced to exclude feral cattle, whereas on the
adjacent, nonfenced cattle ranch, there were twice as many nonnative
plant species as natives (Cuddihy 1984, pp. 16, 34). Skolmen and Fujii
(1980, pp. 301-310) found that Acacia koa seedlings were able to
reestablish in a moist Acacia koa-Metrosideros polymorpha forest on
Hawaii Island after the area was fenced to exclude feral cattle
(Skolmen and Fujii 1980, pp. 301-310). Cattle eat native vegetation,
trample roots and seedlings, cause erosion, create disturbed areas
conducive to invasion by nonnative plants, and spread seeds of
nonnative plants in their feces and on their bodies. As feral cattle
occur in five of the described ecosystems (lowland dry, lowland mesic,
lowland wet, montane mesic, and montane wet) on Maui, the results from
the above studies, in addition to the direct observations from field
biologists, suggest that feral cattle can alter these ecosystems and
directly damage or destroy native plants by their browsing activity
(see Table 4).
The blackbuck antelope (Antilope cervicapra) is an endangered
antelope from India brought to a private game reserve on Molokai about
10 years ago
[[Page 32053]]
from an Indian zoo (Kessler 2010, pers. comm.). According to Kessler
(2010, pers. comm.), at some time in the last 10 years, a few
individuals escaped from the game reserve and established a wild
population of an unknown number of individuals on the lower, dry plains
of western Molokai. Blackbuck primarily use grassland habitat for
grazing. In India, foraging consumption and nutrient digestibility are
high in the moist winter months and low in the dry summer months (Jhala
1997, pp. 1,348; 1,351). Although most plant species are grazed
intensely when they are green, some are grazed only after they are dry
(Jhala 1997, pp. 1,348; 1,351). While the habitat effects from the
blackbuck antelope are unknown at this time, we consider these
ungulates a potential threat to native plant species, including the 11
plant species in this final rule found on Molokai (Kessler 2010, pers.
comm.), because blackbuck antelope have foraging and grazing habits
similar to feral goats, cattle, axis deer and mouflon.
Other Introduced Vertebrates
Rats
There are three species of introduced rats in the Hawaiian Islands.
Studies of Polynesian rat (Rattus exulans) DNA suggest they first
appeared in the Hawaiian Islands along with emigrants from the
Marquesas about 400 A.D., with a second interaction around 1100 A.D.
(Ziegler 2002, p. 315). The black rat (R. rattus) and the Norway rat
(R. norvegicus) most likely arrived in the Hawaiian Islands more
recently, as stowaways on ships sometime in the late 19th century
(Atkinson and Atkinson 2000, p. 25). The Polynesian rat and the black
rat are primarily found in the wild, in dry to wet habitats, while the
Norway rat is typically found in manmade habitats such as urban areas
or agricultural fields (Tomich 1986, p. 41). The black rat is widely
distributed among the main Hawaiian Islands and can be found in a broad
range of ecosystems up to 9,744 ft (2,970 m), but it is most common at
low- to mid-elevations (Tomich 1986, pp. 38-40). While Sugihara (1997,
p. 194) found both the black and Polynesian rats up to 6,972-ft (2,125-
m) elevation on Maui, the Norway rat was not seen at the higher
elevations in his study. Rats occur in nine of the described ecosystems
(coastal, lowland dry, lowland mesic, lowland wet, montane dry, montane
mesic, montane wet, dry cliff, and wet cliff), and predation by rats is
a threat to 23 of the 37 plant species, and all 3 species of tree
snails, in this final rule (see Table 4).
Rat Impacts on Plants
Rats impact native plants by eating fleshy fruits, seeds, flowers,
stems, leaves, roots, and other plant parts (Atkinson and Atkinson
2000, p. 23), and can seriously affect regeneration. Research on rats
in forests in New Zealand has also demonstrated that, over time,
differential regeneration as a consequence of rat predation may alter
the species composition of forested areas (Cuddihy and Stone 1990, pp.
68-69). Rats have caused declines or even the total elimination of
island plant species (Campbell and Atkinson 1999, cited in Atkinson and
Atkinson 2000, p. 24). In the Hawaiian Islands, rats may consume as
much as 90 percent of the seeds produced by some trees, or in some
cases prevent the regeneration of forest species completely (Cuddihy
and Stone 1990, pp. 68-69). All three species of rat (black, Norway,
and Polynesian) have been reported to adversely impact many endangered
and threatened Hawaiian plants (Stone 1985, p. 264; Cuddihy and Stone
1990, pp. 67-69). Plants with fleshy fruits are particularly
susceptible to rat predation, including some of the species addressed
in this final rule. For example, the fruits of plants in the bellflower
family (e.g., Cyanea spp.) appear to be a target of rat predation
(Cuddihy and Stone 1990, pp. 67-69). In addition to all 12 species of
Cyanea (Cyanea asplenifolia, C. duvalliorum, C. grimesiana ssp.
grimesiana, C. horrida, C. kunthiana, C. magnicalyx, C. maritae, C.
mauiensis, C. munroi, C. obtusa, C. profuga, and C. solanacea), 11
other species of plants in this final rule are adversely impacted by
rat predation, including Bidens campylotheca ssp. pentamera, B.
campylotheca ssp. waihoiensis, B. conjucta (Bily et al. 2003, pp. 1-
16), Mucuna sloanei var. persericea, Myrsine vaccinioides, Peperomia
subpetiolata, Pittosporum halophilum, Pleomele fernaldii, Santalum
haleakalae var. lanaiense, Schiedea laui, and Wikstroemia villosa (HBMP
2008; Harbaugh et al. 2010, p. 835). As rats occur in nine of the
described ecosystems (coastal, lowland dry, lowland mesic, lowland wet,
montane dry, montane mesic, montane wet, dry cliff, and wet cliff) on
Molokai, Lanai, and Maui, the results from the above studies, in
addition to direct observations from field biologists, suggest that
rats can directly damage or destroy native plants.
Rat Impacts on Tree Snails
Rats (Rattus spp.) have been suggested as the invasive animal
responsible for likely the greatest number of animal extinctions on
islands throughout the world, including extinctions of various snail
species (Towns et al. 2006, p. 88). In the Hawaiian Islands, rats are
known to prey upon endemic arboreal snails (Hadfield et al. 1993, p.
621). In the Waianae Mountains of Oahu, Meyer and Shiels (2009, p. 344)
found shells of the endangered endemic Oahu tree snail (Achatinella
mustelina) with characteristic rat damage (e.g., damage to the shell
opening and cone tip), but noted that rat crushing of shells may limit
the ability to adequately quantify the threat. On Lanai, Hobdy (1993,
p. 208) found numerous shells of Partulina variabilis, one of the tree
snails in this final rule, on the ground with damage characteristic of
rat predation. Likewise in a 2005 survey on Lanai, Hadfield (2005, pp.
3-4) found shells of Partulina semicarinata, another tree snail species
in this rule, on the ground with characteristic rat damage. Surveys in
2009 led Hadfield and colleagues to conclude that populations of
Partulina redfieldi (a tree snail endemic to lowland and montane
forests on Molokai) had declined by 85 percent since 1995 due to rat
predation (Hadfield and Saufler 2009, p. 1). On Maui, rat predation on
the tree snail species Newcombia cumingi, addressed in this final rule,
has led to a decrease in the number of individuals (Hadfield 2006 in
litt., p. 3; 2007, p. 9; 2011, pers. comm.). As rats are found in nine
of the described ecosystems on Lanai and Maui (the islands on which
Newcombia cumingi, Partulina semicarinata, and P. variabilis occur),
including the three ecosystems (lowland wet, montane wet, and wet
cliff) in which the three tree snails in this rule are found, the
results of the above studies, in addition to direct observations from
field biologists, suggest that rats directly damage or destroy Hawaiian
tree snails and are a serious and ongoing threat to the three tree
snail species in this final rule.
Jackson's Chameleon
Several dozen Jackson's chameleons (Chamaeleo jacksonii), native to
Kenya and Tanzania, were introduced to Hawaii in the early 1970s
through the pet trade (Holland et al. 2010, p. 1,438). Inter-island
transport of Jackson's chameleons for the pet trade was unrestricted
until 1997, when they were classified as ``injurious wildlife,'' and
export as well as inter-island transport was prohibited (State of
Hawaii 1996, H.A.R. 13-124-3; Holland et al. 2010, p. 1,439).
Currently, there are established populations on all of the main
Hawaiian Islands, with the greatest number of individuals on the
islands of Hawaii, Maui, and Oahu (Holland et al. 2010, p.
[[Page 32054]]
1,438). Jackson's chameleons prey on native insects and tree snails,
including the endangered Oahu tree snail (Achatinella mustelina)
(Holland et al. 2010, p. 1,438; Hadfield 2011, pers. comm.). Jackson's
chameleons may be expanding their range in the wild from low-elevation
to higher elevation pristine native forest, which may result in
catastrophic impacts to native ecosystems and the species supported by
those ecosystems, including the lowland wet ecosystems on Maui and
Lanai that support the tree snails Newcombia cumingi, Partulina
semicarinata, and P. variabilis, and the montane wet and wet cliff
ecosystems on Lanai that support P. semicarinata and P. variabilis.
Because Jackson's chameleons are likely found in, or expanding their
range into, all of the ecosystems in which the three tree snails
addressed in this final rule are found, and are known to prey on tree
snails, predation by Jackson's chameleon is a potentially serious
threat to the tree snails Newcombia cumingi, Partulina semicarinata,
and P. variabilis.
Invertebrates
Nonnative Slugs
Predation by nonnative snails and slugs adversely impacts 26 of the
37 plant species (Bidens campylotheca ssp. waihoiensis, B. conjuncta,
Cyanea asplenifolia, C. duvalliorum, C. grimesiana ssp. grimesiana, C.
horrida, C. kunthiana, C. magnicalyx, C. maritae, C. mauiensis, C.
munroi, C. obtusa, C. profuga, C. solanacea, Cyrtandra filipes,
Geranium hillebrandii, Myrsine vaccinioides, Peperomia subpetiolata,
Phyllostegia bracteata, P. haliakalae, P. pilosa, Santalum haleakalae
var. lanaiense, Schiedea jacobii, S. laui, Stenogyne kauaulaensis, and
Wikstroemia villosa; see Table 4) in this final rule through mechanical
damage, destruction of plant parts, and mortality (Mitchell et al.
2005; Joe 2006, p. 10; HBMP 2008; PEPP 2008, pp. 48-49, 52-53, 57, 70;
PEPP 2010, pp. 1-121). On Oahu, slugs have been reported to destroy the
endangered plants Cyanea calycina and Cyrtandra kaulantha in the wild,
and have been observed eating leaves and fruit of wild and cultivated
individuals of Cyanea (Mehrhoff 1995, in litt.; U.S. Army Garrison
2005, pp. 3-34, 3-51). In addition, slugs have damaged individuals of
other Cyanea and Cyrtandra species in the wild (Wood 2001, in litt.;
Sailer and Kier 2002, in litt., p. 3; PEPP 2007, p. 38; PEPP 2008, pp.
23, 49, 52-53, 57).
Little is known about predation of certain rare plants by slugs;
however, information in the U.S. Army's 2005 ``Status Report for the
Makua Implementation Plan'' and from Keir (2013, in litt.) indicates
that slugs can be a threat to all species of Cyanea (U.S. Army Garrison
2005, p. 3-51; Keir 2013, in litt.). Research investigating slug
herbivory and control methods shows that slug impacts on seedlings of
Cyanea spp. results in up to 80 percent seedling mortality (U.S. Army
Garrison 2005, p. 3-51). Slug damage has also been reported on other
Hawaiian plants including Argyroxiphium grayanum (greensword),
Alsinidendron sp., Hibiscus sp., the endangered plant Schiedea kaalae
(maolioli), the endangered plant Solanum sandwicense (popolo
aiakeakua), and Urera sp. (Gagne 1983, p. 190-191; Sailer, pers. comm.
cited in Joe 2006, pp. 28-34).
Joe and Daehler (2008, p. 252) found that native Hawaiian plants
are more vulnerable to slug damage than nonnative plants. In
particular, they found that the individuals of the endangered plants
Cyanea superba and Schiedea obovata had 50 percent higher mortality
when exposed to slugs when compared to individuals of the same species
that were protected within slug exclosures. As slugs are found in eight
of the described ecosystems (lowland dry, lowland mesic, lowland wet,
montane dry, montane mesic, montane wet, dry cliff, and wet cliff) on
Molokai, Lanai, and Maui, the data from the above studies, in addition
to direct observations from field biologists, suggest that slugs can
directly damage or destroy native plants.
Nonnative Snails
Several species of nonnative snails have been inadvertently
introduced to Hawaii. However, in 1955, the rosy wolf snail (Euglandina
rosea) was purposely introduced to Hawaii from Florida in an attempt to
control another nonnative, the giant African snail (Achatina fulica).
The giant African snail is commonly found in Honolulu gardens and is
one of the largest snails in the world, in addition to being recognized
as one of the world's most damaging pests to crop plants (Peterson
1957, pp. 643-658; Stone and Anderson 1988, p. 134). The giant African
snail appears to have declined throughout the Hawaiian Islands although
it is unclear if this decline is due to the rosy wolf snail or other
unrelated reasons (Cowie 1997, p. 15). The rosy wolf snail is now found
on six of the eight main Hawaiian Islands (its presence on Niihau and
Kahoolawe has not been confirmed) and has expanded its range on those
islands to include cooler, mid-elevation forests where many endemic
tree snails are found. This nonnative snail is likely responsible for
the decline and extinction of many of Hawaii's native tree snails
(Stone and Anderson 1988, p. 134; Hadfield et al. 1993, p. 621;
Hadfield 2010a, in litt.). In 1979, the rosy wolf snail decimated a
population of the endangered Oahu tree snail (Achatinella mustelina),
as well as all other tree snails at the same study site (Hadfield and
Mountain 1980, p. 357). According to Hadfield (2007, pp. 6-9), the rosy
wolf snail is currently the greatest threat to the only known
population of Newcombia cumingi, one of the three tree snails addressed
in this final rule. In addition, the nonnative garlic snail (Oxychilus
alliarius), a predator on the smaller achatinellid snails, may be a
potential threat to Newcombia cumingi (Hadfield 2010a, in litt.).
Hadfield (2007, pp. 6-9) reported finding many shells of the garlic
snail within the habitat of N. cumingi on Maui. As the rosy wolf snail
can be found in three of the described ecosystems (lowland wet, montane
wet, and wet cliff) on Lanai and Maui (the islands on which N. cumingi,
Partulina semicarinata, and P. variabilis occur), the results from the
studies above, in addition to observations by field biologists, suggest
that the rosy wolf snail has the potential to severely impact the three
tree snails in this final rule.
Nonnative Flatworms
The extinction of native land snails on several Pacific Islands has
been attributed to the terrestrial flatworm Platydemus manokwari
(Sugiura 2010, p. 1,499). This flatworm has decimated populations of
native tree snails on Guam (Hopper and Smith 1992, pp. 78, 82-83). In
the Hawaiian Islands, Platydemus manokwari has been found on the
islands of Oahu and Hawaii, and is likely on all of the main islands
(Miller 2011, pers. comm.). Although P. manokwari has not been reported
from the same locations as the three tree snails addressed in this
final rule, it is a potential threat to these species because it likely
co-occurs on the islands of Molokai, Lanai, and Maui, and it is a known
predator on tree snails.
Conservation Efforts To Reduce Disease or Predation
There are no approved HCPs, SHAs, or CCAs that specifically address
these 40 species and threats from predation. In addition, we are
unaware of any voluntary actions that address the three species of tree
snails and the threat from disease. We are aware of several MOUs that
are under development that will
[[Page 32055]]
specifically address one or more of these 40 species and may address
threats from predation. We acknowledge that in the State of Hawaii
there are several voluntary conservation efforts (e.g., construction of
fences) that may be helping to ameliorate the threats to the 40 species
addressed in this final rule due to predation by nonnative animal
species, specifically predation by feral ungulates. However, these
efforts are overwhelmed by the number of threats, the extent of these
threats across the landscape, and the lack of sufficient resources
(e.g., funding) to control or eradicate them from all areas where these
40 species occur now or occurred historically. See above,
``Conservation Efforts to Reduce Habitat Destruction, Modification, or
Curtailment of Its Range,'' for a summary of some voluntary
conservation actions to address threats from feral ungulates.
The State's University of Hawaii receives funding from the Service
and other sources to propagate and maintain in captivity the two Lanai
tree snails and Newcomb's tree snail. However, the numbers of
individuals of both Lanai tree snail species appear to be declining in
captivity and individuals of Newcomb's tree snail do not survive long
in captivity (Hadfield 2008, p. 1-11; Hadfield 2010, pers. comm.;
Hadfield 2011, pers. comm.). This program does not address threats to
these three tree snails from predation by nonnative species in the wild
nor threats from disease in captivity. Recently (August 2012), the
Service and MLP entered into a cooperative agreement to provide funding
for the construction of a fenced snail exclosure at the only known site
for Newcomb's tree snail (Service 2012, in litt.). The purpose of the
fenced exclosure is to protect individuals of this tree snail in-situ
from predation by rodents (e.g., rats and mice) and predatory nonnative
snails. Construction of the fenced exclosure has not yet been
inititated.
Summary of Disease or Predation
We are unaware of any information that indicates that disease is a
threat to the 37 plant species in this final rule. Disease is a
potential threat to the three species of tree snails in this rule, as
recovery of these species likely will include captive propagation and
disease is suspected to be a cause of currently unsuccessful captive
propagation of Newcombia cumingi, Partulina semicarinata, and P.
variabilis. However, at this time, we have no evidence to suggest that
disease is acting on the wild populations such that it may be
considered a significant threat to the species.
Although conservation measures are in place in some areas where
each of the 40 species in this final rule occur, information does not
indicate that they are ameliorating the threat of predation. Therefore,
we consider predation by nonnative animal species (pigs, goats, axis
deer, mouflon sheep, cattle, rats, Jackson's chameleon, slugs, snails,
and flatworms) to pose an ongoing threat to all 40 species in this
final rule throughout their ranges for the following reasons:
(1) Observations and reports have documented that pigs, goats, axis
deer, mouflon sheep, and cattle browse and trample 35 of the 37 plant
species (see Table 4), in addition to other studies demonstrating the
negative impacts of ungulate browsing and trampling on native plant
species of the islands (Spatz and Mueller-Dombois 1973, p. 874; Diong
1982, p. 160; Cuddihy and Stone 1990, p. 67).
(2) Nonnative rats and slugs cause mechanical damage to plants and
destruction of plant parts (branches, fruits, and seeds), and are
considered a threat to 30 of the 37 plant species in this rule (see
Table 4). All 40 species in this final rule are impacted by either
introduced ungulates, as noted in item 1, above, or nonnative rats and
slugs, or both.
(3) Rat damage has been observed on shells of dead individuals of
the tree snails Partulina variabilis and P. semicarinata on Lanai, as
well as on other native tree snails on Oahu and Molokai, indicating
rats are a likely cause of mortality of these species. Predation by
rats has been linked with the dramatic declines of some populations of
native tree snails (Hobdy 1993, p. 208; Hadfield and Saufler 2009, p.
1; Meyer and Shields 2009, p. 344). Rat predation has been documented
on the tree snail species Newcombia cumingi (Hadfield 2006 in litt., p.
3; Hadfield 2007, p. 9; Hadfield 2010a, in litt.). Although funding has
recently been provided to construct a fenced exclosure to protect
individuals of this tree snail in-situ from predation by rodents (e.g.,
rats and mice) and predatory nonnative snails, construction has not yet
been inititated. Because rats are found in all of the ecosystems in
which the three tree snails addressed in this final rule are found, and
rats are known to prey on tree snails, we consider predation by rats to
be a serious and ongoing threat to Newcombia cumingi, Partulina
semicarinata, and P. variabilis.
(4) Jackson's chameleon, which preys on native insects and tree
snails, has established populations in the wild on all the main
Hawaiian Islands. Jackson's chameleon is likely found in, or is in the
process of expanding its range to include, all of the ecosystems that
support the three tree snails addressed in this final rule. Predation
by this nonnative reptile is a potentially serious threat to Newcombia
cumingi, Partulina semicarinata, and P. variabilis.
(5) Hawaiian tree snails are vulnerable to predation by the
nonnative rosy wolf snail, which is found on all the main Hawaiian
Islands and whose range likely overlaps that of the three tree snail
species we are listing. We therefore consider Newcombia cumingi,
Partulina semicarinata, and P. variabilis to be adversely impacted by
predation by the nonnative rosy wolf snail. Although funding has
recently been provided to construct a fenced exclosure to protect
individuals of Newcombia cumingi in-situ from predation by rodents and
predatory nonnative snails, construction has not yet been inititated.
In addition, the nonnative garlic snail may be a potential threat to
one of the tree snails addressed in this final rule, N. cumingi,
because it is a known predator on smaller tree snails in the same
family as N. cumingi and shells of the garlic snail have been found in
N. cumingi habitat (Stone and Anderson 1988, p. 134; Hadfield et al.
1993, p. 621; Hadfield 2010a, in litt.).
(6) The nonnative flatworm, Platydemus manokwari, is a potential
threat to all three species of tree snails addressed in this final rule
(Hadfield 2010b, in litt.; Sugiura 2010, pp. 1,499-1,501) because this
flatworm has decimated native tree snail populations on other Pacific
Islands and likely occurs on all the main Hawaiian Islands, including
the islands of Lanai and Maui, where the three tree snails are found.
These threats are serious and ongoing, act in concert with other
threats to the species, and are expected to continue or increase in
severity and intensity into the future without effective management
actions to control or eradicate them. In addition, negative impacts to
native Hawaiian plants on Molokai from grazing and browsing by the
blackbuck antelope are likely should this nonnative ungulate increase
in numbers and range on the island. The combined threat of ungulate,
rat, and invertebrate predation on native Hawaiian flora and fauna
suggests the need for immediate implementation of recovery and
conservation methodologies.
[[Page 32056]]
D. The Inadequacy of Existing Regulatory Mechanisms
Inadequate Habitat Protection
Currently, there are no existing Federal, State, or local laws,
treaties, or regulations that specifically conserve or protect the 40
species addressed in this final rule, or adequately address the threats
described in this rule. Although the State of Hawaii's Plant Extinction
Prevention Program supports conservation of the plant species by
securing seeds or cuttings from the rarest and most critically
endangered native species for propagation, the program is nonregulatory
and has not yet been able to directly address broad-scale threats to
plants by invasive species.
The capacity of Federal and State agencies and their
nongovernmental partners in Hawaii to mitigate the effects of
introduced pests, such as ungulates and weeds, is limited due to the
large number of taxa currently causing damage (Coordinating Group on
Alien Pest Species (CGAPS) 2009). Many invasive weeds established on
Molokai, Lanai, and Maui have currently limited but expanding ranges
and are of concern. Resources available to reduce the spread of these
species and counter their negative ecological effects are limited.
Control of established pests is largely focused on a few invasive
species that cause significant economic or environmental damage to
public and private lands. Comprehensive control of an array of invasive
pests and management to reduce disturbance regimes that favor certain
invasive species remains limited in scope. If current levels of funding
and regulatory support for invasive species control are maintained on
Molokai, Lanai, and Maui, the Service expects existing programs to
continue to exclude or, on a very limited basis, control invasive
species only in high-priority areas. Threats from established pests
(e.g., nonnative ungulates, weeds, and invertebrates) are ongoing and
expected to continue into the future.
Feral Ungulates
Nonnative ungulates pose a major ongoing threat to 35 of the 37
plant species and 2 of the 3 tree snail species--Partulina
semicarninata and P. variabilis--through destruction and degradation of
terrestrial habitat, and through direct predation of 35 of the plant
species (see Table 4). The State of Hawaii provides game mammal (feral
pigs and goats, axis deer, and mouflon sheep) hunting opportunities on
15 State-designated public hunting areas on the islands of Molokai,
Lanai, and Maui (State of Hawaii 1999, H.A.R. 13-123; HDLNR 2009, pp.
20-21). The State's management objectives for game animals range from
maximizing public hunting opportunities (e.g., ``sustained yield'') in
some areas to removal by State staff, or their designees, in other
areas (State of Hawaii, H.A.R. 13-123). Thirty-four of the 37 plant
species have populations in areas where terrestrial habitat may be
manipulated for game enhancement and game populations are maintained at
prescribed levels using public hunting (HBMP 2008; State of Hawaii,
H.A.R. 13-123). Public hunting areas are not fenced, and game mammals
have unrestricted access to most areas across the landscape, regardless
of underlying land-use designation. While fences are sometimes built to
protect areas from game mammals, the current number and locations of
fences are not adequate to prevent habitat degradation and destruction
for 37 of the 40 species, or the direct predation of 35 of the 37 plant
species on Molokai, Lanai, and Maui (see Table 4). However, the State
game animal regulations are not designed nor intended to provide
habitat protection, and there are no other regulations designed to
address habitat protection from ungulates.
Introduction of Nonnative Species
Currently, four agencies are responsible for inspection of goods
arriving in Hawaii (CGAPS 2009). The Hawaii Department of Agriculture
(HDOA) inspects domestic cargo and vessels and focuses on pests of
concern to Hawaii, especially insects or plant diseases not yet known
to be present in the State. The U.S. Department of Homeland Security-
Customs and Border Protection (CBP) is responsible for inspecting
commercial, private, and military vessels and aircraft and related
cargo and passengers arriving from foreign locations. CBP focuses on a
wide range of quarantine issues involving non-propagative plant
materials (processed and unprocessed); wooden packing materials,
timber, and products; internationally regulated commercial species
under the Convention on International Trade in Endangered Species of
Wild Fauna and Flora (CITES); federally listed noxious seeds and
plants; soil; and pests of concern to the greater United States, such
as pests of mainland U.S. forests and agriculture. The U.S. Department
of Agriculture-Animal and Plant Health Inspection Service-Plant
Protection and Quarantine (USDA-APHIS-PPQ) inspects propagative plant
material, provides identification services for arriving plants and
pests, conducts pest risk assessments, trains CBP personnel, conducts
permitting and preclearance inspections for products originating in
foreign countries, and maintains a pest database that, again, has a
focus on pests of wide concern across the United States (HDOA 2009).
The Service inspects arriving wildlife products, enforces the injurious
wildlife provisions of the Lacey Act (18 U.S.C. 42; 16 U.S.C. 3371 et
seq.), and prosecutes CITES violations.
The State of Hawaii's unique biosecurity needs are not recognized
by Federal import regulations. Under the USDA-APHIS-PPQ's commodity
risk assessments for plant pests, regulations are based on species
considered threats to the mainland United States and do not address
many species that could be pests in Hawaii (Hawaii Legislative
Reference Bureau (HLRB 2002; USDA-APHIS-PPQ 2010; CGAPS 2009).
Interstate commerce provides the pathway for invasive species and
commodities infested with non-federal quarantine pests to enter Hawaii.
Pests of quarantine concern for Hawaii may be intercepted at Hawaiian
ports by Federal agents but are not always acted on by them because
these pests are not regulated under Federal mandates. Hence, Federal
protection against pest species of concern to Hawaii has historically
been inadequate. It is possible for the USDA to grant Hawaii protective
exemptions under the ``Special Local Needs Rule,'' when clear and
comprehensive arguments for both agricultural and conservation issues
are provided; however, this exemption procedure operates on a case-by-
case basis and is extremely time-consuming to satisfy. Therefore, that
avenue may only provide minimal protection against the large diversity
of foreign pests that negatively impact Hawaii.
Adequate staffing, facilities, and equipment for Federal and State
pest inspectors and identifiers in Hawaii devoted to invasive species
interdiction are critical biosecurity gaps (HLRB 2002; USDA-APHIS-PPQ
2010; CGAPS 2009). State laws have recently been passed that allow the
HDOA to collect fees for quarantine inspection of freight entering
Hawaii (e.g., Act 36 (2011) H.R.S. 150A-5.3). Legislation enacted in
2011 (H.B. 1568) requires commercial harbors and airports in Hawaii to
provide biosecurity and to facilitate cargo inspections. The
introduction of new pests to the State of Hawaii is a significant risk
to federally listed species because the existing regulations are
inadequate for the reasons discussed in the sections below.
In 1995, CGAPS, a partnership composed primarily of managers from
[[Page 32057]]
every major Federal, State, County, and private agency and organization
involved in invasive species work in Hawaii, was formed in an effort to
improve communication, increase collaboration, and promote public
awareness (CGAPS 2009). This group facilitated the formation of the
Hawaii Invasive Species Council (HISC), which was created by
gubernatorial executive order in 2002, to coordinate local initiatives
for the prevention and control of invasive species by providing policy
level direction and planning for the State departments responsible for
invasive species issues. In 2003, the Governor signed into law Act 85,
which conveys statutory authority to the HISC to continue to coordinate
approaches among the various State and Federal agencies, and
international and local initiatives for the prevention and control of
invasive species (HDLNR 2003, p. 3-15; HISC 2009; H.R.S. 194-2(a)).
Some of the recent priorities for the HISC include interagency efforts
to control nonnative species such as the plants Miconia calvescens
(miconia) and Cortaderia spp. (pampas grass), coqui frogs
(Eleutherodactylus coqui), and ants (HISC 2009). Since 2009, State
funding for HISC has been cut by approximately 50 percent (total
funding dropped from $4 million in fiscal year (FY) 2009 to $2 million
in FY 2010, and to $1.8 million for FY 2011 to FY 2013 (Atwood 2012, in
litt.; Atwood 2013, in litt.). Congressional earmarks made up some of
the shortfall in State funding in 2010 and into 2011. These funds
supported ground crew staff that would otherwise have been laid off due
to the shortfall in State funding (Clark 2012, in litt.). Following a
50 percent reduction from FY 2009 funding, the HISC budget has remained
relatively flat (i.e., State funding is equal to funding provided in
2009) from FY 2010 to FY 2013 (Atwood 2013, in litt.). Current
positions provided by HISC are fewer than those supported in 2009; most
of the positions have been lost through attrition and have not been
refilled (Atwood 2012, in litt.). In addition, HISC funds fewer
projects and provides fewer services (Atwood 2012, in litt.; Clark
2012, in litt.) than in 2009 and earlier. Many projects (such as
invasive species and biological control research) that were previously
funded by HISC are receiving negligible HISC funding or remain unfunded
(Atwood 2012, in litt.; Clark 2012, in litt.).
Nonnative Animal Species
Vertebrate Species
The State of Hawaii's laws prohibit the importation of all animals
unless they are specifically placed on a list of allowable species
(HLRB 2002; CGAPS 2010). The importation and interstate transport of
invasive vertebrates is federally regulated by the Service under the
Lacey Act as ``injurious wildlife'' (Fowler et al. 2007, pp. 353-359);
the current list of vertebrates considered as ``injurious wildlife'' is
provided at 50 CFR 16. The law in its current form has limited
effectiveness in preventing invasive vertebrate introductions into the
State of Hawaii because the list of vertebrates considered to be
``injurious wildlife'' under the Lacey Act is relatively limited.
Nonnative Invertebrate Species
Predation by nonnative invertebrate pests (flatworms, slugs,
snails) adversely impacts 26 of the plant species and the 3 tree snails
addressed in this rule (see Table 4 and Factor C. Disease or Predation,
above). It is likely that the introduction of most nonnative
invertebrate pests to the State has been and continues to be accidental
and incidental to other intentional and permitted activities. The
prevention and control of introduction of pest species in Hawaii is the
responsibility of Hawaii State government and Federal agencies, and is
being voluntarily addressed by a few private organizations. Even though
these agencies have regulations and some controls in place (see above),
the introduction and movement of nonnative invertebrate pest species
between islands and from one watershed to the next continues. For
example, an average of 20 new alien invertebrate species were
introduced to Hawaii per year since 1970, an increase of 25 percent
over the previous totals between 1930 and 1970 (TNCH 1992, p. 8).
Existing regulatory mechanisms therefore appear inadequate to
ameliorate the threat of introductions of nonnative invertebrates, and
we have no evidence to suggest that any change to this situation is
anticipated in the future.
Nonnative Plant Species
Nonnative plants destroy and modify habitat throughout the ranges
of 36 of the 40 species being addressed in this final rule (see Table
4, above). As such, they represent a serious and ongoing threat to each
of these species. In addition, nonnative plants have been shown to
outcompete native plants and convert native-dominated plant communities
to nonnative plant communities (See ``Habitat Destruction and
Modification by Nonnative Plants,'' under Factor A, above).
The State of Hawaii allows the importation of most plant taxa, with
limited exceptions, if shipped from domestic ports (HLRB 2002; USDA-
APHIS-PPQ 2010; CGAPS 2009). Hawaii's plant import rules (H.A.R. 4-70)
regulate the importation of 13 plant taxa of economic interest;
regulated crops include pineapple, sugarcane, palms, and pines. Certain
horticultural crops (e.g., orchids) may require import permits and have
pre-entry requirements that include treatment or quarantine or both
either prior to or following entry into the State. The State noxious
weed list (H.A.R. 4-68) and USDA-APHIS-PPQ's Restricted Plants List
restrict the import of a limited number of noxious weeds. If not
specifically prohibited, current Federal regulations allow plants to be
imported from international ports with some restrictions. The Federal
Noxious Weed List (see 7 CFR 360.200) includes few of the many globally
known invasive plants, and plants in general do not require a weed risk
assessment prior to importation from international ports. The USDA-
APHIS-PPQ is in the process of finalizing rules to include a weed risk
assessment for newly imported plants. Although the State has general
guidelines for the importation of plants, and regulations are in place
regarding the plant crops mentioned above, the intentional or
inadvertent introduction of nonnative plants outside the regulatory
process and movement of species between islands and from one watershed
to the next continues, and represents a threat to native flora for the
reasons described above. In addition, government funding is inadequate
to provide for sufficient inspection services and monitoring. One study
concluded that the plant importation laws virtually ensure new invasive
plants will be introduced via the nursery and ornamental trade, and
that outreach efforts cannot keep up with the multitude of new invasive
plants being distributed. The author states the only thing that wide-
scale public outreach can do in this regard is to let the public know
new invasive plants are still being sold, and they should ask for
noninvasive or native plants instead (Martin 2007, in litt.).
On the basis of the above information, existing State and Federal
regulatory mechanisms are not preventing introduction of nonnative
species into Hawaii via interstate and international mechanisms, or via
intrastate movement of nonnative species between islands and watersheds
in Hawaii. Therefore, State and Federal regulatory mechanisms do not
adequately protect the 40 species being addressed in this final rule
from the threat of new
[[Page 32058]]
introductions of nonnative species or the continued expansion of
nonnative species populations on and between islands and watersheds.
Nonnative species may prey upon, modify or destroy habitat of, or
directly compete with one or more of the 40 species for food, space,
and other necessary resources. The impacts from these introduced
threats are ongoing and are expected to continue into the future.
Summary of Inadequacy of Existing Regulatory Mechanisms
Existing State and Federal regulatory mechanisms are not preventing
the introduction into Hawaii of nonnative species or the spread of
nonnative species between islands and watersheds. Habitat-altering
nonnative plant species (Factor A) and predation by nonnative animal
species (Factor C) pose a major ongoing threat to the 40 species being
addressed in this final rule. Thirty-five of the 37 plant species
experience threats from habitat degradation and loss by nonnative
plants (Factor A), and all 37 plants experience threats from nonnative
animals (Factor A and Factor C). All three tree snail species
experience threats from habitat degradation and loss by nonnative
plants (Newcombia cumingi) or nonnative animals (Partulina semicarinata
and P. variabilis). The three tree snails experience threats from
predation by nonnative animals (Factor C). Therefore, we conclude these
existing regulatory mechanisms are inadequate to sufficiently reduce
these threats to all 40 species.
E. Other Natural or Manmade Factors Affecting Their Continued Existence
Other factors that pose threats to some or all of the 40 species
include small numbers of individuals and small numbers of populations,
hybridization, lack of regeneration, and human trampling as a result of
hiking and other activities. Each threat is discussed in detail below,
along with identification of which species are affected by these
threats.
Small Number of Individuals and Populations
Species that are endemic to single islands are inherently more
vulnerable to extinction than are widespread species, because of the
increased risk of genetic bottlenecks, random demographic fluctuations,
climate change effects, and localized catastrophes such as hurricanes,
landslides, rockfalls, drought, and disease outbreaks (Pimm et al.
1988, p. 757; Mangel and Tier 1994, p. 607). These problems are further
magnified when populations are few and restricted to a very small
geographic area, and when the number of individuals in each population
is very small. Populations with these characteristics face an increased
likelihood of stochastic extinction due to changes in demography, the
environment, genetics, or other factors (Gilpin and Soul[eacute] 1986,
pp. 24-34). A single, stochastic event can result in the extinction of
an entire species, if all the representatives of that species are
concentrated in a single area. In addition, small, isolated populations
often exhibit reduced levels of genetic variability, which diminishes
the species' capacity to adapt and respond to environmental changes,
thereby lessening the probability of long-term persistence (e.g.,
Barrett and Kohn 1991, p. 4; Newman and Pilson 1997, p. 361). Very
small, isolated populations are also more susceptible to reduced
reproductive vigor due to ineffective pollination (plants), inbreeding
depression (plants and snails), and hybridization (plants). The
problems associated with small population size and vulnerability to
random demographic fluctuations or natural catastrophes are further
magnified by synergistic interactions with other threats, such as those
discussed above (see Factors A and C, above).
Plants
The following 20 plant species in this final rule face the threat
of limited numbers (i.e., they total fewer than 50 individuals in the
wild): Cyanea grimesiana ssp. grimesiana, C. horrida, C. magnicalyx, C.
maritae, C. mauiensis, C. munroi, C. obtusa, C. profuga, C. solanacea,
Cyrtandra ferripilosa, Festuca molokaiensis, Peperomia subpetiolata,
Phyllostegia bracteata, P. haliakalae, P. pilosa, Pittosporum
halophilum, Schiedea jacobii, S. laui, Stenogyne kauaulaensis, and
Wikstroemia villosa. We consider small population size to be a threat
to these species for the following reasons:
Cyanea grimesiana ssp. grimesiana has not been observed
since 1991 on Molokai (PEPP 2010, p. 45).
The only known wild occurrences of Cyanea horrida, C.
magnicalyx, C. maritae, and C. munroi are susceptible to threats from
habitat degradation or loss by flooding, landslides, or tree falls, or
a combination of these, because of their locations in lowland wet,
montane wet, and wet cliff ecosystems (TNC 2007; TNCH 2010a; HBMP 2008;
PEPP 2009, pp. 23-24, 49-58).
The last confirmed observation of Cyanea mauiensis in the
wild was over 100 years ago. Botanists believe individuals of this
species still remain, as potentially suitable habitat has not been
searched. However, there are no tissues, propagules, or seeds in
storage or propagation (Lammers 2004, pp. 84-85; TNC 2007).
Cyanea obtusa is susceptible to predation by feral pigs,
goats, axis deer, and cattle, and to direct destruction and habitat
degradation and loss by fire because the only two known individuals of
this species are not protected from direct predation by ungulates, or
from fire (Lau 2001, in litt.; PEPP 2007, p. 40; HBMP 2008; PEPP 2008,
p. 55; Duvall 2010, in litt.).
Cyanea profuga and C. solanacea are each known from fewer
than five scattered occurrences in the montane wet ecosystem. These two
plant species are susceptible to predation by nonnative pigs and goats,
as well as habitat degradation or destruction by these nonnative
animals and by landslides, rock and tree falls, or flooding, or a
combination of these (HBMP 2008; PEPP 2009, pp. 23-24, 49-58; Bakutis
2010, in litt.; Perlman 2010, in litt.; Oppenheimer 2010a, in litt.;
TNCH 2011, pp. 21, 57).
Cyrtandra ferripilosa is known from two disparate
occurrences totaling only a few individuals that are not protected from
direct predation by nonnative pigs and goats (Oppenheimer 2010f, in
litt.; Welton 2010b, in litt.).
Festuca molokaiensis, known only from its original
collection location on Molokai, has not been relocated for 2 years.
Threats to this species include habitat destruction or direct predation
by nonnative goats, nonnative plants, and fire (Oppenheimer 2011a,
pers. comm.).
Historically known from lower Waikamoi on east Maui, the
identification of wild individuals of Peperomia subpetiolata has not
been confirmed since 2001, although hybrids between this species and
other species of Peperomia are reported in this area (HBMP 2008; NTBG
2009g, p. 2; Oppenheimer 2010a, in litt.; PEPP 2010, p. 96).
Only one individual of Phyllostegia bracteata was known as
recently as 2009, but even this single individual was not relocated
later in the same year. Botanists continue to search potentially
suitable habitat near the last known location for this ephemeral
species (NTBG 2009h, p. 3; PEPP 2009, pp. 89-90; Oppenheimer 2010c, in
litt.).
The last known wild individual of Phyllostegia haliakalae
on Maui had died by 2010, although there are outplantings of this
species near the location of this individual. Botanists continue to
search potentially suitable
[[Page 32059]]
habitat on Maui for this species. Phyllostegia haliakalae has not been
relocated on Molokai or Lanai for close to 100 years (TNC 2007; HBMP
2008; Oppenheimer 2010c, in litt.; Oppenheimer 2011b, in litt.).
The seven known individuals of Phyllostegia pilosa are not
protected from direct predation by feral pigs and goats on Maui. This
species has not been observed on Molokai for over 100 years (TNC 2007;
HBMP 2008).
Pittosporum halophilum is known from three disparate
locations, each with one to three individuals, on Molokai and its
offshore islets. These individuals are not protected from predation by
feral pigs or rats, or from the threat of fire (Wood 2005, pp. 2, 41;
Bakutis 2010, in litt.; Hobdy 2010, in litt.; Perlman 2010, in litt.).
The only known wild individuals of Schiedea jacobii were
likely destroyed by landslides because of their location along wet
cliffs between Hanawi Stream and Kuhiwa drainage in the montane wet
ecosystem on east Maui. The State plans to outplant propagated
individuals in Hanawi Natural Area Reserve in 2011 (Wagner et al.
1999j, p. 286; HBMP 2008; Oppenheimer 2010a, in litt.; Perlman 2010, in
litt.).
The 24 to 34 individuals of Schiedea laui are facing
imminent threats from flooding and landslides because of their location
in a grotto (HBMP 2008; Bakutis 2010, in litt.).
Stenogyne kauaulaensis is only known from three
individuals. These plants face imminent threats from landslides and
rockfalls because of their location on steep slopes, and from drought
and fire in the montane mesic ecosystem on west Maui (Wood and
Oppenheimer 2008, pp. 544-545; Oppenheimer 2010a, in litt.).
Wikstroemia villosa is known only from a single
occurrence, with two individuals (Peterson 1999, p. 1,291; TNC 2007;
HBMP 2008; Oppenheimer 2010a, in litt.).
Tree Snails
Like most native island biota, the endemic Hawaiian tree snails are
particularly sensitive to disturbances due to low population numbers
and small geographic ranges (Hadfield et al. 1993, p. 610). We consider
the three tree snail species at risk of decline and extinction due to
threats associated with low numbers of individuals and populations
because:
Newcombia cumingi is known only from a single wild
population of one individual and has not been successfully maintained
in captivity (Hadfield 2007, pp. 2, 8; Hadfield 2008, p. 10; Higashino
2013, in litt.).
The only known wild populations of Newcombia cumingi,
Partulina semicarinata, and P. variabilis face serious threats from
predation by nonnative rats, Jackson's chameleons, and snails (Solem
1990, p. 35; Hadfield 1986, p. 325; Hadfield et al. 1993, p. 611;
Hadfield 2007, p. 9; Hadfield 2009, p. 11; Hadfield and Saufler 2009,
p. 1595; Holland et al. 2010, p. 1,437).
The number of individuals of Partulina semicarinata and P.
variabilis has declined by approximately 50 percent between 1993 and
2005 at known locations (Hadfield 2005, p. 305).
Hybridization
Natural hybridization is a frequent phenomenon in plants and can
lead to the formation of new species (Orians 2000, p. 1,949), or
sometimes to the decline of species through genetic assimilation or
``introgression'' (Ellstrand 1992, pp. 77, 81; Levin et al. 1996, pp.
10-16; Rhymer and Simberloff 1996, p. 85). Hybridization, however, is
especially problematic for rare species that come into contact with
species that are abundant or more common (Rhymer and Simberloff 1996,
p. 83). We consider hybridization to adversely impact four species in
this final rule because it may lead to extinction of one or both of the
original genotypically distinct species. Hybrids have been reported
between Bidens campylotheca ssp. pentamera and B. campylotheca ssp.
waihoiensis, two subspecies in this rule that occur in close proximity
on east Maui. In addition, on east Maui, the species Cyanea obtusa is
known from two individuals, but only hybrids between C. obtusa and the
more abundant C. elliptica are known on west Maui. Furthermore, the
current status of the species Peperomia subpetiolata is unknown because
only hybrids between P. subpetiolata and P. cookiana, and perhaps P.
hertapetiola, are known from its historically reported locations on
east Maui.
Regeneration
Lack of, or low levels of, regeneration (reproduction and
recruitment) in the wild has been observed and is a threat to Pleomele
fernaldii (Oppenheimer 2010a, in litt.). Although there are currently
approximately several hundred to 1,000 individuals, very little
recruitment has been observed at the known locations over the past 10
years (Oppenheimer 2008d, in litt.). The reasons for this are not
clearly understood.
Human Trampling and Hiking
Human impacts, including trampling by hikers, have been documented
as a threat to Cyanea maritae and Wikstroemia villosa (Oppenheimer
2010o, in litt.; PEPP 2010, p. 51; Welton 2010b, in litt.) because
individuals of these species are found near climbing or hiking trails.
Individuals climbing and hiking off established trails could trample
individual plants and contribute to soil compaction and erosion,
preventing growth and establishment of seedlings (Oppenheimer 2010a, in
litt.), as has been observed with other native species (Wood 2001, in
litt.; MLP 2005, p. 23).
Conservation Efforts to Reduce Other Natural or Manmade Factors
Affecting Its Continued Existence
There are no approved HCPs, SHAs, CCAs, MOUs, or other voluntary
actions that specifically address the threats to these 40 species from
other natural or manmade factors. The State's PEP Program collects,
propagates, or outplants 14 plant species that are addressed in this
final rule (Cyanea asplenifolia, C. horrida, C. magnicalyx, C. maritae,
C. munroi, C. profuga, C. solanacea, Phyllostegia haliakalae, P.
pilosa, Pittosporum halophilum, Schiedea jacobii, S. laui, Stenogyne
kauaulaensis, and Wikstroemia villosa) (PEPP 2011, pp. 75, 166, 191;
PEPP 2012, pp. 6, 13, 34-36, 66-70, 73-81, 150, 159-160). While these
actions are a step toward increasing the overall numbers and
populations of these species in the wild, these actions are
insufficient to eliminate the threat of limited numbers to the 14 plant
species because the actions are relatively recent (i.e., in the last
few years) and successful reproduction and replacement of outplanted
individuals by seedlings, juveniles, and adults has not yet been
observed in the wild. We are unaware of any voluntary conservation
actions to address the threat to four plant species from hybridization,
the threat of lack of regeneration to Pleomele fernaldii, or the threat
from human trampling to Cyanea maritae and Wikstroemia villosa.
The State's University of Hawaii receives funding from the Service
and other sources to propagate and maintain in captivity the two Lanai
tree snails, Partulina semicarinata and P. variabilis, and Newcomb's
tree snail (Newcombia cumingi). While these actions appear to be a step
toward increasing the overall numbers of these species in captivity,
both Lanai tree snail species appear to be declining in captivity and
[[Page 32060]]
individuals of Newcomb's tree snail do not survive long in captivity
(Hadfield 2008, p. 1-11; Hadfield 2010, pers. comm.; Hadfield 2011,
pers. comm.) (see Disease or Predation, above).
Summary of Other Natural or Manmade Factors Affecting Their Continued
Existence
The conservation measures described above are insufficient to
eliminate the threat from other natural or manmade factors to each of
the 40 species addressed in this final rule. We consider the limited
numbers of populations and few individuals (less than 50) to be a
serious and ongoing threat to 20 of the 37 plant species in this final
rule (Cyanea grimesiana ssp. grimesiana, C. horrida, C. magnicalyx, C.
maritae, C. mauiensis, C. munroi, C. obtusa, C. profuga, C. solanacea,
Cyrtandra ferripilosa, Festuca molokaiensis, Peperomia subpetiolata,
Phyllostegia bracteata, P. haliakalae, P. pilosa, Pittosporum
halophilum, Schiedea jacobii, S. laui, Stenogyne kauaulaensis, and
Wikstroemia villosa) because: (1) These species may experience reduced
reproductive vigor due to ineffective pollination or inbreeding
depression; (2) they may experience reduced levels of genetic
variability, leading to diminished capacity to adapt and respond to
environmental changes, thereby lessening the probability of long-term
persistence; and (3) a single catastrophic event may result in
extirpation of remaining populations and extinction of the species.
This threat applies to the entire range of each species.
The threat to the three tree snails Newcombia cumingi, Partulina
semicarinata, and P. variabilis from limited numbers of populations and
individuals is ongoing and is expected to continue into the future
because: (1) These species may experience reduced reproductive vigor
due to inbreeding depression; (2) they may experience reduced levels of
genetic variability leading to diminished capacity to adapt and respond
to environmental changes, thereby lessening the probability of long-
term persistence; and (3) a single catastrophic event (e.g., hurricane,
drought) may result in extirpation of remaining populations and
extinction of these species. The limited distribution of these three
species thus compounds the severity of the impact of the other threats
discussed in this final rule.
In addition, the threat to Bidens campylotheca ssp. pentamera, B.
campylotheca ssp. waihoiensis, Cyanea obtusa, and Peperomia
subpetiolata from hybridization is ongoing and expected to continue
into the future because hybrids are reported between these species and
other, more abundant species, and no efforts are being implemented in
the wild to prevent potential hybridizations. In addition, we consider
the threat to Pleomele fernaldii from lack of regeneration to be
ongoing and to continue into the future because the reasons for the
lack of recruitment in the wild are unknown and uncontrolled, and any
competition from nonnative plants or habitat modification by ungulates
or fire, or predation by ungulates or rats, could lead to the
extirpation of this species. Also, ongoing human activities (e.g.,
trampling and hiking) are a threat to Cyanea maritae and Wikstroemia
villosa and are expected to continue into the future because field
biologists have reported trampling of vegetation near populations of
Cyanea maritae and the two remaining wild individuals of Wikstroemia
villosa, and the effects of these activities could lead to injury and
death of individual plants, potentially resulting in extirpation from
the wild.
Summary of Factors
The primary factors that pose serious and ongoing threats to one or
more of the 40 species throughout their ranges in this final rule
include: Habitat degradation and destruction by agriculture and
urbanization, nonnative ungulates and plants, fire, natural disasters,
and climate change, and the interaction of these threats (Factor A);
overutilization due to collection of the three tree snail species for
trade or market (Factor B); predation by nonnative animal species
(pigs, goats, axis deer, mouflon sheep, cattle, rats, Jackson's
chameleon, slugs, snails, and flatworms) (Factor C); inadequate
regulatory mechanisms to address the threats posed by nonnative species
(Factor D); and limited numbers of populations and individuals,
hybridization, lack of regeneration, and ongoing human activities
(e.g., trampling and hiking) (Factor E). While we acknowledge the
voluntary conservation measures described above may help to ameliorate
one or more of the threats to the 40 species addressed in this final
rule, these conservation measures are insufficient to control or
eradicate these threats from all areas where these species occur now or
occurred historically.
Determination
We have carefully assessed the best scientific and commercial data
available regarding the past, present, and future threats to each of
the 40 Maui Nui species. We find that all of these species face
significant threats to their existence, which are ongoing and expected
to continue into the future throughout their ranges, from the present
destruction and modification of their habitats, primarly from nonnative
feral ungulates and nonnative plants. Thirteen of the plant species
(Bidens campylotheca ssp. pentamera, Canavalia pubescens, Cyanea
magnicalyx, C. mauiensis, C. obtusa, Festuca molokaiensis, Phyllostegia
bracteata, P. haliakalae, Pittosporum halophilum, Pleomele fernaldii,
Santalum haleakalae var. lanaiense, Schiedea salicaria, and Stenogyne
kauaulaensis) experience threats from habitat destruction and
modification from fire, and 16 plant species (Bidens campylotheca ssp.
waihoiensis, Cyanea asplenifolia, C. duvalliorum, C. grimesiana ssp.
grimesiana, C. horrida, C. magnicalyx, C. maritae, C. mauiensis, C.
munroi, C. profuga, C. solanacea, Cyrtandra filipes, Schiedea jacobii,
S. laui, Stenogyne kauaulaensis, and Wikstroemia villosa) experience
threats from habitat destruction and modification from landslides,
rockfalls, treefalls, or flooding. The plants Canavalia pubescens,
Cyanea horrida, Festuca molokaiensis, Schiedea jacobii, S. salicaria,
and Stenogyne kauaulaensis, as well as the tree snails Newcombia
cumingi, Partulina semicarinata, and P. variabilis, experience threats
from habitat loss or degradation due to drought. All 40 species
experience threats from the destruction and modification of their
habitats from hurricanes, although their occurrence is not predictable.
In addition, we are concerned about the effects of projected climate
change on all species, particularly rising temperatures, but recognize
there is limited information on the exact nature of impacts that these
species may experience (Factor A).
Overcollection for commercial and recreational purposes poses a
serious potential threat to all three tree snail species (Factor B).
Predation and herbivory on all 37 plant species by feral pigs, goats,
cattle, axis deer, mouflon, rats, and slugs poses a serious and ongoing
threat, as does predation of all three tree snail species (N. cumingi,
P. semicarinata, and P. variabilis) by rats, nonnative snails, and
potentially Jackson's chameleon (Factor C). Existing regulatory
mechanisms are inadequate to reduce current and ongoing threats posed
by nonnative plants and animals to all 40 species (Factor D). There are
current and ongoing threats to 20 plant species (Cyanea grimesiana ssp.
grimesiana, C. horrida, C. magnicalyx, C. maritae, C. mauiensis, C.
munroi, C.
[[Page 32061]]
obtusa, C. profuga, C. solanacea, Cyrtandra ferripilosa, Festuca
molokaiensis, Peperomia subpetiolata, Phyllostegia bracteata, P.
haliakalae, P. pilosa, Pittosporum halophilum, Schiedea jacobii, S.
laui, Stenogyne kauaulaensis, and Wikstroemia villosa) and the three
tree snails due to factors associated with small numbers of populations
and individuals; to Bidens campylotheca ssp. pentamera, B. campylotheca
ssp. waihoiensis, Cyanea obtusa, and Peperomia subpetiolata from
hybridization; to Pleomele fernaldii from the lack of regeneration in
the wild; and to Cyanea maritae and Wikstroemia villosa from hiking and
trampling (Factor E) (see Table 4). These threats are exacerbated by
these species' inherent vulnerability to extinction from stochastic
events at any time because of their endemism, small numbers of
individuals and populations, and restricted habitats.
The Act defines an endangered species as any species that is ``in
danger of extinction throughout all or a significant portion of its
range'' and a threatened species as any species ``that is likely to
become endangered throughout all or a significant portion of its range
within the foreseeable future.'' We find that each of these endemic
species is presently in danger of extinction throughout its entire
range, based on the immediacy, severity, and scope of the threats
described above. Based on our analysis, we have no reason to believe
that population trends for any of the species addressed in this final
rule will improve, nor will the negative impacts of current threats
acting on the species be effectively ameliorated in the future.
Therefore, on the basis of the best available scientific and commercial
data, we are listing, or--in the case of Cyanea grimesiana ssp.
grimesiana and Santalum haleakalae var. lanaiense--reaffirming the
listing of, the following 40 species as endangered in accordance with
section 3(6) of the Act: the plants Bidens campylotheca ssp. pentamera,
Bidens campylotheca ssp. waihoiensis, Bidens conjuncta, Calamagrostis
hillebrandii, Canavalia pubescens, Cyanea asplenifolia, Cyanea
duvalliorum, Cyanea grimesiana ssp. grimesiana, Cyanea horrida, Cyanea
kunthiana, Cyanea magnicalyx, Cyanea maritae, Cyanea mauiensis, Cyanea
munroi, Cyanea obtusa, Cyanea profuga, Cyanea solanacea, Cyrtandra
ferripilosa, Cyrtandra filipes, Cyrtandra oxybapha, Festuca
molokaiensis, Geranium hanaense, Geranium hillebrandii, Mucuna sloanei
var. persericea, Myrsine vaccinioides, Peperomia subpetiolata,
Phyllostegia bracteata, Phyllostegia haliakalae, Phyllostegia pilosa,
Pittosporum halophilum, Pleomele fernaldii, Santalum haleakalae var.
lanaiense, Schiedea jacobii, Schiedea laui, Schiedea salicaria,
Stenogyne kauaulaensis, and Wikstroemia villosa; and the tree snails
Newcombia cumingi, Partulina semicarinata, and Partulina variabilis.
Under the Act and our implementing regulations, a species may
warrant listing if it is endangered or threatened throughout all or a
significant portion of its range. Each of the 40 endemic Maui Nui
species in this final rule is highly restricted in its range, and the
threats occur throughout its range. Therefore, we assessed the status
of each species throughout its entire range. In each case, the threats
to the survival of these species occur throughout the species' range
and are not restricted to any particular portion of that range.
Accordingly, our assessment and determination applies to each species
throughout its entire range.
Available Conservation Measures
Conservation measures provided to species listed as endangered or
threatened under the Act include recognition, recovery actions,
requirements for Federal protection, and prohibitions against certain
activities. Recognition through listing results in public awareness and
conservation by Federal, State, and local agencies, private
organizations, and individuals. The Act encourages cooperation with the
States and requires that recovery actions be carried out for all listed
species. The protection measures required of Federal agencies and the
prohibitions against certain activities involving listed animals and
plants are discussed, in part, below.
The primary purpose of the Act is the conservation of endangered
and threatened species and the ecosystems upon which they depend. The
ultimate goal of such conservation efforts is the recovery of these
listed species, so that they no longer need the protective measures of
the Act. Subsection 4(f) of the Act requires the Service to develop and
implement recovery plans for the conservation of endangered and
threatened species. The recovery planning process involves the
identification of actions that are necessary to halt or reverse the
species' decline by addressing the threats to its survival and
recovery. The goal of this process is to restore listed species to a
point where they are secure, self-sustaining, and functioning
components of their ecosystems.
Recovery planning includes the development of a recovery outline
shortly after a species is listed, preparation of a draft and final
recovery plan, and revisions to the plan as significant new information
becomes available. The recovery outline guides the immediate
implementation of urgent recovery actions and describes the process to
be used to develop a recovery plan. The recovery plan identifies site-
specific management actions that will achieve recovery of the species,
measurable criteria that help to determine when a species may be
downlisted or delisted, and methods for monitoring recovery progress.
Recovery plans also establish a framework for agencies to coordinate
their recovery efforts and provide estimates of the cost of
implementing recovery tasks. Recovery teams (composed of species
experts, Federal and State agencies, non-government organizations, and
stakeholders) are often established to develop recovery plans. When
completed, the recovery outlines, draft recovery plans, and the final
recovery plans will be available from our Web site (https://www.fws.gov/endangered), or from our Pacific Islands Fish and Wildlife Office (see
FOR FURTHER INFORMATION CONTACT).
Implementation of recovery actions generally requires the
participation of a broad range of partners, including other Federal
agencies, States, nongovernmental organizations, businesses, and
private landowners. Examples of recovery actions include habitat
restoration (e.g., restoration of native vegetation, control of
nonnative plants), management of threats from predation (e.g., feral
ungulate control, rat control), research, captive propagation and
reintroduction, and outreach and education. The recovery of many listed
species cannot be accomplished solely on Federal lands because their
range may occur primarily or solely on non-Federal lands. To achieve
recovery of these species requires cooperative conservation efforts on
private and State lands.
Funding for recovery actions may be available from a variety of
sources, including Federal budgets, State programs, and cost share
grants for non-Federal landowners, the academic community, and
nongovernmental organizations. In addition, under section 6 of the Act,
the State of Hawaii will be eligible for Federal funds to implement
management actions that promote the protection and recovery of the 40
species. Information on our grant programs that are available to aid
species recovery can be found at: https://www.fws.gov/grants.
[[Page 32062]]
Please let us know if you are interested in participating in
recovery efforts for these listed species. Additionally, we invite you
to submit any new information on these species whenever it becomes
available and any information you may have for recovery planning
purposes (see FOR FURTHER INFORMATION CONTACT).
Section 7(a) of the Act, as amended, requires Federal agencies to
evaluate their actions with respect to any species that is proposed or
listed as endangered or threatened with respect to its critical
habitat, if any is designated. Regulations implementing this
interagency cooperation provision of the Act are codified at 50 CFR
part 402. Section 7(a)(1) of the Act mandates that all Federal agencies
shall utilize their authorities in furtherance of the purposes of the
Act by carrying out programs for the conservation of endangered and
threatened species listed under section 4 of the Act. Section 7(a)(2)
of the Act requires Federal agencies to ensure that activities they
authorize, fund, or carry out are not likely to jeopardize the
continued existence of a listed species or result in destruction or
adverse modification of critical habitat. If a Federal action may
affect the continued existence of a listed species or its critical
habitat, the responsible Federal agency must enter into consultation
with the Service.
For the 40 plants and animals listed or reaffirmed as endangered in
this final rule, Federal agency actions that may require consultation
as described in the preceding paragraph include, but are not limited
to, actions within the jurisdiction of the Natural Resources
Conservation Service (NRCS), the U.S. Army Corps of Engineers, the U.S.
Fish and Wildlife Service, and branches of the Department of Defense
(DOD). Examples of these types of actions include activities funded or
authorized under the Farm Bill Program, Environmental Quality
Incentives Program, Ground and Surface Water Conservation Program,
Clean Water Act (33 U.S.C. 1251 et seq.), Partners for Fish and
Wildlife Program, and DOD construction activities related to training
or other military missions.
The Act and its implementing regulations set forth a series of
general prohibitions and exceptions that apply to all endangered
wildlife and plants. The prohibitions, codified at 50 CFR 17.21 and
17.61, apply. These prohibitions, in part, make it illegal for any
person subject to the jurisdiction of the United States to take
(includes harass, harm, pursue, hunt, shoot, wound, kill, trap,
capture, or collect; or to attempt any of these), import, export, ship
in interstate commerce in the course of commercial activity, or sell or
offer for sale in interstate or foreign commerce any listed wildlife
species. It is also illegal to possess, sell, deliver, carry,
transport, or ship any such wildlife that has been taken illegally. In
addition, for plants listed as endangered, the Act prohibits the
malicious damage or destruction on areas under Federal jurisdiction and
the removal, cutting, digging up, or damaging or destroying of such
plants in knowing violation of any State law or regulation, including
State criminal trespass law. Certain exceptions to the prohibitions
apply to agents of the Service and State conservation agencies.
We may issue permits to carry out otherwise prohibited activities
involving endangered or threatened wildlife and plant species under
certain circumstances. Regulations governing permits are codified at 50
CFR 17.22 and 17.62 for endangered species. With regard to endangered
wildlife, a permit must be issued for the following purposes: For
scientific purposes, to enhance the propagation and survival of the
species, and for incidental take in connection with otherwise lawful
activities. With regard to endangered plants, a permit must be issued
for the following purposes: For scientific purposes or for the
enhancement of propagation or survival. Requests for copies of the
regulations regarding listed species and inquiries about prohibitions
and permits may be addressed to U.S. Fish and Wildlife Service, Pacific
Region, Ecological Services, Eastside Federal Complex, 911 NE. 11th
Avenue, Portland, OR 97232-4181 (telephone 503-231-6131; facsimile 503-
231-6243).
It is our policy, as published in the Federal Register on July 1,
1994 (59 FR 34272), to identify to the maximum extent practicable at
the time a species is listed, those activities that would or would not
constitute a violation of section 9 of the Act. The intent of this
policy is to increase public awareness of the effect of a listing on
proposed and ongoing activities within the range of a listed species.
The following activities could potentially result in a violation of
section 9 of the Act; this list is not comprehensive:
(1) Unauthorized collecting, handling, possessing, selling,
delivering, carrying, or transporting of the species, including import
or export across State lines and international boundaries, except for
properly documented antique specimens of these taxa at least 100 years
old, as defined by section 10(h)(1) of the Act;
(2) Activities that take or harm the three tree snail species by
causing significant habitat modification or degradation such that it
causes actual injury by significantly impairing essential behavioral
patterns. This may include introduction of nonnative species that
compete with or prey upon the three species of tree snails or the
unauthorized release of biological control agents that attack any life
stage of these three species; and
(3) Damaging or destroying any of the 37 listed plants in violation
of the Hawaii State law prohibiting the take of listed species.
Questions regarding whether specific activities would constitute a
violation of section 9 of the Act should be directed to the Pacific
Islands Fish and Wildlife Office (see FOR FURTHER INFORMATION CONTACT).
Requests for copies of the regulations concerning listed species and
general inquiries regarding prohibitions and permits may be addressed
to the U.S. Fish and Wildlife Service, Pacific Region, Ecological
Services, Endangered Species Permits, Eastside Federal Complex, 911 NE.
11th Avenue, Portland, OR 97232-4181 (telephone 503-231-6131; facsimile
503-231-6243).
The State of Hawaii's endangered species law (HRS, Section 195-D)
is automatically invoked when a species is listed, and provides
supplemental protection, including prohibiting take of these species
and encouraging conservation by State government agencies. Further, the
State may enter into agreements with Federal agencies to administer and
manage any area required for the conservation, management, enhancement,
or protection of endangered species (H.R.S. 195D-5). Funds for these
activities could be made available under section 6 of the Act
(Cooperation with the States). Thus, the Federal protection afforded to
listed species is reinforced and supplemented by protection under State
law.
Required Determinations
National Environmental Policy Act (NEPA)
We have determined that environmental assessments and environmental
impact statements, as defined under the authority of the National
Environmental Policy Act (NEPA; 42 U.S.C. 4321 et seq.), need not be
prepared in connection with listing a species as an endangered or
threatened species under the Endangered Species Act. We published a
notice outlining our reasons for this
[[Page 32063]]
determination in the Federal Register on October 25, 1983 (48 FR
49244).
References Cited
A complete list of references cited in this rule is available on
the Internet at https://www.regulations.gov under Docket No. FWS-R1-ES-
2011-0098 and upon request from the Pacific Islands Fish and Wildlife
Office (see ADDRESSES, above).
Authors
The primary authors of this document are the staff members of the
Pacific Islands Fish and Wildlife Office.
List of Subjects in 50 CFR Part 17
Endangered and threatened species, Exports, Imports, Reporting and
recordkeeping requirements, Transportation.
Regulation Promulgation
Accordingly, we amend part 17, subchapter B of chapter I, title 50
of the Code of Federal Regulations, as set forth below:
PART 17--AMENDED
0
1. The authority citation for Part 17 continues to read as follows:
Authority: 16 U.S.C. 1361-1407; 16 U.S.C. 1531-1544; 16 U.S.C.
4201-4245; Pub. L. 99-625, 100 Stat. 3500; unless otherwise noted.
0
2. Amend Sec. 17.11(h), the List of Endangered and Threatened
Wildlife, by adding entries for ``Snail, Lanai tree'' (Partulina
semicarinata), ``Snail, Lanai tree'' (Partulina variabilis), and
``Snail, Newcomb's tree'' (Newcombia cumingi), in alphabetical order
under SNAILS, to read as follows:
Sec. 17.11 Endangered and threatened wildlife.
* * * * *
(h) * * *
--------------------------------------------------------------------------------------------------------------------------------------------------------
Species Vertebrate
------------------------------------------------------ population where When
Historic range endangered or Status listed Critical habitat Special rules
Common name Scientific name threatened
--------------------------------------------------------------------------------------------------------------------------------------------------------
* * * * * * *
SNAILS
* * * * * * *
Snail, Lanai tree............... Partulina U.S.A. (HI)........ NA................. E.......... 815 NA................ NA
semicarinata.
Snail, Lanai tree............... Partulina U.S.A. (HI)........ NA................. E.......... 815 NA................ NA
variabilis.
* * * * * * *
Snail, Newcomb's tree........... Newcombia cumingi.. U.S.A. (HI)........ NA................. E.......... 815 NA................ NA
* * * * * * *
--------------------------------------------------------------------------------------------------------------------------------------------------------
0
3. Amend Sec. 17.12(h), the List of Endangered and Threatened Plants,
as follows:
0
a. By removing the entries for Gahnia lanaiensis and Santalum
freycinetianum var. lanaiense under FLOWERING PLANTS;
0
b. By revising the entry for Cyanea grimesiana ssp. grimesiana under
FLOWERING PLANTS; and
0
c. By adding entries for Bidens campylotheca ssp. pentamera, Bidens
campylotheca ssp. waihoiensis, Bidens conjuncta, Calamagrostis
hillebrandii, Canavalia pubescens, Cyanea asplenifolia, Cyanea
duvalliorum, Cyanea horrida, Cyanea kunthiana, Cyanea magnicalyx,
Cyanea maritae, Cyanea mauiensis, Cyanea munroi, Cyanea obtusa, Cyanea
profuga, Cyanea solanacea, Cyrtandra ferripilosa, Cyrtandra filipes,
Cyrtandra oxybapha, Festuca molokaiensis, Geranium hanaense, Geranium
hillebrandii, Mucuna sloanei var. persericea, Myrsine vaccinioides,
Peperomia subpetiolata, Phyllostegia bracteata, Phyllostegia
haliakalae, Phyllostegia pilosa, Pittosporum halophilum, Pleomele
fernaldii, Santalum haleakalae var. lanaiense, Schiedea jacobii,
Schiedea laui, Schiedea salicaria, Stenogyne kauaulaensis, and
Wikstroemia villosa in alphabetical order under FLOWERING PLANTS, to
read as follows:
Sec. 17.12 Endangered and threatened plants.
* * * * *
(h) * * *
--------------------------------------------------------------------------------------------------------------------------------------------------------
Species
------------------------------------------------------ Historic range Family Status When Critical habitat Special
Scientific name Common name listed rules
--------------------------------------------------------------------------------------------------------------------------------------------------------
FLOWERING PLANTS
* * * * * * *
Bidens campylotheca ssp. Kookoolau.......... U.S.A. (HI)........ Asteraceae......... E.......... 815 NA................ NA
pentamera.
* * * * * * *
Bidens campylotheca ssp. Kookoolau.......... U.S.A. (HI)........ Asteraceae......... E.......... 815 NA................ NA
waihoiensis.
* * * * * * *
Bidens conjuncta................ Kookoolau.......... U.S.A. (HI)........ Asteraceae......... E.......... 815 NA................ NA
* * * * * * *
Calamagrostis hillebrandii...... None............... U.S.A. (HI)........ Poaceae............ E.......... 815 NA................ NA
[[Page 32064]]
* * * * * * *
Canavalia pubescens............. Awikiwiki.......... U.S.A. (HI)........ Fabaceae........... E.......... 815 NA................ NA
* * * * * * *
Cyanea asplenifolia............. Haha............... U.S.A. (HI)........ Campanulaceae...... E.......... 815 NA................ NA
* * * * * * *
Cyanea duvalliorum.............. Haha............... U.S.A. (HI)........ Campanulaceae...... E.......... 815 NA................ NA
* * * * * * *
Cyanea grimesiana ssp. Haha............... U.S.A. (HI)........ Campanulaceae...... E.......... 592, 17.99(c), (e)(1), NA
grimesiana. 815 and (i).
* * * * * * *
Cyanea horrida.................. Haha nui........... U.S.A. (HI)........ Campanulaceae...... E.......... 815 NA................ NA
* * * * * * *
Cyanea kunthiana................ Haha............... U.S.A. (HI)........ Campanulaceae...... E.......... 815 NA................ NA
* * * * * * *
Cyanea magnicalyx............... Haha............... U.S.A. (HI)........ Campanulaceae...... E.......... 815 NA................ NA
* * * * * * *
Cyanea maritae.................. Haha............... U.S.A. (HI)........ Campanulaceae...... E.......... 815 NA................ NA
* * * * * * *
Cyanea mauiensis................ Haha............... U.S.A. (HI)........ Campanulaceae...... E.......... 815 NA................ NA
* * * * * * *
Cyanea munroi................... Haha............... U.S.A. (HI)........ Campanulaceae...... E.......... 815 NA................ NA
* * * * * * *
Cyanea obtusa................... Haha............... U.S.A. (HI)........ Campanulaceae...... E.......... 815 NA................ NA
* * * * * * *
Cyanea profuga.................. Haha............... U.S.A. (HI)........ Campanulaceae...... E.......... 815 NA................ NA
* * * * * * *
Cyanea solanacea................ Popolo............. U.S.A. (HI)........ Campanulaceae...... E.......... 815 NA................ NA
* * * * * * *
Cyrtandra ferripilosa........... Haiwale............ U.S.A. (HI)........ Gesneriaceae....... E.......... 815 NA................ NA
* * * * * * *
Cyrtandra filipes............... Haiwale............ U.S.A. (HI)........ Gesneriaceae....... E.......... 815 NA................ NA
* * * * * * *
Cyrtandra oxybapha.............. Haiwale............ U.S.A. (HI)........ Gesneriaceae....... E.......... 815 NA................ NA
* * * * * * *
Festuca molokaiensis............ None............... U.S.A. (HI)........ Poaceae............ E.......... 815 NA................ NA
* * * * * * *
Geranium hanaense............... Nohoanu............ U.S.A. (HI)........ Geraniaceae........ E.......... 815 NA................ NA
* * * * * * *
Geranium hillebrandii........... Nohoanu............ U.S.A. (HI)........ Geraniaceae........ E.......... 815 NA................ NA
* * * * * * *
Mucuna sloanei var. persericea.. Sea bean........... U.S.A. (HI)........ Fabaceae........... E.......... 815 NA................ NA
* * * * * * *
Myrsine vaccinioides............ Kolea.............. U.S.A. (HI)........ Myrsinaceae........ E.......... 815 NA................ NA
* * * * * * *
Peperomia subpetiolata.......... Alaala wai nui..... U.S.A. (HI)........ Piperaceae......... E.......... 815 NA................ NA
* * * * * * *
Phyllostegia bracteata.......... None............... U.S.A. (HI)........ Lamiaceae.......... E.......... 815 NA................ NA
* * * * * * *
Phyllostegia haliakalae......... None............... U.S.A. (HI)........ Lamiaceae.......... E.......... 815 NA................ NA
[[Page 32065]]
* * * * * * *
Phyllostegia pilosa............. None............... U.S.A. (HI)........ Lamiaceae.......... E.......... 815 NA................ NA
* * * * * * *
Pittosporum halophilum.......... Hoawa.............. U.S.A. (HI)........ Pittosporaceae..... E.......... 815 NA................ NA
* * * * * * *
Pleomele fernaldii.............. Hala pepe.......... U.S.A. (HI)........ Asparagaceae....... E.......... 815 NA................ NA
* * * * * * *
Santalum haleakalae var. Lanai sandalwood or U.S.A. (HI)........ Santalaceae........ E.......... 215, NA................ NA
lanaiense. iliahi. 815
* * * * * * *
Schiedea jacobii................ None............... U.S.A. (HI)........ Caryophyllaceae.... E.......... 815 NA................ NA
* * * * * * *
Schiedea laui................... None............... U.S.A. (HI)........ Caryophyllaceae.... E.......... 815 NA................ NA
* * * * * * *
Schiedea salicaria.............. None............... U.S.A. (HI)........ Caryophyllaceae.... E.......... 815 NA................ NA
* * * * * * *
Stenogyne kauaulaensis.......... None............... U.S.A. (HI)........ Lamiaceae.......... E.......... 815 NA................ NA
* * * * * * *
Wikstroemia villosa............. Akia............... U.S.A. (HI)........ Thymelaeaceae...... E.......... 815 NA................ NA
--------------------------------------------------------------------------------------------------------------------------------------------------------
* * * * *
Dated: May 14, 2013.
Stephen Guertin,
Deputy Director, U.S. Fish and Wildlife Service.
[FR Doc. 2013-12105 Filed 5-24-13; 8:45 am]
BILLING CODE 4310-55-P