Approval and Promulgation of Implementation Plans; State of Alaska; Regional Haze State Implementation Plan, 11022-11039 [2012-4326]
Download as PDF
11022
Federal Register / Vol. 77, No. 37 / Friday, February 24, 2012 / Proposed Rules
mstockstill on DSK4VPTVN1PROD with PROPOSALS
record and will be publicly accessible
on the Internet. It is the commenter’s
responsibility to safeguard his or her
information. Because we continue to
experience delays in receiving mail in
the Washington, DC area, commenters
are strongly encouraged to transmit their
comments electronically via the Federal
eRulemaking Portal at https://
www.regulations.gov or to submit them
by mail early. For additional
information on submitting comments
and the rulemaking process, see the
‘‘Public Participation’’ heading of the
SUPPLEMENTARY INFORMATION section of
this document.
Docket: For access to the docket to
read background documents or
comments received, go to the Federal
eRulemaking Portal at https://
www.regulations.gov.
FOR FURTHER INFORMATION CONTACT:
Mary Ziegler, Director, Division of
Regulations, Legislation, and
Interpretation, Wage and Hour Division,
U.S. Department of Labor, Room S–
3510, 200 Constitution Avenue NW.,
Washington, DC 20210; telephone: (202)
693–0406 (this is not a toll free number).
Copies of this notice of proposed
rulemaking may be obtained in
alternative formats (Large Print, Braille,
Audio Tape, or Disc), upon request, by
calling (202) 693–0023. TTY/TDD
callers may dial toll-free (877) 889–5627
to obtain information or request
materials in alternative formats.
Questions of interpretation and/or
enforcement of regulations issued by
this agency or referenced in this notice
may be directed to the nearest Wage and
Hour Division District Office. Locate the
nearest office by calling the Wage and
Hour Division’s toll-free help line at
(866) 4US–WAGE ((866) 487–9243)
between 8 a.m. and 5 p.m. in your local
time zone, or log onto the Wage and
Hour Division’s Web site for a
nationwide listing of Wage and Hour
District and Area Offices at: https://
www.dol.gov/whd/america2.htm.
SUPPLEMENTARY INFORMATION:
I. Electronic Access and Filing
Comments
Public Participation: This notice of
proposed rulemaking is available
through the Federal Register and the
https://www.regulations.gov Web site.
You may also access this document via
the Department’s Web site at https://
www.dol.gov/federalregister. To
comment electronically on federal
rulemakings, go to the Federal
eRulemaking Portal at https://
www.regulations.gov, which will allow
you to find, review, and submit
comments on federal documents that are
VerDate Mar<15>2010
16:54 Feb 23, 2012
Jkt 226001
open for comment and published in the
Federal Register. Please identify all
comments submitted in electronic form
by the RIN docket number (1235–
AA05). Because of delays in receiving
mail in the Washington, DC area,
commenters should transmit their
comments electronically via the Federal
eRulemaking Portal at https://
www.regulations.gov, or submit them by
mail early to ensure timely receipt prior
to the close of the comment period.
Submit one copy of your comments by
only one method.
II. Request for Comment
The Department is proposing to revise
the Fair Labor Standards Act minimum
wage, overtime and recordkeeping
regulations pertaining to the exemptions
for companionship services and live-in
domestic services. The Department
proposes to amend the regulations to
revise the definitions of ‘‘domestic
service employment’’ and
‘‘companionship services.’’ The
Department also proposes to more
specifically describe the type of
activities and duties that may be
considered ‘‘incidental’’ to the provision
of companionship services. In addition,
the Department proposes to amend the
recordkeeping requirements for live-in
domestic workers. Finally, the
Department proposes to amend the
regulation pertaining to employment by
a third party of companions and live-in
domestic workers. This change would
continue to allow the individual, family,
or household employing the worker’s
services to apply the companionship
and live-in exemptions and would deny
all third party employers the use of such
exemptions.
On December 15, 2011, President
Obama announced that the Department
of Labor was proposing the rule
changes. The Department posted a
Notice of Proposed Rulemaking
(NPRM), complete with background
information, economic impact analyses
and proposed regulatory text, on its Web
site that day. The Department published
the NPRM in the Federal Register on
December 27, 2011 (76 FR 81190),
requesting public comments on the
proposed revisions to the regulations
pertaining to the exemption for
companionship services and live-in
domestic services. Interested parties
were requested to submit comments on
or before February 27, 2012.
The Department has received requests
to extend the period for filing public
comments from members of Congress
and various business organizations.
Because of the interest that has been
expressed in this matter, the Department
has decided to extend the period for
PO 00000
Frm 00042
Fmt 4702
Sfmt 4702
submitting public comment for 14
additional days.
Dated: February 16, 2012.
Nancy J. Leppink,
Deputy Administrator, Wage and Hour
Division.
[FR Doc. 2012–4147 Filed 2–23–12; 8:45 am]
BILLING CODE 4510–27–P
ENVIRONMENTAL PROTECTION
AGENCY
40 CFR Part 52
[EPA–R10–OAR–2011–0367, FRL–9636–9]
Approval and Promulgation of
Implementation Plans; State of Alaska;
Regional Haze State Implementation
Plan
Environmental Protection
Agency (EPA).
ACTION: Proposed rule.
AGENCY:
EPA is proposing to approve
a State Implementation Plan (SIP)
revision, submitted by the State of
Alaska on April 4, 2011, as meeting the
requirements of Clean Air Act (CAA)
sections169A and 169B, and Federal
Regulations 40 CFR 51.308, to
implement a regional haze program in
the State of Alaska for the first planning
period through July 31, 2018. This
revision addresses the requirements of
the Clean Air Act (CAA) and EPA’s
rules that require states to prevent any
future and remedy any existing
anthropogenic impairment of visibility
in mandatory Class I areas caused by
emissions of air pollutants from
numerous sources located over a wide
geographic area (also referred to as the
‘‘regional haze program’’). Additionally,
EPA proposes to approve the Alaska
Department of Environmental
Conservation Best Available Retrofit
Technology regulations at 18 AAC
50.260.
DATES: Written comments must be
received at the address below on or
before March 26, 2012.
ADDRESSES: Submit your comments,
identified by Docket ID No. EPA–R10–
OAR–2011–0367, by one of the
following methods:
• www.regulations.gov: Follow the
on-line instructions for submitting
comments.
• Email: R10Public_Comments@epa.gov.
• Mail: Keith Rose, EPA Region 10,
Office of Air, Waste and Toxics, AWT–
107, 1200 Sixth Avenue, Suite 900,
Seattle, WA 98101.
• Hand Delivery/Courier: EPA Region
10, 1200 Sixth Avenue, Suite 900,
SUMMARY:
E:\FR\FM\24FEP1.SGM
24FEP1
mstockstill on DSK4VPTVN1PROD with PROPOSALS
Federal Register / Vol. 77, No. 37 / Friday, February 24, 2012 / Proposed Rules
Seattle, WA 98101. Attention: Keith
Rose, Office of Air, Waste and Toxics,
AWT–107. Such deliveries are only
accepted during normal hours of
operation, and special arrangements
should be made for deliveries of boxed
information.
Instructions: Direct your comments to
Docket ID No. EPA–R10–OAR–2011–
0367. EPA’s policy is that all comments
received will be included in the public
docket without change and may be
made available online at https://
www.regulations.gov, including any
personal information provided, unless
the comment includes information
claimed to be Confidential Business
Information (CBI) or other information
whose disclosure is restricted by statute.
Do not submit information that you
consider to be CBI or otherwise
protected through https://
www.regulations.gov or email. The
https://www.regulations.gov Web site is
an ‘‘anonymous access’’ system, which
means EPA will not know your identity
or contact information unless you
provide it in the body of your comment.
If you send an email comment directly
to EPA, without going through https://
www.regulations.gov, your email
address will be automatically captured
and included as part of the comment
that is placed in the public docket and
made available on the Internet. If you
submit an electronic comment, EPA
recommends that you include your
name and other contact information in
the body of your comment and with any
disk or CD–ROM you submit. If EPA
cannot read your comment due to
technical difficulties and cannot contact
you for clarification, EPA may not be
able to consider your comment.
Electronic files should avoid the use of
special characters, any form of
encryption, and be free of any defects or
viruses. For additional information
about EPA’s public docket visit the EPA
Docket Center homepage at https://
www.epa.gov/epahome/dockets.htm.
Docket: All documents in the docket
are listed in the https://
www.regulations.gov index. Although
listed in the index, some information is
not publicly available (e.g., CBI or other
information whose disclosure is
restricted by statute). Certain other
material, such as copyrighted material,
will be publicly available only in hard
copy form. Publicly available docket
materials are available either
electronically at https://
www.regulations.gov or in hard copy at
the Office of Air, Waste and Toxics, EPA
Region 10, 1200 Sixth Avenue, Seattle,
WA 98101. EPA requests that if at all
possible, you contact the individual
VerDate Mar<15>2010
16:54 Feb 23, 2012
Jkt 226001
listed below to view the hard copy of
the docket.
FOR FURTHER INFORMATION CONTACT: Mr.
Keith Rose at telephone number (206)
553–1949, rose.keith@epa.gov or the
above EPA, Region 10 address.
SUPPLEMENTARY INFORMATION:
Throughout this document whenever
‘‘we,’’ ‘‘us,’’ or ‘‘our’’ is used, we mean
the EPA. Information is organized as
follows:
Table of Contents
I. Background for EPA’s Proposed Action
A. Definition of Regional Haze
B. Regional Haze Rules and Regulations
C. Roles of Agencies in Addressing
Regional Haze
II. Requirements for Regional Haze SIPs
A. The CAA and the Regional Haze Rule
B. Baseline, Natural Conditions, and
Visibility Improvement
C. Best Available Retrofit Technology
D. Reasonable Progress Goals
E. Long Term Strategy
F. Coordinating Regional Haze and
Reasonably Attributable Visibility
Impairment (RAVI)
G. Monitoring Strategy and Other
Implementation Plan Requirements
H. SIP Revisions and Five Year Progress
Reports
I. Consultation With States and Federal
Land Managers
III. EPA’s Analysis of Alaska’s Regional Haze
SIP
A. Affected Class I Areas
B. Baseline, Natural Conditions, and
Visibility Improvement
C. Alaska Emissions Inventories
D. Sources of Visibility Impairment in
Class I Areas in Alaska
E. Best Available Retrofit Technology
F. Determination of Reasonable Progress
Goals
G. Long Term Strategy
H. Monitoring Strategy and Other
Implementation Plan Requirements
I. Consultation With States and Federal
Land Managers
J. SIP Revisions and Five Year Progress
Reports
IV. Amendment to Air Quality Control Plan
Regarding Open Burning and Regional
Haze
V. What action is EPA proposing?
VI. Statutory and Executive Order Reviews
I. Background for EPA’s Proposed
Action
In the CAA Amendments of 1977,
Congress established a program to
protect and improve visibility in the
national parks and wilderness areas. See
CAA section 169A. Congress amended
the visibility provisions in the CAA in
1990 to focus attention on the problem
of regional haze. See CAA section 169B.
EPA promulgated regulations in 1999 to
implement sections 169A and 169B of
the Act. These regulations require states
to develop and implement plans to
PO 00000
Frm 00043
Fmt 4702
Sfmt 4702
11023
ensure reasonable progress toward
improving visibility in mandatory Class
I Federal areas 1 (Class I areas). 64 FR
35714 (July 1, 1999); see also 70 FR
39104 (July 6, 2005) and 71 FR 60612
(October 13, 2006).
The Alaska Department of
Environmental Conservation (ADEC)
adopted and transmitted its ‘‘Alaska
Regional Haze State Implementation
Plan’’ (Alaska Regional Haze SIP) to
EPA Region 10 in a letter dated March
29, 2011. EPA determined the plan
complete by operation of law on
September 4, 2011. As a result of the
Alaska’s participation with 13 other
states, tribal nations and Federal
agencies in the Western Regional Air
Partnership (WRAP), Alaska’s Regional
Haze SIP reflects a consistent approach
toward addressing regional visibility
impairment at 116 Class I areas in the
West.
In this action, EPA is proposing to
approve all provisions of Alaska’s
Regional Haze SIP submission,
including the requirements for the
calculation of baseline and natural
visibility conditions, statewide
inventory of visibility-impairing
pollutants, best available retrofit
technology (BART), Reasonable Progress
Goals (RPGs), and Long-Term Strategy
(LTS). EPA is also proposing to approve
the Alaska Department of
Environmental Conservation (ADEC)
BART regulations at 18 AAC 50.260.
A. Definition of Regional Haze
Regional haze is impairment of visual
range, clarity or colorization caused by
emission of air pollution produced by
numerous sources and activities, located
across a broad regional area. The
sources include but are not limited to,
major and minor stationary sources,
mobile sources, and area sources
including non-anthropogenic sources.
These sources and activities may emit
fine particles (PM2.5) (e.g., sulfates,
1 Areas designated as mandatory Class I Federal
areas consist of national parks exceeding 6000
acres, wilderness areas and national memorial parks
exceeding 5000 acres, and all international parks
that were in existence on August 7, 1977. 42 U.S.C.
7472(a). In accordance with section 169A of the
CAA, EPA, in consultation with the Department of
Interior, promulgated a list of 156 areas where
visibility is identified as an important value. 44 FR
69122 (November 30, 1979). The extent of a
mandatory Class I area includes subsequent changes
in boundaries, such as park expansions. 42 U.S.C.
7472(a). Although states and tribes may designate
as Class I additional areas which they consider to
have visibility as an important value, the
requirements of the visibility program set forth in
section 169A of the CAA apply only to ‘‘mandatory
Class I Federal areas.’’ Each mandatory Class I
Federal area is the responsibility of a ‘‘Federal Land
Manager.’’ 42 U.S.C. 7602(i). When we use the term
‘‘Class I area’’ in this action, we mean a ‘‘mandatory
Class I Federal area.’’
E:\FR\FM\24FEP1.SGM
24FEP1
11024
Federal Register / Vol. 77, No. 37 / Friday, February 24, 2012 / Proposed Rules
mstockstill on DSK4VPTVN1PROD with PROPOSALS
nitrates, organic carbon, elemental
carbon, and soil dust), and their
precursors (e.g., SO2, NOX, and in some
cases, ammonia (NH3) and volatile
organic compounds (VOC)).
Atmospheric fine particulate reduces
clarity, color, and visual range of visual
scenes. Visibility-reducing fine
particulates are primarily composed of
sulfate, nitrate, organic carbon
compounds, elemental carbon, and soil
dust, and impair visibility by scattering
and absorbing light. Fine particulate can
also cause serious health effects and
mortality in humans, and contributes to
environmental effects such as acid
deposition and eutrophication. See 64
FR at 35715.
Data from the existing visibility
monitoring network, the ‘‘Interagency
Monitoring of Protected Visual
Environments’’ (IMPROVE) monitoring
network, show that visibility
impairment caused by air pollution
occurs virtually all the time at most
national parks and wilderness areas.
The average visual range in many Class
I areas in the Western United States is
100–150 kilometers, or about one-half to
two-thirds the visual range that would
exist without anthropogenic air
pollution. Id. Visibility impairment also
varies day-to-day and by season
depending on variation in meteorology
and emission rates.
B. Regional Haze Rules and Regulations
In section 169A of the 1977 CAA
Amendments, Congress created a
program for protecting visibility in the
nation’s national parks and wilderness
areas. This section of the CAA
establishes as a national goal the
‘‘prevention of any future, and the
remedying of any existing, impairment
of visibility in Class I areas which
impairment results from manmade air
pollution.’’ CAA section 169A(a)(1). On
December 2, 1980, EPA promulgated
regulations to address visibility
impairment in Class I areas that is
‘‘reasonably attributable’’ to a single
source or small group of sources, i.e.,
‘‘reasonably attributable visibility
impairment’’. See 45 FR 80084. These
regulations represented the first phase
in addressing visibility impairment.
EPA deferred action on regional haze
that emanates from a variety of sources
until monitoring, modeling, and
scientific knowledge about the
relationships between pollutants and
visibility impairment were improved.
Congress added section 169B to the
CAA in 1990 to address regional haze
issues. EPA promulgated a rule to
address regional haze on July 1, 1999
(64 FR 35713), the regional haze rule or
RHR. The RHR revised the existing
VerDate Mar<15>2010
16:54 Feb 23, 2012
Jkt 226001
visibility regulations to integrate into
the regulation provisions addressing
regional haze impairment and
established a comprehensive visibility
protection program for Class I areas. The
requirements for regional haze, found at
40 CFR 51.308 and 51.309, are included
in EPA’s visibility protection
regulations at 40 CFR 51.300–309. Some
of the main elements of the regional
haze requirements are summarized in
section II of this proposed rulemaking.
The requirement to submit a regional
haze SIP applies to all 50 states, the
District of Columbia and the Virgin
Islands.2 40 CFR 51.308(b) requires
states to submit the first implementation
plan addressing regional haze visibility
impairment no later than December 17,
2007.
C. Roles of Agencies in Addressing
Regional Haze
Successful implementation of the
regional haze program will require longterm regional coordination among
states, tribal governments, and various
Federal agencies. As noted above,
pollution affecting the air quality in
Class I areas can be transported over
long distances, even hundreds of
kilometers. Therefore, to effectively
address the problem of visibility
impairment in Class I areas, States need
to develop strategies in coordination
with one another, taking into account
the effect of emissions from one
jurisdiction on the air quality in
another.
Because the pollutants that lead to
regional haze impairment can originate
from across state lines, EPA has
encouraged the States and Tribes to
address visibility impairment from a
regional perspective. Five regional
planning organizations 3 (RPOs) were
created nationally to address regional
haze and related issues. One of the main
objectives of the RPOs is to develop and
analyze data and conduct pollutant
transport modeling to assist the States or
Tribes in developing their regional haze
plans.
The Western Regional Air Partnership
(WRAP) 4, one of the five RPOs
nationally, is a voluntary partnership of
State, Tribal, Federal, and local air
agencies dealing with air quality in the
West. WRAP member States include:
2 Albuquerque/Bernalillo County in New Mexico
must also submit a regional haze SIP to completely
satisfy the requirements of section 110(a)(2)(D) of
the CAA for the entire State of New Mexico under
the New Mexico Air Quality Control Act (section
74–2–4).
3 See https://www.epa.gov/air/visibility/
regional.html for description of the regional
planning organizations.
4 The WRAP Web site can be found at https://
www.wrapair.org.
PO 00000
Frm 00044
Fmt 4702
Sfmt 4702
Alaska, Arizona, California, Colorado,
Idaho, Montana, New Mexico, North
Dakota, Oregon, South Dakota, Utah,
Washington, and Wyoming. WRAP
Tribal members include Campo Band of
Kumeyaay Indians, Confederated Salish
and Kootenai Tribes, Cortina Indian
Rancheria, Hopi Tribe, Hualapai Nation
of the Grand Canyon, Native Village of
Shungnka, Nez Perce Tribe, Northern
Cheyenne Tribe, Pueblo of Acoma,
Pueblo of San Felipe, and ShoshoneBannock Tribes of Fort Hall.
As a result of the regional planning
efforts in the West, all states in the
WRAP region contributed information
to a Technical Support System (TSS)
which provides an analysis of the
causes of haze, and the levels of
contribution from all sources within
each state to the visibility degradation of
each Class I area. The WRAP States
consulted in the development of
reasonable progress goals, using the
products of this technical consultation
process to co-develop their reasonable
progress goals for the Western Class I
areas. The modeling done by the WRAP
relied on assumptions regarding
emissions over the relevant planning
period and embedded in these
assumptions were anticipated emissions
reductions in each of the States in the
WRAP, including reductions from
BART and other measures to be adopted
as part of the State’s long term strategy
for addressing regional haze. The
reasonable progress goals in the draft
and final regional haze SIPs that have
now been prepared by States in the
West accordingly are based, in part, on
the emissions reductions from nearby
States that were agreed on through the
WRAP process.
II. Requirements for Regional Haze
SIPs
A. The CAA and the Regional Haze Rule
Regional haze SIPs must assure
reasonable progress towards the
national goal of achieving natural
visibility conditions in Class I areas.
Section 169A of the CAA and EPA’s
implementing regulations require states
to establish long-term strategies for
making reasonable progress toward
meeting this goal. Implementation plans
must also give specific attention to
certain stationary sources that were in
existence on August 7, 1977, but were
not in operation before August 7, 1962,
and require these sources, where
appropriate, to install BART controls for
the purpose of eliminating or reducing
visibility impairment. The specific
regional haze SIP requirements are
discussed in further detail below.
E:\FR\FM\24FEP1.SGM
24FEP1
mstockstill on DSK4VPTVN1PROD with PROPOSALS
Federal Register / Vol. 77, No. 37 / Friday, February 24, 2012 / Proposed Rules
B. Determination of Baseline, Natural
Conditions, and Visibility Improvement
The RHR establishes the deciview
(dv) as the principal metric for
measuring visibility. This visibility
metric expresses uniform changes in
haziness in terms of common
increments across the entire range of
visibility conditions, from pristine to
extremely hazy conditions. Visibility is
determined by measuring the visual
range (or deciview), which is the
greatest distance, in kilometers or miles,
at which a dark object can be viewed
against the sky. The deciview is a useful
measure for tracking progress in
improving visibility, because each
deciview change is an equal incremental
change in visibility perceived by the
human eye. Most people can detect a
change in visibility at one deciview.5
The deciview is used in expressing
reasonable progress goals (which are
interim visibility goals towards meeting
the national visibility goal), defining
baseline, current, and natural
conditions, and tracking changes in
visibility. The regional haze SIPs must
contain measures that ensure
‘‘reasonable progress’’ toward the
national goal of preventing and
remedying visibility impairment in
Class I areas caused by manmade air
pollution by reducing anthropogenic
emissions that cause regional haze. The
national goal is a return to natural
conditions, i.e., anthropogenic sources
of air pollution would no longer impair
visibility in Class I areas.
To track changes in visibility over
time at each of the 156 Class I areas
covered by the visibility program (40
CFR 81.401–437), and as part of the
process for determining reasonable
progress, States must calculate the
degree of existing visibility impairment
at each Class I area at the time of each
regional haze SIP submittal and
periodically review progress every five
years midway through each 10-year
implementation period. To do this, the
RHR requires states to determine the
degree of impairment (in deciviews) for
the average of the 20% least impaired
(‘‘best’’) and 20% most impaired
(‘‘worst’’) visibility days over a specified
time period at each of their Class I areas.
In addition, states must also develop an
estimate of natural visibility conditions
for the purpose of comparing progress
toward the national goal. Natural
visibility is determined by estimating
the natural concentrations of pollutants
that cause visibility impairment, and
then calculating total light extinction
5 The preamble to the RHR provides additional
details about the deciview. 64 FR 35714, 35725
(July 1, 1999).
VerDate Mar<15>2010
16:54 Feb 23, 2012
Jkt 226001
based on those estimates. EPA has
provided guidance to states regarding
how to calculate baseline, natural and
current visibility conditions in
documents titled, EPA’s Guidance for
Estimating Natural Visibility Conditions
Under the Regional Haze Rule,
September 2003, (EPA–454/B–03–005
located at https://www.epa.gov/ttncaaa1/
t1/memoranda/rh_envcurhr_gd.pdf),
(hereinafter referred to as ‘‘EPA’s 2003
Natural Visibility Guidance’’), and
Guidance for Tracking Progress Under
the Regional Haze Rule (EPA–454/B–
03–004 September 2003 located at
https://www.epa.gov/ttncaaa1/t1/
memoranda/rh_tpurhr_gd.pdf)),
(hereinafter referred to as ‘‘EPA’s 2003
Tracking Progress Guidance’’).
For the first regional haze SIPs that
were due by December 17, 2007,
‘‘baseline visibility conditions’’ were the
starting points for assessing ‘‘current’’
visibility impairment. Baseline visibility
conditions represent the degree of
visibility impairment for the 20% least
impaired days and 20% most impaired
days for each calendar year from 2000
to 2004. Using monitoring data for 2000
through 2004, States are required to
calculate the average degree of visibility
impairment for each Class I area, based
on the average of annual values over the
five-year period. The comparison of
initial baseline visibility conditions to
natural visibility conditions indicates
the amount of improvement necessary
to attain natural visibility, while the
future comparison of baseline
conditions to the then-current
conditions will indicate the amount of
progress made. In general, the 2000–
2004 baseline time period is considered
the time from which improvement in
visibility is measured.
C. Best Available Retrofit Technology
Section 169A of the CAA directs
States to evaluate the use of retrofit
controls at certain larger, often
uncontrolled, older stationary sources in
order to address visibility impacts from
these sources. Specifically, section
169A(b)(2)(A) of the CAA requires
States to revise their SIPs to contain
such measures as may be necessary to
make reasonable progress towards the
natural visibility goal, including a
requirement that certain categories of
existing major stationary sources 6 built
between 1962 and 1977 procure, install,
and operate the ‘‘Best Available Retrofit
Technology’’ (‘‘BART’’) as determined
by the state. States are directed to
conduct BART determinations for such
sources that may be anticipated to cause
6 The set of ‘‘major stationary sources’’ potentially
subject to BART is listed in CAA section 169A(g)(7).
PO 00000
Frm 00045
Fmt 4702
Sfmt 4702
11025
or contribute to any visibility
impairment in a Class I area. Rather
than requiring source-specific BART
controls, States also have the flexibility
to adopt an emissions trading program
or other alternative program as long as
the alternative provides greater
reasonable progress towards improving
visibility than BART.
On July 6, 2005, EPA published the
Guidelines for BART Determinations
Under the Regional Haze Rule at
appendix Y to 40 CFR part 51
(hereinafter referred to as the ‘‘BART
Guidelines’’) to assist States in
determining which of their sources
should be subject to the BART
requirements and in determining
appropriate emission limits for each
applicable source. In making a BART
applicability determination for a fossil
fuel-fired electric generating plant with
a total generating capacity in excess of
750 megawatts, a State must use the
approach set forth in the BART
Guidelines. A State is encouraged, but
not required, to follow the BART
Guidelines in making BART
determinations for other types of
sources.
States must address all visibilityimpairing pollutants emitted by a source
in the BART determination process. The
most significant visibility-impairing
pollutants are sulfur dioxide, nitrogen
oxides, and fine particulate matter. EPA
has indicated that states should use
their best judgment in determining
whether volatile organic compounds or
ammonia compounds impair visibility
in Class I areas.
Under the BART Guidelines, States
may select an exemption threshold
value for their BART modeling, below
which a BART-eligible source would
not be expected to cause or contribute
to visibility impairment in any Class I
area. The State must document this
exemption threshold value in the SIP
and must state the basis for its selection
of that value. Any source with
emissions that model above the
threshold value would be subject to a
BART determination. The BART
Guidelines acknowledge varying
circumstances affecting different Class I
areas. States should consider the
number of emission sources affecting
the Class I areas at issue and the
magnitude of the individual sources’
impacts. Generally, an exemption
threshold set by the State should not be
higher than 0.5 deciviews (dv).
In their SIPs, States must identify
potential BART sources and BARTeligible sources that have a visibility
impact in any Class I area above the
‘‘BART subject’’ threshold established
by the State and thus, are ‘‘subject’’ to
E:\FR\FM\24FEP1.SGM
24FEP1
11026
Federal Register / Vol. 77, No. 37 / Friday, February 24, 2012 / Proposed Rules
mstockstill on DSK4VPTVN1PROD with PROPOSALS
BART. States must document their
BART control analysis and
determination for all sources subject to
BART.
The term ‘‘BART-eligible’’ source
used in the BART Guidelines means the
collection of individual emission units
at a facility that together comprises the
BART-eligible source. In making BART
determinations, section 169A(g)(2) of
the CAA requires that States consider
the following factors: (1) The costs of
compliance, (2) the energy and non-air
quality environmental impacts of
compliance, (3) any existing pollution
control technology in use at the source,
(4) the remaining useful life of the
source, and (5) the degree of
improvement in visibility which may
reasonably be anticipated to result from
the use of such technology. States are
generally free to determine the weight
and significance to be assigned to each
factor.
The regional haze SIP must include
source-specific BART emission limits
and compliance schedules for each
source subject to BART. Once a State
has made its BART determination, the
BART controls must be installed and in
operation as expeditiously as
practicable, but no later than five years
after the date EPA approves the regional
haze SIP. See CAA section 169A(g)(4);
40 CFR 51.308(e)(1)(iv). In addition to
what is required by the RHR, general
SIP requirements mandate that the SIP
must also include all regulatory
requirements related to monitoring,
recordkeeping, and reporting for the
BART controls on the source.
D. Reasonable Progress Goals
The vehicle for ensuring continuing
progress towards achieving the natural
visibility goal is the submission of a
series of regional haze SIPs that
establish two Reasonable Progress Goals
(RPGs) (i.e., two distinct goals, one for
the ‘‘best’’ and one for the ‘‘worst’’ days)
for every Class I area for each
(approximately) ten-year
implementation period. The RHR does
not mandate specific milestones or rates
of progress, but instead calls for states
to establish goals that provide for
‘‘reasonable progress’’ toward achieving
natural visibility conditions. In setting
reasonable progress goals (RPGs), States
must provide for an improvement in
visibility for the most impaired days
over the (approximately) ten-year period
of the SIP, and ensure no degradation in
visibility for the least impaired days
over the same period.
States have significant discretion in
establishing RPGs, but are required to
consider the following factors
established in section 169A of the CAA
VerDate Mar<15>2010
16:54 Feb 23, 2012
Jkt 226001
and in EPA’s RHR at 40 CFR
51.308(d)(1)(i)(A): (1) The costs of
compliance; (2) the time necessary for
compliance; (3) the energy and non-air
quality environmental impacts of
compliance; and (4) the remaining
useful life of any potentially affected
sources. States must demonstrate in
their SIPs how these factors are
considered when selecting the RPGs for
the best and worst days for each
applicable Class I area. States have
considerable flexibility in how they take
these factors into consideration, as
noted in EPA’s Guidance for Setting
Reasonable Progress Goals under the
Regional Haze Program, July 1, 2007,
Memorandum from William L. Wehrum,
Acting Assistant Administrator for Air
and Radiation, to EPA Regional
Administrators, EPA Regions 1–10 (pp.
4–2, 5–1) (‘‘EPA’s Reasonable Progress
Guidance’’). In setting the RPGs, States
must also consider the rate of progress
needed to reach natural visibility
conditions by 2064 (referred to as the
‘‘uniform rate of progress’’ (URP) or the
‘‘glide path’’) and the emission
reduction measures needed to achieve
that rate of progress over the ten-year
period of the SIP. Uniform rate of
progress represents a rate of progress
that states are to use for comparison to
the amount of progress they expect to
achieve over the ten-year period. In
setting RPGs, each State with one or
more Class I areas (‘‘Class I state’’) must
also consult with potentially
‘‘contributing States,’’ i.e., other nearby
States with emission sources that may
be affecting visibility impairment at the
Class I State’s areas. See 40 CFR
51.308(d)(1)(iv).
E. Long-Term Strategy
Consistent with the requirement in
section 169A(b) of the CAA that States
include in their regional haze SIP a ten
to fifteen-year strategy for making
reasonable progress, section 51.308(d)(3)
of the RHR requires that States include
a long-term strategy (LTS) in their
regional haze SIPs. The LTS is the
compilation of all control measures a
State will use during the
implementation period of the specific
SIP submittal to meet applicable RPGs.
The LTS must include ‘‘enforceable
emissions limitations, compliance
schedules, and other measures needed
to achieve the reasonable progress
goals’’ for all Class I areas within and
affected by emissions from the State. 40
CFR 51.308(d)(3).
When a state’s emissions are
reasonably anticipated to cause or
contribute to visibility impairment in a
Class I area located in another state, the
RHR requires the impacted state to
PO 00000
Frm 00046
Fmt 4702
Sfmt 4702
coordinate with contributing states to
develop coordinated emissions
management strategies. 40 CFR
51.308(d)(3)(i). In such cases, the
contributing state must demonstrate that
it has included in its SIP all measures
necessary to obtain its share of the
emission reductions needed to meet the
RPGs for the Class I area. The RPOs
have provided forums for significant
interstate consultation, but additional
consultation between states may be
required to sufficiently address
interstate visibility issues (e.g., where
two states belong to different RPOs).
States should consider all types of
anthropogenic sources of visibility
impairment in developing their LTS,
including stationary, minor, mobile, and
area sources. At a minimum, states must
describe how each of the following
seven factors listed below are taken into
account in developing their LTS: (1)
Emission reductions due to ongoing air
pollution control programs, including
measures to address RAVI; (2) measures
to mitigate the impacts of construction
activities; (3) emissions limitations and
schedules for compliance to achieve the
RPG; (4) source retirement and
replacement schedules; (5) smoke
management techniques for agricultural
and forestry management purposes
including plans as currently exist
within the state for these purposes; (6)
enforceability of emissions limitations
and control measures; and, (7) the
anticipated net effect on visibility due to
projected changes in point, area, and
mobile source emissions over the period
addressed by the LTS. 40 CFR
51.308(d)(3)(v).
F. Coordinating Regional Haze and
Reasonably Attributable Visibility
Impairment (RAVI)
As part of the RHR, EPA revised 40
CFR 51.306(c) regarding the LTS for
RAVI to require that the RAVI plan must
provide for a periodic review and SIP
revision not less frequently than every
three years until the date of submission
of the state’s first plan addressing
regional haze visibility impairment,
which was due December 17, 2007, in
accordance with 40 CFR 51.308(b) and
(c). On or before this date, the state must
revise its plan to provide for review and
revision of a coordinated LTS for
addressing RAVI and regional haze, and
the state must submit the first such
coordinated LTS with its first regional
haze SIP. Future coordinated LTSs, and
periodic progress reports evaluating
progress towards RPGs, must be
submitted consistent with the schedule
for SIP submission and periodic
progress reports set forth in 40 CFR
51.308(f) and 51.308(g), respectively.
E:\FR\FM\24FEP1.SGM
24FEP1
Federal Register / Vol. 77, No. 37 / Friday, February 24, 2012 / Proposed Rules
mstockstill on DSK4VPTVN1PROD with PROPOSALS
The periodic review of a state’s LTS
must provide the status of both regional
haze and RAVI impairment, and must
be submitted to EPA as a SIP revision.
G. Monitoring Strategy and Other
Implementation Plan Requirements
Section 51.308(d)(4) of the RHR
requires a monitoring strategy for
measuring, characterizing, and reporting
on regional haze visibility impairment
that is representative of all mandatory
Class I areas within the state. The
strategy must be coordinated with the
monitoring strategy required in 40 CFR
51.305 for RAVI. Compliance with this
requirement may be met through
‘‘participation’’ in the Interagency
Monitoring of Protected Visual
Environments (IMPROVE) network, i.e.,
review and use of monitoring data from
the network. The monitoring strategy is
due with the first regional haze SIP, and
it must be reviewed every five years.
The monitoring strategy must also
provide for additional monitoring sites
if the IMPROVE network is not
sufficient to determine whether RPGs
will be met. The SIP must also provide
for the following:
• Procedures for using monitoring
data and other information in a state
with mandatory Class I areas to
determine the contribution of emissions
from within the state to regional haze
visibility impairment at Class I areas
both within and outside the state;
• Procedures for using monitoring
data and other information in a state
with no mandatory Class I areas to
determine the contribution of emissions
from within the state to regional haze
visibility impairment at Class I areas in
other states;
• Reporting of all visibility
monitoring data to the Administrator at
least annually for each Class I area in
the state, and where possible, in
electronic format;
• Developing a statewide inventory of
emissions of pollutants that are
reasonably anticipated to cause or
contribute to visibility impairment in
any Class I area. The inventory must
include emissions for a baseline year,
emissions for the most recent year for
which data are available, and estimates
of future projected emissions. A state
must also make a commitment to update
the inventory periodically; and,
• Other elements, including
reporting, recordkeeping, and other
measures necessary to assess and report
on visibility.
H. SIP Revisions and Five-Year Progress
Reports
The RHR requires control strategies to
cover an initial implementation period
VerDate Mar<15>2010
16:54 Feb 23, 2012
Jkt 226001
through 2018, with a comprehensive
reassessment and revision of those
strategies, as appropriate, every ten
years thereafter. Periodic SIP revisions
must meet the core requirements of 40
CFR 51.308(d) with the exception of
BART. The requirement to evaluate
sources for BART applies only to the
first regional haze SIP. Facilities subject
to BART must continue to comply with
the BART provisions of 40 CFR
51.308(e), as noted above. Periodic SIP
revisions will assure that the statutory
requirement of reasonable progress will
continue to be met.
Each state also is required to submit
a report to EPA every five years that
evaluates progress toward achieving the
RPG for each Class I area within the
state and outside the state if affected by
emissions from within the state. 40 CFR
51.308(g). The first progress report is
due five years from submittal of the
initial regional haze SIP revision. At the
same time a 5-year progress report is
submitted, a state must determine the
adequacy of its existing SIP to achieve
the established goals for visibility
improvement. See 40 CFR 51.308(h).
11027
Wildlife Refuge, and Bering Sea
Wilderness Area. ADEC has not
identified any other state that is
impacting the Class I areas in Alaska,
and Alaska has not been identified as a
contributor to impacts in other state’s
Class I areas. However, in accordance
with 40 CFR 51.308(d)(1)(iv) and
51.308(d)(3)(i), ADEC commits to
continue consultation with states which
may reasonably be anticipated to cause
or contribute to visibility impairment in
Federal Class I areas located within
Alaska. ADEC will also continue
consultation with any state for which
Alaska’s emissions may reasonably be
anticipated to cause or contribute to
visibility impairment in that state’s
Federal Class I areas.
B. Baseline, Natural Conditions and
Visibility Improvement
A. Affected Class I Areas
Alaska, using data from the IMPROVE
monitoring network and analyzed by
WRAP, calculated current baseline and
natural visibility conditions, and the
uniform rate of progress (URP) 7 for
Denali National Park, Simeonof
Wilderness Area and Tuxedni Wildlife
Refuge. Baseline visibility for the mostimpaired (20% worst) days and the
least-impaired (20% best) days was
calculated from monitoring data
collected by IMPROVE monitors. The
IMPROVE monitoring sites for each
Class I area are:
• Denali National Park—Denali
National Park has two visibility
monitors. One site is located at the
Denali National Park Headquarters
(DENA1), which has operated since
1988, and the second is the Trapper
Creek monitoring site (TRCR1) located
100 yards east of the Trapper Creek
Elementary School, west of the Town of
Trapper Creek. The monitor located at
Trapper Creek is the official IMPROVE
site for Denali National Park and was
established in September 2001 to
evaluate the long-range transport of
pollution into the Park from the south.
• Simeonof Wilderness Area—The
Simeonof Wilderness Area is located on
a remote, isolated island in the Aleutian
chain approximately 58 miles from
mainland Alaska. The Fish and Wildlife
Service has placed an IMPROVE air
monitor in the community of Sand
Point, Alaska to represent this
wilderness area. The community is on a
more accessible island approximately 60
miles north west of the Simeonof
Wilderness Area. The monitor has been
operating since September 2001.
Alaska has four Class I areas within
the state. These four Class I areas are
Denali National Park, Simeonof
Wilderness Area, Tuxedni National
7 The URP is also referred to as the visibility
‘‘glidepath’’, which is the linear rate of progress
needed to achieve natural visibility conditions by
2064.
I. Consultation With States and Federal
Land Managers
The RHR requires that states consult
with Federal Land Managers (FLMs)
before adopting and submitting their
SIPs. See 40 CFR 51.308(i). States must
provide FLMs an opportunity for
consultation, in person and at least 60
days prior to holding any public hearing
on the SIP. This consultation must
include the opportunity for the FLMs to
discuss their assessment of visibility
impairment in any Class I area and to
offer recommendations on the
development of the reasonable progress
goals and on the development and
implementation of strategies to address
visibility impairment. Further, a state
must include in its SIP a description of
how it addressed any comments
provided by the FLMs. Finally, a SIP
must provide procedures for continuing
consultation between the state and
FLMs regarding the state’s visibility
protection program, including
development and review of SIP
revisions, 5-year progress reports, and
the implementation of other programs
having the potential to contribute to
impairment of visibility in Class I areas.
III. EPA’s Analysis of Alaska’s Regional
Haze SIP
PO 00000
Frm 00047
Fmt 4702
Sfmt 4702
E:\FR\FM\24FEP1.SGM
24FEP1
11028
Federal Register / Vol. 77, No. 37 / Friday, February 24, 2012 / Proposed Rules
• Tuxedni National Wildlife Refuge—
Tuxedni National Wildlife Refuge is
located on a relatively remote pair of
islands in Tuxedni Bay off of Cook Inlet
in Southcentral Alaska. The Fish and
Wildlife Service has installed an
IMPROVE monitor near Lake Clark
National Park to represent conditions at
Tuxedni Wilderness Area. This site is
located on the west side of Cook Inlet,
approximately 5 miles from the Tuxedni
National Wildlife Refuge. The site was
operational as of December 18, 2001,
and represents regional haze conditions
for the wilderness area.
• Bering Sea Wilderness Area—This
wilderness area encompasses St.
Matthew Island, Hall Island, and
Pinnacle Island and is part of the larger
Bering Sea unit of the Alaska Maritime
National Wildlife Refuge. The Bering
Sea Wilderness area is extremely remote
and located approximately 350 miles
southwest of Nome, Alaska and is
surrounded on all sides by the Bering
Sea. There is essentially no electricity or
other infrastructure to support a
monitor. Additionally, the area is
hundreds of miles away from
population centers or major stationary
sources. This area had a DELTA–DRUM
sampler (a mobile sampler) installed
during a field visit in 2002. However,
difficulties were encountered with the
power supply and no viable data are
available, therefore ADEC is not able to
determine baseline visibility conditions
for this site. Due to its inaccessibility,
remoteness, and harsh environment, no
IMPROVE monitoring is available or is
currently planned for the Bering Sea
Wilderness Area.
In general, WRAP based their
estimates of natural conditions on EPA’s
2003 Natural Visibility Guidance, but
incorporated refinements which EPA
believes provides results more
appropriate for Alaska than the general
EPA default approach. These
refinements include the use of an
updated IMPROVE algorithm which
uses a higher ratio of organic mass
concentration to organic carbon mass,
which better accounts for haze from
organic mass, and includes a term for
sea salt, which causes a significant
amount of haze in the Tuxedni and
Simeonof Class I areas. See WRAP
Technical Support Document, February
28, 2011 (WRAP TSD) section 2.D and
2.E, supporting this action.
Table 1 below shows visibility
conditions in Denali National Park,
Simeonof Wilderness Area and Tuxedni
National Wildlife Refuge for the 20%
worst natural visibility days, the 20%
worst baseline days, the 2018 URP, and
the visibility improvement needed
between 2002 and 2018 to achieve the
URP. Table 2 shows visibility
conditions on the 20% best days.
TABLE 1—20% WORST DAY VISIBILITY CONDITIONS
20% Worst
natural
conditions
(dv)
Site
Class I area
DENA1 ...............................
TRCR1 ...............................
SIME1 .................................
TUXE1 ................................
Denali ..............................................................
Denali ..............................................................
Simeonof .........................................................
Tuxedni ...........................................................
20% Worst
baseline
conditions
(dv)
7.3
8.4
15.6
11.3
9.9
11.6
18.6
14.1
2018 Uniform
rate of
progress
(dv)
9.5
11.1
18.1
13.6
Visibility
improvement
needed by
2018
(dv)
0.4
0.5
0.5
0.5
TABLE 2—20% BEST DAY VISIBILITY CONDITIONS
20% Best
baseline
conditions
(dv)
Class I area
DENA1 ....................................................
TRCR1 ....................................................
SIME1 .....................................................
TUXE1 .....................................................
mstockstill on DSK4VPTVN1PROD with PROPOSALS
Site
Denali .................................................................................................
Denali .................................................................................................
Simeonof ............................................................................................
Tuxedni ...............................................................................................
Based on IMPROVE data collected in
the Class I areas in Alaska during the
baseline period (2000–2004), the major
pollutants that contribute to light
extinction on the 20% worst days at the
Simeonof site are: sea salt (47%),
sulfates (29%), and organic mass
concentration (OMC) (9%); at the Denali
DENA1 site are: OMC (54%), sulfates
(25%), elemental carbon (8%); at the
Denali TRCR1 site are: OMC (43%),
sulfates (35%), coarse matter (7%); and
at the Tuxedni site are: OMC (28%), sea
salt (26%), sulfate (28%).
As noted previously, due to the
remote location of the Class I area in the
Bering Sea, no monitoring site exists in
this Class I area and insufficient data are
available to accurately calculate
VerDate Mar<15>2010
16:54 Feb 23, 2012
Jkt 226001
baseline values for this Class I area. The
area is located a considerable distance
off shore in the Bering Sea and is
hundreds of miles from any other
monitoring location. Alaska evaluated
and discussed the origins and influence
of aerosols to this Class I area, and
concluded that significant impacts from
local industrial, commercial or
community developments are unlikely.
Future impacts from potential offshore
oil and gas development is a remote
possibility, but is also unlikely as there
are no offshore oil and gas
developments currently planned for the
St. Matthew-Hall area, or the adjoining
Aleutian Basin, Bowers Basin, and
Aleutian Arc areas. Finally Alaska
indicates that it will continue to
PO 00000
Frm 00048
Fmt 4702
Sfmt 4702
2.4
3.5
7.6
4.0
20% Best
natural
conditions
(dv)
1.8
2.7
5.3
3.2
evaluate the possibility for portable
sampling in remote locations as
resources allow. Alaska Regional Haze
SIP submittal III.K.3–17. EPA
acknowledges the provision in the RHR
which provides that for Class I areas
without monitoring data for 2000–2004
the state should establish baseline
values using the most representative
available monitoring data for 2000–2004
in consultation with the Administrator.
40 CFR 51.308 (d)(2)(i). However, as
explained above and more fully
described the SIP submission,
representative data is not available for
the Bering Sea Wilderness Area.
Additionally, given the location of this
Wilderness Area in the middle of the
Bering Sea hundreds of miles off the
E:\FR\FM\24FEP1.SGM
24FEP1
Federal Register / Vol. 77, No. 37 / Friday, February 24, 2012 / Proposed Rules
mstockstill on DSK4VPTVN1PROD with PROPOSALS
coast of Alaska, it is likely that any
sources impacting visibility in the area
would be beyond Alaska’s jurisdiction
or ability to control. Also EPA expects
the state to update any available
monitoring or visibility impact analyses
in its 5-year progress reports. Therefore,
given the unique, extremely remote and
isolated location and the associated
difficulties with monitoring at the area
EPA proposes to accept Alaska’s
approach to the Bering Sea Wilderness
Area.
Based on our evaluation of the State’s
baseline and natural conditions
analysis, EPA is proposing to find that
Alaska has appropriately determined
baseline visibility for the average 20%
worst and 20% best days, and natural
visibility conditions for the average 20%
worst days, and the visibility glidepath
from the baseline conditions to natural
conditions in the three Class I areas. See
sections 2.D and 2.E of the WRAP TSD
supporting this action. We also believe
the State’s analysis accurately
determined the individual aerosol
species causing impairment in the three
Class I areas.
C. Alaska Emissions Inventories
There are three main categories of
visibility-impairing air pollution
sources: point sources, area sources, and
mobile sources. Point sources are larger
stationary sources that emit air
pollutants. Area sources are large
numbers of small sources that are
widely distributed across an area, such
as residential heating units, re-entrained
dust from unpaved roads or windblown
dust from agricultural fields. Mobile
sources are sources such as motor
vehicles, including agricultural and
construction equipment, locomotives,
and aircraft.
EPA’s Regional Haze Rule requires a
statewide emission inventory of
pollutants that are reasonably
anticipated to cause or contribute to
visibility impairment in any mandatory
Class I area. 40 CFR 51.308(d)(4)(v).
ADEC compiled emission inventories
for all visibility impairing source
categories in Alaska for the 2002
baseline year, and projected future
emission inventories for these source
categories in 2018. See Appendix III.K.5
of the SIP submittal. The fire sector of
the baseline inventory was developed
using 2000–2004 average data obtained
from the WRAP Fire Inventory efforts.
Emission estimates for 2018 were
generated from anticipated population
growth, growth in industrial activity,
and emission reductions from
implementation of control measures,
e.g., implementation of BART
limitations and motor vehicle tailpipe
VerDate Mar<15>2010
16:54 Feb 23, 2012
Jkt 226001
emissions. Chapter 5 of the Alaska
Regional Haze SIP submittal discusses
how emission estimates were
determined for statewide emission
inventories by pollutant and source
category.
Key factors that were considered in
the development of these regional haze
emission inventories were:
Pollutants—Inventories were
developed for the following pollutants:
hydrocarbons (HC), carbon monoxide
(CO), oxides of nitrogen (NOX), sulfur
oxides (SOX), ammonia (NH3), volatile
organic compounds (VOC), and coarse
and fine particulate matter (PM10 and
PM2.5, respectively).
Areal Extent and Spatial Resolution—
The inventories represent sources
within the entire state of Alaska,
encompassing a total of 27 boroughs/
counties. Emissions were allocated to
individual grid cells, of 45 square
kilometers each, in a rectangular grid
domain covering all of Alaska. This grid
domain was based on domain
developed under an earlier WRAP study
for which a modeling protocol was
developed. See Figure III.K.5–2 of the
SIP submittal.
Included Sources—Emission sources
included known stationary point and
area sources including fugitive dust and
both anthropogenic and natural fires,
and on-road and non-road mobile
sources. As discussed later in this
section, biogenic (trees and vegetation)
and geogenic sources (gas/oil seeps,
wind erosion, and geothermal and
volcanic activity) were not included.
Temporal Resolution—The
inventories were expressed in the form
of annual emissions for 2002 and 2018.
For all source categories, except the fire
sector, the baseline inventory was
represented using calendar year 2002
annual emission estimates. The fire
sector of the baseline inventory was
developed using 2000–2004 average
data obtained from the WRAP Fire
Inventory efforts. These data reflect fire
activity (from wildfires, wildland fires,
and prescribed burns) averaged over this
five-year period and are less likely to be
biased by fire emissions from any
individual year. See Alaska Regional
Haze submittal III.K.5–3.
The 2018 inventory was developed to
reflect emission levels projected to
calendar year 2018, accounting for
forecasted changes in source activity
and emission factors. Population
projections compiled by the Alaska
Department of Labor and Workforce
Development at five-year intervals
through 2030 by individual borough and
census area were used to grow 2002
baseline activity to 2018 for most of the
PO 00000
Frm 00049
Fmt 4702
Sfmt 4702
11029
source categories, with a couple of
exceptions.
In developing its 2018 emission
inventory, Alaska first determined that
emission estimates for wildfires should
be held constant between 2002 and
2018. However, as explained later,
modest reductions in prescribed burn
emissions were assumed, consistent
with WRAP 2018b Phase III Fire
Inventory forecast. Second, activity from
small port commercial marine vessel
activity in 2002 was assumed to be
identical to that obtained for calendar
year 2005.
Alaska also developed emission
factors specific to calendar year 2018 for
sources affected by regulatory control
programs and technology
improvements. These source sectors
included on-road and non-road mobile
sources (except commercial marine
vessels and aviation) and stationary
point sources. Alaska explained that the
emissions forecast for 2018 does not
include emissions from new or
permitted sources that are not currently
operating but which may be in
operation in 2018. However, where the
status of these facilities is known,
Alaska further discussed the sources’
influence on predicted emissions or
visibility impact on a particular Class I
area.
The SIP submittal identifies total
annual emission estimates for visibilityimpairing pollutants including SOx,
NOX, VOC HC, CO, PM2.5, PM10 and
NH3 for 2002 and 2018. These emission
estimates were partitioned into eight
emission source categories: point
sources, stationary area sources
(excluding fires), on-road mobile, nonroad mobile, commercial marine
vessels, aviation, anthropogenic fire
(human caused), and natural wildfires.
Biogenic emissions were not included
in these regional haze inventories
because no biogenic inventories have
been developed for Alaska. Alaska
indicates that given its northerly
location, preponderance of snow and ice
cover, and short growing season, it
would be problematic to extrapolate
‘‘lower 48’’ biogenic emission factors
and activity to it. Similarly, geogenic
emissions were also excluded due to
lack of available data. Additionally,
Alaska did not include internationally
transported emissions but cites to a
number of studies that have attributed
atmospheric aerosols measured in
Alaska to contributions from upwind
regions as far away as portions of Asia
and Russia based on back trajectory
analysis and identification of unique
chemical source signatures. Alaska
explains that robust emission estimates
from these source areas are not available
E:\FR\FM\24FEP1.SGM
24FEP1
11030
Federal Register / Vol. 77, No. 37 / Friday, February 24, 2012 / Proposed Rules
and thus there is no accounting of these
international, long-range transported
sources. See Alaska Regional Haze SIP
submittal III.K.5 for additional
discussion of Alaska’s emission
estimates and inventory. See also WRAP
TSD Chapter 3. Tables 2 and 3 below
show total statewide emissions (in tons/
year), by source sector and pollutant, for
the calendar years 2002 and 2018,
respectively. In addition to the totals
across all source sectors, anthropogenic
emission fractions (defined as all sectors
except natural fires divided by total
emissions) are also shown at the bottom
of each table.
TABLE 3—2002 ALASKA STATEWIDE REGIONAL HAZE INVENTORY SUMMARY
Annual emissions (tons/year)
Source sector
HC
Area, Excluding
Wildfires ....................
Non-Road .....................
On-Road .......................
Commercial Marine
Vessels .....................
Aviation (Aircraft) .........
Point .............................
Wildfires, Anthropogenic .........................
Wildfires, Natural ..........
TOTAL—All
Sources .............
Anthropogenic Fraction
CO
NOX
PM10
PM2.5
SOX
NH3
128,271
7,585
7,173
81,978
52,223
80,400
14,742
4,111
7,077
106,985
416
204
30,636
392
158
1,872
49
324
0
8
307
356
1,566
5,697
2,880
21,440
27,910
11,258
3,265
74,471
663
699
5,933
643
667
1,237
4,979
335
6,813
5
6
580
98
274,436
2,048
5,831,755
46
125,110
200
557,403
172
478,057
13
34,304
9
26,233
425,181
35.5%
6,100,633
4.4%
240,080
47.9%
672,502
17.1%
511,962
6.6%
48,689
29.5%
27,149
3.4%
Alaska Regional Haze SIP submittal Table III.K.5–4.
TABLE 4—2018 ALASKA STATEWIDE REGIONAL HAZE INVENTORY SUMMARY
Annual emissions (tons/year)
Source sector
HC
Area, Excluding
Wildfires ....................
Non-Road .....................
On-Road .......................
Commercial Marine
Vessels .....................
Aviation (Aircraft &
GSE) .........................
Point .............................
Fires, Anthropogenic ....
Fires, Natural ...............
TOTAL—All
Sources .............
Anthropogenic Fraction
CO
NOX
PM10
PM2.5
SOX
NH3
137,696
7,766
2,946
88,030
65,900
44,881
15,683
3,332
2,881
116,629
337
138
33,329
313
74
2,068
47
39
0
9
340
616
4,751
16,205
1,031
1,192
1,129
9
1,799
6,612
53
274,436
24,387
24,406
1,100
5,831,755
3,810
65,230
26
125,110
794
1,783
107
557,403
757
358
93
478,057
386
8,587
7
34,304
7
1,106
5
26,233
431,925
36.5%
6,085,210
4.2%
232,277
46.1%
678,223
17.8%
514,173
7.0%
46,568
26.3%
27,709
5.3%
mstockstill on DSK4VPTVN1PROD with PROPOSALS
Alaska Regional Haze SIP submittal Table III.K.5–5.
Significant changes in anthropogenic
sector emission inventories of the
primary visibility impairing pollutants,
NOX, PM10, PM2.5, and SOX, between
2002 and 2018 are summarized below:
1. Non-road: NOX (¥18.9%), PM10
(¥19.1%), and PM2.5 (¥20.2%).
2. On-road: NOX (¥59.3%), PM10
(¥32.3%), PM2.5 (¥53.2%), and SOX
(¥87.9%).
3. Commercial Marine Vessels: NOX
(+43.9%), PM10 (+55.5%), PM2.5
(+85.3%), and SOX (¥77.3%).
4. Aviation: NOX (+16.7%), PM10
(+13.6%), PM2.5 (+13.5%), and SOX
(15.5%).
VerDate Mar<15>2010
16:54 Feb 23, 2012
Jkt 226001
5. Point: NOX (¥12.4%), PM10
(¥69.9%), PM2.5 (¥71.1%), and SOX
(+26.0%).
6. Anthropogenic Fires: NOX
(¥43.8%), PM10 (¥46.2%), PM2.5
(¥46.0%), and SOX (¥43.8%).
The overall changes in the above
pollutants between 2002 and 2018,
across all source sectors, are NOX
(¥3.3%), PM10 (+0.9%), PM2.5 (+0.4%),
and SOX (¥4.4%). EPA is proposing to
find that Alaska has appropriately
determined the emissions for visibility
impairing pollutants in Alaska for 2002
and 2018.
PO 00000
Frm 00050
Fmt 4702
Sfmt 4702
D. Sources of Visibility Impairment in
Class I Areas in Alaska
Each pollutant species has its own
visibility impairing property; for
example, 1 mg/m3 of sulfate at high
humidity is more effective in scattering
light than 1 mg/m3 of organic carbon,
and therefore impairs visibility more
than organic carbon. Following the
approach recommended by the WRAP,
and as explained more fully below,
Alaska used a two-step process to
identify the contribution of each source
or source category to existing visibility
impairment. First, ambient pollutant
concentration by species (such as
sulfate, nitrate, organic carbon, and
E:\FR\FM\24FEP1.SGM
24FEP1
mstockstill on DSK4VPTVN1PROD with PROPOSALS
Federal Register / Vol. 77, No. 37 / Friday, February 24, 2012 / Proposed Rules
elemental carbon) was determined from
the IMPROVE data collected for each
Class I area. These concentrations were
then converted into deciview values to
distribute existing impairment among
the measured pollutant species. The
deciview value for each pollutant
species was calculated by using the
‘‘revised IMPROVE equation’’ (See
WRAP TSD, Section 2.C) to calculate
extinction from each pollutant species
concentration. Second, two regional
visibility models, a back-trajectory
model and a Weighted Emissions
Potential (WEP) model, were used to
determine which source categories
contributed to the ambient
concentration of each pollutant species.
As further explained in the SIP
submittal, due to a number of
constraints in developing a
comprehensive Alaska emission
inventory, rather than conducting
photochemical modeling to determine
current and future visibility conditions
in Class I areas in Alaska, the WRAP
selected alternate meteorological
modeling techniques to determine
current and future visibility conditions.
WRAP used the two modeling
techniques described below to
determine visibility conditions in the
Denali, Tuxedni, and Simeonof Class I
areas:
Back-trajectory modeling was
conducted to determine the path of air
parcels impacting each Class I area.
Back-trajectory analyses use
interpolated measured or modeled
meteorological fields to estimate the
most likely central path over
geographical areas that provided air to
a receptor at any given time. The
method essentially follows a parcel of
air backward in hourly steps for a
specified period of time. Back
trajectories account for the impact of
wind direction and wind speed on
delivery of emissions to the receptor,
but do not account for chemical
transformation, dispersion, and
deposition of samples during transport.
Weighted Emissions Potential (WEP)
analysis was used to determine how
much each emission source area
(sources within each gridded emission
area) contributes to visibility
impairment in the Denali, Simeonof,
and Tuxedni Class I areas, based on
both the baseline 2002 and the 2018
Alaska emissions inventories. This
method does not account for chemistry
and removal processes. Instead, the
WEP analysis relies on an integration of
gridded emissions data, meteorological
back trajectory residence time data, a
one-over-distance factor to approximate
deposition and dispersion, and a
normalization of the final results.
VerDate Mar<15>2010
16:54 Feb 23, 2012
Jkt 226001
The results of the WEP analysis,
conducted by WRAP for Alaska,
identified the following source areas
and source categories impacting
visibility at the Denali National Park
(measured at both the Denali and
Trapper Creek IMPROVE sites),
Simeonof Wilderness Area, and
Tuxedni National Wildlife Refuge:
1. Denali National Park
Table III.K.7–1 of the SIP submittal
summarizes the WEP values for Denali,
based on data collected at the DENAL1
IMPROVE site, for the top three
boroughs (Yukon-Koyukuk, Southeast
Fairbanks, and Fairbanks North Star) for
each pollutant on the 20% worst days.
WEP predicts that 95% of the total PM2.5
for 2002 came from these boroughs, and
of that amount, 95% came from natural
fires in Yukon-Koyukuk and Southeast
Fairbanks boroughs. For VOCs, natural
wildfires in Yukon-Koyukuk and
Southeast Fairbanks boroughs are the
largest source, and stationary area
sources in Denali Borough are the
second largest source. For NOX
contributions in 2002, 77% came from
wildfires in Yukon-Koyukuk and
Southeast Fairbanks boroughs, and
about 13% came from point sources in
the Fairbank North Star borough. For
SOX contributions in 2002, 64% came
from natural fires in Yukon-Koyukuk
and Southeast Fairbanks boroughs, and
29% came from point sources in
Fairbanks North Star borough. For
ammonia contributions in 2002, 97%
came from natural fires in YukonKoyukuk and Southeast Fairbanks
boroughs. The State noted that natural
fires are the dominant source for all of
the pollutants identified at this
monitoring site, and there are no other
significant sources of PM2.5 other than
natural fires. Overall, the information
presented in Table III.K.7–1of the SIP
submittal demonstrates that the only
significant anthropogenic sources of
concern impacting Denali are Fairbanks
SO2 point sources.
Table III.K.7–3 of the SIP submittal
shows the WEP values for Denali based
on data collected at the Trapper Creek
site. This table shows that natural fires
are the largest source of emissions
impacting this site, although there is
also significant contribution from
several anthropogenic source categories.
In summary, 82% of the PM2.5 in 2002
came from natural fires in YukonKoyukuk and Southeast Fairbanks
boroughs, and 11% of the PM2.5 came
from point sources in the MatanuskaSusitna borough. For NOX, 32% of the
contributions for 2002 came from
natural fires in Yukon-Koyukuk
borough, 20% came from point sources
PO 00000
Frm 00051
Fmt 4702
Sfmt 4702
11031
on the Kenai Peninsula and 16% came
from on-road mobile sources in the
Matanuska-Susitna borough. The
contribution of NOX from on-road
mobile sources is expected to drop to
about half this value by 2018 due to the
benefits of fleet turnover and
increasingly stringent Federal motor
vehicle emissions standards. For SOX,
57% of the contributions for 2002 came
from natural fires in the YukonKoyukuk borough, while 19% of the
SOX came from stationary sources in the
Matanuska-Susitna borough. Alaska has
determined that natural fires are the
dominant source for all of the visibility
impairing pollutants at the Trapper
Creek monitor in Denali National Park,
but there is also a significant
contribution from point sources on the
Kenai Peninsula, and from on-road and
stationary sources in the MatanuskaSusitna borough.
2. Simeonof Wilderness Area
A summary of the WEP values for the
boroughs impacting Simeonof is
presented in Table III.K.7–2 of the SIP
submittal. The WEP analysis for this site
shows that natural fires in the YukonKoyukuk borough are the dominant
source of all pollutants impairing
visibility. The WEP analysis concluded
that 96% of the PM2.5, 87% of the VOCs,
76% of the NOX, 91% of the SOX, and
95% of the ammonia impacting
Simeonof during 2000–2004 was from
natural fires in the Yukon-Koyukuk
borough. Alaska indicated that the
forecast for emissions from natural fires
in 2018 impacting the Simeonof Class I
area are the same as for the baseline,
which means that the visibility impacts
from anthropogenic sources is expected
to remain relatively small compared to
contributions from natural fires through
2018 at this site.
3. Tuxedni National Wildlife Refuge
Area
The information presented in Table
III.K.7–4 of the SIP submittal shows a
complex mixture of anthropogenic and
natural source contributions that impact
visibility at the Tuxedni National
Wildlife Refuge. While natural fires are
still the most significant source for
many of the pollutants, (including 78%
of the PM2.5, 41% of the VOCs, 44% of
the SOX, and 54% of the ammonia),
64% of the NOX that impacts Tuxedni
comes from point sources on the Kenai
Peninsula. Anthropogenic sources
projected to significantly impact
Tuxedni in 2018 are: (1) point and
stationary sources on the Kenai
Peninsula, which will contribute 44% of
the VOCs impacting Tuxedni, and (2)
stationary areas sources on the Kenai
E:\FR\FM\24FEP1.SGM
24FEP1
11032
Federal Register / Vol. 77, No. 37 / Friday, February 24, 2012 / Proposed Rules
Peninsula, which will contribute 37% of
the SOX impacting Tuxedni.
EPA is proposing to find that Alaska
has used appropriate air quality models
to identify the primary pollutants, and
source areas for these pollutants,
impacting the Denali, Simeonof, and
Tuxedni Class I areas. EPA is also
proposing to find that the SIP submittal
contains an appropriate analysis of the
impact of these pollutants on visibility
in each of the Class I areas in Alaska.
See WRAP TSD Chapter 6.B (EPA’s
analysis of the WRAP’s WEP analysis
for Alaska).
E. Best Available Retrofit Technology
(BART)
mstockstill on DSK4VPTVN1PROD with PROPOSALS
1. Alaska BART Regulations
Alaska has adopted new regulations at
18 AAC 50.260 (a)–(q) which provide
the State with the authority to regulate
BART sources in Alaska. In April 2007,
ADEC proposed regulations to adopt the
Federal BART rules into 18 AAC 50.260
to establish the process and specific
steps for the BART eligible sources to
follow to provide the analysis necessary
for ADEC to make BART
determinations. ADEC’s regulations
adopting the Federal BART rules were
promulgated on December 30, 2007 and
submitted to EPA for inclusion in the
SIP on February 7, 2008. The essential
elements of these regulations are
summarized below.
In 18 AAC 50.260(a), ADEC adopts
the Federal BART guidelines at 40 CFR
part 51 Appendix Y and the definitions
at 40 CFR 51.301 with specified
exceptions where the definition at AS
46.14.990 is used. 18 AAC 50.260(b)
specifies that sources subject to BART
be identified in accordance with Section
III of the BART guideline and sets the
date by which ADEC will notify subject
sources of their status.
18 AAC 50.260(c) establishes the
procedures by which a source can
request an exemption from BART by
submitting a visibility impact analysis
showing that the source is not
reasonably anticipated to cause or
contribute to any impairment of
visibility in a Class I area.
18 AAC 50.260(d)–(l) establish the
process that sources that did not request
or receive an exemption or an Owner
Requested Limit (ORL) must undertake
to conduct a BART analysis, including
visibility impact analysis modeling, to
determine BART emission limits for
sources that are subject to BART.
18 AAC 50.260(m) establishes how a
final BART determination may be
appealed.
VerDate Mar<15>2010
16:54 Feb 23, 2012
Jkt 226001
18 AAC 50.260(n) establishes the
deadline by which a source must
implement a final BART determination.
18 AAC 50.260(o) requires the owner
or operator of a source required to
install control technology to maintain
the equipment and conduct monitoring,
recordkeeping, and reporting in
accordance with the final BART
determination.
18 AAC 50.260(p) explains the billing
process for ADEC services under this
section.
18 AAC 50.260(q) includes the
definitions related to regional haze in
the rules that are not in 18 AAC 50.990.
These new regulations are consistent
with the definitions and requirements
for BART under the RHR. EPA proposes
to approve these regulations.
2. BART–Eligible Sources in Alaska
In order to identify sources that could
potentially be eligible for BART, ADEC
conducted a preliminary review of its
Title V permits. ADEC then worked in
conjunction with WRAP’s contractor,
Eastern Research Group, Inc. (ERG), to
identify BART-eligible sources from this
preliminary source list. ERG’s report of
April 2005, found that the following
seven sources were BART-eligible
sources:
• Chugach Electric, Beluga River
Power Plant (Chugach Electric);
• Alyeska Pipeline Service Company,
Valdez Marine Terminal (Alyeska);
• Tesoro, Kenai Refinery (Tesoro);
• Anchorage Municipal Light and
Power, George Sullivan Plant 2
(Anchorage Municipal);
• ConocoPhillips Alaska Inc., Kenai
LNG Plant (CPAI);
• Agrium, Chemical-Urea Plant
(Agrium); and
• Golden Valley Electric Association,
Healy Power Plant (GVEA).
Chugach Electric was determined to
not be BART-eligible due to the
replacement of the BART-eligible
emission units with ones that were not
BART-eligible. In April 2007, ADEC
sent a letter to Chugach officials
regarding the status of its BART-eligible
emission units. Chugach responded
with information that the BART-eligible
emission units had been replaced and
the plant had become a ‘‘steam electric
plant’’ after the BART timeframe. EPA
concurs with ADEC that Chugach
Electric is not a BART-eligible source.
After identifying the BART-eligible
sources, the second phase of the BART
evaluation is to identify those BARTeligible sources that may reasonably be
anticipated to cause or contribute to
visibility impairment at any Class I area,
i.e., those sources that are ‘subject’ to
BART. The BART Guidelines allow
PO 00000
Frm 00052
Fmt 4702
Sfmt 4702
states to consider exempting some
BART-eligible sources from further
BART review because they may not
reasonably be anticipated to cause or
contribute to any visibility impairment
in a Class I area. Consistent with the
BART Guidelines and Alaska’s regional
haze regulations, ADEC provided BART
source emission rates to WRAP, which
conducted modeling to determine
which BART-eligible sources could be
reasonable anticipated to cause or
contribute to visibility impairment in
two Class I areas, Denali National Park
and Tuxedni National Wildlife Refuge.8
In WRAP’s analyses, a 0.5 dv threshold
was used to determine if a source was
causing or contributing to visibility
impairment in either of these two Class
I areas.
Alaska also established a 0.5 dv
threshold to determine if a BARTeligible source was subject to BART (see
p. III.K.6–4 of the SIP submittal). This
threshold was based on the following
reasons:
(1) Baseline visibilities at all Alaska
IMPROVE sites are within 0.5 dv of the
2018 goal (See Table III.K.4–3 of the SIP
submittal), and calculations conducted
by ADEC demonstrate that the 2018 goal
will be achieved in all Alaska Class I
areas (see Alaska Regional Haze SIP
submittal, III.K.9–33 through 9–40),
except the Bering Sea Wilderness Area,
for which there is no baseline data.
(2) Insight into selecting a threshold
was also gained from a review of the
uncertainty observed in historical
visibility measurements at each of the
Class I area monitoring sites.
Uncertainty values computed for each
site (i.e., standard deviation) vary from
0.5 dv for Denali, to 0.8 dv at Simeonof,
to 0.6 dv at Trapper Creek, to 1.0 dv at
Tuxedni. A BART threshold of 0.5 dv
would either be less than or equal to
each of these visibility uncertainty
values, thus visibility impacts of sources
meeting this significance threshold
would not be distinguished from
historical variations observed at each of
the monitoring sites.
Based on these reasons, Alaska
selected the 0.5 dv threshold to
determine which sources are subject to
BART. Any source with an impact of
greater than 0.5 dv in any Class I area,
would be subject to a BART analysis
and BART emission limitations. In the
BART Guidelines, EPA recommended
that States ‘‘consider the number of
BART sources affecting the Class I areas
at issue and the magnitude of the
individual sources’ impacts. In general,
8 Visibility impacts at Simeonof and the Bering
Sea Wilderness Areas are expected to be below 0.5
dv.
E:\FR\FM\24FEP1.SGM
24FEP1
mstockstill on DSK4VPTVN1PROD with PROPOSALS
Federal Register / Vol. 77, No. 37 / Friday, February 24, 2012 / Proposed Rules
a larger number of BART sources
causing impacts in a Class I area may
warrant a lower contribution
threshold.’’ 70 FR 39104, 39161 July 6,
2005.
EPA reviewed the modeled impacts of
the BART-eligible sources that Alaska
decided were BART-exempt. These
sources, Alyeska, Tesoro, Anchorage
Municipal, Conoco-Phillips, and
Agrium, were modeled to have a
cumulative visibility impact of just over
1 dv on Tuxedni, and a 0.98 dv impact
at Denali. See Table III.K.6–2 in SIP
submittal. Given the number and
location of sources and the cumulative
impact from these sources, it is
reasonable for Alaska to conclude that a
0.5 dv threshold was appropriate for
capturing those BART-eligible sources
with significant impacts on visibility in
Class I areas. For these reasons and in
consideration of the facts specific to
Alaska, EPA is proposing to approve the
0.5 dv threshold adopted by Alaska for
determining which sources in Alaska
are subject to BART.
To initially identify sources subject to
BART, based on a 0.5 dv threshold,
Alaska used the CALPUFF dispersion
model results generated by WRAP.
CALPUFF was used to assess the impact
of emissions from BART-eligible sources
on visibility at Denali and Tuxedni.
CALPUFF used meteorological data
forecast data, surface meteorological
measurements, and major source
specific emission estimates to calculate
visibility impacts due to emissions of
SO2, NOX and primary PM emissions.
See Alaska Regional Haze SIP submittal
Section III.K.6 for a summary of source
specific modeling results and deciview
impacts.
ADEC subsequently refined the
CALPUFF modeling results by using a
more accurate three-year meteorological
data set, Additionally, the sources,
ADEC, EPA, and the FLMs worked
together to develop a more detailed
CALMET modeling protocol along with
the additional meteorological data. The
results of this second dispersion
modeling were compared to the 0.5 dv
threshold to determine which sources
were subject to BART. The modeling
result for three of the six remaining
BART-eligible sources (Alyeska Pipeline
Service Company, Valdez Marine
Terminal, Tesoro, Kenai Refinery and
Anchorage Municipal Light & Power,
Sullivan Plant) demonstrated that their
visibility impacts were less than 0.5 dv.
Therefore, Alaska determined that these
three sources are not subject to BART.
The Agrium, Chem-Urea Plant is not
currently operating and it is not known
when it might reopen, and operating
data necessary to conduct a BART
VerDate Mar<15>2010
16:54 Feb 23, 2012
Jkt 226001
analysis was not available. Agrium
notified ADEC that it would be
requesting the suspension of the
renewal of its Title V permit as well as
the termination of its current Title V
permit for this facility. Given these
conditions, ADEC issued a BART
determination for Agrium which stated
that Agrium has a zero emission limit
for its BART eligible units, and must
pursue a new air permit if and when it
plans to restart this facility. Therefore,
Agrium currently has a zero emission
limit for its BART eligible units and that
if this facility restarts operation, a new
PSD air permit would be required that
includes all units (including the BART
units) at the facility. As a result, if this
facility restarts operation, all BARTeligible units at the facility would be
reclassified as PSD units and therefore
would be subject to PSD emission
limits. Therefore, ADEC has determined
that this source is not subject to BART.
Alaska’s review of the more refined
CALPUFF modeling of the Conoco
Phillips Alaska, Inc. (CPAI), Kenai LNG
Plant found that its impact on the
Tuxedni Class I area was greater than
0.5 dv. Subsequently, ADEC issued a
Compliance Order by Consent (COBC)
to the facility providing that after
December 31, 2013, the emissions from
the identified BART eligible units at the
CPAI Kenai LNG Plant will be limited
to a level that will not cause or
contribute to visibility impairment in
any Class I area at equal to or greater
than 0.5 dv. The specific operating
conditions, and allowable maximum
daily NOX emission limits, required to
remain below a 0.5 dv impact, are
specified in Exhibit B of the COBC.
ADEC has determined that this source is
not subject to BART. EPA proposes to
approve this determination.
EPA proposes to approve ADEC’s
determination that Alyeska Pipeline
Service Company Valdez Marine
Terminal; Tesoro, Kenai Refinery;
Anchorage Municipal Light & Power,
Sullivan Plant; the Agrium, Chem-Urea
Plant, and the CPAI Kenai LNG Plant
are not subject to BART.
3. BART-Subject Sources in Alaska
Modeling for the remaining BART
eligible source, the GVEA Healy Power
Plant Unit #1, demonstrated baseline
visibility impacts of greater than 3.4 dv,
and therefore is subject to BART. A
summary of the modeling results and
proposed actions to control emissions
from this facility is summarized below.
ADEC determined that the Golden
Valley Electric Association (GVEA),
Healy coal fired power plant is a BARTeligible source located approximately 5
miles from Denali National Park. The
PO 00000
Frm 00053
Fmt 4702
Sfmt 4702
11033
BART-eligible units consist of one
primary coal-fired boiler, a 25-MW
Foster-Wheeler boiler, referred to as
‘‘Healy Unit #1’’, and one auxiliary
boiler (Auxiliary Boiler #1). GVEA
undertook a full assessment of control
options for Healy Unit # 1 under 18
AAC 50.260(d)–(e) and used the WRAP
modeling protocol and submitted its
initial BART control analysis report on
July 28, 2008. In this revised BART
report, GVEA concluded that the
existing NOX, SO2, and PM limits were
BART for Healy Unit #1.
Subsequently, ADEC through its
contractor Enviroplan, conducted a
thorough BART analysis following the
steps outlined in the BART Guidelines.
Followings ADEC’s consultation with
the FLM and receipt and review of
public comments, Enviroplan
completed a final BART determination
report for GVEA on January 19, 2010,
and revised this report on June 1, 2010.
See Alaska Regional Haze SIP submittal,
Appendix III.6–62 through 6–179. (Final
Enviroplan BART Determination Report
for GVEA, revised June 1, 2010
(‘‘Enviroplan GVEA Healy BART
Report’’)). This report, based on updated
site-specific cost information on control
technologies, and on the assumption
that the useful life of installed control
technologies would be 8 years (based on
installation by 2016 and plant shutdown
in 2024), concluded that the following
control technologies are BART for Healy
Unit #1: (1) Selective Non Catalytic
Reduction (SNCR) added to the existing
Low NOX Burners (LNB) with Over
Fired Air (OFA) for NOX, (2) the existing
dry sodium bicarbonate dry sorbent
injection (DSI) system for SO2, and (3)
the existing reverse-gas baghouse system
for PM10
The Enviroplan GVEA Healy BART
Report concluded that SNCR was BART
for NOX because it would be cost
effective at $4,208/ton (based on a 2024
closure of Healy Unit #1), and because
SNCR would provide an 0.62 deciview
improvement in visibility at the Denali
Class I area for 51 days per year (a
reduction from 3.36 dv impact to a 2.74
dv impact). The State determined that
Selective Catalytic Reduction (SCR) was
not cost effective at $15,762/ton and
was therefore was rejected as BART for
NOX control for this unit. Enviroplan
also concluded that Rotating Over Fire
Air (ROFA®), even though cost effective,
would not be incrementally cost
effective over SNCR because the cost per
deciview improvement for the ROFA®
equivalent emission limit would be 50
percent higher than the cost for the
SNCR limit (for a visibility
improvement of only 0.05 dv), and the
capital cost of installing ROFA® would
E:\FR\FM\24FEP1.SGM
24FEP1
mstockstill on DSK4VPTVN1PROD with PROPOSALS
11034
Federal Register / Vol. 77, No. 37 / Friday, February 24, 2012 / Proposed Rules
be 180 percent higher than installing
SNCR.
For SO2 controls, Enviroplan
indicated that increased sorbent
injection, with a potential visibility
improvement of 0.25 dv, was the only
cost-effective option that could improve
visibility in Denali National Park.
However, after evaluating this
alternative according to the required
BART criteria, Enviroplan concluded
that this option was cost prohibitive
because it would cost $3,578 for each
ton of SO2 removed and would result in
a visibility improvement of only 0.25
dv. Enviroplan also noted that
increasing the sorbent injection rate,
could potentially cause a visibility
impairing ‘‘brown plume’’ effect (due to
the oxidation of nitrogen oxide (NO) to
nitrogen dioxide (NO2) prior to
discharge from the stack), which would
adversely impact visibility in Denali
National Park.
Based on the results of Enviroplan’s
evaluation, and in response to public
comments received on the proposed
BART for Healy Unit #1, ADEC
determined that the BART emission
limits for GVEA Healy Unit #1, based on
a 2024 shutdown, are 0.20 lb/mmBtu for
NOX, the current limit of 0.30 lb/mmBtu
for SO2, and the current limit of 0.015
lb/mmBtu for PM.
The BART Guidelines provide that a
source’s remaining useful life may be
considered as an element of the cost
analysis in a BART determination for a
particular source and recognizes that if
the remaining useful life represents a
relatively short time frame it may affect
the annualized costs of the retrofit
controls. BART Guidelines IV.D.4.k.1.
As explained in the BART Guidelines,
where the facility will be shut down
earlier than its normal expected life, the
remaining useful life is the difference
between the date the controls are put in
place and the date the facility
permanently ceases operations. The
BART Guidelines further provide that
‘‘Where this date affects the BART
determination this date should be
assured by a federally, or Stateenforceable restriction preventing
further operation.’’ BART Guidelines,
IV.D.4.k.2.(2). In the case of the Healy
Unit #1, EPA recognizes that the 2024
shutdown date relied on in the cost
effectiveness calculation described
above is not enforceable. However, the
BART Guidelines provide that the
methods specified in EPA’s Control Cost
Manual used to calculate annualized
costs should reflect the specified time
period for amortization that varies
depending on the type of control.
Therefore, based on our review, EPA
considers 15 years to be a reasonable
VerDate Mar<15>2010
16:54 Feb 23, 2012
Jkt 226001
estimated remaining useful lifetime for
the particular control technologies
under consideration for NOX or SO2
control technologies for Healy Unit #1.
Based on a 15-year lifetime, EPA
found that SCR was not cost effective for
controlling NOX emissions at $10,170/
ton. This cost effectiveness value does
not include the cost to replace lost
electricity generation during installation
of SCR because there is insufficient
evidence that the cost is a necessary
consequence of SCR installation. When
this element is removed from the cost
estimate, the overall cost effectiveness
over a 15-year lifetime for SCR
decreases from $11,765/ton to $10,170/
ton (see EPA’s Healy BART Reportaddendum). EPA finds that SCR is still
not cost effective at this lower rate.
However, the following NOX control
technologies were considered cost
effective: SNCR at $3,125/ton, ROFA at
$3,476/ton, and ROFA® with Rotamix®
at $4,325/ton.
EPA next considered the
environmental impacts of each of these
cost effective technologies. ROFA® with
Rotamix® when operated to achieve the
quoted NOX emission rate of 0.11 lb/
MMbtu, reportedly carries some risk of
increased emissions of carbon monoxide
(CO), carbon dioxide (CO2), and ‘‘losson-ignition’’ (un-burnt carbon
particulate matter). Increased particulate
matter emissions could result in
additional visibility impairment at the
Denali Class I area. However, EPA found
that data quantifying this risk is not
readily available, since facilities
employing ROFA® with Rotamix® are
typically allowed slightly higher NOX
emission limits than those quoted by the
vendors of these technologies. EPA’s
review did not identify a facility
utilizing ROFA® with Rotamix® that
was subject to an emission limit near
0.11 lb/mmBTU, the level quoted by the
vendor for ROFA® with Rotamix® for
Healy Unit #1. Installation of the
ROFA® technology alone (without
Rotamix®) is cost effective, and could
achieve an emission rate of 0.15 lb/
mmBtu according to the vendor quote,
but would only result in a visibility
improvement of approximately 0.05 dv
beyond the improvement achievable
using SNCR. ADEC considered this
incremental visibility improvement not
significant enough to warrant the
increased cost for ROFA®, and EPA
agrees with this decision.
ADEC selected the BART NOX
emission limit for Healy Unit #1 based
on a consideration of the BART five-step
control review process, information
provided by GVEA in their BART
analyses, the Enviroplan GVEA Healy
BART Report, and a decision by ADEC
PO 00000
Frm 00054
Fmt 4702
Sfmt 4702
to grant GVEA’s request to allow for
some operational variability in the NOX
emission rate for Healy Unit #1. GVEA
conducted an analysis of 2003–2008 (5
years) 30-day rolling NOX and SO2
emissions from Healy Unit #1, applied
three standard deviations to the mean of
these values, and requested that their
BART emission limits reflect the
resultant rates at three standard
deviations. In response, ADEC
determined that an additional allowance
of 5% higher than the emission rate
identified in the findings report (0.19 lb/
mmBtu) would sufficiently allow for
operating variability. Specifically, ADEC
determined that the flexibility provided
by a 0.20 lbs/mmBtu NOX emission
limit instead of a 0.19 lb/mmBtu NOX
emission limit would require GVEA to
stay within the specified emission limit,
while allowing for a reasonable amount
of operational variability. See Appendix
III.K.6–114 of the SIP submittal. EPA
believes that this minor NOX emission
allowance would not significantly
change the visibility impairment at
Denali National Park due to emissions
from Healy Unit #1. Therefore, EPA
proposes to approve the State’s
determination that an emission limit of
0.20 lbs/mmBtu for NOX is BART for
Healy Unit #1.
For SO2, EPA found that optimizing
the existing Dry Sorbent Injection (DSI)
system to achieve an emission limit of
0.18 lb/mmBtu, by increasing the
sorbent injection rate, is cost effective at
$3,578/ton. However, increased sorbent
injection rate carries the risk of a
‘‘brown plume’’ effect. Brown plume
refers to the oxidation of nitrogen oxide
(NO) to nitrogen dioxide (NO2) prior to
discharge from the stack. NO2 is brown
in color, while NO is colorless; the two
together form NOX. Combustion
emissions are initially NO, and oxidize
in the atmosphere to NO2. High sorbent
injection rates can increase the potential
for this oxidation to occur prior to
discharge, potentially resulting in a
visible brown plume from the exhaust
stack. Due to the proximity of Healy
Unit #1 to Denali National Park, a
brown plume may result in increased
visibility impairment in the sections of
the Park closest to Healy Unit #1, even
though overall visibility impairment
would be reduced. Two other SO2
control options, a spray dryer, and wet
limestone flue gas desulfurization, were
considered not to be cost effective at
$7,198/ton and $7,763/ton, respectively.
Therefore, EPA proposes to approve the
SO2 emission limit achievable by the
current DSI control technology, 0.30 lb/
mmBtu, as BART for Healy Unit #1.
ADEC determined that the existing
reverse-gas baghouse system is the state-
E:\FR\FM\24FEP1.SGM
24FEP1
Federal Register / Vol. 77, No. 37 / Friday, February 24, 2012 / Proposed Rules
mstockstill on DSK4VPTVN1PROD with PROPOSALS
of-the-art particulate emissions (PM)
control technology for utility boiler
applications, and therefore, the existing
high-efficiency reverse-gas baghouse
installed on the Healy Unit #1 is BART
for PM. EPA proposes to approve the
PM emission limit achievable by the
current reverse-gas baghouse control
technology, 0.015 lb/mmBtu, as BART
for Healy Unit #1.
Regarding the Auxiliary Boiler #1, the
State indicated that this unit is just used
during shutdown periods or emergency
repairs to Healy Unit #1 to supply heat
to the Healy 1 building or to provide
steam and potable hot water to Healy
Unit #2, if needed, when Healy Unit #1
is not operating and that it is fired
monthly for maintenance checks.
Additionally, refined modeling for the
State also indicated that that the
predicted visibility impacts attributable
to the boiler were less than .067 dv. The
State determined that the existing
uncontrolled configuration and current
Title 5 permit limits for the Auxilliary
Boiler #1 were BART, and that no
additional controls were required. See
Enviroplan GVEA Healy BART Report
Table E–1 for BART emission limits
specific to the Auxiliary Boiler #1. EPA
agrees that given the low annual
emissions for the boiler, add-on
pollution controls equipment for NOX
and PM are not cost effective. EPA
found that the only viable method to
control SO2 emission from the Auxiliary
Boiler #1 would be to switch to ultralow sulfur diesel. However, due to the
cost differential between high sulfur
diesel and ultra-low sulfur diesel in the
Fairbanks area, it would cost
approximately $28,000/t on to reduce
SO2 emission from the Auxiliary Boiler
#1 by switching fuels. Based on this
cost, EPA has determined that this
approach would not be cost effective.
EPA proposes to approve the State’s
BART determination for the Auxiliary
Boiler #1.
F. Determination of Reasonable Progress
Goals
The RHR requires States to show
‘‘reasonable progress’’ toward natural
visibility conditions over the time
period of the SIP, with 2018 as the first
milestone year. The RHR at 40 CFR
51.308(d)(1) requires states to establish
a goal, expressed in deciviews, for each
Class I area within the state that
provides for reasonable progress toward
achieving natural visibility conditions
by 2064. As such, the State must
establish a Reasonable Progress Goal
(RPG) for each Class I area that provides
for visibility improvement for the mostimpaired (20% worst) days and ensures
no degradation in visibility for the least-
VerDate Mar<15>2010
16:54 Feb 23, 2012
Jkt 226001
impaired (20% best) days in 2018. RPGs
are estimates of the progress to be
achieved by 2018 through
implementation of the Long Term
Strategy (LTS), which includes
anticipated emission reductions from all
State and Federal regulatory
requirements implemented between the
baseline and 2018, including but not
limited to BART and any additional
controls for non-BART sources or
emission activities including any
Federal requirements that reduce
visibility impairing pollutants.
As explained above, ADEC relied on
the WEP analysis conducted by the
WRAP to project visibility conditions at
Denali National Park, Simeonof
Wilderness Area, and Tuxedni National
Wildlife Area in 2018. The visibility
projections were based on estimates of
emissions reductions from all existing
and known controls resulting from
Federal and state CAA programs as of
December 2010.
In setting the RPGs for its Class I
areas, ADEC considered a number of
different factors. These factors included:
(1) Attainment of the URP in each Class
I area by 2018, (2) results of the Four
Factor Analysis, (3) additional
improvements in visibility due to BART
controls, (4) evidence that there is
significant contribution to visibility
impairment from international sources
(such as Asian Dust, and Arctic Haze)
and substantial contributions from
natural sources (such as wildfires and
sea salt), and (5) additional
improvements in visibility in Alaskan
Class I areas due to new maritime
emission regulations that will achieve
substantial reductions by 2015 in SO2
and NOX emissions from commercial
marine vessels. These five factors are
further described in the following
paragraphs.
(1) Attainment of the 2018 URPs—
ADEC conducted a statistical analysis of
historical visibility data from the Denali,
Tuxedni, and Simeonof Class I areas to
demonstrate that the visibility in the
Class I areas in Alaska in 2018 projected
by the WEP analysis falls within the
bounds of the 2018 URP glide path, with
a 95% degree of confidence. This
indicates that there is no difference
between the WEP forecast of visibility
impairment in the Class I areas, and the
URP determined for each Class I area in
2018.
(2) Results of the Four Factor
Analysis—As described in section II.D.
above, when establishing RPGs the RHR
requires the states to consider (1) The
costs of compliance; (2) the time
necessary for compliance; (3) the energy
and non-air quality environmental
impacts of compliance; and (4) the
PO 00000
Frm 00055
Fmt 4702
Sfmt 4702
11035
remaining useful life of any potentially
affected sources. 40 CFR
51.308(d)(1)(i)(A). This is referred to as
the Four Factor Analysis. As reflected in
the information presented in Table
III.K.9–2 of the SIP submittal, the WEP
analysis indicates that three categories
of point sources may be significant
contributors to regional haze and
warrant further analysis under the four
factors. These three categories are:
industrial boilers, petroleum refineries,
and reciprocating engines and turbines.
Based on the four-factor analyses of
these three source categories, ADEC
concluded that it is not reasonable to
require additional controls for these
source categories at this time. Alaska
explained its reasons to support this
decision include: (1) The Class I areas
in Alaska do not need large visibility
improvements to reach natural
conditions in 2064, (2) the Class I areas
are predicted to attain the URP in 2018,
(3) emissions from natural sources
(primarily wildfires) contribute the most
significant visibility impacts, and (4) it
is uncertain, at this time, how much
visibility improvements could be
attained by controlling individual point
sources, since each contributing point
source has not been individually
modeled for visibility impact to the
nearest Class I area.
(3) Additional Improvements not
included in the WEP Analysis—
Additional improvements at several
sources that were not factored into
ADEC’s WEP analysis reduce visibility
impairing pollutants impacting Denali,
and Tuxedni, within the next 5 years.
GVEA’s Healy Power Plant Unit #1 will
install SNCR as BART for NOX, which
will reduce NOX impacts at Denali by
0.62 dv. The Conoco Philips Kenai LNG
plant will also reduce its emissions to
below 0.5 dv under the conditions of a
consent order. Finally, the Agrium,
Chem-Urea Plant in the Kenai has
stopped operating and therefore has
dramatically reduced NH3, NOX and
PM2.5 emissions impacting Tuxedni (by
98%, 18%, and 93%, respectively).
These reductions in emissions from
sources on the Kenai Peninsula indicate
that visibility at Tuxedni should
improve even more rapidly than
predicted by the WEP analysis.
(4) Contribution from International
Sources and Natural Sources—
Significant contributions to haze in the
Class I areas is Alaska include natural
sources (biogenic aerosols, sea salt,
volcanic emissions) and international
sources. See generally, Alaska Regional
Haze SIP submittal, III.K.3–4 to 3–8.
There is also evidence that natural
wildfire is a substantial contributor to
visibility impairment in the three
E:\FR\FM\24FEP1.SGM
24FEP1
mstockstill on DSK4VPTVN1PROD with PROPOSALS
11036
Federal Register / Vol. 77, No. 37 / Friday, February 24, 2012 / Proposed Rules
modeled Class I areas, but particularly
in the Denali Class I area. The
speciation analysis, clearly demonstrate
that natural fires are the dominant
source of pollutants impacting all Class
I areas within Alaska on the 20% worst
days. In Denali, natural fires contribute
97% of the PM2.5, 68% of the VOCs,
79% of the NOX, and 65% of the SO2
that cause visibility impairment in that
Class I area. At Trapper Creek (also in
Denali), natural fires contribute 86% of
the PM2.5, 65% of the VOCs, 34% of the
NOX, and 62% of the SO2 that cause
visibility impairment. In Simeonof,
natural fires contribute 99% of the
PM2.5, 89% of the VOCs, 76% of the
NOX, and 92% of the SO2 that cause
visibility impairment on the worst 20%
days. In Tuxedni, natural fires
contribute 78% of the PM2.5, 41% of the
VOCs, 15% of the NOX, and 44% of the
SO2 that cause visibility impairment on
the worst days. See generally Alaska
Regional Haze SIP submittal, Section
III.K.4, and WEP analyses shown in
Tables III.K.7–1 through III.K.7–4.
(5) Additional Improvements due to
New Maritime Emission Regulations—
Alaska also found that new emission
control requirements on commercial
marine vessels, which will be fully in
effect by 2015, will reduce SO2, NOX,
and PM2.5 emission contributions to
visibility impairment in Simeonof
Wilderness Area and Tuxedni National
Wildlife Refuge. In October 2008, the
International Maritime Organization
(IMO) adopted Annex VI amendments
which specify (1) New fuel quality
requirements for commercial marine
vessels beginning from July 2010, (2)
Tier II and III NOX emission standards
for new commercial marine engines,
and (3) Tier I NOX requirements for
existing pre-2000 commercial marine
engines. The Annex VI amendments
designate waters within 200 miles of the
North American coast (including
Alaska) as an emission control area
(ECA). The requirements of Annex VI
ensure large reductions in particulate
matter, NOX, and SO2 emission from
commercial marine vessels operating in
the ECA. These reductions were not
factored into the Alaska 2018 emissions
inventory projections or the WEP
analysis, but are expected to further
improve visibility at Tuxedni, and to a
lesser extent Simeonof, which are both
significantly impacted by emissions
from commercial marine vessels.
Alaska acknowledged that its
emission inventory and 2018 reasonable
progress forecasts and emission
inventory do not include emissions
from the 50 MW coal-fired unit at the
GVEA facility in Healy (Healy Unit #2)
The State explained, the unit has not
VerDate Mar<15>2010
16:54 Feb 23, 2012
Jkt 226001
operated for a number of years, is not
currently operating and that the
available information to analyze the
potential visibility impact of the Healy
Unit #2 emissions on Denali is
inconclusive. The State does recognize
however that if the unit is brought on
line, the point source NOX and SOx
emissions emitted from within the
Denali Borough would increase by a
factor of 4.0 and 2.8 respectively. Alaska
Regional Haze SIP submittal III.K.9–32,
9–37. EPA is aware that on February 3,
2012, ADEC issued a revised Title 5
permit to GVEA allowing Healy 2 to
resume operations, and that emissions
from Healy 2 could have an impact on
visibility in Denali. Final Air Quality
Operating Permit No. AQ0173TVP02
(Feb. 3, 2012). However, since the
visibility impacts of these future
emissions have not yet been modeled,
the exact amount of impact cannot be
determined at this time. Therefore, for
reasonable progress purposes, it is not
reasonable to require additional controls
on the facility at this time. If or when
the unit begins operating again, ADEC
commits to assessing the impact of these
additional emissions on visibility in
Denali and will evaluate control options
for the facility as part of its 5 year
progress report. In light of the
uncertainty regarding the facility at this
time, we propose to approve the State’s
consideration of the Healy Unit #2 in its
reasonable progress evaluation. EPA
will consider additional relevant
information it receives during public
comment period regarding the
emissions or visibility impact of this
source as it relates to Alaska’s
reasonable progress goals.
EPA is proposing to agree with the
State’s analysis and conclusion that it is
not reasonable to seek additional
controls on other emission sources
within the State at this time to achieve
further reasonable progress.
Importantly, the RPGs for the Class I
areas in Alaska are projected to meet the
URP in 2018. Alaska has demonstrated
that the RPGs provide for visibility
improvement on the worst days, and no
degradation of visibility on the best days
compared to the baseline average. EPA
finds that the State’s decision not to
seek additional control measures is
supported by the fact that there is
significant contribution to haze in the
Class I areas due to international
sources and some natural sources
(biogenic aerosols, sea salt, and volcanic
emissions), as well as substantial
contributions to haze from wildfires. In
addition, the State expects reductions in
statewide emissions of SO2 and NOX
due to BART emission limits on Healy
PO 00000
Frm 00056
Fmt 4702
Sfmt 4702
Unit #1, emission limits on the Conoco
Phillips Kenai LNG Plant specified in
the consent order between Alaska and
Conoco Philips, and the shutdown of
the Agrium, Chem-Urea Plant. Based on
the above reasons, EPA is proposing to
approve ADEC’s demonstration that its
RPGs provide for reasonable progress in
all its Class I areas for the first planning
period, as required in CFR
51.308(d)(1)(i), (ii) and (vi).
G. Long Term Strategy (LTS)
Alaska relied on monitoring, emission
inventories and modeling information
from the WRAP as the technical basis
for its LTS. Coordination and
consultation occurred with other states
through the WRAP, in which all western
states participated in developing the
technical analysis upon which their
SIPs are based. This included
identifying all anthropogenic sources of
visibility impairment including major
and minor stationary sources, mobile
sources, and area sources. The
anticipated net effect on visibility over
the first planning period due to changes
in point, area, and mobile source
emissions is a significant reduction in
regional haze in the Denali, Tuxedni,
and Simeonof Class I areas. In
particular, ADEC considered the
following factors in developing its longterm strategy.
1. Ongoing Air Pollution Control
Programs
Alaska has a number of ongoing
programs and regulations that directly
protect visibility or provide for
improved visibility by generally
reducing emissions.
a. Prevention of Significant
Deterioration/New Source Review
Regulations
The two primary regulatory programs
for addressing visibility impairment
from industrial sources are the BART
and Prevention of Significant
Deterioration/New Source Review (PSD/
NSR) rules. The PSD/NSR rules require
that emissions from new industrial
sources and major changes to existing
sources protect visibility in Class I areas
through attainment of air quality related
values, including visibility, in Class I
areas.
b. Regional Haze BART Controls
Section 51.308(e) of the RHR includes
the requirements for states to implement
Best Available Retrofit Technology for
eligible sources within the State that
may reasonably cause or contribute to
any impairment of visibility in any
mandatory Class I area. Alaska’s BART
regulations (18 AAC 50.260) specify
E:\FR\FM\24FEP1.SGM
24FEP1
Federal Register / Vol. 77, No. 37 / Friday, February 24, 2012 / Proposed Rules
how to determine if a source is subject
to BART, and identify the process for
determining BART emission limits for
BART-subject sources. As discussed in
section II.E. above, ADEC has completed
analysis of identified BART-eligible
sources in Alaska and has determined
BART emission limits for all BARTsubject sources. Each source subject to
BART is required to install and operate
BART as expeditiously as practicable,
but in no case more than five year after
EPA approval of the regional haze SIP.
c. Operating Permit Program and Minor
Source Permit Program
ADEC implements a Title V operating
permit program as well as a minor
source permit program for stationary
sources of air pollution. The Title V
permits are consistent with the
requirements of 40 CFR part 71 and
requirements are found in 18 AAC 50
Article 3, Major Stationary Source
Permits. The requirements for minor
source permits are found in 18 AAC 50
Article 5, Minor Permits. These permit
programs, coupled with PSD/NSR
requirements, serve to ensure that
stationary industrial sources in Alaska
are controlled, monitored, and tracked
to prevent deleterious effects of air
pollution.
mstockstill on DSK4VPTVN1PROD with PROPOSALS
d. Alaska Open Burning Regulations
Alaska has previously established
open burning regulations in 18 AAC
50.065. These regulations are intended
to prevent particulate matter emitted
from open burning from adversely
impacting visibility in Class I areas. For
example,18 AAC 50.065 (b)–(f) provide
ADEC the authority to require preapprovals for controlled burning to
manage forest land, vegetative cover,
fisheries, or wildlife habitat if the area
to be burned exceeds 40 acres yearly.
The open burning regulations, working
in conjunction with the state’s
Enhanced Smoke Management Plan,
control visibility impairing pollutants
resulting from planned open burning
activities.
e. Local, State and Federal Mobile
Source Control Programs
Mobile source emissions show
decreases in NOX, SO2, and VOCs in
Alaska during the period 2002–2018.
These declines in emissions are due to
numerous rules already in place, most
of which are Federal regulations. The
State of Alaska has established
regulations related to mobile sources
that primarily impact the Fairbanks and
Anchorage CO maintenance areas,
Alaska’s two largest cities. These
programs have resulted in NOX and
hydrocarbon emission reductions from
VerDate Mar<15>2010
16:54 Feb 23, 2012
Jkt 226001
11037
motor vehicles in Alaska’s two largest
communities.
3. Emission Limitations and Schedules
for Compliance
f. The Federal Motor Vehicle Control
Program and Federal Diesel Emission
Standards
The Federal Motor Vehicle Control
Program (FMVCP) is a Federal
certification program that requires all
new cars sold in all states except
California to meet more stringent
emission standards. As a result, motor
vehicle emissions will be reduced as the
older vehicle fleet is replaced with
newer cleaner vehicles. Additionally, a
variety of Federal rules establishing
emission standards and fuel
requirements for diesel on-road and
non-road equipment will significantly
reduce emissions of particulate matter,
nitrogen oxides, and sulfur oxides from
emission sources over the first planning
period in Alaska. Alaska reports that as
of 2010, all on-road and non-road diesel
engines in Alaska have meet EPA’s
national requirements for 15 ppm sulfur
diesel fuel. In addition to these
regulatory programs, ADEC is also
promoting voluntary projects to reduce
diesel emission reductions throughout
the state.
Emission limits and compliance
schedules for affected sources are
specified under Alaska and Federal
regulations in accordance with the
Clean Air Act. Additionally, as
discussed above, Alaska has established
specific emission limits and compliance
schedules for sources subject to BART.
The state anticipates future SIP updates
may identify additional emission
controls that could be implemented at
that time and commits to include limits
and compliance schedules as needed in
future plan updates.
g. Implementation of Programs To Meet
PM10 NAAQS
The community of Eagle River and the
Mendenhall Valley in Juneau are either
currently or formerly nonattainment
areas with respect to the NAAQS for
coarse particulate matter (PM10). These
areas exceeded the standards due
primarily to wood burning and road
dust sources, and now have strict
controls in place that regulate wood
burning and control road dust, the two
major sources of PM10 in these
communities.
2. Measures To Mitigate Impacts of
Construction Activities
In developing its LTS, ADEC has
considered the impact of construction
activities on visibility in the Class I
areas. ADEC regulations at 18 AAC
50.045(d) require that entities who
cause or permit bulk materials to be
handled, transported, or stored or who
engage in industrial activities or
construction projects shall take
reasonable precautions to prevent
particulate matter from being emitted
into the ambient air. This regulation
allows the state to take action on
fugitive dust emissions from
construction activities. Based on the
general knowledge of growth and
construction activity in Alaska, ADEC
believes that current state and Federal
regulations adequately address this
emission source category.
PO 00000
Frm 00057
Fmt 4702
Sfmt 4702
4. Source Retirement and Replacement
Schedules
Alaska’s continued implementation of
NSR and PSD requirements, with the
FLMs reviewing impacts to Class I areas,
will assure that there is no degradation
of visibility in Alaska Class I areas on
the least impaired days from expansion
or growth of stationary sources in the
state. ADEC will continue to track
source retirement and replacement and
include known schedules in periodic
revisions to its Air Quality Control
(ACC) Plan and Regional Haze SIP.
5. Smoke Management Techniques for
Agricultural and Forestry Burning
Smoke from wildland fires is a major
contributor to visibility impairment
Class I areas in Alaska. Alaska found
that implementation of effective smoke
management techniques through
regulation and an Enhanced Smoke
Management Plan (ESMP) will mitigate
impacts of planned burning on visibility
in its Class I areas. Additionally, ADEC
has developed and implemented an
ESMP, and includes this plan as part of
this long-term strategy. Specifically, the
ESMP, which will be revised at least
every 5 years or sooner if needed,
outlines the process, practices and
procedures to manage smoke from
prescribed and other open burning to
help ensure that prescribed fire (e.g.
controlled burn) activities minimize
smoke and air quality problems.
6. Enforceability of Emission
Limitations and Control Measures
BART emission limits and control
measures will enforceable as a matter of
State law by virtue of Alaska’s BART
regulations at 18 AAC 50.260 and
federally enforceable once approved as
part of its State Implementation Plan.
ADEC has adopted this Regional Haze
Plan into the Alaska Air Quality Control
Plan (Alaska’s State Implementation
Plan) at 18 AAC 50.030, which ensures
that all elements in the plan are
E:\FR\FM\24FEP1.SGM
24FEP1
11038
Federal Register / Vol. 77, No. 37 / Friday, February 24, 2012 / Proposed Rules
federally enforceable once approved by
EPA.
EPA is proposing to find that ADEC
adequately addressed the RHR
requirements in its long-term strategy
(LTS). EPA believes that this LTS
provides sufficient measures to ensure
that Alaska will meet its emission
reduction obligations to achieve
adequate visibility protection for the
Class I areas in the State.
mstockstill on DSK4VPTVN1PROD with PROPOSALS
H. Monitoring Strategy and Other
Implementation Plan Requirements
The primary monitoring network for
regional haze in Alaska is the IMPROVE
network. As discussed in section III.B.
of this notice, there are currently two
IMPROVE monitoring sites at Denali
National Park, one at Simeonof, and one
at Tuxedni. There is no IMPROVE site
for the Bering Sea Wilderness Area. As
previously explained, one of the
monitoring challenges in Alaska is the
logistical difficulty of monitoring at
remote locations in the harsh arctic
environment. The challenges for
ongoing air and visibility monitoring in
Alaska include transportation and site
maintenance in isolated and remote
areas where access may be
intermittently available only by air or
water, and electrical power may be
lacking. Alaska is working with EPA
and the FLMs to ensure that the
monitoring network in Alaska provides
data that are representative of visibility
conditions in each affected Class I area
within the State. In the SIP submittal,
Alaska commits to rely on the IMPROVE
network for complying with the regional
haze monitoring requirement in EPA’s
RHR for the current and future regional
haze implementation periods. See
Alaska Regional Haze SIP submittal
III.K.3.C.2.
I. Consultation With States and FLMs
Through the WRAP, member states
and Tribes worked extensively with the
FLMs from the U.S. Departments of the
Interior and Agriculture to develop
technical analyses that support the
regional haze SIPs for the WRAP states.
The State of Alaska provided an
opportunity for FLM consultation, at
least 60 days prior to holding any public
hearing on the SIP. This SIP was
submitted to the FLMs on June 24, 2010,
for review and comment. Comments
were received from the FLMs on August
23, 2010. As required by 40 CFR
51.308(i)(3), the FLM comments and
State responses are included the SIP
submittal.
40 CFR 51.308(f–h) establish
requirements and timeframes for states
to submit periodic SIP revisions and
progress reports that evaluate progress
VerDate Mar<15>2010
16:54 Feb 23, 2012
Jkt 226001
toward the reasonable progress goal for
each Class I area. As required by 40 CFR
51.308(i)(4), ADEC will continue to
coordinate and consult with the FLMs
during the development of these future
progress reports and plan revisions, as
well as during the implementation of
programs having the potential to
contribute to visibility impairment in
mandatory Class I areas. This
consultation process shall provide ongoing and timely opportunities to
address the status of the control
programs identified in this SIP, the
development of future assessments of
sources and impacts, and the
development of additional control
programs.
J. SIP Revisions and Five-Year Progress
Reports
Section 51.308(f) of the Regional Haze
Rule requires that regional haze plans be
revised and submitted to EPA by July
31, 2018, and every ten years thereafter.
In accordance with those requirements,
ADEC commits to revising and
submitting this Plan by July 31, 2018,
and every ten years thereafter. See
Alaska Regional Haze SIP submittal
section III.K.10.
40 CFR 51.308(g) requires states to
submit a progress report to EPA every
five years evaluating progress towards
the reasonable progress goal(s). The first
progress report is due five years from
the submittal of the initial
implementation plan and must be in the
form of an implementation plan revision
that complies with 40 CFR 51.102 and
51.103. ADEC commits to submitting a
report on reasonable progress to EPA
every five years following the initial
submittal of the SIP. The reasonable
progress report will evaluate the
progress made towards the reasonable
progress goal for each mandatory Class
I area located within Alaska and in each
mandatory Class I area located outside
Alaska, which may be affected by
emissions from Alaska.
IV. Amendment to Air Quality Control
Plan Regarding Open Burning and
Regional Haze
The Alaska Regional Haze SIP
submittal included amendments to the
Air Quality Control Plan at 18 AAC
50.30. More specifically, Volume II.,
Section III. F: Open Burning is revised
to include the ‘‘In Situ Burning
Guidelines for Alaska, Revision 1’’
(August 2008) and to update the open
burn application requirements in
Alaska’s Enhanced Smoke Management
Plan. ADEC’s ‘‘In Situ Burning
Guidelines’’ apply to specified
situations involving oil spills. Alaska’s
Enhanced Smoke Management Plan
PO 00000
Frm 00058
Fmt 4702
Sfmt 4702
applies to prescribed burning and for
land clearing approvals. Additionally,
Volume II, Section III. K: Area Wide
Pollution Control Program for Regional
Haze is a new section and, as discussed
above, is intended to meet the RHR
requirements, and Volume II:
Appendices to Volume II is amended to
include the Appendices for Alaska’s
Areawide Pollutant Control Program for
Regional Haze.
EPA proposes to approve the
amendments at 18 AAC 50.30.
V. What action is EPA proposing?
EPA is proposing to approve the
Alaska Regional Haze plan, submitted
on April 4, 2011, as meeting the
requirements set forth in section 169A
of the Act and in 40 CFR 51.308
regarding Regional Haze. EPA is also
proposing to approve ADEC’s BART
regulations in 18 AAC 50.260.
Additionally, EPA is proposing to
approve the amendments to 18 AAC
50.30 to adopt by reference Volume II.,
Section III. F. Open Burning; Volume II,
Section III. K. Area Wide Pollution
Control Program for Regional Haze; and
Volume II, Appendices to Volume II.
VI. Statutory and Executive Order
Reviews
Under the Clean Air Act, the
Administrator is required to approve a
SIP submission that complies with the
provisions of the Act and applicable
Federal regulations. 42 U.S.C. 7410(k);
40 CFR 52.02(a). Thus, in reviewing SIP
submissions, EPA’s role is to approve
state choices, provided that they meet
the criteria of the Clean Air Act.
Accordingly, this proposed action
merely approves state law as meeting
Federal requirements and does not
impose additional requirements beyond
those imposed by state law. For that
reason, this proposed action:
• Is not a ‘‘significant regulatory
action’’ subject to review by the Office
of Management and Budget under
Executive Order 12866 (58 FR 51735,
October 4, 1993);
• Does not impose an information
collection burden under the provisions
of the Paperwork Reduction Act (44
U.S.C. 3501 et seq.);
• Is certified as not having a
significant economic impact on a
substantial number of small entities
under the Regulatory Flexibility Act
(5 U.S.C. 601 et seq.);
• Does not contain any unfunded
mandate or significantly or uniquely
affect small governments, as described
in the Unfunded Mandates Reform Act
of 1995 (Pub. L. 104–4);
• Does not have Federalism
implications as specified in Executive
E:\FR\FM\24FEP1.SGM
24FEP1
Federal Register / Vol. 77, No. 37 / Friday, February 24, 2012 / Proposed Rules
Order 13132 (64 FR 43255, August 10,
1999);
• Is not an economically significant
regulatory action based on health or
safety risks subject to Executive Order
13045 (62 FR 19885, April 23, 1997);
• Is not a significant regulatory action
subject to Executive Order 13211 (66 FR
28355, May 22, 2001);
• Is not subject to requirements of
Section 12(d) of the National
Technology Transfer and Advancement
Act of 1995 (15 U.S.C. 272 note) because
application of those requirements would
be inconsistent with the Clean Air Act;
and
• Does not provide EPA with the
discretionary authority to address, as
appropriate, disproportionate human
health or environmental effects, using
practicable and legally permissible
methods, under Executive Order 12898
(59 FR 7629, February 16, 1994).
In addition, this rule does not have
tribal implications as specified by
Executive Order 13175 (65 FR 67249,
November 9, 2000), because the SIP is
not approved to apply in Indian country
located in the state, and EPA notes that
it will not impose substantial direct
costs on tribal governments or preempt
tribal law.
List of Subjects in 40 CFR Part 52
Environmental protection, Air
pollution control, Intergovernmental
relations, Nitrogen dioxide, Particulate
matter, Reporting and recordkeeping
requirements, Sulfur oxides, Visibility,
and Volatile organic compounds.
Dated: February 14, 2012.
Dennis J. McLerran,
Regional Administrator Region 10.
[FR Doc. 2012–4326 Filed 2–23–12; 8:45 am]
BILLING CODE 6560–50–P
ENVIRONMENTAL PROTECTION
AGENCY
40 CFR Part 98
[EPA–HQ–OAR–2011–0028; FRL–9637–2]
mstockstill on DSK4VPTVN1PROD with PROPOSALS
RIN 2060–AQ70
Proposed Confidentiality
Determinations for the Petroleum and
Natural Gas Systems Source Category,
and Amendments to Table A–7, of the
Greenhouse Gas Reporting Rule
Environmental Protection
Agency (EPA).
ACTION: Proposed rule.
AGENCY:
This action re-proposes
confidentiality determinations for the
data elements in subpart W, the
petroleum and natural gas systems
SUMMARY:
VerDate Mar<15>2010
16:54 Feb 23, 2012
Jkt 226001
category, of the Mandatory Reporting of
Greenhouse Gases Rule. On July 7, 2010,
the EPA proposed confidentiality
determinations for then-proposed
subpart W data elements and is now
issuing this re-proposal due to
significant changes to certain data
elements in the final subpart W
reporting requirements. The EPA is also
proposing to assign 10 recently added
reporting elements as ‘‘Inputs to
Emission Equations’’ and to defer their
reporting deadline to March 31, 2015,
consistent with the agency’s approach
in the August 25, 2011 rule which
finalized the deferral of some reporting
data elements that are inputs to
emissions equations.
DATES: Comments. Comments must be
received on or before March 26, 2012
unless a public hearing is held, in
which case comments must be received
on or before April 9, 2012.
Public Hearing. To request a hearing,
please contact the person listed in the
FOR FURTHER INFORMATION CONTACT
section by March 2, 2012. Upon such
request, the EPA will hold the hearing
on March 12, 2012 in the Washington,
DC area. The EPA will publish further
information about the hearing in the
Federal Register if a hearing is
requested.
You may submit your
comments, identified by Docket ID No.
EPA–HQ–OAR–2011–0028, by one of
the following methods:
• Federal eRulemaking Portal: https://
www.regulations.gov. Follow the online
instructions for submitting comments.
• Email: GHGReportingCBI@epa.gov.
• Fax: (202) 566–1741.
• Mail: Environmental Protection
Agency, EPA Docket Center (EPA/DC),
Mailcode 6102T, Attention Docket ID
No. EPA–HQ–OAR–2011–0028, 1200
Pennsylvania Avenue NW., Washington,
DC 20460.
• Hand Delivery: EPA Docket Center,
Public Reading Room, EPA West
Building, Room 3334, 1301 Constitution
Avenue NW., Washington, DC 20004.
Such deliveries are only accepted
during the Docket’s normal hours of
operation, and special arrangements
should be made for deliveries of boxed
information.
Instructions: Direct your comments to
Docket ID No. EPA–HQ–OAR–2011–
0028. The EPA’s policy is that all
comments received will be included in
the public docket without change and
may be made available online at
https://www.regulations.gov, including
any personal information provided,
unless the comment includes
information claimed to be confidential
business information (CBI) or other
ADDRESSES:
PO 00000
Frm 00059
Fmt 4702
Sfmt 4702
11039
information whose disclosure is
restricted by statute.
Do not submit information that you
consider to be CBI or otherwise
protected through https://
www.regulations.gov or email. Send or
deliver information identified as CBI to
only the mail or hand/courier delivery
address listed above, attention: Docket
ID No. EPA–HQ–OAR–2011–0028. The
https://www.regulations.gov Web site is
an ‘‘anonymous access’’ system, which
means the EPA will not know your
identity or contact information unless
you provide it in the body of your
comment. If you send an email
comment directly to the EPA without
going through https://
www.regulations.gov, your email
address will be automatically captured
and included as part of the comment
that is placed in the public docket and
made available on the Internet. If you
submit an electronic comment, then the
EPA recommends that you include your
name and other contact information in
the body of your comment and with any
disk or CD–ROM you submit. If the EPA
cannot read your comment due to
technical difficulties and cannot contact
you for clarification, the EPA may not
be able to consider your comment.
Electronic files should avoid the use of
special characters, any form of
encryption, and be free of any defects or
viruses.
Docket: All documents in the docket
are listed in the https://
www.regulations.gov index. Although
listed in the index, some information is
not publicly available, e.g., CBI or other
information whose disclosure is
restricted by statute. Certain other
material, such as copyrighted material,
will be publicly available only in hard
copy. Publicly available docket
materials are available either
electronically in https://
www.regulations.gov or in hard copy at
the Air Docket, EPA/DC, EPA West,
Room B102, 1301 Constitution Ave.
NW., Washington, DC. This Docket
Facility is open from 8:30 a.m. to 4:30
p.m., Monday through Friday, excluding
legal holidays. The telephone number
for the Public Reading Room is (202)
566–1744, and the telephone number for
the Air Docket is (202) 566–1742.
FOR FURTHER GENERAL INFORMATION
CONTACT: Carole Cook, Climate Change
Division, Office of Atmospheric
Programs (MC–6207J), Environmental
Protection Agency, 1200 Pennsylvania
Ave. NW., Washington, DC 20460;
telephone number: (202) 343–9263; fax
number: (202) 343–2342; email address:
GHGReportingRule@epa.gov. For
technical information and
E:\FR\FM\24FEP1.SGM
24FEP1
Agencies
[Federal Register Volume 77, Number 37 (Friday, February 24, 2012)]
[Proposed Rules]
[Pages 11022-11039]
From the Federal Register Online via the Government Printing Office [www.gpo.gov]
[FR Doc No: 2012-4326]
=======================================================================
-----------------------------------------------------------------------
ENVIRONMENTAL PROTECTION AGENCY
40 CFR Part 52
[EPA-R10-OAR-2011-0367, FRL-9636-9]
Approval and Promulgation of Implementation Plans; State of
Alaska; Regional Haze State Implementation Plan
AGENCY: Environmental Protection Agency (EPA).
ACTION: Proposed rule.
-----------------------------------------------------------------------
SUMMARY: EPA is proposing to approve a State Implementation Plan (SIP)
revision, submitted by the State of Alaska on April 4, 2011, as meeting
the requirements of Clean Air Act (CAA) sections169A and 169B, and
Federal Regulations 40 CFR 51.308, to implement a regional haze program
in the State of Alaska for the first planning period through July 31,
2018. This revision addresses the requirements of the Clean Air Act
(CAA) and EPA's rules that require states to prevent any future and
remedy any existing anthropogenic impairment of visibility in mandatory
Class I areas caused by emissions of air pollutants from numerous
sources located over a wide geographic area (also referred to as the
``regional haze program''). Additionally, EPA proposes to approve the
Alaska Department of Environmental Conservation Best Available Retrofit
Technology regulations at 18 AAC 50.260.
DATES: Written comments must be received at the address below on or
before March 26, 2012.
ADDRESSES: Submit your comments, identified by Docket ID No. EPA-R10-
OAR-2011-0367, by one of the following methods:
www.regulations.gov: Follow the on-line instructions for
submitting comments.
Email: R10-Public_Comments@epa.gov.
Mail: Keith Rose, EPA Region 10, Office of Air, Waste and
Toxics, AWT-107, 1200 Sixth Avenue, Suite 900, Seattle, WA 98101.
Hand Delivery/Courier: EPA Region 10, 1200 Sixth Avenue,
Suite 900,
[[Page 11023]]
Seattle, WA 98101. Attention: Keith Rose, Office of Air, Waste and
Toxics, AWT-107. Such deliveries are only accepted during normal hours
of operation, and special arrangements should be made for deliveries of
boxed information.
Instructions: Direct your comments to Docket ID No. EPA-R10-OAR-
2011-0367. EPA's policy is that all comments received will be included
in the public docket without change and may be made available online at
https://www.regulations.gov, including any personal information
provided, unless the comment includes information claimed to be
Confidential Business Information (CBI) or other information whose
disclosure is restricted by statute. Do not submit information that you
consider to be CBI or otherwise protected through https://www.regulations.gov or email. The https://www.regulations.gov Web site
is an ``anonymous access'' system, which means EPA will not know your
identity or contact information unless you provide it in the body of
your comment. If you send an email comment directly to EPA, without
going through https://www.regulations.gov, your email address will be
automatically captured and included as part of the comment that is
placed in the public docket and made available on the Internet. If you
submit an electronic comment, EPA recommends that you include your name
and other contact information in the body of your comment and with any
disk or CD-ROM you submit. If EPA cannot read your comment due to
technical difficulties and cannot contact you for clarification, EPA
may not be able to consider your comment. Electronic files should avoid
the use of special characters, any form of encryption, and be free of
any defects or viruses. For additional information about EPA's public
docket visit the EPA Docket Center homepage at https://www.epa.gov/epahome/dockets.htm.
Docket: All documents in the docket are listed in the https://www.regulations.gov index. Although listed in the index, some
information is not publicly available (e.g., CBI or other information
whose disclosure is restricted by statute). Certain other material,
such as copyrighted material, will be publicly available only in hard
copy form. Publicly available docket materials are available either
electronically at https://www.regulations.gov or in hard copy at the
Office of Air, Waste and Toxics, EPA Region 10, 1200 Sixth Avenue,
Seattle, WA 98101. EPA requests that if at all possible, you contact
the individual listed below to view the hard copy of the docket.
FOR FURTHER INFORMATION CONTACT: Mr. Keith Rose at telephone number
(206) 553-1949, rose.keith@epa.gov or the above EPA, Region 10 address.
SUPPLEMENTARY INFORMATION: Throughout this document whenever ``we,''
``us,'' or ``our'' is used, we mean the EPA. Information is organized
as follows:
Table of Contents
I. Background for EPA's Proposed Action
A. Definition of Regional Haze
B. Regional Haze Rules and Regulations
C. Roles of Agencies in Addressing Regional Haze
II. Requirements for Regional Haze SIPs
A. The CAA and the Regional Haze Rule
B. Baseline, Natural Conditions, and Visibility Improvement
C. Best Available Retrofit Technology
D. Reasonable Progress Goals
E. Long Term Strategy
F. Coordinating Regional Haze and Reasonably Attributable
Visibility Impairment (RAVI)
G. Monitoring Strategy and Other Implementation Plan
Requirements
H. SIP Revisions and Five Year Progress Reports
I. Consultation With States and Federal Land Managers
III. EPA's Analysis of Alaska's Regional Haze SIP
A. Affected Class I Areas
B. Baseline, Natural Conditions, and Visibility Improvement
C. Alaska Emissions Inventories
D. Sources of Visibility Impairment in Class I Areas in Alaska
E. Best Available Retrofit Technology
F. Determination of Reasonable Progress Goals
G. Long Term Strategy
H. Monitoring Strategy and Other Implementation Plan
Requirements
I. Consultation With States and Federal Land Managers
J. SIP Revisions and Five Year Progress Reports
IV. Amendment to Air Quality Control Plan Regarding Open Burning and
Regional Haze
V. What action is EPA proposing?
VI. Statutory and Executive Order Reviews
I. Background for EPA's Proposed Action
In the CAA Amendments of 1977, Congress established a program to
protect and improve visibility in the national parks and wilderness
areas. See CAA section 169A. Congress amended the visibility provisions
in the CAA in 1990 to focus attention on the problem of regional haze.
See CAA section 169B. EPA promulgated regulations in 1999 to implement
sections 169A and 169B of the Act. These regulations require states to
develop and implement plans to ensure reasonable progress toward
improving visibility in mandatory Class I Federal areas \1\ (Class I
areas). 64 FR 35714 (July 1, 1999); see also 70 FR 39104 (July 6, 2005)
and 71 FR 60612 (October 13, 2006).
---------------------------------------------------------------------------
\1\ Areas designated as mandatory Class I Federal areas consist
of national parks exceeding 6000 acres, wilderness areas and
national memorial parks exceeding 5000 acres, and all international
parks that were in existence on August 7, 1977. 42 U.S.C. 7472(a).
In accordance with section 169A of the CAA, EPA, in consultation
with the Department of Interior, promulgated a list of 156 areas
where visibility is identified as an important value. 44 FR 69122
(November 30, 1979). The extent of a mandatory Class I area includes
subsequent changes in boundaries, such as park expansions. 42 U.S.C.
7472(a). Although states and tribes may designate as Class I
additional areas which they consider to have visibility as an
important value, the requirements of the visibility program set
forth in section 169A of the CAA apply only to ``mandatory Class I
Federal areas.'' Each mandatory Class I Federal area is the
responsibility of a ``Federal Land Manager.'' 42 U.S.C. 7602(i).
When we use the term ``Class I area'' in this action, we mean a
``mandatory Class I Federal area.''
---------------------------------------------------------------------------
The Alaska Department of Environmental Conservation (ADEC) adopted
and transmitted its ``Alaska Regional Haze State Implementation Plan''
(Alaska Regional Haze SIP) to EPA Region 10 in a letter dated March 29,
2011. EPA determined the plan complete by operation of law on September
4, 2011. As a result of the Alaska's participation with 13 other
states, tribal nations and Federal agencies in the Western Regional Air
Partnership (WRAP), Alaska's Regional Haze SIP reflects a consistent
approach toward addressing regional visibility impairment at 116 Class
I areas in the West.
In this action, EPA is proposing to approve all provisions of
Alaska's Regional Haze SIP submission, including the requirements for
the calculation of baseline and natural visibility conditions,
statewide inventory of visibility-impairing pollutants, best available
retrofit technology (BART), Reasonable Progress Goals (RPGs), and Long-
Term Strategy (LTS). EPA is also proposing to approve the Alaska
Department of Environmental Conservation (ADEC) BART regulations at 18
AAC 50.260.
A. Definition of Regional Haze
Regional haze is impairment of visual range, clarity or
colorization caused by emission of air pollution produced by numerous
sources and activities, located across a broad regional area. The
sources include but are not limited to, major and minor stationary
sources, mobile sources, and area sources including non-anthropogenic
sources. These sources and activities may emit fine particles
(PM2.5) (e.g., sulfates,
[[Page 11024]]
nitrates, organic carbon, elemental carbon, and soil dust), and their
precursors (e.g., SO2, NOX, and in some cases,
ammonia (NH3) and volatile organic compounds (VOC)).
Atmospheric fine particulate reduces clarity, color, and visual range
of visual scenes. Visibility-reducing fine particulates are primarily
composed of sulfate, nitrate, organic carbon compounds, elemental
carbon, and soil dust, and impair visibility by scattering and
absorbing light. Fine particulate can also cause serious health effects
and mortality in humans, and contributes to environmental effects such
as acid deposition and eutrophication. See 64 FR at 35715.
Data from the existing visibility monitoring network, the
``Interagency Monitoring of Protected Visual Environments'' (IMPROVE)
monitoring network, show that visibility impairment caused by air
pollution occurs virtually all the time at most national parks and
wilderness areas. The average visual range in many Class I areas in the
Western United States is 100-150 kilometers, or about one-half to two-
thirds the visual range that would exist without anthropogenic air
pollution. Id. Visibility impairment also varies day-to-day and by
season depending on variation in meteorology and emission rates.
B. Regional Haze Rules and Regulations
In section 169A of the 1977 CAA Amendments, Congress created a
program for protecting visibility in the nation's national parks and
wilderness areas. This section of the CAA establishes as a national
goal the ``prevention of any future, and the remedying of any existing,
impairment of visibility in Class I areas which impairment results from
manmade air pollution.'' CAA section 169A(a)(1). On December 2, 1980,
EPA promulgated regulations to address visibility impairment in Class I
areas that is ``reasonably attributable'' to a single source or small
group of sources, i.e., ``reasonably attributable visibility
impairment''. See 45 FR 80084. These regulations represented the first
phase in addressing visibility impairment. EPA deferred action on
regional haze that emanates from a variety of sources until monitoring,
modeling, and scientific knowledge about the relationships between
pollutants and visibility impairment were improved.
Congress added section 169B to the CAA in 1990 to address regional
haze issues. EPA promulgated a rule to address regional haze on July 1,
1999 (64 FR 35713), the regional haze rule or RHR. The RHR revised the
existing visibility regulations to integrate into the regulation
provisions addressing regional haze impairment and established a
comprehensive visibility protection program for Class I areas. The
requirements for regional haze, found at 40 CFR 51.308 and 51.309, are
included in EPA's visibility protection regulations at 40 CFR 51.300-
309. Some of the main elements of the regional haze requirements are
summarized in section II of this proposed rulemaking. The requirement
to submit a regional haze SIP applies to all 50 states, the District of
Columbia and the Virgin Islands.\2\ 40 CFR 51.308(b) requires states to
submit the first implementation plan addressing regional haze
visibility impairment no later than December 17, 2007.
---------------------------------------------------------------------------
\2\ Albuquerque/Bernalillo County in New Mexico must also submit
a regional haze SIP to completely satisfy the requirements of
section 110(a)(2)(D) of the CAA for the entire State of New Mexico
under the New Mexico Air Quality Control Act (section 74-2-4).
---------------------------------------------------------------------------
C. Roles of Agencies in Addressing Regional Haze
Successful implementation of the regional haze program will require
long-term regional coordination among states, tribal governments, and
various Federal agencies. As noted above, pollution affecting the air
quality in Class I areas can be transported over long distances, even
hundreds of kilometers. Therefore, to effectively address the problem
of visibility impairment in Class I areas, States need to develop
strategies in coordination with one another, taking into account the
effect of emissions from one jurisdiction on the air quality in
another.
Because the pollutants that lead to regional haze impairment can
originate from across state lines, EPA has encouraged the States and
Tribes to address visibility impairment from a regional perspective.
Five regional planning organizations \3\ (RPOs) were created nationally
to address regional haze and related issues. One of the main objectives
of the RPOs is to develop and analyze data and conduct pollutant
transport modeling to assist the States or Tribes in developing their
regional haze plans.
---------------------------------------------------------------------------
\3\ See https://www.epa.gov/air/visibility/regional.html for
description of the regional planning organizations.
---------------------------------------------------------------------------
The Western Regional Air Partnership (WRAP) \4\, one of the five
RPOs nationally, is a voluntary partnership of State, Tribal, Federal,
and local air agencies dealing with air quality in the West. WRAP
member States include: Alaska, Arizona, California, Colorado, Idaho,
Montana, New Mexico, North Dakota, Oregon, South Dakota, Utah,
Washington, and Wyoming. WRAP Tribal members include Campo Band of
Kumeyaay Indians, Confederated Salish and Kootenai Tribes, Cortina
Indian Rancheria, Hopi Tribe, Hualapai Nation of the Grand Canyon,
Native Village of Shungnka, Nez Perce Tribe, Northern Cheyenne Tribe,
Pueblo of Acoma, Pueblo of San Felipe, and Shoshone-Bannock Tribes of
Fort Hall.
---------------------------------------------------------------------------
\4\ The WRAP Web site can be found at https://www.wrapair.org.
---------------------------------------------------------------------------
As a result of the regional planning efforts in the West, all
states in the WRAP region contributed information to a Technical
Support System (TSS) which provides an analysis of the causes of haze,
and the levels of contribution from all sources within each state to
the visibility degradation of each Class I area. The WRAP States
consulted in the development of reasonable progress goals, using the
products of this technical consultation process to co-develop their
reasonable progress goals for the Western Class I areas. The modeling
done by the WRAP relied on assumptions regarding emissions over the
relevant planning period and embedded in these assumptions were
anticipated emissions reductions in each of the States in the WRAP,
including reductions from BART and other measures to be adopted as part
of the State's long term strategy for addressing regional haze. The
reasonable progress goals in the draft and final regional haze SIPs
that have now been prepared by States in the West accordingly are
based, in part, on the emissions reductions from nearby States that
were agreed on through the WRAP process.
II. Requirements for Regional Haze SIPs
A. The CAA and the Regional Haze Rule
Regional haze SIPs must assure reasonable progress towards the
national goal of achieving natural visibility conditions in Class I
areas. Section 169A of the CAA and EPA's implementing regulations
require states to establish long-term strategies for making reasonable
progress toward meeting this goal. Implementation plans must also give
specific attention to certain stationary sources that were in existence
on August 7, 1977, but were not in operation before August 7, 1962, and
require these sources, where appropriate, to install BART controls for
the purpose of eliminating or reducing visibility impairment. The
specific regional haze SIP requirements are discussed in further detail
below.
[[Page 11025]]
B. Determination of Baseline, Natural Conditions, and Visibility
Improvement
The RHR establishes the deciview (dv) as the principal metric for
measuring visibility. This visibility metric expresses uniform changes
in haziness in terms of common increments across the entire range of
visibility conditions, from pristine to extremely hazy conditions.
Visibility is determined by measuring the visual range (or deciview),
which is the greatest distance, in kilometers or miles, at which a dark
object can be viewed against the sky. The deciview is a useful measure
for tracking progress in improving visibility, because each deciview
change is an equal incremental change in visibility perceived by the
human eye. Most people can detect a change in visibility at one
deciview.\5\
---------------------------------------------------------------------------
\5\ The preamble to the RHR provides additional details about
the deciview. 64 FR 35714, 35725 (July 1, 1999).
---------------------------------------------------------------------------
The deciview is used in expressing reasonable progress goals (which
are interim visibility goals towards meeting the national visibility
goal), defining baseline, current, and natural conditions, and tracking
changes in visibility. The regional haze SIPs must contain measures
that ensure ``reasonable progress'' toward the national goal of
preventing and remedying visibility impairment in Class I areas caused
by manmade air pollution by reducing anthropogenic emissions that cause
regional haze. The national goal is a return to natural conditions,
i.e., anthropogenic sources of air pollution would no longer impair
visibility in Class I areas.
To track changes in visibility over time at each of the 156 Class I
areas covered by the visibility program (40 CFR 81.401-437), and as
part of the process for determining reasonable progress, States must
calculate the degree of existing visibility impairment at each Class I
area at the time of each regional haze SIP submittal and periodically
review progress every five years midway through each 10-year
implementation period. To do this, the RHR requires states to determine
the degree of impairment (in deciviews) for the average of the 20%
least impaired (``best'') and 20% most impaired (``worst'') visibility
days over a specified time period at each of their Class I areas. In
addition, states must also develop an estimate of natural visibility
conditions for the purpose of comparing progress toward the national
goal. Natural visibility is determined by estimating the natural
concentrations of pollutants that cause visibility impairment, and then
calculating total light extinction based on those estimates. EPA has
provided guidance to states regarding how to calculate baseline,
natural and current visibility conditions in documents titled, EPA's
Guidance for Estimating Natural Visibility Conditions Under the
Regional Haze Rule, September 2003, (EPA-454/B-03-005 located at https://www.epa.gov/ttncaaa1/t1/memoranda/rh_envcurhr_gd.pdf), (hereinafter
referred to as ``EPA's 2003 Natural Visibility Guidance''), and
Guidance for Tracking Progress Under the Regional Haze Rule (EPA-454/B-
03-004 September 2003 located at https://www.epa.gov/ttncaaa1/t1/memoranda/rh_tpurhr_gd.pdf)), (hereinafter referred to as ``EPA's
2003 Tracking Progress Guidance'').
For the first regional haze SIPs that were due by December 17,
2007, ``baseline visibility conditions'' were the starting points for
assessing ``current'' visibility impairment. Baseline visibility
conditions represent the degree of visibility impairment for the 20%
least impaired days and 20% most impaired days for each calendar year
from 2000 to 2004. Using monitoring data for 2000 through 2004, States
are required to calculate the average degree of visibility impairment
for each Class I area, based on the average of annual values over the
five-year period. The comparison of initial baseline visibility
conditions to natural visibility conditions indicates the amount of
improvement necessary to attain natural visibility, while the future
comparison of baseline conditions to the then-current conditions will
indicate the amount of progress made. In general, the 2000-2004
baseline time period is considered the time from which improvement in
visibility is measured.
C. Best Available Retrofit Technology
Section 169A of the CAA directs States to evaluate the use of
retrofit controls at certain larger, often uncontrolled, older
stationary sources in order to address visibility impacts from these
sources. Specifically, section 169A(b)(2)(A) of the CAA requires States
to revise their SIPs to contain such measures as may be necessary to
make reasonable progress towards the natural visibility goal, including
a requirement that certain categories of existing major stationary
sources \6\ built between 1962 and 1977 procure, install, and operate
the ``Best Available Retrofit Technology'' (``BART'') as determined by
the state. States are directed to conduct BART determinations for such
sources that may be anticipated to cause or contribute to any
visibility impairment in a Class I area. Rather than requiring source-
specific BART controls, States also have the flexibility to adopt an
emissions trading program or other alternative program as long as the
alternative provides greater reasonable progress towards improving
visibility than BART.
---------------------------------------------------------------------------
\6\ The set of ``major stationary sources'' potentially subject
to BART is listed in CAA section 169A(g)(7).
---------------------------------------------------------------------------
On July 6, 2005, EPA published the Guidelines for BART
Determinations Under the Regional Haze Rule at appendix Y to 40 CFR
part 51 (hereinafter referred to as the ``BART Guidelines'') to assist
States in determining which of their sources should be subject to the
BART requirements and in determining appropriate emission limits for
each applicable source. In making a BART applicability determination
for a fossil fuel-fired electric generating plant with a total
generating capacity in excess of 750 megawatts, a State must use the
approach set forth in the BART Guidelines. A State is encouraged, but
not required, to follow the BART Guidelines in making BART
determinations for other types of sources.
States must address all visibility-impairing pollutants emitted by
a source in the BART determination process. The most significant
visibility-impairing pollutants are sulfur dioxide, nitrogen oxides,
and fine particulate matter. EPA has indicated that states should use
their best judgment in determining whether volatile organic compounds
or ammonia compounds impair visibility in Class I areas.
Under the BART Guidelines, States may select an exemption threshold
value for their BART modeling, below which a BART-eligible source would
not be expected to cause or contribute to visibility impairment in any
Class I area. The State must document this exemption threshold value in
the SIP and must state the basis for its selection of that value. Any
source with emissions that model above the threshold value would be
subject to a BART determination. The BART Guidelines acknowledge
varying circumstances affecting different Class I areas. States should
consider the number of emission sources affecting the Class I areas at
issue and the magnitude of the individual sources' impacts. Generally,
an exemption threshold set by the State should not be higher than 0.5
deciviews (dv).
In their SIPs, States must identify potential BART sources and
BART-eligible sources that have a visibility impact in any Class I area
above the ``BART subject'' threshold established by the State and thus,
are ``subject'' to
[[Page 11026]]
BART. States must document their BART control analysis and
determination for all sources subject to BART.
The term ``BART-eligible'' source used in the BART Guidelines means
the collection of individual emission units at a facility that together
comprises the BART-eligible source. In making BART determinations,
section 169A(g)(2) of the CAA requires that States consider the
following factors: (1) The costs of compliance, (2) the energy and non-
air quality environmental impacts of compliance, (3) any existing
pollution control technology in use at the source, (4) the remaining
useful life of the source, and (5) the degree of improvement in
visibility which may reasonably be anticipated to result from the use
of such technology. States are generally free to determine the weight
and significance to be assigned to each factor.
The regional haze SIP must include source-specific BART emission
limits and compliance schedules for each source subject to BART. Once a
State has made its BART determination, the BART controls must be
installed and in operation as expeditiously as practicable, but no
later than five years after the date EPA approves the regional haze
SIP. See CAA section 169A(g)(4); 40 CFR 51.308(e)(1)(iv). In addition
to what is required by the RHR, general SIP requirements mandate that
the SIP must also include all regulatory requirements related to
monitoring, recordkeeping, and reporting for the BART controls on the
source.
D. Reasonable Progress Goals
The vehicle for ensuring continuing progress towards achieving the
natural visibility goal is the submission of a series of regional haze
SIPs that establish two Reasonable Progress Goals (RPGs) (i.e., two
distinct goals, one for the ``best'' and one for the ``worst'' days)
for every Class I area for each (approximately) ten-year implementation
period. The RHR does not mandate specific milestones or rates of
progress, but instead calls for states to establish goals that provide
for ``reasonable progress'' toward achieving natural visibility
conditions. In setting reasonable progress goals (RPGs), States must
provide for an improvement in visibility for the most impaired days
over the (approximately) ten-year period of the SIP, and ensure no
degradation in visibility for the least impaired days over the same
period.
States have significant discretion in establishing RPGs, but are
required to consider the following factors established in section 169A
of the CAA and in EPA's RHR at 40 CFR 51.308(d)(1)(i)(A): (1) The costs
of compliance; (2) the time necessary for compliance; (3) the energy
and non-air quality environmental impacts of compliance; and (4) the
remaining useful life of any potentially affected sources. States must
demonstrate in their SIPs how these factors are considered when
selecting the RPGs for the best and worst days for each applicable
Class I area. States have considerable flexibility in how they take
these factors into consideration, as noted in EPA's Guidance for
Setting Reasonable Progress Goals under the Regional Haze Program, July
1, 2007, Memorandum from William L. Wehrum, Acting Assistant
Administrator for Air and Radiation, to EPA Regional Administrators,
EPA Regions 1-10 (pp. 4-2, 5-1) (``EPA's Reasonable Progress
Guidance''). In setting the RPGs, States must also consider the rate of
progress needed to reach natural visibility conditions by 2064
(referred to as the ``uniform rate of progress'' (URP) or the ``glide
path'') and the emission reduction measures needed to achieve that rate
of progress over the ten-year period of the SIP. Uniform rate of
progress represents a rate of progress that states are to use for
comparison to the amount of progress they expect to achieve over the
ten-year period. In setting RPGs, each State with one or more Class I
areas (``Class I state'') must also consult with potentially
``contributing States,'' i.e., other nearby States with emission
sources that may be affecting visibility impairment at the Class I
State's areas. See 40 CFR 51.308(d)(1)(iv).
E. Long-Term Strategy
Consistent with the requirement in section 169A(b) of the CAA that
States include in their regional haze SIP a ten to fifteen-year
strategy for making reasonable progress, section 51.308(d)(3) of the
RHR requires that States include a long-term strategy (LTS) in their
regional haze SIPs. The LTS is the compilation of all control measures
a State will use during the implementation period of the specific SIP
submittal to meet applicable RPGs. The LTS must include ``enforceable
emissions limitations, compliance schedules, and other measures needed
to achieve the reasonable progress goals'' for all Class I areas within
and affected by emissions from the State. 40 CFR 51.308(d)(3).
When a state's emissions are reasonably anticipated to cause or
contribute to visibility impairment in a Class I area located in
another state, the RHR requires the impacted state to coordinate with
contributing states to develop coordinated emissions management
strategies. 40 CFR 51.308(d)(3)(i). In such cases, the contributing
state must demonstrate that it has included in its SIP all measures
necessary to obtain its share of the emission reductions needed to meet
the RPGs for the Class I area. The RPOs have provided forums for
significant interstate consultation, but additional consultation
between states may be required to sufficiently address interstate
visibility issues (e.g., where two states belong to different RPOs).
States should consider all types of anthropogenic sources of
visibility impairment in developing their LTS, including stationary,
minor, mobile, and area sources. At a minimum, states must describe how
each of the following seven factors listed below are taken into account
in developing their LTS: (1) Emission reductions due to ongoing air
pollution control programs, including measures to address RAVI; (2)
measures to mitigate the impacts of construction activities; (3)
emissions limitations and schedules for compliance to achieve the RPG;
(4) source retirement and replacement schedules; (5) smoke management
techniques for agricultural and forestry management purposes including
plans as currently exist within the state for these purposes; (6)
enforceability of emissions limitations and control measures; and, (7)
the anticipated net effect on visibility due to projected changes in
point, area, and mobile source emissions over the period addressed by
the LTS. 40 CFR 51.308(d)(3)(v).
F. Coordinating Regional Haze and Reasonably Attributable Visibility
Impairment (RAVI)
As part of the RHR, EPA revised 40 CFR 51.306(c) regarding the LTS
for RAVI to require that the RAVI plan must provide for a periodic
review and SIP revision not less frequently than every three years
until the date of submission of the state's first plan addressing
regional haze visibility impairment, which was due December 17, 2007,
in accordance with 40 CFR 51.308(b) and (c). On or before this date,
the state must revise its plan to provide for review and revision of a
coordinated LTS for addressing RAVI and regional haze, and the state
must submit the first such coordinated LTS with its first regional haze
SIP. Future coordinated LTSs, and periodic progress reports evaluating
progress towards RPGs, must be submitted consistent with the schedule
for SIP submission and periodic progress reports set forth in 40 CFR
51.308(f) and 51.308(g), respectively.
[[Page 11027]]
The periodic review of a state's LTS must provide the status of both
regional haze and RAVI impairment, and must be submitted to EPA as a
SIP revision.
G. Monitoring Strategy and Other Implementation Plan Requirements
Section 51.308(d)(4) of the RHR requires a monitoring strategy for
measuring, characterizing, and reporting on regional haze visibility
impairment that is representative of all mandatory Class I areas within
the state. The strategy must be coordinated with the monitoring
strategy required in 40 CFR 51.305 for RAVI. Compliance with this
requirement may be met through ``participation'' in the Interagency
Monitoring of Protected Visual Environments (IMPROVE) network, i.e.,
review and use of monitoring data from the network. The monitoring
strategy is due with the first regional haze SIP, and it must be
reviewed every five years. The monitoring strategy must also provide
for additional monitoring sites if the IMPROVE network is not
sufficient to determine whether RPGs will be met. The SIP must also
provide for the following:
Procedures for using monitoring data and other information
in a state with mandatory Class I areas to determine the contribution
of emissions from within the state to regional haze visibility
impairment at Class I areas both within and outside the state;
Procedures for using monitoring data and other information
in a state with no mandatory Class I areas to determine the
contribution of emissions from within the state to regional haze
visibility impairment at Class I areas in other states;
Reporting of all visibility monitoring data to the
Administrator at least annually for each Class I area in the state, and
where possible, in electronic format;
Developing a statewide inventory of emissions of
pollutants that are reasonably anticipated to cause or contribute to
visibility impairment in any Class I area. The inventory must include
emissions for a baseline year, emissions for the most recent year for
which data are available, and estimates of future projected emissions.
A state must also make a commitment to update the inventory
periodically; and,
Other elements, including reporting, recordkeeping, and
other measures necessary to assess and report on visibility.
H. SIP Revisions and Five-Year Progress Reports
The RHR requires control strategies to cover an initial
implementation period through 2018, with a comprehensive reassessment
and revision of those strategies, as appropriate, every ten years
thereafter. Periodic SIP revisions must meet the core requirements of
40 CFR 51.308(d) with the exception of BART. The requirement to
evaluate sources for BART applies only to the first regional haze SIP.
Facilities subject to BART must continue to comply with the BART
provisions of 40 CFR 51.308(e), as noted above. Periodic SIP revisions
will assure that the statutory requirement of reasonable progress will
continue to be met.
Each state also is required to submit a report to EPA every five
years that evaluates progress toward achieving the RPG for each Class I
area within the state and outside the state if affected by emissions
from within the state. 40 CFR 51.308(g). The first progress report is
due five years from submittal of the initial regional haze SIP
revision. At the same time a 5-year progress report is submitted, a
state must determine the adequacy of its existing SIP to achieve the
established goals for visibility improvement. See 40 CFR 51.308(h).
I. Consultation With States and Federal Land Managers
The RHR requires that states consult with Federal Land Managers
(FLMs) before adopting and submitting their SIPs. See 40 CFR 51.308(i).
States must provide FLMs an opportunity for consultation, in person and
at least 60 days prior to holding any public hearing on the SIP. This
consultation must include the opportunity for the FLMs to discuss their
assessment of visibility impairment in any Class I area and to offer
recommendations on the development of the reasonable progress goals and
on the development and implementation of strategies to address
visibility impairment. Further, a state must include in its SIP a
description of how it addressed any comments provided by the FLMs.
Finally, a SIP must provide procedures for continuing consultation
between the state and FLMs regarding the state's visibility protection
program, including development and review of SIP revisions, 5-year
progress reports, and the implementation of other programs having the
potential to contribute to impairment of visibility in Class I areas.
III. EPA's Analysis of Alaska's Regional Haze SIP
A. Affected Class I Areas
Alaska has four Class I areas within the state. These four Class I
areas are Denali National Park, Simeonof Wilderness Area, Tuxedni
National Wildlife Refuge, and Bering Sea Wilderness Area. ADEC has not
identified any other state that is impacting the Class I areas in
Alaska, and Alaska has not been identified as a contributor to impacts
in other state's Class I areas. However, in accordance with 40 CFR
51.308(d)(1)(iv) and 51.308(d)(3)(i), ADEC commits to continue
consultation with states which may reasonably be anticipated to cause
or contribute to visibility impairment in Federal Class I areas located
within Alaska. ADEC will also continue consultation with any state for
which Alaska's emissions may reasonably be anticipated to cause or
contribute to visibility impairment in that state's Federal Class I
areas.
B. Baseline, Natural Conditions and Visibility Improvement
Alaska, using data from the IMPROVE monitoring network and analyzed
by WRAP, calculated current baseline and natural visibility conditions,
and the uniform rate of progress (URP) \7\ for Denali National Park,
Simeonof Wilderness Area and Tuxedni Wildlife Refuge. Baseline
visibility for the most-impaired (20% worst) days and the least-
impaired (20% best) days was calculated from monitoring data collected
by IMPROVE monitors. The IMPROVE monitoring sites for each Class I area
are:
---------------------------------------------------------------------------
\7\ The URP is also referred to as the visibility ``glidepath'',
which is the linear rate of progress needed to achieve natural
visibility conditions by 2064.
---------------------------------------------------------------------------
Denali National Park--Denali National Park has two
visibility monitors. One site is located at the Denali National Park
Headquarters (DENA1), which has operated since 1988, and the second is
the Trapper Creek monitoring site (TRCR1) located 100 yards east of the
Trapper Creek Elementary School, west of the Town of Trapper Creek. The
monitor located at Trapper Creek is the official IMPROVE site for
Denali National Park and was established in September 2001 to evaluate
the long-range transport of pollution into the Park from the south.
Simeonof Wilderness Area--The Simeonof Wilderness Area is
located on a remote, isolated island in the Aleutian chain
approximately 58 miles from mainland Alaska. The Fish and Wildlife
Service has placed an IMPROVE air monitor in the community of Sand
Point, Alaska to represent this wilderness area. The community is on a
more accessible island approximately 60 miles north west of the
Simeonof Wilderness Area. The monitor has been operating since
September 2001.
[[Page 11028]]
Tuxedni National Wildlife Refuge--Tuxedni National
Wildlife Refuge is located on a relatively remote pair of islands in
Tuxedni Bay off of Cook Inlet in Southcentral Alaska. The Fish and
Wildlife Service has installed an IMPROVE monitor near Lake Clark
National Park to represent conditions at Tuxedni Wilderness Area. This
site is located on the west side of Cook Inlet, approximately 5 miles
from the Tuxedni National Wildlife Refuge. The site was operational as
of December 18, 2001, and represents regional haze conditions for the
wilderness area.
Bering Sea Wilderness Area--This wilderness area
encompasses St. Matthew Island, Hall Island, and Pinnacle Island and is
part of the larger Bering Sea unit of the Alaska Maritime National
Wildlife Refuge. The Bering Sea Wilderness area is extremely remote and
located approximately 350 miles southwest of Nome, Alaska and is
surrounded on all sides by the Bering Sea. There is essentially no
electricity or other infrastructure to support a monitor. Additionally,
the area is hundreds of miles away from population centers or major
stationary sources. This area had a DELTA-DRUM sampler (a mobile
sampler) installed during a field visit in 2002. However, difficulties
were encountered with the power supply and no viable data are
available, therefore ADEC is not able to determine baseline visibility
conditions for this site. Due to its inaccessibility, remoteness, and
harsh environment, no IMPROVE monitoring is available or is currently
planned for the Bering Sea Wilderness Area.
In general, WRAP based their estimates of natural conditions on
EPA's 2003 Natural Visibility Guidance, but incorporated refinements
which EPA believes provides results more appropriate for Alaska than
the general EPA default approach. These refinements include the use of
an updated IMPROVE algorithm which uses a higher ratio of organic mass
concentration to organic carbon mass, which better accounts for haze
from organic mass, and includes a term for sea salt, which causes a
significant amount of haze in the Tuxedni and Simeonof Class I areas.
See WRAP Technical Support Document, February 28, 2011 (WRAP TSD)
section 2.D and 2.E, supporting this action.
Table 1 below shows visibility conditions in Denali National Park,
Simeonof Wilderness Area and Tuxedni National Wildlife Refuge for the
20% worst natural visibility days, the 20% worst baseline days, the
2018 URP, and the visibility improvement needed between 2002 and 2018
to achieve the URP. Table 2 shows visibility conditions on the 20% best
days.
Table 1--20% Worst Day Visibility Conditions
----------------------------------------------------------------------------------------------------------------
20% Worst 20% Worst Visibility
natural baseline 2018 Uniform improvement
Site Class I area conditions conditions rate of needed by 2018
(dv) (dv) progress (dv) (dv)
----------------------------------------------------------------------------------------------------------------
DENA1......................... Denali.......... 7.3 9.9 9.5 0.4
TRCR1......................... Denali.......... 8.4 11.6 11.1 0.5
SIME1......................... Simeonof........ 15.6 18.6 18.1 0.5
TUXE1......................... Tuxedni......... 11.3 14.1 13.6 0.5
----------------------------------------------------------------------------------------------------------------
Table 2--20% Best Day Visibility Conditions
----------------------------------------------------------------------------------------------------------------
20% Best 20% Best
baseline natural
Site Class I area conditions conditions
(dv) (dv)
----------------------------------------------------------------------------------------------------------------
DENA1......................................... Denali.......................... 2.4 1.8
TRCR1......................................... Denali.......................... 3.5 2.7
SIME1......................................... Simeonof........................ 7.6 5.3
TUXE1......................................... Tuxedni......................... 4.0 3.2
----------------------------------------------------------------------------------------------------------------
Based on IMPROVE data collected in the Class I areas in Alaska
during the baseline period (2000-2004), the major pollutants that
contribute to light extinction on the 20% worst days at the Simeonof
site are: sea salt (47%), sulfates (29%), and organic mass
concentration (OMC) (9%); at the Denali DENA1 site are: OMC (54%),
sulfates (25%), elemental carbon (8%); at the Denali TRCR1 site are:
OMC (43%), sulfates (35%), coarse matter (7%); and at the Tuxedni site
are: OMC (28%), sea salt (26%), sulfate (28%).
As noted previously, due to the remote location of the Class I area
in the Bering Sea, no monitoring site exists in this Class I area and
insufficient data are available to accurately calculate baseline values
for this Class I area. The area is located a considerable distance off
shore in the Bering Sea and is hundreds of miles from any other
monitoring location. Alaska evaluated and discussed the origins and
influence of aerosols to this Class I area, and concluded that
significant impacts from local industrial, commercial or community
developments are unlikely. Future impacts from potential offshore oil
and gas development is a remote possibility, but is also unlikely as
there are no offshore oil and gas developments currently planned for
the St. Matthew-Hall area, or the adjoining Aleutian Basin, Bowers
Basin, and Aleutian Arc areas. Finally Alaska indicates that it will
continue to evaluate the possibility for portable sampling in remote
locations as resources allow. Alaska Regional Haze SIP submittal
III.K.3-17. EPA acknowledges the provision in the RHR which provides
that for Class I areas without monitoring data for 2000-2004 the state
should establish baseline values using the most representative
available monitoring data for 2000-2004 in consultation with the
Administrator. 40 CFR 51.308 (d)(2)(i). However, as explained above and
more fully described the SIP submission, representative data is not
available for the Bering Sea Wilderness Area. Additionally, given the
location of this Wilderness Area in the middle of the Bering Sea
hundreds of miles off the
[[Page 11029]]
coast of Alaska, it is likely that any sources impacting visibility in
the area would be beyond Alaska's jurisdiction or ability to control.
Also EPA expects the state to update any available monitoring or
visibility impact analyses in its 5-year progress reports. Therefore,
given the unique, extremely remote and isolated location and the
associated difficulties with monitoring at the area EPA proposes to
accept Alaska's approach to the Bering Sea Wilderness Area.
Based on our evaluation of the State's baseline and natural
conditions analysis, EPA is proposing to find that Alaska has
appropriately determined baseline visibility for the average 20% worst
and 20% best days, and natural visibility conditions for the average
20% worst days, and the visibility glidepath from the baseline
conditions to natural conditions in the three Class I areas. See
sections 2.D and 2.E of the WRAP TSD supporting this action. We also
believe the State's analysis accurately determined the individual
aerosol species causing impairment in the three Class I areas.
C. Alaska Emissions Inventories
There are three main categories of visibility-impairing air
pollution sources: point sources, area sources, and mobile sources.
Point sources are larger stationary sources that emit air pollutants.
Area sources are large numbers of small sources that are widely
distributed across an area, such as residential heating units, re-
entrained dust from unpaved roads or windblown dust from agricultural
fields. Mobile sources are sources such as motor vehicles, including
agricultural and construction equipment, locomotives, and aircraft.
EPA's Regional Haze Rule requires a statewide emission inventory of
pollutants that are reasonably anticipated to cause or contribute to
visibility impairment in any mandatory Class I area. 40 CFR
51.308(d)(4)(v). ADEC compiled emission inventories for all visibility
impairing source categories in Alaska for the 2002 baseline year, and
projected future emission inventories for these source categories in
2018. See Appendix III.K.5 of the SIP submittal. The fire sector of the
baseline inventory was developed using 2000-2004 average data obtained
from the WRAP Fire Inventory efforts. Emission estimates for 2018 were
generated from anticipated population growth, growth in industrial
activity, and emission reductions from implementation of control
measures, e.g., implementation of BART limitations and motor vehicle
tailpipe emissions. Chapter 5 of the Alaska Regional Haze SIP submittal
discusses how emission estimates were determined for statewide emission
inventories by pollutant and source category.
Key factors that were considered in the development of these
regional haze emission inventories were:
Pollutants--Inventories were developed for the following
pollutants: hydrocarbons (HC), carbon monoxide (CO), oxides of nitrogen
(NOX), sulfur oxides (SOX), ammonia
(NH3), volatile organic compounds (VOC), and coarse and fine
particulate matter (PM10 and PM2.5,
respectively).
Areal Extent and Spatial Resolution--The inventories represent
sources within the entire state of Alaska, encompassing a total of 27
boroughs/counties. Emissions were allocated to individual grid cells,
of 45 square kilometers each, in a rectangular grid domain covering all
of Alaska. This grid domain was based on domain developed under an
earlier WRAP study for which a modeling protocol was developed. See
Figure III.K.5-2 of the SIP submittal.
Included Sources--Emission sources included known stationary point
and area sources including fugitive dust and both anthropogenic and
natural fires, and on-road and non-road mobile sources. As discussed
later in this section, biogenic (trees and vegetation) and geogenic
sources (gas/oil seeps, wind erosion, and geothermal and volcanic
activity) were not included.
Temporal Resolution--The inventories were expressed in the form of
annual emissions for 2002 and 2018. For all source categories, except
the fire sector, the baseline inventory was represented using calendar
year 2002 annual emission estimates. The fire sector of the baseline
inventory was developed using 2000-2004 average data obtained from the
WRAP Fire Inventory efforts. These data reflect fire activity (from
wildfires, wildland fires, and prescribed burns) averaged over this
five-year period and are less likely to be biased by fire emissions
from any individual year. See Alaska Regional Haze submittal III.K.5-3.
The 2018 inventory was developed to reflect emission levels
projected to calendar year 2018, accounting for forecasted changes in
source activity and emission factors. Population projections compiled
by the Alaska Department of Labor and Workforce Development at five-
year intervals through 2030 by individual borough and census area were
used to grow 2002 baseline activity to 2018 for most of the source
categories, with a couple of exceptions.
In developing its 2018 emission inventory, Alaska first determined
that emission estimates for wildfires should be held constant between
2002 and 2018. However, as explained later, modest reductions in
prescribed burn emissions were assumed, consistent with WRAP 2018b
Phase III Fire Inventory forecast. Second, activity from small port
commercial marine vessel activity in 2002 was assumed to be identical
to that obtained for calendar year 2005.
Alaska also developed emission factors specific to calendar year
2018 for sources affected by regulatory control programs and technology
improvements. These source sectors included on-road and non-road mobile
sources (except commercial marine vessels and aviation) and stationary
point sources. Alaska explained that the emissions forecast for 2018
does not include emissions from new or permitted sources that are not
currently operating but which may be in operation in 2018. However,
where the status of these facilities is known, Alaska further discussed
the sources' influence on predicted emissions or visibility impact on a
particular Class I area.
The SIP submittal identifies total annual emission estimates for
visibility-impairing pollutants including SOx, NOX, VOC HC,
CO, PM2.5, PM10 and NH3 for 2002 and
2018. These emission estimates were partitioned into eight emission
source categories: point sources, stationary area sources (excluding
fires), on-road mobile, non-road mobile, commercial marine vessels,
aviation, anthropogenic fire (human caused), and natural wildfires.
Biogenic emissions were not included in these regional haze inventories
because no biogenic inventories have been developed for Alaska. Alaska
indicates that given its northerly location, preponderance of snow and
ice cover, and short growing season, it would be problematic to
extrapolate ``lower 48'' biogenic emission factors and activity to it.
Similarly, geogenic emissions were also excluded due to lack of
available data. Additionally, Alaska did not include internationally
transported emissions but cites to a number of studies that have
attributed atmospheric aerosols measured in Alaska to contributions
from upwind regions as far away as portions of Asia and Russia based on
back trajectory analysis and identification of unique chemical source
signatures. Alaska explains that robust emission estimates from these
source areas are not available
[[Page 11030]]
and thus there is no accounting of these international, long-range
transported sources. See Alaska Regional Haze SIP submittal III.K.5 for
additional discussion of Alaska's emission estimates and inventory. See
also WRAP TSD Chapter 3. Tables 2 and 3 below show total statewide
emissions (in tons/year), by source sector and pollutant, for the
calendar years 2002 and 2018, respectively. In addition to the totals
across all source sectors, anthropogenic emission fractions (defined as
all sectors except natural fires divided by total emissions) are also
shown at the bottom of each table.
Table 3--2002 Alaska Statewide Regional Haze Inventory Summary
--------------------------------------------------------------------------------------------------------------------------------------------------------
Annual emissions (tons/year)
Source sector ---------------------------------------------------------------------------------------------------------------
HC CO NOX PM10 PM2.5 SOX NH3
--------------------------------------------------------------------------------------------------------------------------------------------------------
Area, Excluding Wildfires............... 128,271 81,978 14,742 106,985 30,636 1,872 0
Non-Road................................ 7,585 52,223 4,111 416 392 49 8
On-Road................................. 7,173 80,400 7,077 204 158 324 307
Commercial Marine Vessels............... 356 2,880 11,258 663 643 4,979 5
Aviation (Aircraft)..................... 1,566 21,440 3,265 699 667 335 6
Point................................... 5,697 27,910 74,471 5,933 1,237 6,813 580
Wildfires, Anthropogenic................ 98 2,048 46 200 172 13 9
Wildfires, Natural...................... 274,436 5,831,755 125,110 557,403 478,057 34,304 26,233
---------------------------------------------------------------------------------------------------------------
TOTAL--All Sources.................. 425,181 6,100,633 240,080 672,502 511,962 48,689 27,149
Anthropogenic Fraction.................. 35.5% 4.4% 47.9% 17.1% 6.6% 29.5% 3.4%
--------------------------------------------------------------------------------------------------------------------------------------------------------
Alaska Regional Haze SIP submittal Table III.K.5-4.
Table 4--2018 Alaska Statewide Regional Haze Inventory Summary
--------------------------------------------------------------------------------------------------------------------------------------------------------
Annual emissions (tons/year)
Source sector ---------------------------------------------------------------------------------------------------------------
HC CO NOX PM10 PM2.5 SOX NH3
--------------------------------------------------------------------------------------------------------------------------------------------------------
Area, Excluding Wildfires............... 137,696 88,030 15,683 116,629 33,329 2,068 0
Non-Road................................ 7,766 65,900 3,332 337 313 47 9
On-Road................................. 2,946 44,881 2,881 138 74 39 340
Commercial Marine Vessels............... 616 4,751 16,205 1,031 1,192 1,129 9
Aviation (Aircraft & GSE)............... 1,799 24,387 3,810 794 757 386 7
Point................................... 6,612 24,406 65,230 1,783 358 8,587 1,106
Fires, Anthropogenic.................... 53 1,100 26 107 93 7 5
Fires, Natural.......................... 274,436 5,831,755 125,110 557,403 478,057 34,304 26,233
---------------------------------------------------------------------------------------------------------------
TOTAL--All Sources.................. 431,925 6,085,210 232,277 678,223 514,173 46,568 27,709
Anthropogenic Fraction.................. 36.5% 4.2% 46.1% 17.8% 7.0% 26.3% 5.3%
--------------------------------------------------------------------------------------------------------------------------------------------------------
Alaska Regional Haze SIP submittal Table III.K.5-5.
Significant changes in anthropogenic sector emission inventories of
the primary visibility impairing pollutants, NOX,
PM10, PM2.5, and SOX, between 2002 and
2018 are summarized below:
1. Non-road: NOX (-18.9%), PM10 (-19.1%), and
PM2.5 (-20.2%).
2. On-road: NOX (-59.3%), PM10 (-32.3%),
PM2.5 (-53.2%), and SOX (-87.9%).
3. Commercial Marine Vessels: NOX (+43.9%),
PM10 (+55.5%), PM2.5 (+85.3%), and SOX
(-77.3%).
4. Aviation: NOX (+16.7%), PM10 (+13.6%),
PM2.5 (+13.5%), and SOX (15.5%).
5. Point: NOX (-12.4%), PM10 (-69.9%),
PM2.5 (-71.1%), and SOX (+26.0%).
6. Anthropogenic Fires: NOX (-43.8%), PM10 (-
46.2%), PM2.5 (-46.0%), and SOX (-43.8%).
The overall changes in the above pollutants between 2002 and 2018,
across all source sectors, are NOX (-3.3%), PM10
(+0.9%), PM2.5 (+0.4%), and SOX (-4.4%). EPA is
proposing to find that Alaska has appropriately determined the
emissions for visibility impairing pollutants in Alaska for 2002 and
2018.
D. Sources of Visibility Impairment in Class I Areas in Alaska
Each pollutant species has its own visibility impairing property;
for example, 1 [mu]g/m\3\ of sulfate at high humidity is more effective
in scattering light than 1 [mu]g/m\3\ of organic carbon, and therefore
impairs visibility more than organic carbon. Following the approach
recommended by the WRAP, and as explained more fully below, Alaska used
a two-step process to identify the contribution of each source or
source category to existing visibility impairment. First, ambient
pollutant concentration by species (such as sulfate, nitrate, organic
carbon, and
[[Page 11031]]
elemental carbon) was determined from the IMPROVE data collected for
each Class I area. These concentrations were then converted into
deciview values to distribute existing impairment among the measured
pollutant species. The deciview value for each pollutant species was
calculated by using the ``revised IMPROVE equation'' (See WRAP TSD,
Section 2.C) to calculate extinction from each pollutant species
concentration. Second, two regional visibility models, a back-
trajectory model and a Weighted Emissions Potential (WEP) model, were
used to determine which source categories contributed to the ambient
concentration of each pollutant species.
As further explained in the SIP submittal, due to a number of
constraints in developing a comprehensive Alaska emission inventory,
rather than conducting photochemical modeling to determine current and
future visibility conditions in Class I areas in Alaska, the WRAP
selected alternate meteorological modeling techniques to determine
current and future visibility conditions. WRAP used the two modeling
techniques described below to determine visibility conditions in the
Denali, Tuxedni, and Simeonof Class I areas:
Back-trajectory modeling was conducted to determine the path of air
parcels impacting each Class I area. Back-trajectory analyses use
interpolated measured or modeled meteorological fields to estimate the
most likely central path over geographical areas that provided air to a
receptor at any given time. The method essentially follows a parcel of
air backward in hourly steps for a specified period of time. Back
trajectories account for the impact of wind direction and wind speed on
delivery of emissions to the receptor, but do not account for chemical
transformation, dispersion, and deposition of samples during transport.
Weighted Emissions Potential (WEP) analysis was used to determine
how much each emission source area (sources within each gridded
emission area) contributes to visibility impairment in the Denali,
Simeonof, and Tuxedni Class I areas, based on both the baseline 2002
and the 2018 Alaska emissions inventories. This method does not account
for chemistry and removal processes. Instead, the WEP analysis relies
on an integration of gridded emissions data, meteorological back
trajectory residence time data, a one-over-distance factor to
approximate deposition and dispersion, and a normalization of the final
results.
The results of the WEP analysis, conducted by WRAP for Alaska,
identified the following source areas and source categories impacting
visibility at the Denali National Park (measured at both the Denali and
Trapper Creek IMPROVE sites), Simeonof Wilderness Area, and Tuxedni
National Wildlife Refuge:
1. Denali National Park
Table III.K.7-1 of the SIP submittal summarizes the WEP values for
Denali, based on data collected at the DENAL1 IMPROVE site, for the top
three boroughs (Yukon-Koyukuk, Southeast Fairbanks, and Fairbanks North
Star) for each pollutant on the 20% worst days. WEP predicts that 95%
of the total PM2.5 for 2002 came from these boroughs, and of
that amount, 95% came from natural fires in Yukon-Koyukuk and Southeast
Fairbanks boroughs. For VOCs, natural wildfires in Yukon-Koyukuk and
Southeast Fairbanks boroughs are the largest source, and stationary
area sources in Denali Borough are the second largest source. For
NOX contributions in 2002, 77% came from wildfires in Yukon-
Koyukuk and Southeast Fairbanks boroughs, and about 13% came from point
sources in the Fairbank North Star borough. For SOX
contributions in 2002, 64% came from natural fires in Yukon-Koyukuk and
Southeast Fairbanks boroughs, and 29% came from point sources in
Fairbanks North Star borough. For ammonia contributions in 2002, 97%
came from natural fires in Yukon-Koyukuk and Southeast Fairbanks
boroughs. The State noted that natural fires are the dominant source
for all of the pollutants identified at this monitoring site, and there
are no other significant sources of PM2.5 other than natural
fires. Overall, the information presented in Table III.K.7-1of the SIP
submittal demonstrates that the only significant anthropogenic sources
of concern impacting Denali are Fairbanks SO2 point sources.
Table III.K.7-3 of the SIP submittal shows the WEP values for
Denali based on data collected at the Trapper Creek site. This table
shows that natural fires are the largest source of emissions impacting
this site, although there is also significant contribution from several
anthropogenic source categories. In summary, 82% of the
PM2.5 in 2002 came from natural fires in Yukon-Koyukuk and
Southeast Fairbanks boroughs, and 11% of the PM2.5 came from
point sources in the Matanuska-Susitna borough. For NOX, 32%
of the contributions for 2002 came from natural fires in Yukon-Koyukuk
borough, 20% came from point sources on the Kenai Peninsula and 16%
came from on-road mobile sources in the Matanuska-Susitna borough. The
contribution of NOX from on-road mobile sources is expected
to drop to about half this value by 2018 due to the benefits of fleet
turnover and increasingly stringent Federal motor vehicle emissions
standards. For SOX, 57% of the contributions for 2002 came
from natural fires in the Yukon-Koyukuk borough, while 19% of the
SOX came from stationary sources in the Matanuska-Susitna
borough. Alaska has determined that natural fires are the dominant
source for all of the visibility impairing pollutants at the Trapper
Creek monitor in Denali National Park, but there is also a significant
contribution from point sources on the Kenai Peninsula, and from on-
road and stationary sources in the Matanuska-Susitna borough.
2. Simeonof Wilderness Area
A summary of the WEP values for the boroughs impacting Simeonof is
presented in Table III.K.7-2 of the SIP submittal. The WEP analysis for
this site shows that natural fires in the Yukon-Koyukuk borough are the
dominant source of all pollutants impairing visibility. The WEP
analysis concluded that 96% of the PM2.5, 87% of the VOCs,
76% of the NOX, 91% of the SOX, and 95% of the
ammonia impacting Simeonof during 2000-2004 was from natural fires in
the Yukon-Koyukuk borough. Alaska indicated that the forecast for
emissions from natural fires in 2018 impacting the Simeonof Class I
area are the same as for the baseline, which means that the visibility
impacts from anthropogenic sources is expected to remain relatively
small compared to contributions from natural fires through 2018 at this
site.
3. Tuxedni National Wildlife Refuge Area
The information presented in Table III.K.7-4 of the SIP submittal
shows a complex mixture of anthropogenic and natural source
contributions that impact visibility at the Tuxedni National Wildlife
Refuge. While natural fires are still the most significant source for
many of the pollutants, (including 78% of the PM2.5, 41% of
the VOCs, 44% of the SOX, and 54% of the ammonia), 64% of
the NOX that impacts Tuxedni comes from point sources on the
Kenai Peninsula. Anthropogenic sources projected to significantly
impact Tuxedni in 2018 are: (1) point and stationary sources on the
Kenai Peninsula, which will contribute 44% of the VOCs impacting
Tuxedni, and (2) stationary areas sources on the Kenai
[[Page 11032]]
Peninsula, which will contribute 37% of the SOX impacting
Tuxedni.
EPA is proposing to find that Alaska has used appropriate air
quality models to identify the primary pollutants, and source areas for
these pollutants, impacting the Denali, Simeonof, and Tuxedni Class I
areas. EPA is also proposing to find that the SIP submittal contains an
appropriate analysis of the impact of these pollutants on visibility in
each of the Class I areas in Alaska. See WRAP TSD Chapter 6.B (EPA's
analysis of the WRAP's WEP analysis for Alaska).
E. Best Available Retrofit Technology (BART)
1. Alaska BART Regulations
Alaska has adopted new regulations at 18 AAC 50.260 (a)-(q) which
provide the State with the authority to regulate BART sources in
Alaska. In April 2007, ADEC proposed regulations to adopt the Federal
BART rules into 18 AAC 50.260 to establish the process and specific
steps for the BART eligible sources to follow to provide the analysis
necessary for ADEC to make BART determinations. ADEC's regulations
adopting the Federal BART rules were promulgated on December 30, 2007
and submitted to EPA for inclusion in the SIP on February 7, 2008. The
essential elements of these regulations are summarized below.
In 18 AAC 50.260(a), ADEC adopts the Federal BART guidelines at 40
CFR part 51 Appendix Y and the definitions at 40 CFR 51.301 with
specified exceptions where the definition at AS 46.14.990 is used. 18
AAC 50.260(b) specifies that sources subject to BART be identified in
accordance with Section III of the BART guideline and sets the date by
which ADEC will notify subject sources of their status.
18 AAC 50.260(c) establishes the procedures by which a source can
request an exemption from BART by submitting a visibility impact
analysis showing that the source is not reasonably anticipated to cause
or contribute to any impairment of visibility in a Class I area.
18 AAC 50.260(d)-(l) establish the process that sources that did
not request or receive an exemption or an Owner Requested Limit (ORL)
must undertake to conduct a BART analysis, including visibility impact
analysis modeling, to determine BART emission limits for sources that
are subject to BART.
18 AAC 50.260(m) establishes how a final BART determination may be
appealed.
18 AAC 50.260(n) establishes the deadline by which a source must
implement a final BART determination.
18 AAC 50.260(o) requires the owner or operator of a source
required to install control technology to maintain the equipment and
conduct monitoring, recordkeeping, and reporting in accordance with the
final BART determination.
18 AAC 50.260(p) explains the billing process for ADEC services
under this section.
18 AAC 50.260(q) includes the definitions related to regional haze
in the rules that are not in 18 AAC 50.990. These new regulations are
consistent with the definitions and requirements for BART under the
RHR. EPA proposes to approve these regulations.
2. BART-Eligible Sources in Alaska
In order to identify sources that could potentially be eligible for
BART, ADEC conducted a preliminary review of its Title V permits. ADEC
then worked in conjunction with WRAP's contractor, Eastern Research
Group, Inc. (ERG), to identify BART-eligible sources from this
preliminary source list. ERG's report of April 2005, found that the
following seven sources were BART-eligible sources:
Chugach Electric, Beluga River Power Plant (Chugach
Electric);
Alyeska Pipeline Service Company, Valdez Marine Terminal
(Alyeska);
Tesoro, Kenai Refinery (Tesoro);
Anchorage Municipal Light and Power, George Sullivan Plant
2 (Anchorage Municipal);
ConocoPhillips Alaska Inc., Kenai LNG Plant (CPAI);
Agrium, Chemical-Urea Plant (Agrium); and
Golden Valley Electric Association, Healy Power Plant
(GVEA).
Chugach Electric was determined to not be BART-eligible due to the
replacement of the BART-eligible emission units with ones that were not
BART-eligible. In April 2007, ADEC sent a letter to Chugach officials
regarding the status of its BART-eligible emission units. Chugach
responded with information that the BART-eligible emission units had
been replaced and the plant had become a ``steam electric plant'' after
the BART timeframe. EPA concurs with ADEC that Chugach Electric is not
a BART-eligible source.
After identifying the BART-eligible sources, the second phase of
the BART evaluation is to identify those BART-eligible sources that may
reasonably be anticipated to cause or contribute to visibility
impairment at any Class I area, i.e., those sources that are `subject'
to BART. The BART Guidelines allow states to consider exempting some
BART-eligible sources from further BART review because they may not
reasonably be anticipated to cause or contribute to any visibility
impairment in a Class I area. Consistent with the BART Guidelines and
Alaska's regional haze regulations, ADEC provided BART source emission
rates to WRAP, which conducted modeling to determine which BART-
eligible sources could be reasonable anticipated to cause or contribute
to visibility impairment in two Class I areas, Denali National Park and
Tuxedni National Wildlife Refuge.\8\ In WRAP's analyses, a 0.5 dv
threshold was used to determine if a source was causing or contributing
to visibility impairment in either of these two Class I areas.
---------------------------------------------------------------------------
\8\ Visibility impacts at Simeonof and the Bering Sea Wilderness
Areas are expected to be below 0.5 dv.
---------------------------------------------------------------------------
Alaska also established a 0.5 dv threshold to determine if a BART-
eligible source was subject to BART (see p. III.K.6-4 of the SIP
submittal). This threshold was based on the following reasons:
(1) Baseline visibilities at all Alaska IMPROVE sites are within
0.5 dv of the 2018 goal (See Table III.K.4-3 of the SIP submittal), and
calculations conducted by ADEC demonstrate that the 2018 goal will be
achieved in all Alaska Class I areas (see Alaska Regional Haze SIP
submittal, III.K.9-33 through 9-40), except the Bering Sea Wilderness
Area, for which there is no baseline data.
(2) Insight into selecting a threshold was also gained from a
review of the uncertainty observed in historical visibility
measurements at each of the Class I area monitoring sites. Uncertainty
values computed for each site (i.e., standard deviation) vary from 0.5
dv for Denali, to 0.8 dv at Simeonof, to 0.6 dv at Trapper Creek, to
1.0 dv at Tuxedni. A BART threshold of 0.5 dv would either be less than
or equal to each of these visibility uncertainty values, thus
visibility impacts of sources meeting this significance threshold would
not be distinguished from historical variations observed at each of the
monitoring sites.
Based on these reasons, Alaska selected the 0.5 dv threshold to
determine which sources are subject to BART. Any source with an impact
of greater than 0.5 dv in any Class I area, would be subject to a BART
analysis and BART emission limitations. In the BART Guidelines, EPA
recommended that States ``consider the number of BART sources affecting
the Class I areas at issue and the magnitude of the individual sources'
impacts. In general,
[[Page 11033]]
a larger number of BART sources causing impacts in a Class I area may
warrant a lower contribution threshold.'' 70 FR 39104, 39161 July 6,
2005.
EPA reviewed the modeled impacts of the BART-eligible sources that
Alaska decided were BART-exempt. These sources, Alyeska, Tesoro,
Anchorage Municipal, Conoco-Phillips, and Agrium, were modeled to have
a cumulative visibility impact of just over 1 dv on Tuxedni, and a 0.98
dv impact at Denali. See Table III.K.6-2 in SIP submittal. Given the
number and location of sources and the cumulative impact from these
sources, it is reasonable for Alaska to conclude that a 0.5 dv
threshold was appropriate for capturing those BART-eligible sources
with significant impacts on visibility in Class I areas. For these
reasons and in consideration of the facts specific to Alaska, EPA is
proposing to approve the 0.5 dv threshold adopted by Alaska for
determining which sources in Alaska are subject to BART.
To initially identify sources subject to BART, based on a 0.5 dv
threshold, Alaska used the CALPUFF dispersion model results generated
by WRAP. CALPUFF was used to assess the impact of emissions from BART-
eligible sources on visibility at Denali and Tuxedni. CALPUFF used
meteorological data forecast data, surface meteorological measurements,
and major source specific emission estimates to calculate visibility
impacts due to emissions of SO2, NOX and primary
PM emissions. See Alaska Regional Haze SIP submittal Section III.K.6
for a summary of source specific modeling results and deciview impacts.
ADEC subsequently refined the CALPUFF modeling results by using a
more accurate three-year meteorological data set, Additionally, the
sources, ADEC, EPA, and the FLMs worked together to develop a more
detailed CALMET modeling protocol along with the additional
meteorological data. The results of this second dispersion modeling
were compared to the 0.5 dv threshold to determine which sources were
subject to BART. The modeling result for three of the six remaining
BART-eligible sources (Alyeska Pipeline Service Company, Valdez Marine
Terminal, Tesoro, Kenai Refinery and Anchorage Municipal Light & Power,
Sullivan Plant) demonstrated that their visibility impacts were less
than 0.5 dv. Therefore, Alaska determined that these three sources are
not subject to BART.
The Agrium, Chem-Urea Plant is not currently operating and it is
not known when it might reopen, and operating data necessary to conduct
a BART analysis was not available. Agrium notified ADEC that it would
be requesting the suspension of the renewal of its Title V permit as
well as the termination of its current Title V permit for this
facility. Given these conditions, ADEC issued a BART determination for
Agrium which stated that Agrium has a zero emission limit for its BART
eligible units, and must pursue a new air permit if and when it plans
to restart this facility. Therefore, Agrium currently has a zero
emission limit for its BART eligible units and that if this facility
restarts operation, a new PSD air permit would be required that
includes all units (including the BART units) at the facility. As a
result, if this facility restarts operation, all BART-eligible units at
the facility would be reclassified as PSD units and therefore would be
subject to PSD emission limits. Therefore, ADEC has determined that
this source is not subject to BART.
Alaska's review of the more refined CALPUFF modeling of the Conoco
Phillips Alaska, Inc. (CPAI), Kenai LNG Plant found that its impact on
the Tuxedni Class I area was greater than 0.5 dv. Subsequently, ADEC
issued a Compliance Order by Consent (COBC) to the facility providing
that after December 31, 2013, the emissions from the identified BART
eligible units at the CPAI Kenai LNG Plant will be limited to a level
that will not cause or contribute to visibility impairment in any Class
I area at equal to or greater than 0.5 dv. The specific operating
conditions, and allowable maximum daily NOX emission limits,
required to remain below a 0.5 dv impact, are specified in Exhibit B of
the COBC. ADEC has determined that this source is not subject to BART.
EPA proposes to approve this determination.
EPA proposes to approve ADEC's determination that Alyeska Pipeline
Service Company Valdez Marine Terminal; Tesoro, Kenai Refinery;
Anchorage Municipal Light & Power, Sullivan Plant; the Agrium, Chem-
Urea Plant, and the CPAI Kenai LNG Plant are not subject to BART.
3. BART-Subject Sources in Alaska
Modeling for the remaining BART eligible source, the GVEA Healy
Power Plant Unit 1, demonstrated baseline visibility impacts
of greater than 3.4 dv, and therefore is subject to BART. A summary of
the modeling results and proposed actions to control emissions from
this facility is summarized below.
ADEC determined that the Golden Valley Electric Association (GVEA),
Healy coal fired power plant is a BART-eligible source located
approximately 5 miles from Denali National Park. The BART-eligible
units consist of one primary coal-fired boiler, a 25-MW Foster-Wheeler
boiler, referred to as ``Healy Unit 1'', and one auxiliary
boiler (Auxiliary Boiler 1). GVEA undertook a full assessment
of control options for Healy Unit 1 under 18 AAC 50.260(d)-
(e) and used the WRAP modeling protocol and submitted its initial BART
control analysis report on July 28, 2008. In this revised BART report,
GVEA concluded that the existing NOX, SO2, and PM
limits were BART for Healy Unit 1.
Subsequently, ADEC through its contractor Enviroplan, conducted a
thorough BART analysis following the steps outlined in the BART
Guidelines. Followings ADEC's consultation with the FLM and receipt and
review of public comments, Enviroplan completed a final BART
determination report for GVEA on January 19, 2010, and revised this
report on June 1, 2010. See Alaska Regional Haze SIP submittal,
Appendix III.6-62 through 6-179. (Final Enviroplan BART Determination
Report for GVEA, revised June 1, 2010 (``Enviroplan GVEA Healy BART
Report'')). This report, based on updated site-specific cost
information on control technologies, and on the assumption that the
useful life of installed control technologies would be 8 years (based
on installation by 2016 and plant shutdown in 2024), concluded that the
following control technologies are BART for Healy Unit 1: (1)
Selective Non Catalytic Reduction (SNCR) added to the existing Low
NOX Burners (LNB) with Over Fired Air (OFA) for
NOX, (2) the existing dry sodium bicarbonate dry sorbent
injection (DSI) system for SO2, and (3) the existing
reverse-gas baghouse system for PM10
The Enviroplan GVEA Healy BART Report concluded that SNCR was BART
for NOX because it would be cost effective at $4,208/ton
(based on a 2024 closure of Healy Unit 1), and because SNCR
would provide an 0.62 deciview improvement in visibility at the Denali
Class I area for 51 days per year (a reduction from 3.36 dv impact to a
2.74 dv impact). The State determined that Selective Catalytic
Reduction (SCR) was not cost effective at $15,762/ton and was therefore
was rejected as BART for NOX control for this unit.
Enviroplan also concluded that Rotating Over Fire Air (ROFA[supreg]),
even though cost effective, would not be incrementally cost effective
over SNCR because the cost per deciview improvement for the
ROFA[supreg] equivalent emission limit would be 50 percent higher than
the cost for the SNCR limit (for a visibility improvement of only 0.05
dv), and the capital cost of installing ROFA[supreg] would
[[Page 11034]]
be 180 percent higher than installing SNCR.
For SO2 controls, Enviroplan indicated that increased
sorbent injection, with a potential visibility improvement of 0.25 dv,
was the only cost-effective option that could improve visibility in
Denali National Park. However, after evaluating this alternative
according to the required BART criteria, Enviroplan concluded that this
option was cost prohibitive because it would cost $3,578 for each ton
of SO2 removed and would result in a visibility improvement
of only 0.25 dv. Enviroplan also noted that increasing the sorbent
injection rate, could potentially cause a visibility impairing ``brown
plume'' effect (due to the oxidation of nitrogen oxide (NO) to nitrogen
dioxide (NO2) prior to discharge from the stack), which
would adversely impact visibility in Denali National Park.
Based on the results of Enviroplan's evaluation, and in response to
public comments received on the proposed BART for Healy Unit
1, ADEC determined that the BART emission limits for GVEA
Healy Unit 1, based on a 2024 shutdown, are 0.20 lb/mmBtu for
NOX, the current limit of 0.30 lb/mmBtu for SO2,
and the current limit of 0.015 lb/mmBtu for PM.
The BART Guidelines provide that a source's remaining useful life
may be considered as an element of the cost analysis in a BART
determination for a particular source and recognizes that if the
remaining useful life represents a relatively short time frame it may
affect the annualized costs of the retrofit controls. BART Guidelines
IV.D.4.k.1. As explained in the BART Guidelines, where the facility
will be shut down earlier than its normal expected life, the remaining
useful life is the difference between the date the controls are put in
place and the date the facility permanently ceases operations. The BART
Guidelines further provide that ``Where this date affects the BART
determination this date should be assured by a federally, or State-
enforceable restriction preventing further operation.'' BART
Guidelines, IV.D.4.k.2.(2). In the case of the Healy Unit 1,
EPA recognizes that the 2024 shutdown date relied on in the cost
effectiveness calculation described above is not enforceable. However,
the BART Guidelines provide that the methods specified in EPA's Control
Cost Manual used to calculate annualized costs should reflect the
specified time period for amortization that varies depending on the
type of control. Therefore, based on our review, EPA considers 15 years
to be a reasonable estimated remaining useful lifetime for the
particular control technologies under consideration for NOX
or SO2 control technologies for Healy Unit 1.
Based on a 15-year lifetime, EPA found that SCR was not cost
effective for controlling NOX emissions at $10,170/ton. This
cost effectiveness value does not include the cost to replace lost
electricity generation during installation of SCR because there is
insufficient evidence that the cost is a necessary consequence of SCR
installation. When this element is removed from the cost estimate, the
overall cost effectiveness over a 15-year lifetime for SCR decreases
from $11,765/ton to $10,170/ton (see EPA's Healy BART Report-addendum).
EPA finds that SCR is still not cost effective at this lower rate.
However, the following NOX control technologies were
considered cost effective: SNCR at $3,125/ton, ROFA at $3,476/ton, and
ROFA[supreg] with Rotamix[supreg] at $4,325/ton.
EPA next considered the environmental impacts of each of these cost
effective technologies. ROFA[supreg] with Rotamix[supreg] when operated
to achieve the quoted NOX emission rate of 0.11 lb/MMbtu,
reportedly carries some risk of increased emissions of carbon monoxide
(CO), carbon dioxide (CO2), and ``loss-on-ignition'' (un-
burnt carbon particulate matter). Increased particulate matter
emissions could result in additional visibility impairment at the
Denali Class I area. However, EPA found that data quantifying this risk
is not readily available, since facilities employing ROFA[supreg] with
Rotamix[supreg] are typically allowed slightly higher NOX
emission limits than those quoted by the vendors of these technologies.
EPA's review did not identify a facility utilizing ROFA[supreg] with
Rotamix[supreg] that was subject to an emission limit near 0.11 lb/
mmBTU, the level quoted by the vendor for ROFA[supreg] with
Rotamix[supreg] for Healy Unit 1. Installation of the
ROFA[supreg] technology alone (without Rotamix[supreg]) is cost
effective, and could achieve an emission rate of 0.15 lb/mmBtu
according to the vendor quote, but would only result in a visibility
improvement of approximately 0.05 dv beyond the improvement achievable
using SNCR. ADEC considered this incremental visibility improvement not
significant enough to warrant the increased cost for ROFA[supreg], and
EPA agrees with this decision.
ADEC selected the BART NOX emission limit for Healy Unit
1 based on a consideration of the BART five-step control
review process, information provided by GVEA in their BART analyses,
the Enviroplan GVEA Healy BART Report, and a decision by ADEC to grant
GVEA's request to allow for some operational variability in the
NOX emission rate for Healy Unit 1. GVEA conducted
an analysis of 2003-2008 (5 years) 30-day rolling NOX and
SO2 emissions from Healy Unit 1, applied three
standard deviations to the mean of these values, and requested that
their BART emission limits reflect the resultant rates at three
standard deviations. In response, ADEC determined that an additional
allowance of 5% higher than the emission rate identified in the
findings report (0.19 lb/mmBtu) would sufficiently allow for operating
variability. Specifically, ADEC determined that the flexibility
provided by a 0.20 lbs/mmBtu NOX emission limit instead of a
0.19 lb/mmBtu NOX emission limit would require GVEA to stay
within the specified emission limit, while allowing for a reasonable
amount of operational variability. See Appendix III.K.6-114 of the SIP
submittal. EPA believes that this minor NOX emission
allowance would not significantly change the visibility impairment at
Denali National Park due to emissions from Healy Unit 1.
Therefore, EPA proposes to approve the State's determination that an
emission limit of 0.20 lbs/mmBtu for NOX is BART for Healy
Unit 1.
For SO2, EPA found that optimizing the existing Dry
Sorbent Injection (DSI) system to achieve an emission limit of 0.18 lb/
mmBtu, by increasing the sorbent injection rate, is cost effective at
$3,578/ton. However, increased sorbent injection rate carries the risk
of a ``brown plume'' effect. Brown plume refers to the oxidation of
nitrogen oxide (NO) to nitrogen dioxide (NO2) prior to
discharge from the stack. NO2 is brown in color, while NO is
colorless; the two together form NOX. Combustion emissions
are initially NO, and oxidize in the atmosphere to NO2. High
sorbent injection rates can increase the potential for this oxidation
to occur prior to discharge, potentially resulting in a visible brown
plume from the exhaust stack. Due to the proximity of Healy Unit
1 to Denali National Park, a brown plume may result in
increased visibility impairment in the sections of the Park closest to
Healy Unit 1, even though overall visibility impairment would
be reduced. Two other SO2 control options, a spray dryer,
and wet limestone flue gas desulfurization, were considered not to be
cost effective at $7,198/ton and $7,763/ton, respectively. Therefore,
EPA proposes to approve the SO2 emission limit achievable by
the current DSI control technology, 0.30 lb/mmBtu, as BART for Healy
Unit 1.
ADEC determined that the existing reverse-gas baghouse system is
the state-
[[Page 11035]]
of-the-art particulate emissions (PM) control technology for utility
boiler applications, and therefore, the existing high-efficiency
reverse-gas baghouse installed on the Healy Unit 1 is BART for
PM. EPA proposes to approve the PM emission limit achievable by the
current reverse-gas baghouse control technology, 0.015 lb/mmBtu, as
BART for Healy Unit 1.
Regarding the Auxiliary Boiler 1, the State indicated that
this unit is just used during shutdown periods or emergency repairs to
Healy Unit 1 to supply heat to the Healy 1 building or to
provide steam and potable hot water to Healy Unit 2, if
needed, when Healy Unit 1 is not operating and that it is
fired monthly for maintenance checks. Additionally, refined modeling
for the State also indicated that that the predicted visibility impacts
attributable to the boiler were less than .067 dv. The State determined
that the existing uncontrolled configuration and current Title 5 permit
limits for the Auxilliary Boiler 1 were BART, and that no
additional controls were required. See Enviroplan GVEA Healy BART
Report Table E-1 for BART emission limits specific to the Auxiliary
Boiler 1. EPA agrees that given the low annual emissions for
the boiler, add-on pollution controls equipment for NOX and
PM are not cost effective. EPA found that the only viable method to
control SO2 emission from the Auxiliary Boiler 1
would be to switch to ultra-low sulfur diesel. However, due to the cost
differential between high sulfur diesel and ultra-low sulfur diesel in
the Fairbanks area, it would cost approximately $28,000/t on to reduce
SO2 emission from the Auxiliary Boiler 1 by
switching fuels. Based on this cost, EPA has determined that this
approach would not be cost effective. EPA proposes to approve the
State's BART determination for the Auxiliary Boiler 1.
F. Determination of Reasonable Progress Goals
The RHR requires States to show ``reasonable progress'' toward
natural visibility conditions over the time period of the SIP, with
2018 as the first milestone year. The RHR at 40 CFR 51.308(d)(1)
requires states to establish a goal, expressed in deciviews, for each
Class I area within the state that provides for reasonable progress
toward achieving natural visibility conditions by 2064. As such, the
State must establish a Reasonable Progress Goal (RPG) for each Class I
area that provides for visibility improvement for the most-impaired
(20% worst) days and ensures no degradation in visibility for the
least-impaired (20% best) days in 2018. RPGs are estimates of the
progress to be achieved by 2018 through implementation of the Long Term
Strategy (LTS), which includes anticipated emission reductions from all
State and Federal regulatory requirements implemented between the
baseline and 2018, including but not limited to BART and any additional
controls for non-BART sources or emission activities including any
Federal requirements that reduce visibility impairing pollutants.
As explained above, ADEC relied on the WEP analysis conducted by
the WRAP to project visibility conditions at Denali National Park,
Simeonof Wilderness Area, and Tuxedni National Wildlife Area in 2018.
The visibility projections were based on estimates of emissions
reductions from all existing and known controls resulting from Federal
and state CAA programs as of December 2010.
In setting the RPGs for its Class I areas, ADEC considered a number
of different factors. These factors included: (1) Attainment of the URP
in each Class I area by 2018, (2) results of the Four Factor Analysis,
(3) additional improvements in visibility due to BART controls, (4)
evidence that there is significant contribution to visibility
impairment from international sources (such as Asian Dust, and Arctic
Haze) and substantial contributions from natural sources (such as
wildfires and sea salt), and (5) additional improvements in visibility
in Alaskan Class I areas due to new maritime emission regulations that
will achieve substantial reductions by 2015 in SO2 and
NOX emissions from commercial marine vessels. These five
factors are further described in the following paragraphs.
(1) Attainment of the 2018 URPs--ADEC conducted a statistical
analysis of historical visibility data from the Denali, Tuxedni, and
Simeonof Class I areas to demonstrate that the visibility in the Class
I areas in Alaska in 2018 projected by the WEP analysis falls within
the bounds of the 2018 URP glide path, with a 95% degree of confidence.
This indicates that there is no difference between the WEP forecast of
visibility impairment in the Class I areas, and the URP determined for
each Class I area in 2018.
(2) Results of the Four Factor Analysis--As described in section
II.D. above, when establishing RPGs the RHR requires the states to
consider (1) The costs of compliance; (2) the time necessary for
compliance; (3) the energy and non-air quality environmental impacts of
compliance; and (4) the remaining useful life of any potentially
affected sources. 40 CFR 51.308(d)(1)(i)(A). This is referred to as the
Four Factor Analysis. As reflected in the information presented in
Table III.K.9-2 of the SIP submittal, the WEP analysis indicates that
three categories of point sources may be significant contributors to
regional haze and warrant further analysis under the four factors.
These three categories are: industrial boilers, petroleum refineries,
and reciprocating engines and turbines. Based on the four-factor
analyses of these three source categories, ADEC concluded that it is
not reasonable to require additional controls for these source
categories at this time. Alaska explained its reasons to support this
decision include: (1) The Class I areas in Alaska do not need large
visibility improvements to reach natural conditions in 2064, (2) the
Class I areas are predicted to attain the URP in 2018, (3) emissions
from natural sources (primarily wildfires) contribute the most
significant visibility impacts, and (4) it is uncertain, at this time,
how much visibility improvements could be attained by controlling
individual point sources, since each contributing point source has not
been individually modeled for visibility impact to the nearest Class I
area.
(3) Additional Improvements not included in the WEP Analysis--
Additional improvements at several sources that were not factored into
ADEC's WEP analysis reduce visibility impairing pollutants impacting
Denali, and Tuxedni, within the next 5 years. GVEA's Healy Power Plant
Unit 1 will install SNCR as BART for NOX, which
will reduce NOX impacts at Denali by 0.62 dv. The Conoco
Philips Kenai LNG plant will also reduce its emissions to below 0.5 dv
under the conditions of a consent order. Finally, the Agrium, Chem-Urea
Plant in the Kenai has stopped operating and therefore has dramatically
reduced NH3, NOX and PM2.5 emissions
impacting Tuxedni (by 98%, 18%, and 93%, respectively). These
reductions in emissions from sources on the Kenai Peninsula indicate
that visibility at Tuxedni should improve even more rapidly than
predicted by the WEP analysis.
(4) Contribution from International Sources and Natural Sources--
Significant contributions to haze in the Class I areas is Alaska
include natural sources (biogenic aerosols, sea salt, volcanic
emissions) and international sources. See generally, Alaska Regional
Haze SIP submittal, III.K.3-4 to 3-8. There is also evidence that
natural wildfire is a substantial contributor to visibility impairment
in the three
[[Page 11036]]
modeled Class I areas, but particularly in the Denali Class I area. The
speciation analysis, clearly demonstrate that natural fires are the
dominant source of pollutants impacting all Class I areas within Alaska
on the 20% worst days. In Denali, natural fires contribute 97% of the
PM2.5, 68% of the VOCs, 79% of the NOX, and 65%
of the SO2 that cause visibility impairment in that Class I
area. At Trapper Creek (also in Denali), natural fires contribute 86%
of the PM2.5, 65% of the VOCs, 34% of the NOX,
and 62% of the SO2 that cause visibility impairment. In
Simeonof, natural fires contribute 99% of the PM2.5, 89% of
the VOCs, 76% of the NOX, and 92% of the SO2 that
cause visibility impairment on the worst 20% days. In Tuxedni, natural
fires contribute 78% of the PM2.5, 41% of the VOCs, 15% of
the NOX, and 44% of the SO2 that cause visibility
impairment on the worst days. See generally Alaska Regional Haze SIP
submittal, Section III.K.4, and WEP analyses shown in Tables III.K.7-1
through III.K.7-4.
(5) Additional Improvements due to New Maritime Emission
Regulations--Alaska also found that new emission control requirements
on commercial marine vessels, which will be fully in effect by 2015,
will reduce SO2, NOX, and PM2.5
emission contributions to visibility impairment in Simeonof Wilderness
Area and Tuxedni National Wildlife Refuge. In October 2008, the
International Maritime Organization (IMO) adopted Annex VI amendments
which specify (1) New fuel quality requirements for commercial marine
vessels beginning from July 2010, (2) Tier II and III NOX
emission standards for new commercial marine engines, and (3) Tier I
NOX requirements for existing pre-2000 commercial marine
engines. The Annex VI amendments designate waters within 200 miles of
the North American coast (including Alaska) as an emission control area
(ECA). The requirements of Annex VI ensure large reductions in
particulate matter, NOX, and SO2 emission from
commercial marine vessels operating in the ECA. These reductions were
not factored into the Alaska 2018 emissions inventory projections or
the WEP analysis, but are expected to further improve visibility at
Tuxedni, and to a lesser extent Simeonof, which are both significantly
impacted by emissions from commercial marine vessels.
Alaska acknowledged that its emission inventory and 2018 reasonable
progress forecasts and emission inventory do not include emissions from
the 50 MW coal-fired unit at the GVEA facility in Healy (Healy Unit
2) The State explained, the unit has not operated for a number
of years, is not currently operating and that the available information
to analyze the potential visibility impact of the Healy Unit 2
emissions on Denali is inconclusive. The State does recognize however
that if the unit is brought on line, the point source NOX
and SOx emissions emitted from within the Denali Borough would increase
by a factor of 4.0 and 2.8 respectively. Alaska Regional Haze SIP
submittal III.K.9-32, 9-37. EPA is aware that on February 3, 2012, ADEC
issued a revised Title 5 permit to GVEA allowing Healy 2 to resume
operations, and that emissions from Healy 2 could have an impact on
visibility in Denali. Final Air Quality Operating Permit No.
AQ0173TVP02 (Feb. 3, 2012). However, since the visibility impacts of
these future emissions have not yet been modeled, the exact amount of
impact cannot be determined at this time. Therefore, for reasonable
progress purposes, it is not reasonable to require additional controls
on the facility at this time. If or when the unit begins operating
again, ADEC commits to assessing the impact of these additional
emissions on visibility in Denali and will evaluate control options for
the facility as part of its 5 year progress report. In light of the
uncertainty regarding the facility at this time, we propose to approve
the State's consideration of the Healy Unit 2 in its
reasonable progress evaluation. EPA will consider additional relevant
information it receives during public comment period regarding the
emissions or visibility impact of this source as it relates to Alaska's
reasonable progress goals.
EPA is proposing to agree with the State's analysis and conclusion
that it is not reasonable to seek additional controls on other emission
sources within the State at this time to achieve further reasonable
progress. Importantly, the RPGs for the Class I areas in Alaska are
projected to meet the URP in 2018. Alaska has demonstrated that the
RPGs provide for visibility improvement on the worst days, and no
degradation of visibility on the best days compared to the baseline
average. EPA finds that the State's decision not to seek additional
control measures is supported by the fact that there is significant
contribution to haze in the Class I areas due to international sources
and some natural sources (biogenic aerosols, sea salt, and volcanic
emissions), as well as substantial contributions to haze from
wildfires. In addition, the State expects reductions in statewide
emissions of SO2 and NOX due to BART emission
limits on Healy Unit 1, emission limits on the Conoco Phillips
Kenai LNG Plant specified in the consent order between Alaska and
Conoco Philips, and the shutdown of the Agrium, Chem-Urea Plant. Based
on the above reasons, EPA is proposing to approve ADEC's demonstration
that its RPGs provide for reasonable progress in all its Class I areas
for the first planning period, as required in CFR 51.308(d)(1)(i), (ii)
and (vi).
G. Long Term Strategy (LTS)
Alaska relied on monitoring, emission inventories and modeling
information from the WRAP as the technical basis for its LTS.
Coordination and consultation occurred with other states through the
WRAP, in which all western states participated in developing the
technical analysis upon which their SIPs are based. This included
identifying all anthropogenic sources of visibility impairment
including major and minor stationary sources, mobile sources, and area
sources. The anticipated net effect on visibility over the first
planning period due to changes in point, area, and mobile source
emissions is a significant reduction in regional haze in the Denali,
Tuxedni, and Simeonof Class I areas. In particular, ADEC considered the
following factors in developing its long-term strategy.
1. Ongoing Air Pollution Control Programs
Alaska has a number of ongoing programs and regulations that
directly protect visibility or provide for improved visibility by
generally reducing emissions.
a. Prevention of Significant Deterioration/New Source Review
Regulations
The two primary regulatory programs for addressing visibility
impairment from industrial sources are the BART and Prevention of
Significant Deterioration/New Source Review (PSD/NSR) rules. The PSD/
NSR rules require that emissions from new industrial sources and major
changes to existing sources protect visibility in Class I areas through
attainment of air quality related values, including visibility, in
Class I areas.
b. Regional Haze BART Controls
Section 51.308(e) of the RHR includes the requirements for states
to implement Best Available Retrofit Technology for eligible sources
within the State that may reasonably cause or contribute to any
impairment of visibility in any mandatory Class I area. Alaska's BART
regulations (18 AAC 50.260) specify
[[Page 11037]]
how to determine if a source is subject to BART, and identify the
process for determining BART emission limits for BART-subject sources.
As discussed in section II.E. above, ADEC has completed analysis of
identified BART-eligible sources in Alaska and has determined BART
emission limits for all BART-subject sources. Each source subject to
BART is required to install and operate BART as expeditiously as
practicable, but in no case more than five year after EPA approval of
the regional haze SIP.
c. Operating Permit Program and Minor Source Permit Program
ADEC implements a Title V operating permit program as well as a
minor source permit program for stationary sources of air pollution.
The Title V permits are consistent with the requirements of 40 CFR part
71 and requirements are found in 18 AAC 50 Article 3, Major Stationary
Source Permits. The requirements for minor source permits are found in
18 AAC 50 Article 5, Minor Permits. These permit programs, coupled with
PSD/NSR requirements, serve to ensure that stationary industrial
sources in Alaska are controlled, monitored, and tracked to prevent
deleterious effects of air pollution.
d. Alaska Open Burning Regulations
Alaska has previously established open burning regulations in 18
AAC 50.065. These regulations are intended to prevent particulate
matter emitted from open burning from adversely impacting visibility in
Class I areas. For example,18 AAC 50.065 (b)-(f) provide ADEC the
authority to require pre-approvals for controlled burning to manage
forest land, vegetative cover, fisheries, or wildlife habitat if the
area to be burned exceeds 40 acres yearly. The open burning
regulations, working in conjunction with the state's Enhanced Smoke
Management Plan, control visibility impairing pollutants resulting from
planned open burning activities.
e. Local, State and Federal Mobile Source Control Programs
Mobile source emissions show decreases in NOX,
SO2, and VOCs in Alaska during the period 2002-2018. These
declines in emissions are due to numerous rules already in place, most
of which are Federal regulations. The State of Alaska has established
regulations related to mobile sources that primarily impact the
Fairbanks and Anchorage CO maintenance areas, Alaska's two largest
cities. These programs have resulted in NOX and hydrocarbon
emission reductions from motor vehicles in Alaska's two largest
communities.
f. The Federal Motor Vehicle Control Program and Federal Diesel
Emission Standards
The Federal Motor Vehicle Control Program (FMVCP) is a Federal
certification program that requires all new cars sold in all states
except California to meet more stringent emission standards. As a
result, motor vehicle emissions will be reduced as the older vehicle
fleet is replaced with newer cleaner vehicles. Additionally, a variety
of Federal rules establishing emission standards and fuel requirements
for diesel on-road and non-road equipment will significantly reduce
emissions of particulate matter, nitrogen oxides, and sulfur oxides
from emission sources over the first planning period in Alaska. Alaska
reports that as of 2010, all on-road and non-road diesel engines in
Alaska have meet EPA's national requirements for 15 ppm sulfur diesel
fuel. In addition to these regulatory programs, ADEC is also promoting
voluntary projects to reduce diesel emission reductions throughout the
state.
g. Implementation of Programs To Meet PM10 NAAQS
The community of Eagle River and the Mendenhall Valley in Juneau
are either currently or formerly nonattainment areas with respect to
the NAAQS for coarse particulate matter (PM10). These areas
exceeded the standards due primarily to wood burning and road dust
sources, and now have strict controls in place that regulate wood
burning and control road dust, the two major sources of PM10
in these communities.
2. Measures To Mitigate Impacts of Construction Activities
In developing its LTS, ADEC has considered the impact of
construction activities on visibility in the Class I areas. ADEC
regulations at 18 AAC 50.045(d) require that entities who cause or
permit bulk materials to be handled, transported, or stored or who
engage in industrial activities or construction projects shall take
reasonable precautions to prevent particulate matter from being emitted
into the ambient air. This regulation allows the state to take action
on fugitive dust emissions from construction activities. Based on the
general knowledge of growth and construction activity in Alaska, ADEC
believes that current state and Federal regulations adequately address
this emission source category.
3. Emission Limitations and Schedules for Compliance
Emission limits and compliance schedules for affected sources are
specified under Alaska and Federal regulations in accordance with the
Clean Air Act. Additionally, as discussed above, Alaska has established
specific emission limits and compliance schedules for sources subject
to BART. The state anticipates future SIP updates may identify
additional emission controls that could be implemented at that time and
commits to include limits and compliance schedules as needed in future
plan updates.
4. Source Retirement and Replacement Schedules
Alaska's continued implementation of NSR and PSD requirements, with
the FLMs reviewing impacts to Class I areas, will assure that there is
no degradation of visibility in Alaska Class I areas on the least
impaired days from expansion or growth of stationary sources in the
state. ADEC will continue to track source retirement and replacement
and include known schedules in periodic revisions to its Air Quality
Control (ACC) Plan and Regional Haze SIP.
5. Smoke Management Techniques for Agricultural and Forestry Burning
Smoke from wildland fires is a major contributor to visibility
impairment Class I areas in Alaska. Alaska found that implementation of
effective smoke management techniques through regulation and an
Enhanced Smoke Management Plan (ESMP) will mitigate impacts of planned
burning on visibility in its Class I areas. Additionally, ADEC has
developed and implemented an ESMP, and includes this plan as part of
this long-term strategy. Specifically, the ESMP, which will be revised
at least every 5 years or sooner if needed, outlines the process,
practices and procedures to manage smoke from prescribed and other open
burning to help ensure that prescribed fire (e.g. controlled burn)
activities minimize smoke and air quality problems.
6. Enforceability of Emission Limitations and Control Measures
BART emission limits and control measures will enforceable as a
matter of State law by virtue of Alaska's BART regulations at 18 AAC
50.260 and federally enforceable once approved as part of its State
Implementation Plan. ADEC has adopted this Regional Haze Plan into the
Alaska Air Quality Control Plan (Alaska's State Implementation Plan) at
18 AAC 50.030, which ensures that all elements in the plan are
[[Page 11038]]
federally enforceable once approved by EPA.
EPA is proposing to find that ADEC adequately addressed the RHR
requirements in its long-term strategy (LTS). EPA believes that this
LTS provides sufficient measures to ensure that Alaska will meet its
emission reduction obligations to achieve adequate visibility
protection for the Class I areas in the State.
H. Monitoring Strategy and Other Implementation Plan Requirements
The primary monitoring network for regional haze in Alaska is the
IMPROVE network. As discussed in section III.B. of this notice, there
are currently two IMPROVE monitoring sites at Denali National Park, one
at Simeonof, and one at Tuxedni. There is no IMPROVE site for the
Bering Sea Wilderness Area. As previously explained, one of the
monitoring challenges in Alaska is the logistical difficulty of
monitoring at remote locations in the harsh arctic environment. The
challenges for ongoing air and visibility monitoring in Alaska include
transportation and site maintenance in isolated and remote areas where
access may be intermittently available only by air or water, and
electrical power may be lacking. Alaska is working with EPA and the
FLMs to ensure that the monitoring network in Alaska provides data that
are representative of visibility conditions in each affected Class I
area within the State. In the SIP submittal, Alaska commits to rely on
the IMPROVE network for complying with the regional haze monitoring
requirement in EPA's RHR for the current and future regional haze
implementation periods. See Alaska Regional Haze SIP submittal
III.K.3.C.2.
I. Consultation With States and FLMs
Through the WRAP, member states and Tribes worked extensively with
the FLMs from the U.S. Departments of the Interior and Agriculture to
develop technical analyses that support the regional haze SIPs for the
WRAP states. The State of Alaska provided an opportunity for FLM
consultation, at least 60 days prior to holding any public hearing on
the SIP. This SIP was submitted to the FLMs on June 24, 2010, for
review and comment. Comments were received from the FLMs on August 23,
2010. As required by 40 CFR 51.308(i)(3), the FLM comments and State
responses are included the SIP submittal.
40 CFR 51.308(f-h) establish requirements and timeframes for states
to submit periodic SIP revisions and progress reports that evaluate
progress toward the reasonable progress goal for each Class I area. As
required by 40 CFR 51.308(i)(4), ADEC will continue to coordinate and
consult with the FLMs during the development of these future progress
reports and plan revisions, as well as during the implementation of
programs having the potential to contribute to visibility impairment in
mandatory Class I areas. This consultation process shall provide on-
going and timely opportunities to address the status of the control
programs identified in this SIP, the development of future assessments
of sources and impacts, and the development of additional control
programs.
J. SIP Revisions and Five-Year Progress Reports
Section 51.308(f) of the Regional Haze Rule requires that regional
haze plans be revised and submitted to EPA by July 31, 2018, and every
ten years thereafter. In accordance with those requirements, ADEC
commits to revising and submitting this Plan by July 31, 2018, and
every ten years thereafter. See Alaska Regional Haze SIP submittal
section III.K.10.
40 CFR 51.308(g) requires states to submit a progress report to EPA
every five years evaluating progress towards the reasonable progress
goal(s). The first progress report is due five years from the submittal
of the initial implementation plan and must be in the form of an
implementation plan revision that complies with 40 CFR 51.102 and
51.103. ADEC commits to submitting a report on reasonable progress to
EPA every five years following the initial submittal of the SIP. The
reasonable progress report will evaluate the progress made towards the
reasonable progress goal for each mandatory Class I area located within
Alaska and in each mandatory Class I area located outside Alaska, which
may be affected by emissions from Alaska.
IV. Amendment to Air Quality Control Plan Regarding Open Burning and
Regional Haze
The Alaska Regional Haze SIP submittal included amendments to the
Air Quality Control Plan at 18 AAC 50.30. More specifically, Volume
II., Section III. F: Open Burning is revised to include the ``In Situ
Burning Guidelines for Alaska, Revision 1'' (August 2008) and to update
the open burn application requirements in Alaska's Enhanced Smoke
Management Plan. ADEC's ``In Situ Burning Guidelines'' apply to
specified situations involving oil spills. Alaska's Enhanced Smoke
Management Plan applies to prescribed burning and for land clearing
approvals. Additionally, Volume II, Section III. K: Area Wide Pollution
Control Program for Regional Haze is a new section and, as discussed
above, is intended to meet the RHR requirements, and Volume II:
Appendices to Volume II is amended to include the Appendices for
Alaska's Areawide Pollutant Control Program for Regional Haze.
EPA proposes to approve the amendments at 18 AAC 50.30.
V. What action is EPA proposing?
EPA is proposing to approve the Alaska Regional Haze plan,
submitted on April 4, 2011, as meeting the requirements set forth in
section 169A of the Act and in 40 CFR 51.308 regarding Regional Haze.
EPA is also proposing to approve ADEC's BART regulations in 18 AAC
50.260. Additionally, EPA is proposing to approve the amendments to 18
AAC 50.30 to adopt by reference Volume II., Section III. F. Open
Burning; Volume II, Section III. K. Area Wide Pollution Control Program
for Regional Haze; and Volume II, Appendices to Volume II.
VI. Statutory and Executive Order Reviews
Under the Clean Air Act, the Administrator is required to approve a
SIP submission that complies with the provisions of the Act and
applicable Federal regulations. 42 U.S.C. 7410(k); 40 CFR 52.02(a).
Thus, in reviewing SIP submissions, EPA's role is to approve state
choices, provided that they meet the criteria of the Clean Air Act.
Accordingly, this proposed action merely approves state law as meeting
Federal requirements and does not impose additional requirements beyond
those imposed by state law. For that reason, this proposed action:
Is not a ``significant regulatory action'' subject to
review by the Office of Management and Budget under Executive Order
12866 (58 FR 51735, October 4, 1993);
Does not impose an information collection burden under the
provisions of the Paperwork Reduction Act (44 U.S.C. 3501 et seq.);
Is certified as not having a significant economic impact
on a substantial number of small entities under the Regulatory
Flexibility Act (5 U.S.C. 601 et seq.);
Does not contain any unfunded mandate or significantly or
uniquely affect small governments, as described in the Unfunded
Mandates Reform Act of 1995 (Pub. L. 104-4);
Does not have Federalism implications as specified in
Executive
[[Page 11039]]
Order 13132 (64 FR 43255, August 10, 1999);
Is not an economically significant regulatory action based
on health or safety risks subject to Executive Order 13045 (62 FR
19885, April 23, 1997);
Is not a significant regulatory action subject to
Executive Order 13211 (66 FR 28355, May 22, 2001);
Is not subject to requirements of Section 12(d) of the
National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272
note) because application of those requirements would be inconsistent
with the Clean Air Act; and
Does not provide EPA with the discretionary authority to
address, as appropriate, disproportionate human health or environmental
effects, using practicable and legally permissible methods, under
Executive Order 12898 (59 FR 7629, February 16, 1994).
In addition, this rule does not have tribal implications as
specified by Executive Order 13175 (65 FR 67249, November 9, 2000),
because the SIP is not approved to apply in Indian country located in
the state, and EPA notes that it will not impose substantial direct
costs on tribal governments or preempt tribal law.
List of Subjects in 40 CFR Part 52
Environmental protection, Air pollution control, Intergovernmental
relations, Nitrogen dioxide, Particulate matter, Reporting and
recordkeeping requirements, Sulfur oxides, Visibility, and Volatile
organic compounds.
Dated: February 14, 2012.
Dennis J. McLerran,
Regional Administrator Region 10.
[FR Doc. 2012-4326 Filed 2-23-12; 8:45 am]
BILLING CODE 6560-50-P