Small Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the Eastern Tropical Pacific, 14839-14853 [06-2884]

Download as PDF Federal Register / Vol. 71, No. 57 / Friday, March 24, 2006 / Notices consider merit reviews and recommendations and award in rank order unless the application is justified to be selected out of rank order based on one or more of the following selection factors: Selection Factors In determining final awards, the selecting official reserves the right to consider the following selection factors: 1. Availability of funds. 2. Balance/distribution of funds: a. Geographically. b. By type of institutions. c. Across academic disciplines. 3. Program-specific objectives. 4. Degree in scientific area and type of degree sought. Repayment Requirement A Hollings Scholarship recipient shall be require to repay the full amount of the scholarship to the National Oceanic and Atmospheric Administration if it is determined that the individual, in obtaining or using the scholarship, engaged in fraudulent conduct or failed to comply with any term or condition of the scholarship. Cost Sharing Requirements There are no cost-sharing requirements. Intergovernmental Review Applications under this program are not subject to Executive Order 12372, ‘‘Intergovernmental Review of federal programs.’’ Limitation of Liability In no event will NOAA or the Department of Commerce be responsible for proposal preparation costs if this program is cancelled because of other agency priorities. Publication of this notice does not oblige NOAA to award any specific project or to obligate any available funds. Applicants are hereby given notice that funding for the Fiscal Year 2006 program is contingent upon the availability of Fiscal Year 2006 appropriations. wwhite on PROD1PC61 with NOTICES National Environmental Policy Act (NEPA) As defined in sections 5.05 and Administrative or Programmatic Functions of NAO 216–6, 6.03.c.3, this is an undergraduate scholarship and internship program for which there are no cumulative effects. Thus, it has been categorically excluded from the need to prepare an Environmental Assessment. Paperwork Reduction Act Notwithstanding any other provision of the law, no person is required to VerDate Aug<31>2005 18:26 Mar 23, 2006 Jkt 208001 respond to, nor shall any person be subject to a penalty for failure to comply with, a collection of information subject to the requirements of the Paperwork Reduction Act (PRA), unless that collection displays a currently valid Office of Management and Budget (OMB) control number. The Hollings Undergraduate Scholarship application form has been approved under OMB Control No. 1910–5125. Executive Order 12866 This notice has been determined to be not significant for purposes of Executive Order 12866. Executive Order 13132 (FEDERALISM) It has been determined that this notice does not contain policies with Federalism implications as that term is defined in Executive Order 13132. Administrative Procedure Act/ Regulatory Flexibility Act Prior notice and an opportunity for public comment are not required by the Administrative Procedure Act or any other law for rules concerning public property, loans, grants, benefits, and contracts (5 U.S.C. 553(a)(2)). Because notice and opportunity for comment are not required pursuant to 5 U.S.C. 553 or any other law, the analytical requirements for the Regulatory Flexibility Act (5 U.S.C. 601 et seq.) are inapplicable. Therefore, a regulatory flexibility analysis has not been prepared. Dated: March 20, 2006. George E. White, Acting Deputy Undersecretary for Oceans and Atmosphere, U.S. Department of Commerce. [FR Doc. E6–4320 Filed 3–23–06; 8:45 am] BILLING CODE 3510–12–P DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration [I.D. 112505C] Small Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the Eastern Tropical Pacific National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice; issuance of incidental harassment authorization AGENCY: SUMMARY: In accordance with the provisions of the Marine Mammal Protection Act (MMPA) as amended, notification is hereby given that NMFS PO 00000 Frm 00008 Fmt 4703 Sfmt 4703 14839 has issued an Incidental Harassment Authorization (IHA) to the Scripps Institution of Oceanography (SIO) to take marine mammals by Level B harassment incidental to conducting a marine seismic survey in the Eastern Tropical Pacific Ocean (ETP). DATES: Effective from March 10, 2006, through March 9, 2007. ADDRESSES: A copy of the IHA and the application are available by writing to Steve Leathery, Chief, Permits, Conservation, and Education Division, Office of Protected Resources, National Marine Fisheries Service, 1315 EastWest Highway, Silver Spring, MD 20910–3225, or by telephoning the contact listed here. A copy of the application containing a list of references used in this document may be obtained by writing to this address, by telephoning the contact listed here (see FOR FURTHER INFORMATION CONTACT) or online at: https://www.nmfs.noaa.gov/ pr/permits/incidental.htm. Documents cited in this notice may be viewed, by appointment, during regular business hours, at the aforementioned address. FOR FURTHER INFORMATION CONTACT: Jolie Harrison, Office of Protected Resources, NMFS, (301) 713–2289, ext 166. SUPPLEMENTARY INFORMATION: Background Sections 101(a)(5)(A) and (D) of the MMPA (16 U.S.C. 1361 et seq.) direct the Secretary of Commerce to allow, upon request, the incidental, but not intentional, taking of marine mammals by U.S. citizens who engage in a specified activity (other than commercial fishing) within a specified geographical region if certain findings are made and either regulations are issued or, if the taking is limited to harassment, a notice of a proposed authorization is provided to the public for review. Authorization shall be granted if NMFS finds that the taking will have a negligible impact on the species or stock(s), will not have an unmitigable adverse impact on the availability of the species or stock(s) for subsistence uses, and that the permissible methods of taking and requirements pertaining to the mitigation, monitoring and reporting of such takings are set forth. NMFS has defined ‘‘negligible impact’’ in 50 CFR 216.103 as ’’...an impact resulting from the specified activity that cannot be reasonably expected to, and is not reasonably likely to, adversely affect the species or stock through effects on annual rates of recruitment or survival.≥ Section 101(a)(5)(D) of the MMPA established an expedited process by which citizens of the United States can E:\FR\FM\24MRN1.SGM 24MRN1 14840 Federal Register / Vol. 71, No. 57 / Friday, March 24, 2006 / Notices apply for an authorization to incidentally take small numbers of marine mammals by harassment. Except with respect to certain activities not pertinent here, the MMPA defines ‘‘harassment’’ as: any act of pursuit, torment, or annoyance which (i) has the potential to injure a marine mammal or marine mammal stock in the wild [Level A harassment]; or (ii) has the potential to disturb a marine mammal or marine mammal stock in the wild by causing disruption of behavioral patterns, including, but not limited to, migration, breathing, nursing, breeding, feeding, or sheltering [Level B harassment]. wwhite on PROD1PC61 with NOTICES Section 101(a)(5)(D) establishes a 45– day time limit for NMFS review of an application followed by a 30–day public notice and comment period on any proposed authorizations for the incidental harassment of marine mammals. Within 45 days of the close of the comment period, NMFS must either issue or deny issuance of the authorization. Summary of Request On October 2, 2005, NMFS received an application from SIO for the taking, by harassment, of several species of marine mammals incidental to conducting, with research funding from the National Science Foundation (NSF), a marine seismic survey in the ETP during March-April, 2006. The purpose of the seismic survey is to collect the site survey data for a future Integrated Ocean Drilling Program (IODP) drilling transect (not currently scheduled). The proposed drilling program will study the structure of the Cenozoic equatorial Pacific by drilling an age-transect flowline along the position of the paleoequator in the Pacific, targeting selected time-slices of interest where calcareous sediments have been preserved best. The seismic survey and respective drilling transect will span the early Eocene to Miocene equatorial Pacific. Recovered sediments will: (1) contribute towards resolving questions of how and why paleo-productivity of the equatorial Pacific changed over time, (2) provide rare material to validate and extend the astronomical calibration of the geological time scale for the Cenozoic, (3) determine sea-surface and benthic temperature and nutrient profiles and gradients, (4) provide important information about the detailed nature of calcium carbonate dissolution (CCD) and changes in the CCD, (5) enhance understanding of bio- and magnetostratigraphic datums at the equator, as well as (6) provide information about rapid biological evolution and turn-over during times of climatic stress. As SIO’s strategy also VerDate Aug<31>2005 18:26 Mar 23, 2006 Jkt 208001 implies a paleo-depth transect, they also hope to improve knowledge about the reorganization of water masses as a function of depth and time. Last, SIO intends to make use of the high level of correlation between tropical sediment sections and seismic stratigraphy collected on the survey cruise to develop a more complete model of equatorial circulation and sedimentation. Description of the Activity The seismic survey will utilize one source vessel, the R/V Roger Revelle, which is scheduled to depart from Papeete, French Polynesia, on or about March 03, 2006, and will return to port in Honolulu, Hawaii on or about April 01, 2006. The exact dates of the activity may vary by a few days because of weather conditions, repositioning, streamer operations and adjustments, airgun deployment, or the need to repeat some lines if data quality is substandard. The overall area within which the seismic survey will occur is located between approx. 20° N and 10° S, and between approx. 100° and 155° W. The survey will be conducted entirely in international waters. The R/V Roger Revelle will deploy a pair of low-energy Generator-Injector Guns (GI guns) as an energy source (each with a discharge volume of 45 in3), plus a 450 m-long (1476 ft-long), 48–channel, towed hydrophone streamer. As the GI guns are towed along the survey lines, the receiving system will acquire the returning acoustic signals. The program will consist of approximately (approx.) 8,900 km (4,800 nm) of survey, including turns. Water depths within the study area are 3,900 to 5,200 m (12,800 to 16,700 ft). The seismic source will be operated along the single track line en route between piston-coring sites, where seismic data will be acquired on a small scale grid and cores will be collected. There will be additional operations associated with equipment testing, startup, line changes, and repeat coverage of any areas where initial data quality is sub-standard. The vessel will be selfcontained and the crew will live aboard the vessel for the entire cruise. In addition to the operations of the pair of GI guns, a Kongsberg Simrad EM–120 multibeam echosounder, a 3.5 kHz sub-bottom profiler, and passive geophysical sensors (gravimeter and magnetometer) will be operated continuously throughout the entire cruise. Vessel Specifications The R/V Roger Revelle is owned by the U.S. Navy Office of Naval Research PO 00000 Frm 00009 Fmt 4703 Sfmt 4703 (ONR) and operated by SIO under a charter agreement. The R/V Roger Revelle has a length of 83 m (273 ft), a beam of 16 m (53 ft), and a maximum draft of 5.2 m (17 ft). The ship is powered by two 3000 hp Propulsion General Electric motors and a 1180 hp retracting azimuthing bow thruster. Typical operation speed of approx. 13 km/h (7 knots) is used during seismic acquisition. When not towing seismic survey gear, the R/V Roger Revelle cruises at 22 km/h (12 knots) and has a maximum speed of 28 km/h (15 knots). It has a normal operating range of approx. 27780 km (15,000 nm). The R/V Roger Revelle holds 22 crew plus 37 scientists and will also serve as the platform from which marine mammal observers will watch for marine mammals before and during GI gun operations. Seismic Source Description The R/V Roger Revelle will tow the pair of GI guns and a streamer containing hydrophones along predetermined lines. Seismic pulses will be emitted at intervals of 6–10 seconds. At a speed of 7 knots (13 km/ h), the 6–10–s spacing corresponds to a shot interval of approx. 22–36 m (71– 118 ft). The generator chamber of each GI gun, the one responsible for introducing the sound pulse into the water, is 45 in3(737 cm3). The larger (105 in3 (1721 cm3)) injector chamber injects air into the previously-generated bubble to maintain its shape, and does not introduce more sound into the water. The two 45 in3 (737 cm3) GI guns will be towed 8 m (26 ft) apart side by side, 21 m (69 ft) behind the R/V Roger Revelle, at a depth of 2 m (7 ft). Specifications for the GI guns are as follows. The two GI guns discharge a total volume of approx. 90 in3 (1475 cm3) and the dominant frequency components are 1–188 Hz. The source output (downward) is 7.2 bar-m (237 dB re 1 microPascal-m) at 0–peak (0–pk) and 14.0 bar-m (243 dB re 1 microPascal-m) at peak-peak (pk-pk). The nominal downward-directed source levels indicated above do not represent actual sound levels that can be measured at any location in the water. Rather, they represent the level that would be found 1 m from a hypothetical point source emitting the same total amount of sound as is emitted by the combined GI guns. The actual received level at any location in the water near the GI guns will not exceed the source level of the strongest individual source. In this case, that will be about 231 dB re 1 microPa-m peak, or 237 dB re 1 microPa-m pk-pk. Actual E:\FR\FM\24MRN1.SGM 24MRN1 wwhite on PROD1PC61 with NOTICES Federal Register / Vol. 71, No. 57 / Friday, March 24, 2006 / Notices levels experienced by any organism more than 1 m from either GI gun will be significantly lower. A further consideration is that the rms (root mean square) received levels that are used as impact criteria for marine mammals are not directly comparable to the peak or pk-pk values normally used to characterize source levels of seismic sources. The measurement units used to describe seismic sources, peak or pk-pk decibels, are always higher than the rms decibels referred to in biological literature. A measured received level of 160 decibels rms in the far field would typically correspond to a peak measurement of about 170 to 172 dB, and to a peak-to-peak measurement of about 176 to 178 decibels, as measured for the same pulse received at the same location (Greene, 1997; McCauley et al., 1998, 2000a). The precise difference between rms and peak or pk-pk values depends on the frequency content and duration of the pulse, among other factors. However, the rms level is always lower than the peak or pk-pk level for a seismic source. NMFS has established the following acoustic criteria for non-explosive sounds: Level A Harassment (PTS) - 180 dB re 1 microPa-m (rms) for cetaceans and 190 dB re 1 microPa-m (rms) for pinnipeds; and Level B Harassment (TTS) - 160 dB re 1 microPa-m (rms) for all marine mammals. NMFS uses the isopleths of these sound levels to estimate where Level A Harassment and Level B Harassment take of marine mammals occurs and to establish safety zones within which monitoring or mitigation measures must be applied. Received sound levels have been modeled by the Lamont-Doherty Earth Observatory (L-DEO) for two 105 in3 (1721 cm3) GI guns in relation to distance and direction from the source. The model does not allow for bottom interactions, and is most directly applicable to deep water (such as will be ensonified in this survey). Based on the modeling, estimates of the maximum distances from the GI guns where sound levels of 160, 180, and 190 dB re 1 microPa (rms) are predicted to be received are as follows: 160 dB out to 510 m (1673 ft); 180 dB out to 54 m (177 ft); and 190 dB out to 17 m (56 ft). Because the model results are for the larger 105 in3 (1721 cm3) GI guns, those distances are overestimates of the distances for the two 45 in3 (737 cm3) GI guns used in this study and, therefore, are considered conservative. Empirical data concerning the 160– and 180–dB distances have been acquired based on measurements during an acoustic verification study conducted by L-DEO in the northern Gulf of VerDate Aug<31>2005 18:26 Mar 23, 2006 Jkt 208001 Mexico from 27 May to 3 June 2003 (Tolstoy et al., 2004). Although the results are limited, the data showed that radii around the GI guns where the received level would be 180 dB re 1 microPa (rms) vary with water depth. Similar depth-related variation is likely in the 190 dB distances applicable to pinnipeds. The empirical data indicate that, for deep water (≤1,000 m (3,281 ft)), the L-DEO model tends to overestimate the received sound levels at a given distance (Tolstoy et al., 2004). However, to be precautionary pending acquisition of additional empirical data, the safety radii during seismic operations in the deep water of this study will be the values predicted by LDEO’s model. Therefore, the assumed 180- and 190–dB radii are 54 m (177 ft) and 17 m (56 ft), respectively. Bathymetric Sonar Along with the GI-gun operations, two additional acoustical data acquisition systems will be operated during much or all of the cruise. One of the instruments used to map the ocean floor will be the Kongsberg Simrad EM–120 multi-beam echosounder, which is commonly operated simultaneously with GI guns. The nominal transmit frequency of the Kongsberg Simrad EM–120 is 12 kHz with an angular coverage sector of up to 150 degrees and 191 beams per ping. The transmit fan is split into several individual sectors with independent active steering according to vessel roll, pitch and yaw. This method places all soundings on a ‘‘best fit’’ to a line perpendicular to the survey line, thus ensuring a uniform sampling of the bottom and 100 percent coverage. The sectors are frequency coded (11.25 to 12.60 kHz), and are transmitted sequentially at each ping. Pulse length and range sampling rate are variable with depth for best resolution, and in shallow waters due care is taken to the near field effects. The ping rate is primarily limited by round trip travel time in water, up to a ping rate of 5 Hz in shallow water. A pulse length of 15 ms is typically used in deep water. The transmit fan is split into nine different sectors transmitted sequentially within the same ping. Using electronic steering, the sectors are individually tilted alongtrack to take into account the vessel’s current roll, pitch and yaw with respect to the survey line heading. The manufacturer provided information to show relevant parameters for their multibeam echosounders. For the model EM–120, with a one degree beamwidth (BW), the pressure levels at a set of fixed distances are as follows: 211 dB at 1 m (2.9 ft); 205 dB at 10 m (29 ft); 195 dB PO 00000 Frm 00010 Fmt 4703 Sfmt 4703 14841 at 100 m (287 ft); and 180 dB at 1,000 m (3,280 ft). Note that the pressure levels are worst case, i.e. on-axis and with no defocusing. For purposes of this survey the on-axis direction is vertical from the ship to the sea floor. The pressure level for sound traveling offaxis will fall rapidly for a narrow beam (alongtrack for a multibeam echosounder). The level will reduce by 20 dB at a little more than twice the beamwidth, which is 1 degree for the system installed on R/V Roger Revelle. Acrosstrack, the pressure level will typically reduce by 20 dB for angles of more than 75–80° from the vertical. For multibeams which use sectorized transmission, such as most current Kongsberg Simrad systems, beam defocusing is applied in the central sector(s) in shallow waters which results in a more rapid reduction in the pressure level. There will be a similar reduction for the outer sectors in flat arrays, as used with the EM–120, due to the virtual shortening of the array width in these directions. The pressure level at 1 m (2.9 ft) is less for the Kongsberg Simrad EM–120 multibeam echosounder (211 dB) than it is for the pair of GI guns (237 dB) used in this study. However, due to the very narrow (1o) directivity of the beam, the distance from the transducer at which 180 dB re 1 microPa-m is encountered is larger (1,000 m (3,280 ft)) than that calculated for the GI guns (54 m (177 ft)). Conversely, the narrowness of the beam, the short pulse length, the ping rate, and the ship’s speed during the survey greatly lessens the probability of exposing an animal under the ship during one ping of the multibeam echosounder, much less for multiple pings. Since the 1o beam of sound is directed downward from transducers permanently mounted in the ship’s hull, the horizontal safety radius of 54 m (177 ft) for 180 dB established for the GI guns will encompass the entire area ensonified by the multibeam echosounder, as well, and marine mammals takes by the echosounder will be avoided through the mitigation measures discussed later. Sub-bottom Profiler A sub-bottom profiler will also be used simultaneously with the GI guns to map the ocean floor. The Knudsen Engineering Model 320BR sub-bottom profiler is a dual frequency transceiver designed to operate at 3.5 and/or 12 kHz. It is used in conjunction with the multibeam echosounder to provide data about the sedimentary features which occur below the sea floor. The maximum power output of the 320BR is 10 kilowatts for the 3.5 kHz section and E:\FR\FM\24MRN1.SGM 24MRN1 14842 Federal Register / Vol. 71, No. 57 / Friday, March 24, 2006 / Notices 2 kilowatts for the 12 kHz section (the 12 kHz section is seldom used in survey mode on R/V Roger Revelle due to overlap with the operating frequency of the Kongsberg Simrad EM–120 multibeam). Using the Sonar Equations and assuming 100 percent efficiency in the system, the source level for the 320BR is calculated to be 211 dB re 1 microPam. In practice, the system is rarely operated above 80 percent power level. The pulse length for the 3.5 kHz section of the 320BR ranges from 1.5 to 24 ms, and is controlled automatically by the system. Since the maximum attainable source level of the 320BR sub-bottom profiler (211 dB re 1 microPa-m) is less than that of the pair of GI guns (237 dB re 1 microPa-m) to be used in this study and the sound produced by the sub-bottom profiler is directed downward from transducers permanently mounted in the ship’s hull, the 54 m (177 ft) horizontal safety radius established for the GI guns will encompass the entire area ensonified by the multibeam echosounder, and marine mammals takes by the echosounder will be avoided through the mitigation measures discussed later. Characteristics of Airgun Pulses Discussion of the characteristics of airgun pulses has been provided in the application and in previous Federal Register notices (see 69 FR 31792 (June 7, 2004) or 69 FR 34996 (June 23, 2004)). Reviewers are referred to those documents for additional information. wwhite on PROD1PC61 with NOTICES Comments and Responses A notice of receipt of the SIO application and proposed IHA was published in the Federal Register on January 20, 2006 (71 FR 3260). During the comment period, NMFS received comments from the Marine Mammal Commission (MMC). Comment 1: The MMC states that because the applicant is requesting authority to take marine mammals by harassment only, NMFS should require that operations be suspended immediately if a dead or seriously injured marine mammals is found in the vicinity of the operations and the death or injury could have occurred incidental VerDate Aug<31>2005 18:26 Mar 23, 2006 Jkt 208001 to conducting the seismic survey. The MMC further recommends that any such suspension should remain in place until NMFS has (1) reviewed the situation and determined that further mortalities or serious injuries are unlikely to occur, or (2) issued regulations authorizing such takes under section 101(a)(5)(A) of the MMPA. Response: NMFS concurs with MMC’s recommendations and has included a requirement to this effect in the IHA. Comment 2: The MMC recommends that to improve the ability to observe marine mammals, NMFS should require that SIO not operate airguns after dark. Response: NMFS has included the following requirement in the IHA: (SIO must) - Visually observe the entire extent of the safety radius (190 dB for pinnipeds, 180 dB for cetaceans) using two marine mammal observers, at least 30 minutes prior to starting the airguns during the day or at night. If for any reason the entire radius cannot be seen for the entire 30 minutes (i.e. rough seas, fog, darkness), or if marine mammals are near, approaching, or in the safety radius, the airguns may not be started up. If one airgun is already running, SIO may start the second gun without observing the entire safety radius for 30 minutes prior, provided no marine mammals are known to be near the safety radius. SIO is not authorized to start up the airguns at night unless the MMOs can clearly see the entire safety zone for 30 minutes prior to ramp-up. Once the airguns are operating, NMFS believes that marine mammals will show some level of avoidance, either of the airguns or the approaching vessel, and stay out of the safety radius (54 m (177 ft) at 180 dB). If marine mammals do enter the safety zone while airguns are operating at night, however, observers should be able to see them using NVDs and shut down the airguns immediately. Comment 3: The MMC states that they would be interested in learning from NMFS or SIO what the probability is that an injured or dead beaked whale or other small cetacean would be sighted from a ship running transects through an area or retracing recently run transect lines. Response: Because of the cryptic nature of beaked whale behavior and the movement of the R/V Roger Revelle during the seismic survey, it is unlikely that a distressed beaked whale or small PO 00000 Frm 00011 Fmt 4703 Sfmt 4703 cetacean would be sighted from a ship running transects through an area. If a ship were to to retrace its recently run transects, the chance of sighting a distressed animal would increase. However, NMFS believes that it is highly unlikely that an marine mammals will be exposed to levels of sound likely to result in Level A Harassment or mortality given the very small safety radii (54 m (177 ft) for 180 dB) around the R/V Roger Revelle’s small airguns and the likely effectiveness of the mitigation measures. Description of Habitat and Marine Mammals Affected by the Activity A detailed description of the R/V Roger Revelle’s track from Papeete, French Polynesia to Honolulu, Hawaii and the associated marine mammals can be found in the SIO application and a number of documents referenced in the SIO application. In the seismic survey region during the late winter and early spring months of 2006, 29 cetacean species are likely to occur, including dolphins, small whales, tooth and baleen whales. Several of these species are listed under the U.S. Endangered Species Act (ESA) as endangered, including sperm whales, humpback whales, and blue whales; fin and sei whales may also occur in the proposed seismic program area. Information on the distribution of these and other species inhabiting the study area and the wider ETP has been summarized by several studies (e.g., Polacheck, 1987; Wade and Gerrodette, 1993; Ferguson and Barlow, 2001; Ferguson and Barlow 2003). Four species of pinnipeds (Guadelupe fur seal, northern elephant seal, South American sea lion, and California sea lion) could potentially be encountered during the proposed survey. However, impacts to pinnipeds are not anticipated due to the decreased likelihood of encountering them in very deep water, the relatively small area to be ensonified, and the likely effectiveness of the proposed mitigation measures in such a small area. The species that may be impacted by this activity and their estimated abundances in the ETP are listed in Table 1. BILLING CODE 3510–22–S E:\FR\FM\24MRN1.SGM 24MRN1 The marine mammal populations in the seismic survey area have not been studied in detail, but the region is included in the greater ETP, where several studies of marine mammal distribution and abundance have been conducted. The ETP is thought to be a biologically productive area (Wyrtki, 1966), and is known to support a variety VerDate Aug<31>2005 18:26 Mar 23, 2006 Jkt 208001 of cetacean species (Au and Perryman, 1985). The center of the ETP is characterized by warm, tropical waters (Reilly and Fiedler 1994). Cooler water is found along the equator and the eastern boundary current waters of Peru and California; this cool water is brought to the surface by upwelling (Reilly and Fiedler, 1994). The two different PO 00000 Frm 00012 Fmt 4703 Sfmt 4703 14843 habitats are generally thought to support different cetacean species (Au and Perryman, 1985). Au et al. (1987) noted an association between cetaceans and the equatorial surface water masses in the ETP, which are thought to be highly productive. Increased biological productivity has also been observed due to upwelling at the Costa Rica Dome (Wyrtki, 1964; Fiedler et al.,1991). E:\FR\FM\24MRN1.SGM 24MRN1 EN24MR06.009</GPH> wwhite on PROD1PC61 with NOTICES Federal Register / Vol. 71, No. 57 / Friday, March 24, 2006 / Notices 14844 Federal Register / Vol. 71, No. 57 / Friday, March 24, 2006 / Notices Several studies have correlated these zones of high productivity with concentrations of cetaceans (Volkov and Moroz, 1977; Reilly and Thayer, 1990; Wade and Gerrodette, 1993). The ETP is also characterized by a shallow thermocline (Wyrtki, 1966) and a pronounced oxygen minimum layer (Perrin et al.,1976; Au and Perryman, 1985). These features are thought to result in an ‘‘oxythermal floor’’ 20–100 m below the surface, which may cause large groups of cetaceans to concentrate in the warm surface waters (Scott and Cattanach, 1998). In the application, many references are made to the occurrence of cetaceans in the Galapagos; however, for some species, abundance in the Galapagos can be quite different from that in the wider ETP (Smith and Whitehead, 1999). In addition, references to surveys in the ETP are also made. For example, Polacheck (1987) summarized cetacean abundance in the ETP for 1977–1980, although the season when surveys were carried out was not given. Polacheck (1987) calculated encounter rates as the number of schools sighted per 1,000 mi (1,609 km) surveyed. His encounter rates do not include any correction factors to account for changes in detectability of species with distance from the survey track line or the diving behavior of the animals. Wade and Gerrodette (1993) also calculated encounter rates for cetaceans (number of schools per 1,000 km surveyed) in the ETP, based on surveys between late July and early December from 1986 to 1990. Their encounter rates include a correction factor to account for detectability bias but do not include a correction factor to account for availability bias. Ferguson and Barlow (2001) calculated cetacean densities in the ETP based on summer/fall research vessel surveys in 1986–1996. Their densities are corrected for both detectability and availability biases. Ferguson and Barlow (2003) followed their 2001 report up with an addendum that estimated density and abundance with the respective coefficients of variation, whereas before some species and groups were pooled. Although species encounter rates and densities are generally given for summer/fall, the seismic survey will be conducted in winter/spring 2006. wwhite on PROD1PC61 with NOTICES Potential Effects on Marine Mammals Summary of Potential Effects of GI Gun Sounds The effects of sounds from GI guns might include one or more of the following: tolerance, masking of natural sounds, behavioral disturbance, and, at VerDate Aug<31>2005 18:26 Mar 23, 2006 Jkt 208001 least in theory, temporary or permanent hearing impairment (Richardson et al., 1995). Given the small size of the GI guns planned for the present project, effects are anticipated to be considerably less than would be the case with a large array of airguns. Both NMFS and SIO believe it very unlikely that there will be any cases of temporary or, especially, permanent hearing impairment. Also, behavioral disturbance is expected to be limited to animals that are at distances less than 510 m (1673 ft). A further review of potential impacts of airgun sounds on marine mammals is included in Appendix A of SIO’s application. Tolerance Numerous studies have shown that pulsed sounds from airguns are often readily detectable in the water at distances of many kilometers. However, it should be noted that most of the measurements of airgun sounds that have been reported concerned sounds from larger arrays of airguns, whose sounds would be detectable farther away than those planned for use in the present project. Numerous studies have shown that marine mammals at distances more than a few kilometers from operating seismic vessels often show no apparent response. That is often true even in cases when the pulsed sounds must be readily audible to the animals based on measured received levels and the hearing sensitivity of that mammal group. Although various baleen whales, toothed whales, and pinnipeds have been shown to react behaviorally to airgun pulses under some conditions, at other times mammals of all three types have shown no overt reactions. In general, pinnipeds and small odontocetes seem to be more tolerant of exposure to airgun pulses than are baleen whales. Given the relatively small and low-energy GI gun source planned for use in this project, mammals are expected to tolerate being closer to this source than might be the case for a larger airgun source typical of most seismic surveys. Masking Masking effects (effects that interfere with an animals ability to detect a sound even though the sound is above its absolute hearing threshold) of pulsed sounds (even from large arrays of airguns) on marine mammal calls and other natural sounds are expected to be limited, although there are very few specific data on this. Some whales are known to continue calling in the presence of seismic pulses. Their calls can be heard between the seismic pulses PO 00000 Frm 00013 Fmt 4703 Sfmt 4703 (e.g., Richardson et al., 1986; McDonald et al., 1995; Greene et al., 1999). Although there has been one report that sperm whales cease calling when exposed to pulses from a very distant seismic ship (Bowles et al., 1994), a recent study reports that sperm whales off northern Norway continued calling in the presence of seismic pulses (Madsen et al., 2002c). Given the small source planned for use here, there is even less potential for masking of baleen or sperm whale calls during the present study than in most seismic surveys. Masking effects of seismic pulses are expected to be negligible in the case of the smaller odontocete cetaceans, given the intermittent nature of seismic pulses and the relatively low source level of the GI guns to be used here. Also, the sounds important to small odontocetes are predominantly at much higher frequencies than are airgun sounds. Further information on masking effects may be found in Appendix A(d) of SIO’s application. Disturbance Reactions Disturbance includes a variety of effects, including subtle changes in behavior, more conspicuous changes in activities, and displacement. Disturbance is one of the main concerns in this project. In the terminology of the 1994 amendments to the MMPA, seismic noise could cause ‘‘Level B’’ harassment of certain marine mammals. Level B harassment is defined as ‘‘any act of pursuit, torment, or annoyance which has the potential to disturb a marine mammal or marine mammal stock in the wild by causing disruption of behavioral patterns, including, but not limited to, migration, breathing, nursing, breeding, feeding, or sheltering.’’ Reactions to sound, if any, depend on species, state of maturity, experience, current activity, reproductive state, time of day, and many other factors. If a marine mammal does react to an underwater sound by changing its behavior or moving a small distance, it is difficult to know if the effects are biologically significant, i.e., if they rise to the level of ‘‘disruption of behavioral patterns’’. If a sound source displaces marine mammals from an important feeding or breeding area for a prolonged period, it is more likely to be a disruption of a behavioral pattern. Given the many uncertainties in predicting the quantity and types of impacts of noise on marine mammals, it is NMFS’ practice to estimate how many mammals will be present within a particular distance of sound-generating activities (or exposed to a particular level of sound) and assume that all of E:\FR\FM\24MRN1.SGM 24MRN1 wwhite on PROD1PC61 with NOTICES Federal Register / Vol. 71, No. 57 / Friday, March 24, 2006 / Notices the animals within that area may have been harassed. The sound criteria used to estimate how many marine mammals might be disturbed to some biologicallyimportant degree by a seismic program are based on behavioral observations during studies of several species. However, information is lacking for many species. Detailed studies have been done on humpback, gray, and bowhead whales, and on ringed seals. Less detailed data are available for some other species of baleen whales, sperm whales, and small toothed whales. Most of those studies have concerned reactions to much larger airgun sources than planned for use in the present project. Thus, effects are expected to be limited to considerably smaller distances and shorter periods of exposure in the present project than in most of the previous work concerning marine mammal reactions to airguns. Baleen Whales – Baleen whales generally tend to avoid operating airguns, but avoidance radii are quite variable. Whales are often reported to show no overt reactions to pulses from large arrays of airguns at distances beyond a few kilometers, even though the airgun pulses remain well above ambient noise levels out to much longer distances. However, as reviewed in Appendix A of SIO’s application, baleen whales exposed to strong noise pulses from airguns often react by deviating from their normal migration route and/ or interrupting their feeding and moving away. In the case of the migrating gray and bowhead whales, the observed changes in behavior appeared to be of little or no biological consequence to the animals. They simply avoided the sound source by displacing their migration route to varying degrees, but within the natural boundaries of the migration corridors. Studies of gray, bowhead, and humpback whales have determined that received levels of pulses in the 160–170 dB re 1 microPa (rms) range seem to cause obvious avoidance behavior in a substantial fraction of the animals exposed. In many areas, seismic pulses from large arrays of airguns diminish to those levels at distances ranging from 4.5–14.5 km (2.4–7.8 nm) from the source. A substantial proportion of the baleen whales within those distances may show avoidance or other strong disturbance reactions to the airgun array. Subtle behavioral changes sometimes become evident at somewhat lower received levels, and recent studies reviewed in the application have shown that some species of baleen whales, notably bowheads and humpbacks, at times show strong avoidance at received VerDate Aug<31>2005 18:26 Mar 23, 2006 Jkt 208001 levels lower than 160–170 dB re 1 microPa (rms). Reaction distances would be considerably smaller during the present project, in which the 160 dB radius is predicted to be approx. 0.5 km (0.27 nm), as compared with several kilometers when a large array of airguns is operating. Data on short-term reactions (or lack of reactions) of cetaceans to impulsive noises do not necessarily provide information about long-term effects. It is not known whether impulsive noises affect reproductive rate or distribution and habitat use in subsequent days or years. However, gray whales continued to migrate annually along the west coast of North America despite intermittent seismic exploration and much ship traffic in that area for decades (Malme et al., 1984). Bowhead whales continued to travel to the eastern Beaufort Sea each summer despite seismic exploration in their summer and autumn range for many years (Richardson et al., 1987). In any event, the brief exposures to sound pulses from the present small GI gun source are highly unlikely to result in prolonged effects in baleen whales. Toothed Whales – Little systematic information is available about reactions of toothed whales to noise pulses. Few studies similar to the more extensive baleen whale/seismic pulse work summarized above have been reported for toothed whales. However, systematic work on sperm whales is underway. Seismic operators sometimes see dolphins and other small toothed whales near operating airgun arrays, but in general there seems to be a tendency for most delphinids to show some limited avoidance of seismic vessels operating large airgun systems. However, some dolphins seem to be attracted to the seismic vessel and floats, and some ride the bow wave of the seismic vessel even when large arrays of airguns are firing. Nonetheless, there have been indications that small toothed whales sometimes tend to head away, or to maintain a somewhat greater distance from the vessel, when a large array of airguns is operating than when it is silent e.g., Goold, 1996a; Calambokidis and Osmek, 1998; Stone, 2003). Similarly, captive bottlenose dolphins and beluga whales exhibit changes in behavior when exposed to strong pulsed sounds similar in duration to those typically used in seismic surveys (Finneran et al., 2000, 2002). However, the animals tolerated high received levels of sound (pk-pk level >200 dB re 1 microPa) before exhibiting aversive behaviors. With the presently-planned pair of GI guns, such levels would only be found within a few meters of the source. PO 00000 Frm 00014 Fmt 4703 Sfmt 4703 14845 There are no specific data on the behavioral reactions of beaked whales to seismic surveys. However, most beaked whales tend to avoid approaching vessels of other types (e.g., Kasuya, 1986; Wursig et al., 1998). The Joint Interim Report on the Bahamas Marine Mammal Stranding Event of 15–16 March (U.S. Department of Commerce/ U.S. Department of the Navy, 2001) reported that intense acoustic signals were the only possible contributory cause to the strandings and cause of the lesions seen in the Ziphius cavirostris and Mesoplodon densirostris that stranded in the Bahamas that could not be ruled out. The U.S. Navy was conducting mid-frequency sonar at a time that can be correlated with the stranding of these animals. Other midfrequency sonar exercises have been correlated in time with beaked whale and other cetacean strandings (see Appendix A of SIO’s application), however for the many of these, the indepth analysis of ear and other tissues necessary to completely rule out other possible causes has not been conducted. Whether beaked whales would ever react similarly to seismic surveys is unknown. Seismic survey sounds are quite different from those of the sonars in operation during the above-cited incidents. There was a stranding of Cuvier’s beaked whales in the Gulf of California (Mexico) in September 2002 when the L-DEO vessel Maurice Ewing was operating a large array of airguns (20 guns; 8,490 in3 (139,126 cm3)) in the general area. This might be a first indication that seismic surveys can have effects similar to those attributed to naval sonars. However, the evidence with respect to that seismic survey and beaked whale stranding is inconclusive. All three species of sperm whales have been reported to show avoidance reactions to standard vessels not emitting airgun sounds, so it is to be expected that they would also tend to avoid an operating seismic survey vessel. There were some limited early observations suggesting that sperm whales in the Southern Ocean and Gulf of Mexico might be fairly sensitive to airgun sounds from distant seismic surveys. However, more extensive data from recent studies in the North Atlantic suggest that sperm whales in those areas show little evidence of avoidance or behavioral disruption in the presence of operating seismic vessels, McCall Howard 1999; Madsen et al., 2002c; Stone, 2003). An experimental study of sperm whale reactions to seismic surveys in the Gulf of Mexico has been done recently (Tyack et al., 2003). E:\FR\FM\24MRN1.SGM 24MRN1 14846 Federal Register / Vol. 71, No. 57 / Friday, March 24, 2006 / Notices wwhite on PROD1PC61 with NOTICES Odontocete reactions to large arrays of airguns are variable and, at least for small odontocetes, seem to be confined to a smaller radius than has been observed for mysticetes. Thus, behavioral reactions of odontocetes to the small GI gun source to be used here are expected to be very localized, probably to distances <0.5 km (<0.3 mi). Pinnipeds – Pinnipeds are not likely to show a strong avoidance reaction to the small GI gun source that will be used. Visual monitoring from seismic vessels, usually employing larger sources, has shown only slight (if any) avoidance of airguns by pinnipeds, and only slight (if any) changes in behavior. Those studies show that pinnipeds frequently do not avoid the area within a few hundred meters of operating airgun arrays, even for arrays much larger than the one to be used here (e.g., Harris et al., 2001). However, initial telemetry work suggests that avoidance and other behavioral reactions to small airgun sources may be stronger than evident to date from visual studies of pinniped reactions to airguns (Thompson et al., 1998). Even if reactions of the species occurring in the present study area are as strong as those evident in the telemetry study, reactions are expected to be confined to relatively small distances from the vessel (and, therefore, avoidable through implementation of required mitigation measures) and durations, with no longterm effects on pinnipeds. Additional details on the behavioral reactions (or the lack thereof) by all types of marine mammals to seismic vessels can be found in Appendix A (e) of SIO’s application. Hearing Impairment and Other Physical Effects Temporary or permanent hearing impairment is a possibility when marine mammals are exposed to very strong sounds, but there has been no specific documentation of this for marine mammals exposed to airgun pulses. Current NMFS policy regarding exposure of marine mammals to highlevel sounds is that in order to avoid hearing impairment, cetaceans and pinnipeds should not be exposed to impulsive sounds exceeding 180 and 190 dB re1 microPa (rms), respectively (NMFS, 2000). Those criteria have been used in defining the safety (shutdown) radii planned for this seismic survey. Because of the small size of the GI gun source in this project (two 45 in3 guns), along with the planned monitoring and mitigation measures, there is little likelihood that any marine mammals will be exposed to sounds sufficiently strong to cause hearing impairment. VerDate Aug<31>2005 18:26 Mar 23, 2006 Jkt 208001 Several aspects of the planned monitoring and mitigation measures for this project are designed to detect marine mammals occurring near the pair of GI guns (and multibeam echosounder), and to avoid exposing them to sound pulses that might cause hearing impairment (see Mitigation Measures). In addition, many cetaceans are likely to show some avoidance of the area with ongoing seismic operations (see above). In those cases, the avoidance responses of the animals themselves will reduce or avoid the possibility of hearing impairment. Non-auditory physical effects may also occur in marine mammals exposed to strong underwater pulsed sound. Possible types of non-auditory physiological effects or injuries that theoretically might occur include stress, neurological effects, bubble formation, resonance effects, and other types of organ or tissue damage. It is possible that some marine mammal species (i.e., beaked whales) may be especially susceptible to injury and/or stranding when exposed to strong pulsed sounds. However, as discussed below, it is very unlikely that any effects of these types would occur during the present project given the small size of the source and the brief duration of exposure of any given mammal, especially in view of the planned monitoring and mitigation measures. TTS – TTS is the mildest form of hearing impairment that can occur during exposure to a strong sound (Kryter, 1985). While experiencing TTS, the hearing threshold rises and a sound must be stronger in order to be heard. TTS can last from minutes or hours to (in cases of strong TTS) days. For sound exposures at or somewhat above the TTS threshold, hearing sensitivity recovers rapidly after exposure to the noise ends. Little information on sound levels and durations necessary to elicit mild TTS has been obtained for marine mammals, and none of the published data concern TTS elicited by exposure to multiple pulses of sound. Finneran et al. (2002) compared the few available data that exist on sound levels and durations necessary to elicit mild TTS and found that for toothed whales exposed to single short pulses, the TTS threshold appears to be a function of the energy content of the pulse. Finneran used the available data to plot known TTS in odontocetes on a line depicting sound pressure level versus duration of pulse, and SIO used that line to estimate that a single seismic pulse of the duration used in this study (approx. 15 ms) received at 210 dB re 1 microPa (rms) (approx. 221–226 dB pkpk) may produce brief, mild TTS in PO 00000 Frm 00015 Fmt 4703 Sfmt 4703 odontocetes. If received sound energy is calculated from the sound pressure, a single 15 ms seismic pulse at 210 dB re 1 microPa (rms) equates to ten seismic pulses of the same length at received levels near 200 dB or three seismic pulses of the same length at received levels near 205 dB (rms). The L-DEO model indicates that seismic pulses with received levels of 200–205 dB would be limited to distances within a few meters of the small GI gun source to be used in this project. There are no data, direct or indirect, on levels or properties of sound that are required to induce TTS in any baleen whale. Richardson et al. (1995) compiled studies of the reactions of several species of baleen whales to seismic sound and found that baleen whales often show strong avoidance several kilometers away from an airgun at received levels of 150–180 dB. Given the small size of the source, and the likelihood that baleen whales will avoid the approaching airguns (or vessel) before being exposed to levels high enough to induce TTS, NMFS believes it unlikely that the R/V Roger Revelle’s airguns will cause TTS in any baleen whales. TTS thresholds for pinnipeds exposed to brief pulses (single or multiple) have not been measured. However, prolonged exposures show that some pinnipeds may incur TTS at somewhat lower received levels than do small odontocetes exposed for similar durations (Kastak et al., 1999; Ketten et al., 2001; cf. Au et al., 2000). A marine mammal within a radius of 100 m (328 ft) around a typical large array of operating airguns might be exposed to a few seismic pulses with levels of 205 dB, and possibly more pulses if the mammal moved with the seismic vessel. As noted above, most cetaceans show some degree of avoidance of operating airguns. In addition, ramping up airgun arrays, which is standard operational protocol for large airgun arrays, should allow cetaceans to move away from the seismic source and to avoid being exposed to the full acoustic output of the airgun array. Even with a large airgun array, it is unlikely that the cetaceans would be exposed to airgun pulses at a sufficiently high level (180 dB) for a sufficiently long period (due to the tendency of baleen whales to avoid seismic sources) to cause more than mild TTS, given the relative movement of the vessel and the marine mammal. The potential for TTS is very low in this project due to the small size of the airgun array (past IHA’s have authorized take of marine mammals incidental to the operation of seismic airguns with a E:\FR\FM\24MRN1.SGM 24MRN1 wwhite on PROD1PC61 with NOTICES Federal Register / Vol. 71, No. 57 / Friday, March 24, 2006 / Notices total volume of up to 8,800 in3 (L-DEO 20–gun array)) . With a large array of airguns, any TTS would be most likely in any odontocetes that bow-ride or otherwise linger near the airguns. While bow riding, odontocetes would be at or above the surface, and thus not exposed to strong sound pulses given the pressure-release effect at the surface. However, bow-riding animals generally dive below the surface intermittently. If they did so while bow riding near airguns, they could potentially be exposed to strong sound pulses, possibly repeatedly. However, in this project, the anticipated 180–dB distance is less than 54 m (less than 155 ft), and the bow of the R/V Roger Revelle will be 106 m (304 ft) ahead of the GI guns, so this effect is less likely. As mentioned earlier, NMFS has established acoustic criteria to avoid PTS that indicate that cetaceans and pinnipeds should not be exposed to pulsed underwater noise at received levels exceeding, respectively, 180 and 190 dB re 1 microPa (rms). The predicted 180 and 190 dB distances for the GI guns operated by SIO are less than 54 m (less than 155 ft) and less than 17 m (less than 49 ft), respectively (those distances actually apply to operations with two 105 in3 GI guns, and smaller distances would be expected for the two 45 in3 (737 cm3) GI guns to be used here.). These sound levels represent the received levels above which one could not be certain that there would be no injurious effects, auditory or otherwise, to marine mammals. As mentioned previously in the toothed whale section, Finneran et al.’s (2000 and 2002) TTS data indicate that a small number of captive dolphins have been exposed to more 200 dB re 1 microPa (rms) without suffering from TTS, though NMFS believes that the sound levels represented by these studies of small numbers of captive animals may not accurately represent the predicted reactions of wild animals under the same circumstances. Scientists at NMFS are currently compiling and reanalyzing available information on the reactions of marine mammals to sound in an effort to eventually establish new more sophisticated acoustic criteria. However, NMFS currently considers the 160, 180, and 190 dB thresholds to be the appropriate sound pressure level criteria for non-explosive sounds. PTS – When PTS occurs, there is physical damage to the sound receptors in the ear. In some cases, there can be total or partial deafness, while in other cases, the animal has an impaired ability to hear sounds in specific frequency ranges. VerDate Aug<31>2005 18:26 Mar 23, 2006 Jkt 208001 There is no specific evidence that exposure to pulses of airgun sound can cause PTS in any marine mammal, even with large arrays of airguns. However, given the possibility that mammals close to an airgun array might incur TTS, there has been further speculation about the possibility that some individuals occurring very close to airguns might incur PTS. Single or occasional occurrences of mild TTS are not indicative of permanent auditory damage in terrestrial mammals. Relationships between TTS and PTS thresholds have not been studied in marine mammals, but NMFS assumes they are probably similar to those in humans and other terrestrial mammals. PTS might occur at a received sound level 20 dB or more above that inducing mild TTS if the animal were exposed to the strong sound for an extended period, or to a strong sound with rather rapid rise time (Cavanaugh, 2000). It is highly unlikely that marine mammals could receive sounds strong enough to cause permanent hearing impairment during a project employing two 45 in3 (737 cm3) GI guns. In the present project, marine mammals are unlikely to be exposed to received levels of seismic pulses strong enough to cause TTS, as they would probably need to be within a few meters of the GI guns for this to occur. Given the higher level of sound necessary to cause PTS, it is even less likely that PTS could occur. In fact, even the levels immediately adjacent to the GI guns may not be sufficient to induce PTS, especially since a mammal would not be exposed to more than one strong pulse unless it swam immediately alongside a GI gun for a period longer than the inter-pulse interval (6–10 s). Also, baleen whales generally avoid the immediate area around operating seismic vessels. Furthermore, the planned monitoring and mitigation measures, including visual monitoring, ramp ups, and shut downs of the GI guns when mammals are seen within the ‘‘safety radii,’’ will minimize the already-minimal probability of exposure of marine mammals to sounds strong enough to induce PTS. Non-auditory Physiological Effects – Non-auditory physiological effects or injuries that theoretically might occur in marine mammals exposed to strong underwater sound include stress, neurological effects, bubble formation, resonance effects, and other types of organ or tissue damage. There is no proof that any of these effects occur in marine mammals exposed to sound from airgun arrays (even large ones), but there have been no direct studies of the potential for airgun pulses to elicit any PO 00000 Frm 00016 Fmt 4703 Sfmt 4703 14847 of those effects. If any such effects do occur, they would probably be limited to unusual situations when animals might be exposed at close range for unusually long periods. It is doubtful that any single marine mammal would be exposed to strong seismic sounds for sufficiently long that significant physiological stress would develop. That is especially so in the case of the present project where the GI guns are small, the ship’s speed is relatively fast (7 knots (13 km/h)), and for the most part the survey lines are widely spaced with little or no overlap. Gas-filled structures in marine animals have an inherent fundamental resonance frequency. If stimulated at that frequency, the ensuing resonance could cause damage to the animal. A workshop (Gentry [ed.], 2002) was held to discuss whether the stranding of beaked whales in the Bahamas in 2000 (Balcomb and Claridge, 2001; NOAA and USN, 2001) might have been related to air cavity resonance or bubble formation in tissues caused by exposure to noise from naval sonar. A panel of experts concluded that resonance in airfilled structures was not likely to have caused this stranding. Opinions were less conclusive about the possible role of gas (nitrogen) bubble formation/ growth in the Bahamas stranding of beaked whales. Until recently, it was assumed that diving marine mammals are not subject to the bends or air embolism. However, a short paper concerning beaked whales stranded in the Canary Islands in 2002 suggests that cetaceans might be subject to decompression injury in some situations (Jepson et al., 2003). If so, that might occur if they ascend unusually quickly when exposed to aversive sounds. Even if that can occur during exposure to mid-frequency sonar, there is no evidence that that type of effect occurs in response to airgun sounds. It is especially unlikely in the case of this project involving only two small GI guns. In general, little is known about the potential for seismic survey sounds to cause auditory impairment or other physical effects in marine mammals. Available data suggest that such effects, if they occur at all, would be limited to short distances and probably to projects involving large arrays of airguns. However, the available data do not allow for meaningful quantitative predictions of the numbers (if any) of marine mammals that might be affected in those ways. Marine mammals that show behavioral avoidance of seismic vessels, including most baleen whales, some odontocetes, and some pinnipeds, are especially unlikely to incur auditory E:\FR\FM\24MRN1.SGM 24MRN1 14848 Federal Register / Vol. 71, No. 57 / Friday, March 24, 2006 / Notices impairment or other physical effects. Also, the required mitigation measures, including shut downs, will reduce any such effects that might otherwise occur. wwhite on PROD1PC61 with NOTICES Strandings and Mortality Marine mammals close to underwater detonations of high explosive can be killed or severely injured, and the auditory organs are especially susceptible to injury (Ketten et al., 1993; Ketten, 1995). Airgun pulses are less energetic and have slower rise times, and there is no proof that they can cause serious injury, death, or stranding even in the case of large airgun arrays. However, the association of mass strandings of beaked whales with naval exercises and, in one case, an L-DEO seismic survey, has raised the possibility that beaked whales exposed to strong pulsed sounds may be especially susceptible to injury and/or behavioral reactions that can lead to stranding. Additional details may be found in Appendix A (g) of SIO’s application. Seismic pulses and mid-frequency sonar pulses are quite different. Sounds produced by airgun arrays are broadband with most of the energy below 1 kHz. Typical military midfrequency sonars operate at frequencies of 2–10 kHz, generally with a relatively narrow bandwidth at any one time. Thus, it is not appropriate to assume that there is a direct connection between the effects of military sonar and seismic surveys on marine mammals. However, evidence that sonar pulses can, in special circumstances, lead to physical damage and mortality NOAA and USN, 2001; Jepson et al., 2003), even if only indirectly, suggests that caution is warranted when dealing with exposure of marine mammals to any highintensity pulsed sound. In Sept. 2002, there was a stranding of two Cuvier’s beaked whales in the Gulf of California, Mexico, when the LDEO vessel Maurice Ewing was operating a 20–gun 8490 in3 (139,126 cm3) array in the general area. The link between this stranding and the seismic surveys was inconclusive and not based on any physical evidence (Hogarth, 2002; Yoder, 2002). Nonetheless, that plus the incidents involving beaked whale strandings near naval exercises suggests a need for caution in conducting seismic surveys in areas occupied by beaked whales. The present project will involve a much smaller sound source than used in typical seismic surveys. That, along with the required monitoring and mitigation measures, is expected to minimize any possibility for strandings and mortality. VerDate Aug<31>2005 18:26 Mar 23, 2006 Jkt 208001 Possible Effects of Bathymetric Sonar Signals A multibeam bathymetric echosounder (Kongsberg Simrad EM– 120, 12 kHz) will be operated from the source vessel during much of the planned study. Sounds from the multibeam echosounder are very short pulses, occurring for 5–15 ms at up to 5 Hz, depending on water depth. As compared with the GI guns, the sound pulses emitted by this multibeam echosounder are at moderately high frequencies, centered at 12 kHz. The beam is narrow (1°) in fore-aft extent, and wide (150°) in the cross-track extent. Navy sonars that have been linked to avoidance reactions and stranding of cetaceans (1) generally are more powerful than the Kongsberg Simrad EM–120, (2) have a longer pulse duration, and (3) are directed close to horizontally, vs. downward, as for the multibeam echosounder. The area of possible influence of the Kongsberg Simrad EM–120 is much smaller--a narrow band oriented in the cross-track direction below the source vessel. Marine mammals that encounter the EM–120 at close range are unlikely to be subjected to repeated pulses because of the narrow fore-aft width of the beam, and will receive only limited amounts of pulse energy because of the short pulses. Masking Marine mammal communications will not be masked appreciably by the multibeam echosounder signals given the low duty cycle of the system and the brief period when an individual mammal is likely to be within its beam. Furthermore, in the case of baleen whales, the signals do not overlap with the predominant frequencies in the calls, which would avoid significant masking. Behavioral Responses Behavioral reactions of free-ranging marine mammals to military and other sonars appear to vary by species and circumstance. Observed reactions have included silencing and dispersal by sperm whales (Watkins et al., 1985), increased vocalizations and no dispersal by pilot whales (Rendell and Gordon, 1999), and the previously-mentioned beachings by beaked whales. However, all of those observations are of limited relevance to the present situation. Pulse durations from those sonars were much longer than those of the SIO multibeam echosounder, and a given mammal would have received many pulses from the naval sonars. During SIO’s PO 00000 Frm 00017 Fmt 4703 Sfmt 4703 operations, the individual pulses will be very short, and a given mammal would not be likely to receive more than a few of the downward-directed pulses as the vessel passes by unless it were swimming in the same speed and direction as the ship in a fixed position underneath the ship. Captive bottlenose dolphins and a white whale exhibited changes in behavior when exposed to 1 s pulsed sounds at frequencies similar to those that will be emitted by the multibeam echosounder used by SIO, and to shorter broadband pulsed signals. Behavioral changes typically involved what appeared to be deliberate attempts to avoid the sound exposure (Schlundt et al., 2000; Finneran et al., 2002). The relevance of those data to free-ranging odontocetes is uncertain, and in any case, the test sounds were quite different in either duration or bandwidth as compared with those from a bathymetric echosounder. NMFS is not aware of any data on the reactions of pinnipeds to sonar sounds at frequencies similar to those of the R/ V Roger Revelle’s multibeam echosounder. Based on observed pinniped responses to other types of pulsed sounds, and the likely brevity of exposure to the multibeam sounds, pinniped reactions are expected to be limited to startle or otherwise brief responses of no lasting consequence to the animals. NMFS (2001) concluded that momentary behavioral reactions ‘‘do not rise to the level of taking.’’ Thus, brief exposure of cetaceans or pinnipeds to small numbers of signals from the multibeam bathymetric echosounder system are not expected to result in a ‘‘take’’ by harassment. Hearing Impairment and Other Physical Effects Given recent stranding events that have been associated with the operation of naval sonar, there is concern that mid-frequency sonar sounds can cause serious impacts to marine mammals (see above). However, the multibeam echosounder proposed for use by SIO is quite different than sonars used for navy operations. Pulse duration of the multibeam echosounder is very short relative to the naval sonars. Also, at any given location, an individual marine mammal would be exposed to the multibeam sound signal for much less time given the generally downward orientation of the beam and its narrow fore-aft beamwidth. (Navy sonars often use near-horizontally-directed sound.) Those factors would all reduce the sound energy received from the multibeam echosounder drastically E:\FR\FM\24MRN1.SGM 24MRN1 Federal Register / Vol. 71, No. 57 / Friday, March 24, 2006 / Notices relative to that from the sonars used by the Navy. Possible Effects of Sub-bottom Profiler Signals A sub-bottom profiler will be operated from the source vessel much of the time during the planned study. Sounds from the sub-bottom profiler are short pulses of 1.5 - 24 ms duration. The triggering rate is controlled automatically so that only one pulse is in the water column at a time. Most of the energy in the sound pulses emitted by this sub-bottom profiler is at mid frequencies, centered at 3.5 kHz. The beamwidth is approx. 30o and is directed downward. Sound levels have not been measured directly for the sub-bottom profiler used by the R/V Roger Revelle, but Burgess and Lawson (2000) measured sounds propagating more or less horizontally from a similar unit with similar source output (205 dB re 1 microPa-m). The 160 and 180 dB re 1 microPa (rms) radii, in the horizontal direction, were estimated to be, respectively, near 20 m (66 ft) and 8 m (26 ft) from the source, as measured in 13 m (43 ft) water depth. The corresponding distances for an animal in the beam below the transducer would be greater, on the order of 180 m (591 ft) and 18 m (59 ft), assuming spherical spreading. The sub-bottom profiler on the R/V Roger Revelle has a stated maximum source level of 211 dB re 1 microPa-m and a normal source level of 200 dB re 1 microPa-m. Thus the received level would be expected to decrease to 160 and 180 dB about 160 m (525 ft) and 16 m (52 ft) below the transducer, respectively, again assuming spherical spreading. Corresponding distances in the horizontal plane would be lower, given the directionality of this source (30o beamwidth) and the measurements of Burgess and Lawson (2000). wwhite on PROD1PC61 with NOTICES Masking Marine mammal communications will not be masked appreciably by the subbottom profiler signals given its relatively low power output, the low duty cycle, directionality, and the brief period when an individual mammal is likely to be within its beam. Furthermore, in the case of most odontocetes, the sonar signals do not overlap with the predominant frequencies in the calls, which would avoid significant masking. Behavioral Responses Marine mammal behavioral reactions to other pulsed sound sources are discussed above, and responses to the sub-bottom profiler are likely to be similar to those for other pulsed sources VerDate Aug<31>2005 18:26 Mar 23, 2006 Jkt 208001 received at the same levels. Therefore, behavioral responses are not expected unless marine mammals are very close to the source, e.g., within approx. 160 m (525 ft) below the vessel, or about 17 m (54 ft) to the side of a vessel, and NMFS anticipates that these exposures at close range will be avoided through implementation of the required monitoring and mitigation measures. Hearing Impairment and Other Physical Effects Source levels of the sub-bottom profiler are much lower than those of the GI guns that are discussed above. Sound levels from a sub-bottom profiler similar to the one on the R/V Roger Revelle were estimated to decrease to 180 dB re 1 microPa (rms) (NMFS criteria for Level A harassment) at 8 m (26 ft) horizontally from the source, Burgess and Lawson 2000), and at approx. 18 m (59 ft) downward from the source. Because of the fact that the entire area to be ensonified by the subbottom profiler will be within the safety radius in which mitigation measures will be taken and because an animal would have to be directly beneath, close to, and traveling at the same speed and direction as the boat to be exposed to multiple pings above 180 dB, it is unlikely that the sub-bottom profiler will cause hearing impairment or other physical injuries even in an animal that is (briefly) in a position near the source. The sub-bottom profiler is usually operated simultaneously with other higher-power acoustic sources. Many marine mammals will move away in response to the approaching higherpower sources or the vessel itself before the mammals would be close enough for there to be any possibility of effects from the less intense sounds from the sub-bottom profiler. In the case of mammals that do not avoid the approaching vessel and its various sound sources, mitigation measures that would be applied to minimize effects of the higher-power sources would further reduce or eliminate any minor effects of the sub-bottom profiler. Estimated Take by Incidental Harassment for the Eastern Tropical Pacific Seismic Survey Given the proposed mitigation (see Mitigation later in this document), all anticipated takes involve a temporary change in behavior that would constitute Level B harassment, at most. The proposed mitigation measures are expected to minimize or eliminate the possibility of Level A harassment or mortality. It is difficult to make accurate, scientifically defensible, and observationally verifiable estimates of PO 00000 Frm 00018 Fmt 4703 Sfmt 4703 14849 the number of individuals likely to be subject to low-level harassment by the noise from SIO’s GI guns. There are many uncertainties in marine mammal distribution and seasonally varying abundance, and in local horizontal and vertical distribution; in marine mammal reactions to varying frequencies and levels of acoustic pulses; and in perceived sound levels at different horizontal and oblique ranges from the source. The best estimate of potential ‘‘take by harassment’’ is derived by converting the abundances of the affected species in Table 1 to per km abundances (even though most of the data used in this table were collected in different seasons than the SIO planned activity), and multiplying these abundances (for the appropriate region) by the area to be ensonified at levels greater than 160 dB (rms) (NMFS Level B harassment criteria). The area to be ensonified at levels greater than 160 dB is calculated using a 9–dB loss when converting from p-p to rms, and purely spherical spreading with no sea-surface baffling, which results in a swath width of 4.5 km (2.8 mi) ((2.3 km (1.4 mi) either side of the survey vessel). The total area ensonified is derived by multiplying this width by the numbers of hours profiling on each leg, and by the 13 km/hr (7 mi/hr) average speed of the R/V Roger Revelle during the sea floor profiling. The total estimated ‘‘take by harassment’’ is presented in Table 1. Thirteen species of odontocete whales, one species of mysticete whale, and no pinnipeds are expected to be harassed. No more than 0.72 percent of any stock is expected to be affected, and NMFS believes that this is a very small proportion of the ETP population of any of the affected species. While data regarding distribution, seasonal abundance, and response of pinnipeds to seismic sonar is sparse, NMFS believes the R/V Roger Revelle is unlikely to encounter any of the four pinniped species that live, for at least part of the year, in SIO’s proposed survey area because of the decreased likelihood of encountering them in the very deep water, the relatively small area proposed to be ensonified, and the likely effectiveness of the required mitigation measures in such a small area. The SIO seismic survey in the ETP will involve towing a pair of GI guns that introduce pulsed sounds into the ocean, along with simultaneous operation of a multi-beam echosounder and sub-bottom profiler. A towed hydrophone streamer will be deployed to receive and record the returning signals. No ‘‘taking’’ by harassment, injury, or mortality of marine mammals E:\FR\FM\24MRN1.SGM 24MRN1 14850 Federal Register / Vol. 71, No. 57 / Friday, March 24, 2006 / Notices wwhite on PROD1PC61 with NOTICES is expected in association with operations of the other sources discussed (bathymetric sonar or subbottom profiler), as produced sounds are beamed downward, the beam is narrow, and the pulses are extremely short. Effects on Cetaceans Strong avoidance reactions by several species of mysticetes to seismic vessels have been observed at ranges up to 6– 8 km (3–4 nm) and occasionally as far as 20–30 km (11–16 nm) from the source vessel when much larger airgun arrays have been used. Additionally, the numbers of mysticetes estimated to occur within the 160–dB isopleth in the survey area are expected to be low (4 or less, see Table 1). In addition, the estimated numbers presented in Table 1 are considered overestimates of actual numbers for two primary reasons. First, the estimated 160–radii used here are probably overestimates of the actual 160–radii at deep-water sites (Tolstoy et al., 2004) such as the ETP survey area. Second, SIO plans to use smaller GI guns than those on which the radii are based. Odontocete reactions to seismic pulses, or at least the reactions of dolphins, are expected to extend to lesser distances than are those of mysticetes. Odontocete low-frequency hearing is less sensitive than that of mysticetes, and dolphins are often seen from seismic vessels. In fact, there are documented instances of dolphins approaching active seismic vessels. However, dolphins and some other types of odontocetes sometimes show avoidance responses and/or other changes in behavior when near operating seismic vessels. Taking into account the proposed mitigation measures, effects on cetaceans are generally expected to be limited to avoidance of the area around the seismic operation and short-term changes in behavior, falling within the MMPA definition of ‘‘Level B harassment.’’ Furthermore, the estimated numbers of animals potentially exposed to sound levels sufficient to cause appreciable disturbance are very low percentages of their population sizes in the ETP. Larger numbers of delphinids may be affected by the seismic study, but the population sizes of species likely to occur in the operating area are large, and the numbers potentially affected are small relative to the population sizes. Mitigation measures such as controlled speed, course alteration, look outs, non-pursuit, ramp ups, and shut downs when marine mammals are seen within defined ranges should further reduce short-term reactions and VerDate Aug<31>2005 18:26 Mar 23, 2006 Jkt 208001 minimize any effects on hearing sensitivity. Effects on marine mammals are expected to be short-term, with no lasting biological consequences anticipated. Potential Effects on Habitat The proposed GI gun operations will not result in any permanent impact on habitats used by marine mammals, or to the food sources they use. The main impact issue associated with the proposed activities will be temporarily elevated noise levels and the associated direct effects on marine mammals, as discussed above. One of the reasons for the adoption of airguns as the standard energy source for marine seismic surveys was that they (unlike the explosives used in the distant past) do not appear to result in any appreciable fish kill. Various experimental studies showed that airgun discharges caused little or no fish kill, and that any injurious effects were generally limited to the water within a meter or so of an airgun. However, it has recently been found that injurious effects on captive fish, especially on hearing, may occur to somewhat greater distances than previously thought (McCauley et al., 2000a,b, 2002, 2003). Even so, any injurious effects on fish would be limited to short distances. Also, many of the fish that might otherwise be within the injury radius likely would be displaced from the region prior to the approach of the GI guns through avoidance reactions to the passing seismic vessel or to the GI gun sounds as received at distances beyond the injury radius. Short, sharp sounds can cause overt or subtle changes in fish behavior. Chapman and Hawkins (1969) tested the reactions of whiting (hake) in the field to an airgun. When the airgun was fired, the fish dove from 25 to 55 m (80 to 180 ft) and formed a compact layer. By the end of an hour of exposure to the sound pulses, the fish had habituated; they rose in the water despite the continued presence of the sound pulses. However, they began to descend again when the airgun resumed firing after it had stopped. The whiting dove when received sound levels were higher than 178 dB re 1 microPa (peak pressure) (Pearson et al., 1992). Pearson et al. (1992) conducted a controlled experiment to determine effects of strong noise pulses on several species of rockfish off the California coast. They used an airgun with a source level of 223 dB re 1 microPa. They noted: startle responses at received levels of 200 205 dB re 1 microPa (peak pressure) and above for two sensitive species, but not for two other species PO 00000 Frm 00019 Fmt 4703 Sfmt 4703 exposed to levels up to 207 dB; alarm responses at 177 180 dB (peak) for the two sensitive species, and at 186 199 dB for other species; an overall threshold for the above behavioral response at approx. 180 dB (peak); an extrapolated threshold of approx. 161 dB (peak) for subtle changes in the behavior of rockfish; and a return to pre-exposure behaviors within the 20 60 min. after the exposure period. In other airgun experiments, catch per unit effort of demersal fish declined when airgun pulses were emitted (Dalen and Raknes, 1985; Dalen and Knutsen, 1986; Skalski et al., 1992). Reductions in the catch may have resulted from a change in behavior of the fish. The fish schools descended to near the bottom when the airgun was firing, and the fish may have changed their swimming and schooling behavior. Fish behavior returned to normal minutes after the sounds ceased. In the Barents Sea, abundance of cod and haddock measured acoustically was reduced by 44 percent within 9 km (5 nm) of an area where airguns operated (Engas et al., 1993). Actual catches declined by 50 percent throughout the trial area and 70 percent within the shooting area. The reduction in catch decreased with increasing distance out to 30 33 km (16 18 nm), where catches were unchanged. Other recent work concerning behavioral reactions of fish to seismic surveys, and concerning effects of seismic surveys on fishing success, is reviewed in Turnpenny and Nedwell (1994), Santulli et al., (1999), Hirst and Rodhouse, (2000), Thomson et al., (2001), Wardle et al., (2001), and Engas and Lokkeborg, (2002). In summary, fish often react to sounds, especially strong and/or intermittent sounds of low frequency. Sound pulses at received levels of 160 dB re 1 microPa (peak) may cause subtle changes in behavior. Pulses at levels of 180 dB (peak) may cause noticeable changes in behavior (Chapman and Hawkins, 1969; Pearson et al., 1992; Skalski et al., 1992). It also appears that fish often habituate to repeated strong sounds rather rapidly, on time scales of minutes to an hour. However, the habituation does not endure, and resumption of the disturbing activity may again elicit disturbance responses from the same fish. Fish near the GI guns are likely to dive or exhibit some other kind of behavioral response. That might have short-term impacts on the ability of cetaceans to feed near the survey area. However, only a small fraction of the available habitat would be ensonified at any given time, and fish species would return to their pre-disturbance behavior E:\FR\FM\24MRN1.SGM 24MRN1 Federal Register / Vol. 71, No. 57 / Friday, March 24, 2006 / Notices once the seismic activity ceased. Thus, the survey would have little impact on the abilities of marine mammals to feed in the area where seismic work is planned. Some of the fish that do not avoid the approaching GI guns (probably a small number) may be subject to auditory or other injuries. Zooplankton that are very close to the source may react to the shock wave. They have an exoskeleton and no air sacs. Little or no mortality is expected. Many crustaceans can make sounds, and some crustaceans and other invertebrates have some type of sound receptor. However, the reactions of zooplankton to sound are not known. Some mysticetes feed on concentrations of zooplankton. A reaction by zooplankton to a seismic impulse would only be relevant to whales if it caused a concentration of zooplankton to scatter. Pressure changes of sufficient magnitude to cause that type of reaction probably would occur only very close to the source. Impacts on zooplankton behavior are predicted to be negligible, and that would translate into negligible impacts on feeding mysticetes. Furthermore, in the proposed project area, mysticetes are expected to be rare. The effects of the planned activity on marine mammal habitats and food resources are expected to be negligible, as described previously. A small minority of the marine mammals that are present near the proposed activity may be temporarily displaced as much as a few kilometers by the planned activity. This activity is not expected to have any habitat-related effects that could cause significant or long-term consequences for individual marine mammals or their populations, since operations at the various sites will be limited in duration. Potential Effects on Subsistence Use of Marine Mammals There is no known legal subsistence hunting for marine mammals in the ETP near the survey area, so the proposed activities will not have any impact on the availability of the species or stocks for subsistence users. wwhite on PROD1PC61 with NOTICES Mitigation For the seismic survey in the ETP during March – April 2006, SIO will deploy a pair of GI guns as an energy source, with a total discharge volume of 90 in3. The energy from the GI guns will be directed mostly downward. The small size of the GI guns to be used during the proposed study is an inherent and important mitigation measure that will reduce the potential VerDate Aug<31>2005 18:26 Mar 23, 2006 Jkt 208001 for effects relative to those that might occur with a large airgun arrays. Received sound levels have been estimated by L-DEO in relation to distance from two 105 in3 GI guns, but not two 45 in3 (737 cm3) GI guns. The radii around two 105 in3 (1721 cm3) GI guns where received levels would be 180 and 190 dB re 1 microPa (rms) are small (54 and 17 m (155 ft and 45 ft), respectively), especially in the deep waters (>4,000 m (11,494 ft)) of the survey area. The 180 and 190 dB levels are shut-down criteria applicable to cetaceans and pinnipeds, respectively, as specified by NMFS (2000). Vessel-based observers will watch for marine mammals near the GI guns when they are in use. The number of individual animals expected to be approached closely during the activity will be small in relation to regional population sizes. With the required monitoring, ramp-up, and shut-down provisions (see later in this document), any effects on individuals are expected to be limited to behavioral disturbance. Vessel-based observers will monitor marine mammals near the seismic source vessel during all daytime GI gun operations and during any nighttime start ups of the GI guns. The observations will provide the real-time data needed to implement some of the key mitigation measures. When marine mammals are observed within, or about to enter, designated safety zones (see below) where there is a possibility of significant effects on hearing or other physical effects, GI gun operations will be shut down immediately. During daylight, vessel-based observers will watch for marine mammals near the seismic vessel during all periods while operating airguns and two marine mammal observers (MMOs) will monitor for a minimum of 30 min prior to the planned start of GI gun operations after an extended shut down. SIO proposes to conduct nighttime as well as daytime operations. Observers dedicated to marine mammal observations will not be on duty during ongoing seismic operations at night. At night, bridge personnel and other trained members of the scientific party will watch for marine mammals and will call for the GI guns to be shut down if marine mammals are observed in or about to enter the safety radii. If the GI guns are started up at night, two MMOs will monitor marine mammals near the source vessel for 30 min prior to start up of the GI guns using (aft-directed) ship’s lights and night vision devices. Safety Radii The L-DEO model does not allow for bottom interactions, and is most directly PO 00000 Frm 00020 Fmt 4703 Sfmt 4703 14851 applicable to deep water. Based on the modeling, estimates of the maximum distances from the GI guns where sound levels of 160, 180, and 190 dB re 1 microPa (rms) are predicted to be 510, 54, and 17 m (1466, 155, 49 ft), respectively. Because the model results are for the larger 105 in3 (1721 cm3) GI guns, those distances are overestimates of the distances for the 45 in3 GI guns used in this study. Empirical data concerning the 160-, and 180- dB distances have been acquired based on measurements during the acoustic verification study conducted by L-DEO in the northern Gulf of Mexico from 27 May to 3 June 2003, using the larger 105 in3 GI guns (Tolstoy et al., 2004). Although empirical data indicate that, for deep water (greater than 1000 m (greater than 3281 ft)), the L-DEO model tends to overestimate the received sound levels at a given distance (Tolstoy et al., 2004), the safety radii predicted by that model for 180– and 190–dB (54 m (177 ft) and 17 m (56 ft), respectively) are used here. The GI guns will be shut down immediately when cetaceans or pinnipeds are detected within or about to enter the appropriate 180–dB (rms) or 190–dB (rms) radius, respectively. The 180- and 190–dB shut-down criteria are consistent with guidelines listed for cetaceans and pinnipeds, respectively, by NMFS (2000) and other guidance by NMFS. Operational Mitigation Measures In addition to marine mammal monitoring, the following mitigation measures will be adopted during the proposed seismic program, provided that doing so will not compromise operational safety requirements. Although power-down procedures are often standard operating practice for seismic surveys, they will not be used here because powering down from two GI guns to one GI gun would make only a small difference in the 180- or 190–dB radius, probably not enough to allow continued one-gun operations if a mammal came within the safety radius for two guns. Mitigation measures that will be adopted are -Speed or course alteration; -Ramp-up and shut-down procedures; -Specific start-up measures for night operations; -Operation of GI guns only in water greater than 3,000 m (8,621 ft) deep. Speed or Course Alteration – If a marine mammal is detected outside the safety radius and, based on its position and the relative motion, is likely to enter the safety radius, the vessel’s speed and/or direct course may, when practical and safe, be changed in a E:\FR\FM\24MRN1.SGM 24MRN1 14852 Federal Register / Vol. 71, No. 57 / Friday, March 24, 2006 / Notices wwhite on PROD1PC61 with NOTICES manner that also minimizes the effect on the planned science objectives. The marine mammal activities and movements relative to the seismic vessel will be closely monitored to ensure that the animal does not approach within the safety radius. If the animal appears still likely to enter the safety radius, further mitigative actions will be taken, i.e., either further course alterations or shut down of the GI guns. Shut-down Procedures – If a marine mammal is detected outside the safety radius but is likely to enter the safety radius, and if the vessel’s course and/or speed cannot be changed to avoid having the animal enter the safety radius, the GI guns will be shut down before the animal is within the safety radius. Likewise, if a marine mammal is already within the safety radius when first detected, the GI guns will be shut down immediately. GI gun activity will not resume until the animal has cleared the safety radius. The animal will be considered to have cleared the safety radius if it is visually observed to have left the safety radius, or if it has not been seen within the radius for 15 min (small odontocetes and pinnipeds) or 30 min (mysticetes and large odontocetes, including sperm, pygmy sperm, dwarf sperm, beaked, and bottlenose whales). Ramp-up Procedures – A modified ‘‘ramp-up’’ procedure will be followed when the GI guns begin operating after a period without GI gun operations. The two GI guns will be added in sequence 5 minutes apart. During ramp-up procedures, the safety radius for the two GI guns will be maintained. Night Operations – At night, vessel lights and/or night vision devices (NVDs) will be used to monitor the safety radius for marine mammals while airguns are operating. Nighttime start up of the GI guns will only occur in situations when the entire safety radius is visible for the entire 30 minutes prior to start-up. Monitoring SIO will sponsor marine mammal monitoring during the present project, in order to implement the required mitigation measures that mandate realtime monitoring, and to satisfy the monitoring requirements of the IHA. SIO’s Monitoring Plan is described here. This monitoring work has been planned as a self-contained project independent of any other related monitoring projects that may be occurring simultaneously in the same regions. Vessel-based Visual Monitoring Dedicated MMOs and other vesselbased personnel will watch for marine VerDate Aug<31>2005 18:26 Mar 23, 2006 Jkt 208001 mammals near the seismic source vessel during all daytime and nighttime GI gun operations. GI gun operations will be immediately suspended when marine mammals are observed within, or about to enter, designated safety radii. At least one dedicated vessel-based MMO will watch for marine mammals near the seismic vessel during daylight periods with seismic operations, and two MMOs will watch for marine mammals for at least 30 minutes prior to start-up of GI gun operations. Observations of marine mammals will also be made and recorded during any daytime periods without GI gun operations. At night, the forward-looking bridge watch of the ship’s crew will look for marine mammals that the vessel is approaching and execute avoidance maneuvers; the 180dB/190dB safety radii around the GI guns will be continuously monitored by an aft-looking member of the scientific party, who will call for shutdown of the guns if mammals are observed within the safety radii. Nighttime observers will be aided by (aft-directed) ship’s lights and NVDs. Observers will be on duty in shifts of no longer than four hours, and usually no longer than two hours in duration. Use of two simultaneous observers prior to ramp-up will increase the detectability of marine mammals present near the source vessel, and will allow simultaneous forward and rearward observations. Bridge personnel additional to the dedicated MMOs will also assist in detecting marine mammals and implementing mitigation requirements, and before the start of the seismic survey will be given instruction in how to do so. Standard equipment for marine mammal observers will be 7 X 50 reticle binoculars and optical range finders. At night, NVD equipment will be available. The observers will be in wireless communication with ship’s officers on the bridge and scientists in the vessel’s operations laboratory, so they can advise promptly of the need for avoidance maneuvers or GI gun power shut-down. The vessel-based monitoring will provide data required to estimate the numbers of marine mammals exposed to various received sound levels and to document any apparent disturbance reactions. It will also provide the information needed in order to shut down the GI guns at times when mammals are present in or near the safety zone. When a mammal sighting is made, the following information about the sighting will be recorded: 1. Species, group size, age/size/sex categories (if determinable), behavior when first sighted and after initial PO 00000 Frm 00021 Fmt 4703 Sfmt 4703 sighting, heading (if consistent), bearing and distance from seismic vessel, sighting cue, apparent reaction to seismic vessel (e.g., none, avoidance, approach, paralleling, etc.), and behavioral pace. 2. Time, location, heading, speed, activity of the vessel (shooting or not), sea state, visibility, cloud cover, and sun glare. The data listed under (2) will also be recorded at the start and end of each observation watch and during a watch, whenever there is a change in one or more of the variables. All mammal observations and GI gun shutdowns will be recorded in a standardized format. Data will be entered into a custom database using a notebook computer when observers are off duty. The accuracy of the data entry will be verified by computerized data validity checks as the data are entered, and by subsequent manual checking of the database. Those procedures will allow initial summaries of data to be prepared during and shortly after the field program, and will facilitate transfer of the data to statistical, graphical, or other programs for further processing and archiving. Results from the vessel-based observations will provide: 1. The basis for real-time mitigation (GI gun shut down); 2. Information needed to estimate the number of marine mammals potentially taken by harassment 3. Data on the occurrence, distribution, and activities of marine mammals in the area where the seismic study is conducted; 4. Information to compare the distance and distribution of marine mammals relative to the source vessel at times with and without seismic activity; and 5. Data on the behavior and movement patterns of marine mammals seen at times with and without seismic activity. Reporting A report will be submitted to NMFS within 90 days after the end of this ETP research cruise, which is predicted to occur around 01 April, 2006. The report will describe the operations that were conducted and the marine mammals that were detected near the operations. The report will be submitted to NMFS, providing full documentation of methods, results, and interpretation pertaining to all monitoring. The 90–day report will summarize the dates and locations of seismic operations, marine mammal sightings (dates, times, locations, activities, associated seismic survey activities), and estimates of the E:\FR\FM\24MRN1.SGM 24MRN1 Federal Register / Vol. 71, No. 57 / Friday, March 24, 2006 / Notices number of animals affected and the nature of the impacts. ESA Under section 7 of the ESA, NSF and the NMFS, Office of Protected Resources (OPR), Division of Permits, Conservation, and Education have consulted with the NMFS, OPR, Endangered Species Division regarding take of ESA-listed species during this activity and as a result of the issuance of an IHA under section 101(a)(5)(D) of the MMPA for this activity. In a Biological Opinion (BO), NMFS concluded that the 2006 SIO seismic survey in the ETP and the issuance of the associated IHA are not likely to jeopardize the continued existence of threatened or endangered species under the jurisdiction of NMFS or destroy or adversely modify any designated critical habitat. NMFS has issued an incidental take statement (ITS) for sperm whales, blue whales, green sea turtles, leatherback turtles, and olive ridley sea turtles, which contains reasonable and prudent measures with implementing terms and conditions to minimize the effects of this take. The terms and conditions of the BO have been incorporated into the SIO IHA. wwhite on PROD1PC61 with NOTICES National Environmental Policy Act (NEPA) In 2003, NSF prepared an Environmental Assessment (EA) for a marine seismic survey by the R/V Maurice Ewing in the Hess Deep Area of the ETP. This EA addressed the potential effects of a larger airgun array (10 airguns, total volume 3005 in3 (49,243 cm3)) being operated in the same part of the ocean as is proposed for the R/V Roger Revelle in this application. In a Supplemental EA, NMFS reanalyzed the impacts addressed in NSF’s 2003 EA as they relate to the issuance of an IHA to SIO in 2006 for their seismic survey of the ETP, and, subsequently, issued a Finding of No Significant Impact (FONSI) on the supplemental EA. Therefore, preparation of an Environmental Impact Statement on this action is not required by section 102(2) of the NEPA or its implementing regulations. A copy of the Supplemental EA and FONSI are available upon request (see ADDRESSES). Conclusions NMFS has determined that the impact of SIO’s conducting the seismic survey in the ETP may result, at worst, in a temporary modification in behavior (Level B Harassment) by certain species of marine mammals. This activity is expected to result in no more than a VerDate Aug<31>2005 18:26 Mar 23, 2006 Jkt 208001 negligible impact on the affected species or stocks of marine mammals. For reasons stated previously in this document, this determination is supported by: (1) the likelihood that, given sufficient notice through relatively slow ship speed and ramp-up, marine mammals are expected to move away from a noise source that is annoying prior to its becoming potentially injurious; (2) the fact that marine mammals would have to be closer than 54 m (177 ft) from the vessel to be exposed to levels of sound (180 dB or 190 dB for cetaceans and pinnipeds, respectively) believed to have even a minimal chance of causing TTS, and (3) the likelihood that marine mammal detection ability by trained observers is close to 100 percent during daytime and remains high at night to that distance from the seismic vessel. As a result, no take by injury or death is anticipated, and the potential for temporary or permanent hearing impairment is very low and will be avoided through the incorporation of the proposed mitigation measures mentioned in this document. NMFS has determined that small numbers of 13 species of cetaceans may be taken by Level B harassment. While the number of incidental harassment takes will depend on the distribution and abundance of marine mammals in the vicinity of the survey activity, the estimated number of potential harassment takings is not expected to be greater than 1.29 percent of the population of any of the stocks affected (see Table 1). In addition, the SIO seismic program will not interfere with any legal subsistence hunts, since seismic operations will not be conducted in the same space and time as the hunts in subsistence whaling and sealing areas and will not adversely affect marine mammals used for subsistence purposes has issued an IHA to SIO for conducting a low-intensity oceanographic seismic survey in the ETP, provided the previously mentioned mitigation, monitoring, and reporting requirements are incorporated. NMFS has determined that the proposed SIO activity would result in the harassment of small numbers of marine mammals; would have no more than a negligible impact on the affected marine mammal stocks; and would not have an unmitigable adverse impact on the availability of species or stocks for subsistence uses. Authorization NMFS has issued a 1–year IHA to SIO for the take, by harassment, of small numbers of marine mammals incidental to conducting a low-intensity PO 00000 Frm 00022 Fmt 4703 Sfmt 4703 14853 oceanographic seismic survey in the ETP. Dated: March 9, 2006. Donna Wieting, Deputy Director, Office of Protected Resources, National Marine Fisheries Service. [FR Doc. 06–2884 Filed 3–23–06; 8:45 am] BILLING CODE 3510–22–C DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration [I.D. 022706B] Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Rocket Launches at Vandenberg Air Force Base, CA National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Commerce. ACTION: Notice; issuance of a Letter of Authorization. AGENCY: SUMMARY: In accordance with the Marine Mammal Protection Act (MMPA) and implementing regulations, notification is hereby given that a 1– year letter of authorization (LOA) has been issued to the 30th Space Wing, U.S. Air Force, to harass seals and sea lions incidental to rocket and missile launches on Vandenberg Air Force Base (VAFB), California. DATES: Effective March 17, 2006, through March 16, 2007. ADDRESSES: The LOA and supporting documentation are available by writing to Steve Leathery, Chief, Permits, Conservation, and Education Division, Office of Protected Resources, National Marine Fisheries Service, 1315 EastWest Highway, Silver Spring, MD 20910–3225, by telephoning one of the contacts listed here (see FOR FURTHER INFORMATION CONTACT), or online at: https://www.nmfs.noaa.gov/pr/permits/ incidental.htm. Documents cited in this notice may be viewed, by appointment, during regular business hours, at the aforementioned address and at the Southwest Region, NMFS, 501 West Ocean Boulevard, Suite 4200, Long Beach, CA 90802. FOR FURTHER INFORMATION CONTACT: Jolie Harrison, Office of Protected Resources, NMFS, (301) 713–2289, or Monica DeAngelis, NMFS, (562) 980–4023. SUPPLEMENTARY INFORMATION: Background Section 101(a)(5)(A) of the MMPA (16 U.S.C. 1361 et seq.) directs the National Marine Fisheries Service (NMFS) to E:\FR\FM\24MRN1.SGM 24MRN1

Agencies

[Federal Register Volume 71, Number 57 (Friday, March 24, 2006)]
[Notices]
[Pages 14839-14853]
From the Federal Register Online via the Government Printing Office [www.gpo.gov]
[FR Doc No: 06-2884]


-----------------------------------------------------------------------

DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration

[I.D. 112505C]


Small Takes of Marine Mammals Incidental to Specified Activities; 
Marine Geophysical Survey in the Eastern Tropical Pacific

AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and 
Atmospheric Administration (NOAA), Commerce.

ACTION: Notice; issuance of incidental harassment authorization

-----------------------------------------------------------------------

SUMMARY: In accordance with the provisions of the Marine Mammal 
Protection Act (MMPA) as amended, notification is hereby given that 
NMFS has issued an Incidental Harassment Authorization (IHA) to the 
Scripps Institution of Oceanography (SIO) to take marine mammals by 
Level B harassment incidental to conducting a marine seismic survey in 
the Eastern Tropical Pacific Ocean (ETP).

DATES: Effective from March 10, 2006, through March 9, 2007.

ADDRESSES: A copy of the IHA and the application are available by 
writing to Steve Leathery, Chief, Permits, Conservation, and Education 
Division, Office of Protected Resources, National Marine Fisheries 
Service, 1315 East-West Highway, Silver Spring, MD 20910-3225, or by 
telephoning the contact listed here. A copy of the application 
containing a list of references used in this document may be obtained 
by writing to this address, by telephoning the contact listed here (see 
FOR FURTHER INFORMATION CONTACT) or online at: https://
www.nmfs.noaa.gov/pr/permits/incidental.htm. Documents cited in this 
notice may be viewed, by appointment, during regular business hours, at 
the aforementioned address.

FOR FURTHER INFORMATION CONTACT: Jolie Harrison, Office of Protected 
Resources, NMFS, (301) 713-2289, ext 166.

SUPPLEMENTARY INFORMATION:

Background

    Sections 101(a)(5)(A) and (D) of the MMPA (16 U.S.C. 1361 et seq.) 
direct the Secretary of Commerce to allow, upon request, the 
incidental, but not intentional, taking of marine mammals by U.S. 
citizens who engage in a specified activity (other than commercial 
fishing) within a specified geographical region if certain findings are 
made and either regulations are issued or, if the taking is limited to 
harassment, a notice of a proposed authorization is provided to the 
public for review.
    Authorization shall be granted if NMFS finds that the taking will 
have a negligible impact on the species or stock(s), will not have an 
unmitigable adverse impact on the availability of the species or 
stock(s) for subsistence uses, and that the permissible methods of 
taking and requirements pertaining to the mitigation, monitoring and 
reporting of such takings are set forth. NMFS has defined ``negligible 
impact'' in 50 CFR 216.103 as ''...an impact resulting from the 
specified activity that cannot be reasonably expected to, and is not 
reasonably likely to, adversely affect the species or stock through 
effects on annual rates of recruitment or survival.
    Section 101(a)(5)(D) of the MMPA established an expedited process 
by which citizens of the United States can

[[Page 14840]]

apply for an authorization to incidentally take small numbers of marine 
mammals by harassment. Except with respect to certain activities not 
pertinent here, the MMPA defines ``harassment'' as:

    any act of pursuit, torment, or annoyance which (i) has the 
potential to injure a marine mammal or marine mammal stock in the 
wild [Level A harassment]; or (ii) has the potential to disturb a 
marine mammal or marine mammal stock in the wild by causing 
disruption of behavioral patterns, including, but not limited to, 
migration, breathing, nursing, breeding, feeding, or sheltering 
[Level B harassment].

    Section 101(a)(5)(D) establishes a 45-day time limit for NMFS 
review of an application followed by a 30-day public notice and comment 
period on any proposed authorizations for the incidental harassment of 
marine mammals. Within 45 days of the close of the comment period, NMFS 
must either issue or deny issuance of the authorization.

Summary of Request

    On October 2, 2005, NMFS received an application from SIO for the 
taking, by harassment, of several species of marine mammals incidental 
to conducting, with research funding from the National Science 
Foundation (NSF), a marine seismic survey in the ETP during March-
April, 2006. The purpose of the seismic survey is to collect the site 
survey data for a future Integrated Ocean Drilling Program (IODP) 
drilling transect (not currently scheduled). The proposed drilling 
program will study the structure of the Cenozoic equatorial Pacific by 
drilling an age-transect flowline along the position of the paleo-
equator in the Pacific, targeting selected time-slices of interest 
where calcareous sediments have been preserved best. The seismic survey 
and respective drilling transect will span the early Eocene to Miocene 
equatorial Pacific. Recovered sediments will: (1) contribute towards 
resolving questions of how and why paleo-productivity of the equatorial 
Pacific changed over time, (2) provide rare material to validate and 
extend the astronomical calibration of the geological time scale for 
the Cenozoic, (3) determine sea-surface and benthic temperature and 
nutrient profiles and gradients, (4) provide important information 
about the detailed nature of calcium carbonate dissolution (CCD) and 
changes in the CCD, (5) enhance understanding of bio- and 
magnetostratigraphic datums at the equator, as well as (6) provide 
information about rapid biological evolution and turn-over during times 
of climatic stress. As SIO's strategy also implies a paleo-depth 
transect, they also hope to improve knowledge about the reorganization 
of water masses as a function of depth and time. Last, SIO intends to 
make use of the high level of correlation between tropical sediment 
sections and seismic stratigraphy collected on the survey cruise to 
develop a more complete model of equatorial circulation and 
sedimentation.

Description of the Activity

    The seismic survey will utilize one source vessel, the R/V Roger 
Revelle, which is scheduled to depart from Papeete, French Polynesia, 
on or about March 03, 2006, and will return to port in Honolulu, Hawaii 
on or about April 01, 2006. The exact dates of the activity may vary by 
a few days because of weather conditions, repositioning, streamer 
operations and adjustments, airgun deployment, or the need to repeat 
some lines if data quality is substandard. The overall area within 
which the seismic survey will occur is located between approx. 20[deg] 
N and 10[deg] S, and between approx. 100[deg] and 155[deg] W. The 
survey will be conducted entirely in international waters.
    The R/V Roger Revelle will deploy a pair of low-energy Generator-
Injector Guns (GI guns) as an energy source (each with a discharge 
volume of 45 in3), plus a 450 m-long (1476 ft-long), 48-channel, towed 
hydrophone streamer. As the GI guns are towed along the survey lines, 
the receiving system will acquire the returning acoustic signals. The 
program will consist of approximately (approx.) 8,900 km (4,800 nm) of 
survey, including turns. Water depths within the study area are 3,900 
to 5,200 m (12,800 to 16,700 ft). The seismic source will be operated 
along the single track line en route between piston-coring sites, where 
seismic data will be acquired on a small scale grid and cores will be 
collected. There will be additional operations associated with 
equipment testing, start-up, line changes, and repeat coverage of any 
areas where initial data quality is sub-standard. The vessel will be 
self-contained and the crew will live aboard the vessel for the entire 
cruise.
    In addition to the operations of the pair of GI guns, a Kongsberg 
Simrad EM-120 multibeam echosounder, a 3.5 kHz sub-bottom profiler, and 
passive geophysical sensors (gravimeter and magnetometer) will be 
operated continuously throughout the entire cruise.

Vessel Specifications

    The R/V Roger Revelle is owned by the U.S. Navy Office of Naval 
Research (ONR) and operated by SIO under a charter agreement. The R/V 
Roger Revelle has a length of 83 m (273 ft), a beam of 16 m (53 ft), 
and a maximum draft of 5.2 m (17 ft). The ship is powered by two 3000 
hp Propulsion General Electric motors and a 1180 hp retracting 
azimuthing bow thruster. Typical operation speed of approx. 13 km/h (7 
knots) is used during seismic acquisition. When not towing seismic 
survey gear, the R/V Roger Revelle cruises at 22 km/h (12 knots) and 
has a maximum speed of 28 km/h (15 knots). It has a normal operating 
range of approx. 27780 km (15,000 nm).
    The R/V Roger Revelle holds 22 crew plus 37 scientists and will 
also serve as the platform from which marine mammal observers will 
watch for marine mammals before and during GI gun operations.

Seismic Source Description

    The R/V Roger Revelle will tow the pair of GI guns and a streamer 
containing hydrophones along predetermined lines. Seismic pulses will 
be emitted at intervals of 6-10 seconds. At a speed of 7 knots (13 km/
h), the 6-10-s spacing corresponds to a shot interval of approx. 22-36 
m (71-118 ft).
    The generator chamber of each GI gun, the one responsible for 
introducing the sound pulse into the water, is 45 in\3\(737 cm\3\). The 
larger (105 in\3\ (1721 cm\3\)) injector chamber injects air into the 
previously-generated bubble to maintain its shape, and does not 
introduce more sound into the water. The two 45 in\3\ (737 cm\3\) GI 
guns will be towed 8 m (26 ft) apart side by side, 21 m (69 ft) behind 
the R/V Roger Revelle, at a depth of 2 m (7 ft). Specifications for the 
GI guns are as follows.
    The two GI guns discharge a total volume of approx. 90 in\3\ (1475 
cm\3\) and the dominant frequency components are 1-188 Hz. The source 
output (downward) is 7.2 bar-m (237 dB re 1 microPascal-m) at 0-peak 
(0-pk) and 14.0 bar-m (243 dB re 1 microPascal-m) at peak-peak (pk-pk). 
The nominal downward-directed source levels indicated above do not 
represent actual sound levels that can be measured at any location in 
the water. Rather, they represent the level that would be found 1 m 
from a hypothetical point source emitting the same total amount of 
sound as is emitted by the combined GI guns. The actual received level 
at any location in the water near the GI guns will not exceed the 
source level of the strongest individual source. In this case, that 
will be about 231 dB re 1 microPa-m peak, or 237 dB re 1 microPa-m pk-
pk. Actual

[[Page 14841]]

levels experienced by any organism more than 1 m from either GI gun 
will be significantly lower.
    A further consideration is that the rms (root mean square) received 
levels that are used as impact criteria for marine mammals are not 
directly comparable to the peak or pk-pk values normally used to 
characterize source levels of seismic sources. The measurement units 
used to describe seismic sources, peak or pk-pk decibels, are always 
higher than the rms decibels referred to in biological literature. A 
measured received level of 160 decibels rms in the far field would 
typically correspond to a peak measurement of about 170 to 172 dB, and 
to a peak-to-peak measurement of about 176 to 178 decibels, as measured 
for the same pulse received at the same location (Greene, 1997; 
McCauley et al., 1998, 2000a). The precise difference between rms and 
peak or pk-pk values depends on the frequency content and duration of 
the pulse, among other factors. However, the rms level is always lower 
than the peak or pk-pk level for a seismic source.
    NMFS has established the following acoustic criteria for non-
explosive sounds: Level A Harassment (PTS) - 180 dB re 1 microPa-m 
(rms) for cetaceans and 190 dB re 1 microPa-m (rms) for pinnipeds; and 
Level B Harassment (TTS) - 160 dB re 1 microPa-m (rms) for all marine 
mammals. NMFS uses the isopleths of these sound levels to estimate 
where Level A Harassment and Level B Harassment take of marine mammals 
occurs and to establish safety zones within which monitoring or 
mitigation measures must be applied.
    Received sound levels have been modeled by the Lamont-Doherty Earth 
Observatory (L-DEO) for two 105 in\3\ (1721 cm\3\) GI guns in relation 
to distance and direction from the source. The model does not allow for 
bottom interactions, and is most directly applicable to deep water 
(such as will be ensonified in this survey). Based on the modeling, 
estimates of the maximum distances from the GI guns where sound levels 
of 160, 180, and 190 dB re 1 microPa (rms) are predicted to be received 
are as follows: 160 dB out to 510 m (1673 ft); 180 dB out to 54 m (177 
ft); and 190 dB out to 17 m (56 ft). Because the model results are for 
the larger 105 in\3\ (1721 cm\3\) GI guns, those distances are 
overestimates of the distances for the two 45 in\3\ (737 cm\3\) GI guns 
used in this study and, therefore, are considered conservative.
    Empirical data concerning the 160- and 180-dB distances have been 
acquired based on measurements during an acoustic verification study 
conducted by L-DEO in the northern Gulf of Mexico from 27 May to 3 June 
2003 (Tolstoy et al., 2004). Although the results are limited, the data 
showed that radii around the GI guns where the received level would be 
180 dB re 1 microPa (rms) vary with water depth. Similar depth-related 
variation is likely in the 190 dB distances applicable to pinnipeds. 
The empirical data indicate that, for deep water (>1,000 m (3,281 ft)), 
the L-DEO model tends to overestimate the received sound levels at a 
given distance (Tolstoy et al., 2004). However, to be precautionary 
pending acquisition of additional empirical data, the safety radii 
during seismic operations in the deep water of this study will be the 
values predicted by L-DEO's model. Therefore, the assumed 180- and 190-
dB radii are 54 m (177 ft) and 17 m (56 ft), respectively.

Bathymetric Sonar

    Along with the GI-gun operations, two additional acoustical data 
acquisition systems will be operated during much or all of the cruise. 
One of the instruments used to map the ocean floor will be the 
Kongsberg Simrad EM-120 multi-beam echosounder, which is commonly 
operated simultaneously with GI guns.
    The nominal transmit frequency of the Kongsberg Simrad EM-120 is 12 
kHz with an angular coverage sector of up to 150 degrees and 191 beams 
per ping. The transmit fan is split into several individual sectors 
with independent active steering according to vessel roll, pitch and 
yaw. This method places all soundings on a ``best fit'' to a line 
perpendicular to the survey line, thus ensuring a uniform sampling of 
the bottom and 100 percent coverage. The sectors are frequency coded 
(11.25 to 12.60 kHz), and are transmitted sequentially at each ping. 
Pulse length and range sampling rate are variable with depth for best 
resolution, and in shallow waters due care is taken to the near field 
effects. The ping rate is primarily limited by round trip travel time 
in water, up to a ping rate of 5 Hz in shallow water. A pulse length of 
15 ms is typically used in deep water. The transmit fan is split into 
nine different sectors transmitted sequentially within the same ping. 
Using electronic steering, the sectors are individually tilted 
alongtrack to take into account the vessel's current roll, pitch and 
yaw with respect to the survey line heading. The manufacturer provided 
information to show relevant parameters for their multibeam 
echosounders. For the model EM-120, with a one degree beamwidth (BW), 
the pressure levels at a set of fixed distances are as follows: 211 dB 
at 1 m (2.9 ft); 205 dB at 10 m (29 ft); 195 dB at 100 m (287 ft); and 
180 dB at 1,000 m (3,280 ft). Note that the pressure levels are worst 
case, i.e. on-axis and with no defocusing. For purposes of this survey 
the on-axis direction is vertical from the ship to the sea floor. The 
pressure level for sound traveling off-axis will fall rapidly for a 
narrow beam (alongtrack for a multibeam echosounder). The level will 
reduce by 20 dB at a little more than twice the beamwidth, which is 1 
degree for the system installed on R/V Roger Revelle. Acrosstrack, the 
pressure level will typically reduce by 20 dB for angles of more than 
75-80[deg] from the vertical. For multibeams which use sectorized 
transmission, such as most current Kongsberg Simrad systems, beam 
defocusing is applied in the central sector(s) in shallow waters which 
results in a more rapid reduction in the pressure level. There will be 
a similar reduction for the outer sectors in flat arrays, as used with 
the EM-120, due to the virtual shortening of the array width in these 
directions.
    The pressure level at 1 m (2.9 ft) is less for the Kongsberg Simrad 
EM-120 multibeam echosounder (211 dB) than it is for the pair of GI 
guns (237 dB) used in this study. However, due to the very narrow (1o) 
directivity of the beam, the distance from the transducer at which 180 
dB re 1 microPa-m is encountered is larger (1,000 m (3,280 ft)) than 
that calculated for the GI guns (54 m (177 ft)). Conversely, the 
narrowness of the beam, the short pulse length, the ping rate, and the 
ship's speed during the survey greatly lessens the probability of 
exposing an animal under the ship during one ping of the multibeam 
echosounder, much less for multiple pings. Since the 1o beam of sound 
is directed downward from transducers permanently mounted in the ship's 
hull, the horizontal safety radius of 54 m (177 ft) for 180 dB 
established for the GI guns will encompass the entire area ensonified 
by the multibeam echosounder, as well, and marine mammals takes by the 
echosounder will be avoided through the mitigation measures discussed 
later.

Sub-bottom Profiler

    A sub-bottom profiler will also be used simultaneously with the GI 
guns to map the ocean floor. The Knudsen Engineering Model 320BR sub-
bottom profiler is a dual frequency transceiver designed to operate at 
3.5 and/or 12 kHz. It is used in conjunction with the multibeam 
echosounder to provide data about the sedimentary features which occur 
below the sea floor. The maximum power output of the 320BR is 10 
kilowatts for the 3.5 kHz section and

[[Page 14842]]

2 kilowatts for the 12 kHz section (the 12 kHz section is seldom used 
in survey mode on R/V Roger Revelle due to overlap with the operating 
frequency of the Kongsberg Simrad EM-120 multibeam).
    Using the Sonar Equations and assuming 100 percent efficiency in 
the system, the source level for the 320BR is calculated to be 211 dB 
re 1 microPa-m. In practice, the system is rarely operated above 80 
percent power level. The pulse length for the 3.5 kHz section of the 
320BR ranges from 1.5 to 24 ms, and is controlled automatically by the 
system.
    Since the maximum attainable source level of the 320BR sub-bottom 
profiler (211 dB re 1 microPa-m) is less than that of the pair of GI 
guns (237 dB re 1 microPa-m) to be used in this study and the sound 
produced by the sub-bottom profiler is directed downward from 
transducers permanently mounted in the ship's hull, the 54 m (177 ft) 
horizontal safety radius established for the GI guns will encompass the 
entire area ensonified by the multibeam echosounder, and marine mammals 
takes by the echosounder will be avoided through the mitigation 
measures discussed later.

Characteristics of Airgun Pulses

    Discussion of the characteristics of airgun pulses has been 
provided in the application and in previous Federal Register notices 
(see 69 FR 31792 (June 7, 2004) or 69 FR 34996 (June 23, 2004)). 
Reviewers are referred to those documents for additional information.

Comments and Responses

    A notice of receipt of the SIO application and proposed IHA was 
published in the Federal Register on January 20, 2006 (71 FR 3260). 
During the comment period, NMFS received comments from the Marine 
Mammal Commission (MMC).
    Comment 1: The MMC states that because the applicant is requesting 
authority to take marine mammals by harassment only, NMFS should 
require that operations be suspended immediately if a dead or seriously 
injured marine mammals is found in the vicinity of the operations and 
the death or injury could have occurred incidental to conducting the 
seismic survey. The MMC further recommends that any such suspension 
should remain in place until NMFS has (1) reviewed the situation and 
determined that further mortalities or serious injuries are unlikely to 
occur, or (2) issued regulations authorizing such takes under section 
101(a)(5)(A) of the MMPA.
    Response: NMFS concurs with MMC's recommendations and has included 
a requirement to this effect in the IHA.
    Comment 2: The MMC recommends that to improve the ability to 
observe marine mammals, NMFS should require that SIO not operate 
airguns after dark.
    Response: NMFS has included the following requirement in the IHA:
    (SIO must) - Visually observe the entire extent of the safety 
radius (190 dB for pinnipeds, 180 dB for cetaceans) using two marine 
mammal observers, at least 30 minutes prior to starting the airguns 
during the day or at night. If for any reason the entire radius 
cannot be seen for the entire 30 minutes (i.e. rough seas, fog, 
darkness), or if marine mammals are near, approaching, or in the 
safety radius, the airguns may not be started up. If one airgun is 
already running, SIO may start the second gun without observing the 
entire safety radius for 30 minutes prior, provided no marine 
mammals are known to be near the safety radius.
    SIO is not authorized to start up the airguns at night unless the 
MMOs can clearly see the entire safety zone for 30 minutes prior to 
ramp-up. Once the airguns are operating, NMFS believes that marine 
mammals will show some level of avoidance, either of the airguns or the 
approaching vessel, and stay out of the safety radius (54 m (177 ft) at 
180 dB). If marine mammals do enter the safety zone while airguns are 
operating at night, however, observers should be able to see them using 
NVDs and shut down the airguns immediately.
    Comment 3: The MMC states that they would be interested in learning 
from NMFS or SIO what the probability is that an injured or dead beaked 
whale or other small cetacean would be sighted from a ship running 
transects through an area or retracing recently run transect lines.
    Response: Because of the cryptic nature of beaked whale behavior 
and the movement of the R/V Roger Revelle during the seismic survey, it 
is unlikely that a distressed beaked whale or small cetacean would be 
sighted from a ship running transects through an area. If a ship were 
to to retrace its recently run transects, the chance of sighting a 
distressed animal would increase. However, NMFS believes that it is 
highly unlikely that an marine mammals will be exposed to levels of 
sound likely to result in Level A Harassment or mortality given the 
very small safety radii (54 m (177 ft) for 180 dB) around the R/V Roger 
Revelle's small airguns and the likely effectiveness of the mitigation 
measures.

Description of Habitat and Marine Mammals Affected by the Activity

    A detailed description of the R/V Roger Revelle's track from 
Papeete, French Polynesia to Honolulu, Hawaii and the associated marine 
mammals can be found in the SIO application and a number of documents 
referenced in the SIO application. In the seismic survey region during 
the late winter and early spring months of 2006, 29 cetacean species 
are likely to occur, including dolphins, small whales, tooth and baleen 
whales. Several of these species are listed under the U.S. Endangered 
Species Act (ESA) as endangered, including sperm whales, humpback 
whales, and blue whales; fin and sei whales may also occur in the 
proposed seismic program area. Information on the distribution of these 
and other species inhabiting the study area and the wider ETP has been 
summarized by several studies (e.g., Polacheck, 1987; Wade and 
Gerrodette, 1993; Ferguson and Barlow, 2001; Ferguson and Barlow 2003). 
Four species of pinnipeds (Guadelupe fur seal, northern elephant seal, 
South American sea lion, and California sea lion) could potentially be 
encountered during the proposed survey. However, impacts to pinnipeds 
are not anticipated due to the decreased likelihood of encountering 
them in very deep water, the relatively small area to be ensonified, 
and the likely effectiveness of the proposed mitigation measures in 
such a small area. The species that may be impacted by this activity 
and their estimated abundances in the ETP are listed in Table 1.
BILLING CODE 3510-22-S

[[Page 14843]]

[GRAPHIC] [TIFF OMITTED] TN24MR06.009

    The marine mammal populations in the seismic survey area have not 
been studied in detail, but the region is included in the greater ETP, 
where several studies of marine mammal distribution and abundance have 
been conducted. The ETP is thought to be a biologically productive area 
(Wyrtki, 1966), and is known to support a variety of cetacean species 
(Au and Perryman, 1985).
    The center of the ETP is characterized by warm, tropical waters 
(Reilly and Fiedler 1994). Cooler water is found along the equator and 
the eastern boundary current waters of Peru and California; this cool 
water is brought to the surface by upwelling (Reilly and Fiedler, 
1994). The two different habitats are generally thought to support 
different cetacean species (Au and Perryman, 1985). Au et al. (1987) 
noted an association between cetaceans and the equatorial surface water 
masses in the ETP, which are thought to be highly productive. Increased 
biological productivity has also been observed due to upwelling at the 
Costa Rica Dome (Wyrtki, 1964; Fiedler et al.,1991).

[[Page 14844]]

Several studies have correlated these zones of high productivity with 
concentrations of cetaceans (Volkov and Moroz, 1977; Reilly and Thayer, 
1990; Wade and Gerrodette, 1993). The ETP is also characterized by a 
shallow thermocline (Wyrtki, 1966) and a pronounced oxygen minimum 
layer (Perrin et al.,1976; Au and Perryman, 1985). These features are 
thought to result in an ``oxythermal floor'' 20-100 m below the 
surface, which may cause large groups of cetaceans to concentrate in 
the warm surface waters (Scott and Cattanach, 1998).
    In the application, many references are made to the occurrence of 
cetaceans in the Galapagos; however, for some species, abundance in the 
Galapagos can be quite different from that in the wider ETP (Smith and 
Whitehead, 1999). In addition, references to surveys in the ETP are 
also made. For example, Polacheck (1987) summarized cetacean abundance 
in the ETP for 1977-1980, although the season when surveys were carried 
out was not given. Polacheck (1987) calculated encounter rates as the 
number of schools sighted per 1,000 mi (1,609 km) surveyed. His 
encounter rates do not include any correction factors to account for 
changes in detectability of species with distance from the survey track 
line or the diving behavior of the animals. Wade and Gerrodette (1993) 
also calculated encounter rates for cetaceans (number of schools per 
1,000 km surveyed) in the ETP, based on surveys between late July and 
early December from 1986 to 1990. Their encounter rates include a 
correction factor to account for detectability bias but do not include 
a correction factor to account for availability bias. Ferguson and 
Barlow (2001) calculated cetacean densities in the ETP based on summer/
fall research vessel surveys in 1986-1996. Their densities are 
corrected for both detectability and availability biases. Ferguson and 
Barlow (2003) followed their 2001 report up with an addendum that 
estimated density and abundance with the respective coefficients of 
variation, whereas before some species and groups were pooled. Although 
species encounter rates and densities are generally given for summer/
fall, the seismic survey will be conducted in winter/spring 2006.

Potential Effects on Marine Mammals

Summary of Potential Effects of GI Gun Sounds

    The effects of sounds from GI guns might include one or more of the 
following: tolerance, masking of natural sounds, behavioral 
disturbance, and, at least in theory, temporary or permanent hearing 
impairment (Richardson et al., 1995). Given the small size of the GI 
guns planned for the present project, effects are anticipated to be 
considerably less than would be the case with a large array of airguns. 
Both NMFS and SIO believe it very unlikely that there will be any cases 
of temporary or, especially, permanent hearing impairment. Also, 
behavioral disturbance is expected to be limited to animals that are at 
distances less than 510 m (1673 ft). A further review of potential 
impacts of airgun sounds on marine mammals is included in Appendix A of 
SIO's application.
Tolerance
    Numerous studies have shown that pulsed sounds from airguns are 
often readily detectable in the water at distances of many kilometers. 
However, it should be noted that most of the measurements of airgun 
sounds that have been reported concerned sounds from larger arrays of 
airguns, whose sounds would be detectable farther away than those 
planned for use in the present project.
    Numerous studies have shown that marine mammals at distances more 
than a few kilometers from operating seismic vessels often show no 
apparent response. That is often true even in cases when the pulsed 
sounds must be readily audible to the animals based on measured 
received levels and the hearing sensitivity of that mammal group. 
Although various baleen whales, toothed whales, and pinnipeds have been 
shown to react behaviorally to airgun pulses under some conditions, at 
other times mammals of all three types have shown no overt reactions. 
In general, pinnipeds and small odontocetes seem to be more tolerant of 
exposure to airgun pulses than are baleen whales. Given the relatively 
small and low-energy GI gun source planned for use in this project, 
mammals are expected to tolerate being closer to this source than might 
be the case for a larger airgun source typical of most seismic surveys.
Masking
    Masking effects (effects that interfere with an animals ability to 
detect a sound even though the sound is above its absolute hearing 
threshold) of pulsed sounds (even from large arrays of airguns) on 
marine mammal calls and other natural sounds are expected to be 
limited, although there are very few specific data on this. Some whales 
are known to continue calling in the presence of seismic pulses. Their 
calls can be heard between the seismic pulses (e.g., Richardson et al., 
1986; McDonald et al., 1995; Greene et al., 1999). Although there has 
been one report that sperm whales cease calling when exposed to pulses 
from a very distant seismic ship (Bowles et al., 1994), a recent study 
reports that sperm whales off northern Norway continued calling in the 
presence of seismic pulses (Madsen et al., 2002c). Given the small 
source planned for use here, there is even less potential for masking 
of baleen or sperm whale calls during the present study than in most 
seismic surveys. Masking effects of seismic pulses are expected to be 
negligible in the case of the smaller odontocete cetaceans, given the 
intermittent nature of seismic pulses and the relatively low source 
level of the GI guns to be used here. Also, the sounds important to 
small odontocetes are predominantly at much higher frequencies than are 
airgun sounds. Further information on masking effects may be found in 
Appendix A(d) of SIO's application.
Disturbance Reactions
    Disturbance includes a variety of effects, including subtle changes 
in behavior, more conspicuous changes in activities, and displacement. 
Disturbance is one of the main concerns in this project. In the 
terminology of the 1994 amendments to the MMPA, seismic noise could 
cause ``Level B'' harassment of certain marine mammals. Level B 
harassment is defined as ``any act of pursuit, torment, or annoyance 
which has the potential to disturb a marine mammal or marine mammal 
stock in the wild by causing disruption of behavioral patterns, 
including, but not limited to, migration, breathing, nursing, breeding, 
feeding, or sheltering.''
    Reactions to sound, if any, depend on species, state of maturity, 
experience, current activity, reproductive state, time of day, and many 
other factors. If a marine mammal does react to an underwater sound by 
changing its behavior or moving a small distance, it is difficult to 
know if the effects are biologically significant, i.e., if they rise to 
the level of ``disruption of behavioral patterns''. If a sound source 
displaces marine mammals from an important feeding or breeding area for 
a prolonged period, it is more likely to be a disruption of a 
behavioral pattern. Given the many uncertainties in predicting the 
quantity and types of impacts of noise on marine mammals, it is NMFS' 
practice to estimate how many mammals will be present within a 
particular distance of sound-generating activities (or exposed to a 
particular level of sound) and assume that all of

[[Page 14845]]

the animals within that area may have been harassed.
    The sound criteria used to estimate how many marine mammals might 
be disturbed to some biologically-important degree by a seismic program 
are based on behavioral observations during studies of several species. 
However, information is lacking for many species. Detailed studies have 
been done on humpback, gray, and bowhead whales, and on ringed seals. 
Less detailed data are available for some other species of baleen 
whales, sperm whales, and small toothed whales. Most of those studies 
have concerned reactions to much larger airgun sources than planned for 
use in the present project. Thus, effects are expected to be limited to 
considerably smaller distances and shorter periods of exposure in the 
present project than in most of the previous work concerning marine 
mammal reactions to airguns.
    Baleen Whales - Baleen whales generally tend to avoid operating 
airguns, but avoidance radii are quite variable. Whales are often 
reported to show no overt reactions to pulses from large arrays of 
airguns at distances beyond a few kilometers, even though the airgun 
pulses remain well above ambient noise levels out to much longer 
distances. However, as reviewed in Appendix A of SIO's application, 
baleen whales exposed to strong noise pulses from airguns often react 
by deviating from their normal migration route and/or interrupting 
their feeding and moving away. In the case of the migrating gray and 
bowhead whales, the observed changes in behavior appeared to be of 
little or no biological consequence to the animals. They simply avoided 
the sound source by displacing their migration route to varying 
degrees, but within the natural boundaries of the migration corridors.
    Studies of gray, bowhead, and humpback whales have determined that 
received levels of pulses in the 160-170 dB re 1 microPa (rms) range 
seem to cause obvious avoidance behavior in a substantial fraction of 
the animals exposed. In many areas, seismic pulses from large arrays of 
airguns diminish to those levels at distances ranging from 4.5-14.5 km 
(2.4-7.8 nm) from the source. A substantial proportion of the baleen 
whales within those distances may show avoidance or other strong 
disturbance reactions to the airgun array. Subtle behavioral changes 
sometimes become evident at somewhat lower received levels, and recent 
studies reviewed in the application have shown that some species of 
baleen whales, notably bowheads and humpbacks, at times show strong 
avoidance at received levels lower than 160-170 dB re 1 microPa (rms). 
Reaction distances would be considerably smaller during the present 
project, in which the 160 dB radius is predicted to be approx. 0.5 km 
(0.27 nm), as compared with several kilometers when a large array of 
airguns is operating.
    Data on short-term reactions (or lack of reactions) of cetaceans to 
impulsive noises do not necessarily provide information about long-term 
effects. It is not known whether impulsive noises affect reproductive 
rate or distribution and habitat use in subsequent days or years. 
However, gray whales continued to migrate annually along the west coast 
of North America despite intermittent seismic exploration and much ship 
traffic in that area for decades (Malme et al., 1984). Bowhead whales 
continued to travel to the eastern Beaufort Sea each summer despite 
seismic exploration in their summer and autumn range for many years 
(Richardson et al., 1987). In any event, the brief exposures to sound 
pulses from the present small GI gun source are highly unlikely to 
result in prolonged effects in baleen whales.
    Toothed Whales - Little systematic information is available about 
reactions of toothed whales to noise pulses. Few studies similar to the 
more extensive baleen whale/seismic pulse work summarized above have 
been reported for toothed whales. However, systematic work on sperm 
whales is underway.
    Seismic operators sometimes see dolphins and other small toothed 
whales near operating airgun arrays, but in general there seems to be a 
tendency for most delphinids to show some limited avoidance of seismic 
vessels operating large airgun systems. However, some dolphins seem to 
be attracted to the seismic vessel and floats, and some ride the bow 
wave of the seismic vessel even when large arrays of airguns are 
firing. Nonetheless, there have been indications that small toothed 
whales sometimes tend to head away, or to maintain a somewhat greater 
distance from the vessel, when a large array of airguns is operating 
than when it is silent e.g., Goold, 1996a; Calambokidis and Osmek, 
1998; Stone, 2003). Similarly, captive bottlenose dolphins and beluga 
whales exhibit changes in behavior when exposed to strong pulsed sounds 
similar in duration to those typically used in seismic surveys 
(Finneran et al., 2000, 2002). However, the animals tolerated high 
received levels of sound (pk-pk level >200 dB re 1 microPa) before 
exhibiting aversive behaviors. With the presently-planned pair of GI 
guns, such levels would only be found within a few meters of the 
source.
    There are no specific data on the behavioral reactions of beaked 
whales to seismic surveys. However, most beaked whales tend to avoid 
approaching vessels of other types (e.g., Kasuya, 1986; Wursig et al., 
1998). The Joint Interim Report on the Bahamas Marine Mammal Stranding 
Event of 15-16 March (U.S. Department of Commerce/U.S. Department of 
the Navy, 2001) reported that intense acoustic signals were the only 
possible contributory cause to the strandings and cause of the lesions 
seen in the Ziphius cavirostris and Mesoplodon densirostris that 
stranded in the Bahamas that could not be ruled out. The U.S. Navy was 
conducting mid-frequency sonar at a time that can be correlated with 
the stranding of these animals. Other mid-frequency sonar exercises 
have been correlated in time with beaked whale and other cetacean 
strandings (see Appendix A of SIO's application), however for the many 
of these, the in-depth analysis of ear and other tissues necessary to 
completely rule out other possible causes has not been conducted. 
Whether beaked whales would ever react similarly to seismic surveys is 
unknown. Seismic survey sounds are quite different from those of the 
sonars in operation during the above-cited incidents. There was a 
stranding of Cuvier's beaked whales in the Gulf of California (Mexico) 
in September 2002 when the L-DEO vessel Maurice Ewing was operating a 
large array of airguns (20 guns; 8,490 in\3\ (139,126 cm\3\)) in the 
general area. This might be a first indication that seismic surveys can 
have effects similar to those attributed to naval sonars. However, the 
evidence with respect to that seismic survey and beaked whale stranding 
is inconclusive.
    All three species of sperm whales have been reported to show 
avoidance reactions to standard vessels not emitting airgun sounds, so 
it is to be expected that they would also tend to avoid an operating 
seismic survey vessel. There were some limited early observations 
suggesting that sperm whales in the Southern Ocean and Gulf of Mexico 
might be fairly sensitive to airgun sounds from distant seismic 
surveys. However, more extensive data from recent studies in the North 
Atlantic suggest that sperm whales in those areas show little evidence 
of avoidance or behavioral disruption in the presence of operating 
seismic vessels, McCall Howard 1999; Madsen et al., 2002c; Stone, 
2003). An experimental study of sperm whale reactions to seismic 
surveys in the Gulf of Mexico has been done recently (Tyack et al., 
2003).

[[Page 14846]]

    Odontocete reactions to large arrays of airguns are variable and, 
at least for small odontocetes, seem to be confined to a smaller radius 
than has been observed for mysticetes. Thus, behavioral reactions of 
odontocetes to the small GI gun source to be used here are expected to 
be very localized, probably to distances <0.5 km (<0.3 mi).
    Pinnipeds - Pinnipeds are not likely to show a strong avoidance 
reaction to the small GI gun source that will be used. Visual 
monitoring from seismic vessels, usually employing larger sources, has 
shown only slight (if any) avoidance of airguns by pinnipeds, and only 
slight (if any) changes in behavior. Those studies show that pinnipeds 
frequently do not avoid the area within a few hundred meters of 
operating airgun arrays, even for arrays much larger than the one to be 
used here (e.g., Harris et al., 2001). However, initial telemetry work 
suggests that avoidance and other behavioral reactions to small airgun 
sources may be stronger than evident to date from visual studies of 
pinniped reactions to airguns (Thompson et al., 1998). Even if 
reactions of the species occurring in the present study area are as 
strong as those evident in the telemetry study, reactions are expected 
to be confined to relatively small distances from the vessel (and, 
therefore, avoidable through implementation of required mitigation 
measures) and durations, with no long-term effects on pinnipeds.
    Additional details on the behavioral reactions (or the lack 
thereof) by all types of marine mammals to seismic vessels can be found 
in Appendix A (e) of SIO's application.
Hearing Impairment and Other Physical Effects
    Temporary or permanent hearing impairment is a possibility when 
marine mammals are exposed to very strong sounds, but there has been no 
specific documentation of this for marine mammals exposed to airgun 
pulses. Current NMFS policy regarding exposure of marine mammals to 
high-level sounds is that in order to avoid hearing impairment, 
cetaceans and pinnipeds should not be exposed to impulsive sounds 
exceeding 180 and 190 dB re1 microPa (rms), respectively (NMFS, 2000). 
Those criteria have been used in defining the safety (shutdown) radii 
planned for this seismic survey.
    Because of the small size of the GI gun source in this project (two 
45 in3 guns), along with the planned monitoring and mitigation 
measures, there is little likelihood that any marine mammals will be 
exposed to sounds sufficiently strong to cause hearing impairment. 
Several aspects of the planned monitoring and mitigation measures for 
this project are designed to detect marine mammals occurring near the 
pair of GI guns (and multibeam echosounder), and to avoid exposing them 
to sound pulses that might cause hearing impairment (see Mitigation 
Measures). In addition, many cetaceans are likely to show some 
avoidance of the area with ongoing seismic operations (see above). In 
those cases, the avoidance responses of the animals themselves will 
reduce or avoid the possibility of hearing impairment.
    Non-auditory physical effects may also occur in marine mammals 
exposed to strong underwater pulsed sound. Possible types of non-
auditory physiological effects or injuries that theoretically might 
occur include stress, neurological effects, bubble formation, resonance 
effects, and other types of organ or tissue damage. It is possible that 
some marine mammal species (i.e., beaked whales) may be especially 
susceptible to injury and/or stranding when exposed to strong pulsed 
sounds. However, as discussed below, it is very unlikely that any 
effects of these types would occur during the present project given the 
small size of the source and the brief duration of exposure of any 
given mammal, especially in view of the planned monitoring and 
mitigation measures.
    TTS - TTS is the mildest form of hearing impairment that can occur 
during exposure to a strong sound (Kryter, 1985). While experiencing 
TTS, the hearing threshold rises and a sound must be stronger in order 
to be heard. TTS can last from minutes or hours to (in cases of strong 
TTS) days. For sound exposures at or somewhat above the TTS threshold, 
hearing sensitivity recovers rapidly after exposure to the noise ends. 
Little information on sound levels and durations necessary to elicit 
mild TTS has been obtained for marine mammals, and none of the 
published data concern TTS elicited by exposure to multiple pulses of 
sound.
    Finneran et al. (2002) compared the few available data that exist 
on sound levels and durations necessary to elicit mild TTS and found 
that for toothed whales exposed to single short pulses, the TTS 
threshold appears to be a function of the energy content of the pulse. 
Finneran used the available data to plot known TTS in odontocetes on a 
line depicting sound pressure level versus duration of pulse, and SIO 
used that line to estimate that a single seismic pulse of the duration 
used in this study (approx. 15 ms) received at 210 dB re 1 microPa 
(rms) (approx. 221-226 dB pk-pk) may produce brief, mild TTS in 
odontocetes. If received sound energy is calculated from the sound 
pressure, a single 15 ms seismic pulse at 210 dB re 1 microPa (rms) 
equates to ten seismic pulses of the same length at received levels 
near 200 dB or three seismic pulses of the same length at received 
levels near 205 dB (rms). The L-DEO model indicates that seismic pulses 
with received levels of 200-205 dB would be limited to distances within 
a few meters of the small GI gun source to be used in this project.
    There are no data, direct or indirect, on levels or properties of 
sound that are required to induce TTS in any baleen whale. Richardson 
et al. (1995) compiled studies of the reactions of several species of 
baleen whales to seismic sound and found that baleen whales often show 
strong avoidance several kilometers away from an airgun at received 
levels of 150-180 dB. Given the small size of the source, and the 
likelihood that baleen whales will avoid the approaching airguns (or 
vessel) before being exposed to levels high enough to induce TTS, NMFS 
believes it unlikely that the R/V Roger Revelle's airguns will cause 
TTS in any baleen whales.
    TTS thresholds for pinnipeds exposed to brief pulses (single or 
multiple) have not been measured. However, prolonged exposures show 
that some pinnipeds may incur TTS at somewhat lower received levels 
than do small odontocetes exposed for similar durations (Kastak et al., 
1999; Ketten et al., 2001; cf. Au et al., 2000).
    A marine mammal within a radius of 100 m (328 ft) around a typical 
large array of operating airguns might be exposed to a few seismic 
pulses with levels of 205 dB, and possibly more pulses if the mammal 
moved with the seismic vessel. As noted above, most cetaceans show some 
degree of avoidance of operating airguns. In addition, ramping up 
airgun arrays, which is standard operational protocol for large airgun 
arrays, should allow cetaceans to move away from the seismic source and 
to avoid being exposed to the full acoustic output of the airgun array. 
Even with a large airgun array, it is unlikely that the cetaceans would 
be exposed to airgun pulses at a sufficiently high level (180 dB) for a 
sufficiently long period (due to the tendency of baleen whales to avoid 
seismic sources) to cause more than mild TTS, given the relative 
movement of the vessel and the marine mammal. The potential for TTS is 
very low in this project due to the small size of the airgun array 
(past IHA's have authorized take of marine mammals incidental to the 
operation of seismic airguns with a

[[Page 14847]]

total volume of up to 8,800 in\3\ (L-DEO 20-gun array)) . With a large 
array of airguns, any TTS would be most likely in any odontocetes that 
bow-ride or otherwise linger near the airguns. While bow riding, 
odontocetes would be at or above the surface, and thus not exposed to 
strong sound pulses given the pressure-release effect at the surface. 
However, bow-riding animals generally dive below the surface 
intermittently. If they did so while bow riding near airguns, they 
could potentially be exposed to strong sound pulses, possibly 
repeatedly. However, in this project, the anticipated 180-dB distance 
is less than 54 m (less than 155 ft), and the bow of the R/V Roger 
Revelle will be 106 m (304 ft) ahead of the GI guns, so this effect is 
less likely.
    As mentioned earlier, NMFS has established acoustic criteria to 
avoid PTS that indicate that cetaceans and pinnipeds should not be 
exposed to pulsed underwater noise at received levels exceeding, 
respectively, 180 and 190 dB re 1 microPa (rms). The predicted 180 and 
190 dB distances for the GI guns operated by SIO are less than 54 m 
(less than 155 ft) and less than 17 m (less than 49 ft), respectively 
(those distances actually apply to operations with two 105 in\3\ GI 
guns, and smaller distances would be expected for the two 45 in\3\ (737 
cm\3\) GI guns to be used here.). These sound levels represent the 
received levels above which one could not be certain that there would 
be no injurious effects, auditory or otherwise, to marine mammals. As 
mentioned previously in the toothed whale section, Finneran et al.'s 
(2000 and 2002) TTS data indicate that a small number of captive 
dolphins have been exposed to more 200 dB re 1 microPa (rms) without 
suffering from TTS, though NMFS believes that the sound levels 
represented by these studies of small numbers of captive animals may 
not accurately represent the predicted reactions of wild animals under 
the same circumstances. Scientists at NMFS are currently compiling and 
reanalyzing available information on the reactions of marine mammals to 
sound in an effort to eventually establish new more sophisticated 
acoustic criteria. However, NMFS currently considers the 160, 180, and 
190 dB thresholds to be the appropriate sound pressure level criteria 
for non-explosive sounds.
    PTS - When PTS occurs, there is physical damage to the sound 
receptors in the ear. In some cases, there can be total or partial 
deafness, while in other cases, the animal has an impaired ability to 
hear sounds in specific frequency ranges.
    There is no specific evidence that exposure to pulses of airgun 
sound can cause PTS in any marine mammal, even with large arrays of 
airguns. However, given the possibility that mammals close to an airgun 
array might incur TTS, there has been further speculation about the 
possibility that some individuals occurring very close to airguns might 
incur PTS. Single or occasional occurrences of mild TTS are not 
indicative of permanent auditory damage in terrestrial mammals. 
Relationships between TTS and PTS thresholds have not been studied in 
marine mammals, but NMFS assumes they are probably similar to those in 
humans and other terrestrial mammals. PTS might occur at a received 
sound level 20 dB or more above that inducing mild TTS if the animal 
were exposed to the strong sound for an extended period, or to a strong 
sound with rather rapid rise time (Cavanaugh, 2000).
    It is highly unlikely that marine mammals could receive sounds 
strong enough to cause permanent hearing impairment during a project 
employing two 45 in\3\ (737 cm\3\) GI guns. In the present project, 
marine mammals are unlikely to be exposed to received levels of seismic 
pulses strong enough to cause TTS, as they would probably need to be 
within a few meters of the GI guns for this to occur. Given the higher 
level of sound necessary to cause PTS, it is even less likely that PTS 
could occur. In fact, even the levels immediately adjacent to the GI 
guns may not be sufficient to induce PTS, especially since a mammal 
would not be exposed to more than one strong pulse unless it swam 
immediately alongside a GI gun for a period longer than the inter-pulse 
interval (6-10 s). Also, baleen whales generally avoid the immediate 
area around operating seismic vessels. Furthermore, the planned 
monitoring and mitigation measures, including visual monitoring, ramp 
ups, and shut downs of the GI guns when mammals are seen within the 
``safety radii,'' will minimize the already-minimal probability of 
exposure of marine mammals to sounds strong enough to induce PTS.
    Non-auditory Physiological Effects - Non-auditory physiological 
effects or injuries that theoretically might occur in marine mammals 
exposed to strong underwater sound include stress, neurological 
effects, bubble formation, resonance effects, and other types of organ 
or tissue damage. There is no proof that any of these effects occur in 
marine mammals exposed to sound from airgun arrays (even large ones), 
but there have been no direct studies of the potential for airgun 
pulses to elicit any of those effects. If any such effects do occur, 
they would probably be limited to unusual situations when animals might 
be exposed at close range for unusually long periods.
    It is doubtful that any single marine mammal would be exposed to 
strong seismic sounds for sufficiently long that significant 
physiological stress would develop. That is especially so in the case 
of the present project where the GI guns are small, the ship's speed is 
relatively fast (7 knots (13 km/h)), and for the most part the survey 
lines are widely spaced with little or no overlap.
    Gas-filled structures in marine animals have an inherent 
fundamental resonance frequency. If stimulated at that frequency, the 
ensuing resonance could cause damage to the animal. A workshop (Gentry 
[ed.], 2002) was held to discuss whether the stranding of beaked whales 
in the Bahamas in 2000 (Balcomb and Claridge, 2001; NOAA and USN, 2001) 
might have been related to air cavity resonance or bubble formation in 
tissues caused by exposure to noise from naval sonar. A panel of 
experts concluded that resonance in air-filled structures was not 
likely to have caused this stranding. Opinions were less conclusive 
about the possible role of gas (nitrogen) bubble formation/growth in 
the Bahamas stranding of beaked whales.
    Until recently, it was assumed that diving marine mammals are not 
subject to the bends or air embolism. However, a short paper concerning 
beaked whales stranded in the Canary Islands in 2002 suggests that 
cetaceans might be subject to decompression injury in some situations 
(Jepson et al., 2003). If so, that might occur if they ascend unusually 
quickly when exposed to aversive sounds. Even if that can occur during 
exposure to mid-frequency sonar, there is no evidence that that type of 
effect occurs in response to airgun sounds. It is especially unlikely 
in the case of this project involving only two small GI guns.
    In general, little is known about the potential for seismic survey 
sounds to cause auditory impairment or other physical effects in marine 
mammals. Available data suggest that such effects, if they occur at 
all, would be limited to short distances and probably to projects 
involving large arrays of airguns. However, the available data do not 
allow for meaningful quantitative predictions of the numbers (if any) 
of marine mammals that might be affected in those ways. Marine mammals 
that show behavioral avoidance of seismic vessels, including most 
baleen whales, some odontocetes, and some pinnipeds, are especially 
unlikely to incur auditory

[[Page 14848]]

impairment or other physical effects. Also, the required mitigation 
measures, including shut downs, will reduce any such effects that might 
otherwise occur.

Strandings and Mortality

    Marine mammals close to underwater detonations of high explosive 
can be killed or severely injured, and the auditory organs are 
especially susceptible to injury (Ketten et al., 1993; Ketten, 1995). 
Airgun pulses are less energetic and have slower rise times, and there 
is no proof that they can cause serious injury, death, or stranding 
even in the case of large airgun arrays. However, the association of 
mass strandings of beaked whales with naval exercises and, in one case, 
an L-DEO seismic survey, has raised the possibility that beaked whales 
exposed to strong pulsed sounds may be especially susceptible to injury 
and/or behavioral reactions that can lead to stranding. Additional 
details may be found in Appendix A (g) of SIO's application.
    Seismic pulses and mid-frequency sonar pulses are quite different. 
Sounds produced by airgun arrays are broadband with most of the energy 
below 1 kHz. Typical military mid-frequency sonars operate at 
frequencies of 2-10 kHz, generally with a relatively narrow bandwidth 
at any one time. Thus, it is not appropriate to assume that there is a 
direct connection between the effects of military sonar and seismic 
surveys on marine mammals. However, evidence that sonar pulses can, in 
special circumstances, lead to physical damage and mortality NOAA and 
USN, 2001; Jepson et al., 2003), even if only indirectly, suggests that 
caution is warranted when dealing with exposure of marine mammals to 
any high-intensity pulsed sound.
    In Sept. 2002, there was a stranding of two Cuvier's beaked whales 
in the Gulf of California, Mexico, when the L-DEO vessel Maurice Ewing 
was operating a 20-gun 8490 in\3\ (139,126 cm\3\) array in the general 
area. The link between this stranding and the seismic surveys was 
inconclusive and not based on any physical evidence (Hogarth, 2002; 
Yoder, 2002). Nonetheless, that plus the incidents involving beaked 
whale strandings near naval exercises suggests a need for caution in 
conducting seismic surveys in areas occupied by beaked whales. The 
present project will involve a much smaller sound source than used in 
typical seismic surveys. That, along with the required monitoring and 
mitigation measures, is expected to minimize any possibility for 
strandings and mortality.

Possible Effects of Bathymetric Sonar Signals

    A multibeam bathymetric echosounder (Kongsberg Simrad EM-120, 12 
kHz) will be operated from the source vessel during much of the planned 
study. Sounds from the multibeam echosounder are very short pulses, 
occurring for 5-15 ms at up to 5 Hz, depending on water depth. As 
compared with the GI guns, the sound pulses emitted by this multibeam 
echosounder are at moderately high frequencies, centered at 12 kHz. The 
beam is narrow (1[deg]) in fore-aft extent, and wide (150[deg]) in the 
cross-track extent.
    Navy sonars that have been linked to avoidance reactions and 
stranding of cetaceans (1) generally are more powerful than the 
Kongsberg Simrad EM-120, (2) have a longer pulse duration, and (3) are 
directed close to horizontally, vs. downward, as for the multibeam 
echosounder. The area of possible influence of the Kongsberg Simrad EM-
120 is much smaller--a narrow band oriented in the cross-track 
direction below the source vessel. Marine mammals that encounter the 
EM-120 at close range are unlikely to be subjected to repeated pulses 
because of the narrow fore-aft width of the beam, and will receive only 
limited amounts of pulse energy because of the short pulses.
Masking
    Marine mammal communications will not be masked appreciably by the 
multibeam echosounder signals given the low duty cycle of the system 
and the brief period when an individual mammal is likely to be within 
its beam. Furthermore, in the case of baleen whales, the signals do not 
overlap with the predominant frequencies in the calls, which would 
avoid significant masking.
Behavioral Responses
    Behavioral reactions of free-ranging marine mammals to military and 
other sonars appear to vary by species and circumstance. Observed 
reactions have included silencing and dispersal by sperm whales 
(Watkins et al., 1985), increased vocalizations and no dispersal by 
pilot whales (Rendell and Gordon, 1999), and the previously-mentioned 
beachings by beaked whales. However, all of those observations are of 
limited relevance to the present situation. Pulse durations from those 
sonars were much longer than those of the SIO multibeam echosounder, 
and a given mammal would have received many pulses from the naval 
sonars. During SIO's operations, the individual pulses will be very 
short, and a given mammal would not be likely to receive more than a 
few of the downward-directed pulses as the vessel passes by unless it 
were swimming in the same speed and direction as the ship in a fixed 
position underneath the ship.
    Captive bottlenose dolphins and a white whale exhibited changes in 
behavior when exposed to 1 s pulsed sounds at frequencies similar to 
those that will be emitted by the multibeam echosounder used by SIO, 
and to shorter broadband pulsed signals. Behavioral changes typically 
involved what appeared to be deliberate attempts to avoid the sound 
exposure (Schlundt et al., 2000; Finneran et al., 2002). The relevance 
of those data to free-ranging odontocetes is uncertain, and in any 
case, the test sounds were quite different in either duration or 
bandwidth as compared with those from a bathymetric echosounder.
    NMFS is not aware of any data on the reactions of pinnipeds to 
sonar sounds at frequencies similar to those of the R/V Roger Revelle's 
multibeam echosounder. Based on observed pinniped responses to other 
types of pulsed sounds, and the likely brevity of exposure to the 
multibeam sounds, pinniped reactions are expected to be limited to 
startle or otherwise brief responses of no lasting consequence to the 
animals. NMFS (2001) concluded that momentary behavioral reactions ``do 
not rise to the level of taking.'' Thus, brief exposure of cetaceans or 
pinnipeds to small numbers of signals from the multibeam bathymetric 
echosounder system are not expected to result in a ``take'' by 
harassment.
Hearing Impairment and Other Physical Effects
    Given recent stranding events that have been associated with the 
operation of naval sonar, there is concern that mid-frequency sonar 
sounds can cause serious impacts to marine mammals (see above). 
However, the multibeam echosounder proposed for use by SIO is quite 
different than sonars used for navy operations. Pulse duration of the 
multibeam echosounder is very short relative to the naval sonars. Also, 
at any given location, an individual marine mammal would be exposed to 
the multibeam sound signal for much less time given the generally 
downward orientation of the beam and its narrow fore-aft beamwidth. 
(Navy sonars often use near-horizontally-directed sound.) Those factors 
would all reduce the sound energy received from the multibeam 
echosounder drastically

[[Page 14849]]

relative to that from the sonars used by the Navy.

Possible Effects of Sub-bottom Profiler Signals

    A sub-bottom profiler will be operated from the source vessel much 
of the time during the planned study. Sounds from the sub-bottom 
profiler are short pulses of 1.5 - 24 ms duration. The triggering rate 
is controlled automatically so that only one pulse is in the water 
column at a time. Most of the energy in the sound pulses emitted by 
this sub-bottom profiler is at mid frequencies, centered at 3.5 kHz. 
The beamwidth is approx. 30o and is directed downward.
    Sound levels have not been measured directly for the sub-bottom 
profiler used by the R/V Roger Revelle, but Burgess and Lawson (2000) 
measured sounds propagating more or less horizontally from a similar 
unit with similar source output (205 dB re 1 microPa-m). The 160 and 
180 dB re 1 microPa (rms) radii, in the horizontal direction, were 
estimated to be, respectively, near 20 m (66 ft) and 8 m (26 ft) from 
the source, as measured in 13 m (43 ft) water depth. The corresponding 
distances for an animal in the beam below the transducer would be 
greater, on the order of 180 m (591 ft) and 18 m (59 ft), assuming 
spherica
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.