Emamectin Benzoate; Pesticide Tolerance, 18504-18511 [2013-06758]
Download as PDF
18504
§ 218.32
Federal Register / Vol. 78, No. 59 / Wednesday, March 27, 2013 / Rules and Regulations
Objection time periods.
(a) Time to file an objection. Written
objections, including any attachments,
must be filed with the reviewing officer
within 30 days following the
publication date of the legal notice of
the EA or final EIS in the newspaper of
record or the publication date of the
notice in the Federal Register when the
Chief is the responsible official (see
§ 218.6(c)). It is the responsibility of
objectors to ensure that their objection
is received in a timely manner.
(b) Time for responding to an
objection. The reviewing officer must
issue a written response to the
objector(s) concerning their objection(s)
within 30 days following the end of the
objection filing period.
[FR Doc. 2013–06857 Filed 3–26–13; 8:45 am]
BILLING CODE 3410–11–P
ENVIRONMENTAL PROTECTION
AGENCY
40 CFR Part 180
[EPA–HQ–OPP–2011–0665; FRL–9381–4]
Emamectin Benzoate; Pesticide
Tolerance
Environmental Protection
Agency (EPA).
ACTION: Final rule.
AGENCY:
SUMMARY: This regulation establishes a
tolerance for residues of emamectin
benzoate in or on the cucurbit vegetable
crop group 9. Interregional Research
Project Number 4 (IR–4) requested this
tolerance under the Federal Food, Drug,
and Cosmetic Act (FFDCA).
DATES: This regulation is effective
March 27, 2013. Objections and requests
for hearings must be received on or
before May 28, 2013, and must be filed
in accordance with the instructions
provided in 40 CFR part 178 (see also
Unit I.C. of the SUPPLEMENTARY
INFORMATION).
The docket for this action,
identified by docket identification (ID)
number EPA–HQ–OPP–2011–0665, is
available at https://www.regulations.gov
or at the Office of Pesticide Programs
Regulatory Public Docket (OPP Docket)
in the Environmental Protection Agency
Docket Center (EPA/DC), EPA West
Bldg., Rm. 3334, 1301 Constitution Ave.
NW., Washington, DC 20460–0001. The
Public Reading Room is open from 8:30
a.m. to 4:30 p.m., Monday through
erowe on DSK2VPTVN1PROD with RULES
VerDate Mar<15>2010
15:14 Mar 26, 2013
Jkt 229001
I. General Information
A. Does this action apply to me?
You may be potentially affected by
this action if you are an agricultural
producer, food manufacturer, or
pesticide manufacturer. The following
list of North American Industrial
Classification System (NAICS) codes is
not intended to be exhaustive, but rather
provides a guide to help readers
determine whether this document
applies to them. Potentially affected
entities may include:
• Crop production (NAICS code 111).
• Animal production (NAICS code
112).
• Food manufacturing (NAICS code
311).
• Pesticide manufacturing (NAICS
code 32532).
Dated: March 20, 2013.
Harris D. Sherman,
Under Secretary, Natural Resources and
Environment (NRE).
ADDRESSES:
Friday, excluding legal holidays. The
telephone number for the Public
Reading Room is (202) 566–1744, and
the telephone number for the OPP
Docket is (703) 305–5805. Please review
the visitor instructions and additional
information about the docket available
at https://www.epa.gov/dockets.
FOR FURTHER INFORMATION CONTACT:
Andrew Ertman, Registration Division
(7505P), Office of Pesticide Programs,
Environmental Protection Agency, 1200
Pennsylvania Ave. NW., Washington,
DC 20460–0001; telephone number:
(703) 308–9367; email address:
ertman.andrew@epa.gov.
SUPPLEMENTARY INFORMATION:
B. How can I get electronic access to
other related information?
You may access a frequently updated
electronic version of EPA’s tolerance
regulations at 40 CFR part 180 through
the Government Printing Office’s e-CFR
site at https://www.ecfr.gov/cgi-bin/textidx?&c=ecfr&tpl=/ecfrbrowse/Title40/
40tab_02.tpl.
C. How can I file an objection or hearing
request?
Under FFDCA section 408(g), 21
U.S.C. 346a, any person may file an
objection to any aspect of this regulation
and may also request a hearing on those
objections. You must file your objection
or request a hearing on this regulation
in accordance with the instructions
provided in 40 CFR part 178. To ensure
proper receipt by EPA, you must
identify docket ID number EPA–HQ–
OPP–2011–0665 in the subject line on
the first page of your submission. All
objections and requests for a hearing
must be in writing, and must be
received by the Hearing Clerk on or
before May 28, 2013. Addresses for mail
and hand delivery of objections and
PO 00000
Frm 00048
Fmt 4700
Sfmt 4700
hearing requests are provided in 40 CFR
178.25(b).
In addition to filing an objection or
hearing request with the Hearing Clerk
as described in 40 CFR part 178, please
submit a copy of the filing (excluding
any Confidential Business Information
(CBI)) for inclusion in the public docket.
Information not marked confidential
pursuant to 40 CFR part 2 may be
disclosed publicly by EPA without prior
notice. Submit the non-CBI copy of your
objection or hearing request, identified
by docket ID number EPA–HQ–OPP–
2011–0665, by one of the following
methods:
• Federal eRulemaking Portal: https://
www.regulations.gov. Follow the online
instructions for submitting comments.
Do not submit electronically any
information you consider to be
Confidential Business Information (CBI)
or other information whose disclosure is
restricted by statute.
• Mail: OPP Docket, Environmental
Protection Agency Docket Center (EPA/
DC), (28221T), 1200 Pennsylvania Ave.
NW., Washington, DC 20460–0001.
• Hand Delivery: To make special
arrangements for hand delivery or
delivery of boxed information, please
follow the instructions at https://
www.epa.gov/dockets/contacts.htm.
Additional instructions on commenting
or visiting the docket, along with more
information about dockets generally, is
available at https://www.epa.gov/
dockets.
II. Summary of Petitioned-For
Tolerance
In the Federal Register of September
7, 2011 (76 FR 55329) (FRL–8886–7),
EPA issued a document pursuant to
FFDCA section 408(d)(3), 21 U.S.C.
346a(d)(3), announcing the filing of a
pesticide petition (PP 1E7904) by IR–4,
500 College Rd. East, Suite 201 W,
Princeton, NJ 08540. The petition
requested that 40 CFR 180.505 be
amended by establishing tolerances for
residues of the insecticide emamectin
benzoate, 4′-epimethylamino-4′deoxyavermectin B1 benzoate (a
mixture of a minimum of 90% 4′-epimethylamino-4′-deoxyavermectin B1a
and a maximum of 10% 4′-epimethlyamino-4′deoxyavermectin B1b
benzoate), and its metabolites 8,9 isomer
of the B1a and B1b component of the
parent insecticide, in or on vegetable,
cucurbit, group 9 at 0.03 parts per
million (ppm). That document
referenced a summary of the petition
prepared by Syngenta, the registrant,
which is available in the docket, https://
www.regulations.gov. There were no
comments received in response to the
notice of filing.
E:\FR\FM\27MRR1.SGM
27MRR1
Federal Register / Vol. 78, No. 59 / Wednesday, March 27, 2013 / Rules and Regulations
Based upon review of the data
supporting the petition, EPA has
modified the level at which the
tolerance is being established. The
reason for this change is explained in
Unit IV.C.
erowe on DSK2VPTVN1PROD with RULES
III. Aggregate Risk Assessment and
Determination of Safety
Section 408(b)(2)(A)(i) of FFDCA
allows EPA to establish a tolerance (the
legal limit for a pesticide chemical
residue in or on a food) only if EPA
determines that the tolerance is ‘‘safe.’’
Section 408(b)(2)(A)(ii) of FFDCA
defines ‘‘safe’’ to mean that ‘‘there is a
reasonable certainty that no harm will
result from aggregate exposure to the
pesticide chemical residue, including
all anticipated dietary exposures and all
other exposures for which there is
reliable information.’’ This includes
exposure through drinking water and in
residential settings, but does not include
occupational exposure. Section
408(b)(2)(C) of FFDCA requires EPA to
give special consideration to exposure
of infants and children to the pesticide
chemical residue in establishing a
tolerance and to ‘‘ensure that there is a
reasonable certainty that no harm will
result to infants and children from
aggregate exposure to the pesticide
chemical residue.* * * ’’
Consistent with FFDCA section
408(b)(2)(D), and the factors specified in
FFDCA section 408(b)(2)(D), EPA has
reviewed the available scientific data
and other relevant information in
support of this action. EPA has
sufficient data to assess the hazards of
and to make a determination on
aggregate exposure for emamectin
benzoate including exposure resulting
from the tolerances established by this
action. EPA’s assessment of exposures
and risks associated with emamectin
benzoate follows.
A. Toxicological Profile
EPA has evaluated the available
toxicity data and considered its validity,
completeness, and reliability as well as
the relationship of the results of the
studies to human risk. EPA has also
considered available information
concerning the variability of the
sensitivities of major identifiable
subgroups of consumers, including
infants and children. Emamectin acts by
binding to gamma-aminobutyric acid
(GABA) gated chloride channels at two
different sites, a high affinity binding
site that activates the channel and a low
affinity site that blocks the channel.
GABA plays a critical role in nervous
system development through both nonsynaptic and synaptic mechanisms.
Consequently, emamectin may have the
VerDate Mar<15>2010
15:14 Mar 26, 2013
Jkt 229001
potential to influence GABA-mediated
events important to brain development.
Within the mammalian brain, a member
of this class of compound (abamectin)
has been shown to have widespread
binding but particularly abundant in the
cerebellum. Through action on the
enteric nervous system and induction of
longitudinal rhythmic contractions in
the isolated ileum, emamectin like
abamectin may therefore influence
GABA-mediated regulation of
metabolism, food intake and body
weight at multiple sites. Although
GABA receptor mediated neurotoxicity
is a solid hypothesis, data in
mammalian preparations linking
alterations in GABA receptor function to
disruptions in neuronal excitability in
vitro and in vivo, and ultimately adverse
outcome are currently lacking.
Integral to its mechanism of action in
mammals, this class of compounds is
also a substrate for (i.e., binds to) Pglycoprotein. P-glycoprotein (P-gp) is a
member of the adenosine triphosphate
(ATP) binding cassette transporter
proteins, which reside in the plasma
membrane and function as a
transmembrane efflux pump, moving
xenobiotics from intracellular to the
extracellular domain against a steep
concentration gradient with ATPhydrolysis providing the energy for
active transport. P-gp is found in the
canallicular surface of hepatocytes, the
apical surface of proximal tubular cells
in the kidneys, brush border surface of
enterocytes, luminal surface of blood
capillaries of the brain (blood brain
barrier), placenta, ovaries, and the
testes. As an efflux transporter, P-gp acts
as a protective barrier to keep
xenobiotics out of the body by excreting
them into bile, urine, and intestinal
lumen and prevents accumulation of
these compounds in the brain and
gonads, as well as the fetus. Therefore,
some test animals, in which genetic
polymorphisms compromise P-gp
expression, are particularly susceptible
to abamectin or emamectin-induced
neurotoxicity. An example is the CF-1
mouse. Some CF-1 mice are deficient in
P-gp and are found to be highly
sensitive to the neurotoxicity of
abamectin. A small population of
humans is also found to be deficient of
ATP binding cassette (ABC) transporter
proteins due to polymorphism in the
gene encoding ABC transporter proteins
(Dubin-Johnson Syndrome). In addition,
collie dogs have been known to be
deficient in P-gp.
Consistent with the mode of action,
the main target organ for emamectin is
the nervous system; clinical signs
(tremors, ptosis, ataxia, and hunched
posture) and neuropathology (neuronal
PO 00000
Frm 00049
Fmt 4700
Sfmt 4700
18505
degeneration in the brain and in
peripheral nerves, muscle fiber
degeneration) were found in most of the
emamectin studies in rats, dogs and
mice. The dose/response curve was very
steep in several studies (most notably
with CF-1 mice and dogs), with severe
effects (morbid sacrifice and
neuropathology) sometimes seen at the
LOAELs (0.1 milligram/kilogram/day
(mg/kg/day) with NOAEL of 0.075 mg/
kg/day). Although no increased
sensitivity was seen in developmental
toxicity studies in rats and rabbits,
increased qualitative and/or quantitative
sensitivity of rat pups was seen in the
reproductive toxicity and in the
developmental neurotoxicity studies.
The carcinogenicity and mutagenicity
studies provide no indication that
emamectin is carcinogenic or
mutagenic. Emamectin is classified as
‘‘not likely to be carcinogenic to
humans.’’
The available emamectin data show
that there is a difference in species
sensitivity, and the data suggest the
following order: Rat NOAELs/LOAELs
greater than dog NOAELs/LOAELs
greater than mouse NOAELs/LOAELs.
The toxicity endpoints and points of
departure for risk were selected from the
results of the 15-day CF-1 mouse oral
toxicity study.
Specific information on the studies
received and the nature of the adverse
effects caused by emamectin benzoate as
well as the no-observed-adverse-effectlevel (NOAEL) and the lowest-observedadverse-effect-level (LOAEL) from the
toxicity studies can be found at https://
www.regulations.gov on pages 43–50 of
the document titled ‘‘Emamectin
Benzoate. Revised Human Health Risk
Assessment for Proposed Uses on
Cucurbits and Outdoor-Grown Plants in
Commercial Nursery Production’’ in
docket ID number EPA–HQ–OPP–2011–
0665.
B. Toxicological Points of Departure/
Levels of Concern
Once a pesticide’s toxicological
profile is determined, EPA identifies
toxicological points of departure (POD)
and levels of concern to use in
evaluating the risk posed by human
exposure to the pesticide. For hazards
that have a threshold below which there
is no appreciable risk, the toxicological
POD is used as the basis for derivation
of reference values for risk assessment.
PODs are developed based on a careful
analysis of the doses in each
toxicological study to determine the
dose at which no adverse effects are
observed (the NOAEL) and the lowest
dose at which adverse effects of concern
are identified (the LOAEL). Uncertainty/
E:\FR\FM\27MRR1.SGM
27MRR1
18506
Federal Register / Vol. 78, No. 59 / Wednesday, March 27, 2013 / Rules and Regulations
safety factors are used in conjunction
with the POD to calculate a safe
exposure level—generally referred to as
a population-adjusted dose (PAD) or a
reference dose (RfD)—and a safe margin
of exposure (MOE). For non-threshold
risks, the Agency assumes that any
amount of exposure will lead to some
degree of risk. Thus, the Agency
estimates risk in terms of the probability
of an occurrence of the adverse effect
expected in a lifetime. For more
information on the general principles
EPA uses in risk characterization and a
complete description of the risk
assessment process, see https://
www.epa.gov/pesticides/factsheets/
riskassess.htm.
A summary of the toxicological
endpoints for emamectin benzoate used
for human risk assessment is shown in
Table 1 of this unit.
TABLE 1—SUMMARY OF TOXICOLOGICAL DOSES AND ENDPOINTS FOR EMAMECTIN BENZOATE FOR USE IN HUMAN HEALTH
RISK ASSESSMENT
Exposure/scenario
Acute dietary (All Populations)
Chronic dietary (All populations)
Point of departure
and uncertainty/safety factors
RfD, PAD, LOC for
risk assessment
(mg/kg/day)
Study and toxicological effects
NOAEL = 0.075 mg/
kg/day.
UFA = 10x
UFH = 10x
FQPA SF = 3x
NOAEL= 0.075 mg/
kg/day.
UFA = 10x
UFH = 10x
FQPA SF = 10x
aRfD = 0.00025 .......
aPAD = 0.00025
15-day mouse. LOAEL = 0.1 mg/kg/day based on tremors on
day 3 of dosing. At the next higher dose (0.3 mg/kg/day),
tremors were seen at day 2 of treatment.
cRfD = 0.000075 .....
cPAD = 0.000075
15-day mouse. LOAEL = 0.1 mg/kg/day based on moribund
sacrifices, clinical signs of neurotoxicity, decreases in body
weight and food consumption and histopathological lesions in
the sciatic nerve.
FQPA SF = Food Quality Protection Act Safety Factor. LOAEL = lowest-observed-adverse-effect-level. mg/kg/day = milligram/kilogram/day.
NOAEL = no-observed-adverse-effect-level. PAD = population adjusted dose (a = acute, c = chronic). RfD = reference dose. UF = uncertainty
factor. UFA = extrapolation from animal to human (interspecies). UFH = potential variation in sensitivity among members of the human population
(intraspecies).
erowe on DSK2VPTVN1PROD with RULES
C. Exposure Assessment
1. Dietary exposure from food and
feed uses. In evaluating dietary
exposure to emamectin benzoate, EPA
considered exposure under the
petitioned-for tolerances as well as all
existing emamectin benzoate tolerances
in 40 CFR 180.505. EPA assessed dietary
exposures from emamectin benzoate in
food as follows:
i. Acute exposure. Quantitative acute
dietary exposure and risk assessments
are performed for a food-use pesticide,
if a toxicological study has indicated the
possibility of an effect of concern
occurring as a result of a 1-day or single
exposure.
Such effects were identified for
emamectin benzoate. In estimating acute
dietary exposure, EPA used food
consumption information from the U.S.
Department of Agriculture (USDA)
2003–2008 National Health and
Nutrition Examination Survey, What We
Eat in America (NHANES/WWEIA). As
to residue levels in food, a probabilistic
acute dietary exposure assessment was
conducted. The anticipated residue
estimates, used for most crops, were
based on field trial data. Tolerance-level
residues were used for tree nuts
(including pistachios) and cottonseed
oil. Pesticide Data Program (PDP)
monitoring data for years 2009 and 2010
were used for apples since apple juice
had a significant impact on exposure.
Dietary Exposure Evaluation Model
(DEEM) default processing factors were
VerDate Mar<15>2010
15:14 Mar 26, 2013
Jkt 229001
used except for commodities with
chemical-specific processing studies.
Percent crop treated (PCT) data were
used.
ii. Chronic exposure. In conducting
the chronic dietary exposure assessment
EPA used the food consumption data
from the USDA 2003–2008 NHANES/
WWEIA. As to residue levels in food, a
somewhat refined chronic dietary
exposure assessment was conducted.
The anticipated residue estimates, used
for most crops, were single point
estimates (averages) based on field trial
data. Tolerance-level residues were used
for tree nuts (including pistachios) and
cottonseed oil. DEEM default processing
factors were used except for
commodities with chemical-specific
processing studies. PCT data were used.
iii. Cancer. Based on the data
summarized in Unit III.A., EPA has
concluded that emamectin benzoate
does not pose a cancer risk to humans.
Therefore, a dietary exposure
assessment for the purpose of assessing
cancer risk is unnecessary.
iv. Anticipated residue and PCT
information. Section 408(b)(2)(E) of
FFDCA authorizes EPA to use available
data and information on the anticipated
residue levels of pesticide residues in
food and the actual levels of pesticide
residues that have been measured in
food. If EPA relies on such information,
EPA must require pursuant to FFDCA
section 408(f)(1) that data be provided 5
years after the tolerance is established,
PO 00000
Frm 00050
Fmt 4700
Sfmt 4700
modified, or left in effect, demonstrating
that the levels in food are not above the
levels anticipated. For the present
action, EPA will issue such data call-ins
as are required by FFDCA section
408(b)(2)(E) and authorized under
FFDCA section 408(f)(1). Data will be
required to be submitted no later than
5 years from the date of issuance of
these tolerances.
Section 408(b)(2)(F) of FFDCA states
that the Agency may use data on the
actual percent of food treated for
assessing chronic dietary risk only if:
• Condition a: The data used are
reliable and provide a valid basis to
show what percentage of the food
derived from such crop is likely to
contain the pesticide residue.
• Condition b: The exposure estimate
does not underestimate exposure for any
significant subpopulation group.
• Condition c: Data are available on
pesticide use and food consumption in
a particular area, the exposure estimate
does not understate exposure for the
population in such area.
In addition, the Agency must provide
for periodic evaluation of any estimates
used. To provide for the periodic
evaluation of the estimate of PCT as
required by FFDCA section 408(b)(2)(F),
EPA may require registrants to submit
data on PCT.
For the acute dietary assessment, the
Agency estimated the PCT for existing
uses as follows:
Almonds, 2.5%; apples, 20%;
broccoli, 20%; cabbage, 25%;
E:\FR\FM\27MRR1.SGM
27MRR1
erowe on DSK2VPTVN1PROD with RULES
Federal Register / Vol. 78, No. 59 / Wednesday, March 27, 2013 / Rules and Regulations
cauliflower, 20%; celery, 40%; cotton,
2.5%; lettuce, 20%; pears, 20%;
peppers, 15%; spinach, 10%; tomatoes,
20%.
For the chronic dietary assessment,
the Agency estimated the PCT for
existing uses as follows:
Almonds, 1%; apples, 10%; broccoli,
5%; cabbage, 10%; cauliflower, 10%;
celery, 25%; cotton, 1%; lettuce, 10%;
pears, 5%; peppers, 5%; spinach, 5%;
tomatoes, 10%.
In most cases, EPA uses available data
from USDA/National Agricultural
Statistics Service (NASS), proprietary
market surveys, and the National
Pesticide Use Database for the chemical/
crop combination for the most recent 6
to 7 years. EPA uses an average PCT for
chronic dietary risk analysis. The
average PCT figure for each existing use
is derived by combining available
public and private market survey data
for that use, averaging across all
observations, and rounding to the
nearest 5%, except for those situations
in which the average PCT is less than 1.
In those cases, 1% is used as the average
PCT and 2.5% is used as the maximum
PCT. EPA uses a maximum PCT for
acute dietary risk analysis. The
maximum PCT figure is the highest
observed maximum value reported
within the recent 6 years of available
public and private market survey data
for the existing use and rounded up to
the nearest multiple of 5%.
For the acute dietary assessment, the
Agency estimated the PCT for new uses
as follows:
Cantaloupe, 51%; cucumber, 26%;
squash, 46%; watermelon, 21%.
For the chronic dietary assessment,
the Agency estimated the PCT for new
uses as follows:
Cantaloupe, 40%; cucumber, 14%;
squash, 29%; watermelon, 19%.
EPA estimates of the PCT for new
uses of emamectin benzoate represent
the upper bound of the use expected
during the pesticide’s initial 5 years of
registration; that is, PCT for new uses of
emamectin benzoate is a threshold of
use that EPA is reasonably certain will
not be exceeded for each registered use
site. The PCT recommended for use in
the chronic dietary assessment for new
uses is calculated as the average PCT of
the market leader or leaders, (i.e., the
pesticide(s) with the greatest PCT) on
that site over the three most recent years
of available data. The PCT
recommended for use in the acute
dietary assessment for new uses is the
maximum observed PCT over the same
period. Comparisons are only made
among pesticides of the same pesticide
types (e.g., the market leader for
insecticides on the use site is selected
VerDate Mar<15>2010
15:14 Mar 26, 2013
Jkt 229001
for comparison with a new insecticide).
The market leader included in the
estimation may not be the same for each
year since different pesticides may
dominate at different times.
Typically, EPA uses USDA/NASS as
the source data because it is publicly
available and directly reports values for
PCT. When a specific use site is not
reported by USDA/NASS, EPA uses
proprietary data and calculates the PCT
given reported data on acres treated and
acres grown. If no data are available,
EPA may extrapolate PCT for new uses
from other crops, if the production area
and pest spectrum are substantially
similar.
A retrospective analysis to validate
this approach shows few cases where
the PCT for the market leaders were
exceeded. Further review of these cases
identified factors contributing to the
exceptionally high use of a new
pesticide. To evaluate whether the PCT
for new uses for emamectin benzoate
could be exceeded, EPA considered
whether there may be unusually high
pest pressure, as indicated in emergency
exemption requests for emamectin
benzoate; the pest spectrum of the new
pesticide in comparison with the market
leaders and whether the market leaders
are well established for that use; and
whether pest resistance issues with past
market leaders provide emamectin
benzoate with significant market
potential. Given currently available
information, EPA concludes that it is
unlikely that actual PCT for emamectin
benzoate will exceed the estimated PCT
for new uses during the next 5 years.
The Agency believes that the three
conditions discussed in Unit III.C.1.iv.
have been met. With respect to
Condition a, PCT estimates are derived
from Federal and private market survey
data, which are reliable and have a valid
basis. The Agency is reasonably certain
that the percentage of the food treated
is not likely to be an underestimation.
As to Conditions b and c, regional
consumption information and
consumption information for significant
subpopulations is taken into account
through EPA’s computer-based model
for evaluating the exposure of
significant subpopulations including
several regional groups. Use of this
consumption information in EPA’s risk
assessment process ensures that EPA’s
exposure estimate does not understate
exposure for any significant
subpopulation group and allows the
Agency to be reasonably certain that no
regional population is exposed to
residue levels higher than those
estimated by the Agency. Other than the
data available through national food
consumption surveys, EPA does not
PO 00000
Frm 00051
Fmt 4700
Sfmt 4700
18507
have available reliable information on
the regional consumption of food to
which emamectin benzoate may be
applied in a particular area.
2. Dietary exposure from drinking
water. The Agency used screening level
water exposure models in the dietary
exposure analysis and risk assessment
for emamectin benzoate in drinking
water. These simulation models take
into account data on the physical,
chemical, and fate/transport
characteristics of emamectin benzoate.
Further information regarding EPA
drinking water models used in pesticide
exposure assessment can be found at
https://www.epa.gov/oppefed1/models/
water/index.htm.
Based on the Pesticide Root Zone
Model/Exposure Analysis Modeling
System (PRZM/EXAMS) and Screening
Concentration in Ground Water (SCI–
GROW) models, the estimated drinking
water concentrations (EDWCs) of
emamectin benzoate for acute exposures
are estimated to be between 0 and 0.465
parts per billion (ppb) for surface water
and 0.00054 ppb for ground water, and
for chronic exposures are estimated to
be 0.150 ppb for surface water and
0.00054 ppb for ground water.
Modeled estimates of drinking water
concentrations were directly entered
into the dietary exposure model. For
acute dietary risk assessment, a drinking
water residue distribution based on the
PRZM/EXAMS modeling was used. For
chronic dietary risk assessment, the
water concentration value of 0.150 ppb
was used to assess the contribution to
drinking water.
3. From non-dietary exposure. The
term ‘‘residential exposure’’ is used in
this document to refer to nonoccupational, non-dietary exposure
(e.g., for lawn and garden pest control,
indoor pest control, termiticides, and
flea and tick control on pets).
Emamectin benzoate is not registered
for any specific use patterns that would
result in residential exposure.
4. Cumulative effects from substances
with a common mechanism of toxicity.
Section 408(b)(2)(D)(v) of FFDCA
requires that, when considering whether
to establish, modify, or revoke a
tolerance, the Agency consider
‘‘available information’’ concerning the
cumulative effects of a particular
pesticide’s residues and ‘‘other
substances that have a common
mechanism of toxicity.’’
OPP’s ‘‘Guidance For Identifying
Pesticide Chemicals and Other
Substances that have a Common
Mechanism of Toxicity’’ (Ref. 1)
describes the weight of the evidence
approach for determining whether or
not a group of pesticides share a
E:\FR\FM\27MRR1.SGM
27MRR1
erowe on DSK2VPTVN1PROD with RULES
18508
Federal Register / Vol. 78, No. 59 / Wednesday, March 27, 2013 / Rules and Regulations
common mechanism of toxicity. This
guidance defines mechanism of toxicity
as the major steps leading to a toxic
effect following interaction of a
pesticide with biological targets. All
steps leading to an effect do not need to
be specifically understood. Rather, it is
the identification of the crucial events
following chemical interaction that are
required in order to describe a
mechanism of toxicity. For example, a
mechanism of toxicity may be described
by knowing the following: A chemical
binds to a given biological target in
vitro, and causes the receptor-related
molecular response; in vivo it also leads
to the molecular response and causes a
number of intervening biological and
morphological steps that result in an
adverse effect. In this context a common
mechanism of toxicity pertains to two or
more pesticide chemicals or other
substances that cause a common toxic
effect to human health by the same, or
essentially the same, sequence of major
biochemical events. Hence, the
underlying basis of the toxicity is the
same, or essentially the same, for each
chemical. In the case of the macrocyclic
lactone pesticides (e.g., abamectin,
emamectin, and avermectin), there is a
wealth of data on the insecticidal
mechanism of action for avermectin: Its
insecticidal actions are mediated by
interaction with the glutamate-gated
chloride channels and GABAA gated
chloride channels. This is presumed to
be the insecticidal mechanism of action
of emamectin and abamectin as well.
Insecticidal mechanism of action does
not indicate a common mechanism of
toxicity for human health. Further,
mammals lack glutamate-gated chloride
channels; the toxic actions of
avermectin appear to be mediated via
interaction with GABAA and possibly
glycine gated chloride channels. There
is evidence that avermectin B1a binds to
GABAA receptors and activates Cl
flux into neurons (Refs. 2 and 3).
However, there is a paucity of data
regarding the resultant alterations in
cellular excitability of mammalian
neurons and neural networks (i.e.,
changes in cellular excitability and
altered network function as documented
with pyrethroids), as well as in vivo
measurements of altered excitability
associated with adverse outcomes.
Thus, while the downstream steps
leading to toxicity via disruption of
GABAA receptor function for avermectin
can be postulated, experimental data
supporting these actions are lacking. In
addition, specific data demonstrating
GABAA receptor interaction in
mammalian preparations are lacking for
abamectin and emamectin. Moreover,
VerDate Mar<15>2010
15:14 Mar 26, 2013
Jkt 229001
the specificity of such interaction on the
adverse outcome would need to be
shown experimentally. GABAA
receptors have multiple binding sites
which have been proposed to relate to
adverse outcomes. For example, Dawson
et al. (Ref. 4) showed for a group of
avermectin-like compounds that rank
order for anticonvulsant activity did not
parallel the rank order for affinity at the
[3H]ivermectin site. The authors
hypothesized that these findings may be
related to differential affinity or efficacy
at subtypes of the GABAA receptor.
Other reports have indicated species
differences in abamectin effects on
GABAA receptor function in the mouse
as compared to the rat (Ref. 5).
In conclusion, although GABAA
receptor mediated neurotoxicity may be
a common mechanism endpoint for the
macrocyclic lactone pesticides, data
demonstrating the interactions of
emamectin and abamectin with
mammalian GABAA receptors are not
available, and data in mammalian
preparations linking alterations in
GABAA receptor function to disruptions
in neuronal excitability in vitro and in
vivo, and ultimately adverse outcome,
are also currently lacking for this class
of compounds. In the absence of such
data, the key biological steps leading to
the adverse outcome (i.e., the
mammalian mechanism of action)
cannot be established and by extension
a common mechanism of toxicity cannot
be established.
For information regarding EPA’s
efforts to determine which chemicals
have a common mechanism of toxicity
and to evaluate the cumulative effects of
such chemicals, see EPA’s Web site at
https://www.epa.gov/pesticides/
cumulative.
D. Safety Factor for Infants and
Children
1. In general. Section 408(b)(2)(C) of
FFDCA provides that EPA shall apply
an additional tenfold (10X) margin of
safety for infants and children in the
case of threshold effects to account for
prenatal and postnatal toxicity and the
completeness of the database on toxicity
and exposure unless EPA determines
based on reliable data that a different
margin of safety will be safe for infants
and children. This additional margin of
safety is commonly referred to as the
FQPA Safety Factor (SF). In applying
this provision, EPA either retains the
default value of 10X, or uses a different
additional safety factor when reliable
data available to EPA support the choice
of a different factor.
2. Prenatal and postnatal sensitivity.
Although no increased sensitivity was
seen in developmental toxicity studies
PO 00000
Frm 00052
Fmt 4700
Sfmt 4700
in rats and rabbits, increased qualitative
and/or quantitative sensitivity of rat
pups was seen in the reproductive
toxicity study and in the developmental
neurotoxicity study. In the reproduction
study, whole body tremors, hind limb
extension, and hind limb splay were
seen in the F1 and F2 pups while these
clinical signs were not seen in F0
parental animals at similar dose levels.
In addition, a greater incidence of
decreased fertility was seen in the F1
parental females than in the F0 females.
In the developmental neurotoxicity
study, no maternal effect was seen at the
highest dose tested whereas dose-related
decrease in open-field motor activity
was seen in the mid-dose in pups on
postnatal day 17. Body tremors, hindlimb extension, and auditory startle
were also found in the high dose pups.
3. Conclusion. Based on currently
available data, EPA is retaining the 10X
FQPA safety factor for chronic
assessments and is using a 3X FQPA
safety factor for acute assessments. This
decision is based on the following
findings:
i. Completeness of the toxicity
database. The toxicology database used
to assess prenatal and postnatal
exposure to emamectin contains all
required studies with exception of an
immunotoxicity study and a subchronic
inhalation toxicity study, which are data
gaps.
The Agency evaluated subchronic,
chronic, carcinogenicity, developmental
and reproduction studies as well as
acute and subchronic neurotoxicity
studies for any effects that might
indicate that emamectin induced
changes in the organs generally
associated with immunological toxicity.
In the studies evaluated, only the 14week oral toxicity study in dogs showed
an increase in the incidence of thymus
atrophy at 1 mg/kg/day. In the 1-year
feeding study in dogs, thymus atrophy
was not reported at similar dose levels
tested. Currently, the point of departure
for risk assessment is 0.075 mg/kg/day,
which is more than 10 times less than
the dose where thymus atrophy had
been reported. Therefore, since the
acute and chronic RfD’s are 0.00025 mg/
kg/day and 0.000075 mg/kg/day,
respectively, the Agency does not
believe an immunotoxicity study will
result in a lower point of departure
(POD) than that which is currently in
use for overall risk assessment. As such,
a database uncertainty factor is not
necessary to account for the lack of an
immunotoxicity study.
In regards to the inhalation toxicity
study, there are currently no residential
uses registered for emamectin benzoate,
and therefore, lack of this study does
E:\FR\FM\27MRR1.SGM
27MRR1
erowe on DSK2VPTVN1PROD with RULES
Federal Register / Vol. 78, No. 59 / Wednesday, March 27, 2013 / Rules and Regulations
not impact the Agency’s assessment of
prenatal and postnatal exposure.
Another completeness issue with
regard to the toxicity database is that
EPA is using a short-term study for longterm risk assessment. The data
submitted show that CF–1 mice, which
lack glycoprotein, are the most sensitive
species/strand of animal tested. EPA
only has data on CF–1 mice in shortterm studies. Longer-term studies used
CD–1 mice. Hence a short-term study in
CF–1 mice was used to choose the
chronic Point of Departure. The
extrapolation from a short-term study in
CF–1 mice to a long-term POD
introduces additional uncertainty into
the risk assessment process.
ii. Potential prenatal and postnatal
toxicity. Although no increased
sensitivity was seen in developmental
toxicity studies in rats and rabbits,
increased qualitative and/or quantitative
sensitivity of rat pups was seen in the
reproductive toxicity study and in the
developmental neurotoxicity study. A
degree-of-concern analysis was
conducted to determine whether or not
an additional safety factor is needed to
account for the increased susceptibility
in pups; it was concluded that the
degree-of-concern was low for both 2generation reproduction and
developmental neurotoxicity studies.
The reasons are as follows:
For the 2-generation reproduction
study, (1) there was a clear NOAEL for
the offspring toxicity, and (2) the
decreased fertility seen in F1 adults
might have been due to
histopathological lesions in the brain
and central nervous system (seen in
both F0 and F1 generations), rather than
due to a direct effect on the
reproductive system.
For the developmental neurotoxicity
study, (1) although multiple offspring
effects (including decreased pup body
weight, head and body tremors,
hindlimb extension and splay, changes
in motor activity and auditory startle)
were seen at the highest dose, and no
maternal effects were seen at any dose,
there was a clear NOAEL for offspring
toxicity at the low dose, and (2) the
offspring LOAEL (at the mid dose) is
based on a single effect seen on only one
day (decreased motor activity on
postnatal day 17) and no other offspring
toxicity was seen at the LOAEL.
Two other considerations raise
residual concerns about whether the
traditional safety factors are protective
of potential prenatal and postnatal
toxicity. First, the steepness of the doseresponse curve means that there is a
small margin of error provided by
reliance on the study NOAEL. Second,
the severity of effects at the LOAEL
VerDate Mar<15>2010
15:14 Mar 26, 2013
Jkt 229001
(death and neuropathology), exacerbate
the concern raised by the steep dose
response curve.
iii. The completeness of the exposure
database. The assessment for food
incorporates somewhat refined
anticipated residue estimates for most
commodities that were derived from
field trial data and PCT. The availability
and use of monitoring data and food
preparation-reduction factors for
washing, cooking, etc. may have
resulted in a more refined estimate of
dietary exposure. Therefore, exposures
to residues in food are not expected to
be exceeded.
The dietary drinking water
assessment utilizes water concentration
values generated by model and
associated modeling parameters which
are designed to provide conservative,
health protective, high-end estimates of
water concentrations which will not
likely be exceeded.
Taking all of these findings into
account, EPA has concluded that there
are not reliable data supporting
lowering of the default 10X FQPA safety
factor for chronic exposures.
Specifically, EPA does not have reliable
data showing that infants and children
will be adequately protected using the
traditional inter- and intra-species safety
factors due to the steepness of the doseresponse curve, the severity of effects at
the LOAEL (death and neuropathology),
and the use of a short-term study for
long-term risk assessment. The Agency
did not use a chronic study for the POD
because the chronic studies were
conducted in rats, dogs, and CD–1 mice.
Taking all of these findings into
account, for acute exposures, EPA has
concluded that there are reliable data
supporting lowering the default 10X
FQPA safety factor to 3X. Although the
steepness of the dose-response curve
and the severity of the effects at the
LOAEL introduce uncertainty with
regard to whether the inter- and intraspecies safety factors are protective of
infants and children from acute effects,
EPA has concluded that use of the 15day neurotoxicity CF–1 mouse study
provides reliable data to reduce the
FQPA safety factor for acute
assessments from 10X to 3X. The
Agency determined that a 3X FQPA
Safety Factor is adequate for assessing
acute dietary risk based on the following
weight of evidence considerations:
• An endpoint of concern attributable
to a single exposure was not identified
for in utero effects since there was no
concern for developmental toxicity and
there was no indication of increased
susceptibility (qualitative or
quantitative) of rat or rabbit fetuses to in
utero exposure to emamectin;
PO 00000
Frm 00053
Fmt 4700
Sfmt 4700
18509
• Although there was evidence of
increased susceptibility in the DNT
study, an endpoint of concern was not
identified for acute dietary risk
assessment for prenatal exposures
because the adverse effect at the LOAEL
(i.e., decrease in open field motor
activity) was seen only on postnatal day
17 and not seen after a single exposure;
• The POD selected for acute dietary
risk assessment is a NOAEL (with a
clear LOAEL) seen after repeated dosing
but is used for assessing acute risk (i.e.,
a very conservative approach).
Therefore, the Agency is confident
that the retention of a 3X FQPA Safety
Factor (to account for the steepness of
the dose response curve) will not
underestimate risk and provides
reasonable certainty of no harm from
exposure to emamectin benzoate.
E. Aggregate Risks and Determination of
Safety
EPA determines whether acute and
chronic dietary pesticide exposures are
safe by comparing aggregate exposure
estimates to the acute PAD (aPAD) and
chronic PAD (cPAD). For linear cancer
risks, EPA calculates the lifetime
probability of acquiring cancer given the
estimated aggregate exposure. Short-,
intermediate-, and chronic-term risks
are evaluated by comparing the
estimated aggregate food, water, and
residential exposure to the appropriate
PODs to ensure that an adequate MOE
exists.
1. Acute risk. Using the exposure
assumptions discussed in this unit for
acute exposure, the acute dietary
exposure from food and drinking water
to emamectin benzoate will occupy 60%
of the aPAD for children 1–2 years old,
the population group receiving the
greatest exposure.
2. Chronic risk. Using the exposure
assumptions described in this unit for
chronic exposure, EPA has concluded
that chronic exposure to emamectin
benzoate from food and water will
utilize 16% of the cPAD for all infants
less than 1 year old, the population
group receiving the greatest exposure.
There are no residential uses for
emamectin benzoate.
3. Short-term risk. Short- and
intermediate-term aggregate exposure
takes into account short- and
intermediate-term residential exposure
plus chronic exposure to food and water
(considered to be a background
exposure level).
Both short- and intermediate-term
adverse effects were identified;
however, emamectin benzoate is not
registered for any use patterns that
would result in either short- or
intermediate-term residential exposure.
E:\FR\FM\27MRR1.SGM
27MRR1
18510
Federal Register / Vol. 78, No. 59 / Wednesday, March 27, 2013 / Rules and Regulations
Short- and intermediate-term risk is
assessed based on short- and
intermediate-term residential exposure
plus chronic dietary exposure. Because
there is no short- or intermediate-term
residential exposure and chronic dietary
exposure has already been assessed
under the appropriately protective
cPAD (which is at least as protective as
the POD used to assess short- or
intermediate-term risk), no further
assessment of short- or intermediateterm risk is necessary, and EPA relies on
the chronic dietary risk assessment for
evaluating short- and intermediate-term
risk for emamectin benzoate.
4. Aggregate cancer risk for U.S.
population. Based on the lack of
evidence of carcinogenicity in two
adequate rodent carcinogenicity studies,
emamectin benzoate is not expected to
pose a cancer risk to humans.
5. Determination of safety. Based on
these risk assessments, EPA concludes
that there is a reasonable certainty that
no harm will result to the general
population or to infants and children
from aggregate exposure to emamectin
benzoate residues.
IV. Other Considerations
A. Analytical Enforcement Methodology
Adequate enforcement methodology
(high performance liquid
chromatography with fluorescence
detection (HPLC/FLD)) is available to
enforce the tolerance expression.
The method may be requested from:
Chief, Analytical Chemistry Branch,
Environmental Science Center, 701
Mapes Rd., Ft. Meade, MD 20755–5350;
telephone number: (410) 305–2905;
email address:
residuemethods@epa.gov.
erowe on DSK2VPTVN1PROD with RULES
B. International Residue Limits
In making its tolerance decisions, EPA
seeks to harmonize U.S. tolerances with
international standards whenever
possible, consistent with U.S. food
safety standards and agricultural
practices. EPA considers the
international maximum residue limits
(MRLs) established by the Codex
Alimentarius Commission (Codex), as
required by FFDCA section 408(b)(4).
The Codex Alimentarius is a joint
United Nations Food and Agriculture
Organization/World Health
Organization food standards program,
and it is recognized as an international
food safety standards-setting
organization in trade agreements to
which the United States is a party. EPA
may establish a tolerance that is
different from a Codex MRL; however,
FFDCA section 408(b)(4) requires that
VerDate Mar<15>2010
15:14 Mar 26, 2013
Jkt 229001
EPA explain the reasons for departing
from the Codex level.
The Codex has not established a MRL
for emamectin benzoate on cucurbits.
C. Revisions to Petitioned-For
Tolerances
Based on the review of the residue
data submitted with the petition, the
proposed tolerance level of 0.03 ppm is
being modified to 0.02 ppm.
Also, EPA has revised the tolerance
expression to clarify (1) that, as
provided in FFDCA section 408(a)(3),
the tolerance covers metabolites and
degradates of emamectin benzoate not
specifically mentioned; and (2) that
compliance with the specified tolerance
levels is to be determined by measuring
only the specific compounds mentioned
in the tolerance expression.
V. Conclusion
Therefore, a tolerance is established
for residues of emamectin, including its
metabolites and degradates, in or on the
cucurbit vegetable group 9 at 0.02 ppm.
Compliance with the tolerance levels
specified is to be determined by
measuring only the sum of emamectin (a
mixture of a minimum of 90% 4′-epimethylamino-4′-deoxyavermectin B1a
and maximum of 10% 4′-epimethylamino-4′-deoxyavermectin B1b)
and its metabolites 8,9-isomer of the B1a
and B1b component of the parent (8,9ZMA), or 4′-deoxy-4′-epi-aminoavermectin B1a and 4′-deoxy-4′-epiamino-avermectin B1b; 4′-deoxy-4′-epiamino avermectin B1a (AB1a); 4′-deoxy4′-epi-(N-formyl-N-methyl)aminoavermectin (MFB1a); and 4′-deoxy-4′epi-(N-formyl)amino-avermectin B1a
(FAB1a), calculated as the stoichiometric
equivalent of emamectin.
VI. References
The following literature was
referenced in the preamble of this
document.
1. OPP’s ‘‘Guidance for Identifying Pesticide
Chemicals and Other Substances that
have a Common Mechanism of Toxicity’’
(USEPA, 1999); https://www.epa.gov/
fedrgstr/EPA-PEST/1999/February/Day05/6055.pdf.
2. balis IM, Eldefrawi AT, Eldefrawi ME.
Actions of avermectin B1a on the gammaaminobutyric acidA receptor and
chloride channels in rat brain. Journal of
Biochemical Toxicology. 1986
Mar;1(1):69–82.
3. Huang J, Casida JE. (1997) Avermectin B1a
binds to high- and low-affinity sites with
dual effects on the gama-aminobutyric
acid-gated chloride channel of cultured
cerebellar granule neurons. Journal of
Pharmacology and Experimental
Therapeutics. 281: 261–266.
4. Dawson GR, Wafford KA, Smith A,
Marshall GR, Bayley PJ, Schaeffer JM,
PO 00000
Frm 00054
Fmt 4700
Sfmt 4700
Meinke PT, McKernan RM. (2000)
Anticonvulsant and adverse effects of
avermectin analogs in mice are mediated
through the gama-aminobutyric acid (A)
receptor. Journal of Pharmacology and
Experimental Therapeutics 295: 1051–
1060.
5. Soderlund DM, Adams PM, Bloomquist JR.
Differences in the action of avermectin
B1a on the GABAA receptor complex of
mouse and rat. Biochemical Biophysical
Research Communications. 1987 Jul
31;146(2):692–8.
VII. Statutory and Executive Order
Reviews
This final rule establishes tolerances
under FFDCA section 408(d) in
response to a petition submitted to the
Agency. The Office of Management and
Budget (OMB) has exempted these types
of actions from review under Executive
Order 12866, entitled ‘‘Regulatory
Planning and Review’’ (58 FR 51735,
October 4, 1993). Because this final rule
has been exempted from review under
Executive Order 12866, this final rule is
not subject to Executive Order 13211,
entitled ‘‘Actions Concerning
Regulations That Significantly Affect
Energy Supply, Distribution, or Use’’ (66
FR 28355, May 22, 2001) or Executive
Order 13045, entitled ‘‘Protection of
Children from Environmental Health
Risks and Safety Risks’’ (62 FR 19885,
April 23, 1997). This final rule does not
contain any information collections
subject to OMB approval under the
Paperwork Reduction Act (PRA) (44
U.S.C. 3501 et seq.), nor does it require
any special considerations under
Executive Order 12898, entitled
‘‘Federal Actions to Address
Environmental Justice in Minority
Populations and Low-Income
Populations’’ (59 FR 7629, February 16,
1994).
Since tolerances and exemptions that
are established on the basis of a petition
under FFDCA section 408(d), such as
the tolerance in this final rule, do not
require the issuance of a proposed rule,
the requirements of the Regulatory
Flexibility Act (RFA) (5 U.S.C. 601 et
seq.), do not apply.
This final rule directly regulates
growers, food processors, food handlers,
and food retailers, not States or tribes,
nor does this action alter the
relationships or distribution of power
and responsibilities established by
Congress in the preemption provisions
of FFDCA section 408(n)(4). As such,
the Agency has determined that this
action will not have a substantial direct
effect on States or tribal governments,
on the relationship between the national
government and the States or tribal
governments, or on the distribution of
power and responsibilities among the
E:\FR\FM\27MRR1.SGM
27MRR1
Federal Register / Vol. 78, No. 59 / Wednesday, March 27, 2013 / Rules and Regulations
various levels of government or between
the Federal Government and Indian
tribes. Thus, the Agency has determined
that Executive Order 13132, entitled
‘‘Federalism’’ (64 FR 43255, August 10,
1999) and Executive Order 13175,
entitled ‘‘Consultation and Coordination
with Indian Tribal Governments’’ (65 FR
67249, November 9, 2000) do not apply
to this final rule. In addition, this final
rule does not impose any enforceable
duty or contain any unfunded mandate
as described under Title II of the
Unfunded Mandates Reform Act of 1995
(UMRA) (2 U.S.C. 1501 et seq.).
This action does not involve any
technical standards that would require
Agency consideration of voluntary
consensus standards pursuant to section
12(d) of the National Technology
Transfer and Advancement Act of 1995
(NTTAA) (15 U.S.C. 272 note).
VII. Congressional Review Act
Pursuant to the Congressional Review
Act (5 U.S.C. 801 et seq.), EPA will
submit a report containing this rule and
other required information to the U.S.
Senate, the U.S. House of
Representatives, and the Comptroller
General of the United States prior to
publication of the rule in the Federal
Register. This action is not a ‘‘major
rule’’ as defined by 5 U.S.C. 804(2).
List of Subjects in 40 CFR Part 180
Environmental protection,
Administrative practice and procedure,
Agricultural commodities, Pesticides
and pests, Reporting and recordkeeping
requirements.
Dated: March 19, 2013.
Lois Rossi,
Director, Registration Division, Office of
Pesticide Programs.
*
*
*
*
*
0.02
*
*
(2) Tolerances are established for
emamectin, including its metabolites
and degradates, in or on the
commodities in the table below.
Compliance with the tolerance levels
specified below is to be determined by
measuring only the sum of emamectin
(MAB1a + MAB1b isomers) and the
associated 8,9-Z isomers (8,9-1a and 8,9ZB1b).
*
*
*
*
*
[FR Doc. 2013–06758 Filed 3–26–13; 8:45 am]
BILLING CODE 6560–50–P
[EPA–HQ–OPP–2012–0488; FRL–9377–3]
Thiamethoxam; Pesticide Tolerances
1. The authority citation for part 180
continues to read as follows:
■
Authority: 21 U.S.C. 321(q), 346a and 371.
2. § 180.505, is amended by:
i. Revise paragraph (a)(1) introductory
text and paragraph (a)(2) introductory
text;
■ ii. Add alphabetically an entry for
‘‘Vegetable, cucurbit, group 9’’ to the
table in paragraph (a)(1).
The added and revised text read as
follows:
§ 180.505 Emamectin; tolerances for
residues.
(a) General. (1) Tolerances are
established for emamectin, including its
metabolites and degradates, in or on the
Jkt 229001
Environmental Protection
Agency (EPA).
ACTION: Final rule.
AGENCY:
■
■
erowe on DSK2VPTVN1PROD with RULES
*
*
*
Vegetable, cucurbit, group 9
40 CFR Part 180
PART 180—[AMENDED]
15:14 Mar 26, 2013
Parts per
million
Commodity
ENVIRONMENTAL PROTECTION
AGENCY
Therefore, 40 CFR chapter I is
amended as follows:
VerDate Mar<15>2010
commodities in the table below.
Compliance with the tolerance levels
specified below is to be determined by
measuring only the sum of emamectin (a
mixture of a minimum of 90% 4′-epimethylamino-4′-deoxyavermectin B1a
and maximum of 10% 4′-epimethylamino-4′-deoxyavermectin B1b)
and its metabolites 8,9-isomer of the B1a
and B1b component of the parent (8,9ZMA), or 4′-deoxy-4′-epi-aminoavermectin B1a and 4’-deoxy-4’-epiamino-avermectin B1b; 4′-deoxy-4′-epiamino avermectin B1a (AB1a); 4′-deoxy4′-epi-(N-formyl-N-methyl)aminoavermectin (MFB1a); and 4′-deoxy-4′epi-(N-formyl)amino-avermectin B1a
(FAB1a), calculated as the stoichiometric
equivalent of emamectin.
SUMMARY: This regulation establishes a
tolerance for residues of the insecticide
thiamethoxam in or on tea, and amends
the existing tolerance for residues of
thiamethoxam in or on coffee. Syngenta
Crop Protection, Inc., requested these
tolerances under the Federal Food,
Drug, and Cosmetic Act (FFDCA).
DATES: This regulation is effective
March 27, 2013. Objections and requests
for hearings must be received on or
before May 28, 2013, and must be filed
in accordance with the instructions
provided in 40 CFR part 178 (see also
PO 00000
Frm 00055
Fmt 4700
Sfmt 4700
18511
Unit I.C. of the SUPPLEMENTARY
INFORMATION).
The docket for this action,
identified by docket identification (ID)
number EPA–HQ–OPP–2012–0488, is
available at https://www.regulations.gov
or at the Office of Pesticide Programs
Regulatory Public Docket (OPP Docket)
in the Environmental Protection Agency
Docket Center (EPA/DC), EPA West
Bldg., Rm. 3334, 1301 Constitution Ave.
NW., Washington, DC 20460–0001. The
Public Reading Room is open from 8:30
a.m. to 4:30 p.m., Monday through
Friday, excluding legal holidays. The
telephone number for the Public
Reading Room is (202) 566–1744, and
the telephone number for the OPP
Docket is (703) 305–5805. Please review
the visitor instructions and additional
information about the docket available
at https://www.epa.gov/dockets.
FOR FURTHER INFORMATION CONTACT: Julie
Chao, Registration Division (7505P),
Office of Pesticide Programs,
Environmental Protection Agency, 1200
Pennsylvania Ave. NW., Washington,
DC 20460–0001; telephone number:
(703) 308–8735; email address:
chao.julie@epa.gov.
ADDRESSES:
SUPPLEMENTARY INFORMATION:
I. General Information
A. Does this action apply to me?
You may be potentially affected by
this action if you are an agricultural
producer, food manufacturer, or
pesticide manufacturer. The following
list of North American Industrial
Classification System (NAICS) codes is
not intended to be exhaustive, but rather
provides a guide to help readers
determine whether this document
applies to them. Potentially affected
entities may include:
• Crop production (NAICS code 111).
• Animal production (NAICS code
112).
• Food manufacturing (NAICS code
311).
• Pesticide manufacturing (NAICS
code 32532).
B. How can I get electronic access to
other related information?
You may access a frequently updated
electronic version of EPA’s tolerance
regulations at 40 CFR part 180 through
the Government Printing Office’s e-CFR
Web site at https://www.ecfr.gov/cgi-bin/
text-idx?&c=ecfr&tpl=/ecfrbrowse/
Title40/40tab_02.tpl.
C. How can I file an objection or hearing
request?
Under FFDCA section 408(g), 21
U.S.C. 346a, any person may file an
E:\FR\FM\27MRR1.SGM
27MRR1
Agencies
[Federal Register Volume 78, Number 59 (Wednesday, March 27, 2013)]
[Rules and Regulations]
[Pages 18504-18511]
From the Federal Register Online via the Government Printing Office [www.gpo.gov]
[FR Doc No: 2013-06758]
=======================================================================
-----------------------------------------------------------------------
ENVIRONMENTAL PROTECTION AGENCY
40 CFR Part 180
[EPA-HQ-OPP-2011-0665; FRL-9381-4]
Emamectin Benzoate; Pesticide Tolerance
AGENCY: Environmental Protection Agency (EPA).
ACTION: Final rule.
-----------------------------------------------------------------------
SUMMARY: This regulation establishes a tolerance for residues of
emamectin benzoate in or on the cucurbit vegetable crop group 9.
Interregional Research Project Number 4 (IR-4) requested this tolerance
under the Federal Food, Drug, and Cosmetic Act (FFDCA).
DATES: This regulation is effective March 27, 2013. Objections and
requests for hearings must be received on or before May 28, 2013, and
must be filed in accordance with the instructions provided in 40 CFR
part 178 (see also Unit I.C. of the SUPPLEMENTARY INFORMATION).
ADDRESSES: The docket for this action, identified by docket
identification (ID) number EPA-HQ-OPP-2011-0665, is available at https://www.regulations.gov or at the Office of Pesticide Programs Regulatory
Public Docket (OPP Docket) in the Environmental Protection Agency
Docket Center (EPA/DC), EPA West Bldg., Rm. 3334, 1301 Constitution
Ave. NW., Washington, DC 20460-0001. The Public Reading Room is open
from 8:30 a.m. to 4:30 p.m., Monday through Friday, excluding legal
holidays. The telephone number for the Public Reading Room is (202)
566-1744, and the telephone number for the OPP Docket is (703) 305-
5805. Please review the visitor instructions and additional information
about the docket available at http:[sol][sol]www.epa.gov/dockets.
FOR FURTHER INFORMATION CONTACT: Andrew Ertman, Registration Division
(7505P), Office of Pesticide Programs, Environmental Protection Agency,
1200 Pennsylvania Ave. NW., Washington, DC 20460-0001; telephone
number: (703) 308-9367; email address: ertman.andrew@epa.gov.
SUPPLEMENTARY INFORMATION:
I. General Information
A. Does this action apply to me?
You may be potentially affected by this action if you are an
agricultural producer, food manufacturer, or pesticide manufacturer.
The following list of North American Industrial Classification System
(NAICS) codes is not intended to be exhaustive, but rather provides a
guide to help readers determine whether this document applies to them.
Potentially affected entities may include:
Crop production (NAICS code 111).
Animal production (NAICS code 112).
Food manufacturing (NAICS code 311).
Pesticide manufacturing (NAICS code 32532).
B. How can I get electronic access to other related information?
You may access a frequently updated electronic version of EPA's
tolerance regulations at 40 CFR part 180 through the Government
Printing Office's e-CFR site at http:[sol][sol]www.ecfr.gov/cgi-bin/
text-idx?&c=ecfr&tpl=/ecfrbrowse/Title40/40tab_02.tpl.
C. How can I file an objection or hearing request?
Under FFDCA section 408(g), 21 U.S.C. 346a, any person may file an
objection to any aspect of this regulation and may also request a
hearing on those objections. You must file your objection or request a
hearing on this regulation in accordance with the instructions provided
in 40 CFR part 178. To ensure proper receipt by EPA, you must identify
docket ID number EPA-HQ-OPP-2011-0665 in the subject line on the first
page of your submission. All objections and requests for a hearing must
be in writing, and must be received by the Hearing Clerk on or before
May 28, 2013. Addresses for mail and hand delivery of objections and
hearing requests are provided in 40 CFR 178.25(b).
In addition to filing an objection or hearing request with the
Hearing Clerk as described in 40 CFR part 178, please submit a copy of
the filing (excluding any Confidential Business Information (CBI)) for
inclusion in the public docket. Information not marked confidential
pursuant to 40 CFR part 2 may be disclosed publicly by EPA without
prior notice. Submit the non-CBI copy of your objection or hearing
request, identified by docket ID number EPA-HQ-OPP-2011-0665, by one of
the following methods:
Federal eRulemaking Portal:
http:[sol][sol]www.regulations.gov. Follow the online instructions for
submitting comments. Do not submit electronically any information you
consider to be Confidential Business Information (CBI) or other
information whose disclosure is restricted by statute.
Mail: OPP Docket, Environmental Protection Agency Docket
Center (EPA/DC), (28221T), 1200 Pennsylvania Ave. NW., Washington, DC
20460-0001.
Hand Delivery: To make special arrangements for hand
delivery or delivery of boxed information, please follow the
instructions at http:[sol][sol]www.epa.gov/dockets/contacts.htm.
Additional instructions on commenting or visiting the docket, along
with more information about dockets generally, is available at
http:[sol][sol]www.epa.gov/dockets.
II. Summary of Petitioned-For Tolerance
In the Federal Register of September 7, 2011 (76 FR 55329) (FRL-
8886-7), EPA issued a document pursuant to FFDCA section 408(d)(3), 21
U.S.C. 346a(d)(3), announcing the filing of a pesticide petition (PP
1E7904) by IR-4, 500 College Rd. East, Suite 201 W, Princeton, NJ
08540. The petition requested that 40 CFR 180.505 be amended by
establishing tolerances for residues of the insecticide emamectin
benzoate, 4'-epimethylamino-4'-deoxyavermectin B1 benzoate (a mixture
of a minimum of 90% 4'-epi-methylamino-4'-deoxyavermectin B1a and a
maximum of 10% 4'-epi-methlyamino-4'deoxyavermectin B1b benzoate), and
its metabolites 8,9 isomer of the B1a and B1b component of the parent
insecticide, in or on vegetable, cucurbit, group 9 at 0.03 parts per
million (ppm). That document referenced a summary of the petition
prepared by Syngenta, the registrant, which is available in the docket,
http:[sol][sol]www.regulations.gov. There were no comments received in
response to the notice of filing.
[[Page 18505]]
Based upon review of the data supporting the petition, EPA has
modified the level at which the tolerance is being established. The
reason for this change is explained in Unit IV.C.
III. Aggregate Risk Assessment and Determination of Safety
Section 408(b)(2)(A)(i) of FFDCA allows EPA to establish a
tolerance (the legal limit for a pesticide chemical residue in or on a
food) only if EPA determines that the tolerance is ``safe.'' Section
408(b)(2)(A)(ii) of FFDCA defines ``safe'' to mean that ``there is a
reasonable certainty that no harm will result from aggregate exposure
to the pesticide chemical residue, including all anticipated dietary
exposures and all other exposures for which there is reliable
information.'' This includes exposure through drinking water and in
residential settings, but does not include occupational exposure.
Section 408(b)(2)(C) of FFDCA requires EPA to give special
consideration to exposure of infants and children to the pesticide
chemical residue in establishing a tolerance and to ``ensure that there
is a reasonable certainty that no harm will result to infants and
children from aggregate exposure to the pesticide chemical residue.* *
* ''
Consistent with FFDCA section 408(b)(2)(D), and the factors
specified in FFDCA section 408(b)(2)(D), EPA has reviewed the available
scientific data and other relevant information in support of this
action. EPA has sufficient data to assess the hazards of and to make a
determination on aggregate exposure for emamectin benzoate including
exposure resulting from the tolerances established by this action.
EPA's assessment of exposures and risks associated with emamectin
benzoate follows.
A. Toxicological Profile
EPA has evaluated the available toxicity data and considered its
validity, completeness, and reliability as well as the relationship of
the results of the studies to human risk. EPA has also considered
available information concerning the variability of the sensitivities
of major identifiable subgroups of consumers, including infants and
children. Emamectin acts by binding to gamma-aminobutyric acid (GABA)
gated chloride channels at two different sites, a high affinity binding
site that activates the channel and a low affinity site that blocks the
channel. GABA plays a critical role in nervous system development
through both non-synaptic and synaptic mechanisms. Consequently,
emamectin may have the potential to influence GABA-mediated events
important to brain development. Within the mammalian brain, a member of
this class of compound (abamectin) has been shown to have widespread
binding but particularly abundant in the cerebellum. Through action on
the enteric nervous system and induction of longitudinal rhythmic
contractions in the isolated ileum, emamectin like abamectin may
therefore influence GABA-mediated regulation of metabolism, food intake
and body weight at multiple sites. Although GABA receptor mediated
neurotoxicity is a solid hypothesis, data in mammalian preparations
linking alterations in GABA receptor function to disruptions in
neuronal excitability in vitro and in vivo, and ultimately adverse
outcome are currently lacking.
Integral to its mechanism of action in mammals, this class of
compounds is also a substrate for (i.e., binds to) P-glycoprotein. P-
glycoprotein (P-gp) is a member of the adenosine triphosphate (ATP)
binding cassette transporter proteins, which reside in the plasma
membrane and function as a transmembrane efflux pump, moving
xenobiotics from intracellular to the extracellular domain against a
steep concentration gradient with ATP-hydrolysis providing the energy
for active transport. P-gp is found in the canallicular surface of
hepatocytes, the apical surface of proximal tubular cells in the
kidneys, brush border surface of enterocytes, luminal surface of blood
capillaries of the brain (blood brain barrier), placenta, ovaries, and
the testes. As an efflux transporter, P-gp acts as a protective barrier
to keep xenobiotics out of the body by excreting them into bile, urine,
and intestinal lumen and prevents accumulation of these compounds in
the brain and gonads, as well as the fetus. Therefore, some test
animals, in which genetic polymorphisms compromise P-gp expression, are
particularly susceptible to abamectin or emamectin-induced
neurotoxicity. An example is the CF-1 mouse. Some CF-1 mice are
deficient in P-gp and are found to be highly sensitive to the
neurotoxicity of abamectin. A small population of humans is also found
to be deficient of ATP binding cassette (ABC) transporter proteins due
to polymorphism in the gene encoding ABC transporter proteins (Dubin-
Johnson Syndrome). In addition, collie dogs have been known to be
deficient in P-gp.
Consistent with the mode of action, the main target organ for
emamectin is the nervous system; clinical signs (tremors, ptosis,
ataxia, and hunched posture) and neuropathology (neuronal degeneration
in the brain and in peripheral nerves, muscle fiber degeneration) were
found in most of the emamectin studies in rats, dogs and mice. The
dose/response curve was very steep in several studies (most notably
with CF-1 mice and dogs), with severe effects (morbid sacrifice and
neuropathology) sometimes seen at the LOAELs (0.1 milligram/kilogram/
day (mg/kg/day) with NOAEL of 0.075 mg/kg/day). Although no increased
sensitivity was seen in developmental toxicity studies in rats and
rabbits, increased qualitative and/or quantitative sensitivity of rat
pups was seen in the reproductive toxicity and in the developmental
neurotoxicity studies.
The carcinogenicity and mutagenicity studies provide no indication
that emamectin is carcinogenic or mutagenic. Emamectin is classified as
``not likely to be carcinogenic to humans.''
The available emamectin data show that there is a difference in
species sensitivity, and the data suggest the following order: Rat
NOAELs/LOAELs greater than dog NOAELs/LOAELs greater than mouse NOAELs/
LOAELs. The toxicity endpoints and points of departure for risk were
selected from the results of the 15-day CF-1 mouse oral toxicity study.
Specific information on the studies received and the nature of the
adverse effects caused by emamectin benzoate as well as the no-
observed-adverse-effect-level (NOAEL) and the lowest-observed-adverse-
effect-level (LOAEL) from the toxicity studies can be found at https://www.regulations.gov on pages 43-50 of the document titled ``Emamectin
Benzoate. Revised Human Health Risk Assessment for Proposed Uses on
Cucurbits and Outdoor-Grown Plants in Commercial Nursery Production''
in docket ID number EPA-HQ-OPP-2011-0665.
B. Toxicological Points of Departure/Levels of Concern
Once a pesticide's toxicological profile is determined, EPA
identifies toxicological points of departure (POD) and levels of
concern to use in evaluating the risk posed by human exposure to the
pesticide. For hazards that have a threshold below which there is no
appreciable risk, the toxicological POD is used as the basis for
derivation of reference values for risk assessment. PODs are developed
based on a careful analysis of the doses in each toxicological study to
determine the dose at which no adverse effects are observed (the NOAEL)
and the lowest dose at which adverse effects of concern are identified
(the LOAEL). Uncertainty/
[[Page 18506]]
safety factors are used in conjunction with the POD to calculate a safe
exposure level--generally referred to as a population-adjusted dose
(PAD) or a reference dose (RfD)--and a safe margin of exposure (MOE).
For non-threshold risks, the Agency assumes that any amount of exposure
will lead to some degree of risk. Thus, the Agency estimates risk in
terms of the probability of an occurrence of the adverse effect
expected in a lifetime. For more information on the general principles
EPA uses in risk characterization and a complete description of the
risk assessment process, see https://www.epa.gov/pesticides/factsheets/riskassess.htm.
A summary of the toxicological endpoints for emamectin benzoate
used for human risk assessment is shown in Table 1 of this unit.
Table 1--Summary of Toxicological Doses and Endpoints for Emamectin Benzoate for Use in Human Health Risk
Assessment
----------------------------------------------------------------------------------------------------------------
Point of departure RfD, PAD, LOC for
Exposure/scenario and uncertainty/ risk assessment (mg/ Study and toxicological effects
safety factors kg/day)
----------------------------------------------------------------------------------------------------------------
Acute dietary (All Populations).. NOAEL = 0.075 mg/kg/ aRfD = 0.00025..... 15-day mouse. LOAEL = 0.1 mg/kg/
day. aPAD = 0.00025..... day based on tremors on day 3 of
UFA = 10x........... dosing. At the next higher dose
UFH = 10x........... (0.3 mg/kg/day), tremors were
FQPA SF = 3x........ seen at day 2 of treatment.
Chronic dietary (All populations) NOAEL= 0.075 mg/kg/ cRfD = 0.000075.... 15-day mouse. LOAEL = 0.1 mg/kg/
day. cPAD = 0.000075.... day based on moribund sacrifices,
UFA = 10x........... clinical signs of neurotoxicity,
UFH = 10x........... decreases in body weight and food
FQPA SF = 10x....... consumption and histopathological
lesions in the sciatic nerve.
----------------------------------------------------------------------------------------------------------------
FQPA SF = Food Quality Protection Act Safety Factor. LOAEL = lowest-observed-adverse-effect-level. mg/kg/day =
milligram/kilogram/day. NOAEL = no-observed-adverse-effect-level. PAD = population adjusted dose (a = acute, c
= chronic). RfD = reference dose. UF = uncertainty factor. UFA = extrapolation from animal to human
(interspecies). UFH = potential variation in sensitivity among members of the human population (intraspecies).
C. Exposure Assessment
1. Dietary exposure from food and feed uses. In evaluating dietary
exposure to emamectin benzoate, EPA considered exposure under the
petitioned-for tolerances as well as all existing emamectin benzoate
tolerances in 40 CFR 180.505. EPA assessed dietary exposures from
emamectin benzoate in food as follows:
i. Acute exposure. Quantitative acute dietary exposure and risk
assessments are performed for a food-use pesticide, if a toxicological
study has indicated the possibility of an effect of concern occurring
as a result of a 1-day or single exposure.
Such effects were identified for emamectin benzoate. In estimating
acute dietary exposure, EPA used food consumption information from the
U.S. Department of Agriculture (USDA) 2003-2008 National Health and
Nutrition Examination Survey, What We Eat in America (NHANES/WWEIA). As
to residue levels in food, a probabilistic acute dietary exposure
assessment was conducted. The anticipated residue estimates, used for
most crops, were based on field trial data. Tolerance-level residues
were used for tree nuts (including pistachios) and cottonseed oil.
Pesticide Data Program (PDP) monitoring data for years 2009 and 2010
were used for apples since apple juice had a significant impact on
exposure. Dietary Exposure Evaluation Model (DEEM) default processing
factors were used except for commodities with chemical-specific
processing studies. Percent crop treated (PCT) data were used.
ii. Chronic exposure. In conducting the chronic dietary exposure
assessment EPA used the food consumption data from the USDA 2003-2008
NHANES/WWEIA. As to residue levels in food, a somewhat refined chronic
dietary exposure assessment was conducted. The anticipated residue
estimates, used for most crops, were single point estimates (averages)
based on field trial data. Tolerance-level residues were used for tree
nuts (including pistachios) and cottonseed oil. DEEM default processing
factors were used except for commodities with chemical-specific
processing studies. PCT data were used.
iii. Cancer. Based on the data summarized in Unit III.A., EPA has
concluded that emamectin benzoate does not pose a cancer risk to
humans. Therefore, a dietary exposure assessment for the purpose of
assessing cancer risk is unnecessary.
iv. Anticipated residue and PCT information. Section 408(b)(2)(E)
of FFDCA authorizes EPA to use available data and information on the
anticipated residue levels of pesticide residues in food and the actual
levels of pesticide residues that have been measured in food. If EPA
relies on such information, EPA must require pursuant to FFDCA section
408(f)(1) that data be provided 5 years after the tolerance is
established, modified, or left in effect, demonstrating that the levels
in food are not above the levels anticipated. For the present action,
EPA will issue such data call-ins as are required by FFDCA section
408(b)(2)(E) and authorized under FFDCA section 408(f)(1). Data will be
required to be submitted no later than 5 years from the date of
issuance of these tolerances.
Section 408(b)(2)(F) of FFDCA states that the Agency may use data
on the actual percent of food treated for assessing chronic dietary
risk only if:
Condition a: The data used are reliable and provide a
valid basis to show what percentage of the food derived from such crop
is likely to contain the pesticide residue.
Condition b: The exposure estimate does not underestimate
exposure for any significant subpopulation group.
Condition c: Data are available on pesticide use and food
consumption in a particular area, the exposure estimate does not
understate exposure for the population in such area.
In addition, the Agency must provide for periodic evaluation of any
estimates used. To provide for the periodic evaluation of the estimate
of PCT as required by FFDCA section 408(b)(2)(F), EPA may require
registrants to submit data on PCT.
For the acute dietary assessment, the Agency estimated the PCT for
existing uses as follows:
Almonds, 2.5%; apples, 20%; broccoli, 20%; cabbage, 25%;
[[Page 18507]]
cauliflower, 20%; celery, 40%; cotton, 2.5%; lettuce, 20%; pears, 20%;
peppers, 15%; spinach, 10%; tomatoes, 20%.
For the chronic dietary assessment, the Agency estimated the PCT
for existing uses as follows:
Almonds, 1%; apples, 10%; broccoli, 5%; cabbage, 10%; cauliflower,
10%; celery, 25%; cotton, 1%; lettuce, 10%; pears, 5%; peppers, 5%;
spinach, 5%; tomatoes, 10%.
In most cases, EPA uses available data from USDA/National
Agricultural Statistics Service (NASS), proprietary market surveys, and
the National Pesticide Use Database for the chemical/crop combination
for the most recent 6 to 7 years. EPA uses an average PCT for chronic
dietary risk analysis. The average PCT figure for each existing use is
derived by combining available public and private market survey data
for that use, averaging across all observations, and rounding to the
nearest 5%, except for those situations in which the average PCT is
less than 1. In those cases, 1% is used as the average PCT and 2.5% is
used as the maximum PCT. EPA uses a maximum PCT for acute dietary risk
analysis. The maximum PCT figure is the highest observed maximum value
reported within the recent 6 years of available public and private
market survey data for the existing use and rounded up to the nearest
multiple of 5%.
For the acute dietary assessment, the Agency estimated the PCT for
new uses as follows:
Cantaloupe, 51%; cucumber, 26%; squash, 46%; watermelon, 21%.
For the chronic dietary assessment, the Agency estimated the PCT
for new uses as follows:
Cantaloupe, 40%; cucumber, 14%; squash, 29%; watermelon, 19%.
EPA estimates of the PCT for new uses of emamectin benzoate
represent the upper bound of the use expected during the pesticide's
initial 5 years of registration; that is, PCT for new uses of emamectin
benzoate is a threshold of use that EPA is reasonably certain will not
be exceeded for each registered use site. The PCT recommended for use
in the chronic dietary assessment for new uses is calculated as the
average PCT of the market leader or leaders, (i.e., the pesticide(s)
with the greatest PCT) on that site over the three most recent years of
available data. The PCT recommended for use in the acute dietary
assessment for new uses is the maximum observed PCT over the same
period. Comparisons are only made among pesticides of the same
pesticide types (e.g., the market leader for insecticides on the use
site is selected for comparison with a new insecticide). The market
leader included in the estimation may not be the same for each year
since different pesticides may dominate at different times.
Typically, EPA uses USDA/NASS as the source data because it is
publicly available and directly reports values for PCT. When a specific
use site is not reported by USDA/NASS, EPA uses proprietary data and
calculates the PCT given reported data on acres treated and acres
grown. If no data are available, EPA may extrapolate PCT for new uses
from other crops, if the production area and pest spectrum are
substantially similar.
A retrospective analysis to validate this approach shows few cases
where the PCT for the market leaders were exceeded. Further review of
these cases identified factors contributing to the exceptionally high
use of a new pesticide. To evaluate whether the PCT for new uses for
emamectin benzoate could be exceeded, EPA considered whether there may
be unusually high pest pressure, as indicated in emergency exemption
requests for emamectin benzoate; the pest spectrum of the new pesticide
in comparison with the market leaders and whether the market leaders
are well established for that use; and whether pest resistance issues
with past market leaders provide emamectin benzoate with significant
market potential. Given currently available information, EPA concludes
that it is unlikely that actual PCT for emamectin benzoate will exceed
the estimated PCT for new uses during the next 5 years.
The Agency believes that the three conditions discussed in Unit
III.C.1.iv. have been met. With respect to Condition a, PCT estimates
are derived from Federal and private market survey data, which are
reliable and have a valid basis. The Agency is reasonably certain that
the percentage of the food treated is not likely to be an
underestimation. As to Conditions b and c, regional consumption
information and consumption information for significant subpopulations
is taken into account through EPA's computer-based model for evaluating
the exposure of significant subpopulations including several regional
groups. Use of this consumption information in EPA's risk assessment
process ensures that EPA's exposure estimate does not understate
exposure for any significant subpopulation group and allows the Agency
to be reasonably certain that no regional population is exposed to
residue levels higher than those estimated by the Agency. Other than
the data available through national food consumption surveys, EPA does
not have available reliable information on the regional consumption of
food to which emamectin benzoate may be applied in a particular area.
2. Dietary exposure from drinking water. The Agency used screening
level water exposure models in the dietary exposure analysis and risk
assessment for emamectin benzoate in drinking water. These simulation
models take into account data on the physical, chemical, and fate/
transport characteristics of emamectin benzoate. Further information
regarding EPA drinking water models used in pesticide exposure
assessment can be found at https://www.epa.gov/oppefed1/models/water/index.htm.
Based on the Pesticide Root Zone Model/Exposure Analysis Modeling
System (PRZM/EXAMS) and Screening Concentration in Ground Water (SCI-
GROW) models, the estimated drinking water concentrations (EDWCs) of
emamectin benzoate for acute exposures are estimated to be between 0
and 0.465 parts per billion (ppb) for surface water and 0.00054 ppb for
ground water, and for chronic exposures are estimated to be 0.150 ppb
for surface water and 0.00054 ppb for ground water.
Modeled estimates of drinking water concentrations were directly
entered into the dietary exposure model. For acute dietary risk
assessment, a drinking water residue distribution based on the PRZM/
EXAMS modeling was used. For chronic dietary risk assessment, the water
concentration value of 0.150 ppb was used to assess the contribution to
drinking water.
3. From non-dietary exposure. The term ``residential exposure'' is
used in this document to refer to non-occupational, non-dietary
exposure (e.g., for lawn and garden pest control, indoor pest control,
termiticides, and flea and tick control on pets).
Emamectin benzoate is not registered for any specific use patterns
that would result in residential exposure.
4. Cumulative effects from substances with a common mechanism of
toxicity. Section 408(b)(2)(D)(v) of FFDCA requires that, when
considering whether to establish, modify, or revoke a tolerance, the
Agency consider ``available information'' concerning the cumulative
effects of a particular pesticide's residues and ``other substances
that have a common mechanism of toxicity.''
OPP's ``Guidance For Identifying Pesticide Chemicals and Other
Substances that have a Common Mechanism of Toxicity'' (Ref. 1)
describes the weight of the evidence approach for determining whether
or not a group of pesticides share a
[[Page 18508]]
common mechanism of toxicity. This guidance defines mechanism of
toxicity as the major steps leading to a toxic effect following
interaction of a pesticide with biological targets. All steps leading
to an effect do not need to be specifically understood. Rather, it is
the identification of the crucial events following chemical interaction
that are required in order to describe a mechanism of toxicity. For
example, a mechanism of toxicity may be described by knowing the
following: A chemical binds to a given biological target in vitro, and
causes the receptor-related molecular response; in vivo it also leads
to the molecular response and causes a number of intervening biological
and morphological steps that result in an adverse effect. In this
context a common mechanism of toxicity pertains to two or more
pesticide chemicals or other substances that cause a common toxic
effect to human health by the same, or essentially the same, sequence
of major biochemical events. Hence, the underlying basis of the
toxicity is the same, or essentially the same, for each chemical. In
the case of the macrocyclic lactone pesticides (e.g., abamectin,
emamectin, and avermectin), there is a wealth of data on the
insecticidal mechanism of action for avermectin: Its insecticidal
actions are mediated by interaction with the glutamate-gated chloride
channels and GABAA gated chloride channels. This is presumed
to be the insecticidal mechanism of action of emamectin and abamectin
as well. Insecticidal mechanism of action does not indicate a common
mechanism of toxicity for human health. Further, mammals lack
glutamate-gated chloride channels; the toxic actions of avermectin
appear to be mediated via interaction with GABAA and
possibly glycine gated chloride channels. There is evidence that
avermectin B1a binds to GABAA receptors and
activates Cl\-\ flux into neurons (Refs. 2 and 3). However, there is a
paucity of data regarding the resultant alterations in cellular
excitability of mammalian neurons and neural networks (i.e., changes in
cellular excitability and altered network function as documented with
pyrethroids), as well as in vivo measurements of altered excitability
associated with adverse outcomes. Thus, while the downstream steps
leading to toxicity via disruption of GABAA receptor
function for avermectin can be postulated, experimental data supporting
these actions are lacking. In addition, specific data demonstrating
GABAA receptor interaction in mammalian preparations are
lacking for abamectin and emamectin. Moreover, the specificity of such
interaction on the adverse outcome would need to be shown
experimentally. GABAA receptors have multiple binding sites
which have been proposed to relate to adverse outcomes. For example,
Dawson et al. (Ref. 4) showed for a group of avermectin-like compounds
that rank order for anticonvulsant activity did not parallel the rank
order for affinity at the [3H]ivermectin site. The authors hypothesized
that these findings may be related to differential affinity or efficacy
at subtypes of the GABAA receptor. Other reports have
indicated species differences in abamectin effects on GABAA
receptor function in the mouse as compared to the rat (Ref. 5).
In conclusion, although GABAA receptor mediated
neurotoxicity may be a common mechanism endpoint for the macrocyclic
lactone pesticides, data demonstrating the interactions of emamectin
and abamectin with mammalian GABAA receptors are not
available, and data in mammalian preparations linking alterations in
GABAA receptor function to disruptions in neuronal
excitability in vitro and in vivo, and ultimately adverse outcome, are
also currently lacking for this class of compounds. In the absence of
such data, the key biological steps leading to the adverse outcome
(i.e., the mammalian mechanism of action) cannot be established and by
extension a common mechanism of toxicity cannot be established.
For information regarding EPA's efforts to determine which
chemicals have a common mechanism of toxicity and to evaluate the
cumulative effects of such chemicals, see EPA's Web site at https://www.epa.gov/pesticides/cumulative.
D. Safety Factor for Infants and Children
1. In general. Section 408(b)(2)(C) of FFDCA provides that EPA
shall apply an additional tenfold (10X) margin of safety for infants
and children in the case of threshold effects to account for prenatal
and postnatal toxicity and the completeness of the database on toxicity
and exposure unless EPA determines based on reliable data that a
different margin of safety will be safe for infants and children. This
additional margin of safety is commonly referred to as the FQPA Safety
Factor (SF). In applying this provision, EPA either retains the default
value of 10X, or uses a different additional safety factor when
reliable data available to EPA support the choice of a different
factor.
2. Prenatal and postnatal sensitivity. Although no increased
sensitivity was seen in developmental toxicity studies in rats and
rabbits, increased qualitative and/or quantitative sensitivity of rat
pups was seen in the reproductive toxicity study and in the
developmental neurotoxicity study. In the reproduction study, whole
body tremors, hind limb extension, and hind limb splay were seen in the
F1 and F2 pups while these clinical signs were
not seen in F0 parental animals at similar dose levels. In
addition, a greater incidence of decreased fertility was seen in the
F1 parental females than in the F0 females. In
the developmental neurotoxicity study, no maternal effect was seen at
the highest dose tested whereas dose-related decrease in open-field
motor activity was seen in the mid-dose in pups on postnatal day 17.
Body tremors, hind-limb extension, and auditory startle were also found
in the high dose pups.
3. Conclusion. Based on currently available data, EPA is retaining
the 10X FQPA safety factor for chronic assessments and is using a 3X
FQPA safety factor for acute assessments. This decision is based on the
following findings:
i. Completeness of the toxicity database. The toxicology database
used to assess prenatal and postnatal exposure to emamectin contains
all required studies with exception of an immunotoxicity study and a
subchronic inhalation toxicity study, which are data gaps.
The Agency evaluated subchronic, chronic, carcinogenicity,
developmental and reproduction studies as well as acute and subchronic
neurotoxicity studies for any effects that might indicate that
emamectin induced changes in the organs generally associated with
immunological toxicity. In the studies evaluated, only the 14-week oral
toxicity study in dogs showed an increase in the incidence of thymus
atrophy at 1 mg/kg/day. In the 1-year feeding study in dogs, thymus
atrophy was not reported at similar dose levels tested. Currently, the
point of departure for risk assessment is 0.075 mg/kg/day, which is
more than 10 times less than the dose where thymus atrophy had been
reported. Therefore, since the acute and chronic RfD's are 0.00025 mg/
kg/day and 0.000075 mg/kg/day, respectively, the Agency does not
believe an immunotoxicity study will result in a lower point of
departure (POD) than that which is currently in use for overall risk
assessment. As such, a database uncertainty factor is not necessary to
account for the lack of an immunotoxicity study.
In regards to the inhalation toxicity study, there are currently no
residential uses registered for emamectin benzoate, and therefore, lack
of this study does
[[Page 18509]]
not impact the Agency's assessment of prenatal and postnatal exposure.
Another completeness issue with regard to the toxicity database is
that EPA is using a short-term study for long-term risk assessment. The
data submitted show that CF-1 mice, which lack glycoprotein, are the
most sensitive species/strand of animal tested. EPA only has data on
CF-1 mice in short-term studies. Longer-term studies used CD-1 mice.
Hence a short-term study in CF-1 mice was used to choose the chronic
Point of Departure. The extrapolation from a short-term study in CF-1
mice to a long-term POD introduces additional uncertainty into the risk
assessment process.
ii. Potential prenatal and postnatal toxicity. Although no
increased sensitivity was seen in developmental toxicity studies in
rats and rabbits, increased qualitative and/or quantitative sensitivity
of rat pups was seen in the reproductive toxicity study and in the
developmental neurotoxicity study. A degree-of-concern analysis was
conducted to determine whether or not an additional safety factor is
needed to account for the increased susceptibility in pups; it was
concluded that the degree-of-concern was low for both 2-generation
reproduction and developmental neurotoxicity studies. The reasons are
as follows:
For the 2-generation reproduction study, (1) there was a clear
NOAEL for the offspring toxicity, and (2) the decreased fertility seen
in F1 adults might have been due to histopathological
lesions in the brain and central nervous system (seen in both
F0 and F1 generations), rather than due to a
direct effect on the reproductive system.
For the developmental neurotoxicity study, (1) although multiple
offspring effects (including decreased pup body weight, head and body
tremors, hindlimb extension and splay, changes in motor activity and
auditory startle) were seen at the highest dose, and no maternal
effects were seen at any dose, there was a clear NOAEL for offspring
toxicity at the low dose, and (2) the offspring LOAEL (at the mid dose)
is based on a single effect seen on only one day (decreased motor
activity on postnatal day 17) and no other offspring toxicity was seen
at the LOAEL.
Two other considerations raise residual concerns about whether the
traditional safety factors are protective of potential prenatal and
postnatal toxicity. First, the steepness of the dose-response curve
means that there is a small margin of error provided by reliance on the
study NOAEL. Second, the severity of effects at the LOAEL (death and
neuropathology), exacerbate the concern raised by the steep dose
response curve.
iii. The completeness of the exposure database. The assessment for
food incorporates somewhat refined anticipated residue estimates for
most commodities that were derived from field trial data and PCT. The
availability and use of monitoring data and food preparation-reduction
factors for washing, cooking, etc. may have resulted in a more refined
estimate of dietary exposure. Therefore, exposures to residues in food
are not expected to be exceeded.
The dietary drinking water assessment utilizes water concentration
values generated by model and associated modeling parameters which are
designed to provide conservative, health protective, high-end estimates
of water concentrations which will not likely be exceeded.
Taking all of these findings into account, EPA has concluded that
there are not reliable data supporting lowering of the default 10X FQPA
safety factor for chronic exposures. Specifically, EPA does not have
reliable data showing that infants and children will be adequately
protected using the traditional inter- and intra-species safety factors
due to the steepness of the dose-response curve, the severity of
effects at the LOAEL (death and neuropathology), and the use of a
short-term study for long-term risk assessment. The Agency did not use
a chronic study for the POD because the chronic studies were conducted
in rats, dogs, and CD-1 mice.
Taking all of these findings into account, for acute exposures, EPA
has concluded that there are reliable data supporting lowering the
default 10X FQPA safety factor to 3X. Although the steepness of the
dose-response curve and the severity of the effects at the LOAEL
introduce uncertainty with regard to whether the inter- and intra-
species safety factors are protective of infants and children from
acute effects, EPA has concluded that use of the 15-day neurotoxicity
CF-1 mouse study provides reliable data to reduce the FQPA safety
factor for acute assessments from 10X to 3X. The Agency determined that
a 3X FQPA Safety Factor is adequate for assessing acute dietary risk
based on the following weight of evidence considerations:
An endpoint of concern attributable to a single exposure
was not identified for in utero effects since there was no concern for
developmental toxicity and there was no indication of increased
susceptibility (qualitative or quantitative) of rat or rabbit fetuses
to in utero exposure to emamectin;
Although there was evidence of increased susceptibility in
the DNT study, an endpoint of concern was not identified for acute
dietary risk assessment for prenatal exposures because the adverse
effect at the LOAEL (i.e., decrease in open field motor activity) was
seen only on postnatal day 17 and not seen after a single exposure;
The POD selected for acute dietary risk assessment is a
NOAEL (with a clear LOAEL) seen after repeated dosing but is used for
assessing acute risk (i.e., a very conservative approach).
Therefore, the Agency is confident that the retention of a 3X FQPA
Safety Factor (to account for the steepness of the dose response curve)
will not underestimate risk and provides reasonable certainty of no
harm from exposure to emamectin benzoate.
E. Aggregate Risks and Determination of Safety
EPA determines whether acute and chronic dietary pesticide
exposures are safe by comparing aggregate exposure estimates to the
acute PAD (aPAD) and chronic PAD (cPAD). For linear cancer risks, EPA
calculates the lifetime probability of acquiring cancer given the
estimated aggregate exposure. Short-, intermediate-, and chronic-term
risks are evaluated by comparing the estimated aggregate food, water,
and residential exposure to the appropriate PODs to ensure that an
adequate MOE exists.
1. Acute risk. Using the exposure assumptions discussed in this
unit for acute exposure, the acute dietary exposure from food and
drinking water to emamectin benzoate will occupy 60% of the aPAD for
children 1-2 years old, the population group receiving the greatest
exposure.
2. Chronic risk. Using the exposure assumptions described in this
unit for chronic exposure, EPA has concluded that chronic exposure to
emamectin benzoate from food and water will utilize 16% of the cPAD for
all infants less than 1 year old, the population group receiving the
greatest exposure. There are no residential uses for emamectin
benzoate.
3. Short-term risk. Short- and intermediate-term aggregate exposure
takes into account short- and intermediate-term residential exposure
plus chronic exposure to food and water (considered to be a background
exposure level).
Both short- and intermediate-term adverse effects were identified;
however, emamectin benzoate is not registered for any use patterns that
would result in either short- or intermediate-term residential
exposure.
[[Page 18510]]
Short- and intermediate-term risk is assessed based on short- and
intermediate-term residential exposure plus chronic dietary exposure.
Because there is no short- or intermediate-term residential exposure
and chronic dietary exposure has already been assessed under the
appropriately protective cPAD (which is at least as protective as the
POD used to assess short- or intermediate-term risk), no further
assessment of short- or intermediate-term risk is necessary, and EPA
relies on the chronic dietary risk assessment for evaluating short- and
intermediate-term risk for emamectin benzoate.
4. Aggregate cancer risk for U.S. population. Based on the lack of
evidence of carcinogenicity in two adequate rodent carcinogenicity
studies, emamectin benzoate is not expected to pose a cancer risk to
humans.
5. Determination of safety. Based on these risk assessments, EPA
concludes that there is a reasonable certainty that no harm will result
to the general population or to infants and children from aggregate
exposure to emamectin benzoate residues.
IV. Other Considerations
A. Analytical Enforcement Methodology
Adequate enforcement methodology (high performance liquid
chromatography with fluorescence detection (HPLC/FLD)) is available to
enforce the tolerance expression.
The method may be requested from: Chief, Analytical Chemistry
Branch, Environmental Science Center, 701 Mapes Rd., Ft. Meade, MD
20755-5350; telephone number: (410) 305-2905; email address:
residuemethods@epa.gov.
B. International Residue Limits
In making its tolerance decisions, EPA seeks to harmonize U.S.
tolerances with international standards whenever possible, consistent
with U.S. food safety standards and agricultural practices. EPA
considers the international maximum residue limits (MRLs) established
by the Codex Alimentarius Commission (Codex), as required by FFDCA
section 408(b)(4). The Codex Alimentarius is a joint United Nations
Food and Agriculture Organization/World Health Organization food
standards program, and it is recognized as an international food safety
standards-setting organization in trade agreements to which the United
States is a party. EPA may establish a tolerance that is different from
a Codex MRL; however, FFDCA section 408(b)(4) requires that EPA explain
the reasons for departing from the Codex level.
The Codex has not established a MRL for emamectin benzoate on
cucurbits.
C. Revisions to Petitioned-For Tolerances
Based on the review of the residue data submitted with the
petition, the proposed tolerance level of 0.03 ppm is being modified to
0.02 ppm.
Also, EPA has revised the tolerance expression to clarify (1) that,
as provided in FFDCA section 408(a)(3), the tolerance covers
metabolites and degradates of emamectin benzoate not specifically
mentioned; and (2) that compliance with the specified tolerance levels
is to be determined by measuring only the specific compounds mentioned
in the tolerance expression.
V. Conclusion
Therefore, a tolerance is established for residues of emamectin,
including its metabolites and degradates, in or on the cucurbit
vegetable group 9 at 0.02 ppm. Compliance with the tolerance levels
specified is to be determined by measuring only the sum of emamectin (a
mixture of a minimum of 90% 4'-epi-methylamino-4'-deoxyavermectin
B1a and maximum of 10% 4'-epi-methylamino-4'-deoxyavermectin
B1b) and its metabolites 8,9-isomer of the B1a
and B1b component of the parent (8,9-ZMA), or 4'-deoxy-4'-
epi-amino-avermectin B1a and 4'-deoxy-4'-epi-amino-
avermectin B1b; 4'-deoxy-4'-epi-amino avermectin
B1a (AB1a); 4'-deoxy-4'-epi-(N-formyl-N-
methyl)amino-avermectin (MFB1a); and 4'-deoxy-4'-epi-(N-
formyl)amino-avermectin B1a (FAB1a), calculated
as the stoichiometric equivalent of emamectin.
VI. References
The following literature was referenced in the preamble of this
document.
1. OPP's ``Guidance for Identifying Pesticide Chemicals and Other
Substances that have a Common Mechanism of Toxicity'' (USEPA, 1999);
https://www.epa.gov/fedrgstr/EPA-PEST/1999/February/Day-05/6055.pdf.
2. balis IM, Eldefrawi AT, Eldefrawi ME. Actions of avermectin
B1a on the gamma-aminobutyric acidA receptor and chloride
channels in rat brain. Journal of Biochemical Toxicology. 1986
Mar;1(1):69-82.
3. Huang J, Casida JE. (1997) Avermectin B1a binds to
high- and low-affinity sites with dual effects on the gama-
aminobutyric acid-gated chloride channel of cultured cerebellar
granule neurons. Journal of Pharmacology and Experimental
Therapeutics. 281: 261-266.
4. Dawson GR, Wafford KA, Smith A, Marshall GR, Bayley PJ, Schaeffer
JM, Meinke PT, McKernan RM. (2000) Anticonvulsant and adverse
effects of avermectin analogs in mice are mediated through the gama-
aminobutyric acid (A) receptor. Journal of Pharmacology and
Experimental Therapeutics 295: 1051-1060.
5. Soderlund DM, Adams PM, Bloomquist JR. Differences in the action
of avermectin B1a on the GABAA receptor
complex of mouse and rat. Biochemical Biophysical Research
Communications. 1987 Jul 31;146(2):692-8.
VII. Statutory and Executive Order Reviews
This final rule establishes tolerances under FFDCA section 408(d)
in response to a petition submitted to the Agency. The Office of
Management and Budget (OMB) has exempted these types of actions from
review under Executive Order 12866, entitled ``Regulatory Planning and
Review'' (58 FR 51735, October 4, 1993). Because this final rule has
been exempted from review under Executive Order 12866, this final rule
is not subject to Executive Order 13211, entitled ``Actions Concerning
Regulations That Significantly Affect Energy Supply, Distribution, or
Use'' (66 FR 28355, May 22, 2001) or Executive Order 13045, entitled
``Protection of Children from Environmental Health Risks and Safety
Risks'' (62 FR 19885, April 23, 1997). This final rule does not contain
any information collections subject to OMB approval under the Paperwork
Reduction Act (PRA) (44 U.S.C. 3501 et seq.), nor does it require any
special considerations under Executive Order 12898, entitled ``Federal
Actions to Address Environmental Justice in Minority Populations and
Low-Income Populations'' (59 FR 7629, February 16, 1994).
Since tolerances and exemptions that are established on the basis
of a petition under FFDCA section 408(d), such as the tolerance in this
final rule, do not require the issuance of a proposed rule, the
requirements of the Regulatory Flexibility Act (RFA) (5 U.S.C. 601 et
seq.), do not apply.
This final rule directly regulates growers, food processors, food
handlers, and food retailers, not States or tribes, nor does this
action alter the relationships or distribution of power and
responsibilities established by Congress in the preemption provisions
of FFDCA section 408(n)(4). As such, the Agency has determined that
this action will not have a substantial direct effect on States or
tribal governments, on the relationship between the national government
and the States or tribal governments, or on the distribution of power
and responsibilities among the
[[Page 18511]]
various levels of government or between the Federal Government and
Indian tribes. Thus, the Agency has determined that Executive Order
13132, entitled ``Federalism'' (64 FR 43255, August 10, 1999) and
Executive Order 13175, entitled ``Consultation and Coordination with
Indian Tribal Governments'' (65 FR 67249, November 9, 2000) do not
apply to this final rule. In addition, this final rule does not impose
any enforceable duty or contain any unfunded mandate as described under
Title II of the Unfunded Mandates Reform Act of 1995 (UMRA) (2 U.S.C.
1501 et seq.).
This action does not involve any technical standards that would
require Agency consideration of voluntary consensus standards pursuant
to section 12(d) of the National Technology Transfer and Advancement
Act of 1995 (NTTAA) (15 U.S.C. 272 note).
VII. Congressional Review Act
Pursuant to the Congressional Review Act (5 U.S.C. 801 et seq.),
EPA will submit a report containing this rule and other required
information to the U.S. Senate, the U.S. House of Representatives, and
the Comptroller General of the United States prior to publication of
the rule in the Federal Register. This action is not a ``major rule''
as defined by 5 U.S.C. 804(2).
List of Subjects in 40 CFR Part 180
Environmental protection, Administrative practice and procedure,
Agricultural commodities, Pesticides and pests, Reporting and
recordkeeping requirements.
Dated: March 19, 2013.
Lois Rossi,
Director, Registration Division, Office of Pesticide Programs.
Therefore, 40 CFR chapter I is amended as follows:
PART 180--[AMENDED]
0
1. The authority citation for part 180 continues to read as follows:
Authority: 21 U.S.C. 321(q), 346a and 371.
0
2. Sec. 180.505, is amended by:
0
i. Revise paragraph (a)(1) introductory text and paragraph (a)(2)
introductory text;
0
ii. Add alphabetically an entry for ``Vegetable, cucurbit, group 9'' to
the table in paragraph (a)(1).
The added and revised text read as follows:
Sec. 180.505 Emamectin; tolerances for residues.
(a) General. (1) Tolerances are established for emamectin,
including its metabolites and degradates, in or on the commodities in
the table below. Compliance with the tolerance levels specified below
is to be determined by measuring only the sum of emamectin (a mixture
of a minimum of 90% 4'-epi-methylamino-4'-deoxyavermectin
B1a and maximum of 10% 4'-epi-methylamino-4'-deoxyavermectin
B1b) and its metabolites 8,9-isomer of the B1a
and B1b component of the parent (8,9-ZMA), or 4'-deoxy-4'-
epi-amino-avermectin B1a and 4'-deoxy-4'-epi-amino-
avermectin B1b; 4'-deoxy-4'-epi-amino avermectin
B1a (AB1a); 4'-deoxy-4'-epi-(N-formyl-N-
methyl)amino-avermectin (MFB1a); and 4'-deoxy-4'-epi-(N-
formyl)amino-avermectin B1a (FAB1a), calculated
as the stoichiometric equivalent of emamectin.
------------------------------------------------------------------------
Parts per
Commodity million
------------------------------------------------------------------------
* * * * *
Vegetable, cucurbit, group 9........................... 0.02
* * * * *
------------------------------------------------------------------------
(2) Tolerances are established for emamectin, including its
metabolites and degradates, in or on the commodities in the table
below. Compliance with the tolerance levels specified below is to be
determined by measuring only the sum of emamectin (MAB1a +
MAB1b isomers) and the associated 8,9-Z isomers (8,9-
1a and 8,9-ZB1b).
* * * * *
[FR Doc. 2013-06758 Filed 3-26-13; 8:45 am]
BILLING CODE 6560-50-P