Energy Conservation Program: Data Collection and Comparison With Forecasted Unit Sales of Five Lamp Types, 15891-15894 [2013-05770]

Download as PDF Federal Register / Vol. 78, No. 49 / Wednesday, March 13, 2013 / Proposed Rules A also issued under 5 U.S.C. 552. Subpart B also issued under 5 U.S.C. 552a. 2. Add new paragraph 70 at the end of Appendix C to part 5 to read as follows: ■ Appendix C to Part 5—DHS Systems of Records Exempt From the Privacy Act emcdonald on DSK67QTVN1PROD with PROPOSALS * * * * * 70. The DHS/CBP–018–Customs—Trade Partnership Against Terrorism (C–TPAT) System of Records consists of electronic and paper records and will be used by DHS and its components. The DHS/CBP–018– Customs—Trade Partnership Against Terrorism (C–TPAT) System of Records is a repository of information held by DHS in connection with its several and varied missions and functions, including, but not limited to the enforcement of civil and criminal laws; investigations, inquiries, and proceedings thereunder; and national security activities. The DHS/CBP–018– Customs—Trade Partnership Against Terrorism (C–TPAT) System of Records contains information that is collected by, on behalf of, in support of, or in cooperation with DHS and its components and may contain personally identifiable information collected by other federal, state, local, tribal, foreign, or international government agencies. CBP will not assert any exemption with respect to information requested from and provided by the C–TPAT applicant including, but not limited to, company profile, supply chain information and other information provided during the application and validation process. CBP will not assert any exemptions for an individual’s application data and final membership determination in response to a request from that individual. However, the Privacy Act requires DHS to maintain an accounting of the disclosures made pursuant to all routines uses. Disclosing the fact that a law enforcement agency has sought particular records may affect ongoing law enforcement activities. As such, pursuant to 5 U.S.C. 552a(j)(2), the Secretary of Homeland Security has exempted this system from sections (c)(3), (e)(8), and (g) of the Privacy Act of 1974, as amended, as is necessary and appropriate to protect this information. Further, DHS will claim exemption from section (c)(3) of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(k)(2) as is necessary and appropriate to protect this information. Pursuant to exemption 5 U.S.C. 552a(j)(2) of the Privacy Act, all other C– TPAT data, including information regarding the possible ineligibility of an applicant for C–TPAT membership discovered during the vetting process and any resulting issue papers, are exempt from 5 U.S.C. 552a(c)(3) and (4); (d); (e)(1), (e)(2), (e)(3), (e)(4)(G), (e)(4)(H), (e)(4)(I), (e)(5) and (e)(8); (f), and (g). Pursuant to 5 U.S.C. 552a(k)(2), information regarding the possible ineligibility of an applicant for C–TPAT membership discovered during the vetting process and any resulting issue papers are exempt 5 U.S.C. 552a(c)(3); (d); (e)(1), (e)(4)(G), (e)(4)(H),(e)(4)(I); and (f). Exemptions from these particular subsections are justified, on a case-by-case basis to be determined at the VerDate Mar<15>2010 14:48 Mar 12, 2013 Jkt 229001 time a request is made, for the following reasons: (a) From subsection (c)(3) and (4) (Accounting for Disclosures) because release of the accounting of disclosures could alert the subject of an investigation of an actual or potential criminal, civil, or regulatory violation to the existence of that investigation and reveal investigative interest on the part of DHS as well as the recipient agency. Disclosure of the accounting would therefore present a serious impediment to law enforcement efforts and/or efforts to preserve national security. Disclosure of the accounting would also permit the individual who is the subject of a record to impede the investigation, to tamper with witnesses or evidence, and to avoid detection or apprehension, which would undermine the entire investigative process. (b) From subsection (d) (Access to Records) because access to the records contained in this system of records could inform the subject of an investigation of an actual or potential criminal, civil, or regulatory violation to the existence of that investigation and reveal investigative interest on the part of DHS or another agency. Access to the records could permit the individual who is the subject of a record to impede the investigation, to tamper with witnesses or evidence, and to avoid detection or apprehension. Amendment of the records could interfere with ongoing investigations and law enforcement activities and would impose an unreasonable administrative burden by requiring investigations to be continually reinvestigated. In addition, permitting access and amendment to such information could disclose security-sensitive information that could be detrimental to homeland security. (c) From subsection (e)(1) (Relevancy and Necessity of Information) because in the course of investigations into potential violations of federal law, the accuracy of information obtained or introduced occasionally may be unclear, or the information may not be strictly relevant or necessary to a specific investigation. In the interests of effective law enforcement, it is appropriate to retain all information that may aid in establishing patterns of unlawful activity. (d) From subsection (e)(2) (Collection of Information from Individuals) because requiring that information be collected from the subject of an investigation would alert the subject to the nature or existence of the investigation, thereby interfering with that investigation and related law enforcement activities. (e) From subsection (e)(3) (Notice to Subjects) because providing such detailed information could impede law enforcement by compromising the existence of a confidential investigation or reveal the identity of witnesses or confidential informants. (f) From subsections (e)(4)(G), (e)(4)(H), and (e)(4)(I) (Agency Requirements) and (f) (Agency Rules), because portions of this system are exempt from the individual access provisions of subsection (d) for the reasons noted above, and therefore DHS is not required to establish requirements, rules, or PO 00000 Frm 00003 Fmt 4702 Sfmt 4702 15891 procedures with respect to such access. Providing notice to individuals with respect to existence of records pertaining to them in the system of records or otherwise setting up procedures pursuant to which individuals may access and view records pertaining to themselves in the system would undermine investigative efforts and reveal the identities of witnesses, and potential witnesses, and confidential informants. (g) From subsection (e)(5) (Collection of Information) because with the collection of information for law enforcement purposes, it is impossible to determine in advance what information is accurate, relevant, timely, and complete. Compliance with subsection (e)(5) would preclude DHS agents from using their investigative training and exercise of good judgment to both conduct and report on investigations. (h) From subsection (e)(8) (Notice on Individuals) because compliance would interfere with DHS’s ability to obtain, serve, and issue subpoenas, warrants, and other law enforcement mechanisms that may be filed under seal and could result in disclosure of investigative techniques, procedures, and evidence. (i) From subsection (g) (Civil Remedies) to the extent that the system is exempt from other specific subsections of the Privacy Act. Dated: February 22, 2013. Jonathan R. Cantor, Acting Chief Privacy Officer, Department of Homeland Security. [FR Doc. 2013–05673 Filed 3–12–13; 8:45 am] BILLING CODE 9111–14–P DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket No. EERE–2011–BT–NOA–0013] Energy Conservation Program: Data Collection and Comparison With Forecasted Unit Sales of Five Lamp Types Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of data availability. AGENCY: The U.S. Department of Energy (DOE) is informing the public of its collection of shipment data and creation of spreadsheet models to provide comparisons between actual and benchmark estimate unit sales of five lamp types (i.e., rough service lamps, vibration service lamps, 3-way incandescent lamps, 2,601–3,300 lumen general service incandescent lamps, and shatter-resistant lamps), which are currently exempt from energy conservation standards. As the actual sales do not exceed the forecasted estimate by 100 percent for any lamp type (i.e., the threshold triggering a rulemaking for an energy conservation SUMMARY: E:\FR\FM\13MRP1.SGM 13MRP1 15892 Federal Register / Vol. 78, No. 49 / Wednesday, March 13, 2013 / Proposed Rules standard for that lamp type has not been exceeded), DOE has determined that no regulatory action is necessary at this time. However, DOE will continue to track sales data for these exempted lamps. Relating to this activity, DOE has prepared, and is making available on its Web site, a spreadsheet showing the comparisons of anticipated versus actual sales, as well as the model used to generate the original sales estimates. ADDRESSES: The spreadsheet is available online: https://www1.eere.energy.gov/ buildings/appliance_standards/ product.aspx/productid/63. FOR FURTHER INFORMATION CONTACT: Ms. Lucy deButts, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies, EE–2J, 1000 Independence Avenue SW., Washington, DC 20585–0121. Telephone: (202) 287–1604. Email: five_lamp_types@ee.doe.gov. Mr. Eric Stas, U.S. Department of Energy, Office of the General Counsel, GC–71, 1000 Independence Avenue SW., Washington, DC 20585–0121. Telephone: (202) 586–9507. Email: Eric.Stas@hq.doe.gov. SUPPLEMENTARY INFORMATION: Table of Contents emcdonald on DSK67QTVN1PROD with PROPOSALS I. Background II. Definitions A. Rough Service Lamps B. Vibration Service Lamps C. Three-Way Incandescent Lamps D. 2,601–3,300 Lumen General Service Incandescent Lamps E. Shatter-Resistant Lamps III. Comparison Methodology IV. Comparison Results A. Rough Service Lamps B. Vibration Service Lamps C. Three-Way Incandescent Lamps D. 2,601–3,300 Lumen General Service Incandescent Lamps E. Shatter-Resistant Lamps V. Conclusion I. Background The Energy Independence and Security Act of 2007 (EISA 2007; Pub. L. 110–140) was enacted on December 19, 2007. Among the requirements of subtitle B (Lighting Energy Efficiency) of title III of EISA 2007 were provisions directing DOE to collect, analyze, and monitor unit sales of five lamp types (i.e., rough service lamps, vibration service lamps, 3-way incandescent lamps, 2,601–3,300 lumen general service incandescent lamps, and shatterresistant lamps). In relevant part, section 321(a)(3)(B) of EISA 2007 amended section 325(l) of the Energy Policy and Conservation Act of 1975 (EPCA) by adding paragraph (4)(B), VerDate Mar<15>2010 14:48 Mar 12, 2013 Jkt 229001 which generally directs DOE, in consultation with the National Electrical Manufacturers Association (NEMA), to: (1) Collect unit sales data for each of the five lamp types for calendar years 1990 through 2006 in order to determine the historical growth rate for each lamp type; and (2) construct a model for each of the five lamp types based on coincident economic indicators that closely match the historical annual growth rates of each lamp type to provide a neutral comparison benchmark estimate of future unit sales. (42 U.S.C. 6295(l)(4)(B)) Section 321(a)(3)(B) of EISA 2007 also amends section 325(l) of EPCA by adding paragraph (4)(C), which, in relevant part, directs DOE to collect unit sales data for calendar years 2010 through 2025, in consultation with NEMA, for each of the five lamp types. DOE must then compare the actual lamp sales in that year with the benchmark estimate, determine if the unit sales projection has been exceeded, and issue the findings within 90 days after the end of the analyzed calendar year. (42 U.S.C. 6295(l)(4)(C)) On December 18, 2008, DOE issued a notice of data availability (NODA) for the Report on Data Collection and Estimated Future Unit Sales of Five Lamp Types (hereafter the ‘‘2008 analysis’’), which was published in the Federal Register on December 24, 2008. 73 FR 79072. The 2008 analysis presented the 1990 through 2006 shipment data collected in consultation with NEMA, the spreadsheet model DOE constructed for each lamp type, and the benchmark unit sales estimates for 2010 through 2025. On April 4, 2011, DOE published a NODA in the Federal Register (hereafter the ‘‘2010 comparison’’) announcing the availability of updated spreadsheet models presenting the benchmark estimates from the 2008 analysis and the collected sales data from 2010 for the first annual comparison. 76 FR 18425. Similarly, DOE published another NODA in the Federal Register on March 20, 2012 (hereafter the ‘‘2011 comparison’’) announcing the updated spreadsheet models and 2011 sales data related to the second annual comparison. 77 FR 16183. Today’s NODA presents the third annual comparison; specifically, section IV of this report compares the actual unit sales against benchmark unit sales estimates for 2012.1 1 The notices and related documents for the 2008 analysis, 2010 comparison, 2011 comparison, and this NODA are available through the DOE Web site at: https://www1.eere.energy.gov/buildings/ appliance_standards/product.aspx/productid/63. PO 00000 Frm 00004 Fmt 4702 Sfmt 4702 EISA 2007 also amends section 325(l) of EPCA by adding paragraphs (4)(D) through (4)(H) which state that if DOE finds that the unit sales for a given lamp type in any year between 2010 and 2025 exceed the benchmark estimate of unit sales by at least 100 percent (i.e., more than double the anticipated sales), then DOE must take regulatory action to establish an energy conservation standard for such lamps. (42 U.S.C. 6295(l)(4)(D)–(H)) For 2,601–3,300 lumen general service incandescent lamps, DOE must adopt a statutorilyprescribed energy conservation standard, and for the other four types of lamps, the statute requires DOE to initiate an accelerated rulemaking to establish energy conservation standards. If the Secretary does not complete the accelerated rulemakings within one year of the end of the previous calendar year, there is a ‘‘backstop requirement’’ for each lamp type, which would establish energy conservation standard levels and related requirements by statute. Id. As in the 2008 analysis and previous comparisons, DOE uses manufacturer shipments as a surrogate for unit sales in this NODA because manufacturer shipment data are tracked and aggregated by the trade organization, NEMA. DOE believes that annual shipments track closely with actual unit sales of these five lamp types, as DOE presumes that retailer inventories remain constant from year to year. DOE believes this is a reasonable assumption because the markets for these five lamp types have existed for many years, thereby enabling manufacturers and retailers to establish appropriate inventory levels that reflect market demand. Furthermore, in the long-run, unit sales could not increase in any one year without manufacturer shipments increasing either that year or the following one. In either case, increasing unit sales must eventually result in increasing manufacturer shipments. This is the same methodology presented in DOE’s 2008 analysis, 2010 comparison, and 2011 comparison, and the Department did not receive any comments challenging this assumption or the general approach. II. Definitions A. Rough Service Lamps Section 321(a)(1)(B) of EISA 2007 amended section 321(30) of EPCA by adding the definition of a ‘‘rough service lamp.’’ The statutory definition reads as follows: ‘‘The term ‘rough service lamp’ means a lamp that—(i) has a minimum of 5 supports with filament configurations that are C–7A, C–11, C– 17, and C–22 as listed in Figure 6–12 of E:\FR\FM\13MRP1.SGM 13MRP1 Federal Register / Vol. 78, No. 49 / Wednesday, March 13, 2013 / Proposed Rules emcdonald on DSK67QTVN1PROD with PROPOSALS the 9th edition of the IESNA [Illuminating Engineering Society of North America] Lighting handbook, or similar configurations where lead wires are not counted as supports; and (ii) is designated and marketed specifically for ‘rough service’ applications, with—(I) the designation appearing on the lamp packaging; and (II) marketing materials that identify the lamp as being for rough service.’’ (42 U.S.C. 6291(30)(X)) As noted above, rough service incandescent lamps must have a minimum of five filament support wires (not counting the two connecting leads at the beginning and end of the filament), and must be designated and marketed for ‘‘rough service’’ applications. This type of incandescent lamp is typically used in applications where the lamp would be subject to mechanical shock or vibration while it is operating. Standard incandescent lamps have only two support wires (which also serve as conductors), one at each end of the filament coil. When operating (i.e., when the tungsten filament is glowing so hot that it emits light), a standard incandescent lamp’s filament is brittle, and rough service applications could cause it to break prematurely. To address this problem, lamp manufacturers developed lamp designs that incorporate additional support wires along the length of the filament to ensure that it has support not just at each end, but at several other points as well. The additional support protects the filament during operation and enables longer operating life for incandescent lamps in rough service applications. Typical applications for these rough service lamps might include commercial hallways and stairwells, gyms, storage areas, and security areas. B. Vibration Service Lamps Section 321(a)(1)(B) of EISA 2007 amended section 321(30) of EPCA by adding the definition of a ‘‘vibration service lamp.’’ The statutory definition reads as follows: ‘‘The term ‘vibration service lamp’ means a lamp that—(i) has filament configurations that are C–5, C– 7A, or C–9, as listed in Figure 6–12 of the 9th Edition of the IESNA Lighting Handbook or similar configurations; (ii) has a maximum wattage of 60 watts; (iii) is sold at retail in packages of 2 lamps or less; and (iv) is designated and marketed specifically for vibration service or vibration-resistant applications, with—(I) the designation appearing on the lamp packaging; and (II) marketing materials that identify the lamp as being vibration service only.’’ (42 U.S.C. 6291(30)(AA)) The statute mentions three examples of filament configurations for vibration VerDate Mar<15>2010 14:48 Mar 12, 2013 Jkt 229001 service lamps in Figure 6–12 of the IESNA Lighting Handbook, one of which (i.e., C–7A) is also listed in the statutory definition of ‘‘rough service lamp.’’ The definition of ‘‘vibration service lamp’’ requires that such lamps have a maximum wattage of 60 watts and be sold at a retail level in packages of two lamps or fewer. Similar to rough service lamps, vibration service lamps must be designated and marketed for vibration service or vibration-resistant applications. As the name suggests, this type of incandescent lamp is generally used in applications where the incandescent lamp would be subject to a continuous low level of vibration, such as in a ceiling fan light kit. In such applications, standard incandescent lamps without additional filament support wires may not achieve the full rated life, because the filament wire is brittle and would be subject to breakage at typical operating temperature. To address this problem, lamp manufacturers typically use a more malleable tungsten filament to avoid damage and short circuits between coils. C. Three-Way Incandescent Lamps Section 321(a)(1)(B) of EISA 2007 amended section 321(30) of EPCA by adding the definition of a ‘‘3-way incandescent lamp.’’ The statutory definition reads as follows: ‘‘The term ‘3-way incandescent lamp’ includes an incandescent lamp that—(i) employs 2 filaments, operated separately and in combination, to provide 3 light levels; and (ii) is designated on the lamp packaging and marketing materials as being a 3-way incandescent lamp.’’ (42 U.S.C. 6291(30)(Y)) Three-way lamps are commonly found in wattage combinations such as 50, 100, and 150 watts or 30, 70, and 100 watts. These lamps use two filaments (e.g., a 30-watt and a 70-watt filament) and can be operated separately or together to produce three different lumen outputs (e.g., 305 lumens with one filament, 995 lumens with the other, or 1,300 lumens using the filaments together). When used in threeway sockets, these lamps allow users to control the light level. Three-way incandescent lamps are typically used in residential multi-purpose areas, where consumers may adjust the light level to be appropriate for the task they are performing. D. 2,601–3,300 Lumen General Service Incandescent Lamps The statute does not provide a definition of ‘‘2,601–3,300 Lumen General Service Incandescent Lamps’’; however, DOE is interpreting this term to be a general service incandescent PO 00000 Frm 00005 Fmt 4702 Sfmt 4702 15893 lamp 2 that emits light between 2,601 and 3,300 lumens. Lamps on the market that emit light within this lumen range are immediately recognizable because, as required by the Energy Policy Act of 1992, Public Law 102–486, all general service incandescent lamps must be labeled with lamp lumen output.3 These lamps are used in general service applications when high light output is needed. E. Shatter-Resistant Lamps Section 321(a)(1)(B) of EISA 2007 amended section 321(30) of EPCA by adding the definition of a ‘‘shatterresistant lamp, shatter-proof lamp, or shatter-protected lamp.’’ The statutory definition reads as follows: ‘‘The terms ‘shatter-resistant lamp,’ ‘shatter-proof lamp,’ and ‘shatter-protected lamp’ mean a lamp that—(i) has a coating or equivalent technology that is compliant with [National Sanitation Foundation/ American National Standards Institute] NSF/ANSI 51 and is designed to contain the glass if the glass envelope of the lamp is broken; and (ii) is designated and marketed for the intended application, with—(I) the designation on the lamp packaging; and (II) marketing materials that identify the lamp as being shatter-resistant, shatter-proof, or shatter-protected.’’ (42 U.S.C. 6291(30)(Z)) Although the definition provides three names commonly used to refer to these lamps, DOE simply refers to them collectively as ‘‘shatter-resistant lamps.’’ Shatter-resistant lamps incorporate a special coating designed to prevent glass shards from being dispersed if a lamp’s glass envelope breaks. Shatter-resistant lamps incorporate a coating compliant with industry standard NSF/ANSI 51,4 ‘‘Food Equipment Materials,’’ and are labeled and marketed as shatterresistant, shatter-proof, or shatterprotected. Some types of the coatings can also protect the lamp from breakage in applications subject to heat and 2 ‘‘General service incandescent lamp’’ is defined as a standard incandescent or halogen type lamp that—(I) Is intended for general service applications; (II) has a medium screw base; (III) has a lumen range of not less than 310 lumens and not more than 2,600 lumens; and (IV) is capable of being operated at a voltage range at least partially within 110 and 130 volts. (42 U.S.C. 6291(30)(D)). 3 The Federal Trade Commission issued the lamp labeling requirements in 1994 (see 59 FR 25176 (May 13, 1994)). Further amendments were made to the lamp labeling requirements in 2007 (see 16 CFR 305.15(b); 72 FR 49948, 49971–72 (August 29, 2007)). The package must display the lamp’s light output (in lumens), energy use (in watts), and lamp life (in hours). 4 NSF/ANSI 51 applies specifically to materials and coatings used in the manufacturing of equipment and objects destined for contact with foodstuffs. E:\FR\FM\13MRP1.SGM 13MRP1 15894 Federal Register / Vol. 78, No. 49 / Wednesday, March 13, 2013 / Proposed Rules emcdonald on DSK67QTVN1PROD with PROPOSALS thermal shock that may occur from water, sleet, snow, soldering, or welding. III. Comparison Methodology In the 2008 analysis, DOE reviewed each of the five sets of shipment data that were collected in consultation with NEMA and applied two curve fits to generate unit sales estimates for the five lamp types after calendar year 2006. One curve fit applied a linear regression to the historical data and extended that line into the future. The other curve fit applied an exponential growth function to the shipment data and projected unit sales into the future. For this calculation, linear regression treats the year as a dependent variable and shipments as the independent variable. The linear regression curve fit is modeled by minimizing the differences among the data points and the best curve-fit linear line using the least squares function.5 The exponential curve fit is also a regression function and uses the same least squares function to find the best fit. For some data sets, an exponential curve provides a better characterization of the historical data, and, therefore, a better projection of the future data. For 3-way incandescent lamps, 2,601– 3,300 lumen general service incandescent lamps, and shatterresistant lamps, DOE found that the linear regression and exponential growth curve fits produced nearly the same estimates of unit sales (i.e., the difference between the two forecasted values was less than 1 or 2 percent). However, for rough service and vibration service lamps, the linear regression curve fit projected lamp unit sales would decline to zero for both lamp types by 2018. In contrast, the exponential growth curve fit projected a more gradual decline in unit sales, such that lamps would still be sold beyond 2018, and it was, therefore, considered the more realistic forecast. While DOE was satisfied that either the linear regression or exponential growth spreadsheet model generated a reasonable benchmark unit sales estimate for 3-way incandescent lamps, 2,601–3,300 lumen general service incandescent lamps, and shatterresistant lamps, DOE selected the exponential growth curve fit for these lamp types for consistency with the selection made for rough service and 5 The least squares function is an analytical tool that DOE uses to minimize the sum of the squared residual differences between the actual historical data points and the modeled value (i.e., the linear curve fit). In minimizing this value, the resulting curve fit will represent the best fit possible to the data provided. VerDate Mar<15>2010 14:48 Mar 12, 2013 Jkt 229001 vibration service lamps.6 DOE examines the benchmark unit sales estimates and actual sales for each of the five lamp types in the following section and also makes the comparisons available in a spreadsheet online: https:// www1.eere.energy.gov/buildings/ appliance_standards/product.aspx/ productid/63. IV. Comparison Results A. Rough Service Lamps For rough service lamps, the exponential growth forecast projected the benchmark unit sales estimate for 2012 to be 5,780,000 units. The NEMAprovided shipment data reported shipments of 6,045,000 rough service lamps in 2012. As this finding exceeds the estimate by only 4.6 percent, DOE will continue to track rough service lamp sales data and will not initiate regulatory action for this lamp type at this time. B. Vibration Service Lamps For vibration service lamps, the exponential growth forecast projected the benchmark unit sales estimate for 2012 to be 3,019,000 units. The NEMAprovided shipment data reported shipments of 1,077,000 vibration service lamps in 2012. As this finding is only 35.7 percent of the estimate, DOE will continue to track vibration service lamp sales data and will not initiate regulatory action for this lamp type at this time. C. Three-Way Incandescent Lamps For 3-way incandescent lamps, the exponential growth forecast projected the benchmark unit sales estimate for 2012 to be 50,131,000 units. The NEMAprovided shipment data reported shipments of 28,854,000 3-way incandescent lamps in 2012. As this finding is only 57.6 percent of the estimate, DOE will continue to track 3way incandescent lamp sales data and will not initiate regulatory action for this lamp type at this time. D. 2,601–3,300 Lumen General Service Incandescent Lamps For 2,601–3,300 lumen general service incandescent lamps, the exponential growth forecast projected the benchmark unit sales estimate for 2012 to be 33,979,000 units. The NEMAprovided shipment data reported shipments of 12,373,000 2,601–3,300 lumen general service incandescent lamps in 2012. As this finding is 36.4 6 This selection is consistent with the 2010 and 2011 comparisons. See DOE’s 2008 forecast spreadsheet models of the lamp types for greater detail of the estimates. PO 00000 Frm 00006 Fmt 4702 Sfmt 4702 percent of the estimate, DOE will continue to track 2,601–3,300 lumen general service incandescent lamp sales data and will not initiate regulatory action for this lamp type at this time. E. Shatter-Resistant Lamps For shatter-resistant lamps, the exponential growth forecast projected the benchmark unit sales estimate for 2012 to be 1,663,000 units. The NEMAprovided shipment data reported shipments of 1,455,000 shatter-resistant lamps in 2012. As this finding is only 87.5 percent of the estimate, DOE will continue to track shatter-resistant lamp sales data and will not initiate regulatory action for this lamp type at this time. V. Conclusion None of the shipments for rough service lamps, vibration service lamps, 3-way incandescent lamps, 2,601–3,300 lumen general service incandescent lamps, or shatter-resistant lamps crossed the statutory threshold for a standard. DOE will monitor the situation for these five currently exempted lamp types and will reassess 2013 sales by March 31, 2014, in order to determine whether an energy conservation standards rulemaking is required, consistent with 42 U.S.C. 6295(l)(4)(D)–(H). Issued in Washington, DC, on March 5, 2013. Kathleen B. Hogan, Deputy Assistant Secretary for Energy Efficiency, Energy Efficiency and Renewable Energy. [FR Doc. 2013–05770 Filed 3–12–13; 8:45 am] BILLING CODE 6450–01–P DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 117 [Docket No. FDA–2012–N–1258] Draft Qualitative Risk Assessment of Risk of Activity/Food Combinations for Activities (Outside the Farm Definition) Conducted in a Facility Co-Located on a Farm; Availability; Reopening of the Comment Period AGENCY: Food and Drug Administration, HHS. Notification; reopening of the comment period. ACTION: The Food and Drug Administration (FDA or ‘‘we’’) is reopening the comment period for a document entitled ‘‘Draft Qualitative Risk Assessment of Risk of Activity/ SUMMARY: E:\FR\FM\13MRP1.SGM 13MRP1

Agencies

[Federal Register Volume 78, Number 49 (Wednesday, March 13, 2013)]
[Proposed Rules]
[Pages 15891-15894]
From the Federal Register Online via the Government Printing Office [www.gpo.gov]
[FR Doc No: 2013-05770]


=======================================================================
-----------------------------------------------------------------------

DEPARTMENT OF ENERGY

10 CFR Part 430

[Docket No. EERE-2011-BT-NOA-0013]


Energy Conservation Program: Data Collection and Comparison With 
Forecasted Unit Sales of Five Lamp Types

AGENCY: Office of Energy Efficiency and Renewable Energy, Department of 
Energy.

ACTION: Notice of data availability.

-----------------------------------------------------------------------

SUMMARY: The U.S. Department of Energy (DOE) is informing the public of 
its collection of shipment data and creation of spreadsheet models to 
provide comparisons between actual and benchmark estimate unit sales of 
five lamp types (i.e., rough service lamps, vibration service lamps, 3-
way incandescent lamps, 2,601-3,300 lumen general service incandescent 
lamps, and shatter-resistant lamps), which are currently exempt from 
energy conservation standards. As the actual sales do not exceed the 
forecasted estimate by 100 percent for any lamp type (i.e., the 
threshold triggering a rulemaking for an energy conservation

[[Page 15892]]

standard for that lamp type has not been exceeded), DOE has determined 
that no regulatory action is necessary at this time. However, DOE will 
continue to track sales data for these exempted lamps. Relating to this 
activity, DOE has prepared, and is making available on its Web site, a 
spreadsheet showing the comparisons of anticipated versus actual sales, 
as well as the model used to generate the original sales estimates.

ADDRESSES: The spreadsheet is available online: https://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/63.

FOR FURTHER INFORMATION CONTACT: Ms. Lucy deButts, U.S. Department of 
Energy, Office of Energy Efficiency and Renewable Energy, Building 
Technologies, EE-2J, 1000 Independence Avenue SW., Washington, DC 
20585-0121. Telephone: (202) 287-1604. Email: five_lamp_types@ee.doe.gov.
    Mr. Eric Stas, U.S. Department of Energy, Office of the General 
Counsel, GC-71, 1000 Independence Avenue SW., Washington, DC 20585-
0121. Telephone: (202) 586-9507. Email: Eric.Stas@hq.doe.gov.

SUPPLEMENTARY INFORMATION: 

Table of Contents

I. Background
II. Definitions
    A. Rough Service Lamps
    B. Vibration Service Lamps
    C. Three-Way Incandescent Lamps
    D. 2,601-3,300 Lumen General Service Incandescent Lamps
    E. Shatter-Resistant Lamps
III. Comparison Methodology
IV. Comparison Results
    A. Rough Service Lamps
    B. Vibration Service Lamps
    C. Three-Way Incandescent Lamps
    D. 2,601-3,300 Lumen General Service Incandescent Lamps
    E. Shatter-Resistant Lamps
V. Conclusion

I. Background

    The Energy Independence and Security Act of 2007 (EISA 2007; Pub. 
L. 110-140) was enacted on December 19, 2007. Among the requirements of 
subtitle B (Lighting Energy Efficiency) of title III of EISA 2007 were 
provisions directing DOE to collect, analyze, and monitor unit sales of 
five lamp types (i.e., rough service lamps, vibration service lamps, 3-
way incandescent lamps, 2,601-3,300 lumen general service incandescent 
lamps, and shatter-resistant lamps). In relevant part, section 
321(a)(3)(B) of EISA 2007 amended section 325(l) of the Energy Policy 
and Conservation Act of 1975 (EPCA) by adding paragraph (4)(B), which 
generally directs DOE, in consultation with the National Electrical 
Manufacturers Association (NEMA), to: (1) Collect unit sales data for 
each of the five lamp types for calendar years 1990 through 2006 in 
order to determine the historical growth rate for each lamp type; and 
(2) construct a model for each of the five lamp types based on 
coincident economic indicators that closely match the historical annual 
growth rates of each lamp type to provide a neutral comparison 
benchmark estimate of future unit sales. (42 U.S.C. 6295(l)(4)(B)) 
Section 321(a)(3)(B) of EISA 2007 also amends section 325(l) of EPCA by 
adding paragraph (4)(C), which, in relevant part, directs DOE to 
collect unit sales data for calendar years 2010 through 2025, in 
consultation with NEMA, for each of the five lamp types. DOE must then 
compare the actual lamp sales in that year with the benchmark estimate, 
determine if the unit sales projection has been exceeded, and issue the 
findings within 90 days after the end of the analyzed calendar year. 
(42 U.S.C. 6295(l)(4)(C))
    On December 18, 2008, DOE issued a notice of data availability 
(NODA) for the Report on Data Collection and Estimated Future Unit 
Sales of Five Lamp Types (hereafter the ``2008 analysis''), which was 
published in the Federal Register on December 24, 2008. 73 FR 79072. 
The 2008 analysis presented the 1990 through 2006 shipment data 
collected in consultation with NEMA, the spreadsheet model DOE 
constructed for each lamp type, and the benchmark unit sales estimates 
for 2010 through 2025. On April 4, 2011, DOE published a NODA in the 
Federal Register (hereafter the ``2010 comparison'') announcing the 
availability of updated spreadsheet models presenting the benchmark 
estimates from the 2008 analysis and the collected sales data from 2010 
for the first annual comparison. 76 FR 18425. Similarly, DOE published 
another NODA in the Federal Register on March 20, 2012 (hereafter the 
``2011 comparison'') announcing the updated spreadsheet models and 2011 
sales data related to the second annual comparison. 77 FR 16183. 
Today's NODA presents the third annual comparison; specifically, 
section IV of this report compares the actual unit sales against 
benchmark unit sales estimates for 2012.\1\
---------------------------------------------------------------------------

    \1\ The notices and related documents for the 2008 analysis, 
2010 comparison, 2011 comparison, and this NODA are available 
through the DOE Web site at: https://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/63.
---------------------------------------------------------------------------

    EISA 2007 also amends section 325(l) of EPCA by adding paragraphs 
(4)(D) through (4)(H) which state that if DOE finds that the unit sales 
for a given lamp type in any year between 2010 and 2025 exceed the 
benchmark estimate of unit sales by at least 100 percent (i.e., more 
than double the anticipated sales), then DOE must take regulatory 
action to establish an energy conservation standard for such lamps. (42 
U.S.C. 6295(l)(4)(D)-(H)) For 2,601-3,300 lumen general service 
incandescent lamps, DOE must adopt a statutorily-prescribed energy 
conservation standard, and for the other four types of lamps, the 
statute requires DOE to initiate an accelerated rulemaking to establish 
energy conservation standards. If the Secretary does not complete the 
accelerated rulemakings within one year of the end of the previous 
calendar year, there is a ``backstop requirement'' for each lamp type, 
which would establish energy conservation standard levels and related 
requirements by statute. Id.
    As in the 2008 analysis and previous comparisons, DOE uses 
manufacturer shipments as a surrogate for unit sales in this NODA 
because manufacturer shipment data are tracked and aggregated by the 
trade organization, NEMA. DOE believes that annual shipments track 
closely with actual unit sales of these five lamp types, as DOE 
presumes that retailer inventories remain constant from year to year. 
DOE believes this is a reasonable assumption because the markets for 
these five lamp types have existed for many years, thereby enabling 
manufacturers and retailers to establish appropriate inventory levels 
that reflect market demand. Furthermore, in the long-run, unit sales 
could not increase in any one year without manufacturer shipments 
increasing either that year or the following one. In either case, 
increasing unit sales must eventually result in increasing manufacturer 
shipments. This is the same methodology presented in DOE's 2008 
analysis, 2010 comparison, and 2011 comparison, and the Department did 
not receive any comments challenging this assumption or the general 
approach.

II. Definitions

A. Rough Service Lamps

    Section 321(a)(1)(B) of EISA 2007 amended section 321(30) of EPCA 
by adding the definition of a ``rough service lamp.'' The statutory 
definition reads as follows: ``The term `rough service lamp' means a 
lamp that--(i) has a minimum of 5 supports with filament configurations 
that are C-7A, C-11, C-17, and C-22 as listed in Figure 6-12 of

[[Page 15893]]

the 9th edition of the IESNA [Illuminating Engineering Society of North 
America] Lighting handbook, or similar configurations where lead wires 
are not counted as supports; and (ii) is designated and marketed 
specifically for `rough service' applications, with--(I) the 
designation appearing on the lamp packaging; and (II) marketing 
materials that identify the lamp as being for rough service.'' (42 
U.S.C. 6291(30)(X))
    As noted above, rough service incandescent lamps must have a 
minimum of five filament support wires (not counting the two connecting 
leads at the beginning and end of the filament), and must be designated 
and marketed for ``rough service'' applications. This type of 
incandescent lamp is typically used in applications where the lamp 
would be subject to mechanical shock or vibration while it is 
operating. Standard incandescent lamps have only two support wires 
(which also serve as conductors), one at each end of the filament coil. 
When operating (i.e., when the tungsten filament is glowing so hot that 
it emits light), a standard incandescent lamp's filament is brittle, 
and rough service applications could cause it to break prematurely. To 
address this problem, lamp manufacturers developed lamp designs that 
incorporate additional support wires along the length of the filament 
to ensure that it has support not just at each end, but at several 
other points as well. The additional support protects the filament 
during operation and enables longer operating life for incandescent 
lamps in rough service applications. Typical applications for these 
rough service lamps might include commercial hallways and stairwells, 
gyms, storage areas, and security areas.

B. Vibration Service Lamps

    Section 321(a)(1)(B) of EISA 2007 amended section 321(30) of EPCA 
by adding the definition of a ``vibration service lamp.'' The statutory 
definition reads as follows: ``The term `vibration service lamp' means 
a lamp that--(i) has filament configurations that are C-5, C-7A, or C-
9, as listed in Figure 6-12 of the 9th Edition of the IESNA Lighting 
Handbook or similar configurations; (ii) has a maximum wattage of 60 
watts; (iii) is sold at retail in packages of 2 lamps or less; and (iv) 
is designated and marketed specifically for vibration service or 
vibration-resistant applications, with--(I) the designation appearing 
on the lamp packaging; and (II) marketing materials that identify the 
lamp as being vibration service only.'' (42 U.S.C. 6291(30)(AA))
    The statute mentions three examples of filament configurations for 
vibration service lamps in Figure 6-12 of the IESNA Lighting Handbook, 
one of which (i.e., C-7A) is also listed in the statutory definition of 
``rough service lamp.'' The definition of ``vibration service lamp'' 
requires that such lamps have a maximum wattage of 60 watts and be sold 
at a retail level in packages of two lamps or fewer. Similar to rough 
service lamps, vibration service lamps must be designated and marketed 
for vibration service or vibration-resistant applications. As the name 
suggests, this type of incandescent lamp is generally used in 
applications where the incandescent lamp would be subject to a 
continuous low level of vibration, such as in a ceiling fan light kit. 
In such applications, standard incandescent lamps without additional 
filament support wires may not achieve the full rated life, because the 
filament wire is brittle and would be subject to breakage at typical 
operating temperature. To address this problem, lamp manufacturers 
typically use a more malleable tungsten filament to avoid damage and 
short circuits between coils.

C. Three-Way Incandescent Lamps

    Section 321(a)(1)(B) of EISA 2007 amended section 321(30) of EPCA 
by adding the definition of a ``3-way incandescent lamp.'' The 
statutory definition reads as follows: ``The term `3-way incandescent 
lamp' includes an incandescent lamp that--(i) employs 2 filaments, 
operated separately and in combination, to provide 3 light levels; and 
(ii) is designated on the lamp packaging and marketing materials as 
being a 3-way incandescent lamp.'' (42 U.S.C. 6291(30)(Y))
    Three-way lamps are commonly found in wattage combinations such as 
50, 100, and 150 watts or 30, 70, and 100 watts. These lamps use two 
filaments (e.g., a 30-watt and a 70-watt filament) and can be operated 
separately or together to produce three different lumen outputs (e.g., 
305 lumens with one filament, 995 lumens with the other, or 1,300 
lumens using the filaments together). When used in three-way sockets, 
these lamps allow users to control the light level. Three-way 
incandescent lamps are typically used in residential multi-purpose 
areas, where consumers may adjust the light level to be appropriate for 
the task they are performing.

D. 2,601-3,300 Lumen General Service Incandescent Lamps

    The statute does not provide a definition of ``2,601-3,300 Lumen 
General Service Incandescent Lamps''; however, DOE is interpreting this 
term to be a general service incandescent lamp \2\ that emits light 
between 2,601 and 3,300 lumens. Lamps on the market that emit light 
within this lumen range are immediately recognizable because, as 
required by the Energy Policy Act of 1992, Public Law 102-486, all 
general service incandescent lamps must be labeled with lamp lumen 
output.\3\ These lamps are used in general service applications when 
high light output is needed.
---------------------------------------------------------------------------

    \2\ ``General service incandescent lamp'' is defined as a 
standard incandescent or halogen type lamp that--(I) Is intended for 
general service applications; (II) has a medium screw base; (III) 
has a lumen range of not less than 310 lumens and not more than 
2,600 lumens; and (IV) is capable of being operated at a voltage 
range at least partially within 110 and 130 volts. (42 U.S.C. 
6291(30)(D)).
    \3\ The Federal Trade Commission issued the lamp labeling 
requirements in 1994 (see 59 FR 25176 (May 13, 1994)). Further 
amendments were made to the lamp labeling requirements in 2007 (see 
16 CFR 305.15(b); 72 FR 49948, 49971-72 (August 29, 2007)). The 
package must display the lamp's light output (in lumens), energy use 
(in watts), and lamp life (in hours).
---------------------------------------------------------------------------

E. Shatter-Resistant Lamps

    Section 321(a)(1)(B) of EISA 2007 amended section 321(30) of EPCA 
by adding the definition of a ``shatter-resistant lamp, shatter-proof 
lamp, or shatter-protected lamp.'' The statutory definition reads as 
follows: ``The terms `shatter-resistant lamp,' `shatter-proof lamp,' 
and `shatter-protected lamp' mean a lamp that--(i) has a coating or 
equivalent technology that is compliant with [National Sanitation 
Foundation/American National Standards Institute] NSF/ANSI 51 and is 
designed to contain the glass if the glass envelope of the lamp is 
broken; and (ii) is designated and marketed for the intended 
application, with--(I) the designation on the lamp packaging; and (II) 
marketing materials that identify the lamp as being shatter-resistant, 
shatter-proof, or shatter-protected.'' (42 U.S.C. 6291(30)(Z)) Although 
the definition provides three names commonly used to refer to these 
lamps, DOE simply refers to them collectively as ``shatter-resistant 
lamps.''
    Shatter-resistant lamps incorporate a special coating designed to 
prevent glass shards from being dispersed if a lamp's glass envelope 
breaks. Shatter-resistant lamps incorporate a coating compliant with 
industry standard NSF/ANSI 51,\4\ ``Food Equipment Materials,'' and are 
labeled and marketed as shatter-resistant, shatter-proof, or shatter-
protected. Some types of the coatings can also protect the lamp from 
breakage in applications subject to heat and

[[Page 15894]]

thermal shock that may occur from water, sleet, snow, soldering, or 
welding.
---------------------------------------------------------------------------

    \4\ NSF/ANSI 51 applies specifically to materials and coatings 
used in the manufacturing of equipment and objects destined for 
contact with foodstuffs.
---------------------------------------------------------------------------

III. Comparison Methodology

    In the 2008 analysis, DOE reviewed each of the five sets of 
shipment data that were collected in consultation with NEMA and applied 
two curve fits to generate unit sales estimates for the five lamp types 
after calendar year 2006. One curve fit applied a linear regression to 
the historical data and extended that line into the future. The other 
curve fit applied an exponential growth function to the shipment data 
and projected unit sales into the future. For this calculation, linear 
regression treats the year as a dependent variable and shipments as the 
independent variable. The linear regression curve fit is modeled by 
minimizing the differences among the data points and the best curve-fit 
linear line using the least squares function.\5\ The exponential curve 
fit is also a regression function and uses the same least squares 
function to find the best fit. For some data sets, an exponential curve 
provides a better characterization of the historical data, and, 
therefore, a better projection of the future data.
---------------------------------------------------------------------------

    \5\ The least squares function is an analytical tool that DOE 
uses to minimize the sum of the squared residual differences between 
the actual historical data points and the modeled value (i.e., the 
linear curve fit). In minimizing this value, the resulting curve fit 
will represent the best fit possible to the data provided.
---------------------------------------------------------------------------

    For 3-way incandescent lamps, 2,601-3,300 lumen general service 
incandescent lamps, and shatter-resistant lamps, DOE found that the 
linear regression and exponential growth curve fits produced nearly the 
same estimates of unit sales (i.e., the difference between the two 
forecasted values was less than 1 or 2 percent). However, for rough 
service and vibration service lamps, the linear regression curve fit 
projected lamp unit sales would decline to zero for both lamp types by 
2018. In contrast, the exponential growth curve fit projected a more 
gradual decline in unit sales, such that lamps would still be sold 
beyond 2018, and it was, therefore, considered the more realistic 
forecast. While DOE was satisfied that either the linear regression or 
exponential growth spreadsheet model generated a reasonable benchmark 
unit sales estimate for 3-way incandescent lamps, 2,601-3,300 lumen 
general service incandescent lamps, and shatter-resistant lamps, DOE 
selected the exponential growth curve fit for these lamp types for 
consistency with the selection made for rough service and vibration 
service lamps.\6\ DOE examines the benchmark unit sales estimates and 
actual sales for each of the five lamp types in the following section 
and also makes the comparisons available in a spreadsheet online: 
https://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/63.
---------------------------------------------------------------------------

    \6\ This selection is consistent with the 2010 and 2011 
comparisons. See DOE's 2008 forecast spreadsheet models of the lamp 
types for greater detail of the estimates.
---------------------------------------------------------------------------

IV. Comparison Results

A. Rough Service Lamps

    For rough service lamps, the exponential growth forecast projected 
the benchmark unit sales estimate for 2012 to be 5,780,000 units. The 
NEMA-provided shipment data reported shipments of 6,045,000 rough 
service lamps in 2012. As this finding exceeds the estimate by only 4.6 
percent, DOE will continue to track rough service lamp sales data and 
will not initiate regulatory action for this lamp type at this time.

B. Vibration Service Lamps

    For vibration service lamps, the exponential growth forecast 
projected the benchmark unit sales estimate for 2012 to be 3,019,000 
units. The NEMA-provided shipment data reported shipments of 1,077,000 
vibration service lamps in 2012. As this finding is only 35.7 percent 
of the estimate, DOE will continue to track vibration service lamp 
sales data and will not initiate regulatory action for this lamp type 
at this time.

C. Three-Way Incandescent Lamps

    For 3-way incandescent lamps, the exponential growth forecast 
projected the benchmark unit sales estimate for 2012 to be 50,131,000 
units. The NEMA-provided shipment data reported shipments of 28,854,000 
3-way incandescent lamps in 2012. As this finding is only 57.6 percent 
of the estimate, DOE will continue to track 3-way incandescent lamp 
sales data and will not initiate regulatory action for this lamp type 
at this time.

D. 2,601-3,300 Lumen General Service Incandescent Lamps

    For 2,601-3,300 lumen general service incandescent lamps, the 
exponential growth forecast projected the benchmark unit sales estimate 
for 2012 to be 33,979,000 units. The NEMA-provided shipment data 
reported shipments of 12,373,000 2,601-3,300 lumen general service 
incandescent lamps in 2012. As this finding is 36.4 percent of the 
estimate, DOE will continue to track 2,601-3,300 lumen general service 
incandescent lamp sales data and will not initiate regulatory action 
for this lamp type at this time.

E. Shatter-Resistant Lamps

    For shatter-resistant lamps, the exponential growth forecast 
projected the benchmark unit sales estimate for 2012 to be 1,663,000 
units. The NEMA-provided shipment data reported shipments of 1,455,000 
shatter-resistant lamps in 2012. As this finding is only 87.5 percent 
of the estimate, DOE will continue to track shatter-resistant lamp 
sales data and will not initiate regulatory action for this lamp type 
at this time.

V. Conclusion

    None of the shipments for rough service lamps, vibration service 
lamps, 3-way incandescent lamps, 2,601-3,300 lumen general service 
incandescent lamps, or shatter-resistant lamps crossed the statutory 
threshold for a standard. DOE will monitor the situation for these five 
currently exempted lamp types and will reassess 2013 sales by March 31, 
2014, in order to determine whether an energy conservation standards 
rulemaking is required, consistent with 42 U.S.C. 6295(l)(4)(D)-(H).

    Issued in Washington, DC, on March 5, 2013.
Kathleen B. Hogan,
Deputy Assistant Secretary for Energy Efficiency, Energy Efficiency and 
Renewable Energy.
[FR Doc. 2013-05770 Filed 3-12-13; 8:45 am]
BILLING CODE 6450-01-P
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.