Notice of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program, 4300-4318 [2012-1784]

Share |
Download as PDF 4300 Federal Register / Vol. 77, No. 18 / Friday, January 27, 2012 / Notices tkelley on DSK3SPTVN1PROD with NOTICES What information collection activity or ICR does this apply to? Docket ID No. EPA–HQ–OA–2012– 0033. Affected entities: Entities potentially affected by this action are members of the general public who may be contacted to participate in the study. Title: Willingness to Pay for Improved Water Quality in the Chesapeake Bay. ICR numbers: EPA ICR No. 2456.01, OMB Control No. 2012–new. ICR status: This ICR is for a new information collection activity. An Agency may not conduct or sponsor, and a person is not required to respond to, a collection of information, unless it displays a currently valid OMB control number. The OMB control numbers for EPA’s regulations in title 40 of the CFR, after appearing in the Federal Register when approved, are listed in 40 CFR part 9, are displayed either by publication in the Federal Register or by other appropriate means, such as on the related collection instrument or form, if applicable. The display of OMB control numbers in certain EPA regulations is consolidated in 40 CFR part 9. Abstract: On May 12, 2009 the President signed Executive Order 13508 calling for the protection and restoration of the Chesapeake Bay. In response to the Executive Order and other considerations the Environmental Protection Agency established Total Maximum Daily Loads (TMDLs) of nitrogen, phosphorus, and sediment for the Chesapeake Bay. These TMDLs called for reductions of 25, 24, and 20%, respectively, of these pollutants (EPA 2011). The Chesapeake Bay watershed encompasses 64,000 square miles in parts of six states and the District of Columbia. While efforts have been underway to restore the Bay for more than 25 years, and significant progress has been made over that period, the TMDLs are necessary to continue progress toward the goal of a healthy Bay. As might be expected, a program on this scale is likely to be expensive. A 2004 report on implementation of the ‘‘tributary strategies’’ proposed under an earlier plan for Bay restoration estimated their cost at $28 billion in capital costs plus an additional $2.7 billion dollars per year in perpetuity for operating and maintenance costs (Blue Ribbon Panel 2004). The watershed states of New York, Pennsylvania, Delaware, West Virginia, Virginia, and Maryland, as well as the District of Columbia, have developed Watershed Implementation Plans (WIPs) detailing the steps each will take to meet its VerDate Mar<15>2010 18:14 Jan 26, 2012 Jkt 226001 obligations under the TMDLs. EPA has begun a new study to estimate costs of compliance with the TMDLs. While these costs may prove high, a multitude of benefits may also be anticipated to arise from restoring the Chesapeake Bay. It is important to put cost estimates in perspective by estimating corresponding benefits. EPA’s National Center for Environmental Economics (NCEE) is undertaking a benefits analysis of improvements in Bay water quality under the TMDLs, as well as of ancillary benefits that might arise from terrestrial measures taken to improve water quality. As part of this analysis, NCEE plans to conduct a broad-based inquiry into benefits using a state-of-the-art stated preference survey. Benefits from the TMDLs for the Chesapeake will accrue to those who live on or near the Bay and its tributaries, as well as to those who live further away and may never visit the Bay but have a general concern for the environment. The latter category of benefits is typically called ‘‘non-use values’’ and estimating the monetary value can only be achieved through a stated preference survey. In addition, a stated preference survey is able to estimate ‘‘use values,’’ those benefits that accrue to individuals who choose to live on or near the Bay or recreate in the watershed. Stated preference surveys allow the analyst to define a specific object of choice or suite of choices such that benefits are defined in as precise a manner as feasible. While use benefits of water quality improvements in the Chesapeake Bay watershed will also be estimated through other revealed preference methods, the stated preference survey allows for careful specification of the choice scenarios and will complement estimates found using other methods. Participation in the survey will be voluntary and the identity of the participants will be kept confidential. Burden Statement: The annual public reporting and recordkeeping burden for this collection of information is estimated to average 0.5 hours per response. Burden means the total time, effort, or financial resources expended by persons to generate, maintain, retain, or disclose or provide information to or for a Federal agency. This includes the time needed to review instructions; develop, acquire, install, and utilize technology and systems for the purposes of collecting, validating, and verifying information, processing and maintaining information, and disclosing and providing information; adjust the existing ways to comply with any previously applicable instructions and requirements which have subsequently PO 00000 Frm 00026 Fmt 4703 Sfmt 4703 changed; train personnel to be able to respond to a collection of information; search data sources; complete and review the collection of information; and transmit or otherwise disclose the information. The ICR provides a detailed explanation of the Agency’s estimate, which is only briefly summarized here: Estimated total number of potential respondents: 1,500. Frequency of response: once. Estimated total average number of responses for each respondent: 1. Estimated total annual burden hours: 750 hours. Estimated total annual costs: $15,975. This includes estimated respondent burden costs only as there are no capital costs or operating and maintenance costs associated with this collection of information. What is the next step in the process for this ICR? EPA will consider the comments received and amend the ICR as appropriate. The final ICR package will then be submitted to OMB for review and approval pursuant to 5 CFR 1320.12. At that time, EPA will issue another Federal Register notice pursuant to 5 CFR 1320.5(a)(1)(iv) to announce the submission of the ICR to OMB and the opportunity to submit additional comments to OMB. If you have any questions about this ICR or the approval process, please contact the technical person listed under FOR FURTHER INFORMATION CONTACT. Dated: January 18, 2012. Al McGartland, Office Director, National Center for Environmental Economics. [FR Doc. 2012–1809 Filed 1–26–12; 8:45 am] BILLING CODE 6560–50–P ENVIRONMENTAL PROTECTION AGENCY [EPA–HQ–OAR–2011–0542; FRL–9608–8] Notice of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program Environmental Protection Agency (EPA). ACTION: Notice of data availability (NODA). AGENCY: This Notice provides an opportunity to comment on EPA’s analyses of palm oil used as a feedstock to produce biodiesel and renewable diesel under the Renewable Fuel Standard (RFS) program. EPA’s analysis of the two types of biofuel shows that SUMMARY: E:\FR\FM\27JAN1.SGM 27JAN1 Federal Register / Vol. 77, No. 18 / Friday, January 27, 2012 / Notices tkelley on DSK3SPTVN1PROD with NOTICES biodiesel and renewable diesel produced from palm oil have estimated lifecycle greenhouse gas (GHG) emission reductions of 17% and 11% respectively for these biofuels compared to the statutory baseline petroleum-based diesel fuel used in the RFS program. This analysis indicates that both palm oil-based biofuels would fail to qualify as meeting the minimum 20% GHG performance threshold for renewable fuel under the RFS program. DATES: Comments must be received on or before February 27, 2012. ADDRESSES: Submit your comments, identified by Docket ID No. EPA–HQ– OAR–2011–0542, by one of the following methods: • www.regulations.gov: Follow the on-line instructions for submitting comments. • Email: asdinfo@epa.gov. • Mail: Air and Radiation Docket and Information Center, Environmental Protection Agency, Mailcode: 2822T, 1200 Pennsylvania Ave. NW., Washington, DC 20460. • Hand Delivery: Air and Radiation Docket and Information Center, EPA/ DC, EPA West, Room 3334, 1301 Constitution Ave. NW., Washington DC 20004. Such deliveries are only accepted during the Docket’s normal hours of operation, and special arrangements should be made for deliveries of boxed information. Instructions: Direct your comments to Docket ID No. EPA–HQ–OAR–2011– 0542. EPA’s policy is that all comments received will be included in the public docket without change and may be made available online at www.regulations.gov, including any personal information provided, unless the comment includes information claimed to be Confidential Business Information (CBI) or other information whose disclosure is restricted by statute. Do not submit information that you consider to be CBI or otherwise VerDate Mar<15>2010 18:14 Jan 26, 2012 Jkt 226001 protected through www.regulations.gov or asdinfo@epa.gov. The www.regulations.gov Web site is an ‘‘anonymous access’’ system, which means EPA will not know your identity or contact information unless you provide it in the body of your comment. If you send an email comment directly to EPA without going through www.regulations.gov your email address will be automatically captured and included as part of the comment that is placed in the public docket and made available on the Internet. If you submit an electronic comment, EPA recommends that you include your name and other contact information in the body of your comment and with any disk or CD–ROM you submit. If EPA cannot read your comment due to technical difficulties and cannot contact you for clarification, EPA may not be able to consider your comment. Electronic files should avoid the use of special characters, any form of encryption, and be free of any defects or viruses. For additional information about EPA’s public docket visit the EPA Docket Center homepage at http:// www.epa.gov/epahome/dockets.htm. Docket: All documents in the docket are listed in the www.regulations.gov index. Although listed in the index, some information is not publicly available, e.g., CBI or other information whose disclosure is restricted by statute. Certain other material, such as copyrighted material, will be publicly available only in hard copy. Publicly available docket materials are available either electronically in www.regulations.go v or in hard copy at the Air and Radiation Docket and Information Center, EPA/DC, EPA West, Room 3334, 1301 Constitution Ave. NW., Washington, DC 20004. The Public Reading Room is open from 8:30 a.m. to 4:30 p.m., Monday through Friday, excluding legal holidays. The telephone number for the Public Reading Room is PO 00000 Frm 00027 Fmt 4703 Sfmt 4703 4301 (202) 566–1744, and the telephone number for the Air Docket is (202) 566– 1742. FOR FURTHER INFORMATION CONTACT: Aaron Levy, Office of Transportation and Air Quality, Transportation and Climate Division, Environmental Protection Agency, 1200 Pennsylvania Ave. NW., Washington, DC 20460 (MC: 6041A); telephone number: (202) 564– 2993; fax number: (202) 564–1177; email address: levy.aaron@epa.gov. SUPPLEMENTARY INFORMATION: Outline of This Preamble I. General Information A. Does this action apply to me? B. What should I consider as I prepare my comments for EPA? 1. Submitting CBI 2. Tips for Preparing Your Comments II. Analysis of Lifecycle Greenhouse Gas Emissions A. Methodology 1. Scope of Analysis 2. Models Used 3. Scenarios Modeled 4. Analysis of Projected Land Use Changes in Indonesia and Malaysia 5. Analysis of Palm Oil Mills B. Results of Lifecycle Analysis for Biodiesel From Palm Oil C. Results of Lifecycle Analysis for Renewable Diesel From Palm Oil D. Consideration of Lifecycle Analysis Results 1. Implications for Threshold Determinations 2. Consideration of Uncertainty I. General Information A. Does this action apply to me? Entities potentially affected by this action are those involved with the production, distribution, and sale of transportation fuels, including gasoline and diesel fuel or renewable fuels such as biodiesel and renewable diesel. Regulated categories include: E:\FR\FM\27JAN1.SGM 27JAN1 Federal Register / Vol. 77, No. 18 / Friday, January 27, 2012 / Notices This table is not intended to be exhaustive, but rather provides a guide for readers regarding entities likely to engage in activities that may be affected by today’s action. To determine whether your activities would be affected, you should carefully examine the applicability criteria in 40 CFR part 80, Subpart M. If you have any questions regarding the applicability of this action to a particular entity, consult the person listed in the preceding section. tkelley on DSK3SPTVN1PROD with NOTICES B. What should I consider as I prepare my comments for EPA? 1. Submitting CBI. Do not submit this information to EPA through www.regulations.gov or email. Clearly mark the part or all of the information that you claim to be CBI. For CBI information in a disk or CD-ROM that you mail to EPA, mark the outside of the disk or CD-ROM as CBI and then identify electronically within the disk or CD-ROM the specific information that is claimed as CBI. In addition to one complete version of the comment that includes information claimed as CBI, a copy of the comment that does not contain the information claimed as CBI must be submitted for inclusion in the public docket. Information so marked will not be disclosed except in accordance with procedures set forth in 40 CFR part 2. 2. Tips for Preparing Your Comments. When submitting comments, remember to: • Identify the rulemaking by docket number and other identifying information (subject heading, Federal Register date and page number). • Follow directions—The agency may ask you to respond to specific questions or organize comments by referencing a Code of Federal Regulations (CFR) part or section number. VerDate Mar<15>2010 18:14 Jan 26, 2012 Jkt 226001 • Explain why you agree or disagree; suggest alternatives and substitute language for your requested changes. • Describe any assumptions and provide any technical information and/ or data that you used. • If you estimate potential costs or burdens, explain how you arrived at your estimate in sufficient detail to allow for it to be reproduced. • Provide specific examples to illustrate your concerns, and suggest alternatives. • Explain your views as clearly as possible, avoiding the use of profanity or personal threats. • Make sure to submit your comments by the comment period deadline identified. II. Analysis of Lifecycle Greenhouse Gas Emissions A. Methodology 1. Scope of Analysis On March 26, 2010, the Environmental Protection Agency (EPA) published changes to the Renewable Fuel Standard program regulations as required by 2007 amendments to CAA 211(o). This rulemaking is commonly referred to as the ‘‘RFS2’’ final rule. As part of the RFS2 final rule we analyzed various categories of biofuels to determine whether the complete lifecycle GHG emissions associated with the production, distribution, and use of those fuels meet minimum lifecycle greenhouse gas reduction thresholds as specified by CAA 211(o) (i.e., 60% for cellulosic biofuel, 50% for biomassbased diesel and advanced biofuel, and 20% for other renewable fuels). Our final rule focused our lifecycle analyses on fuels that were anticipated to contribute relatively large volumes of renewable fuel by 2022 and thus did not cover all fuels that either are PO 00000 Frm 00028 Fmt 4703 Sfmt 4703 contributing or could potentially contribute to the program. In the preamble to the final rule EPA indicated that it had not completed the GHG emissions impact analysis for several specific biofuel production pathways but that this work would be completed through a supplemental rulemaking process. Since the March 2010 final rule was issued, we have continued to examine several additional pathways not analyzed for the final rule. This Notice of Data Availability (‘‘NODA’’) focuses on our analysis of the palm oil biodiesel and palm oil renewable diesel pathways. The modeling approach EPA used in this analysis is the same general approach used in the final RFS2 rule for lifecycle analyses of other biofuels.1 The RFS2 final rule preamble and Regulatory Impact Analysis (RIA) provides further discussion of our approach. This Notice provides an opportunity to comment on EPA’s analyses of lifecycle GHG emissions related to the production and use of biodiesel and renewable diesel produced from palm oil feedstock. We intend to consider all of the relevant comments received. In general, comments will be considered relevant if they pertain to EPA’s analysis of lifecycle GHG emissions related to palm oil biofuels, and especially if they provide specific information for consideration in our modeling. When all relevant comments have been considered we intend to inform the public of any resulting revisions in our analyses or any other relevant information pertaining to our 1 U.S. Environmental Protection Agency (EPA). 2011. Summary of Modeling Inputs and Assumptions for the Notice of Data Availability (NODA) Concerning Renewable Fuels Produced from Palm Oil under the Renewable Fuel Standard (RFS) Program. Memorandum to Air and Radiation Docket EPA–HQ–OAR–2011–0542. E:\FR\FM\27JAN1.SGM 27JAN1 EN27JA12.000</GPH> 4302 Federal Register / Vol. 77, No. 18 / Friday, January 27, 2012 / Notices consideration of the comments received. Public notification regarding our consideration of comments could be accomplished in several formats, such as a Federal Register notice, a rulemaking action or a guidance document. The appropriate form of public notification will depend on the outcome of the public comment process and any reanalysis we deem appropriate. In the event that EPA does not significantly modify its analyses, no regulatory amendments will be necessary since the existing regulations currently do not identify any palm oilbased biofuel production pathways as satisfying minimum lifecycle GHG reduction requirements. tkelley on DSK3SPTVN1PROD with NOTICES 2. Models Used EPA’s analysis of the palm oil biodiesel and renewable diesel pathways uses the same model of international agricultural markets that was used for the final RFS2 rule: the Food and Agricultural Policy and Research Institute international models as maintained by the Center for Agricultural and Rural Development at Iowa State University (the FAPRI–CARD model). For more information on the FAPRI–CARD model refer to the RFS2 final rule preamble (75 FR 14670) or the RFS2 Regulatory Impact Analysis (RIA).2 These documents are available in the docket or online at http:// www.epa.gov/otaq/fuels/ renewablefuels/regulations.htm. The models require a number of inputs that are specific to the pathway being analyzed, including projected yields of feedstock per acre planted, projected fertilizer use, and energy use in feedstock processing and fuel production. The docket includes detailed information on model inputs, assumptions, calculations, and the results of our assessment of the lifecycle GHG emissions performance for palm oil biodiesel and renewable diesel. As in our analysis of sugarcane ethanol in the RFS2 final rule, we did not use the Forestry and Agricultural Sector Optimization Model (FASOM) in our analysis of palm oil biodiesel and renewable diesel. FASOM is a highly detailed partial equilibrium model of the United States agricultural and forestry sectors. In the RFS2 final rule FASOM was used to determine the domestic U.S. agricultural sector impacts of domestically grown biofuel feedstocks. As palm oil is not grown domestically in any significant volume, 2 EPA. 2010. Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis. EPA–420–R– 10–006. http://www.epa.gov/oms/renewablefuels/ 420r10006.pdf. VerDate Mar<15>2010 18:14 Jan 26, 2012 Jkt 226001 the FAPRI–CARD model was the only model of agricultural markets used in the analysis. Our modeling indicates that any impacts to U.S. agriculture from using palm oil for biofuel production are small in comparison to the international impacts.3 Therefore, we determined that for this analysis the FAPRI–CARD model is better suited for modeling domestic agricultural impacts and, as such, FASOM modeling is unnecessary. 3. Scenarios Modeled To assess the impacts of an increase in renewable fuel volume from business-as-usual (what is likely to have occurred without the RFS biofuel mandates) to levels required by the statute, we established reference and control cases for a number of biofuels analyzed for the RFS2 final rulemaking. The reference case includes a projection of renewable fuel volumes without the RFS renewable fuel volume mandates. The control cases are projections of the volumes of renewable fuel that might be used in the future to comply with the volume mandates. The final rule reference case volumes were based on the Energy Information Administration’s (EIA) Annual Energy Outlook (AEO) 2007 reference case projections. In the RFS2 rule, for each individual biofuel, we analyzed the incremental GHG emission impacts of increasing the volume of that fuel to the total mix of biofuels needed to meet the EISA requirements. Rather than focus on the GHG emissions impacts associated with a specific gallon of fuel and tracking inputs and outputs across different lifecycle stages, we determined the overall aggregate impacts across sectors of the economy in response to a given volume change in the amount of biofuel produced. For this analysis we compared impacts in the control case to the impacts in a new palm oil biofuel case. Our ‘‘control’’ case volumes are based on projections of a feasible set of fuel types and feedstocks. The control case for our modeling assumes no renewable fuel made from palm oil is used in the United States. For the ‘‘palm biofuel’’ case, our modeling assumes approximately 200 million gallons of biodiesel and 200 million gallons of renewable diesel from palm oil are used in the United States in the year 2022. The modeled scenario includes 1.46 million metric tonnes (MMT) of crude palm oil used as feedstock to produce 3 For example, in the scenarios modeled only 1% of land use change GHG emissions originate in the United States. These results are discussed more below and in the supporting materials available through the docket. PO 00000 Frm 00029 Fmt 4703 Sfmt 4703 4303 the additional 400 million gallons of palm oil biofuel in 2022. The projected lifecycle GHG emissions associated with this increased production and use of palm oil biofuel in 2022 are normalized per tonne of crude palm oil. The lifecycle GHG emissions per gallon of biofuel are then calculated based on the yields of biodiesel and renewable diesel per tonne of crude palm oil. Our volume scenario of approximately 200 million gallons of biodiesel and 200 million gallons of renewable diesel from palm oil in 2022 is based on several factors including historical volumes of palm oil production, potential feedstock availability and other competitive uses (e.g., for food or export elsewhere instead of for U.S. transportation fuel). Our assessment is described further in the inputs and assumptions document that is available through the docket (EPA 2011). Based in part on consultation with experts at the United States Department of Agriculture (USDA) and industry representatives, we believe that these volumes are reasonable for the purposes of evaluating the impacts of producing biodiesel and renewable diesel from palm oil. The FAPRI–CARD model, described above, projects in which countries the palm oil will most likely be grown to supply these biofuel volumes to the U.S. based on the relative economics of palm oil production, yield trends in different regions and other factors. Palm oil is currently grown in several regions internationally but the vast majority, close to 90%, is produced in Indonesia and Malaysia. Our modeled scenario projects that Indonesia and Malaysia would be the primary suppliers of palm oil for use as biofuel feedstocks, with other regions, such as Africa, Thailand and South America, contributing much smaller amounts. Because we anticipate that the great majority of palm oil for use in biofuels would be produced in Indonesia and Malaysia our modeling efforts focus on evaluating the lifecycle GHG emissions associated with palm oil production in these countries. Table II–1 provides a summary of projected palm oil production in 2022 according to the FAPRI–CARD model.4 As discussed above, in the palm biofuel case 1.46 MMT of additional palm oil is used as biofuel feedstock in 2022 as compared to the control case. We project that global palm oil production would expand by 0.562 MMT in the palm biofuel case; the remaining volume of palm oil for biofuel production would be diverted from other sectors, such as food and chemical uses. In response we project that E:\FR\FM\27JAN1.SGM 27JAN1 4304 Federal Register / Vol. 77, No. 18 / Friday, January 27, 2012 / Notices production of other vegetable oils would increase to back fill the palm oil diverted to the biofuels industry (See Table II–2). Due to market-mediated responses vegetable oil production does not increase enough to make up for the full amount of palm oil diverted to biofuel production in the palm biofuel case. There are several explanations for this including demand substitution away from vegetable oils and towards other products such as grains, meat and dairy. For more information refer to the full results from the FAPRI–CARD model which are available through the docket. TABLE II–1—PROJECTED PALM OIL PRODUCTION IN 2022 [Thousand metric tonnes] Control case Palm biofuel case Difference Indonesia ..................................................................................................................................... Malaysia ....................................................................................................................................... Rest of World ............................................................................................................................... 31,254 25,992 7,739 31,575 26,196 7,777 321 204 38 World .................................................................................................................................... 64,986 65,548 562 TABLE II–2—PROJECTED VEGETABLE OIL PRODUCTION IN 2022 [Thousand metric tonnes] Control case Palm biofuel case Difference Palm Oil ....................................................................................................................................... Soybean Oil ................................................................................................................................. Rapeseed/Canola Oil ................................................................................................................... Other Vegetable Oils* .................................................................................................................. 64,986 308,553 68,845 28,219 65,548 308,620 68,963 28,317 562 67 118 97 Total ...................................................................................................................................... 470,603 471,448 845 * Includes cottonseed oil, peanut oil, sunflower oil and palm kernel oil. As shown in the tables above, the primary response in the scenarios modeled is to increase palm oil production in Malaysia and Indonesia. In our analysis, projected palm oil yields in 2022 are approximately 5 tonnes per hectare in both Indonesia and Malaysia. The EPA projection for palm oil yields is an extension of the historical data trend forward to 2022, based on historical data from the USDA.5 Palm oil yields vary in other countries, but in general they are somewhat less than the yields achieved in Indonesia and Malaysia. (More information on projected palm oil yields is available in the inputs and assumptions document available through the docket.) Projected harvested areas of palm oil are reported in Table II–3. As discussed below, the land use change GHG emissions associated with the incremental expansion of palm oil areas in Indonesia and Malaysia are a focal point in our analysis. TABLE II–3—PROJECTED PALM OIL HARVESTED AREA IN 2022 [Thousand harvested hectares] Control case Palm biofuel case Difference Indonesia ..................................................................................................................................... Malaysia ....................................................................................................................................... Rest of World ............................................................................................................................... 6,179 5,202 4,035 6,243 5,242 4,055 63 41 20 World .................................................................................................................................... 15,416 15,504 124 tkelley on DSK3SPTVN1PROD with NOTICES 4. Analysis of Projected Land Use Changes in Indonesia and Malaysia As in our analysis of other feedstocks in the RFS2 final rule, we assessed what the GHG emissions impacts would be relating to palm oil production (including land use changes) due to the use of additional volumes of palm oil for biofuel production. Today’s 4 In the tables throughout this preamble totals may not sum due to rounding errors and negative numbers are commonly listed in parentheses. VerDate Mar<15>2010 18:14 Jan 26, 2012 Jkt 226001 assessment of palm oil as a biofuel feedstock considers GHG emissions from international land use changes related to the production and use of palm oil, and uses the same land use change modeling approach used in the final RFS2 rule for analyses of other biofuel pathways. However, given our focus today on the use of palm oil as a biofuel feedstock, this analysis for palm oil is more detailed and considers new data for Indonesia and Malaysia, including higher resolution satellite imagery and maps of relevant geographic features, such as the location of existing oil palm plantations, soil types, roads, etc. EPA decided to undertake a more detailed assessment of 5 Historical palm oil yields are based on data from USDA’s Production, Supply and Distribution (PSD) database and reports from USDA’s Global Agricultural Information Network (GAIN). PO 00000 Frm 00030 Fmt 4703 Sfmt 4703 E:\FR\FM\27JAN1.SGM 27JAN1 tkelley on DSK3SPTVN1PROD with NOTICES Federal Register / Vol. 77, No. 18 / Friday, January 27, 2012 / Notices Malaysia and Indonesia as compared to other regions, based on a number of factors including the concentration of the palm oil industry in this region and the availability of new data on palm oil land use. The goal of our Indonesia and Malaysia land use change analysis is to estimate GHG emissions from the incremental expansion of palm oil plantations that would result from the increased demand for palm oil to produce the modeled 400 million gallons of biodiesel and renewable diesel (i.e., land use change GHG emissions in Indonesia and Malaysia in the palm biofuel case versus the control case). This analysis involved projecting the locations of future palm oil expansion, the types of land impacted and the resulting GHG emissions. First, we gathered spatially explicit data on factors that could be expected to influence the location of palm oil plantations. In our analysis the spatial data are analyzed using the GEOMOD land use change simulation model, described in more detail below, to project the locations of incremental palm oil expansion in the scenarios modeled. We used the latest available data to set land conversion GHG emissions factors for Indonesia and Malaysia. Finally, we considered the uncertainty in our estimates and factor that into our assessment of threshold determinations for palm oil biodiesel and palm oil renewable diesel. An overview of our Indonesia and Malaysia land use change analysis is provided below, including references to materials that are available through the docket which provide more details about all of the inputs, assumptions and results. A key input in our analysis is newly available data on the historic locations of palm oil cultivation. These data are important because they establish a baseline area where palm oil is currently grown or has been grown in recent years. Past changes in the location of palm oil plantations were evaluated using relevant spatial information to determine what geographic factors were correlated with the changes. We then used this new understanding to predict the locations of future expansion related to increased palm oil biofuel production. This section includes the following: • Description of data on the location of palm oil plantations in Indonesia and Malaysia; • Summary of the geographic data sources considered in our analysis; • Background on the GEOMOD model and our methodology for land use change projections; VerDate Mar<15>2010 18:14 Jan 26, 2012 Jkt 226001 • Summary of projected locations for palm oil expansion; • Description of land use change emissions factors used in our analysis; and • Estimated land use change GHG emissions in the scenarios modeled. Data on the historic locations of palm oil plantations in Indonesia and Malaysia—For Indonesia a literature search was conducted which found an absence of available spatial data on the locations of palm oil plantations. To fill this data gap EPA developed such maps for the time period from 2000 to 2009 using satellite imagery and other remotely sensed information. As described below, the mapping project required intensive effort in terms of both data analysis and visual inspection. To enhance data quality and mapping accuracy we limited the geographic scope of the project to the islands of Sumatra and Kalimantan where close to 90% of Indonesia’s palm oil is known to be located.6 In recent years palm oil expansion has also been encouraged in more remote locations on the islands of Sulawesi and Papua, but as mentioned above our mapping efforts did not consider these islands. This source of uncertainty in our analysis is discussed in a reference document available through the public docket which describes our consideration of uncertainty. To map the location of palm oil plantations in Indonesia we leveraged data from the complete Landsat archive, high-resolution data via Google Earth, and data from the National GeospatialIntelligence Agency (NGA) Unclassified National Informational Library (UNIL), among others. Analysis of palm oil plantation areas using Landsat data was performed both visually and through an automated detection algorithm to ensure a robust analysis. The project mitigated cloud cover and data gaps, executed final plantation identification, and estimated the total area of medium- to large-scale oil palm plantations. Using high-resolution remote sensing data yielded an estimated ground cover area for oil palm of 3.2 million hectares in the year 2000 and 4.0 million hectares in the year 2009. Detailed documentation of the analysis as well as electronic maps showing the results are available through the docket.7 8 6 USDA Foreign Agricultural Service (USDA– FAS). 2009. Indonesia: Palm Oil Production Growth To Continue. Commodity Intelligence Report. http://www.pecad.fas.usda.gov/highlights/2009/03/ Indonesia/. 7 Integrity Applications Incorporated (IAI). 2010. High Resolution Land Use Change Analysis of Oil Palm in Sumatra and Kalimantan Circa 2010. Report to EPA. BPA–09–03. September 20, 2010. PO 00000 Frm 00031 Fmt 4703 Sfmt 4703 4305 For Malaysia, data on the locations of palm oil plantations in 2003 and 2009 were provided by the Malaysian Palm Oil Board (MPOB), an agency of the Malaysian government. The data were provided in the form of electronic maps showing mature and immature palm oil plantations. The map of 2003 palm oil plantations utilizes remote sensing data from the Landsat database,9 and the map of 2009 plantations is based on SPOT satellite images.10 The data show the location of roughly 3.8 million hectares of palm oil plantations in 2003 and roughly 5.2 million hectares in 2009. The original maps, in a format compatible with Geographic Information System (GIS) software, were provided under a claim of confidential business information (CBI) and then returned to the source. Therefore, the original files are not available for public review. However, based on our agreement with the MPOB, electronic image files depicting the maps are available for review in the public docket. Spatial analysis of land use change in Indonesia and Malaysia—In addition to the historic locations of palm oil plantations, our analysis considers other relevant geographic suitability factors for Indonesia and Malaysia. For our analysis of land use change in Indonesia fourteen factor maps were created: Elevation, precipitation, temperature, slope, soil type, land cover type in 2001, distance to roads, distance to rivers, distance to railroads, distance to settlements, distance to palm oil mills, peat soil location, land allocation (e.g., protected areas), and distance to existing plantations. For our analysis of Malaysia eleven factor maps were created: elevation, precipitation, temperature, slope, soil type, land cover type in 2001, distance to roads, distance to rivers, distance to railroads, distance to settlements, and distance to existing plantations. The factor maps were selected based on data availability and their relevance for projecting the location of future palm oil plantations. More details about the data used in our projections, including the source for each data element, are provided in technical reports available through the 8 IAI. 2011. High Resolution Land Use Change Analysis for Sumatra and Kalimantan Circa 2000. Report to EPA. BPA–09–03. April 8, 2011. 9 Wahid, B. O., Nordiana, A. Aand Tarmizi, A., M. 2005. Satellite Mapping of Oil Palm Land Use. MPOB Information Series. June 2005. 10 MPOB. 2010. Additional Information Requested by United States Environmental Protection Agency: Agricultural Input. Data submitted by MPOB. June 4, 2010. E:\FR\FM\27JAN1.SGM 27JAN1 4306 Federal Register / Vol. 77, No. 18 / Friday, January 27, 2012 / Notices docket.11 12 We welcome public comments on additional data sources for consideration in our modeling. To analyze the spatial data described above and use it to project the most likely locations for future palm oil expansion, we used a well-established land use change simulation model called GEOMOD. GEOMOD is a spatially explicit simulation model of land cover change that uses maps of biogeophysical attributes and of existing land cover to extrapolate the known pattern of land cover from one point in time to other points in time. GEOMOD was developed by researchers at the SUNY College of Environmental Science and Forestry with funding from the U.S. Department of Energy.13 It has been used to model land cover changes across the world in many different ecosystems including Costa Rica,14 Indonesia 15 and India.16 Using spatial data described above, the GEOMOD land use change simulation model was used to project the locations of future palm oil expansion in Indonesia and Malaysia until the year 2022. First, we created maps of factors that could influence where future palm oil expansion occurs, such as elevation, slope, proximity to roads, etc. Second, we compared the factor maps against a map of existing palm oil plantations in 2000 and 2003 for Indonesia and Malaysia respectively to construct a series of suitability maps. In the calibration stage, for each suitability map the model assigned higher suitability values to locations that have a combination of characteristics similar to the land already cultivated in palm oil and low suitability values to locations that are less similar to existing palm oil areas. In the validation stage, each candidate suitability map was overlain with a map of existing plantations in the year 2009. Each suitability map was evaluated with a set of statistics to assess its ability to accurately project the location of palm oil areas from the first time period to the second time period, e.g., 2000 to 2009. After single factor suitability maps were tested, we used this information to create suitability maps from several combined factors and with different weighting schemes. Results from the validation procedures of each scenario were used to refine subsequent simulations until a simulation model achieved the best validation results. The best model was defined as the model that most accurately projects the location of palm oil expansion between the first and second time periods. When the best model was identified based on the validation exercises, we used this model to simulate expansion of oil palm plantations from 2000 to 2022 in Indonesia and from 2003 to 2022 in Malaysia. For this analysis 34 different suitability maps were created for Indonesia. After applying lessons learned from the Indonesia analysis we were able to narrow the field to 18 different suitability maps for Malaysia. After all of the trials, in both countries the combined suitability map that weighted all of the factors equally performed the best across a number of accuracy metrics. For both countries the accuracy metrics for the selected suitability maps indicated good model performance. Thus, the suitability maps created by weighting all factors equally were chosen to simulate expansion of oil palm plantations to 2022 in Indonesia and Malaysia. More details about our GEOMOD analysis are provided in technical reports available through the docket.17 Projected land use changes in Malaysia and Indonesia—This section provides a summary of our results regarding projected land use changes in Indonesia and Malaysia. As discussed above, we used the FAPRI–CARD model to simulate a roughly 400 million gallon increase in palm oil biodiesel and renewable diesel production in 2022, resulting in additional palm oil harvested area in Indonesia and Malaysia of 63 and 41 thousand hectares respectively. Using the GEOMOD model we projected where the additional 104 thousand hectares of palm oil would be located, what types of land cover would be impacted, and the extent of resulting peat soil drainage. Table II–4 summarizes the projected locations of palm oil crops in Indonesia and Malaysia in 2022. Our analysis considers 45 different administrative units in Indonesia and Malaysia, but here the results are summarized into 5 aggregate regions. In the modeled scenario we project that close to 90% of the incremental palm oil expansion in Indonesia would occur in the Kalimantan region. This is consistent with USDA’s reporting that Kalimantan has been the fastest expanding region for palm oil over the last decade.18 In Malaysia we project that most of the incremental palm oil expansion would occur on the mainland, i.e., Peninsular Malaysia. USDA reports that almost all of the highly suitable land for palm oil production has already been developed in Malaysia. According to USDA, Sarawak has the most remaining development potential, but the available areas on Sarawak are primarily coastal peatlands and/or degraded inland forest with native claims,19 which makes these areas less desirable for cultivation due to complications arising from peat soil characteristics and land rights issues. Our modeling indicates that the most likely area for incremental expansion is on the mainland where existing plantations may be able to expand around the fringes in order to increase productive area. TABLE II–4—PROJECTED LOCATION OF PALM OIL IN INDONESIA AND MALAYSIA IN 2022 [Thousand harvested hectares] Country Region Indonesia ................................ Kalimantan .............................................................................. Sumatra .................................................................................. Peninsular Malaysia ................................................................ tkelley on DSK3SPTVN1PROD with NOTICES Malaysia ................................. 11 Harris, N., and Grimland, S. 2011a. Spatial Modeling of Future Oil Palm Expansion in Indonesia, 2000 to 2022. Winrock International. Draft report submitted to EPA. 12 Harris, N., and Grimland, S. 2011b. Spatial Modeling of Future Oil Palm Expansion in Malaysia, 2003 to 2022. Winrock International. Draft report submitted to EPA. 13 Hall, C., A., S., Tian, H., Qi, Y., Pontius, R., G., Cornell, J., and Uhlig, J. 1995. Modeling spatial and VerDate Mar<15>2010 18:14 Jan 26, 2012 Jkt 226001 Control case temporal patterns of tropical land use change. Journal of Biogeography, 22, 753–757. 14 Pontius Jr., R. G., Cornell, J., and Hall, C. 2001. Modeling the spatial pattern of land-use change with Geomod2: application and validation for Costa Rica. Agriculture, Ecosystems & Environment 85 (1– 3) p.191–203. 15 Harris, N. L, Petrova, S., Stolle, S., and Brown, S. 2008. Identifying optimal areas for REDD intervention: East Kalimantan, Indonesia as a case study. Environmental Research Letters 3: 035006. PO 00000 Frm 00032 Fmt 4703 Sfmt 4703 1,396 4,782 3,016 Palm biofuel case 1,452 4,790 3,048 Difference 56 8 32 16 Rashmi, M. and Lele, N. 2010. Spatial modeling and validation of forest cover change in Kanakapura region using GEOMOD. Journal of the Indian Society of Remote Sensing p. 45–54. 17 Harris et al. (2011a) and (2011b). 18 USDA–FAS (2009). 19 USDA–FAS. 2011. Malaysia: Obstacles May Reduce Future Palm Oil Production Growth. Commodity Intelligence Report. June 28, 2011, http://www.pecad.fas.usda.gov/highlights/2011/06/ Malaysia/. E:\FR\FM\27JAN1.SGM 27JAN1 4307 Federal Register / Vol. 77, No. 18 / Friday, January 27, 2012 / Notices TABLE II–4—PROJECTED LOCATION OF PALM OIL IN INDONESIA AND MALAYSIA IN 2022—Continued [Thousand harvested hectares] Country Region Control case Sabah ...................................................................................... Sarawak .................................................................................. tkelley on DSK3SPTVN1PROD with NOTICES Following the lifecycle analysis methodology in RFS2 final rule, our analysis of land use change GHG emissions looks at the impacts associated with incremental expansion in harvested crop area in the scenarios analyzed. Typically palm oil is harvested for the first time 3–5 years after planting, followed by approximately 20–25 years of annual harvesting before the cycle is repeated.20 This implies that in a steady state the ratio of immature (non-harvested) area to harvested area would be about 12– 25%. Data published by MPOB shows that on average the ratio of immature to harvested area was 15% during the period from 1990 to 2009.21 Projecting the amount of palm oil area that would be immature in 2022 depends on several factors such as expansion and replanting rates which can vary over time and by geographic region. For example, high palm oil prices may induce growers to continue harvesting their old plantations despite decreasing yields. This is because growers do not want to miss selling palm oil during a period of high prices while they are waiting for their replanted crops to mature. In fact, this is the current situation in Malaysia where many growers have delayed replanting to take advantage of high palm oil prices.22 Furthermore, replanting rates could change based on technological developments. Currently, palm oil is replanted when it reaches 25 feet in height due to the length of the long sickle poles often used for harvesting.23 The development of new clonal varieties and harvesting techniques could increase the economically viable lifetime of palm oil plantations, and thus reduce the ratio of immature to harvested area. Accounting for the land use changes associated with expansion of immature 20 Unnasch, S. S. T. Sanchez, and B. Riffel (2011) Well-to-Wheel GHG Emissions and Land Use Change Impacts of Biodiesel from Malaysian Palm Oil. Prepared for Malaysian Palm Oil Council. Life Cycle Associates Report LCA.6015.50P.2011. 21 Department of Statistics, Malaysia. Table 1.2 Area Under Oil Palm Mature and Immature. MPOB Web site, http://econ.mpob.gov.my/economy/ annual/stat2009/Area1_2.pdf. Accessed December 2011. 22 USDA–FAS (2011). 23 Unnasch et al. VerDate Mar<15>2010 18:14 Jan 26, 2012 Jkt 226001 as well as harvested areas of palm oil would be an additional source of land use change GHG emissions in our analysis. We invite comment on whether we should account for incremental expansion in the area of immature palm oil plantations in our analysis, and if so on which factors should be considered in making such a projection. To evaluate land use change GHG emissions resulting from palm oil expansion we considered the soil and land cover types in the areas projected for conversion. Land cover types were determined based on MODIS satellite data, the same land cover data set that was used in the RFS2 final rule. According to our analysis, over the previous decade over 50% of palm oil has been grown on areas classified as forest in Indonesia,24 and the figure is over 60% in Malaysia.25 Table II–5 shows the projected types of land cover impacted in Indonesia and Malaysia by incremental palm oil expansion in 2022 in the scenarios modeled. We project that the forest and mixed land cover types would account for over 80% of the land cover impacted by palm oil expansion. (The mixed land cover category assumes equal shares of forest, grassland, shrubland and cropland.) These projections are in line with recent historical data,26 USDA reports 27 and peer-reviewed literature,28 which all indicate that much of the recent expansion in palm oil has been at the expense of tropical forest. Palm biofuel case 1,351 834 Difference 1,357 837 6 3 TABLE II–5—PROJECTED LAND COVER TYPES IMPACTED BY PALM OIL EXPANSION IN INDONESIA AND MALAYSIA IN 2022—Continued Land cover type Shrubland ............. Savanna ................ Grassland ............. Cropland ............... Wetland ................. Indonesia (%) Malaysia (%) 0 10 1 7 1 0 1 1 5 3 An even more critical factor in terms of estimating land use change GHGs in this region is the extent of tropical peat soil drained in order to prepare land for palm oil production. Almost all of the undisturbed tropical peat land in the world is located in Indonesia and Malaysia, with much smaller amounts also found in Philippines and Thailand.29 Undisturbed tropical peat swamp forest removes carbon dioxide (CO2) from the atmosphere and stores it in biomass and peat deposits. The incomplete decomposition of dead tree material under waterlogged, anaerobic conditions has led to slow accumulation of peat deposits over millennia, giving this ecosystem a very high carbon density. Typical estimates are that tropical peat soils sequester approximately 20 times more carbon than forest biomass on a per hectare basis.30 In their natural state, tropical peat lands are unfavorable for agricultural TABLE II–5—PROJECTED LAND COVER production compared to mineral soils, TYPES IMPACTED BY PALM OIL EX- primarily because peat swamp has a PANSION IN INDONESIA AND MALAY- ground water table that is at or close to SIA IN 2022 the peat surface throughout the year. Despite these harsh conditions, peat Indonesia Malaysia Land cover type swamps have recently been exploited to (%) (%) make room for agricultural and forest Forest .................... 43 54 plantations as the global demand for Mixed .................... 38 35 food, wood and other resources has 24 Harris et al. (2011a), Table 9. et al. (2011b), Table 9. 26 Harris et al. (2011a) and (2011b). 27 USDA–FAS (2009) and (2011). 28 Koh, L. P., Miettinen, J., Liew, S. C. & Ghazoul, J. 2011. Remotely sensed evidence of tropical peatland conversion to oil palm. Proceedings of the National Academy of Scientists of the United States of America, 108, 5127–5132. 25 Harris PO 00000 Frm 00033 Fmt 4703 Sfmt 4703 29 Paramananthan, S. 2008. Tussle over Tropical Peatlands. Global Oils & Fats: Business Magazine. (5)3, 1–16. 30 Page, S. E., Morrison, R., Malins, C., Hooijer, A., Rieley, J. O. & Jauhiainen, J. 2011. Review of peat surface greenhouse gas emissions from oil palm plantations in Southeast Asia (ICCT White Paper 15). Washington: International Council on Clean Transportation. E:\FR\FM\27JAN1.SGM 27JAN1 4308 Federal Register / Vol. 77, No. 18 / Friday, January 27, 2012 / Notices increased.31 Some reasons that have been given for the recent development of peat swamps include that other suitable areas have already been used, advanced land conversion and drainage technologies have been developed, and in some cases seizing the swamps is less likely to result in native land disputes.32 Koh et al. found that approximately 6% of tropical peatlands in Indonesia and Malaysia had been converted to palm oil plantations by the early 2000s.33 Based on our analysis of 2009 data we find that palm oil plantations have been developed disproportionately on peat soils, which occupy 13% of the total land area in Indonesia (Sumatra and Kalimantan) but host 25% of palm oil plantations.34 For Malaysia, we estimate that in 2009 approximately 13% of palm oil plantations were on peat soils compared with only 8% of the country displaying that type of soil.35 Table II– 6 summarizes our analysis regarding the historical and projected extent of palm oil on tropical peat soil. The values in the last row, projected incremental expansion in 2022, are used in our analysis. Taking the weighted averages for Indonesia and Malaysia, based on the data in Table II–4 and Table II–6, we project that 11.5% of incremental palm oil expansion in 2022 will occur on tropical peat lands in the scenarios modeled. tkelley on DSK3SPTVN1PROD with NOTICES addition, several updates have been made to refine our land use change emissions factors for Indonesia and Malaysia. First, average above and below ground carbon stocks in palm oil plantations were revised based on new data. Second, GHG emissions associated with draining peat soils were updated according to new studies which consider data from hundreds of new field measurements. Finally, estimated average forest carbon stocks were updated based on a new study which uses a more robust and higher resolution analysis. In this section we briefly describe each of these updates. More information is available in a technical memorandum available through the docket.38 Palm Oil Carbon Stocks. In the final RFS2 rule, carbon stocks in palm oil plantations after one year of growth were estimated to be 15 tonnes carbon dioxide-equivalent per hectare (tCO2e/ ha). This was based on Table 5.3 of the 2006 IPCC Guidelines for Agriculture, Forestry and Other Land Use (AFOLU),39 which gives biomass stocks on oil palm plantations as 136 tCO2e/ha. The total carbon stock value reported by IPCC was divided by an assumed 15year growth period to derive a linear growth rate. Our original analysis accounted for only one year of growth when estimating carbon storage on palm oil plantations. We have revised our analysis of palm TABLE II–6—PERCENT OF PALM OIL PLANTATIONS ON PEAT SOIL, HIS- oil carbon stocks in favor of a more accurate time-averaged approach, using TORICAL AND PROJECTED average carbon stocks over the life of the plantation. Since a typical rotation Indonesia Malaysia Year period for palm oil is approximately 30 (%) (%) years (e.g., 3–5 years as immature plus 2009 (Historical) ... 22 13 20–25 years of harvesting), this 2022 (Projected) ... 15 10 approach is more appropriate for our 2022 (Projected Inlifecycle analysis methodology as cremental Exestablished in the RFS2 final rule, pansion) ............ 13 9 which considers land use change emissions over a 30-year period. A Land use change emissions factors— literature review of palm oil carbon In our analysis, GHG emissions per stocks was conducted, and based on this hectare of land conversion are review we modified the carbon stocks of determined using the emissions factors palm oil plantations to a time-averaged developed for the RFS2 final rule value of 128 tCO2e/ha.40 following IPCC guidelines.36 37 In Peat Soil Emissions Factors. Development of tropical peatland for 31 Hooijer, A., Page, S., Canadell, J. G., Silvius, M., palm oil production requires removal of ¨ Kwadijk, J., Wosten, H., & Jauhiainen, J. 2010. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences, 7, 1505–1514. 32 Miettinen, J., Chenghua S., Liew, S.C. 2011. Two decades of destruction in Southeast Asia’s peat swamp forests. Frontiers in Ecology and the Environment. 33 Koh et al. (2011). 34 Harris et al. (2011a), Table 22. 35 Harris et al. (2011b), Table 19. 36 Harris, N., Brown, S., and Grimland, S. 2009a. Global GHG Emission Factors for Various Land-Use Transitions. Winrock International. Report Submitted to EPA. April 2009. VerDate Mar<15>2010 18:14 Jan 26, 2012 Jkt 226001 37 Harris, N., Brown, S., and Grimland, S. 2009b. Land Use Change and Emission Factors: Updates since the RFS Proposed Rule. Winrock International. Report Submitted to EPA. December 2009. 38 Harris, N. 2011. Revisions to Winrock’s Land Conversion Emission Factors since the RFS2 Final Rule. Winrock International report to EPA. 39 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 4 Agriculture, Forestry and Other Land Use. Chapter 5. http://www.ipccnggip.iges.or.jp/public/2006gl/vol4.html. 40 Harris (2011). PO 00000 Frm 00034 Fmt 4703 Sfmt 4703 the vegetative cover and typical drainage depths of 0.6 to greater than 1.0 meter. Drainage is accomplished by construction of a network of deep canals and shallower ditches. Additionally, the peat surface is often compacted by the weight of heavy vehicles to improve its load-bearing characteristics and increase the stability of palm trees. These changes remove carbon from the peatland system by lowering the peat water table, ensuring continuous aerobic decomposition of organic material and greatly reducing preservation of new carbon inputs to the peat from biomass. As a result the peat swamp ecosystem switches from a net carbon sink to a large source of carbon emissions. On completion of a productive palm oil cycle, the plantation is typically renewed by land clearance, drainage and replanting.41 In the RFS2 final rule peat soil emissions in Indonesia and Malaysia were estimated based on a relationship developed by Hooijer et al. (2006) that correlates peat drainage depth with annual peat CO2 emissions.42 Assuming average drainage depth of 0.8 meters, average emissions from drained peat soils were estimated to be 73 tCO2 per hectare per year. For our palm oil analysis average peat soil emissions have been updated based on a newly available study (Hooijer et al. 2011) 43 which considers over 200 subsidence measurements (more than were previously available for all peatlands in Southeast Asia combined), taken at various locations including palm oil and acacia plantations on peat soil.44 Earlier studies had assumed constant annual emissions over time following peat soil drainage. Hooijer et al. (2011) is the only source with enough data to calculate peat carbon emissions over various time scales. These data showed higher rates of emission in the years immediately following drainage. As such, average annual emissions are no longer derived as a function of drainage depth but are instead based on the time scale of analysis. Based on Hooijer et al. (2011), our analysis assumes that average emissions from peat soil drainage are 95 tCO2e/ha/yr over a 30-year time period. This is supported by Page et al., who 41 Page et al. ¨ A., M. Silvius, H. Wosten and S. Page. 2006. PEAT–CO2, Assessment of CO2 emissions from drained peatlands in SE Asia. Delft Hydraulics report Q3943. 43 Hooijer, A., Page, S. E., Jauhiainen, J., Lee, W. A., Idris, A., & Anshari, G. 2011. Subsidence and carbon loss in drained tropical peatlands: reducing uncertainty and implications for CO2 emission reduction options. Biogeosciences Discussions, 8, 9311–9356. 44 Page et al., 53. 42 Hooijer, E:\FR\FM\27JAN1.SGM 27JAN1 Federal Register / Vol. 77, No. 18 / Friday, January 27, 2012 / Notices tkelley on DSK3SPTVN1PROD with NOTICES reviewed studies of carbon emissions from peat drainage and concluded that this is the most robust estimate of emissions over a 30-year period. They noted that this estimate, which is based on subsidence measurements, closely matches estimates from similar recent studies which use other measurement techniques such as direct gas fluxes.45 Forest Carbon Stocks. For the RFS2 final rule, international forest carbon stocks were estimated from several data sources each derived using a different methodological approach. Two new analyses on forest carbon stock estimation were completed since the release of the final RFS2 rule, one for three continental regions by Saatchi et al. 46 and the other for the EU by Gallaun et al. 47 We have updated our estimates based on these new studies because they represent significant improvements as compared to the data used in the RFS2 rule. Forest carbon stocks across the tropics are particularly important in our analysis of palm oil biofuels because palm oil is grown in tropical regions. In the scenarios modeled there are also much smaller amounts of land use change impacts in the EU related to palm oil biofuel production. As such, we took this opportunity to incorporate the improved forest carbon stocks data in both of these regions. Preliminary results for Latin America and Africa from Saatchi et al. were incorporated into the final RFS2 rule, but Asia results were not included due to timing considerations. The Saatchi et al. analysis is now complete, and so the final map was used to calculate updated area-weighted average forest carbon stocks for the entire area covered by the analysis (Latin America, sub-Saharan Africa and South and Southeast Asia). The Saatchi et al. results represent a significant improvement over previous estimates because they incorporate data from more than 4,000 ground inventory plots, about 150,000 biomass values estimated from forest heights measured by space-borne light detection and ranging (LIDAR), and a suite of optical 45 Jauhiainen, J., Hooijer, A., & Page, S. E. (2011). Carbon Dioxide Fluxes in an Acacia Plantation on Tropical Peatland. Biogeosciences Discussions, 8, 8269–8302. 46 Saatchi, S.S., Harris, N.L., Brown, S., Lefsky, M., Mitchard, E.T.A., Salas, W., Zutta, B.R., Buermann, W., Lewis, S.L., Hagen, S., Petrova, S., White, L., Silman, M. and Morel, A. 2011. Benchmark map of forest carbon stocks in tropical regions across three continents. PNAS doi: 10.1073/ pnas.1019576108. 47 Gallaun, H., Zanchi, G., Nabuurs, G.J., Hengeveld, G., Schardt, M., Verkerk, P.J. 2010. EUwide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements. Forest Ecology and Management 260: 252–261. VerDate Mar<15>2010 18:14 Jan 26, 2012 Jkt 226001 and radar satellite imagery products. Estimates are spatially refined at 1-km grid cell resolution and are directly comparable across countries and regions. In the final RFS2 rule, forest carbon stocks for the EU were estimated using a combination of data from three different sources. Issues with this ‘patchwork’ approach were that the biomass estimates were not comparable across countries due to the differences in methodological approaches, and that estimates were not spatially derived (or, the spatial data were not provided to EPA). Since the release of the final rule, Gallaun et al. developed EU-wide maps of above-ground biomass in forests based on remote sensing and field measurements. MODIS data were used for the classification, and comprehensive field measurement data from national forest inventories for nearly 100,000 locations from 16 countries were also used to develop the final map. The map covers the whole European Union, the European Free Trade Association countries, the Balkans, Belarus, the Ukraine, Moldova, Armenia, Azerbaijan, Georgia and Turkey. For both data sources, Saatchi et al. and Gallaun et al., we added belowground biomass to reported aboveground biomass values using an equation in Mokany et al.48 More details regarding updated forest carbon stock estimates are available in a technical report to the docket.49 In our analysis, forest stocks are estimated for over 750 regions across 160 countries. For some regions the carbon stocks increased as a result of the updates and in others they declined. For comparison, we ran our palm oil analysis using the old forest carbon stock values used in the RFS2 rule and with the updated forest carbon values described above. Using the updated forest carbon stocks decreased the land use change GHG emissions related to palm oil biofuels by only 0.1%. Harvested Wood Products. Another update that was incorporated into our analysis of Indonesia and Malaysia is related to harvested wood products (HWP). When forest is cleared a fraction of the vegetation is harvested as valuable timber for use in wood products such as sawn wood, wood panels, paper and paperboard. Accounting for HWP in our analysis involves estimating the amount of carbon that is sequestered in these wood 48 Mokany, K., R.J. Raison, and A.S. Prokushkin. 2006. Critical analysis of root:shoot ratios in terrestrial biomes. Global Change Biology 12: 84–96. 49 Harris (2011). PO 00000 Frm 00035 Fmt 4703 Sfmt 4703 4309 products for at least the length of the analysis period (i.e., greater than 30 years). For the final RFS2 rule we addressed the potential significance of the HWP pool and concluded that for most regions of the world the amount of carbon stored in wood products longterm was insignificant, especially when considering a timeframe of 30 years. Therefore, carbon storage in HWP was not incorporated into the emission factors for deforestation in the RFS2 final rule. For this analysis we have estimated carbon storage in HWP for timber extraction in Indonesia and Malaysia. Our updated assessment is based on the approved Verified Carbon Standard methodology for estimation of carbon stocks in the long-term wood products pool.50 We undertook this update because based on our analysis Indonesia and Malaysia have the highest average timber extraction rates in the world, equaling 52 and 42 cubic meters per hectare (m3/ha), respectively.51 The fraction of extracted biomass that ends up as wood waste during production was estimated as a constant 19% based on Winjum et al.52 We also estimated the fraction of wood products which will be retired and oxidized to the atmosphere in 30 years or less after harvesting. After accounting for wood waste and carbon in products that will not last for more than 30 years, the remainder is assumed to be the carbon stored in HWP after 30 years. We estimate that on average the carbon stored in harvested wood products after 30 years equals 3.0 and 1.9 tonnes of carbon per hectare of forest cleared (tC/ ha) in Indonesia and Malaysia, respectively. These values are quite small compared to the forest carbon stocks in the region, which are typically in the range of 150–200 tC/ha. For more details on our updated assessment of HWP refer to the technical report available through the docket.53 Land use change emissions results— Based on the analysis described above we estimated land use change GHG emissions related to the production and use of biodiesel and renewable diesel from palm oil feedstock. Most of the land use change emissions associated with these two biofuels occur in 50 Verified Carbon Standard (VCS) methodology module VMD0005: Estimation of carbon stocks in the long-term wood products pool (CP–W), Sectoral Scope 14, http://www.v-c-s.org/methodologies/find. 51 Only two other countries have extraction rates above 20 m3/ha: India with 33 m3/ha and China with 22 m3/ha. 52 Winjum, J.K., Brown, S., Schlamadinger, B. 1998. Forest harvests and wood products: Sources and sinks of atmospheric carbon dioxide. Forest Science 44: 272–284. 53 Harris (2011). E:\FR\FM\27JAN1.SGM 27JAN1 4310 Federal Register / Vol. 77, No. 18 / Friday, January 27, 2012 / Notices yrs). These are the incremental emissions related to the production and use of approximately 400 million additional gallons of palm oil biofuels in the palm biofuel case compared to the control case. For Indonesia and Indonesia and Malaysia. Table II–7 includes the land use change GHG emissions results for the scenarios modeled, in terms of million metric tonnes of carbon-dioxide equivalent over 30 years (MMT CO2e/yr over 30 Malaysia the emissions are broken out by land conversion category, showing that the dominant sources of emissions are from peat swamp drainage and forest clearing in these two countries. TABLE II–7—LAND USE CHANGE GHG EMISSIONS [MMT CO2e/yr over 30 yrs] Source of emissions Indonesia Malaysia Rest of world Forest Clearing ............................................................................................................................ Other Land Cover Clearing ......................................................................................................... Peat Soil Drainage ....................................................................................................................... 0.33 (0.02) 0.81 0.46 0.03 0.33 NA ........................ ........................ Total ...................................................................................................................................... 1.11 0.83 0.37 tkelley on DSK3SPTVN1PROD with NOTICES 5. Analysis of Palm Oil Mills A key part of our analysis focuses on palm oil mills where bunches of fresh palm fruit are separated into palm kernels, empty fruit bunches, and the remaining fruit which contains crude palm oil. This is a similar step to soybean crushing which is included in the soybean biodiesel lifecycle analysis in the RFS2 rule. EPA’s analysis for palm oil mills includes an assessment of the energy and materials flows for an average palm oil mill and the resulting lifecycle GHG emissions. Palm oil mills extract crude palm oil using steam for sterilization, mechanical stirring, screw presses and other filtering, purifying and drying processes. The main solid wastes from the process (i.e., empty fruit bunches, mesocarp fiber, shells) are commonly returned to the field as fertilizer or used as fuel to generate steam and electricity for use in the mill. The main liquid waste called palm oil mill effluent (POME) is a dark brown slurry containing waste water, plant oil, and debris from the palm fruit. To meet environmental standards for discharge into local waterways the POME is treated in a series of anaerobic lagoons or tanks. When the POME is digested it generates biogas containing various concentrations of carbon dioxide and methane. If POME is digested in open ponds or tanks, the methane and carbon dioxide is emitted to the atmosphere. Our analysis indicates that the methane emissions from POME digestion can represent a substantial portion of the lifecycle GHG emissions associated with palm oil biodiesel. However, if covered lagoons or closed digester tanks are used, at least some of this methane can be captured and then either flared or used to generate electricity and/or steam. This process converts methane, which has a high global warming potential (GWP) of 21, to CO2, which VerDate Mar<15>2010 18:14 Jan 26, 2012 Jkt 226001 has a lower GWP of 1, thus preventing the higher impact methane from entering the atmosphere. Because POME methane emissions are an important part of the lifecycle GHG emissions associated with palm oil biofuels, we collected information specifically looking at the deployment of POME methane capture/use technologies at palm oil mills. According to a mandatory survey of 422 Malaysian palm oil mills conducted by the Malaysian Palm Oil Board in 2010, 38 mills were capturing POME biogas, 34 mills had POME biogas capture projects under construction, and 47 mills were in various stages of planning to implement biogas capture at some point between 2012 and 2020. Among the mills that are currently capturing POME biogas, 63% use closed tank digesters and 37% use covered lagoons. Forty percent of the mills that are capturing POME biogas destroy it with flaring, 34% use it to generate electricity, 5% use it to produce steam, and 21% employ combined heat and power to generate steam and electricity. Information about POME methane capture was also provided by the Indonesian Embassy. According to the information provided, 3.5% of Indonesia’s 608 palm oil mills are currently capturing POME biogas with an additional 2% of the mills in the process of constructing biogas capture/ use projects. Thus, we estimate that 33 of Indonesia’s 608 mills have methane capture/use projects in operation or under construction. All of the mills that currently capture POME biogas have covered lagoons and use the captured methane to generate electricity, based on data provided by the Indonesian Embassy. We are using the data from the Malaysian survey of palm oil mills and the information provided by the Indonesian Embassy to derive the industry average used in our lifecycle PO 00000 Frm 00036 Fmt 4703 Sfmt 4703 analysis. Based on the information collected and described above, our assessment of the lifecycle GHG emissions from industry average palm oil mills assumes that 10% of palm oil mills capture the methane from anaerobic digestion of POME (i.e., 105 mills capture methane out of 1,030 total mills in Indonesia and Malaysia). Of the mills that capture POME methane we assume, based on the data described above, that 27% of the mills flare captured methane, 55% use the methane for electricity generation, 3% use the methane to produce steam and 14% use the methane to produce electricity and steam (the percentages do not sum to 100% due to rounding). We believe that deriving the industry average in this manner is reasonable because palm oil mills in Malaysia and Indonesia represent close to 90% of crude palm oil production, and we do not have any reason to believe that biogas capture rates would be different enough in the other palm oil producing regions to affect our determinations. As discussed above, our analysis is based on average practices at palm oil mills in Indonesia and Malaysia. This is because the vast majority of palm oil for biofuel production would be extracted in these two countries. If the portion of facilities capturing biogas outside of Malaysia and Indonesia is different than currently within Malaysia and Indonesia or if the methane capture/use efficiencies are different than assumed in our analysis, then the average GHG emissions from palm mill operations would be different and the overall GHG performance of the biofuels produced from palm oil would be different than determined in our analysis. Because the vast majority of palm oil biofuel production is likely to occur in Indonesia and Malaysia, the impact of these differences on our results would be minimized because our analysis E:\FR\FM\27JAN1.SGM 27JAN1 tkelley on DSK3SPTVN1PROD with NOTICES Federal Register / Vol. 77, No. 18 / Friday, January 27, 2012 / Notices looks at average palm oil production practices. For this analysis, we determined the percentage of facilities employing methane capture/use based on projects currently in operation or under construction (facilities in the planning stage are not included). The analysis does not include any projected increases in the number of facilities that will employ these technologies above and beyond those currently operating or being installed between now and 2022. We do not project an increase because we are not aware of a technical or economic basis for making such a projection. For example, we do not have a sufficient technical or economic basis for determining how many of the mills in Malaysia that are at some stage of planning methane capture and use projects will actually follow through with construction and operation. For Indonesia and other countries we have even less information about additional possible deployment of such projects. Methane capture and use as applied to palm oil mills is a relatively new technology which has not been widely adopted (i.e., 10% of mills are currently using this technology in Indonesia and Malaysia). At this time, adoption of methane capture and use technology is entirely done voluntarily; there are no laws requiring its deployment. There are no mandatory requirements to install methane capture and use technologies, and no other strong reasons on which to base a projection of increased adoption of these technologies. Methane capture and use involves clear and significant costs, both in terms of equipment purchase and installation as well as in routine maintenance. If the captured methane is flared, the only option for a facility to recoup a portion of its costs would be through some type of certified emission reduction credit program, such as through the CDM.54 Certification under the CDM, though, requires additional time and costs and after more than a decade of operation the incentives provided by the CDM have spurred limited adoption of biogas capture at palm oil mills, as evidenced by the data on adoption of methane capture and use technologies at palm oil mills in Malaysia and Indonesia discussed above. We recognize that in some cases, it may make economic sense to, at additional cost, install equipment for using the methane as a fuel to generate 54 For more information about the Clean Development Mechanism, which is implemented under the United Nations Framework Convention on Climate Change, refer to: http:// cdm.unfccc.int/. VerDate Mar<15>2010 18:14 Jan 26, 2012 Jkt 226001 electricity. Currently, palm oil mills in remote areas which do not have access to grid electricity tend to burn waste palm material to generate necessary process energy. EPA does not have sufficient information on which to determine how many facilities will, for economic reasons, choose to replace current equipment using the burning of waste palm material with methane capture and electricity generation capacity. This lack of information and basis for projecting the increased use of methane capture and use contrasts to other cases where, in the context of performing lifecycle GHG emissions analysis for the RFS program, we have been able to project technology improvements through 2022. For example, we have many years of data demonstrating a gradual increase in crop yields per acre for palm oil. Additionally, we know that substantial research continues in further improvements to palm oil yields and that as new varieties of oil palm come on market farmers have a natural economic incentive to adopt the enhanced crop varieties. We are thus able to project with a reasonably high degree of confidence a rate of continued improvement in palm oil crop yield through 2022. By contrast, we determined that biodiesel production technologies are mature and therefore we do not predict any improvements in process technology. In sum, where we have had sufficient information to predict improvements in the general state of technology across the industry, we have done so, but where no such basis exists—such as for methane capture/use at palm oil mills—we do not include such projections in our analysis.55 At least some methane capture/use projects at palm oil mills in Malaysia and Indonesia are registered under the CDM, but our analysis does not treat emission reductions differently based on whether or not a palm oil mill’s methane capture/use project is CDMregistered. As defined in Article 12 of the Kyoto Protocol, the CDM allows a country with an emission-reduction or emission-limitation commitment under the Kyoto Protocol to implement emission-reduction projects in developing countries. Such projects can earn saleable certified emission reduction (CER) credits, each equivalent to one tonne of CO2, which can be counted towards meeting Kyoto targets. 55 We note, however, that, based on our analysis, our proposed determinations regarding lifecycle GHG thresholds would not change even if we assumed that all of the methane capture projects being planned in Malaysia will come to fruition. See Section II.D.2 for more information. PO 00000 Frm 00037 Fmt 4703 Sfmt 4703 4311 For example, CERs can be used for compliance purposes under the European Union’s (EU) Emissions Trading System (ETS). A CER from a palm oil methane destruction project in Malaysia, for example, could conceivably be used for compliance under the EU ETS. Under such a scenario, an argument could be made that counting the emission reductions from a ‘‘retired’’ CER as part of our lifecycle analysis would effectively be double counting the same emission reduction. While CDM’s project database states that 47 palm oil mills in Indonesia and Malaysia have methane capture/use projects registered with the CDM,56 57 we have been unable to verify that any CERs generated by methane capture/use at the relevant palm oil mills have actually been used to meet obligations under the EU ETS.58 However, even if all of the available CER credits for methane emissions reduction had been purchased and retired for compliance purposes (and were thus not counted in our analysis), this would increase our lifecycle GHG emission estimates by only a relatively small amount (on the order of 2%). A final factor informing our approach on this topic is uncertainty about whether the CDM and ETS programs will be extended in their current form. Based on our lack of evidence that relevant CERs had been purchased, the relative magnitude of the emissions in question, and general uncertainty about the future of the CDM and ETS programs, our approach for lifecycle analysis purposes is to treat emission reductions from CDM-registered palm oil projects as we treat any other emission reduction. While we believe we do not have a strong technical or economic basis treating them otherwise at this time, we ask for further comment on this topic. According to the MPOB, another potential practice that can avoid methane emissions from palm oil mills entails recovering the organic solids 56 Using the Web site: http://cdm.unfccc.int/ Projects/projsearch.html; six project title searches were completed with the keywords ‘‘palm’’, ‘‘POME’’, ‘‘wastewater’’, ‘‘waste water’’, ‘‘biogas’’, and ‘‘methane.’’ Search results were then examined to determine which projects involved methane capture from anaerobic digestion of POME. 57 These 47 mills represent approximately 79% of the mills with operational methane capture and use projects, but only about 5% of all mills in Indonesia and Malaysia. 58 Cross-checking the registered mills with an EC list of CERs surrendered under the EU ETS as of March 19, 2010 yielded no matches. Unfortunately, due to the design of their electronic databases, the European Commission was unable to verify for us whether any of the CERs generated by methane capture at palm oil mills have been purchased and used by European companies. Personal communication with Thomas Bernheim (European Commission) from September 23, 2011. E:\FR\FM\27JAN1.SGM 27JAN1 4312 Federal Register / Vol. 77, No. 18 / Friday, January 27, 2012 / Notices tkelley on DSK3SPTVN1PROD with NOTICES from POME so that there is no anaerobic digestion and therefore no methane emissions.59 Unless the recovered solids are used to replace other products the GHG reduction benefits of this technology are likely to be less than reductions associated with methane capture/use for electricity generation. MPOB data suggests that methane avoidance has not been deployed at a significant number of palm oil mills. Because we do not have a strong technical or economic basis for projecting the deployment of this technology it is not considered in our lifecycle analysis. Our analysis also accounts for the coproducts from palm oil mills. We assume that the biomass co-products (e.g., mesocarp fiber and shells) are used for heat and energy, with remaining empty fruit bunches trucked back to the field for use as fertilizer. We also account for the palm kernel co-product and model the emissions related to transporting the palm kernels to a separate milling facility where palm kernel oil and palm kernel meal are produced. Our agricultural modeling accounts for the use of the palm kernel oil and meal in the food and feed markets. The docket includes a memorandum with more discussion of and justification for the data, inputs and assumptions used in our analysis of palm oil mills.60 EPA invites comment on all aspects of its modeling of lifecycle GHG emissions from palm oil mills, including all of the assumptions and data inputs used. B. Results of Lifecycle Analysis for Biodiesel from Palm Oil We analyzed the lifecycle GHG emission impacts of producing biodiesel using palm oil as a feedstock assuming the same biodiesel production facility designs and conversion efficiencies as modeled in RFS2 for biodiesel produced from soybean oil. Our analysis looks at biodiesel produced in Indonesia or Malaysia which is then shipped to the United States via ocean tanker. As such, GHG emissions associated with electricity used at biodiesel production facilities were determined based on the emissions factors for grid average electricity generation in Indonesia and Malaysia. As was the case for soybean oil biodiesel, production technology for palm oil biodiesel is mature and we have not projected in our assessment of palm oil biodiesel any significant improvements in plant technology; 59 MPOB 60 EPA (2010). (2011). VerDate Mar<15>2010 18:14 Jan 26, 2012 Jkt 226001 while unanticipated energy saving improvements would tend to improve GHG performance of the fuel pathway, there is no valid basis for projecting such improvements. Additionally, similar to soybean oil biodiesel production, we assumed that the coproduct glycerin would displace residual oil as a fuel source on an energy equivalent basis. As part of the RFS2 proposal we assumed the glycerin would have no value and would effectively receive no co-product credits in the soy biodiesel pathway. We received numerous comments, however, as part of the RFS2 final rule stating that the glycerin would have a beneficial use and should generate co-product benefits. Therefore, the biodiesel glycerin co-product determination made as part of the RFS2 final rule took into consideration the possible range of co-product credit results. The actual co-product benefit will be based on what products are replaced by the glycerin, or what new uses the co-product glycerin is applied to. The total amount of glycerin produced from the biodiesel industry will actually be used across a number of different markets with different GHG impacts. This could include for example, replacing petroleum glycerin, replacing fuel products (residual oil, diesel fuel, natural gas, etc.), or being used in new products that don’t have a direct replacement, but may nevertheless have indirect effects on the extent to which existing competing products are used. The more immediate GHG reductions from glycerin coproduct use will likely range from fairly high reductions when petroleum glycerin is replaced to lower reduction credits if it is used in new markets that have no direct replacement product, and therefore no replaced emissions. EPA does not have sufficient information (and received no relevant comments to the RFS2 proposal) on which to allocate glycerin use across the range of likely uses. EPA’s approach is to pick a surrogate use for modeling purposes in the mid-range of likely glycerin uses, and focus on the more immediate GHG emissions results tied to such use. The replacement of an energy equivalent amount of residual oil is a simplifying assumption determined by EPA to reflect the mid-range of possible glycerin uses in terms of GHG credits, and EPA believes that it is appropriately representative of GHG reduction credit across the possible range without necessarily biasing the results toward high or low GHG impact. Given the fundamental difficulty of predicting possible glycerin uses and impacts of PO 00000 Frm 00038 Fmt 4703 Sfmt 4703 those uses many years into the future under different market conditions, EPA believes it is reasonable to use its more simplified approach to calculating coproduct GHG benefit associated with glycerin production. To narrow this area of uncertainty in our analysis we invite commenters to submit data regarding the use of glycerin produced at biodiesel production facilities, and especially for glycerin produced at facilities that are based in Indonesia or Malaysia or that use palm oil as a feedstock. As with other EPA analyses of fuel pathways with a significant land use impact, our analysis for palm oil biodiesel includes a mid-point estimate as well as a range of possible lifecycle GHG emission results based on uncertainty analysis conducted by the Agency. The graph included below (Figure II–1) depicts the results of our analysis (including the uncertainty in our land use change modeling) for palm oil biodiesel produced via transesterification using natural gas as process energy, because this is the primary source of process energy at existing plants. The docket also includes pathway analyses assuming coal or biomass is used instead of natural gas for process energy. Because the trans-esterification process requires a relatively small amount of energy, our threshold determinations would remain the same for the palm oil biodiesel pathway regardless of whether natural gas, coal or biomass is used for energy in the biodiesel production process. Figure II–1 shows the results of our biodiesel modeling. It shows the percent difference between lifecycle GHG emissions for the modeled 2022 palm oil biodiesel, produced via transesterification using natural gas for process energy, and those for the petroleum diesel fuel 2005 baseline. Lifecycle GHG emissions equivalent to the statutory diesel fuel baseline are represented on the graph by the zero on the X-axis. The results for palm oil biodiesel are that the midpoint of the range of results is a 17% reduction in GHG emissions compared to the 2005 diesel fuel baseline.61 As in the case of other biofuel pathways analyzed as part of the RFS2 rule, the range of results shown in Figure II–1 is based on our assessment of uncertainty regarding the location and types of land that may be impacted as well as the GHG impacts associated with these land use changes (See Section II.D.3. for further information). These results, if finalized, 61 The 95% confidence interval around that midpoint results in range of a 4% increase to a 35% reduction compared to the 2005 diesel fuel baseline. E:\FR\FM\27JAN1.SGM 27JAN1 Federal Register / Vol. 77, No. 18 / Friday, January 27, 2012 / Notices 4313 would justify our determination that fuel produced by the modeled palm oil biodiesel pathway fails to meet the 20% reduction threshold required for the generation of conventional renewable fuel RINs. Table II–8 breaks down by stage the lifecycle GHG emissions for palm oil biodiesel in 2022 and the statutory 2005 diesel baseline.62 Results are included using our mid-point estimate of land use change emissions, as well as with the low and high end of the 95% confidence interval. Net agricultural emissions include impacts related to changes in crop inputs, such as fertilizer, energy used in agriculture, livestock production and other agricultural changes in the scenarios modeled. Land use change emissions are discussed above in Section II.A.4. Emissions from fuel production include emissions from palm oil mills, palm kernel mills and the trans-esterification process to produce biodiesel. Fuel and feedstock transport includes emissions from transporting fresh fruit bunches, palm kernels, crude palm oil and finished biodiesel along each stage of the lifecycle. In our analysis we assume that palm oil is converted to biodiesel in Indonesia and Malaysia and then the biodiesel is transported via ocean tanker to the U.S. Transporting crude palm oil to the U.S. would result in greater GHG emissions because biodiesel has greater energy density than crude palm oil. TABLE II–8—LIFECYCLE GHG EMISSIONS FOR PALM OIL BIODIESEL [kgCO2e/mmBtu] Palm oil biodiesel Net Agriculture (w/o land use change) ............................................................................................ Land Use Change, Mean (Low/High) .............................................................................................. Fuel Production ................................................................................................................................ Fuel and Feedstock Transport ........................................................................................................ 5 46 (28/66) 25 4 62 Totals in the table may not sum due to rounding. VerDate Mar<15>2010 18:14 Jan 26, 2012 Jkt 226001 PO 00000 Frm 00039 Fmt 4703 Sfmt 4703 E:\FR\FM\27JAN1.SGM 27JAN1 2005 Diesel baseline .................................... .................................... 18 * EN27JA12.001</GPH> tkelley on DSK3SPTVN1PROD with NOTICES Fuel type 4314 Federal Register / Vol. 77, No. 18 / Friday, January 27, 2012 / Notices TABLE II–8—LIFECYCLE GHG EMISSIONS FOR PALM OIL BIODIESEL—Continued [kgCO2e/mmBtu] Fuel type Palm oil biodiesel 2005 Diesel baseline Tailpipe Emissions ........................................................................................................................... 1 79 Total Emissions, Mean (Low/High) .......................................................................................... Midpoint Lifecycle GHG Percent Reduction Compared to Petroleum Baseline ............................. 80 (62/101) 17% 97 .................................... * Emissions included in fuel production stage. tkelley on DSK3SPTVN1PROD with NOTICES The docket for this NODA provides more details on our key model inputs and assumptions, e.g., crop yields, biofuel conversion yields, and agricultural energy use. These inputs and assumptions are based on our analysis of peer-reviewed literature and consideration of recommendations of experts from within the palm oil and biodiesel industries and those from USDA as well as the experts at Iowa State University who have designed the FAPRI-CARD models. EPA invites comment on all aspects of its modeling of palm oil biodiesel, including all assumptions made and modeling inputs. C. Results of Lifecycle Analysis for Renewable Diesel From Palm Oil Palm oil can also be used in a hydrotreating process to produce a slate of products, including diesel fuel, heating oil (defined as No. 1 or No. 2 diesel), jet fuel, naphtha, liquefied petroleum gas (LPG), and propane. Since the RFS regulations define the term renewable diesel to include the products diesel fuel, jet fuel and heating oil (40 CFR 80.1401), the following discussion uses the term renewable diesel to refer to all of these products. (The terms diesel fuel or diesel fuel replacement are used to refer to only the diesel fraction of the hydrotreating output.) While any propane (also referred to as fuel gas) produced as part of the hydrotreating process will most likely be combusted within the facility for process energy, the other coproducts that can be produced (i.e., jet fuel, naphtha, LPG) are higher value products that could be used as transportation fuels or, in the case of naphtha, a blendstock for production of transportation fuel. The hydrotreating process maximized for producing a diesel fuel replacement as the primary fuel product requires more overall material and energy inputs than transesterification to produce biodiesel, but it also results in a greater amount of other valuable co-products, as listed above. The hydrotreating process can also be maximized for jet fuel production which requires even more process energy than the process optimized for producing a diesel fuel VerDate Mar<15>2010 18:14 Jan 26, 2012 Jkt 226001 replacement and produces a greater amount of co-products per barrel of feedstock, especially naphtha. Our lifecycle analysis accounts for the various uses of the co-products from hydrotreating. There are two main approaches to accounting for the coproducts produced, the allocation approach and the displacement approach. In the allocation approach all the emissions from the hydrotreating process are allocated across all the different co-products. There are a number of ways to do this, but since the main use of the co-products would be as fuel products, we allocate based on the energy content of the co-products produced. So emissions from the process would be allocated equally to all the Btus produced. Therefore, on a per Btu basis all co-products would have the same emissions. The displacement approach would attribute all of the emissions of the hydrotreating process to one main product and then account for the emission reductions from the other co-products displacing alternative products. So for example, if the hydrotreating process is configured to maximize renewable diesel production all of the emissions from the process would be attributed to renewable diesel, but we would then assume the other co-products were displacing alternative products, for example, naphtha would displace gasoline, LPG would displace natural gas, etc. This assumes the other alternative products are not produced or used so we would subtract the emissions of gasoline production and use, natural gas production and use, etc. This would show up as a GHG emission credit associated with the production of the renewable diesel. To account for a hypothetical scenario where RINs are generated from the renewable jet fuel, heating oil, naphtha and LPG in addition to the diesel replacement fuel produced, we would not give the diesel replacement fuel a displacement credit for these coproducts. Instead, the lifecycle GHG emissions from the fuel production processes would be allocated to each of the RIN-generating products on an energy content basis. This has the effect PO 00000 Frm 00040 Fmt 4703 Sfmt 4703 of tending to increase the fuel production lifecycle GHG emissions associated with the diesel replacement fuel because there are fewer co-product displacement credits to assign than would be the case if RINs were not generated for the co-products.63 On the other hand, the upstream lifecycle GHG emissions associated with producing and transporting the plant oil feedstocks will be distributed over a larger group of RIN-generating products. Assuming each product (except propane) produced via the palm oil hydrotreating process would generate RINs results in higher lifecycle GHG emissions for diesel fuel replacement as compared to the case where the co-products are not used to generate RINs. This general principle is also true when the hydrotreating process is maximized for jet fuel production. As a result, the best GHG performance (i.e., least lifecycle GHG emissions) for palm-oil renewable diesel via hydrotreating will occur when none of the co-products are RIN-generating (i.e., only the diesel replacement fuel is used to generate RINs). We have evaluated information about the lifecycle GHG emissions associated with the hydrotreating process which can be maximized for renewable jet fuel or diesel production. Our evaluation considers information published in peer-reviewed journal articles and publicly available literature (Kalnes et al.,64 Pearlson,65 Stratton et al., Huo et al.66). Our analysis of GHG emissions from the hydrotreating process is based 63 For a similar discussion see Stratton R.W., Wong, H.M., Hileman, J.I., 2011. Quantifying Variability in Lifecycle Greenhouse Gas Inventories of Alternative Middle Distillate Transportation Fuels. Environmental Science & Technology. 45, 4640. 64 Kalnes, T.N., McCall, M.M., Shonnard, D.R., 2010. Renewable Diesel and Jet-Fuel Production from Fats and Oils. Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, Chapter 18, p. 475. 65 Pearlson, M.N., 2011. A Techno-Economic and Environmental Assessment of Hydroprocessed Renewable Distillate Fuels. http://dspace.mit.edu/ handle/1721.1/65508. 66 Huo, H., Wang, M., Bloyd, C., Putsche, V., 2008. Life-Cycle Assessment of Energy and Greenhouse Gas Effects of Soybean-Derived Biodiesel and Renewable Fuels. Argonne National Laboratory. Energy Systems Division. ANL/ESD/08– 2. March 12, 2008. E:\FR\FM\27JAN1.SGM 27JAN1 4315 Federal Register / Vol. 77, No. 18 / Friday, January 27, 2012 / Notices on the mass and energy balance data in Pearlson which analyzes a hydrotreating process maximized for diesel production and a hydrotreating process maximized for jet fuel production.67 These data are summarized in Table II– 9.68 TABLE II–9—HYDROTREATING PROCESS TO PRODUCE RENEWABLE DIESEL FUEL Maximized for diesel fuel production Inputs Crude Palm Oil ............................................................................. Hydrogen ...................................................................................... Electricity ...................................................................................... Natural Gas .................................................................................. Outputs: Diesel Fuel ................................................................................... Jet Fuel ........................................................................................ Naphtha ........................................................................................ LPG .............................................................................................. Propane ........................................................................................ Table II–10 compares lifecycle GHG emissions from hydrotreating for palmoil-based renewable diesel and jet fuel. The lifecycle GHG estimates for palmoil diesel and jet fuel are based on the input/output data summarized in Table II–9. For the scenarios analyzed, we Maximized for jet fuel production Units (per gallon of fuel produced) 9.56 0.04 652 23,247 12.84 0.08 865 38,519 Lbs. Lbs. Btu. Btu. 123,136 23,197 3,306 3,084 7,454 55,845 118,669 17,042 15,528 9,881 Btu. Btu. Btu. Btu. Btu. assume that the LPG and propane coproducts do not generate RINs; instead, they are used for process energy displacing natural gas. We also assume that the naphtha does not generate RINs but is used as blendstock for production of transportation fuel displacing conventional gasoline. As discussed above, lifecycle GHG emissions per Btu of diesel or jet fuel would be higher if the naphtha or LPG were used to generate RINs. TABLE II–10—HYDROTREATING LIFECYCLE GHG EMISSIONS [gCO2e/mmBtu] Process RIN-generating products Other co-products Hydrotreating Maximized for Diesel ...................................... Diesel ..................................... Jet Fuel .................................. ................................................ Diesel ..................................... Jet Fuel .................................. ................................................ Naphtha ................................. LPG. Propane. Naphtha ................................. LPG. Propane. tkelley on DSK3SPTVN1PROD with NOTICES Hydrotreating Maximized for Jet Fuel ................................... Hydrotreating emissions 4,448 (3,358) In Table II–10 the process maximized for jet fuel production results in negative emissions at the hydrotreating stage. This is due to the displacement credits for co-products, especially naphtha, replacing conventional gasoline.69 As shown in Table II–9, the process maximized for jet fuel production requires significantly more crude palm oil per Btu of fuel output. Each additional pound of palm oil used in the process has related lifecycle GHG emissions associated with producing, processing and transporting the palm oil to the hydrotreating facility. As a result, when palm oil is used as the feedstock, the full lifecycle GHG emissions are greater for the process maximized for jet fuel when all of the stages of the lifecycle are factored into the analysis. Unless otherwise noted, the analysis of palm oil renewable diesel in this preamble refers to the first scenario in Table II–10: hydrotreating maximized for production of diesel fuel replacement. Supporting information for the values in Table II–10 is provided through the docket. As discussed above, for a process that produces more than one RIN-generating output we allocate lifecycle GHG emissions to the RIN-generating products on an energy equivalent basis. We then normalize the allocated lifecycle GHG emissions per mmBtu of each fuel product. Therefore, each RINgenerating product from the same process will be assigned equal lifecycle GHG emissions per mmBtu from fuel processing. For example, based on the lifecycle GHG estimates in Table II–10, for the hydrotreating process maximized to produce diesel fuel, the diesel and jet fuel both have lifecycle GHG emissions of 4,448 gCO2e/mmBtu. For the same reasons, the lifecycle GHG emissions from the diesel and jet fuel will stay equivalent if we consider upstream GHG emissions, such as emissions associated with palm oil cultivation and land use change. Lifecycle GHG emissions from fuel distribution and use could be somewhat different for the diesel and jet fuel, but since these stages produce a relatively small share of the emissions related to the full fuel lifecycle, the overall differences will be quite small. The results presented below include emissions related to transporting palm oil-based diesel fuel. We model the production technology for palm oil renewable diesel as mature and therefore have not projected in our assessment any significant improvements in plant technology. Unanticipated energy saving 67 We have also considered data submitted by companies involved in the hydrotreating industry which is claimed as confidential business information (CBI). The conclusions using the CBI data are consistent with the analysis presented here. 68 Based on Pearlson, Table 3.1 and Table 3.2. 69 Co-product displacement accounting is described further in the inputs and assumptions document available through the public docket for this notice. VerDate Mar<15>2010 18:14 Jan 26, 2012 Jkt 226001 PO 00000 Frm 00041 Fmt 4703 Sfmt 4703 E:\FR\FM\27JAN1.SGM 27JAN1 4316 Federal Register / Vol. 77, No. 18 / Friday, January 27, 2012 / Notices GHG emissions for palm oil renewable diesel produced in 2022 and those for the statutory petroleum baseline. Lifecycle GHG emissions equivalent to the diesel baseline are represented on the graph by the zero on the X-axis. The results for palm oil renewable diesel are that the midpoint of the range of results is an 11% reduction in GHG emissions compared to the diesel fuel baseline.70 As with Figure II–1, the range of results shown in Figure II–2 is based on our assessment of uncertainty regarding the location and types of land that may be impacted as well as the GHG impacts associated with these land use changes. These results, if finalized, would justify our determination that fuel produced by the modeled palm oil renewable diesel pathway fails to meet the 20% reduction threshold required for the generation of conventional renewable fuel RINs. Table II–11 breaks down by stage the lifecycle GHG emissions for palm oil renewable diesel in 2022 and the statutory diesel baseline.71 This table demonstrates the contribution of each stage and its relative significance. Results are included using our midpoint estimate of land use change emissions, as well as with the low and high end of the 95% confidence interval. Net agricultural emissions include impacts related to changes in crop inputs, such as fertilizer, energy used in agriculture, livestock production and other agricultural changes in the scenarios modeled. Land use change emissions are discussed above in Section II.A.4. Emissions from fuel production include emissions from palm oil mills, palm kernel mills and the hydrotreating process to produce renewable biodiesel. Fuel and feedstock transport includes emissions from transporting fresh fruit bunches, palm kernels, crude palm oil and finished renewable diesel along each stage of the lifecycle. 70 The 95% confidence interval around that midpoint results in range of a 10% increase to a 30% reduction compared to the 2005 diesel fuel baseline. 71 In the table totals may not sum due to rounding. VerDate Mar<15>2010 18:14 Jan 26, 2012 Jkt 226001 PO 00000 Frm 00042 Fmt 4703 Sfmt 4703 E:\FR\FM\27JAN1.SGM 27JAN1 EN27JA12.002</GPH> tkelley on DSK3SPTVN1PROD with NOTICES improvements would improve GHG performance of the fuel pathway, but at this time we do not have a strong technical basis for including any such improvements. Figure II–2 summarizes the results of our modeling of palm oil renewable diesel, with fuel production emissions allocated between the diesel fuel and jet fuel outputs and displacement credit given for the naphtha output. It shows the percent difference between lifecycle 4317 Federal Register / Vol. 77, No. 18 / Friday, January 27, 2012 / Notices TABLE II–11—LIFECYCLE GHG EMISSIONS FOR PALM OIL RENEWABLE DIESEL [kgCO2E/mmBtu] Palm oil renewable diesel Fuel type 2005 diesel baseline Net Agriculture (w/o land use change) .............................................................................................................................. Land Use Change, Mean (Low/High) ................................................................................................................................ Fuel Production .................................................................................................................................................................. Fuel and Feedstock Transport .......................................................................................................................................... Tailpipe Emissions ............................................................................................................................................................. 5 47 (28/67) 31 4 1 ................ ................ 18 (*) 79 Total Emissions, Mean (Low/High) ............................................................................................................................ 87 (68/107) 97 Midpoint Lifecycle GHG Percent Reduction Compared to Petroleum Baseline ............................................................... 11% ................ * Emissions included in fuel production stage. The docket includes a memorandum which summarizes relevant materials used for the palm oil renewable diesel analysis. Described in the memorandum, for example, are the input and assumptions document and detailed results spreadsheets (e.g., agricultural impacts, agricultural energy use, FAPRI–CARD model results) used to generate the results presented. The input and assumptions document available through the docket describes many aspects of our analysis, including our co-product accounting approach. EPA invites comment on all aspects of its modeling of palm oil renewable diesel including all assumptions made and modeling inputs. D. Consideration of Lifecycle Analysis Results tkelley on DSK3SPTVN1PROD with NOTICES 1. Implications for Threshold Determinations As discussed above, EPA’s analysis of the two types of biofuel shows that, based on the mid-point of the range of results, biodiesel and renewable diesel produced from palm oil have estimated lifecycle GHG emission reductions of 17% and 11% respectively compared to the statutory petroleum baseline used in the RFS program. The results for palm oil biodiesel and for palm oil renewable diesel, if finalized, would justify treating these fuel pathways as failing to meet the minimum 20% lifecycle GHG reduction requirement in the RFS program for non-grandfathered biofuels. Our analysis applies to the modeled palm oil biodiesel and palm oil renewable diesel pathways regardless of their country of origin (See 75 FR 14793 for a similar discussion regarding other pathways). We project that the vast majority of palm oil used to produce biofuels for use in the United States would be produced in Indonesia and Malaysia (See Table II–1). Although palm oil and palm oil biofuel production may occur in other countries VerDate Mar<15>2010 18:14 Jan 26, 2012 Jkt 226001 that have not been specifically modeled, or may be supplied from countries in different proportions than we modeled, we anticipate their use would not impact our conclusions regarding the lifecycle GHG thresholds met by the palm oil biofuel pathways under consideration. The emissions of producing these fuels in other countries could be slightly higher or lower than what was modeled depending on a number of factors. Our analysis indicates that crop yields in other countries where palm oil would most likely be produced tend to be lower than Malaysia and Indonesia, pointing toward somewhat higher land use change and consequently potentially higher land use change GHG impacts. If the supply of palm oil from other countries were to reduce the amount of agricultural expansion in Indonesia and Malaysia, with potentially reduced amounts of peat soil drainage, as compared to the amount predicted in our modeling, this would tend to lower our estimate of GHG emissions per acre of land use change. Technologies for turning this palm oil into biofuel are well established and would be expected to be similar in different countries. Based on these offsetting land use impact factors, similar biofuel production technology, and the small amounts of palm oil for biofuel likely to come from other countries, we conclude that incorporating palm oil from other countries would not impact our threshold determinations. 2. Consideration of Uncertainty Because of the inherent uncertainty and the state of evolving science regarding lifecycle analysis of biofuels, any threshold determinations that EPA makes for palm oil biodiesel and renewable diesel will be based on an approach that considers the weight of evidence currently available. For these two pathways the evidence considered includes the mid-point estimate as well PO 00000 Frm 00043 Fmt 4703 Sfmt 4703 as the range of results based on statistical uncertainty and sensitivity analyses conducted by the Agency. EPA will weigh all of the evidence available to it, while placing the greatest weight on the best-estimate value for the scenarios analyzed. As part of our assessment of the two palm oil biofuel pathways we have identified key areas of uncertainty in our analysis. Although there is inherent uncertainty in all portions of the lifecycle modeling, we focused our uncertainty analysis on the factors that are the most uncertain and have the biggest impact on the results. For example, the energy and GHG emissions used by a natural gas-fired biodiesel plant to produce one gallon of biodiesel can be calculated through direct observations, though this will vary somewhat between individual facilities. The indirect, international emissions are the component of our analysis with the highest level of uncertainty. For example, identifying what type of land is converted internationally and the emissions associated with this land conversion are critical issues that have a large impact on the GHG emissions estimates. Therefore, we focused our efforts on the international indirect land use change emissions and worked to manage the uncertainty around those impacts in three ways: (1) Getting the best information possible and updating our analysis to narrow the uncertainty, (2) performing sensitivity analysis around key factors to test the impact on the results, and (3) establishing reasonable ranges of uncertainty and using probability distributions within these ranges in threshold assessment. Our analysis of land use change GHG emissions includes an assessment of uncertainty that focuses on two aspects of indirect land use change—the types of land converted and the GHG emissions associates with different types of land converted. These areas of uncertainty were estimated statistically E:\FR\FM\27JAN1.SGM 27JAN1 tkelley on DSK3SPTVN1PROD with NOTICES 4318 Federal Register / Vol. 77, No. 18 / Friday, January 27, 2012 / Notices using the Monte Carlo analysis methodology developed for the RFS2 final rule.72 Figure II–1 and Figure II–2 show the results of our statistical uncertainty assessment. In analyzing both palm oil biofuel pathways, the midpoint results, and therefore the majority of the scenarios analyzed, fail to meet the 20% lifecycle GHG reduction requirement for nongrandfathered renewable fuels. We have also identified areas of uncertainty that are not explicitly addressed in our Monte Carlo analysis due to time considerations. These areas of uncertainty have been assessed with sensitivity analysis and qualitative inspection. A majority of the areas of uncertainty considered could result in higher actual lifecycle GHG emissions than estimated in our midpoint results. These aspects of our analysis include uncertainties regarding: the total area of projected incremental palm oil expansion; the percent of palm oil expansion impacting tropical peat swamp forests; and indirect emissions related to peat soil drainage, such as from an increased risk of forest fires or collateral drainage of nearby uncultivated land. For these areas of uncertainty it is our judgment that our midpoint estimates likely underestimate the actual amount of lifecycle GHG emissions, but it is unlikely that they overestimate the actual emissions. We have also identified a smaller number of uncertainties which could result in less actual emissions. For example, increased adoption of methane capture/ use technologies at palm oil mills and future government restrictions on peat soil development would likely result in less actual emissions than estimated in our midpoint results. Regarding methane capture and use projections, we conducted sensitivity analysis assuming that all mills use closed digester tanks with 90% methane capture efficiency, and convert the methane to electricity with 34% efficiency for export to the grid. In this sensitivity scenario, the mid-point results for palm oil biodiesel and renewable diesel are 42% and 36% reductions compared to the diesel baseline, respectively. Thus, even in this very optimistic scenario, neither of the palm oil biofuel pathways analyzed achieves a 50% GHG reduction. Our consideration of uncertainties in our lifecycle assessments is described further in a reference document available through the public docket. Based on the weight of evidence considered, and putting the most weight 72 The Monte Carlo analysis is described in EPA (2010a), Section 2.4.4.2.8. VerDate Mar<15>2010 18:14 Jan 26, 2012 Jkt 226001 on our mid-point estimate results, the results of our analysis indicate that both palm oil based biofuels pathways would fail to qualify as meeting the minimum 20% GHG performance threshold for qualifying renewable fuel under the RFS program. This conclusion is supported by our midpoint estimates, our statistical assessment of land use change uncertainty, as well as our consideration of other areas of uncertainty. A majority of the areas of uncertainty that we have identified, and discussed above, would lead to higher actual lifecycle GHG emissions than estimated in our midpoint results. Some of these areas of uncertainty appear to be fairly likely to result in greater actual emissions and in some cases by a substantial amount. In comparison, we identified a smaller number of uncertainties which could result in less actual emissions, but these factors appear less likely to reduce emissions by an equivalent amount. Based on the results of our analysis and considering key areas of uncertainty, the minimum 20% lifecycle GHG reduction requirements for non-grandfathered fuels under the RFS program is not achieved for the palm oil biofuel pathways evaluated. The docket for this NODA provides more details on all aspects of our analysis of palm oil biofuels. EPA invites comment on all aspects of its modeling of palm oil biodiesel and renewable diesel. We also invite comment on the consideration of uncertainty as it relates to making GHG threshold determinations. Dated: December 14, 2011. Margo T. Oge, Director, Office of Transportation & Air Quality. [FR Doc. 2012–1784 Filed 1–26–12; 8:45 am] BILLING CODE 6560–50–P ENVIRONMENTAL PROTECTION AGENCY [ER–FRL–9001–3] Environmental Impacts Statements; Notice of Availability Responsible Agency: Office of Federal Activities, General Information (202) 564–7146 or http://www.epa.gov/ compliance/nepa/. Weekly Receipt of Environmental Impact Statements Filed 01/17/2012 Through 01/20/2012 Pursuant to 40 CFR 1506.9. Notice Section 309(a) of the Clean Air Act requires that EPA make public its PO 00000 Frm 00044 Fmt 4703 Sfmt 4703 comments on EISs issued by other Federal agencies. EPA’s comment letters on EIS are available at: http://www.epa. gov/compliance/nepa/eisdata.html. EIS No. 20120013, Final EIS, USFS, ID, Clearwater National Forest Travel Planning Project, Proposes to Manage Motorized and Mechanized Travel, Clearwater National Forest, Idaho, Clearwater, Latah and Shoshone Counties, ID, Review Period Ends: 02/27/2012, Contact: Heather Berg (208) 476–4541. EIS No. 20120014, Revised Draft EIS, USFS, MT, East Deer Lodge Valley Landscape Restoration Management Project, To Conduct Landscape Restoration Management Activities, Additional Information Including the Addition of Alternative 3, Pintler Ranger District, Beaverhead Deerlodge National Forest, Powell and Deerlodge Counties, MT, Comment Period Ends: 03/12/2012, Contact: Brent Lignell (406) 494–2147. EIS No. 20120015, Draft EIS, FTA, WA, Mukilteo Multimodal Project, To Improve the Operations, Safety and Security of Facilities Serving the Mukilteo-Clinton Ferry Route, Funding, USACE Section 10 and 404 Permits, Snohomish County, WA, Comment Period Ends: 03/12/2012, Contact: Daniel Drais (206) 220–4465. EIS No. 20120016, Draft EIS, BLM, NV, Hycroft Mine Expansion Project, Proposes to Expand Mining Activities on BLM Managed Public Land and Private Land, Approval, Humboldt and Pershing Counties, NV, Comment Period Ends: 03/12/2012, Contact: Kathleen Rehberg (775) 623–1500. EIS No. 20120017, Draft EIS, FHWA, NY, Tappan Zee Hudson River Crossing Project, To Provide an Improved Hudson River Crossing between Rockland and Westchester Counties Funding, USACE Section 10 and 404 Permits, Rockland and Westchester Counties, NY, Comment Period Ends: 03/15/2012, Contact: Jonathan D. McDade (518) 431–4125. EIS No. 20120018, Final EIS, FHWA, CA, State Route 76 South Mission Road to Interstate 15 Highway Improvement Project, Widening and Realignment Including Interchange Improvements, USACE Section 404 Permit, San Diego County, CA, Review Period Ends: 02/27/2012, Contact: Manuel E. Sanchez (619) 699–7336. Amended Notices EIS No. 20110350, Draft EIS, USFS, AZ, Rosemont Copper Project, Proposed Construction, Operation with Concurrent Reclamation and Closure of an Open-Pit Copper Mine, E:\FR\FM\27JAN1.SGM 27JAN1

Agencies

[Federal Register Volume 77, Number 18 (Friday, January 27, 2012)]
[Notices]
[Pages 4300-4318]
From the Federal Register Online via the Government Printing Office [www.gpo.gov]
[FR Doc No: 2012-1784]


-----------------------------------------------------------------------

ENVIRONMENTAL PROTECTION AGENCY

[EPA-HQ-OAR-2011-0542; FRL-9608-8]


Notice of Data Availability Concerning Renewable Fuels Produced 
From Palm Oil Under the RFS Program

AGENCY: Environmental Protection Agency (EPA).

ACTION: Notice of data availability (NODA).

-----------------------------------------------------------------------

SUMMARY: This Notice provides an opportunity to comment on EPA's 
analyses of palm oil used as a feedstock to produce biodiesel and 
renewable diesel under the Renewable Fuel Standard (RFS) program. EPA's 
analysis of the two types of biofuel shows that

[[Page 4301]]

biodiesel and renewable diesel produced from palm oil have estimated 
lifecycle greenhouse gas (GHG) emission reductions of 17% and 11% 
respectively for these biofuels compared to the statutory baseline 
petroleum-based diesel fuel used in the RFS program. This analysis 
indicates that both palm oil-based biofuels would fail to qualify as 
meeting the minimum 20% GHG performance threshold for renewable fuel 
under the RFS program.

DATES: Comments must be received on or before February 27, 2012.

ADDRESSES: Submit your comments, identified by Docket ID No. EPA-HQ-
OAR-2011-0542, by one of the following methods:
     www.regulations.gov: Follow the on-line instructions for 
submitting comments.
     Email: asdinfo@epa.gov.
     Mail: Air and Radiation Docket and Information Center, 
Environmental Protection Agency, Mailcode: 2822T, 1200 Pennsylvania 
Ave. NW., Washington, DC 20460.
     Hand Delivery: Air and Radiation Docket and Information 
Center, EPA/DC, EPA West, Room 3334, 1301 Constitution Ave. NW., 
Washington DC 20004. Such deliveries are only accepted during the 
Docket's normal hours of operation, and special arrangements should be 
made for deliveries of boxed information.
    Instructions: Direct your comments to Docket ID No. EPA-HQ-OAR-
2011-0542. EPA's policy is that all comments received will be included 
in the public docket without change and may be made available online at 
www.regulations.gov, including any personal information provided, 
unless the comment includes information claimed to be Confidential 
Business Information (CBI) or other information whose disclosure is 
restricted by statute. Do not submit information that you consider to 
be CBI or otherwise protected through www.regulations.gov or 
asdinfo@epa.gov. The www.regulations.gov Web site is an ``anonymous 
access'' system, which means EPA will not know your identity or contact 
information unless you provide it in the body of your comment. If you 
send an email comment directly to EPA without going through 
www.regulations.gov your email address will be automatically captured 
and included as part of the comment that is placed in the public docket 
and made available on the Internet. If you submit an electronic 
comment, EPA recommends that you include your name and other contact 
information in the body of your comment and with any disk or CD-ROM you 
submit. If EPA cannot read your comment due to technical difficulties 
and cannot contact you for clarification, EPA may not be able to 
consider your comment. Electronic files should avoid the use of special 
characters, any form of encryption, and be free of any defects or 
viruses. For additional information about EPA's public docket visit the 
EPA Docket Center homepage at http://www.epa.gov/epahome/dockets.htm.
    Docket: All documents in the docket are listed in the 
www.regulations.gov index. Although listed in the index, some 
information is not publicly available, e.g., CBI or other information 
whose disclosure is restricted by statute. Certain other material, such 
as copyrighted material, will be publicly available only in hard copy. 
Publicly available docket materials are available either electronically 
in www.regulations.gov v or in hard copy at the Air and Radiation Docket 
and Information Center, EPA/DC, EPA West, Room 3334, 1301 Constitution 
Ave. NW., Washington, DC 20004. The Public Reading Room is open from 
8:30 a.m. to 4:30 p.m., Monday through Friday, excluding legal 
holidays. The telephone number for the Public Reading Room is (202) 
566-1744, and the telephone number for the Air Docket is (202) 566-
1742.

FOR FURTHER INFORMATION CONTACT: Aaron Levy, Office of Transportation 
and Air Quality, Transportation and Climate Division, Environmental 
Protection Agency, 1200 Pennsylvania Ave. NW., Washington, DC 20460 
(MC: 6041A); telephone number: (202) 564-2993; fax number: (202) 564-
1177; email address: levy.aaron@epa.gov.

SUPPLEMENTARY INFORMATION:

Outline of This Preamble

I. General Information
    A. Does this action apply to me?
    B. What should I consider as I prepare my comments for EPA?
    1. Submitting CBI
    2. Tips for Preparing Your Comments
II. Analysis of Lifecycle Greenhouse Gas Emissions
    A. Methodology
    1. Scope of Analysis
    2. Models Used
    3. Scenarios Modeled
    4. Analysis of Projected Land Use Changes in Indonesia and 
Malaysia
    5. Analysis of Palm Oil Mills
    B. Results of Lifecycle Analysis for Biodiesel From Palm Oil
    C. Results of Lifecycle Analysis for Renewable Diesel From Palm 
Oil
    D. Consideration of Lifecycle Analysis Results
    1. Implications for Threshold Determinations
    2. Consideration of Uncertainty

I. General Information

A. Does this action apply to me?

    Entities potentially affected by this action are those involved 
with the production, distribution, and sale of transportation fuels, 
including gasoline and diesel fuel or renewable fuels such as biodiesel 
and renewable diesel. Regulated categories include:

[[Page 4302]]

[GRAPHIC] [TIFF OMITTED] TN27JA12.000

    This table is not intended to be exhaustive, but rather provides a 
guide for readers regarding entities likely to engage in activities 
that may be affected by today's action. To determine whether your 
activities would be affected, you should carefully examine the 
applicability criteria in 40 CFR part 80, Subpart M. If you have any 
questions regarding the applicability of this action to a particular 
entity, consult the person listed in the preceding section.

B. What should I consider as I prepare my comments for EPA?

    1. Submitting CBI. Do not submit this information to EPA through 
www.regulations.gov or email. Clearly mark the part or all of the 
information that you claim to be CBI. For CBI information in a disk or 
CD-ROM that you mail to EPA, mark the outside of the disk or CD-ROM as 
CBI and then identify electronically within the disk or CD-ROM the 
specific information that is claimed as CBI. In addition to one 
complete version of the comment that includes information claimed as 
CBI, a copy of the comment that does not contain the information 
claimed as CBI must be submitted for inclusion in the public docket. 
Information so marked will not be disclosed except in accordance with 
procedures set forth in 40 CFR part 2.
    2. Tips for Preparing Your Comments. When submitting comments, 
remember to:
     Identify the rulemaking by docket number and other 
identifying information (subject heading, Federal Register date and 
page number).
     Follow directions--The agency may ask you to respond to 
specific questions or organize comments by referencing a Code of 
Federal Regulations (CFR) part or section number.
     Explain why you agree or disagree; suggest alternatives 
and substitute language for your requested changes.
     Describe any assumptions and provide any technical 
information and/or data that you used.
     If you estimate potential costs or burdens, explain how 
you arrived at your estimate in sufficient detail to allow for it to be 
reproduced.
     Provide specific examples to illustrate your concerns, and 
suggest alternatives.
     Explain your views as clearly as possible, avoiding the 
use of profanity or personal threats.
     Make sure to submit your comments by the comment period 
deadline identified.

II. Analysis of Lifecycle Greenhouse Gas Emissions

A. Methodology

1. Scope of Analysis
    On March 26, 2010, the Environmental Protection Agency (EPA) 
published changes to the Renewable Fuel Standard program regulations as 
required by 2007 amendments to CAA 211(o). This rulemaking is commonly 
referred to as the ``RFS2'' final rule. As part of the RFS2 final rule 
we analyzed various categories of biofuels to determine whether the 
complete lifecycle GHG emissions associated with the production, 
distribution, and use of those fuels meet minimum lifecycle greenhouse 
gas reduction thresholds as specified by CAA 211(o) (i.e., 60% for 
cellulosic biofuel, 50% for biomass-based diesel and advanced biofuel, 
and 20% for other renewable fuels). Our final rule focused our 
lifecycle analyses on fuels that were anticipated to contribute 
relatively large volumes of renewable fuel by 2022 and thus did not 
cover all fuels that either are contributing or could potentially 
contribute to the program. In the preamble to the final rule EPA 
indicated that it had not completed the GHG emissions impact analysis 
for several specific biofuel production pathways but that this work 
would be completed through a supplemental rulemaking process. Since the 
March 2010 final rule was issued, we have continued to examine several 
additional pathways not analyzed for the final rule. This Notice of 
Data Availability (``NODA'') focuses on our analysis of the palm oil 
biodiesel and palm oil renewable diesel pathways. The modeling approach 
EPA used in this analysis is the same general approach used in the 
final RFS2 rule for lifecycle analyses of other biofuels.\1\ The RFS2 
final rule preamble and Regulatory Impact Analysis (RIA) provides 
further discussion of our approach.
---------------------------------------------------------------------------

    \1\ U.S. Environmental Protection Agency (EPA). 2011. Summary of 
Modeling Inputs and Assumptions for the Notice of Data Availability 
(NODA) Concerning Renewable Fuels Produced from Palm Oil under the 
Renewable Fuel Standard (RFS) Program. Memorandum to Air and 
Radiation Docket EPA-HQ-OAR-2011-0542.
---------------------------------------------------------------------------

    This Notice provides an opportunity to comment on EPA's analyses of 
lifecycle GHG emissions related to the production and use of biodiesel 
and renewable diesel produced from palm oil feedstock. We intend to 
consider all of the relevant comments received. In general, comments 
will be considered relevant if they pertain to EPA's analysis of 
lifecycle GHG emissions related to palm oil biofuels, and especially if 
they provide specific information for consideration in our modeling. 
When all relevant comments have been considered we intend to inform the 
public of any resulting revisions in our analyses or any other relevant 
information pertaining to our

[[Page 4303]]

consideration of the comments received. Public notification regarding 
our consideration of comments could be accomplished in several formats, 
such as a Federal Register notice, a rulemaking action or a guidance 
document. The appropriate form of public notification will depend on 
the outcome of the public comment process and any reanalysis we deem 
appropriate. In the event that EPA does not significantly modify its 
analyses, no regulatory amendments will be necessary since the existing 
regulations currently do not identify any palm oil-based biofuel 
production pathways as satisfying minimum lifecycle GHG reduction 
requirements.
2. Models Used
    EPA's analysis of the palm oil biodiesel and renewable diesel 
pathways uses the same model of international agricultural markets that 
was used for the final RFS2 rule: the Food and Agricultural Policy and 
Research Institute international models as maintained by the Center for 
Agricultural and Rural Development at Iowa State University (the FAPRI-
CARD model). For more information on the FAPRI-CARD model refer to the 
RFS2 final rule preamble (75 FR 14670) or the RFS2 Regulatory Impact 
Analysis (RIA).\2\ These documents are available in the docket or 
online at http://www.epa.gov/otaq/fuels/renewablefuels/regulations.htm. 
The models require a number of inputs that are specific to the pathway 
being analyzed, including projected yields of feedstock per acre 
planted, projected fertilizer use, and energy use in feedstock 
processing and fuel production. The docket includes detailed 
information on model inputs, assumptions, calculations, and the results 
of our assessment of the lifecycle GHG emissions performance for palm 
oil biodiesel and renewable diesel.
---------------------------------------------------------------------------

    \2\ EPA. 2010. Renewable Fuel Standard Program (RFS2) Regulatory 
Impact Analysis. EPA-420-R-10-006. http://www.epa.gov/oms/renewablefuels/420r10006.pdf.
---------------------------------------------------------------------------

    As in our analysis of sugarcane ethanol in the RFS2 final rule, we 
did not use the Forestry and Agricultural Sector Optimization Model 
(FASOM) in our analysis of palm oil biodiesel and renewable diesel. 
FASOM is a highly detailed partial equilibrium model of the United 
States agricultural and forestry sectors. In the RFS2 final rule FASOM 
was used to determine the domestic U.S. agricultural sector impacts of 
domestically grown biofuel feedstocks. As palm oil is not grown 
domestically in any significant volume, the FAPRI-CARD model was the 
only model of agricultural markets used in the analysis. Our modeling 
indicates that any impacts to U.S. agriculture from using palm oil for 
biofuel production are small in comparison to the international 
impacts.\3\ Therefore, we determined that for this analysis the FAPRI-
CARD model is better suited for modeling domestic agricultural impacts 
and, as such, FASOM modeling is unnecessary.
---------------------------------------------------------------------------

    \3\ For example, in the scenarios modeled only 1% of land use 
change GHG emissions originate in the United States. These results 
are discussed more below and in the supporting materials available 
through the docket.
---------------------------------------------------------------------------

3. Scenarios Modeled
    To assess the impacts of an increase in renewable fuel volume from 
business-as-usual (what is likely to have occurred without the RFS 
biofuel mandates) to levels required by the statute, we established 
reference and control cases for a number of biofuels analyzed for the 
RFS2 final rulemaking. The reference case includes a projection of 
renewable fuel volumes without the RFS renewable fuel volume mandates. 
The control cases are projections of the volumes of renewable fuel that 
might be used in the future to comply with the volume mandates. The 
final rule reference case volumes were based on the Energy Information 
Administration's (EIA) Annual Energy Outlook (AEO) 2007 reference case 
projections. In the RFS2 rule, for each individual biofuel, we analyzed 
the incremental GHG emission impacts of increasing the volume of that 
fuel to the total mix of biofuels needed to meet the EISA requirements. 
Rather than focus on the GHG emissions impacts associated with a 
specific gallon of fuel and tracking inputs and outputs across 
different lifecycle stages, we determined the overall aggregate impacts 
across sectors of the economy in response to a given volume change in 
the amount of biofuel produced. For this analysis we compared impacts 
in the control case to the impacts in a new palm oil biofuel case.
    Our ``control'' case volumes are based on projections of a feasible 
set of fuel types and feedstocks. The control case for our modeling 
assumes no renewable fuel made from palm oil is used in the United 
States. For the ``palm biofuel'' case, our modeling assumes 
approximately 200 million gallons of biodiesel and 200 million gallons 
of renewable diesel from palm oil are used in the United States in the 
year 2022. The modeled scenario includes 1.46 million metric tonnes 
(MMT) of crude palm oil used as feedstock to produce the additional 400 
million gallons of palm oil biofuel in 2022. The projected lifecycle 
GHG emissions associated with this increased production and use of palm 
oil biofuel in 2022 are normalized per tonne of crude palm oil. The 
lifecycle GHG emissions per gallon of biofuel are then calculated based 
on the yields of biodiesel and renewable diesel per tonne of crude palm 
oil.
    Our volume scenario of approximately 200 million gallons of 
biodiesel and 200 million gallons of renewable diesel from palm oil in 
2022 is based on several factors including historical volumes of palm 
oil production, potential feedstock availability and other competitive 
uses (e.g., for food or export elsewhere instead of for U.S. 
transportation fuel). Our assessment is described further in the inputs 
and assumptions document that is available through the docket (EPA 
2011). Based in part on consultation with experts at the United States 
Department of Agriculture (USDA) and industry representatives, we 
believe that these volumes are reasonable for the purposes of 
evaluating the impacts of producing biodiesel and renewable diesel from 
palm oil.
    The FAPRI-CARD model, described above, projects in which countries 
the palm oil will most likely be grown to supply these biofuel volumes 
to the U.S. based on the relative economics of palm oil production, 
yield trends in different regions and other factors. Palm oil is 
currently grown in several regions internationally but the vast 
majority, close to 90%, is produced in Indonesia and Malaysia. Our 
modeled scenario projects that Indonesia and Malaysia would be the 
primary suppliers of palm oil for use as biofuel feedstocks, with other 
regions, such as Africa, Thailand and South America, contributing much 
smaller amounts. Because we anticipate that the great majority of palm 
oil for use in biofuels would be produced in Indonesia and Malaysia our 
modeling efforts focus on evaluating the lifecycle GHG emissions 
associated with palm oil production in these countries.
    Table II-1 provides a summary of projected palm oil production in 
2022 according to the FAPRI-CARD model.\4\ As discussed above, in the 
palm biofuel case 1.46 MMT of additional palm oil is used as biofuel 
feedstock in 2022 as compared to the control case. We project that 
global palm oil production would expand by 0.562 MMT in the palm 
biofuel case; the remaining volume of palm oil for biofuel production 
would be diverted from other sectors, such as food and chemical uses. 
In response we project that

[[Page 4304]]

production of other vegetable oils would increase to back fill the palm 
oil diverted to the biofuels industry (See Table II-2). Due to market-
mediated responses vegetable oil production does not increase enough to 
make up for the full amount of palm oil diverted to biofuel production 
in the palm biofuel case. There are several explanations for this 
including demand substitution away from vegetable oils and towards 
other products such as grains, meat and dairy. For more information 
refer to the full results from the FAPRI-CARD model which are available 
through the docket.

                                Table II-1--Projected Palm Oil Production in 2022
                                            [Thousand metric tonnes]
----------------------------------------------------------------------------------------------------------------
                                                                                   Palm biofuel
                                                                   Control case        case         Difference
----------------------------------------------------------------------------------------------------------------
Indonesia.......................................................          31,254          31,575             321
Malaysia........................................................          25,992          26,196             204
Rest of World...................................................           7,739           7,777              38
                                                                 -----------------------------------------------
    World.......................................................          64,986          65,548             562
----------------------------------------------------------------------------------------------------------------


                             Table II-2--Projected Vegetable Oil Production in 2022
                                            [Thousand metric tonnes]
----------------------------------------------------------------------------------------------------------------
                                                                                   Palm biofuel
                                                                   Control case        case         Difference
----------------------------------------------------------------------------------------------------------------
Palm Oil........................................................          64,986          65,548             562
Soybean Oil.....................................................         308,553         308,620              67
Rapeseed/Canola Oil.............................................          68,845          68,963             118
Other Vegetable Oils*...........................................          28,219          28,317              97
                                                                 -----------------------------------------------
    Total.......................................................         470,603         471,448             845
----------------------------------------------------------------------------------------------------------------
\*\ Includes cottonseed oil, peanut oil, sunflower oil and palm kernel oil.

    As shown in the tables above, the primary response in the scenarios 
modeled is to increase palm oil production in Malaysia and Indonesia. 
In our analysis, projected palm oil yields in 2022 are approximately 5 
tonnes per hectare in both Indonesia and Malaysia. The EPA projection 
for palm oil yields is an extension of the historical data trend 
forward to 2022, based on historical data from the USDA.\5\ Palm oil 
yields vary in other countries, but in general they are somewhat less 
than the yields achieved in Indonesia and Malaysia. (More information 
on projected palm oil yields is available in the inputs and assumptions 
document available through the docket.) Projected harvested areas of 
palm oil are reported in Table II-3. As discussed below, the land use 
change GHG emissions associated with the incremental expansion of palm 
oil areas in Indonesia and Malaysia are a focal point in our analysis.
---------------------------------------------------------------------------

    \4\ In the tables throughout this preamble totals may not sum 
due to rounding errors and negative numbers are commonly listed in 
parentheses.
    \5\ Historical palm oil yields are based on data from USDA's 
Production, Supply and Distribution (PSD) database and reports from 
USDA's Global Agricultural Information Network (GAIN).

                              Table II-3--Projected Palm Oil Harvested Area in 2022
                                          [Thousand harvested hectares]
----------------------------------------------------------------------------------------------------------------
                                                                                   Palm biofuel
                                                                   Control case        case         Difference
----------------------------------------------------------------------------------------------------------------
Indonesia.......................................................           6,179           6,243              63
Malaysia........................................................           5,202           5,242              41
Rest of World...................................................           4,035           4,055              20
                                                                 -----------------------------------------------
    World.......................................................          15,416          15,504             124
----------------------------------------------------------------------------------------------------------------

4. Analysis of Projected Land Use Changes in Indonesia and Malaysia
    As in our analysis of other feedstocks in the RFS2 final rule, we 
assessed what the GHG emissions impacts would be relating to palm oil 
production (including land use changes) due to the use of additional 
volumes of palm oil for biofuel production. Today's assessment of palm 
oil as a biofuel feedstock considers GHG emissions from international 
land use changes related to the production and use of palm oil, and 
uses the same land use change modeling approach used in the final RFS2 
rule for analyses of other biofuel pathways. However, given our focus 
today on the use of palm oil as a biofuel feedstock, this analysis for 
palm oil is more detailed and considers new data for Indonesia and 
Malaysia, including higher resolution satellite imagery and maps of 
relevant geographic features, such as the location of existing oil palm 
plantations, soil types, roads, etc. EPA decided to undertake a more 
detailed assessment of

[[Page 4305]]

Malaysia and Indonesia as compared to other regions, based on a number 
of factors including the concentration of the palm oil industry in this 
region and the availability of new data on palm oil land use.
    The goal of our Indonesia and Malaysia land use change analysis is 
to estimate GHG emissions from the incremental expansion of palm oil 
plantations that would result from the increased demand for palm oil to 
produce the modeled 400 million gallons of biodiesel and renewable 
diesel (i.e., land use change GHG emissions in Indonesia and Malaysia 
in the palm biofuel case versus the control case). This analysis 
involved projecting the locations of future palm oil expansion, the 
types of land impacted and the resulting GHG emissions. First, we 
gathered spatially explicit data on factors that could be expected to 
influence the location of palm oil plantations. In our analysis the 
spatial data are analyzed using the GEOMOD land use change simulation 
model, described in more detail below, to project the locations of 
incremental palm oil expansion in the scenarios modeled. We used the 
latest available data to set land conversion GHG emissions factors for 
Indonesia and Malaysia. Finally, we considered the uncertainty in our 
estimates and factor that into our assessment of threshold 
determinations for palm oil biodiesel and palm oil renewable diesel. An 
overview of our Indonesia and Malaysia land use change analysis is 
provided below, including references to materials that are available 
through the docket which provide more details about all of the inputs, 
assumptions and results.
    A key input in our analysis is newly available data on the historic 
locations of palm oil cultivation. These data are important because 
they establish a baseline area where palm oil is currently grown or has 
been grown in recent years. Past changes in the location of palm oil 
plantations were evaluated using relevant spatial information to 
determine what geographic factors were correlated with the changes. We 
then used this new understanding to predict the locations of future 
expansion related to increased palm oil biofuel production. This 
section includes the following:
     Description of data on the location of palm oil 
plantations in Indonesia and Malaysia;
     Summary of the geographic data sources considered in our 
analysis;
     Background on the GEOMOD model and our methodology for 
land use change projections;
     Summary of projected locations for palm oil expansion;
     Description of land use change emissions factors used in 
our analysis; and
     Estimated land use change GHG emissions in the scenarios 
modeled.
    Data on the historic locations of palm oil plantations in Indonesia 
and Malaysia--For Indonesia a literature search was conducted which 
found an absence of available spatial data on the locations of palm oil 
plantations. To fill this data gap EPA developed such maps for the time 
period from 2000 to 2009 using satellite imagery and other remotely 
sensed information. As described below, the mapping project required 
intensive effort in terms of both data analysis and visual inspection. 
To enhance data quality and mapping accuracy we limited the geographic 
scope of the project to the islands of Sumatra and Kalimantan where 
close to 90% of Indonesia's palm oil is known to be located.\6\ In 
recent years palm oil expansion has also been encouraged in more remote 
locations on the islands of Sulawesi and Papua, but as mentioned above 
our mapping efforts did not consider these islands. This source of 
uncertainty in our analysis is discussed in a reference document 
available through the public docket which describes our consideration 
of uncertainty.
---------------------------------------------------------------------------

    \6\ USDA Foreign Agricultural Service (USDA-FAS). 2009. 
Indonesia: Palm Oil Production Growth To Continue. Commodity 
Intelligence Report.  http://www.pecad.fas.usda.gov/highlights/2009/03/Indonesia/.
---------------------------------------------------------------------------

    To map the location of palm oil plantations in Indonesia we 
leveraged data from the complete Landsat archive, high-resolution data 
via Google Earth, and data from the National Geospatial-Intelligence 
Agency (NGA) Unclassified National Informational Library (UNIL), among 
others. Analysis of palm oil plantation areas using Landsat data was 
performed both visually and through an automated detection algorithm to 
ensure a robust analysis. The project mitigated cloud cover and data 
gaps, executed final plantation identification, and estimated the total 
area of medium- to large-scale oil palm plantations. Using high-
resolution remote sensing data yielded an estimated ground cover area 
for oil palm of 3.2 million hectares in the year 2000 and 4.0 million 
hectares in the year 2009. Detailed documentation of the analysis as 
well as electronic maps showing the results are available through the 
docket.7 8
---------------------------------------------------------------------------

    \7\ Integrity Applications Incorporated (IAI). 2010. High 
Resolution Land Use Change Analysis of Oil Palm in Sumatra and 
Kalimantan Circa 2010. Report to EPA. BPA-09-03. September 20, 2010.
    \8\ IAI. 2011. High Resolution Land Use Change Analysis for 
Sumatra and Kalimantan Circa 2000. Report to EPA. BPA-09-03. April 
8, 2011.
---------------------------------------------------------------------------

    For Malaysia, data on the locations of palm oil plantations in 2003 
and 2009 were provided by the Malaysian Palm Oil Board (MPOB), an 
agency of the Malaysian government. The data were provided in the form 
of electronic maps showing mature and immature palm oil plantations. 
The map of 2003 palm oil plantations utilizes remote sensing data from 
the Landsat database,\9\ and the map of 2009 plantations is based on 
SPOT satellite images.\10\ The data show the location of roughly 3.8 
million hectares of palm oil plantations in 2003 and roughly 5.2 
million hectares in 2009. The original maps, in a format compatible 
with Geographic Information System (GIS) software, were provided under 
a claim of confidential business information (CBI) and then returned to 
the source. Therefore, the original files are not available for public 
review. However, based on our agreement with the MPOB, electronic image 
files depicting the maps are available for review in the public docket.
---------------------------------------------------------------------------

    \9\ Wahid, B. O., Nordiana, A. Aand Tarmizi, A., M. 2005. 
Satellite Mapping of Oil Palm Land Use. MPOB Information Series. 
June 2005.
    \10\ MPOB. 2010. Additional Information Requested by United 
States Environmental Protection Agency: Agricultural Input. Data 
submitted by MPOB. June 4, 2010.
---------------------------------------------------------------------------

    Spatial analysis of land use change in Indonesia and Malaysia--In 
addition to the historic locations of palm oil plantations, our 
analysis considers other relevant geographic suitability factors for 
Indonesia and Malaysia. For our analysis of land use change in 
Indonesia fourteen factor maps were created: Elevation, precipitation, 
temperature, slope, soil type, land cover type in 2001, distance to 
roads, distance to rivers, distance to railroads, distance to 
settlements, distance to palm oil mills, peat soil location, land 
allocation (e.g., protected areas), and distance to existing 
plantations. For our analysis of Malaysia eleven factor maps were 
created: elevation, precipitation, temperature, slope, soil type, land 
cover type in 2001, distance to roads, distance to rivers, distance to 
railroads, distance to settlements, and distance to existing 
plantations. The factor maps were selected based on data availability 
and their relevance for projecting the location of future palm oil 
plantations. More details about the data used in our projections, 
including the source for each data element, are provided in technical 
reports available through the

[[Page 4306]]

docket.11 12 We welcome public comments on additional data 
sources for consideration in our modeling.
---------------------------------------------------------------------------

    \11\ Harris, N., and Grimland, S. 2011a. Spatial Modeling of 
Future Oil Palm Expansion in Indonesia, 2000 to 2022. Winrock 
International. Draft report submitted to EPA.
    \12\ Harris, N., and Grimland, S. 2011b. Spatial Modeling of 
Future Oil Palm Expansion in Malaysia, 2003 to 2022. Winrock 
International. Draft report submitted to EPA.
---------------------------------------------------------------------------

    To analyze the spatial data described above and use it to project 
the most likely locations for future palm oil expansion, we used a 
well-established land use change simulation model called GEOMOD. GEOMOD 
is a spatially explicit simulation model of land cover change that uses 
maps of bio-geophysical attributes and of existing land cover to 
extrapolate the known pattern of land cover from one point in time to 
other points in time. GEOMOD was developed by researchers at the SUNY 
College of Environmental Science and Forestry with funding from the 
U.S. Department of Energy.\13\ It has been used to model land cover 
changes across the world in many different ecosystems including Costa 
Rica,\14\ Indonesia \15\ and India.\16\
---------------------------------------------------------------------------

    \13\ Hall, C., A., S., Tian, H., Qi, Y., Pontius, R., G., 
Cornell, J., and Uhlig, J. 1995. Modeling spatial and temporal 
patterns of tropical land use change. Journal of Biogeography, 22, 
753-757.
    \14\ Pontius Jr., R. G., Cornell, J., and Hall, C. 2001. 
Modeling the spatial pattern of land-use change with Geomod2: 
application and validation for Costa Rica. Agriculture, Ecosystems & 
Environment 85 (1-3) p.191-203.
    \15\ Harris, N. L, Petrova, S., Stolle, S., and Brown, S. 2008. 
Identifying optimal areas for REDD intervention: East Kalimantan, 
Indonesia as a case study. Environmental Research Letters 3: 035006.
    \16\ Rashmi, M. and Lele, N. 2010. Spatial modeling and 
validation of forest cover change in Kanakapura region using GEOMOD. 
Journal of the Indian Society of Remote Sensing p. 45-54.
---------------------------------------------------------------------------

    Using spatial data described above, the GEOMOD land use change 
simulation model was used to project the locations of future palm oil 
expansion in Indonesia and Malaysia until the year 2022. First, we 
created maps of factors that could influence where future palm oil 
expansion occurs, such as elevation, slope, proximity to roads, etc. 
Second, we compared the factor maps against a map of existing palm oil 
plantations in 2000 and 2003 for Indonesia and Malaysia respectively to 
construct a series of suitability maps. In the calibration stage, for 
each suitability map the model assigned higher suitability values to 
locations that have a combination of characteristics similar to the 
land already cultivated in palm oil and low suitability values to 
locations that are less similar to existing palm oil areas. In the 
validation stage, each candidate suitability map was overlain with a 
map of existing plantations in the year 2009. Each suitability map was 
evaluated with a set of statistics to assess its ability to accurately 
project the location of palm oil areas from the first time period to 
the second time period, e.g., 2000 to 2009.
    After single factor suitability maps were tested, we used this 
information to create suitability maps from several combined factors 
and with different weighting schemes. Results from the validation 
procedures of each scenario were used to refine subsequent simulations 
until a simulation model achieved the best validation results. The best 
model was defined as the model that most accurately projects the 
location of palm oil expansion between the first and second time 
periods. When the best model was identified based on the validation 
exercises, we used this model to simulate expansion of oil palm 
plantations from 2000 to 2022 in Indonesia and from 2003 to 2022 in 
Malaysia.
    For this analysis 34 different suitability maps were created for 
Indonesia. After applying lessons learned from the Indonesia analysis 
we were able to narrow the field to 18 different suitability maps for 
Malaysia. After all of the trials, in both countries the combined 
suitability map that weighted all of the factors equally performed the 
best across a number of accuracy metrics. For both countries the 
accuracy metrics for the selected suitability maps indicated good model 
performance. Thus, the suitability maps created by weighting all 
factors equally were chosen to simulate expansion of oil palm 
plantations to 2022 in Indonesia and Malaysia. More details about our 
GEOMOD analysis are provided in technical reports available through the 
docket.\17\
---------------------------------------------------------------------------

    \17\ Harris et al. (2011a) and (2011b).
---------------------------------------------------------------------------

    Projected land use changes in Malaysia and Indonesia--This section 
provides a summary of our results regarding projected land use changes 
in Indonesia and Malaysia. As discussed above, we used the FAPRI-CARD 
model to simulate a roughly 400 million gallon increase in palm oil 
biodiesel and renewable diesel production in 2022, resulting in 
additional palm oil harvested area in Indonesia and Malaysia of 63 and 
41 thousand hectares respectively. Using the GEOMOD model we projected 
where the additional 104 thousand hectares of palm oil would be 
located, what types of land cover would be impacted, and the extent of 
resulting peat soil drainage.
    Table II-4 summarizes the projected locations of palm oil crops in 
Indonesia and Malaysia in 2022. Our analysis considers 45 different 
administrative units in Indonesia and Malaysia, but here the results 
are summarized into 5 aggregate regions. In the modeled scenario we 
project that close to 90% of the incremental palm oil expansion in 
Indonesia would occur in the Kalimantan region. This is consistent with 
USDA's reporting that Kalimantan has been the fastest expanding region 
for palm oil over the last decade.\18\ In Malaysia we project that most 
of the incremental palm oil expansion would occur on the mainland, 
i.e., Peninsular Malaysia. USDA reports that almost all of the highly 
suitable land for palm oil production has already been developed in 
Malaysia. According to USDA, Sarawak has the most remaining development 
potential, but the available areas on Sarawak are primarily coastal 
peatlands and/or degraded inland forest with native claims,\19\ which 
makes these areas less desirable for cultivation due to complications 
arising from peat soil characteristics and land rights issues. Our 
modeling indicates that the most likely area for incremental expansion 
is on the mainland where existing plantations may be able to expand 
around the fringes in order to increase productive area.
---------------------------------------------------------------------------

    \18\ USDA-FAS (2009).
    \19\ USDA-FAS. 2011. Malaysia: Obstacles May Reduce Future Palm 
Oil Production Growth. Commodity Intelligence Report. June 28, 2011, 
http://www.pecad.fas.usda.gov/highlights/2011/06/Malaysia/.

                  Table II-4--Projected Location of Palm Oil in Indonesia and Malaysia in 2022
                                          [Thousand harvested hectares]
----------------------------------------------------------------------------------------------------------------
                                                                                   Palm biofuel
                Country                          Region            Control case        case         Difference
----------------------------------------------------------------------------------------------------------------
Indonesia.............................  Kalimantan..............           1,396           1,452              56
                                        Sumatra.................           4,782           4,790               8
Malaysia..............................  Peninsular Malaysia.....           3,016           3,048              32

[[Page 4307]]

 
                                        Sabah...................           1,351           1,357               6
                                        Sarawak.................             834             837               3
----------------------------------------------------------------------------------------------------------------

    Following the lifecycle analysis methodology in RFS2 final rule, 
our analysis of land use change GHG emissions looks at the impacts 
associated with incremental expansion in harvested crop area in the 
scenarios analyzed. Typically palm oil is harvested for the first time 
3-5 years after planting, followed by approximately 20-25 years of 
annual harvesting before the cycle is repeated.\20\ This implies that 
in a steady state the ratio of immature (non-harvested) area to 
harvested area would be about 12-25%. Data published by MPOB shows that 
on average the ratio of immature to harvested area was 15% during the 
period from 1990 to 2009.\21\
---------------------------------------------------------------------------

    \20\ Unnasch, S. S. T. Sanchez, and B. Riffel (2011) Well-to-
Wheel GHG Emissions and Land Use Change Impacts of Biodiesel from 
Malaysian Palm Oil. Prepared for Malaysian Palm Oil Council. Life 
Cycle Associates Report LCA.6015.50P.2011.
    \21\ Department of Statistics, Malaysia. Table 1.2 Area Under 
Oil Palm Mature and Immature. MPOB Web site, http://econ.mpob.gov.my/economy/annual/stat2009/Area1_2.pdf. Accessed 
December 2011.
---------------------------------------------------------------------------

    Projecting the amount of palm oil area that would be immature in 
2022 depends on several factors such as expansion and replanting rates 
which can vary over time and by geographic region. For example, high 
palm oil prices may induce growers to continue harvesting their old 
plantations despite decreasing yields. This is because growers do not 
want to miss selling palm oil during a period of high prices while they 
are waiting for their replanted crops to mature. In fact, this is the 
current situation in Malaysia where many growers have delayed 
replanting to take advantage of high palm oil prices.\22\ Furthermore, 
replanting rates could change based on technological developments. 
Currently, palm oil is replanted when it reaches 25 feet in height due 
to the length of the long sickle poles often used for harvesting.\23\ 
The development of new clonal varieties and harvesting techniques could 
increase the economically viable lifetime of palm oil plantations, and 
thus reduce the ratio of immature to harvested area.
---------------------------------------------------------------------------

    \22\ USDA-FAS (2011).
    \23\ Unnasch et al.
---------------------------------------------------------------------------

    Accounting for the land use changes associated with expansion of 
immature as well as harvested areas of palm oil would be an additional 
source of land use change GHG emissions in our analysis. We invite 
comment on whether we should account for incremental expansion in the 
area of immature palm oil plantations in our analysis, and if so on 
which factors should be considered in making such a projection.
    To evaluate land use change GHG emissions resulting from palm oil 
expansion we considered the soil and land cover types in the areas 
projected for conversion. Land cover types were determined based on 
MODIS satellite data, the same land cover data set that was used in the 
RFS2 final rule. According to our analysis, over the previous decade 
over 50% of palm oil has been grown on areas classified as forest in 
Indonesia,\24\ and the figure is over 60% in Malaysia.\25\ Table II-5 
shows the projected types of land cover impacted in Indonesia and 
Malaysia by incremental palm oil expansion in 2022 in the scenarios 
modeled. We project that the forest and mixed land cover types would 
account for over 80% of the land cover impacted by palm oil expansion. 
(The mixed land cover category assumes equal shares of forest, 
grassland, shrubland and cropland.) These projections are in line with 
recent historical data,\26\ USDA reports \27\ and peer-reviewed 
literature,\28\ which all indicate that much of the recent expansion in 
palm oil has been at the expense of tropical forest.
---------------------------------------------------------------------------

    \24\ Harris et al. (2011a), Table 9.
    \25\ Harris et al. (2011b), Table 9.
    \26\ Harris et al. (2011a) and (2011b).
    \27\ USDA-FAS (2009) and (2011).
    \28\ Koh, L. P., Miettinen, J., Liew, S. C. & Ghazoul, J. 2011. 
Remotely sensed evidence of tropical peatland conversion to oil 
palm. Proceedings of the National Academy of Scientists of the 
United States of America, 108, 5127-5132.

Table II-5--Projected Land Cover Types Impacted by Palm Oil Expansion in
                     Indonesia and Malaysia in 2022
------------------------------------------------------------------------
                                                   Indonesia   Malaysia
                 Land cover type                      (%)         (%)
------------------------------------------------------------------------
Forest..........................................          43          54
Mixed...........................................          38          35
Shrubland.......................................           0           0
Savanna.........................................          10           1
Grassland.......................................           1           1
Cropland........................................           7           5
Wetland.........................................           1           3
------------------------------------------------------------------------

    An even more critical factor in terms of estimating land use change 
GHGs in this region is the extent of tropical peat soil drained in 
order to prepare land for palm oil production. Almost all of the 
undisturbed tropical peat land in the world is located in Indonesia and 
Malaysia, with much smaller amounts also found in Philippines and 
Thailand.\29\ Undisturbed tropical peat swamp forest removes carbon 
dioxide (CO2) from the atmosphere and stores it in biomass and peat 
deposits. The incomplete decomposition of dead tree material under 
waterlogged, anaerobic conditions has led to slow accumulation of peat 
deposits over millennia, giving this ecosystem a very high carbon 
density. Typical estimates are that tropical peat soils sequester 
approximately 20 times more carbon than forest biomass on a per hectare 
basis.\30\
---------------------------------------------------------------------------

    \29\ Paramananthan, S. 2008. Tussle over Tropical Peatlands. 
Global Oils & Fats: Business Magazine. (5)3, 1-16.
    \30\ Page, S. E., Morrison, R., Malins, C., Hooijer, A., Rieley, 
J. O. & Jauhiainen, J. 2011. Review of peat surface greenhouse gas 
emissions from oil palm plantations in Southeast Asia (ICCT White 
Paper 15). Washington: International Council on Clean 
Transportation.
---------------------------------------------------------------------------

    In their natural state, tropical peat lands are unfavorable for 
agricultural production compared to mineral soils, primarily because 
peat swamp has a ground water table that is at or close to the peat 
surface throughout the year. Despite these harsh conditions, peat 
swamps have recently been exploited to make room for agricultural and 
forest plantations as the global demand for food, wood and other 
resources has

[[Page 4308]]

increased.\31\ Some reasons that have been given for the recent 
development of peat swamps include that other suitable areas have 
already been used, advanced land conversion and drainage technologies 
have been developed, and in some cases seizing the swamps is less 
likely to result in native land disputes.\32\ Koh et al. found that 
approximately 6% of tropical peatlands in Indonesia and Malaysia had 
been converted to palm oil plantations by the early 2000s.\33\ Based on 
our analysis of 2009 data we find that palm oil plantations have been 
developed disproportionately on peat soils, which occupy 13% of the 
total land area in Indonesia (Sumatra and Kalimantan) but host 25% of 
palm oil plantations.\34\ For Malaysia, we estimate that in 2009 
approximately 13% of palm oil plantations were on peat soils compared 
with only 8% of the country displaying that type of soil.\35\ Table II-
6 summarizes our analysis regarding the historical and projected extent 
of palm oil on tropical peat soil. The values in the last row, 
projected incremental expansion in 2022, are used in our analysis. 
Taking the weighted averages for Indonesia and Malaysia, based on the 
data in Table II-4 and Table II-6, we project that 11.5% of incremental 
palm oil expansion in 2022 will occur on tropical peat lands in the 
scenarios modeled.
---------------------------------------------------------------------------

    \31\ Hooijer, A., Page, S., Canadell, J. G., Silvius, M., 
Kwadijk, J., W[ouml]sten, H., & Jauhiainen, J. 2010. Current and 
future CO2 emissions from drained peatlands in Southeast Asia. 
Biogeosciences, 7, 1505-1514.
    \32\ Miettinen, J., Chenghua S., Liew, S.C. 2011. Two decades of 
destruction in Southeast Asia's peat swamp forests. Frontiers in 
Ecology and the Environment.
    \33\ Koh et al. (2011).
    \34\ Harris et al. (2011a), Table 22.
    \35\ Harris et al. (2011b), Table 19.

Table II-6--Percent of Palm Oil Plantations on Peat Soil, Historical and
                                Projected
------------------------------------------------------------------------
                                                   Indonesia   Malaysia
                      Year                            (%)         (%)
------------------------------------------------------------------------
2009 (Historical)...............................          22          13
2022 (Projected)................................          15          10
2022 (Projected Incremental Expansion)..........          13           9
------------------------------------------------------------------------

    Land use change emissions factors--In our analysis, GHG emissions 
per hectare of land conversion are determined using the emissions 
factors developed for the RFS2 final rule following IPCC 
guidelines.36 37 In addition, several updates have been made 
to refine our land use change emissions factors for Indonesia and 
Malaysia. First, average above and below ground carbon stocks in palm 
oil plantations were revised based on new data. Second, GHG emissions 
associated with draining peat soils were updated according to new 
studies which consider data from hundreds of new field measurements. 
Finally, estimated average forest carbon stocks were updated based on a 
new study which uses a more robust and higher resolution analysis. In 
this section we briefly describe each of these updates. More 
information is available in a technical memorandum available through 
the docket.\38\
---------------------------------------------------------------------------

    \36\ Harris, N., Brown, S., and Grimland, S. 2009a. Global GHG 
Emission Factors for Various Land-Use Transitions. Winrock 
International. Report Submitted to EPA. April 2009.
    \37\ Harris, N., Brown, S., and Grimland, S. 2009b. Land Use 
Change and Emission Factors: Updates since the RFS Proposed Rule. 
Winrock International. Report Submitted to EPA. December 2009.
    \38\ Harris, N. 2011. Revisions to Winrock's Land Conversion 
Emission Factors since the RFS2 Final Rule. Winrock International 
report to EPA.
---------------------------------------------------------------------------

    Palm Oil Carbon Stocks. In the final RFS2 rule, carbon stocks in 
palm oil plantations after one year of growth were estimated to be 15 
tonnes carbon dioxide-equivalent per hectare (tCO2e/ha). 
This was based on Table 5.3 of the 2006 IPCC Guidelines for 
Agriculture, Forestry and Other Land Use (AFOLU),\39\ which gives 
biomass stocks on oil palm plantations as 136 tCO2e/ha. The 
total carbon stock value reported by IPCC was divided by an assumed 15-
year growth period to derive a linear growth rate. Our original 
analysis accounted for only one year of growth when estimating carbon 
storage on palm oil plantations.
---------------------------------------------------------------------------

    \39\ 2006 IPCC Guidelines for National Greenhouse Gas 
Inventories Volume 4 Agriculture, Forestry and Other Land Use. 
Chapter 5. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html.
---------------------------------------------------------------------------

    We have revised our analysis of palm oil carbon stocks in favor of 
a more accurate time-averaged approach, using average carbon stocks 
over the life of the plantation. Since a typical rotation period for 
palm oil is approximately 30 years (e.g., 3-5 years as immature plus 
20-25 years of harvesting), this approach is more appropriate for our 
lifecycle analysis methodology as established in the RFS2 final rule, 
which considers land use change emissions over a 30-year period. A 
literature review of palm oil carbon stocks was conducted, and based on 
this review we modified the carbon stocks of palm oil plantations to a 
time-averaged value of 128 tCO2e/ha.\40\
---------------------------------------------------------------------------

    \40\ Harris (2011).
---------------------------------------------------------------------------

    Peat Soil Emissions Factors. Development of tropical peatland for 
palm oil production requires removal of the vegetative cover and 
typical drainage depths of 0.6 to greater than 1.0 meter. Drainage is 
accomplished by construction of a network of deep canals and shallower 
ditches. Additionally, the peat surface is often compacted by the 
weight of heavy vehicles to improve its load-bearing characteristics 
and increase the stability of palm trees. These changes remove carbon 
from the peatland system by lowering the peat water table, ensuring 
continuous aerobic decomposition of organic material and greatly 
reducing preservation of new carbon inputs to the peat from biomass. As 
a result the peat swamp ecosystem switches from a net carbon sink to a 
large source of carbon emissions. On completion of a productive palm 
oil cycle, the plantation is typically renewed by land clearance, 
drainage and replanting.\41\
---------------------------------------------------------------------------

    \41\ Page et al.
---------------------------------------------------------------------------

    In the RFS2 final rule peat soil emissions in Indonesia and 
Malaysia were estimated based on a relationship developed by Hooijer et 
al. (2006) that correlates peat drainage depth with annual peat 
CO2 emissions.\42\ Assuming average drainage depth of 0.8 
meters, average emissions from drained peat soils were estimated to be 
73 tCO2 per hectare per year.
---------------------------------------------------------------------------

    \42\ Hooijer, A., M. Silvius, H. W[ouml]sten and S. Page. 2006. 
PEAT-CO2, Assessment of CO2 emissions from 
drained peatlands in SE Asia. Delft Hydraulics report Q3943.
---------------------------------------------------------------------------

    For our palm oil analysis average peat soil emissions have been 
updated based on a newly available study (Hooijer et al. 2011) \43\ 
which considers over 200 subsidence measurements (more than were 
previously available for all peatlands in Southeast Asia combined), 
taken at various locations including palm oil and acacia plantations on 
peat soil.\44\ Earlier studies had assumed constant annual emissions 
over time following peat soil drainage. Hooijer et al. (2011) is the 
only source with enough data to calculate peat carbon emissions over 
various time scales. These data showed higher rates of emission in the 
years immediately following drainage. As such, average annual emissions 
are no longer derived as a function of drainage depth but are instead 
based on the time scale of analysis. Based on Hooijer et al. (2011), 
our analysis assumes that average emissions from peat soil drainage are 
95 tCO2e/ha/yr over a 30-year time period. This is supported 
by Page et al., who

[[Page 4309]]

reviewed studies of carbon emissions from peat drainage and concluded 
that this is the most robust estimate of emissions over a 30-year 
period. They noted that this estimate, which is based on subsidence 
measurements, closely matches estimates from similar recent studies 
which use other measurement techniques such as direct gas fluxes.\45\
---------------------------------------------------------------------------

    \43\ Hooijer, A., Page, S. E., Jauhiainen, J., Lee, W. A., 
Idris, A., & Anshari, G. 2011. Subsidence and carbon loss in drained 
tropical peatlands: reducing uncertainty and implications for 
CO2 emission reduction options. Biogeosciences 
Discussions, 8, 9311-9356.
    \44\ Page et al., 53.
    \45\ Jauhiainen, J., Hooijer, A., & Page, S. E. (2011). Carbon 
Dioxide Fluxes in an Acacia Plantation on Tropical Peatland. 
Biogeosciences Discussions, 8, 8269-8302.
---------------------------------------------------------------------------

    Forest Carbon Stocks. For the RFS2 final rule, international forest 
carbon stocks were estimated from several data sources each derived 
using a different methodological approach. Two new analyses on forest 
carbon stock estimation were completed since the release of the final 
RFS2 rule, one for three continental regions by Saatchi et al. \46\ and 
the other for the EU by Gallaun et al. \47\ We have updated our 
estimates based on these new studies because they represent significant 
improvements as compared to the data used in the RFS2 rule. Forest 
carbon stocks across the tropics are particularly important in our 
analysis of palm oil biofuels because palm oil is grown in tropical 
regions. In the scenarios modeled there are also much smaller amounts 
of land use change impacts in the EU related to palm oil biofuel 
production. As such, we took this opportunity to incorporate the 
improved forest carbon stocks data in both of these regions.
---------------------------------------------------------------------------

    \46\ Saatchi, S.S., Harris, N.L., Brown, S., Lefsky, M., 
Mitchard, E.T.A., Salas, W., Zutta, B.R., Buermann, W., Lewis, S.L., 
Hagen, S., Petrova, S., White, L., Silman, M. and Morel, A. 2011. 
Benchmark map of forest carbon stocks in tropical regions across 
three continents. PNAS doi: 10.1073/pnas.1019576108.
    \47\ Gallaun, H., Zanchi, G., Nabuurs, G.J., Hengeveld, G., 
Schardt, M., Verkerk, P.J. 2010. EU-wide maps of growing stock and 
above-ground biomass in forests based on remote sensing and field 
measurements. Forest Ecology and Management 260: 252-261.
---------------------------------------------------------------------------

    Preliminary results for Latin America and Africa from Saatchi et 
al. were incorporated into the final RFS2 rule, but Asia results were 
not included due to timing considerations. The Saatchi et al. analysis 
is now complete, and so the final map was used to calculate updated 
area-weighted average forest carbon stocks for the entire area covered 
by the analysis (Latin America, sub-Saharan Africa and South and 
Southeast Asia). The Saatchi et al. results represent a significant 
improvement over previous estimates because they incorporate data from 
more than 4,000 ground inventory plots, about 150,000 biomass values 
estimated from forest heights measured by space-borne light detection 
and ranging (LIDAR), and a suite of optical and radar satellite imagery 
products. Estimates are spatially refined at 1-km grid cell resolution 
and are directly comparable across countries and regions.
    In the final RFS2 rule, forest carbon stocks for the EU were 
estimated using a combination of data from three different sources. 
Issues with this `patchwork' approach were that the biomass estimates 
were not comparable across countries due to the differences in 
methodological approaches, and that estimates were not spatially 
derived (or, the spatial data were not provided to EPA). Since the 
release of the final rule, Gallaun et al. developed EU-wide maps of 
above-ground biomass in forests based on remote sensing and field 
measurements. MODIS data were used for the classification, and 
comprehensive field measurement data from national forest inventories 
for nearly 100,000 locations from 16 countries were also used to 
develop the final map. The map covers the whole European Union, the 
European Free Trade Association countries, the Balkans, Belarus, the 
Ukraine, Moldova, Armenia, Azerbaijan, Georgia and Turkey.
    For both data sources, Saatchi et al. and Gallaun et al., we added 
belowground biomass to reported aboveground biomass values using an 
equation in Mokany et al.\48\ More details regarding updated forest 
carbon stock estimates are available in a technical report to the 
docket.\49\
---------------------------------------------------------------------------

    \48\ Mokany, K., R.J. Raison, and A.S. Prokushkin. 2006. 
Critical analysis of root:shoot ratios in terrestrial biomes. Global 
Change Biology 12: 84-96.
    \49\ Harris (2011).
-----------------------------------------------------------------