Special Conditions: Dassault Aviation Model Falcon 7X Airplane; Interaction of Systems and Structures, Limit Pilot Forces, and High Intensity Radiated Fields (HIRF) Protection, 61427-61432 [06-8762]

Download as PDF 61427 Proposed Rules Federal Register Vol. 71, No. 201 Wednesday, October 18, 2006 Federal Aviation Administration Federal holidays, between 7:30 a.m. and 4 p.m. FOR FURTHER INFORMATION CONTACT: Thomas Rodriguez, FAA, International Branch, ANM–116, Transport Airplane Directorate, Aircraft Certification Service, 1601 Lind Avenue SW., Renton, Washington, 98057–3356; telephone (425) 227–1137; facsimile (425) 227–1149. SUPPLEMENTARY INFORMATION: 14 CFR Part 25 Comments Invited This section of the FEDERAL REGISTER contains notices to the public of the proposed issuance of rules and regulations. The purpose of these notices is to give interested persons an opportunity to participate in the rule making prior to the adoption of the final rules. DEPARTMENT OF TRANSPORTATION [Docket No. NM355; Notice No. 25–06–10– SC] Special Conditions: Dassault Aviation Model Falcon 7X Airplane; Interaction of Systems and Structures, Limit Pilot Forces, and High Intensity Radiated Fields (HIRF) Protection Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed special conditions. rmajette on PROD1PC67 with PROPOSALS AGENCY: SUMMARY: This action proposes special conditions for the Dassault Aviation Model Falcon 7X airplane. This airplane will have novel or unusual design features when compared to the state of technology envisioned in the airworthiness standards for transport category airplanes. These design features include interaction of systems and structures, limit pilot forces, and electrical and electronic flight control systems. The applicable airworthiness regulations do not contain adequate or appropriate safety standards for these design features. These proposed special conditions contain the additional safety standards that the Administrator considers necessary to establish a level of safety equivalent to that established by the existing airworthiness standards. DATES: We must receive your comments by December 4, 2006. ADDRESSES: You must mail two copies of your comments to: Federal Aviation Administration, Transport Airplane Directorate, Attn: Rules Docket (ANM– 113), Docket No. NM355, 1601 Lind Avenue SW., Renton, Washington, 98057–3356. You may deliver two copies to the Transport Airplane Directorate at the above address. You must mark your comments: Docket No. NM355. You can inspect comments in the Rules Docket weekdays, except VerDate Aug<31>2005 15:22 Oct 17, 2006 Jkt 211001 We invite interested people to take part in this rulemaking by sending written comments, data, or views. The most helpful comments reference a specific portion of the special conditions, explain the reason for any recommended change, and include supporting data. We ask that you send us two copies of written comments. We will file in the docket all comments we receive, as well as a report summarizing each substantive public contact with FAA personnel concerning these special conditions. You can inspect the docket before and after the comment closing date. If you wish to review the docket in person, go to the address in the ADDRESSES section of this preamble between 7:30 a.m. and 4 p.m., Monday through Friday, except Federal holidays. We will consider all comments we receive on or before the closing date for comments. We will consider comments filed late if it is possible to do so without incurring expense or delay. We may change these special conditions based on the comments we receive. If you want the FAA to acknowledge receipt of your comments on this proposal, include with your comments a pre-addressed, stamped postcard on which the docket number appears. We will stamp the date on the postcard and mail it back to you. Background On June 4, 2002, Dassault Aviation, 9 ´ rond Point des Champs Elysees, 75008, Paris, France, applied for a type certificate for its new Model Falcon 7X airplane. The Model Falcon 7X is a 19 passenger transport category airplane, powered by three aft mounted Pratt & Whitney PW307A high bypass ratio turbofan engines. The airplane is operated using a fly-by-wire (FBW) primary flight control system. This will be the first application of a FBW PO 00000 Frm 00001 Fmt 4702 Sfmt 4702 primary flight control system in a private/corporate use airplane. The Dassault Aviation Model Falcon 7X design incorporates equipment that was not envisioned when part 25 was created. This equipment affects the interaction of systems and structures, limit pilot forces, and high intensity radiated fields (HIRF) protection. Therefore, special conditions are required to provide the level of safety equivalent to that established by the regulations. Type Certification Basis Under the provisions of 14 CFR 21.17, Dassault Aviation must show that the Model Falcon 7X airplane meets the applicable provisions of part 25, as amended by Amendments 25–1 through 25–108. If the Administrator finds that the applicable airworthiness regulations (i.e., 14 CFR part 25) do not contain adequate or appropriate safety standards for the Model Falcon 7X because of a novel or unusual design feature, special conditions are prescribed under the provisions of § 21.16. In addition to the applicable airworthiness regulations and special conditions, the Model Falcon 7X must comply with the fuel vent and exhaust emission requirements of 14 CFR part 34 and the noise certification requirements of 14 CFR part 36 and the FAA must issue a finding of regulatory adequacy under § 611 of Public Law 92– 574, the ‘‘Noise Control Act of 1972.’’ The FAA issues special conditions, as defined in § 11.19, under § 11.38, and they become part of the type certification basis under § 21.17(a)(2). Special conditions are initially applicable to the model for which they are issued. Should the type certificate for that model be amended later to include any other model that incorporates the same or similar novel or unusual design feature, the special conditions would also apply to the other model under § 21.101. Novel or Unusual Design Features The Model Falcon 7X airplane will incorporate three novel or unusual design features: interaction of systems and structures, limit pilot forces, and electrical and electronic flight control systems. These proposed special conditions address equipment which may affect the airplane’s structural performance, either directly or as a E:\FR\FM\18OCP1.SGM 18OCP1 61428 Federal Register / Vol. 71, No. 201 / Wednesday, October 18, 2006 / Proposed Rules result of failure or malfunction; pilot limit forces; and electrical and electronic systems which perform critical functions that may be vulnerable to HIRF. These proposed special conditions are identical or nearly identical to those previously required for type certification of other Dassault airplane models. In general, the proposed special conditions were derived initially from standardized requirements developed by the Aviation Rulemaking Advisory Committee (ARAC), comprised of representatives of the FAA, Europe’s Joint Aviation Authorities (now replaced by the European Aviation Safety Agency), and industry. Additional special conditions will be issued for other novel or unusual design features of the Dassault Model Falcon 7X airplane. These additional proposed special conditions will pertain to the following topics: Dive Speed Definition With Speed Protection System, Sudden Engine Stoppage, High Incidence Protection Function, Side Stick Controllers, Lateral-Directional and Longitudinal Stability and Low Energy Awareness, Flight Envelope Protection: General Limiting Requirements, Flight Envelope Protection: Normal Load Factor (g) Limiting, Flight Envelope Protection: Pitch, Roll and High Speed Limiting Functions, Flight Control Surface Position Awareness, Flight Characteristics Compliance via Handling Qualities Rating Method, Operation Without Normal Electrical Power. Proposed special conditions have been issued for the Model Falcon 7X with the novel or unusual design feature pertaining to Pilot Compartment View– Hydrophobic Coatings in Lieu of Windshield Wipers. This special condition was published for public comment in the Federal Register on July 12, 2006 (71 FR 39235). Discussion rmajette on PROD1PC67 with PROPOSALS Because of rapid improvements in airplane technology, the applicable airworthiness regulations do not contain adequate or appropriate safety standards for these design features. Therefore, in addition to the requirements of part 25, subparts C and D, the following three special conditions apply. Special Condition No. 1. Interaction of Systems and Structures The Dassault Model Falcon 7X is equipped with systems that may affect the airplane’s structural performance either directly or as a result of failure or VerDate Aug<31>2005 15:22 Oct 17, 2006 Jkt 211001 malfunction. The effects of these systems on structural performance must be considered in the certification analysis. This analysis must include consideration of normal operation and of failure conditions with required structural strength levels related to the probability of occurrence. Previously, special conditions have been specified to require consideration of the effects of systems on structures. The special condition proposed for the Model Falcon 7X is nearly identical to that issued for other fly-by-wire airplanes. Special Condition No. 2. Limit Pilot Forces Like some other certificated transport category airplane models, the Dassault Model Falcon 7X airplane is equipped with a side stick controller instead of a conventional wheel or control stick. This kind of controller is designed to be operated using only one hand. The requirement of § 25.397(c), which defines limit pilot forces and torques for conventional wheel or stick controls, is not appropriate for a side stick controller. Therefore, a special condition is necessary to specify the appropriate loading conditions for this kind of controller. Special Condition No. 3. High Intensity Radiated Fields (HIRF) Protection The Dassault Model Falcon X will utilize electrical and electronic systems which perform critical functions. These systems may be vulnerable to HIRF external to the airplane. There is no specific regulation that addresses requirements for protection of electrical and electronic systems from HIRF. With the trend toward increased power levels from ground-based transmitters and the advent of space and satellite communications, coupled with electronic command and control of the airplane, the immunity of critical avionics/electronics and electrical systems to HIRF must be established. To ensure that a level of safety is achieved that is equivalent to that intended by the regulations incorporated by reference, a special condition is needed for the Dassault Model Falcon 7X airplane. This special condition requires that avionics/ electronics and electrical systems that perform critical functions be designed and installed to preclude component damage and interruption. It is not possible to precisely define the HIRF to which the airplane will be exposed in service. There is also uncertainty concerning the effectiveness of airframe shielding for HIRF. Furthermore, coupling of PO 00000 Frm 00002 Fmt 4702 Sfmt 4702 electromagnetic energy to cockpitinstalled equipment through the cockpit window apertures is undefined. Based on surveys and analysis of existing HIRF emitters, adequate protection from exists when there is compliance with either paragraph 1 or 2 below: 1. A minimum threat of 100 volts rms (root-mean-square) per meter electric field strength from 10 KHz to 18 GHz. a. The threat must be applied to the system elements and their associated wiring harnesses without the benefit of airframe shielding. b. Demonstration of this level of protection is established through system tests and analysis. 2. A threat external to the airframe of the field strengths indicated in the table below for the frequency ranges indicated. Both peak and average field strength components from the table are to be demonstrated. Frequency Field strength (volts per meter) Peak 10 kHz–100 kHz ....... 100 kHz–500 kHz ..... 500 kHz–2 MHz ........ 2 MHz–30 MHz ......... 30 MHz–70 MHz ....... 70 MHz–100 MHz ..... 100 MHz–200 MHz ... 200 MHz–400 MHz ... 400 MHz–700 MHz ... 700 MHz–1 GHz ....... 1 GHz–2 GHz ........... 2 GHz–4 GHz ........... 4 GHz–6 GHz ........... 6 GHz–8 GHz ........... 8 GHz–12 GHz ......... 12 GHz–18 GHz ....... 18 GHz–40 GHz ....... 50 50 50 100 50 50 100 100 700 700 2000 3000 3000 1000 3000 2000 600 Average 50 50 50 100 50 50 100 100 50 100 200 200 200 200 300 200 200 The field strengths are expressed in terms of peak of the root-mean-square (rms) over the complete modulation period. The threat levels identified above are the result of an FAA review of existing studies on the subject of HIRF, in light of the ongoing work of the Electromagnetic Effects Harmonization Working Group of the Aviation Rulemaking Advisory Committee. Applicability As discussed above, these special conditions are applicable to the Dassault Model Falcon 7X. Should Dassault Aviation apply at a later date for a change to the type certificate to include another model incorporating the same novel or unusual design feature, these special conditions would apply to that model as well. Conclusion This action affects only certain novel or unusual design features of the E:\FR\FM\18OCP1.SGM 18OCP1 Federal Register / Vol. 71, No. 201 / Wednesday, October 18, 2006 / Proposed Rules Dassault Model Falcon 7X airplane. It is not a rule of general applicability, and it affects only the applicant which applied to the FAA for approval of these features on the airplane. List of Subjects in 14 CFR Part 25 Aircraft, Aviation safety, Reporting and recordkeeping requirements. The authority citation for these special conditions is as follows: Authority: 49 U.S.C. 106(g), 40113, 44701, 44702, 44704. The Proposed Special Conditions Accordingly, pursuant to the authority delegated to me by the Administrator, the following special conditions are issued as part of the type certification basis for Dassault Aviation Model Falcon 7X airplanes. rmajette on PROD1PC67 with PROPOSALS 1. Interaction of Systems and Structures In addition to the requirements of part 25, subparts C and D, the following proposed special conditions would apply: a. For airplanes equipped with systems that affect structural performance—either directly or as a result of a failure or malfunction—the influence of these systems and their failure conditions must be taken into account when showing compliance with the requirements of part 25, subparts C and D. Paragraph c below must be used to evaluate the structural performance of airplanes equipped with these systems. b. Unless shown to be extremely improbable, the airplane must be designed to withstand any forced structural vibration resulting from any failure, malfunction, or adverse condition in the flight control system. These loads must be treated in accordance with the requirements of paragraph a above. c. Interaction of Systems and Structures. (1) General: The following criteria must be used for showing compliance with this special condition for interaction of systems and structures and with § 25.629 for airplanes equipped with flight control systems, autopilots, stability augmentation systems, load alleviation systems, flutter control systems, and fuel management systems. If this special condition is used for other systems, it may be necessary to adapt the criteria to the specific system. VerDate Aug<31>2005 15:22 Oct 17, 2006 Jkt 211001 (a) The criteria defined herein address only the direct structural consequences of the system responses and performances. They cannot be considered in isolation but should be included in the overall safety evaluation of the airplane. These criteria may, in some instances, duplicate standards already established for this evaluation. These criteria are applicable only to structures whose failure could prevent continued safe flight and landing. Specific criteria that define acceptable limits on handling characteristics or stability requirements when operating in the system degraded or inoperative modes are not provided in this special condition. (b) Depending upon the specific characteristics of the airplane, additional studies may be required that go beyond the criteria provided in this special condition in order to demonstrate the capability of the airplane to meet other realistic conditions, such as alternative gust or maneuver descriptions for an airplane equipped with a load alleviation system. (c) The following definitions are applicable to this paragraph. Structural performance: Capability of the airplane to meet the structural requirements of part 25. Flight limitations: Limitations that can be applied to the airplane flight conditions following an in-flight occurrence and that are included in the flight manual (e.g., speed limitations and avoidance of severe weather conditions). Operational limitations: Limitations, including flight limitations, that can be applied to the airplane operating conditions before dispatch (e.g., fuel, payload, and Master Minimum Equipment List limitations). Probabilistic terms: The probabilistic terms (probable, improbable, and extremely improbable) used in this Special Conditions are the same as those used in § 25.1309. Failure condition: The term failure condition is the same as that used in § 25.1309. However, this Special Conditions applies only to system failure conditions that affect the structural performance of the airplane (e.g., system failure conditions that induce loads, change the response of the airplane to inputs such as gusts or pilot actions, or lower flutter margins). PO 00000 Frm 00003 Fmt 4702 Sfmt 4702 61429 (2) Effects of Systems on Structures. (a) General. The following criteria will be used in determining the influence of a system and its failure conditions on the airplane structure. (b) System fully operative. With the system fully operative, the following apply: (1) Limit loads must be derived in all normal operating configurations of the system from all the limit conditions specified in subpart C (or used in lieu of those specified in subpart C), taking into account any special behavior of such a system or associated functions or any effect on the structural performance of the airplane that may occur up to the limit loads. In particular, any significant non-linearity (rate of displacement of control surface, thresholds or any other system non-linearities) must be accounted for in a realistic or conservative way when deriving limit loads from limit conditions. (2) The airplane must meet the strength requirements of part 25 (static strength, residual strength), using the specified factors to derive ultimate loads from the limit loads defined above. The effect of non-linearities must be investigated beyond limit conditions to ensure that the behavior of the system presents no anomaly compared to the behavior below limit conditions. However, conditions beyond limit conditions need not be considered, when it can be shown that the airplane has design features that will not allow it to exceed those limit conditions. (3) The airplane must meet the aeroelastic stability requirements of § 25.629. (c) System in the failure condition. For any system failure condition not shown to be extremely improbable, the following apply: (1) At the time of occurrence. Starting from 1g level flight conditions, a realistic scenario, including pilot corrective actions, must be established to determine the loads occurring at the time of failure and immediately after failure. (i) For static strength substantiation, these loads multiplied by an appropriate factor of safety that is related to the probability of occurrence of the failure are ultimate loads to be considered for design. The factor of safety (FS) is defined in Figure 1. E:\FR\FM\18OCP1.SGM 18OCP1 Federal Register / Vol. 71, No. 201 / Wednesday, October 18, 2006 / Proposed Rules rmajette on PROD1PC67 with PROPOSALS (ii) For residual strength substantiation, the airplane must be able to withstand two thirds of the ultimate loads defined in paragraph (c)(1)(i) of this section. For pressurized cabins, these loads must be combined with the normal operating differential pressure. (iii) Freedom from aeroelastic instability must be shown up to the speeds defined in § 25.629(b)(2). For failure conditions that result in speed increases beyond VC/MC, freedom from aeroelastic instability must be shown to increased speeds, so that the margins intended by § 25.629(b)(2) are maintained. (iv) Failures of the system that result in forced structural vibrations (oscillatory failures) must not produce VerDate Aug<31>2005 15:22 Oct 17, 2006 Jkt 211001 loads that could result in detrimental deformation of primary structure. (2) For the continuation of the flight. For the airplane in the system failed state and considering any appropriate reconfiguration and flight limitations, the following apply: (i) The loads derived from the following conditions (or used in lieu of the following conditions) at speeds up to VC/MC or the speed limitation prescribed for the remainder of the flight must be determined: (A) the limit symmetrical maneuvering conditions specified in §§ 25.331 and in 25.345. (B) the limit gust and turbulence conditions specified in §§ 25.341 and in 25.345. PO 00000 Frm 00004 Fmt 4702 Sfmt 4702 (C) the limit rolling conditions specified in § 25.349 and the limit unsymmetrical conditions specified in §§ 25.367 and 25.427(b) and (c). (D) the limit yaw maneuvering conditions specified in § 25.351. (E) the limit ground loading conditions specified in §§ 25.473 and 25.491. (ii) For static strength substantiation, each part of the structure must be able to withstand the loads in paragraph (c)(2)(i) of this special condition multiplied by a factor of safety, depending on the probability of being in this failure state. The factor of safety is defined in Figure 2. E:\FR\FM\18OCP1.SGM 18OCP1 EP18OC06.008</GPH> EP18OC06.009</GPH> 61430 61431 Federal Register / Vol. 71, No. 201 / Wednesday, October 18, 2006 / Proposed Rules Note: If Pj is greater than 10¥3 per flight hour, then a 1.5 factor of safety must be applied to all limit load conditions specified in subpart C. V′ = Clearance speed as defined by § 25.629(b)(2). V″ = Clearance speed as defined by § 25.629(b)(1). Qj = (Tj)(Pj) Where: Tj = Average time spent in failure condition j (in hours) Pj = Probability of occurrence of failure mode j (per hour) rmajette on PROD1PC67 with PROPOSALS Note: If Pj is greater than 10¥3 per flight hour, then the flutter clearance speed must not be less than V″. (vi) Freedom from aeroelastic instability must also be shown up to V′ in Figure 3 above for any probable system failure condition combined with any damage required or selected for investigation by § 25.571(b). (3) Consideration of certain failure conditions may be required by other sections of this Part, regardless of calculated system reliability. Where analysis shows the probability of these failure conditions to be less than 10¥9, criteria other than those specified in this paragraph may be used for structural substantiation to show continued safe flight and landing. (d) Warning considerations. For system failure detection and warning, the following apply: (1) The system must be checked for failure conditions, not extremely improbable, that degrade the structural capability below the level required by part 25 or significantly reduce the reliability of the remaining system. As far as reasonably practicable, the VerDate Aug<31>2005 17:02 Oct 17, 2006 Jkt 211001 (iii) For residual strength substantiation, the airplane must be able to withstand two thirds of the ultimate loads defined in paragraph (c)(2)(ii). For pressurized cabins, these loads must be combined with the normal operating differential pressure. (iv) If the loads induced by the failure condition have a significant effect on fatigue or damage tolerance, then their effects must be taken into account. (v) Freedom from aeroelastic instability must be shown up to a speed determined from Figure 3. Flutter clearance speeds V′ and V″ may be based on the speed limitation specified for the remainder of the flight, using the margins defined by § 25.629(b). flightcrew must be made aware of these failures before flight. Certain elements of the control system, such as mechanical and hydraulic components, may use special periodic inspections, and electronic components may use daily checks in lieu of warning systems to achieve the objective of this requirement. These certification maintenance requirements must be limited to components that are not readily detectable by normal warning systems and where service history shows that inspections will provide an adequate level of safety. (2) The existence of any failure condition, not extremely improbable, during flight that could significantly affect the structural capability of the airplane and for which the associated reduction in airworthiness can be minimized by suitable flight limitations must be signaled to the flightcrew. For example, failure conditions that result in a factor of safety between the airplane strength and the loads of part 25, subpart C, below 1.25 or flutter margins below V″ must be signaled to the crew during flight. (e) Dispatch with known failure conditions. If the airplane is to be dispatched in a known system failure condition that affects structural performance or affects the reliability of the remaining system to maintain structural performance, then the provisions of these Special Conditions must be met, including the provisions of paragraph (b), for the dispatched condition and paragraph (c) for subsequent failures. Expected operational limitations may be taken into account in establishing Pj as the probability of failure occurrence for determining the safety margin in Figure 1. Flight limitations and expected operational limitations may be taken into account in establishing Qj as the combined probability of being in the dispatched failure condition and the subsequent failure condition for the safety margins in Figures 2 and 3. These limitations must be such that the probability of being in this combined failure state and then subsequently encountering limit load conditions is extremely improbable. No reduction in these safety margins is allowed if the subsequent system failure rate is greater than 1E–3 per flight hour. PO 00000 Frm 00005 Fmt 4702 Sfmt 4702 2. Limit Pilot Forces In addition to the requirements of § 25.397(c) the following special condition applies. The limit pilot forces are: a. For all components between and including the handle and its control stops. Pitch Nose up 200 lbf (pounds force). Nose down 200 lbf Roll Nose left 100 lbf. Nose right 100 lbf. b. For all other components of the side stick control assembly, but E:\FR\FM\18OCP1.SGM 18OCP1 EP18OC06.010</GPH> Qj = (Tj)(Pj) Where: Tj = Average time spent in failure condition j (in hours) Pj = Probability of occurrence of failure mode j (per hour) 61432 Federal Register / Vol. 71, No. 201 / Wednesday, October 18, 2006 / Proposed Rules excluding the internal components of the electrical sensor assemblies to avoid damage as a result of an in-flight jam. Pitch Roll Nose up 125 lbf ........ Nose down 125 lbf .... Nose left 50 lbf. Nose right 50 lbf. 3. High Intensity Radiated Fields (HIRF) Protection a. Protection from Unwanted Effects of High Intensity Radiated Fields. Each electrical and electronic system which performs critical functions must be designed and installed to ensure that the operation and operational capability of these systems to perform critical functions is not adversely affected when the airplane is exposed to high intensity radiated fields. b. For the purposes of this special condition, the following definition applies: Critical Functions: Functions whose failure would contribute to or cause a failure condition that would prevent the continued safe flight and landing of the airplane. Issued in Renton, Washington, on October 10, 2006. Kalene C. Yanamura, Acting Manager, Transport Airplane Directorate, Aircraft Certification Service. [FR Doc. 06–8762 Filed 10–17–06; 8:45 am] BILLING CODE 4910–13–P DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 25 [Docket No. NM354; Notice No. 25–06–09– SC] Special Conditions: Boeing Commercial Airplane Group, Boeing Model 777–200 Series Airplane; Overhead Cross Aisle Stowage Compartments Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed special conditions. rmajette on PROD1PC67 with PROPOSALS AGENCY: SUMMARY: The FAA proposes special conditions for the Boeing Model 777– 200 series airplanes. This airplane, modified by Boeing Commercial Airplane Group, will have novel or unusual design features associated with overhead cross aisle stowage compartments. The applicable airworthiness regulations do not contain adequate or appropriate safety standards for these design features. These proposed special conditions contain the VerDate Aug<31>2005 15:22 Oct 17, 2006 Jkt 211001 additional safety standards the Administrator considers necessary to establish a level of safety equivalent to that established by the existing airworthiness standards. DATES: We must receive your comments on or before November 7, 2006. ADDRESSES: You may mail or deliver comments on these special conditions in duplicate to: Federal Aviation Administration, Transport Airplane Directorate, Attn: Rules Docket (ANM– 113), Docket No. NM354, 1601 Lind Avenue, SW., Renton, Washington 98057–3356. You must mark your comments: Docket No. NM354. FOR FURTHER INFORMATION CONTACT: Jayson Claar, FAA, Airframe/Cabin Branch, ANM–115, Transport Airplane Directorate, Aircraft Certification Service, 1601 Lind Avenue, SW., Renton, Washington 98057–3356; telephone (425) 227–2194; facsimile (425) 227–1232. SUPPLEMENTARY INFORMATION: Comments Invited We invite interested people to take part in this rulemaking by sending written comments, data, or views. The most helpful comments reference a specific portion of the special conditions, explain the reason for any recommended change, and include supporting data. We ask that you send us two copies of written comments. We will file in the docket all comments we receive, as well as a report summarizing each substantive public contact with FAA personnel concerning these special conditions. You may inspect the docket before and after the comment closing date. If you wish to review the docket in person, go to the address in the ADDRESSES section of this preamble between 7:30 a.m. and 4 p.m., Monday through Friday, except Federal holidays. We will consider all comments we receive on or before the closing date for comments. We will consider comments filed late if it is possible to do so without incurring expense or delay. We may change these special conditions based on the comments we receive. If you want the FAA to acknowledge receipt of your comments on these proposed special conditions, include with your comments a pre-addressed, stamped postcard on which the docket number appears. We will stamp the date on the postcard and mail it back to you. Background On April 20, 2005, Boeing Commercial Airplane Group, Seattle, Washington, applied for a supplemental type certificate to permit installation of PO 00000 Frm 00006 Fmt 4702 Sfmt 4702 overhead cross aisle stowage compartments in Boeing 777–200 series airplanes. The Boeing Model 777–200 series airplanes are large twin engine airplanes with four pairs of Type A exits, a passenger capacity of 440, and a range of 5000 miles. (The Boeing 777– 200 airplanes can be configured with various passenger capacities and range). The regulations do not address the novel and unusual design features associated with the installation of overhead cross aisle stowage compartments installed on the Boeing Model 777–200, making these special conditions necessary. Generally, the requirements for overhead stowage compartments are similar to stowage compartments in remote crew rest compartments (i.e., located on lower lobe, main deck or overhead) already in use on Boeing Model 777–200 and –747 series airplanes. Remote crew rest compartments have been previously installed and certified in the main passenger cabin area, above the main passenger area, and below the passenger cabin area adjacent to the cargo compartment of the Boeing Model 777– 200, and –300 series airplanes. Type Certification Basis Under the provisions of § 21.101, Boeing Commercial Airplane Group must show that the Boeing Model 777– 200, as changed, continues to meet the applicable provisions of the regulations incorporated by reference in Type Certificate No. T00001SE or the applicable regulations in effect on the date of application for the change. The regulations incorporated by reference in the type certificate are commonly referred to as the ‘‘original type certification basis.’’ The regulations incorporated by reference in Type Certificate No. T00001SE for the Boeing Model 777–200 series airplanes include Title 14 Code of Federal Regulations (CFR), part 25, as amended by Amendments 25–1 through 25–82, except for § 25.571(e)(1) which remains at Amendment 25–71, with exceptions. Refer to Type Certificate No. T00001SE, as applicable, for a complete description of the certification basis for this model, including certain special conditions that are not relevant to these proposed special conditions. If the Administrator finds the applicable airworthiness regulations (part 25 as amended) do not contain adequate or appropriate safety standards for the Boeing Model 777–200 because of a novel or unusual design feature, special conditions are prescribed under the provisions of § 21.16. In addition to the applicable airworthiness regulations and special E:\FR\FM\18OCP1.SGM 18OCP1

Agencies

[Federal Register Volume 71, Number 201 (Wednesday, October 18, 2006)]
[Proposed Rules]
[Pages 61427-61432]
From the Federal Register Online via the Government Printing Office [www.gpo.gov]
[FR Doc No: 06-8762]


========================================================================
Proposed Rules
                                                Federal Register
________________________________________________________________________

This section of the FEDERAL REGISTER contains notices to the public of 
the proposed issuance of rules and regulations. The purpose of these 
notices is to give interested persons an opportunity to participate in 
the rule making prior to the adoption of the final rules.

========================================================================


Federal Register / Vol. 71, No. 201 / Wednesday, October 18, 2006 / 
Proposed Rules

[[Page 61427]]



DEPARTMENT OF TRANSPORTATION

Federal Aviation Administration

14 CFR Part 25

[Docket No. NM355; Notice No. 25-06-10-SC]


Special Conditions: Dassault Aviation Model Falcon 7X Airplane; 
Interaction of Systems and Structures, Limit Pilot Forces, and High 
Intensity Radiated Fields (HIRF) Protection

AGENCY: Federal Aviation Administration (FAA), DOT.

ACTION: Notice of proposed special conditions.

-----------------------------------------------------------------------

SUMMARY: This action proposes special conditions for the Dassault 
Aviation Model Falcon 7X airplane. This airplane will have novel or 
unusual design features when compared to the state of technology 
envisioned in the airworthiness standards for transport category 
airplanes. These design features include interaction of systems and 
structures, limit pilot forces, and electrical and electronic flight 
control systems. The applicable airworthiness regulations do not 
contain adequate or appropriate safety standards for these design 
features. These proposed special conditions contain the additional 
safety standards that the Administrator considers necessary to 
establish a level of safety equivalent to that established by the 
existing airworthiness standards.

DATES: We must receive your comments by December 4, 2006.

ADDRESSES: You must mail two copies of your comments to: Federal 
Aviation Administration, Transport Airplane Directorate, Attn: Rules 
Docket (ANM-113), Docket No. NM355, 1601 Lind Avenue SW., Renton, 
Washington, 98057-3356. You may deliver two copies to the Transport 
Airplane Directorate at the above address. You must mark your comments: 
Docket No. NM355. You can inspect comments in the Rules Docket 
weekdays, except Federal holidays, between 7:30 a.m. and 4 p.m.

FOR FURTHER INFORMATION CONTACT: Thomas Rodriguez, FAA, International 
Branch, ANM-116, Transport Airplane Directorate, Aircraft Certification 
Service, 1601 Lind Avenue SW., Renton, Washington, 98057-3356; 
telephone (425) 227-1137; facsimile (425) 227-1149.

SUPPLEMENTARY INFORMATION:

Comments Invited

    We invite interested people to take part in this rulemaking by 
sending written comments, data, or views. The most helpful comments 
reference a specific portion of the special conditions, explain the 
reason for any recommended change, and include supporting data. We ask 
that you send us two copies of written comments.
    We will file in the docket all comments we receive, as well as a 
report summarizing each substantive public contact with FAA personnel 
concerning these special conditions. You can inspect the docket before 
and after the comment closing date. If you wish to review the docket in 
person, go to the address in the ADDRESSES section of this preamble 
between 7:30 a.m. and 4 p.m., Monday through Friday, except Federal 
holidays.
    We will consider all comments we receive on or before the closing 
date for comments. We will consider comments filed late if it is 
possible to do so without incurring expense or delay. We may change 
these special conditions based on the comments we receive.
    If you want the FAA to acknowledge receipt of your comments on this 
proposal, include with your comments a pre-addressed, stamped postcard 
on which the docket number appears. We will stamp the date on the 
postcard and mail it back to you.

Background

    On June 4, 2002, Dassault Aviation, 9 rond Point des Champs 
Elysees, 75008, Paris, France, applied for a type certificate for its 
new Model Falcon 7X airplane. The Model Falcon 7X is a 19 passenger 
transport category airplane, powered by three aft mounted Pratt & 
Whitney PW307A high bypass ratio turbofan engines. The airplane is 
operated using a fly-by-wire (FBW) primary flight control system. This 
will be the first application of a FBW primary flight control system in 
a private/corporate use airplane.
    The Dassault Aviation Model Falcon 7X design incorporates equipment 
that was not envisioned when part 25 was created. This equipment 
affects the interaction of systems and structures, limit pilot forces, 
and high intensity radiated fields (HIRF) protection. Therefore, 
special conditions are required to provide the level of safety 
equivalent to that established by the regulations.

Type Certification Basis

    Under the provisions of 14 CFR 21.17, Dassault Aviation must show 
that the Model Falcon 7X airplane meets the applicable provisions of 
part 25, as amended by Amendments 25-1 through 25-108.
    If the Administrator finds that the applicable airworthiness 
regulations (i.e., 14 CFR part 25) do not contain adequate or 
appropriate safety standards for the Model Falcon 7X because of a novel 
or unusual design feature, special conditions are prescribed under the 
provisions of Sec.  21.16.
    In addition to the applicable airworthiness regulations and special 
conditions, the Model Falcon 7X must comply with the fuel vent and 
exhaust emission requirements of 14 CFR part 34 and the noise 
certification requirements of 14 CFR part 36 and the FAA must issue a 
finding of regulatory adequacy under Sec.  611 of Public Law 92-574, 
the ``Noise Control Act of 1972.''
    The FAA issues special conditions, as defined in Sec.  11.19, under 
Sec.  11.38, and they become part of the type certification basis under 
Sec.  21.17(a)(2).
    Special conditions are initially applicable to the model for which 
they are issued. Should the type certificate for that model be amended 
later to include any other model that incorporates the same or similar 
novel or unusual design feature, the special conditions would also 
apply to the other model under Sec.  21.101.

Novel or Unusual Design Features

    The Model Falcon 7X airplane will incorporate three novel or 
unusual design features: interaction of systems and structures, limit 
pilot forces, and electrical and electronic flight control systems. 
These proposed special conditions address equipment which may affect 
the airplane's structural performance, either directly or as a

[[Page 61428]]

result of failure or malfunction; pilot limit forces; and electrical 
and electronic systems which perform critical functions that may be 
vulnerable to HIRF.
    These proposed special conditions are identical or nearly identical 
to those previously required for type certification of other Dassault 
airplane models. In general, the proposed special conditions were 
derived initially from standardized requirements developed by the 
Aviation Rulemaking Advisory Committee (ARAC), comprised of 
representatives of the FAA, Europe's Joint Aviation Authorities (now 
replaced by the European Aviation Safety Agency), and industry.
    Additional special conditions will be issued for other novel or 
unusual design features of the Dassault Model Falcon 7X airplane. These 
additional proposed special conditions will pertain to the following 
topics:
    Dive Speed Definition With Speed Protection System,
    Sudden Engine Stoppage,
    High Incidence Protection Function,
    Side Stick Controllers,
    Lateral-Directional and Longitudinal Stability and Low Energy 
Awareness,
    Flight Envelope Protection: General Limiting Requirements,
    Flight Envelope Protection: Normal Load Factor (g) Limiting,
    Flight Envelope Protection: Pitch, Roll and High Speed Limiting 
Functions,
    Flight Control Surface Position Awareness,
    Flight Characteristics Compliance via Handling Qualities Rating 
Method,
    Operation Without Normal Electrical Power.
    Proposed special conditions have been issued for the Model Falcon 
7X with the novel or unusual design feature pertaining to Pilot 
Compartment View-Hydrophobic Coatings in Lieu of Windshield Wipers. 
This special condition was published for public comment in the Federal 
Register on July 12, 2006 (71 FR 39235).

Discussion

    Because of rapid improvements in airplane technology, the 
applicable airworthiness regulations do not contain adequate or 
appropriate safety standards for these design features. Therefore, in 
addition to the requirements of part 25, subparts C and D, the 
following three special conditions apply.

Special Condition No. 1. Interaction of Systems and Structures

    The Dassault Model Falcon 7X is equipped with systems that may 
affect the airplane's structural performance either directly or as a 
result of failure or malfunction. The effects of these systems on 
structural performance must be considered in the certification 
analysis. This analysis must include consideration of normal operation 
and of failure conditions with required structural strength levels 
related to the probability of occurrence.
    Previously, special conditions have been specified to require 
consideration of the effects of systems on structures. The special 
condition proposed for the Model Falcon 7X is nearly identical to that 
issued for other fly-by-wire airplanes.

Special Condition No. 2. Limit Pilot Forces

    Like some other certificated transport category airplane models, 
the Dassault Model Falcon 7X airplane is equipped with a side stick 
controller instead of a conventional wheel or control stick. This kind 
of controller is designed to be operated using only one hand. The 
requirement of Sec.  25.397(c), which defines limit pilot forces and 
torques for conventional wheel or stick controls, is not appropriate 
for a side stick controller. Therefore, a special condition is 
necessary to specify the appropriate loading conditions for this kind 
of controller.

Special Condition No. 3. High Intensity Radiated Fields (HIRF) 
Protection

    The Dassault Model Falcon X will utilize electrical and electronic 
systems which perform critical functions. These systems may be 
vulnerable to HIRF external to the airplane. There is no specific 
regulation that addresses requirements for protection of electrical and 
electronic systems from HIRF. With the trend toward increased power 
levels from ground-based transmitters and the advent of space and 
satellite communications, coupled with electronic command and control 
of the airplane, the immunity of critical avionics/electronics and 
electrical systems to HIRF must be established.
    To ensure that a level of safety is achieved that is equivalent to 
that intended by the regulations incorporated by reference, a special 
condition is needed for the Dassault Model Falcon 7X airplane. This 
special condition requires that avionics/electronics and electrical 
systems that perform critical functions be designed and installed to 
preclude component damage and interruption.
    It is not possible to precisely define the HIRF to which the 
airplane will be exposed in service. There is also uncertainty 
concerning the effectiveness of airframe shielding for HIRF. 
Furthermore, coupling of electromagnetic energy to cockpit-installed 
equipment through the cockpit window apertures is undefined. Based on 
surveys and analysis of existing HIRF emitters, adequate protection 
from exists when there is compliance with either paragraph 1 or 2 
below:
    1. A minimum threat of 100 volts rms (root-mean-square) per meter 
electric field strength from 10 KHz to 18 GHz.
    a. The threat must be applied to the system elements and their 
associated wiring harnesses without the benefit of airframe shielding.
    b. Demonstration of this level of protection is established through 
system tests and analysis.
    2. A threat external to the airframe of the field strengths 
indicated in the table below for the frequency ranges indicated. Both 
peak and average field strength components from the table are to be 
demonstrated.

------------------------------------------------------------------------
                                                       Field strength
                                                      (volts per meter)
                     Frequency                     ---------------------
                                                       Peak     Average
------------------------------------------------------------------------
10 kHz-100 kHz....................................         50         50
100 kHz-500 kHz...................................         50         50
500 kHz-2 MHz.....................................         50         50
2 MHz-30 MHz......................................        100        100
30 MHz-70 MHz.....................................         50         50
70 MHz-100 MHz....................................         50         50
100 MHz-200 MHz...................................        100        100
200 MHz-400 MHz...................................        100        100
400 MHz-700 MHz...................................        700         50
700 MHz-1 GHz.....................................        700        100
1 GHz-2 GHz.......................................       2000        200
2 GHz-4 GHz.......................................       3000        200
4 GHz-6 GHz.......................................       3000        200
6 GHz-8 GHz.......................................       1000        200
8 GHz-12 GHz......................................       3000        300
12 GHz-18 GHz.....................................       2000        200
18 GHz-40 GHz.....................................        600       200
------------------------------------------------------------------------
The field strengths are expressed in terms of peak of the root-mean-
  square (rms) over the complete modulation period.

    The threat levels identified above are the result of an FAA review 
of existing studies on the subject of HIRF, in light of the ongoing 
work of the Electromagnetic Effects Harmonization Working Group of the 
Aviation Rulemaking Advisory Committee.

Applicability

    As discussed above, these special conditions are applicable to the 
Dassault Model Falcon 7X. Should Dassault Aviation apply at a later 
date for a change to the type certificate to include another model 
incorporating the same novel or unusual design feature, these special 
conditions would apply to that model as well.

Conclusion

    This action affects only certain novel or unusual design features 
of the

[[Page 61429]]

Dassault Model Falcon 7X airplane. It is not a rule of general 
applicability, and it affects only the applicant which applied to the 
FAA for approval of these features on the airplane.

List of Subjects in 14 CFR Part 25

    Aircraft, Aviation safety, Reporting and recordkeeping 
requirements.

    The authority citation for these special conditions is as follows:

    Authority: 49 U.S.C. 106(g), 40113, 44701, 44702, 44704.

The Proposed Special Conditions

    Accordingly, pursuant to the authority delegated to me by the 
Administrator, the following special conditions are issued as part of 
the type certification basis for Dassault Aviation Model Falcon 7X 
airplanes.

1. Interaction of Systems and Structures

    In addition to the requirements of part 25, subparts C and D, the 
following proposed special conditions would apply:
    a. For airplanes equipped with systems that affect structural 
performance--either directly or as a result of a failure or 
malfunction--the influence of these systems and their failure 
conditions must be taken into account when showing compliance with the 
requirements of part 25, subparts C and D. Paragraph c below must be 
used to evaluate the structural performance of airplanes equipped with 
these systems.
    b. Unless shown to be extremely improbable, the airplane must be 
designed to withstand any forced structural vibration resulting from 
any failure, malfunction, or adverse condition in the flight control 
system. These loads must be treated in accordance with the requirements 
of paragraph a above.
    c. Interaction of Systems and Structures.
    (1) General: The following criteria must be used for showing 
compliance with this special condition for interaction of systems and 
structures and with Sec.  25.629 for airplanes equipped with flight 
control systems, autopilots, stability augmentation systems, load 
alleviation systems, flutter control systems, and fuel management 
systems. If this special condition is used for other systems, it may be 
necessary to adapt the criteria to the specific system.
    (a) The criteria defined herein address only the direct structural 
consequences of the system responses and performances. They cannot be 
considered in isolation but should be included in the overall safety 
evaluation of the airplane. These criteria may, in some instances, 
duplicate standards already established for this evaluation. These 
criteria are applicable only to structures whose failure could prevent 
continued safe flight and landing. Specific criteria that define 
acceptable limits on handling characteristics or stability requirements 
when operating in the system degraded or inoperative modes are not 
provided in this special condition.
    (b) Depending upon the specific characteristics of the airplane, 
additional studies may be required that go beyond the criteria provided 
in this special condition in order to demonstrate the capability of the 
airplane to meet other realistic conditions, such as alternative gust 
or maneuver descriptions for an airplane equipped with a load 
alleviation system.
    (c) The following definitions are applicable to this paragraph.
    Structural performance: Capability of the airplane to meet the 
structural requirements of part 25.
    Flight limitations: Limitations that can be applied to the airplane 
flight conditions following an in-flight occurrence and that are 
included in the flight manual (e.g., speed limitations and avoidance of 
severe weather conditions).
    Operational limitations: Limitations, including flight limitations, 
that can be applied to the airplane operating conditions before 
dispatch (e.g., fuel, payload, and Master Minimum Equipment List 
limitations).
    Probabilistic terms: The probabilistic terms (probable, improbable, 
and extremely improbable) used in this Special Conditions are the same 
as those used in Sec.  25.1309.
    Failure condition: The term failure condition is the same as that 
used in Sec.  25.1309. However, this Special Conditions applies only to 
system failure conditions that affect the structural performance of the 
airplane (e.g., system failure conditions that induce loads, change the 
response of the airplane to inputs such as gusts or pilot actions, or 
lower flutter margins).
    (2) Effects of Systems on Structures.
    (a) General. The following criteria will be used in determining the 
influence of a system and its failure conditions on the airplane 
structure.
    (b) System fully operative. With the system fully operative, the 
following apply:
    (1) Limit loads must be derived in all normal operating 
configurations of the system from all the limit conditions specified in 
subpart C (or used in lieu of those specified in subpart C), taking 
into account any special behavior of such a system or associated 
functions or any effect on the structural performance of the airplane 
that may occur up to the limit loads. In particular, any significant 
non-linearity (rate of displacement of control surface, thresholds or 
any other system non-linearities) must be accounted for in a realistic 
or conservative way when deriving limit loads from limit conditions.
    (2) The airplane must meet the strength requirements of part 25 
(static strength, residual strength), using the specified factors to 
derive ultimate loads from the limit loads defined above. The effect of 
non-linearities must be investigated beyond limit conditions to ensure 
that the behavior of the system presents no anomaly compared to the 
behavior below limit conditions. However, conditions beyond limit 
conditions need not be considered, when it can be shown that the 
airplane has design features that will not allow it to exceed those 
limit conditions.
    (3) The airplane must meet the aeroelastic stability requirements 
of Sec.  25.629.
    (c) System in the failure condition. For any system failure 
condition not shown to be extremely improbable, the following apply:
    (1) At the time of occurrence. Starting from 1g level flight 
conditions, a realistic scenario, including pilot corrective actions, 
must be established to determine the loads occurring at the time of 
failure and immediately after failure.
    (i) For static strength substantiation, these loads multiplied by 
an appropriate factor of safety that is related to the probability of 
occurrence of the failure are ultimate loads to be considered for 
design. The factor of safety (FS) is defined in Figure 1.

[[Page 61430]]

[GRAPHIC] [TIFF OMITTED] TP18OC06.008

    (ii) For residual strength substantiation, the airplane must be 
able to withstand two thirds of the ultimate loads defined in paragraph 
(c)(1)(i) of this section. For pressurized cabins, these loads must be 
combined with the normal operating differential pressure.
    (iii) Freedom from aeroelastic instability must be shown up to the 
speeds defined in Sec.  25.629(b)(2). For failure conditions that 
result in speed increases beyond VC/MC, freedom 
from aeroelastic instability must be shown to increased speeds, so that 
the margins intended by Sec.  25.629(b)(2) are maintained.
    (iv) Failures of the system that result in forced structural 
vibrations (oscillatory failures) must not produce loads that could 
result in detrimental deformation of primary structure.
    (2) For the continuation of the flight. For the airplane in the 
system failed state and considering any appropriate reconfiguration and 
flight limitations, the following apply:
    (i) The loads derived from the following conditions (or used in 
lieu of the following conditions) at speeds up to VC/
MC or the speed limitation prescribed for the remainder of 
the flight must be determined:
    (A) the limit symmetrical maneuvering conditions specified in 
Sec. Sec.  25.331 and in 25.345.
    (B) the limit gust and turbulence conditions specified in 
Sec. Sec.  25.341 and in 25.345.
    (C) the limit rolling conditions specified in Sec.  25.349 and the 
limit unsymmetrical conditions specified in Sec. Sec.  25.367 and 
25.427(b) and (c).
    (D) the limit yaw maneuvering conditions specified in Sec.  25.351.
    (E) the limit ground loading conditions specified in Sec. Sec.  
25.473 and 25.491.
    (ii) For static strength substantiation, each part of the structure 
must be able to withstand the loads in paragraph (c)(2)(i) of this 
special condition multiplied by a factor of safety, depending on the 
probability of being in this failure state. The factor of safety is 
defined in Figure 2.
[GRAPHIC] [TIFF OMITTED] TP18OC06.009


[[Page 61431]]


Qj = (Tj)(Pj)

Where:

Tj = Average time spent in failure condition j (in hours)
Pj = Probability of occurrence of failure mode j (per 
hour)

    Note: If Pj is greater than 10-\3\ per 
flight hour, then a 1.5 factor of safety must be applied to all 
limit load conditions specified in subpart C.


    (iii) For residual strength substantiation, the airplane must be 
able to withstand two thirds of the ultimate loads defined in paragraph 
(c)(2)(ii). For pressurized cabins, these loads must be combined with 
the normal operating differential pressure.
    (iv) If the loads induced by the failure condition have a 
significant effect on fatigue or damage tolerance, then their effects 
must be taken into account.
    (v) Freedom from aeroelastic instability must be shown up to a 
speed determined from Figure 3. Flutter clearance speeds V' and V'' may 
be based on the speed limitation specified for the remainder of the 
flight, using the margins defined by Sec.  25.629(b).
[GRAPHIC] [TIFF OMITTED] TP18OC06.010

V' = Clearance speed as defined by Sec.  25.629(b)(2).
V'' = Clearance speed as defined by Sec.  25.629(b)(1).
Qj = (Tj)(Pj)

Where:

Tj = Average time spent in failure condition j (in hours)
Pj = Probability of occurrence of failure mode j (per 
hour)

    Note: If Pj is greater than 10-\3\ per 
flight hour, then the flutter clearance speed must not be less than 
V''.


    (vi) Freedom from aeroelastic instability must also be shown up to 
V' in Figure 3 above for any probable system failure condition combined 
with any damage required or selected for investigation by Sec.  
25.571(b).
    (3) Consideration of certain failure conditions may be required by 
other sections of this Part, regardless of calculated system 
reliability. Where analysis shows the probability of these failure 
conditions to be less than 10-\9\, criteria other than those 
specified in this paragraph may be used for structural substantiation 
to show continued safe flight and landing.
    (d) Warning considerations. For system failure detection and 
warning, the following apply:
    (1) The system must be checked for failure conditions, not 
extremely improbable, that degrade the structural capability below the 
level required by part 25 or significantly reduce the reliability of 
the remaining system. As far as reasonably practicable, the flightcrew 
must be made aware of these failures before flight. Certain elements of 
the control system, such as mechanical and hydraulic components, may 
use special periodic inspections, and electronic components may use 
daily checks in lieu of warning systems to achieve the objective of 
this requirement. These certification maintenance requirements must be 
limited to components that are not readily detectable by normal warning 
systems and where service history shows that inspections will provide 
an adequate level of safety.
    (2) The existence of any failure condition, not extremely 
improbable, during flight that could significantly affect the 
structural capability of the airplane and for which the associated 
reduction in airworthiness can be minimized by suitable flight 
limitations must be signaled to the flightcrew. For example, failure 
conditions that result in a factor of safety between the airplane 
strength and the loads of part 25, subpart C, below 1.25 or flutter 
margins below V'' must be signaled to the crew during flight.
    (e) Dispatch with known failure conditions. If the airplane is to 
be dispatched in a known system failure condition that affects 
structural performance or affects the reliability of the remaining 
system to maintain structural performance, then the provisions of these 
Special Conditions must be met, including the provisions of paragraph 
(b), for the dispatched condition and paragraph (c) for subsequent 
failures. Expected operational limitations may be taken into account in 
establishing Pj as the probability of failure occurrence for 
determining the safety margin in Figure 1. Flight limitations and 
expected operational limitations may be taken into account in 
establishing Qj as the combined probability of being in the dispatched 
failure condition and the subsequent failure condition for the safety 
margins in Figures 2 and 3. These limitations must be such that the 
probability of being in this combined failure state and then 
subsequently encountering limit load conditions is extremely 
improbable. No reduction in these safety margins is allowed if the 
subsequent system failure rate is greater than 1E-3 per flight hour.

2. Limit Pilot Forces

    In addition to the requirements of Sec.  25.397(c) the following 
special condition applies.
    The limit pilot forces are:
    a. For all components between and including the handle and its 
control stops.

------------------------------------------------------------------------
                   Pitch                                Roll
------------------------------------------------------------------------
Nose up 200 lbf (pounds force)............  Nose left 100 lbf.
Nose down 200 lbf                           Nose right 100 lbf.
------------------------------------------------------------------------

    b. For all other components of the side stick control assembly, but

[[Page 61432]]

excluding the internal components of the electrical sensor assemblies 
to avoid damage as a result of an in-flight jam.

------------------------------------------------------------------------
                   Pitch                                Roll
------------------------------------------------------------------------
Nose up 125 lbf...........................  Nose left 50 lbf.
Nose down 125 lbf.........................  Nose right 50 lbf.
------------------------------------------------------------------------

3. High Intensity Radiated Fields (HIRF) Protection

    a. Protection from Unwanted Effects of High Intensity Radiated 
Fields. Each electrical and electronic system which performs critical 
functions must be designed and installed to ensure that the operation 
and operational capability of these systems to perform critical 
functions is not adversely affected when the airplane is exposed to 
high intensity radiated fields.
    b. For the purposes of this special condition, the following 
definition applies:
    Critical Functions: Functions whose failure would contribute to or 
cause a failure condition that would prevent the continued safe flight 
and landing of the airplane.

    Issued in Renton, Washington, on October 10, 2006.
Kalene C. Yanamura,
Acting Manager, Transport Airplane Directorate, Aircraft Certification 
Service.
[FR Doc. 06-8762 Filed 10-17-06; 8:45 am]
BILLING CODE 4910-13-P
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.